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1. INTRODUCTION

In recent years automatic speech recognition (ASR) work at RSRE has
concentrated mainly on recognition of isolated and connected words by
comparing the patterns resulting from acoustic analysis of unknown
utterances against statistical models of whole-word patterns, without
reference to phonological, syntactic or semantic constraints. In
order to improve the performance of current ASR systems and to enable
the systems to work with large lexicons, it is desirable to include
linguistic information in the form of phonological, syntactic and
semantic constraints. These constraints are collectively referred to
as linguistic constraints. The term "constraint" refers, in general,
to information about what is (or is not) allowed, but it will be used
also to mean what may be more (or less) likely to occur in the use of
language.

A language model is a complete set of linguistic constraints expressed
formally. In other words, language models are computationally useful
formalisations of linguistic knowledge. At the syntactic level, a
language model may be equivalent to a grammar. There are several
alternative views on the nature of language and, in particular, the
grammar of natural language. The early work in linguistics was
concerned mainly with the development of syntactic grammar rules and
phonological rules ("hard" constraints). More recently, there have
been developments in stochastic grammars using probabilistic
("softer") rules to describe phonological and syntactic information.
Other language models are based more simply on the probability of
juxtaposition of words or phonemes (n-grams) where the probabilities
are derived from the frequency of occurrence in very large samples of
text.

One way of combining linguistic information with acoustic analysis is
to use conditional probabilities and Bayes' rule. The work in ASR at
RSRE uses the probability, p(AIW), that when a speaker says the word
(or sub-word unit or word string) W the acoustic evidence A will be
observed. In order to estimate the probability, p(WIA), that the
utterance is W, given the acoustic evidence A, it is also necessary to
calculate the probability that W would occur. These probabilities
must be combined using Bayes' formula

p(W) p(AIW)
p(WIA) -u -----

p(A)

A language model provides a method of computing a suitable
probability. p(W), for any proposed utterance [1). In these terms, a
language model is a mathematical formalisation of linguistic
constraints which is used to predict the likelihood that any element
from an allowed vocabulary will follow the string of elements in the
utterance. In ASR, a language model may be used to limit the extent
of the search for the correct word in an utterance, or to resolve
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ambiguity in the acoustic analysis.

Phonological information may be used to specify allowable sequences of
phonetic segments (phonemes or syllables), predict the systematic
variation in the pronunciations of words,* or it may describe the role
of prosody. For example, a phonological constraint will iredict that
/spl/ is an allowable sequence of phonemes in English. whereas /sbl/
Is not. Lexical knowledge may be used to describe the internal
structure of words in the language, or model the lexicon as a whole.
A lexical constraint would, for instance, specify that although
/blisk/ is phonologically allowable, it doesn't constitute an English
word. Soae examples of the use of phonological and lexical
constraints are described in Section 2.

At a higher level, syntactic and semantic constraints can be applied.
Syntactic constraints specify grammatical rules such as 'a sentence
comprises a noun phrase followed by a verb phrase'. Syntactic
constraints are used to reduce ambiguity in the analysis of a string
of acoustic-phonetic data. For example, the utterance "Those two
books are mine" would be analyised syntactically to eliminate the
acoustic-lexical ambiguity in the second word in the sentence, which
could be otherwise interpreted as either "two", "too" or "to".
Section 3 covers the use of syntactic constraints in ASR.

Semantic constraints arise from the meanings of words, and
combinations of words.~ and they help to resolve grammatical ambiguity.
For example, semantic analysis of the sentence "John saw the man in

the park with the fountain" would eliminate the syntactic ambiguity
that the prepositional phrase "with the fountain" could be attached to
either the noun phrase "the man" or "the park". Semantic constraints
are most difficult to formalise. Some attempts are outlined in
Section 4.

Examples of automatic speech recognition systems which employ some
linguistic constraints are the HARPY system from CMI (derived from the
HEARSAY and DRAGON systems), the IBM system, and BBN's HWIM. These
are discussed briefly in Section 5.

In addition to the reference section, a bibliography is available,
which is a compilation of useful articles, papers and books on the
general subject of linguistic constraints in ASR.

