
,LeD-A 3 ?S FTWRRE ARCHITECT'S WORKSTATION A TOOL FOR ADA /
I (TRADEMARK) PROGRAM DEYELOPMENT(U) NAVAL UNDERWATER

I SYSTEMS CENTER NEWPORT RI P J FORTIER ET AL. 01 JUL 87
7LWELRSS FXE DNNUSC-TD-6639F/O 12/5 NL

w " - , ~ ~ " .I

11 1.5 LA3
UI I IIIII 1111

b

MICROCOPY RESOLUTION TEST CHART

tiATIo L BURLAU OF STANDARDS-1963 A

.- W 'Uw : w W "• ,

-"- ,, , - *.- . % . o ." .- ,,, - .- .

011G EILEX (j k)
NUSC Technical Document 63=
1 July 197

Software Architect's Workstation:
A Tool For Ada Program Development

P. J. Fortier
P. A. Bgrgandy
Combat Control Systems Department

N. Bryden
Syscon Corp.

U) R. Charefte

0 Computer Science Corp.

LO) S. Trager

(V') Softech, Inc.

00

DTICiIELECTED
O JUL 2 g 1987

4 S D.
Naval Underwater Systems Center
Newport, Rhode Island / New London, Connecticut

Approved for public release: distribution unlimited.

I - - I - I. V " ... "

PREFACE

This report was prepared under NUSC Project
No. 63756a, Task Area No. ElD of the "Software
Technology for Adaptable Reliable Systems (STARS)
Program," principal investigator P.J. Fortier (Code
2222), NUSC program manager T.P. Conrad (Code 2211).
The sponsoring activity is the Naval Sea Systems
Command, program manager P.J. Andrews (SEA-61R2).

REVIEWED AND APPROVED: I JULY 1987

J.R. Short
Head, Combat Control Systems Department

I'

S

REPORT DOCUMENTATION PAGE
Is. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED
la. SECURITY CLASSIFICATION AUTHORITY I 0ISTRISiTION1 AVAILAILITY OF REPORT

Approved for public release;
lb DECLASSIFICATION, DOWNGRADING SCHEDULE distribution unlimited.

4 PERFORMING ORGANIZATION REPORT NUMIER(S) S MONI0TORING ORGANIZATION WEORT NUMBER(S)

TD 6630

64. NAME Of PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7.NAME OF MONITORING ORGANIZATION

Ec_ ADDRESS (City, State, and ZP COde) ?b ADDRESS (City. State. and ZIP COCe)

Newport Laboratory
Newport, RI 02841-5047

$a. NAME OF FUNIDING/SPONSORING fb OFFICE SYMBOL 9. PROCUREMENT INTRUMEN iIENTIFICATION NUJMBER
ORGANIZATION (If aeiicab'e)
Naval Sea Systems Coimmand SEA-61R2 ______________________

Sc. ADDRESS (Crty, Star*. aRd ZIP Code) 10 SOURCE OF $UNCING NUMBERS
PROGRAM IPROJECT ITASK IWORK UNIT

Washington, DC 20362 ELEMENT NO, INO NO. 1ACCESSION NO

1 1 TITLE (include Secuorty CataVfatrn)

SOFTWARE ARCHITECT'S WORKSTATION: A TOOL FOR ADA PROGRAM4 DEVELOPMENT

2 PERSONAL AUTHR(S)
Fortier , III., Bergandy, P.A., Bryden, N., Charette, R., and Trager, S.

'3& rYPE OF REPORT 11b TIME COVERED 14 DATE Of REPORT tVe.Mnh a)S PAGE COUNT
FROM TO 87-07-81'"m"Oy 24

'6 SUPPLEMENTARY NOTAT ION
An adaptation of a paper originally presented at the Hawaii International Conference
on Svstems Sciences. Januar; 1987.

17COSATI CODES It SUBJECT TERMS (Conftnue an rew'ue of neCessary and identify by blok nuinberl
;IELD GROUP SUU.GROUP Software Systems Development

09 02Ada Computer Language

9 AISTRACr (Cont-We on reyergee if neccuary and dentIly by block Ansawe,

This report describes the software architect's workstation (SAW) -- a tool constructed
to aid designers of Ada code for real-time commuand, control, and coommunications
systems. The SAW is part of the STARS (software technology for adaptable reliable
systems) software engineering initiative. The concepts associated with SAW development.
the methodology used, and the techniques that make up the methodology are described.
Also, a short example of surface-to-air missile simulation is presented to show the
application of the SAW to a real-world situation.

* '~!..ON AVALAIILlVy OF Aesrmic, 2' ASTI&C' SICjIR'~ C-.ASS~IOCAION

* ~ ~~~ D.J.SiENM! AME AS QP' ~C JSfs UNCLASSIFIED

:2*PA% % fIONS111,1 NOIVIDUAL 22 1"0I1MI 'l Cm 2C Ofct440
P.J. Por i -er e ---- cI~

00 FORM 1473. 44 MAII a] APO *Olt 0. * 09 y1@1 if"

All ott,*; ed-t,00% 8,0 ObtO'etS

TABLE OF CONTENTS

Page

LIST OF ILLUSTRATIONS ... ii

INTRODUCTION ..

