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ABSTRACT
An asymptotic analysis is presented for estimation in the three

parameter first order autoregressive model, where the parameters are
the mean, autoregressive coefficient, and variance of the shocks.
The nearly nonstationary asymptotic model is considered wherein the
autoregressive coefficient tends to 1 as sample size tends to
infinity. Three different estimators are considered: the exact
gaussian maximum likelihood estimator, the conditional maximum
likelihood or least squares estimator, and some "naive" estimators.
It is shown that the estimators converge in distribution to
analogous estimators for a continuous time Ornstein-Uhlenbeck
process. Simulation results show that the MLE has smaller
asymptotic mean squared error than the other two, and that the
conditional maximum likelihood estimator gives a very poor estimator

of the process mean.

Key Words and Phrases: 1likelihood estimation, autoregressive
processes, nearly nonstationary time series, Ornstein-Uhlenbeck

process.
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1. INTRODUCTION.

Consider a sequence of statistical experiments with observation

vector (yn(O), o ey yn(n)) given by a three parameter AR(1l) process
(1.1) [Yn(k+1) - un] = ?n[vn(k) - up]l + e (kel),

k = o, 1, e s sy n-lp
The shocks cn(l), ooy ‘n(n) are assumed 1.1.d. with common

distribution independent of n, and Ecn(l) = 0 , Eci(l) = og < ®, We

suppose that |rn| < 1 for all n and that yn(O) has the stationary
distribution for the process. The parameters rn and Hp will be
allowed to vary with sample size (see (1.2) and (1.3) below).

Suppose that the statistician models the process as Gaussian.
Then the maximum likelihood estimate (MLE) of the parameter vector
(un, ag, Pn), denoted (;n' ;2, ;n)’ is a solution of a rather

n

po and 'n E ro

are fixed, ther. one can show that the MLE is asymptotically

complicated system of equations. Assuming that M, ®

egquivalent to a simpler estimator obtained by maximizing a
conditional likelihocd. The MLE maximizes the full log likelihood
2
¢ (u.o”,p) = log £, (2 (Y(1), .... ¥(n)IY(0))
+ log £, 2 (Y(0)),

whereas the maximum conditional likelihood estimator (MCLE)

maximizes the conditional likelihood

2
_ e (u.0%P) 1= log £, (2 L(¥(1), ..., ¥(n)]Y(0)).
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n,an,rn), is given by some simple formulae. See

(3.12) through (3.15) below. Further details may be found in Puller 3

The MCLE, denoted (;

(1976), pages 328-332. .
While the MLE and MCLE will be nearly the same with high
probability for "sufficiently large n", they can be quite different

for small to moderate n. Furthermore, the meaning of "large n"
depends on the value of . If ¥ is close to 1, then the term

log £(y(0)) = (1/2)logl(1-r?)/0?) - (1-r?)(y(0)%-u1/(20?)
has a more pronounced effect on the log likelihood, and a much
larger value of n is required before the classical asymptotic
results are useful. As many real series exhibit large lag one
autocorrelation (hence v near 1), it is worthwhile to investigate
the MLE and MCLE under this condition. Furthermore, one is
naturally interested in which estimator is better, or if some other
estimator is even better than either of these. One would conjecture "
that the MLR is better than the MCLE, and we present results below
which corroborate this conjecture.

Recently, there has been much interest in "nearly

nonstationary" asymptotics for such time series models. See e.g. ¢
Bobkoski (1983), Chan and Wei (1985), and Tsay (1985). For the E
three parameter AR(1) model, this corresponds to assuming that ?
(1.2) v, = 1-8,/n ., 8,>0, -

p
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(1.3) u =nl?
where po and Yo are fixed. Since 'n - 1, in some sense the process
approaches a nonstationary process as n+». The rationale for the
particular forams of He and L will be evident from the following
discussion.

Define a continuous time "step function" process Yn(t), 0st<1
by

Y (t) := 02y ((nt)),

where (-] denotes the greatest integer. It follows from (1.1) that

Yn satisfies the difference equation

(1.4) AYn(k/n) = -po[Yn(k/n)-uoldt + aodﬂn(k/n), osksn-1.