2. PHONOLOGICAL CONSTRAINT MODELLING

Phonological constraints in ASR may take several forms. At a low
level, the language-specific rules governing the permissible ways of
combining phonemes into syllables and words may be used. At a
different level, models of the alternative pronunciations of words,
either those that are obligatory. conditioned by context (allophonic
variation), or optional, conditioned by speaking rate, style, dialect
etc. (phonological variation) may be constructed. In other cases
Information about the phonological structure of the dictionary (word 1
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length or frequency, syllabic structure, for example) may be used to
aid lexical access, or to predict the performance of ASR.
Alternatively, the suprazegmental features (prosodics) of the language
my be modelled.

2.1. Phonological constraints

Most of the work in this area appears to be concerned with the
specification of rules for alternative pronunciations of words
(phonological transformation rules).

Barnett [2) describes a system developed at System Development
Corporation, for describing and operating a set of phonological
transformation rules. The goal of this rule system was to predict
alternative pronunciations for lexicon entries. The models were
specific to one speaker, or a small community of speakers sharing
similar speaking characteristics. The rules were to be integrated and
used in a prototype continuous speech understanding system (SDC SUS).
Three sets of phonological rules were proposed - the first would
generate the set of legal pronunciations realised by changes in
phonemic spelling, the second was to model intra-syllabic
co-articulation effects which may depend on phonetic features, and the
third would model interactions over syllable and word boundaries.
Only the first of these had been implemented at the time of the paper
mentioned. Lexicon entries were phonemically spelled (using ARPABET)
and have syllable and interior word boundaries marked, as well as
stress levels.

As an example of these rules (which are fairly typical of most
phonological transformation rules), in some varieties of English an
unvoiced plosive may be inserted between a nasal and a following
unvoiced fricative or plosive with a different place of articulation
from the nasal, and the inserted plosive will have the same place of
articulation as the nasal (hosorganic stop insertion). For example, a
[p] may be inserted between [m] and [th] in "something". The rule for
this is as follows:

HOMORGANIC STOP INSERTION
(PLOS PLACEkl -VOICE) - NASAL OPT*//(PLOS -VOICE) OR

(FRIC -VOICE)
IF CLASS3 EQ FRIC OR
PLACEklI NQ PLACEk3

The first part is the rule name, the second defines the
reconstruction possible, the third specifies left context (i.e. nasal
plus optional syllable boundary), the fourth specifies right context
(i.e. unvoiced plosive or fricative), and the fifth details any
conditions (i.e. place of following plosive must be different from the
place of the nasal).

The rules are unordered and deterministic as the aim is to generate
the full set of alternative pronunciations for each entry.
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When in use in the speech understanding system the lexicon contained
150 entries with an average length of 10 phonemes (including syllable
and word boundaries). A set of 37 such rules generated an average of
2.3 alternatives per item.

More recently, Huckvale [3] has developed a set of rules as part of
his Speech-Production Production System. His version of the insertion
rule quoted above is given for comparison.

IPlosive Epenthesis
[NASAL - NASAL] [*] [MANNER - FRICATIVE]
-> [j [MANNER :-STOPPLACE := %l,VOICE:u%3] []

In the sequence 1. nasal, 2. null, 3. fricative insert a stop at 2.
with the place of 1. and the voicing of 3.

A similar approach to applying phonological rules was taken by IBM
Yorktown Heights [4]. Although their basic aims were the same, Cohen
and Mercer were in addition concerned with associating a probability
with each of the possible realisations of an utterance in an ASR
system. Their main point was that some phonological variants of
words/phrases are common to particular speaker populations and styles
of speaking, and some are more frequently encountered than others.
Therefore, it is necessary to associate with each utterance and
pronunciation the probability that that pronunciation is produced as a
realisation of that utterance. They appear to do this on a
speaker-dependent basis, attaching speaker-dependent probabilities
both to the base forms and to the phonological rules. An overall
probability for that pronunciation is gained by combining these.

Their system consisted of a lexicon of phonemic base forms of American
English, a set of context-sensitive phonological rules to account
statistically for phonemic/allophonic variation resulting from
idiolect/style/rate etc., and an algorithm for applying those rules to
the base forms to generate variants. The base forms were represented
as directed graphs, and the application of the rules produced an .,
expanded graph which accounted for all possible pronunciations and
their associated probabilities.