SOFTWARE BUILDING METHODOLOGY ... 3

Methodology Requirements 3

Methodology Composition .. 3
IDEF Technique ... 3
SCRP Technique ... 6
SAINT Language ... 6
AICON Technique .. 7
CSSIM ... 7

INTEGRATION OF INFORMATION .. 9

USER INTERACTION .. 13

SUMARY ... 19

REFERENCES .. 20

Acces3ion For

NTIS GRA&I
DTIC TAB
Unn.runouced 5
Justificatlon

By
Distribut ion/

Avatlability Codesr Avail and/or
Stj Special

%~%%%

LIST OF ILLUSTRATIONS

Figure Page

1 Computer Software Development Process 2

2 Syntax of IDEF Functional Component 4

3 Data Flow Relationships ... 5

4 Activation of an Activity ... 5

5 Sample of Active Associations 10

6 Simulation of a SAM System .. 14

7 Behavior Diagram, Model Hierarchy, and
Activity Diagram for SAM System 15

8 Relationship of IDEF Behavior and
Activity Diagrams to SCRP Tablets 17

9 Detailed View of Software System in Ada Iconic Form 18

Ii

9
P. |

SOFTWARE ARCHITECT'S WORKSTATION:
A TOOL FOR ADA PROGRAM DEVELOPMENT

INTRODUCTION

The current state of software engineering practice in Department of
Defense software development reflects a number of serious shortcomings that
result in inadequate software systems. These inadequacies stem from one or a
combination of the following:

" Failure to meet the stated requirements of a design

* Inadequate or incorrect system design

" Inadequate system performance

" Failure to properly address the man-in-the-loop interface adequately.

A first step in correcting these shortcomings is more rigorous and structured
engineering of software systems instead of the typical software development
process.

A more structured approach to software development (i.e., a methodology)
must provide integrated techniques that allow for the capture of the pertinent
aspects of the real-world system, along with the ability to refine and
transform these aspects into software specifications and design.

The software architect's workstation (SAW) is a tool comprising an
integrated set of methods and techniques to address the various portions of
the software system development process (figure 1).

I4

*,~ 4 *.~.. 4 P. '~~.(~ .~,'4 ~ -. *. \

* Z~k.,.

Oii

Si3

0_

- 41

iIU~ U

Old.

111111 IIwo

SOFTWARE BUILDING METHODOLOGY

METHODOLOGY REQUIREMENTS

A software building methodology must successfully produce and transform
real-world system requirements into a precise statement of the software
system's external behavior. It must possess a creative aspect that can help
derive the specifications, as well as an easily used clerical aspect that can
document them. Moreover, the methodology must fully describe the interfaces,
modes of operation, and functions of the system. Important characteristics
are that it be minimal (produce a blackbox view), understandable, accurate,
precise, and easily adaptable.

The methodology must permit realization, -in some abstract form, of the
software system as described in the specifications. It must be able to
support abstraction, decomposition, and the notion of hierarchy; it must also
provide traceability and correctness analysis. Both the creative and clerical
aspects of the methodology must be supported by techniques such as information
hiding, abstraction of data types, stepwise refinement, data flow analysis,
and graphic decomposition.

METHODOLOGY COMPOSITION

The SAW's methodology is based on one that has recently been successfully
developed (references 1, 2, 3) to fulfill the above criteria, and that is
currently being extended by the Naval Underwater Systems Center (reference 4).
The methodology is an integrated approach for performing system/software
requirements analysis and for producing software requirements, specifications,
and designs for Ada* programs. It currently consists of five methods:

* The Air Force's IDEF modeling technique

* The Naval Research Laboratory's Software Cost Reduction Project
(SCRP) techniques

* The Air Force-developed SAINT simulation language

a The Ada Iconic Language Builder

" The Combat System Software Simulator.

IDEF Modelina Technique

The IDEF (integrated computer-aided manufacturing definitional methods)
comprises a set of structured definitional and analysis techniques for

*Ada is a trademark of the U.S. Department of Defense (Ada Joint
Programning Office).

3

* .. *. ~ .*

performing system analysis. This method provides a means of understanding and
managing systems complexity and structure via functional, data flow, and
behavioral perspectives. These perspectives allow for the modeling of a
system in terms of its functions, their interfunction relationships and
interfaces, information flow and content within the system , along with
dynamic interaction of the system with its environment.

IDEF, which is based on Softech's structured analysis and design
technique (SADT)" (reference 5), has been used to model numerous systems.
The technique uses concepts in topdown organization, modularity, hierarchy,
and active relationships to describe systems under study.