Here, AYn(k/n) i = Yn((k+1)/n) - Yn(k/n) is a forward difference

operator, 4t := 1/n, and

-1 _-172 ¢(nt)

{1.5) Wn(t) = o4 N Lk-]

cn(k)

-t -

L % 5% v

>,

is a normalized partial sum process. Since Hn converges weakly to a

Wiener process W(t), 0<t<1l, in D(0,1), and the difference operator 4

.
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converges in some sense to a differential operator 4, one would
expect that Yn should converge to the solution of the stochastic

differential equation

(1.6) day(t) = —po[Y(t)-UO]dt + oodW(t),
2
v(0) B wew,02/0280)),

Y(0) independent of (W(t):0<ts1},

which defines an Ornstein-Uhlenbeck process. (Equality in
distribution is denoted 2.) The weak convergence of Yn to Y follows
from Lemaa A.1. in the Appendix.

In Section 3 this weak convergence is used to prove convergence

2 o\ S22 -1/2°
) (n(1 Pn).o N un)

in (joint) distribution of the MLE (pn,on n n

for the sequence of AR(1) processes given by (1.1), (1.2), and (1.3)
to the corresponding MLE's of the parameters in the
Ornstein-Uhlenbeck process given in (1.6). See Theorem 3.1 in
Section 3. The MLE's for the continuous time Ornstein-Uhlenbeck

- -

model are denoted (8,v). The MLE for the variance parameter is og,

i.e. it can be determined exactly (with probability one) from the

finite sample path (Y(t): 0st<1}. Indeed, og

is the only parameter




-

which is consistently estimable from the sequence of AR(1)

N

experiments. g
In order to understand this phenomenon and to define the MLE in
the Ornstein-Uhlenbeck model, it is necessary to develop the
likelihood (i.e. Radon-Nikodym derivative w.r.t. some dominating
measure on path space) for the Ornstein-Uhlenbeck model. This has
been done by Feigin (1976) for the situation where the only unknown
parameter is By and Y(0) is taken as fixed (i.e. that author derives
the conditional likelihood). 1In Section 2, we extend those results N

to the case where the mean Vo is also unknown, and discuss the

"perfect" estimability of the variance parameter og, which results

v

from mutual singularity of the Ornstein-Uhlenbeck measures
corresponding to different variance parameters. ;

In Theorem 3.2 in Section 3 it is shown that the MCLE A

2 - . ~2 -1/2°
n,an,vn) = (n(1 Pn),on,n "n) converges in distribution to

(s

(;.og,;), where ; and ; denote the values of g and v which maximize

the conditional likelihood of the Ornstein-Uhlenbeck observation

o A P S

given the starting value Y(0). Theorem 3.3 gives similar limiting
distribution results for some "naive" estimators, namely the sample
lag one autocorrelation Thn as an estimator of 'n = (l-no/n), a crude

2 2

estimator S, of 94 and the sample mean of the yn(k)'s as an

estimator of Mo
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While these results give representations for the asymptotic
distribution of the estimators, it is unfortunately very difficult
to carry out any calculations with the limiting distributions.
Bobkoski (1983) gives some results when only po is unknown and
yn(0)=0. Of course, one can always resort to Monte Carlo, as we do
in Section 4. The results of this paper do provide invariance
principles so that fixed reference distributions can be developed
for samples of different sizes, even if computation of the reference
distributions is Qifficult. Furthermore, they allow one to obtain
results about the limiting Ornstein-Uhlenbeck case by simulating
discrete time processes.

Some conclusions and conjectures can be drawn from the
simulation results presented in Section 4. Firstly, the MLE appears
to be best estimator in terms of mean squared error, but not
significantly so. All the estimators of Po considered are biased
upward, especially'so for po near 0. (Hence, the corresponding
estimators of P, are biased downward, especially for v A hear 1.)

The MCLE estimator of the mean is quite bad, much worse than the
sample mean or MLE. These results suggest that better estimators of

B, may exist if one can reduce the bias.
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2. THE ORNSTEIN-UHLENBECK PROCESS.