They did not mention how they discovered the probabilities for either
the base forms or the rules. More recently, however, they have been
obtaining better results with a much cruder set of networks, using I.
Baum-Welsh to estimate the probabilities. They list all the rules for
American English, along with some notes on their distribution, which
although fascinating are unlikely to be particularly relevant to
British English. .

2.2. Phonotactic/lexical constraints

Phonotactic and lexical constraints are as important in speech
recognition as higher level syntax or semantics. Lexical constraints
can be used, for instance, to produce a "filter" which will exclude
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sequences which can not be words. Phonotactic constraints describe
the allowable phoneme combinations of the language, and this is
particularly useful when acoustic cues are missing or distorted. The
importance of both this and lexical knowledge is clear from the fact
that even trained phoneticians are poor at phonetically transcribing
unknown languages for which they do not possess such knowledge.

An approach to modelling phonotactic constraints was described by
Bourlard et al. in the context of recognition based on phonemic Markov
Models [5). The phonemes are characterised by very simple three-state
Hidden Narkov Models trained on connected speech. Recognition of
words is done in one of two ways. In the first. a Markov model for
each word is made by concatenating the phonemic models of its
constituents, while in the second, the reference templates are the
phoneme models and recognition is in two stages: recognition of a
string of phonemes, then lexical look-up based on that string. The
model of phonotactic constraints consisted of a simple "trained
phonemic syntax". This was a boolean matrix, showing all possible
phoneme pairs, so effectively forbidding illegal transitions.

Researchers at MIT are concerned with how knowledge of both
phonotactic and lexical constraints might be used to help the
recognition task [6). They are examining large lexicons in order to
investigate some of the properties of (American) English. Their
investigations suggest two useful properties of the language which
might usefully be exploited. The first has to do with the broad
phonetic structure of words in the lexicon, and their work suggests
that for isolated word recognition broad phonetic classifications of
words would permit efficient lexical access, while being robust in the
face of both allophonic and inter-speaker variations. However, it is .

not clear how to interpret this conclusion for the problem of%
continuous speech recognition, where word boundaries are usually not
detectable.

The second property has to do with the use of prosodic information in
lexical access, in that stressed syllables undergo less variation than
do unstressed ones. Dictionary expansion by phonological rule, as
described above, does not conventionally capture this aspect of
phonetic variability, so it is necessary to find out the extent to
which the stressed/unstressed distinction participates in lexical
constraints. Studies of their large dictionary showed that more words
can be uniquely identified by their stressed syllables than by the
unstressed ones, so they conclude that recognition algorithms should
perhaps not be too concerned with the identification of phones in
unstressed syllables as these are more variable and less information
bearing. This leads them to suggest that the stressed syllables
should be represented in fine phonemic detail, while the unstressed6
ones can be described in broader terms.

However, recent work at Cambridge and Edinburgh has cast some doubt on
the validity of both these conclusions. The Edinburgh team found
that better results were obtained if the segments described in fine
phonemic detail were selected randomly, rather than occurring only in
stressed syllables [7). They also point out that the MIT studies did
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not take proper account of word frequency information. For instance,
although they quote the average equivalence class size as being just
over 2, a lot of the most frequent words belong to classes
considerably bigger than this.

A different approach to phonotactic modelling is being investigated at
Dell-Northern Research. Canada [8). Since the major allophonic
variants of a phoneme are determined by its postition within the
syllable, they have compiled a network of all possible English
syllables. This is used in large vocabulary ASR in order to restrict
the possible phoneme sequences to correspond to sequences of valid jg
syllables. The syllable network was based on 60,000 phonemic
transcriptions in Webster's 7th. Collegiate dictionary.

In order to model syllable-based allophonic variation they use a
separate Markov source for each allophone depending upon its position
in the syllable network. In experiments involving speaker-dependent
isolated word recognition the unknown word is decoded as a sequence of
syllables, where each syllable is a path through the network and each
of the network's transitions is mapped onto a Markov source allophone
model. Then statistical decoding is used to compute the most likely
syllable sequences corresponding to words in their dictionary. As
they are not using any higher level language model all the words are
considered equally likely. They found that for isolated CVC words the
use of separate Narkov models for each allophone brought significant
improvement over having only a single source for each phoneme. *

However, this improvement was not evident when the test set consisted
of arbitrary words containing consonant clusters (perhaps due to
undertraining?).