In this section we derive the likelihood for a continuous time
observation (Y(t): 0<t<1} from the Ornstein-Uhlenbeck process. The
derivation is standard (see scheme (i) on p. 714 of Feigin, 1976),
so it will only be sketched. The dominating measure is a Wiener
process measure modified to account for starting value and scale
change. Calculate the likelihood ratio of the finite dimensional
vector (Y(0), Y(1i/n), Y{(2/n), ..., Y(1)) under the
Ornstein-Uhlenbeck measure (numerator) and Wiener measure
(denominator) and let n+=» through the values n = 2k.

We first derive the conditional likelihood given Y(0) as it has
a simpler form than the unconditional likelihood. The latter can
then be obtained by modification of the former. Let P{ - | Y(0), v,
az, 8 ) be the Ornstein-Uhlenbeck measure on path space C[0,1] with
mean v, scale o, and drift coefficient g, as in (1.6) with
subscripts deleted. Let Q( - | Y(O0), 02) denote the measure of
oW(t) + Y(0), 0st<€1, where W is a standard Wiener process. For the

Ornstein-Uhlenbeck process we have the following integral

representation valid for any t2s:

t
(2.1)  ¥(t)-v = exp[-p(t-s)] [¥(s)-v] + o | exp[-p(t-x)]dW(x).

s
See e.g. Section 8.3 of Arnold (1974). Thus, the sampled process
Y(0), Y(1/n), ... an AR(1) process with mean v, autoregressive




coefficient exp(-g/n], and shock variance cz(l—exp[-zp/n]). Using

this, the likelihood ratio can be shown to equal

I n ([ 28/n )
(2.2) exp 1 71°glf:be[-2p/ﬁTJ
=1
.. nIlf 2p/n _ ]“-( 2
20 2L LT-expl-2577n] 11140l4Y(1/n)1

=1
_ 22(1-expl-n/n]) nV (Y(1/n)-v]4Y(1/n)
o®(1-exp(-20/n]) 140

_ pn(1-exp[-8/n])? nfl[?(i/n)-u]2(1/n) 1
o?(1-exp[-2p/n]) 140 |

As in (5.3) of Peigin (1976), we have

=1
(2.3) = tav(i/n)12% § o2,
140
The convergence is Q( - | Y(O0), o2 )-almost sure if n = zk and koo,

but is always true in probability by a Chebyshev argument with
respect to either P{ - | Y(0), v, 62, B) or Q( - | Y(0), 0%). Some
calculus will show fhat the first two terms in the exponent in (2.2)
cancel each other. After computing the limits of the third and

fourth terms, one obtains that the log likelihood is equal to

1 2 .1

(2.4) e8] ¥(0),0%) = - &5 M pvieywiav(e) - L5 [ (v(t)-vilae,
c 0 20 0

For the unconditional likelihood, let P({ - | v, 02, g) denote

LT R . - - '..', . . N " - N t ot - - . . M - : - . -
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the Ornstein-Uhlenbeck measure when Y(0) is given its stationary
distribution. Let Q( - | 0%) be the measure of o[W(t)+Z], Osts1, X
.l
where Z is a N(0,1) random variable independent of W(t), 0<t<l. The "
likelihood ratios contain extra terms in the exponent from the ratio ;:
A
A\
of initial distributions. These are easy to analyze and the %
likelihood turns out to be .
o
2 1 Y(0)? g
(2.9) ¢ (v ,plo ) = 5109(25) + —3
20 -
[ | E
2y 1] LYo wiav(e) + (¥(0)-v1? | ;
N
L J
s ! 2 2
- —-:J [Y(t)-V] dt‘ -
20 o
It is easy to solve for the MCLE for g and v from (2.4). The X
results are o
. [ vie)-¥) av(e) o
(2.6) s = - F ) Y
(Y(t)-Y]® At -
J ~ ]
(2.7) v = ¥ + (Y(1)-Y(0))/8, <
where =
- rl
(2.8) Y = Y(t) 4t.
JO
The MLE also exists, but is not so easy to obtain. One can solve o
for the minimizer over v of e(u,ploz) for each fixed g, plug that >
A
>
10 o~
o
-
S o

.............



back in, and then note that the resulting expression as a function

of 8 tends to -» as p+0 or g+». This shows that the MLE exists.
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3. MAIN THEOREMS.

This section contains the statements and proofs of the claims
that the parameter estimates for the nearly nonstationary AR(1)
converge to their analogues for the Ornstein-Uhlenbeck process. The
first theorem concerns the MLE and the second concerns the MCLE.

The third theorem is about some "naive" estimators.

-

THEOREM 3.1. Let (u_, o?, v,) be the MLE of (u_,

n rn) in

2
%4
the AR(1) model given in (1.1) through (1.3). Let (v, 8) be the MLE

of (v, By) in the Ornstein-Uhlenbeck model in (1.6) when og is

known. Then

{ n—x/z;n} { . }
- |

(3.1) I ai- ! D : ?g :.
| n1-rp)] Lo |

PROOF. We will use the variables nl/zu in place of y and 1-8/n in

place of r. 1Inessential constants in the log likelihood will be

2 from the

dropped. The first step is to eliminate v and o
likelihood maximization problem. The log likelihood can be written

as

12

"

~
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1/2

(3.2) ¢ (n v.,02,1-p/n) = -((n+1)/2)log o2 - n/(202)s:

+ (1/2)10g 8 +(1/2)1og(1-8/(2n)) - B_(v)B8/a® - A_(v)8%/0%,

where

2 v 2
s, ° / AYn(k/n) '

A(v) = (1/2){—n‘1[vn(0)-u]2 + Z[Yn(k/n)-ulzdt}

B, (v) := [vn(o)-u]2 + E[Yn(k/n)-v]dYn(k/n).

All summations in this proof are from k=0 to n-1, unless otherwise

2

indicated. PFor any fixed values of o¢“ and g,

val#) = f2ep(1-1/m] My (01 (1-8/m) + ¥ (1) +a3¥, (k/m)at]

naximizes ¢_ over v. Note that sup l; (A)] is bounded in
n 0sp<e n

probability, since all of the random variables appearing in the
defining expression are bounded in probability by Lemmas A.1 and
A.2, and p20. Since An and Bn are continuous and An is bounded
below by a function of Yn only, this impiles that Ve>0, 3 C,: Cz>0’

o] C‘>0. and N such that vn2N, the event

3!

LNEINS '.-“' .
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Ey =l cp v cp s B (v (818 + A (v ()7

2 1
< cap + c‘p , for szoJ

gsatisfies

(3.3) P(En) 2 1-e.

For each fixed value of g,

(3.4) Si(p) t= [n/(n+1)1s % +

(2/(ne1) 1] B (v (8))8 + A (v (8))5° ]

12, (8), o®, 1-p/n), provided

2

maximizes over a2 the function en(n
ég(p) > 0. Note that on the event En’ o n(p) > 0 for all n

sufficiently large. Also, we have

2 _ _2% 2
(3.9) s, aOL[ANn(k/n)]

- 2n-1p°ao§vn(k/n)4wn(k/n) + n—lpgiYg(k/n)At.
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The first term on the r.h.s. of (3.5) E og by the weak law of large
numbers, while the other two terms are op(n_l).

With a little algebra, there results

/2

1/2° -2
(3.6) 2¢ (n"" v (B), o,(8), 1-p/n) =

-(n+1)log a2(s) + log # + log (1-p/(2n))

The next step of the proof consists of showing that ;n is J
bounded away from O and » in probability. Using log x s x-1, Vx>0,

on the event En we have

- Yy ] n e I3 Y

(3.7) 2¢_(n'/%_(8). a2(8), 1-s/n) + (n+1)log s? 2
(2/02)[C.8 + C,8%) + log 8 Vpe (0.2n)
n 3 4 4 ’ *

For all n sufficiently, the expression on the r.h.s. of (3.7)

®
achieves a maximum at some g_ in (0,2n), and pn 5 8 , say. When pn

n

o
is plugged into the r.h.s. of (3.7), the resulting expression f
converges in probability to a constant. Since the supremum of a
lower bound on the likelihood function provides a lower bound on the N

‘ 15




maximum of the likelihood, it follows that

(3.8) Ve>0, Im, N, such that Vn2N,

2 2 n.] 2 1-~¢.