They also suggest that the phonotactic constraints in polysyllabic
words might be further tightened by using a separate network for each
syllable position within the word, as the number of valid syllables
decreases with increasing syllable position in the word.

Kahn [9) expresses similar views as to the usefulness of syllabic
structure to predict phonological variation in ASR, but suggests a
rule-based approach. In addition, Kosaka and Wakita [10) show that
there are syllabic structural differences between words with different
frequencies of occurrence which might be exploited in lexical access
for ASR.

Church [11] considers allophonic variation to be a rich source of
contextual information, which should be exploited by ASR systems.
Since allophonic variation is the result of predictable systematic
linguistic processes it should provide important cues for the
determination of word boundaries and stress assignment. For example,
It is possible to use prosodic and rhythmic cues to indicate
approximately where a word boundary will occur (for instance if there
are two adjacent stressed syllables there must be a word boundary
between them), but the precise location of the boundary can only be
determined by using cues provided by the allophonic structure. He has
implemented a chart parser (see Section 3.2) at the phonetic level to
capture these allophonic rules. He also points out that a natural
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extension to this is a parsing mechanism based on simple matrix
operations, where the entries in the matrix could be probabilities.

2.3. Other methods of using phonological knowledge in ASR

A number of approaches are based on performing some sort of
preliminary analysis on the input in order to derive coarse, but
reliable and easily extracted features, and then using higher-level
information to guide a more detailed analysis where necessary.

Lea et al. [12), for example, propose the use of prosodic features to
segment the continuous speech signal into phrases and sentences, and
to locate stressed syllables (because these contain more reliable
phonetic information). They think it important to do this in order to
be able to make syntactic predictions at an early stage in the
recognition process. After such a preliminary prosodic/acoustic
analysis the lexical hypothesiser inserts words into the sentence '

structure. guided by contextual constraints (e.g. lexical categories
which could occur at certain points in the sentence structure). Then a

acceptable syntactic/semantic constructs, based on information from
the grammar and task domain,* combine to form a total hypothesis. The
sentence hypothesiser controls the order in which acoustic/phonetic
patterns are generated for comparison with the input, and also
determines when it is necessary to perform a more detailed phonetic
analysis.

De Mori [13] also describes a rule-based system for the extraction of
acoustic cues using a grammar of frames. The (speaker independent)
rules take into account contextually conditioned constraints,
bottom-up information and top-down prediction imposed by lexical
constraints. The knowledge is shared among procedures acting as
experts which co-operate to extract acoustic cues from the signal and
to generate hypotheses about the bounds of syllabic segments, and the
phonetic features inside those segments. A grammar of frames was .

chosen for this work because frames provide a means of integrating
structural and procedural knowledge. and to handling context sensitive
rules. They also provide a way of representing default knowledge,%
which can be used by the inference mechanisms. Procedures for
extracting acoustic cues/features when necessary can also be easily
implemented. Once a frame has been instantiated (by some event) the
expert attempts to fill its slots, either by extracting features from
the data, or by evaluating predicates, depending on the calculation of :,V
functions defined by the semantic attachments, or. if all else fails,
by using default values. The alleged advantages of this approach are
that it makes lexical access easier because it is being done on the
basis of a few reliable and easily detected primary acoustic cues, and
that the costly signal processing needed to extract the more detailed
features need not be done on the whole of the utterance, but only on
those parts where it is really necessary. '

Becker and Poza (14] describe the acoustic processing in a
syntactically guided Natural Language Speech Understanding System.
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The purpose of the acoustic processor is to verify or reject
hypotheses generated through the interaction of syntactic, semantic,
and pragmatic information. The word verification sub-system contains
& function for each word in the system, which takes as input the point
in the utterance where the word is hypothesised to start and returns a
value denoting the confidence that the word is actually there. These
functions were written by a speech scientist using knowledge of
acoustic phonetics. Spectrograms were used by the expert to aid in
the determination of the characteristics of each word in a variety of
contexts. This Information is then used in order to decide which of
the analysis routines to use in what order, and to determine the
degree of confidence to be assigned.

Work in progress in CSELT. Turin [15]. is also concerned with
continuous speech understanding. Here the task is divided into two
distinct stages. The first is concerned with recognition and uses no
syntactic/semantic information. Using techniques based on Markov
models, diphones are extracted from the continuous speech signal, and
a lattice of scored word hypotheses is produced using only lexical and
phonological knowledge.