{ 1/2° - -2, n
P 2en(n un(pn), an(pn), 1 pn/n) + (n+l1)log sn ]

L

Hence, the MLE ;n is with high probability in the set of ge¢(0,2n)
which satisfy the inequality in the event in (3.8). 1In view of
(3.3) and (3.5), we may restrict attention to the set of g's

satisfying 0<8<2n and for some constants cs, c6>0, and m

(3.9) G _(p) := -(n+1)log{1 + a%f{cs + csp}} + log § 2 nm.

It is easy to check that Gn is maximized at point p;‘ - Cgl, that

Gn(p;‘) - —(05+1) - log cs. and that G&‘(p) is eventually < ¢c < 0
for all g, where ¢ is a constant. These facts imply that there is a
constant b>0 such that eventually all values of g satisfying (3.9)
also satisfy psb. Now Gn(p) - -[Cs+06p] + log p as nee, uniformly
in pe(0,b], and the limit function crosses from above the level m at
some positive value larger than p;‘. For 0<pasb, Gn(p) € C + log 8

for all sufficiently large n, where C is some constant, so Gn must

16
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N also cross the level m at some point in the interval (o,p;‘).

Hence,

(3.10) Ve>0, 3 a>0, b>a, N such that Vn2N,

P pn exists and a < pn $b] 2 1-¢.

-y - c e g -
nOaBy) = (v (BL) .0 (8 ).6,.)

exists with arbitrarily high probability for all n sufficiently

It now follows that the MLE (v

large, and furthermore that ;n is bounded away from O and = 1in

probability. Now un(p) converges in probability uniformly in

pe[0,b] to
(3.11) vi(g) := {z + p}_l{Y(O) + Y(1) + er Y(t) at).
and si(p) = 'i + op(n—l) 5 ag, uniformly in pe¢(0,b]). Hence

en(nl/z;n(n).;i(p),l-p/n) + [(n+1)/2] log ag + n/2 converges in

probability uniformly in pe(0,b] to c(un(p),p), where

¢(v,8) := (1/2) log 8 - B(v)s/a -A(v)8%/03,

R A RN A
A A P L L A T AL TR



B(v) := [Y(0) -v)2 + { (Y(t)-v] AY¥(t).

A(v) := (1/2)} (Y(t)-v)? at.

Now ¢ (v,p) is the likelihood for the Ornstein-Uhlenbeck process
estimation problem (with ag known, of course), and v(p) is clearly
the MLE of v for each fixed . It follows that ;n g ;, the MLE of y

in the Ornstein-Uhlenbeck setup. The proof is complete.

#
Now consider the MCLE. Pirst, define
-.1 .
- 1
3.12 = o t).
( ) Yno A t‘o Yn( )
Then the MCLE's are given by
" [ T -
- y(t)-v,1(y(t+1)-y,]
(3.13) 2.
L IY(t)-Yol
(3.14) ;n -7, + y(n)-y(o) X
n(l—rn)
-2 = 1Y - . (1w V.. 12
(3.15%) on n/ {y(t+l) Pny(t) (1 Pn)vn] .

The corresponding MCLE's for the Ornstein-Uhlenbeck process are
given in (2.6) through (2.8). The following theorem can be proved \
more simply than the previous one by simply using the explicit -

formulae for the estimators and the results in the Appendix.

| 18




Theorem 3.2. AS nae,

RN

- |
! aﬁ : 2 : ag :.
ISR

Pinally, we consider some "naive" estimators. Let

(3.16) v.. = % 2 yit+1), '

(3.17) ¥ =341_1-t§o y(t),

¥ Y1) =F, 1 1¥(1)-F,)

(3-18) Ty T T TO LB R 5

We refer to 7n, si, and r. as the naive estimators of Hyo °0’ and

L respectively.

Theorem 3.3. Let

;[Y(l)—Y(O)][Y(1)+Y(O)+2§] - }[Y(t)-?]dY(t)
(3.19) s =

f[v(t)-?lzdt

Then as nooe,

)
|
! si : D : ag :
I 13
B UN S
19

-----
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PROOF. We will assume as in the appendix that all convergences are "
taking place on a common probability space so that we may use y
convergence in probability rather than convergence in distribution, Ny
and - will mean g for the remainder of the proof. Now it is clear S
from Lemma A.1 that "4
-1/2= S -1/2= 3 .

(3.20) n Y, Y, and n Yni Y, 1=0,1. N
)

[N

Also, si - ag as already noted below (3.5). Thus, we need only take

ll.
care of the convergence result on r,  Put R
2 _1¢% = 42 - ~

Sni W [y(t+1) Yni] ., 1=0,1, g
s? = fry(v)-7)%ar. ®

Lemma A.1 also implies that n—lsﬁ1 - S2 as nw®. Some algebra will 5
show that i
ns_ (S_,-S_.) - S[y(t)-¥,ldy(t) =

(3.21) n(l-r_) = 00 01 n0 £ 0 : -
n S S 3

n0 “ni "

Now 4
sno -1 = = X

Sno'Sn1~Sne) = —— n {y(n)-y(0)1{y(n)+y(0)+y,+y,] -

S _.+S .
nl "no o

+ 3 [¥(1)-¥(0)1{¥(1)+¥(0)+2¥].

If one multiplies numerator and denominator in (3.21) by n-1 and :
uses this latter along with Lemma A.2 the desired result follows. ;
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4. MONTE CARLO RESULTS.

Tables 1 through 3 present the results of a simulation study of
the various estimators. The simulation program used the IMSL
subroutine GGNML to generate n+l1 pseudorandom variates which were
used to construct AR(1) sample paths according toc the model (1.1).
We considered 3 estimators of By and Vo (the naive, MCLE, and MLE)
and 4 estimators of og (gﬁ is the ordinary sample variance). All
estimators except the MLE were computed directly from the formulae.
The MLE was computed by a Newton type algorithm using finite
difference approximations to the derivatives of the log likelihood
function as a function of g with v and 02 substituted out, as in the
proof of Theorem 3.1. The naive estimator was used as starting
value, and convergence was quite fast, requiring on the average less
than two iterations of the Newton algorithm. The results were
compared with those of the SAS statistical package on selected
sample paths in order to validate the program. All results are
based on 25,000 Monte Carloc replications.

The results indicate that the MLE is the best of the estimators
considered in terms of mean squared error, although not by much in
comparison with the naive. Two surprising results emerge. Firstly,

all estimators of po are badly biased, with the bias becoming worse

as po becomes smaller. It should be possible to find improved

21
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estimators of po by "shrinking" towards 0, with the amount of
"shrinkage”" becoming larger as say the sample lag one
autocorrelation becomes larger. The bias in the estimators of the
other parameters was negligible compared to the variance and so is
ommitted. A second surprising result is the poor performance of the
MCLE of the location Vg’ particularly as po becomes smaller. This
is also the widely used least squares estimator of location. The
main problem here is the term (y(n)—y(O))/; (see equation (3.14)),
which severely inflates the variance. Results presented by Bobkoski
(1983) indicate that there is some probability of obtaining ; close
to 0 (it may even be negative, which is why ; was not used as the
starting value for the iterative calculation of the MLE). This
inaccuaracy in ; does not seem to present a problem for the other
parameter estimates ; or ;2. As the MCLE is in general the worst of

the estimators, we suggest that one use either the naive estimators

or the full MLE, until something better is found.

.........................................................
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.............................
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TABLE 1.