This is then passed to the second. "understanding", stage, where the
aim Is to find the best scoring sequence covering the utterance.
Because of the nature of the input to this stage, one of their needs
is a parser which is tolerant of overlaps or small gaps between
adjacent words, and of. very short, unstressed words being missing.
They are also concerned with developing a parsing strategy which is
potentially parallel in operation. Therefore, they are using the
chart parsing philosophy (see Section 3.2), as this combines the
advantages of bottom-up and top-down processing, and also allows them
to take into account the priorities of hypotheses derived from the
word scores. Their implementation of the parser is based on an "Actor
Network" where each actor contains syntactic rules (based on a
dependency grammar), as well as semantic and lexical competence.
Although syntactic and semantic information is kept strictly separate
in order to retain flexibility, they stress the importance of using
both types of knowledge in parallel, so hypotheses for sentence
segments are created only if both sets of constraints are satisfied.

In addition to the probabilistic control of the parser which is based
on the word scores from the lexical hypothesiser, they also see the
need for heuristic control processes to control the search of
incomplete hypotheses. The main effect of this heuristic control is
to restrict the search space.

Another approach using Markov models is being investigated at
Cambridge, where 11MM techniques are being applied to define linguistic
units at several levels [16). The assumption is made that although
the states of a 11MM may not correspond to traditional linguistic
units, they must be picking out something significant. Sub-word
Narkov models are obtained for the training words and the segments of
speech corresponding to each state are extracted. These segments are
then used to train a new model which will produce a transcription in
terms of these new units.
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At the grammatical level the intention is to deduce the grammatical
units of the language from a very simple (children's learner reading
books) vocabulary. The 1004 is trained on phrases from that vocabulary
and clustering techniques are used on the re-estimated transmission
probability matrix in an attempt to determine relationships between
elements of the vocabulary. They found quite a close correspondence
between the resulting classes and traditional grammatical units.

3. SYNTACTIC CONSTRAINTS

The syntax of a string of symbols concerns the rules governing the
arrangement of, and the interrelationships between, the elements in
the string. A grammar is a set of rules which describe and govern the
syntax of a sentence or of a string of data symbols. Grammar rules
can be applied at any level (and to anything!) and can be used to
generate strings or sentences which belong to the language described
by the grammar rules. A parser is a mechanism for applying grammar
rules in order to label elements in a string or to assess the validity
of a string.

Syntactic analysis of text or speech falls into two parts which could
be labelled structural and judgemental, respectively:

a. Deciding what the various segments of a sentence represent and
how they relate to the rest of the sentence. That is, labelling
(or tagging) words in a sentence with parts of speech.

b. Accepting (or not) a string of symbols (which could be data
strings or English words, etc.) as valid according to the grammar
rules. In the case of a stochastic grammar (see Section 3.3),
the symbol string would be given a score which represents the
likelihood that the string is a valid one.

There are many papers and books on the general subject of parsing (see
Bibliography). The emphasis in this review paper, however, is on
parsers which are being used for speech, rather than for text only.
Techniques to apply syntactic constraints are usually in the form of a
computer programing algorithm which parses a simplified (generally
context-free) language. For example, Earley's Algorithm [17] is a
particularly useful method for parsing context-free languages. Other
more powerful techniques are now being developed which can handle the
complexities of natural language (for example, Augmented Transition
Networks, see Section 3.1).

Another approach used in speech recognition, which can be directly
related to stochastic grammars and AT~s, is Chart Parsing [18] (see
Section 3.2). There are very strong links between Stochastic Grammars
and Chart Parsing which merit further investigation.

%
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3.1. Austmented Transition Networks

An Augmented Transition Network (ATN) [ 19] is a very useful way of
representing complex grammar structures in the form of a network (or
connected sub-networks) (20]. DBN have successfully used ATN's in
their speech recognition work (21). An ATN allows recursive calls to
other networks (or sub-networks) in the overall system. The facility
which gives it the power to represent natural language is in the form
of changeable registers which can be continually checked and updated
and which can transfer control to various parts of the network. (The
latter gives ATNs the power of a Turing machine.)