SUMMARY OF SIMULATION RESULTS
FOR ESTIMATORS OF Bo-

NOTES: PFor all cases, uo-1 and 03-1. Estimated standard
errors are shown in parentheses next to the figure.
| |Estim-| | I
po | | ator | Bias | Mean Squared Error |
|
I | | fn I 4.38 (.03) I 42.27 (.53) I
s | 100| &, 4.37 (.03) 43.58 (.54) l
pn 4.48 (.03) 39.49 (.51) |
| | | rn 4.55 (.03) 46.11 (.57) I
S 500 pn 4.55% (.03) 47.89 (.59)
pn 4.22 (.03) 42.87 (.55)
‘ | ‘ rn 4.68 (.03) 40.21 (.46)
2 100 pn 4.68 (.03) 42.00 (.48)
pn 4.27 (.03) 36.21 (.44)
23
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TABLE 2. SUMMARY OF SIMULATION RESULTS
FOR ESTIMATORS OF v

0"
NOTES: For all cases, uosl and agsl. Estimated standard
errors are shown in parentheses next to the figure.
| | |Estim—| |
| Po I n | ator | Mean Sgquared Error |
|
Yn .032 (.000)
5 100 Yn .376 (.291)
n .029 (.000)
Yn .032 (.000)
5 500 v .172 (.061)
v .030 (.000)
n
Yn .139 (.001)
2 100 Y 286 (257)
n .125 (.001)
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TABLE 3. SUMMARY OF SIMULATION RESULTS
2

FOR ESTIMATORS OF 99"

NOTES: For all cases, vo=1 and agal. Estimated standard

errors are shown in parentheses next to the figure.

| | |Estim-| |
| po | n | ator | Mean Squared Error |
|
5 100| all .020 (.000)
S 500] all .0040 (.0003)
2 100| all .020 (.000)
25
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| APPENDIX.

In this appendix we give the proofs of two technical lemmas.
There is a probability space carrying probabilistic replicas of
(cn(l), ey ¢n(n)) for each n and a Wiener process (W(t):0sts1}
such that the normalized partial sum process Wn(t) satisfies

sup |W(t) - W_(t)| o,

0o<t<]
where g denotes convergence in probability. See Theorem 13.8 of

Breiman (1968). We assume that our sequence of experiments is
defined on this probability space, and hereafter deal only with
convergence in probability. The results then transfer back to the
original probability space provided one replace g with 9. Let Y(t)
denote the Ornstein-Uhlenbeck process given by the stochastic

differential equation in (1.6), and Yn the normalized AR(1) process.
LEMMA A.1.

(A.1) sup |Y_(t) - ¥(t)| 3 0,

O<ts1

PROOF. It is convenient to introduce a Gaussian step function

process Gn(t) by

?n((k+1)/n) = rnin(k/n) + caW(k/n),

...................................................................
___________________________________
------



where 4f(k/n) = £((k+1)/n)

(A.2)

-----

v - plnt]
Y (t) v, Y _(0) +

J

Y_(t) = ¥_((ntl/n), Y_(0) = (28,/(n(1-r2)])¥(0),

- f(k/n). We have the representation

(nt]/n
( r
0

([nt]l-(ns]-1)

n dW(s),

This follows from the usual inversion formula for an AR(1) process,

e.g.

(2.3.3) of Puller (1976)).

Utilizing the analogous formula

({2.1) for the Ornstein-Uhlenbeck process we have

(A.3)

-8.t
0
|e n
+ |,[nt] -
-8.t .t
+ e ° |I

1Y () = ¥(t)| S

2

e Pt (25 s(ni1-r 21112 ¥ (0)

“Pot Y _-(ns]
] rat " lawce)
J. PR <
-[nel _¢7%) aw(s))

r;1|w(t) - W([nt)/n)|

Tnl(t) + Tnz(t) + Tna(t) + Tn4(t)' say.

------
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Letting fn(s) =P - e 0 , one can show via elementary

inequalities that
(A.4) 0 < fn(s) £ C/n
for some constant C (depending on po). From this and (5.1.5) of

Arnold (1974), we have

t

Er sup |{
o

2 ) 2, 2
f (s) dAW(s £ 4C ' /n
L oses1 n (=3

and hence that sup Tna(t) g 0. The proofs that sup Tni(t) 4 0 for
i=1,2,4 are even easjer,.

Now consider

(A.5) Y_(k/n) - Y (k/n) = PE(¥, (0) - ¥ (0)]
k=1
. & g (k-1-1)

o 'n (4W (1/n) - 4aW(i/n)].