As an example of' what is typically held in the registers, the word
"John" found at the beginning of a sentence causes the SUBJ register
to contain the proper noun phrase "John". If the sentence is then
found to be passive "John" would be moved to the OBJ register. Other
registers such as TNS and TYPE, hold information about the verb tense
and the type of sentence (e.g. declarative or question). I

3.2. Chart Parsing

Charts provide a data structure for parsing. They are designed to
handle the inherent ambiguity of natural language efficiently. A
chart is simply a directed graph with each arc (or edge) representing
a node (vertex) in the..analysis of a string. Initially. all the nodes
are pre-terminals (i.e. represent words), and non-terminal edges are
added when adjacent edges can be combined into larger structures
according to the grammar. Each string bounded by an edge is called a
'well-formed substring'. If the string can be parsed there will be an
edge which accounts for the whole of the string.

The notion of 'well-formed substring' is a key one in chart parsing,
as it is this which allows the treatment of ambiguity. If, for
instance, the goal was to analyse the sentence "John saw the man with
the telescope" there is one possible parse where the prepositional
phrase is attached to the object noun phrase, and another where it is
attached to the verb phrase directly. In a chart parser, because
intermediate structures such as noun phrase, and prepositional phrase
are stored as well-formed substrings, they do not need to be rebuilt
each time a different parse is found, as they would in an ATN.

Since chart parsers are data structures for parsing, they may be used
to implement different types of grammar, and can be run in either
top-down or bottom-up mode. Church (22) proposes a parser based on
matrix operations, where the chart is decomposed into a set of binary
matrices, one for each part of speech, indexed by a pair of positions
in the string of symbols being parsed. An entry in the matrix is 1 if'
the chart has a constituent for that part of speech spanning that
entry, and 0 if it has not. If a stochastic grammar were being
parsed, the entries in the matrix would be probabilities, rather than
is and Os.
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3.3. Stochastic Formal Grammars

In general, a Formal Grammar can be used.* in a mathematical sense.* to
describe natural and unnatural languages, such as programming
languages. Formal grammar rules (usually called rewrite or production
rules) are used to generate sentences in a language or patterns of
data. In a Stochastic Formal Grammar (SF0) every production rule
(e.g. NP -) DetNoun) has a probability associated with it such that
the probabilities for all production rules with the same left hand
side must sum to unity (23].

Stochastic formal grammars can be directly related to Hidden Markov
Models (24), which are now widely used in ASR. Using Baker's "nodal
span" principle it is possible to generalise the algorithms for tuning
and using H00s so that they can be applied to Stochastic (Formal)
Grammars. Baker's Inside/Outside algorithm [25), is an automatic
technique for re-estimation of production rule probabilities. The
algorithm is an extension of the Forward/Backward algorithm (26]
which is used to re-estimate probabilities in Hidden Markov models.
IBM are using the Inside/Outside algorithm in their current research
on language modelling in ASR (1].

4. SEMANTIC CONSTRAINTS

Semantic information may be important in resolving ambiguities that
cannot be resolved at the acoustic, lexical, or syntactic levels. For
example, the word "plane" in "I am hoping to catch the eleven o'clock
plane" is ambiguous acoustically (it is homophonous with "plain"),
lexically (it has two possible meanings - 'means of transport' or
'tool') and syntactically (it is being used as a noun). Semantic
information would specify that the more likely interpretation in this
case would be 'means of transport'. The alternative interpretation is
not impossible, just rather unlikely.

However, the amount of information that would need to be incorporated
in a system to enable semantic analysis of unrestricted natural
language is huge, and no clear boundary exists between such
information and the pragmatic knowledge about the world used in
general problem solving. For this reason most research on semantic
analysis has been done in the field of Artificial Intelligence, and
tends to be application-specific (27.28]. In addition, not much
progress has been made in developing formal techniques for semantic
analysis which can be directly applied to established methods in
automatic speech recognition, so most of the early work used natural
language text input to highly specified domains. The computer
programs such as SHRDLU (29], STUDENT (30), SIR (31) and TLC (32] use
rules which are specific to the vocabulary and subject matter, and
they are generally complex and lengthy (usually written in LISP).

Work in the 1960s demonstrated the problems of using limited logic
systems and the need for a more general, but formal, approach to
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storing and processing the complex information associated with
semantics (for example Semantic Nets). Later developments in
declarative AI languages,* and propositional and first-order predicate
logics seemed to offer a way of establishing a 'deductive' method of
interpreting sentences. The problem is that such logics rely on
compact sets of neatly defined logical axioms for their deductive
procedures and so cannot deal with the wide set of heuristic (general
problem solving) procedures which may be necessary in understanding
natural language. However, recent work on Definite Clause Grammars
[33] has Its origins in such theories.

Early literature in the field showed a strong divide between the
various areas of linguistics, with many researchers seeing a clear
boundary between syntax and semantics,* and the majority considering '

the former to be of prime importance (hence the advanced state of
syntactic methods relative to semantic ones). Others were primarily
concerned with semantic information processing, systems such as
Schmnk' a Conceptual Dependency (34) and Wilka' Preference Semantics
(35] being typical examples of these. However, more recently the
divide between syntax and semantics based analysis has been narrowed
by work in which the distinctions between then are not seen as clear
cut, and both sorts of information are considered equally important.
The communicative aspect of language use is now emphasised, so rather
than trying to discover what patterns there are in language ,and then
finding out what those patterns mean (the traditional 'syntactic'
approach), the issue is one of discovering how language is patterned
to convey meaning (the 'functional' approach). This different
perspective has been a major influence in the development of Lexical
Functional Grammars (36), Functional and Systemic Functional Grammars
(37.38), Case Grammars E39) and Word Grammars [40) (to name but a
few! which take a more unified approach to language understanding. In
addition, early work with semantic nets, such as that of Quillian [41)
on Semantic Memory may now be applicable to recent developments in
"connectionist" methods ([42), so may provide a formal means of
integrating semantic and syntactic constraints by exploiting parallel,
rather than serial, processing. Such efforts may lead to the
development of a more formal set of methods for applying semantics (in
conjunction with syntax) to ASR.

5. ASR SYSTEMS THAT INCLUDE LANGUAGE MODELLING

5.1. HEARSAY II

HEARSAY 11 (43) was the first example of the "blackboard" approach to
the organisation of large quantities of linguistic information. The
system consisted of sets of independent modules (knowledge sources),
each containing domain specific knowledge (phonetic, syntactic,
semantic, pragmatic), and a shared data structure, called a
blackboard, through which hypotheses from the knowledge sources could
be accessed and modified as necessary. The acoustic-phonetic and
phonological components were feature-based rewrite rules, while the
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syntactic component generated hypotheses based on the probabilities of
occurrence of grammatical constructs. The semantic domain was
restricted to retrieval of daily news stories. The main problem with
this approach was that the scheduling of events was extremely complex,
as at any particular point in the analysis the choice of which of a
large number of potentially applicable knowledge sources to activate
had to be made.

5.2. DRAGON-I

The Dragon system [44) was based on a finite-state network
representation and the techniques used are Hidden Markov Models and
Dynamic Programming (DP). Global optimality is guaranteed by the DP
search because each possible path through the state network is
covered. Combinatorial explosion is avoided by recombining
alternative paths as frequently as new paths are added to the search
space. In fact, the number of computations is linear in the length of
the utterance.

The optimality depends on the finite-state grammar assumption and
problems could occur when trying to model more complex (context
sensitive) grammars. However, Baker claims [44) that the distinction
between finite-state and higher order grammars is somewhat artificial
and that the issue is one of modelling as accurately as possible the
conditional probabilities (estimated by the frequency of acoustic
events in the:sequence, rather than by the frequency of words), not
one of generating the proper language or grammar.

The Harpy system [45) is an extension of the Dragon system which also
incorporates features of the Hearsay II system. Unlike the Dragon
system not all paths through the network are searched; only those
paths which would be considered "near misses" according to the
grammatica~l constraints are actually pursued. It uses the same kind
of highly constrained finite-state grammar as Dragon-I.

5.4. Hwim

The Hear What I Mean (HWIM) system [46] was BBN's second major ASR
system (the first being SPEECHLIS in the context of the natural
language front-end called LUNAR). It was developed to handle travel
budget manager tasks and so the vocabulary is limited by the
particular application. The system uses a middle-out "island-
driven" parsing strategy which incorporates Augmented Transition
Networks (ATh's) (See Section 3.1). The modelling of phonetic,
lexical. syntactic, semantic and pragmatic constraints uses a series
of Cascaded ATh's [47).