Lindeberg's central limit theorem can be used to show Yn(O) E Y(0),

so we may assume that our probability space carries a version of
Yn(O) such that |Yn(0) - Y(0)| E 0, and then the first term on the

r.h.s. of (A.5) converges to O in probability, uniformly in k,

0<ksn. For the second term, apply partial summation to see that it
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is equal in absolute value to

-1
(A.6) |P_

Since 'n

IA

- 1, ?;l(z-rﬁ) is bounded uniformly in k and n,

Py

(2 - P ) sup |W (t) - W(t)}.
0st<1

P

follows that suplYn(t) - Yn(t)| - 0.

LEMMA A.2.
1
(A.7) n‘
k&0
PROOF. We have
nﬁl
ko
- (1/2)0
B

1
Y (k/n)aW_(k/n) } Y(t)dW(t).
0

-1
Yn(k/n)AWn(k/n) = Pn Yn(l)wn(l)

- )Y v (k/m)W_(k/n)

+ (rn i

-1..2 - -1¢ 2
ofn Wall) = (1/2)oyp ") [4W (k/n)]

L

Y(1)W(1) + pf Y(t)W(t) dt - (1/2)00W2(1) - (1/2)e,

N#‘-""'\“\v\"'\'\--

.-f.ff.f(.rf.rf Jd‘f {f-lf A.A. ~rY. .; 310.
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[W_(k/n) - W(k/n)] ~ (¢} - 1§ ek YW, (4/m) - Wi/

so it

‘<




The first equality is easily checked with some algebra. The
convergence of the first three terms on the l.h.s. of the 4 to the
first three terms on the r.h.s. of the E is immediate by Lemma A.1,
and the fourth by the weak law of large numbers. By Ito's formula
and the stochastic differential equation for Y we have

d{Y(t)W(t)} = Y(t)dWw(t) - gyY(t)w(t)at + OOW(t)dW(t) + aodt
and so

{ Y(t)aWw(t) = Y(1)W(1) + p} Y(t)W(t) dt —(1/2)00W2(1) - a,/2

where we used the fact

1

[ wnawe) = 172y w31y - 11,

o | J

see e.g. Arnold (1974), page 76. This completes the proof.

30

LR ATV IR I N A e . .-, . B R Sy T R PN « - P
TR AN NN TR I N N N S N N A RN GRS LU
A .. & . E & e B o A [

-

k gk P BN BB 3 ET)

N A Y S :l A

458

v ve
e a »
" s

(P ot
-~

f it et e
a vt s
......



REFERENCES.

Arnold, L. (1974) Stochastic differential equations: theory and
applications, R. Oldenbourg, Munich.

Bobkoski, M. J. (1983) Hypothesis testing in nonstationary time

series, unpublished Ph. D. thesis, University of Wisconsin,

Madison.

Breiman, L. (1968) Probability, Addison-Wesley, Reading,
Massachusetts.

Chan, N. H. and Wei, C. Z. (1985) Asymptotic inference for
nearly nonstationary AR(1) processes, Technical report,
Dept. of mathematics, University of Maryland, College Park,
submitted to Ann. Statist.

Cumberland, W. G. and Sykes, Z. M. (1982) Weak convergence of an
autoregressive process used in modelling population growth,
J. Appl. Prob., 79, 355-367.

Feigin, P. D. (1976) Maximum likelihood estimation for
continuous time stochastic processes, Adv. Appl. Prob., 8,
712-7386.

Feigin, P. D. (1979) Some comments concerning a curious
singularity, J. Appl. Prob., 16, 440-444.

Fuller, W. (1976) Introduction to stastistical time series,

31

I i T T T N




o
.‘L_L;‘L_L'L‘-’LQAI PV ST L e . .’.‘A.L.L-A‘L-t- -"' et e e s

Wiley, New York.

Tiao, G. C. and Tsay, R. S. (1983) Consistency properties of
least squares estimates of autoregressive parameters in ARMA
models, Ann. Statist., 11, 856-871.

Tsay, R. S. (1985) Asymptotic inference of least squares
estinates in nearly nonstationary time series, technical
report, Dept. of Statistics, Carnegie-Mellon University.

32

NN B I NPT
o

. .
...........