A major concern in ASR systems is finding a suitable method of
accessing words in the lexicon which are acoustically similar to
labelled phonetic segments in order to arrive at the most likely
interpretation of an utterance. A problem occurs when the number of
predicted words is greater for one interpretation of the utterance
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than for another and hence there are different numbers of likelihood
scores which need to be combined to give an overall score for each
utterance. Therefore the scores of the different word hypotheses
need to be normalised in some way.

5.5. THE IBM LANGUAGE MODEL

The language model of the current (1985) isolated word recogniser of
the IBM (Yorktown Heights) research group [48,49] simply combines the
probabilities of short sub-strings of words (typically tri-grams). To
avoid extremely large numbers of possible combinations of words
syntactic tags are used and the words are organised into various
equivalence classes. The major simplification of the IBM system is
that the speech input is in the form of isolated words and so the
problem of finding the word boundaries is obviated. ,S

The tri-gram modelling approach

P(w31 ww1 )uq3f(w 31 w2wI)+q2f(w3 lw2) VP,%

+q1f(w3 )

where q 1 
+ q2 

+ q3 - 1 and q1 
+ q2 

+ q3 >= 0

has the following problems :-

a. Non-occurrence of the trigram, bigram or unigram in the training
text (i.e. the need for a very large training text). This problem
is overcome by using a smoothing technique whenever the frequency
counts are zero [49).

b. However large the training text, the resulting trigram model is
always dependent on the context of that training text.

c. Inclusion of determiners and other common words in the trigram
probability frequency counts can lead to loss of linguistic ,
information. For example, the probability of the word "issues"
following "resolve all" is very high but, if the phrase to be
recognised is "resolve all the issues", then the word "issues" has a
low probability as the third word of the trigram beginning "all
the". (IBM are considering ways of addressing this problem.)

Part of speech (POS) classification is to be included as an additional
term in the above equation in the next generation of IBM recognisers
in the following form

klw 31g3) h(g3 1g(w2 ) g(wl))

where g(w ) is the POS class of the word wiand g is the POS class to
be assin 1d to the word w to be predicted. The probabilities k and h
are estimated using th Forward-Backward (FB) algorithm on the
training text [48].
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The P05 classifications are not based on traditional P05 labels (e.g.
noun~verb~etc). The P05 classes are labelled by a representative word
(called a "nucleus") which is a frequently used or grammatically
important word (at present there are about 200 representative words).
The PD algorithm is used to "organise" the remaining words in the
lexicon into classes which are labelled by the representative words.
As an example, all numbers form one class and all first names form
another which is shared by titles Mr. Mrs. etc..

The main advantages of this approach are that some semantic
information is implicit in the nuclear POS class and that the
probabilities of a word belonging to any particular class can be
re-estimated automatically. The major disadvantage is that the
nuclear P05 classes are entirely dependent on the context of the
training text.

6. CONCLUSIONS '

The need for the application of linguistic constraints at all levels 0
is being recognised by those involved in the development of advanced
automatic speech recognition systems. A number of current
commercially available systems (e.g. DRAGON, IBM) are exploring the
areas of applying syntactic constraints. The IBM system is also based
on phonological rules.

Current methods at RSRE are concerned with Hidden Markov whole-word
Models, and a natural extension of this work, to explore syntactic
constraints, is to apply HMM's at a grammatical level. One method
would be to assume that spoken utterances can be described by
(probabilistic) context-free grammar rules. Then algorithms such as
the I/O could be used to re-estimate the production rule probabilities
as more examples of spoken utterances are input to the ASR system.

A problem with this approach might be the limitations imposed by the
use of context-free grammars as models for spoken English. It is
difficult to devise a thorough and rigorous model of spoken natural I

language by means of a context-free (or any other) grammar. However,
it may not be necessary to use anything more sophisticated than a
simple (regular) grammar for some of the applications of ASR systems.
Nevertheless, speech to text systems (as may be used over telephone
communications networks) will require a comprehensive model of natural
language which will probably include semantic, pragmatic and prosodic
information. Therefore, in the future it may be necessary to develop
parallel processing methods to incorporate and use all or some forms
of linguistic information simultaneously.

The majority of natural language analysers have been designed to
handle text input. Speech, however has an important additional source
of information, prosodics, which if properly exploited, could be of
great benefit in automatic recognition systems.
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