The functional aspects provide a means of visualizing the structure of a
system and the static relationships between system functions. Each function
is described in terms of its activity, inputs to the function, outputs from
the function, and controls or constraints imposed on the function (figure 2).
To keep the level of detail manageable on a screen (or page), the IDEF
technique limits the number of functions to six (SADTM developed this
restriction) (reference 5).

Such a functional description with its inputs, outputs, and controls
allows for describing relationships between functions such as precedence,
domain, and parallel or feedback conditions. These relationships are based on
how the functions are linked and associated with one another on the screen
(figure 3).

The behavioral view provided by IDEF defines the temporal nature of the
system being modeled. It provides a means of defining how the functions
interact with one another and their environment over time. As in the
functional view, IDEF uses the box as its main descriptor. The box in this
case has a different meaning. Its main components are the activation of
activity description, and the input and output event descriptions (figure 4).

The input events are used to initiate the activity, and the output events
result from the occurrence of the activity. To make the functional and
behavioral views meaningful, the behavioral model descriptions must be
associated with those of the functional model. That is, an activity
represents an action on a corresponding function(s) in the functional model.
A more detailed description of this technique can be found in reference 3.

SCONTROLS

INPUT FUNCTION OUTPUT
DESCRIPTION 10-

Figure 2. Syntax of IDEF Functional Component

4

'. .. '

PRECEDENCE DOMINANCE

EDD

PARALLELISM FEEDBACK

Figure 3. Data Flow Relationships

EVENT DESCRIPTION IACTIVATION OF EVENT DESCRIPTION
AN ACTIVITY

SiDESCRIPTION

Figure 4. Activation of an Activity

5 .9

SCRP Technique

The software cost reduction program (SCRP) (reference 6) is a set of
formalized methods for specifying, designing, and documenting system
operational requirements and for identifying missing or conflicting
specifications. The emphasis in this technique is to have in place the
questions one needs to answer in system development before beginning to
collect and associate the answers. The technique has four major concepts:

* Separation of concerns

" Formal specification

" Abstract interfaces/information hiding

" Documentation.

The goal in separation of concerns is to link together (via the data base)
information that needs to be linked and keep separate items that should not be
linked. This concept limits or isolates the impact of changes on a system.
Formalization of specifications defines a formal nomenclature by which one can
describe the elements of a system. This allows removing the ambiguity of
English text-only specifications. The third concept, information hiding,
provides a means of isolating unrelated details from higher level components,
thereby providing for ease of change and evolution. Finally, documentation
(through a data base) allows organizing the class and content of information
necessary to specify a system. Only through rigorous application of these
concepts to a system can true benefits be realized.

SAINT Language

SAINT (systems analysis of integrated networks of tasks) is a simulation
language developed in the late 1970s (reference 7). SAINT provides a means of
modeling systems as a network of tasks that perform jobs and produce or
consume resources.

To make this tool a part of the methodology, its elements must be imapped
to those of the previous methods. A SAINT network of tasks is equivalent or
can be mapped to a set of diagrams (functional and behavioral) in IDEF. In
addition, IDEF resources equate to SAINT resources, and information flow in
IDEF equates to attributes in SAINT. Using these relationships, one can
construct a SAINT model that can be used to examine the present specification
of a system. The model will give insight into correctness of the system and
will indicate areas in need of refinement or change.

6

%"'-

AICON Technique

AICON (Ada iconic builder technique) provides the capability to perform
high-level conceptualization of Ada software designs using graphic techniques.
The tool is based on Buhr's work (reference 8) on graphic design of Ada
programs. The tool extracts information developed in the IDEF and SCRP models
to construct the initial Ada code. This is currently performed through the
mapping of IDEF functions and SCRP activations to Ada packages, tasks, etc,
via a data base of stored items or through viewing previously stored
information and manually extracting the pertinent aspects for the Ada
description.

The basic notation available for use at this level consists of a set of
editing and query modes to construct, change, or examine designs using icons
and text.

The basic icons available include the package, task, subprogram,
uncommitted module, data, data flow, access connection, sequence number,
guard, and labels. Each of these relates to an underlying template that
provides a means of describing the object in greater detail. The example
given later in this report shows some details of the presentation.

Using the AICON tool, one can interactively develop an Ada program from
the IDEF and SCRP description in a topdown fashion.

The use of icons instead of text-only presentation in the development of
software provides users with much more feedback (in terms of perceptual
information) upon which to judge design decisions. As more use is made of
this tool, details of benefits will be published.

CSSIM

CSSIM (combat system software simulator) is an analysis tool that
provides the means of analyzing tradeoffs between hardware and software during
a systems design (reference 4).. The tool provides the ability to extract
information from a design data base, and to model these at varying levels.
Users select architectural components to model (e.g., CPUs, networks, sensor
devices, secondary storage devices, operating systems, data base systems,
etc.) from a component data case. If components are not available, templates
are produced that allow users to build their own class of components based on
a framework. Once the system hardware has been collected and formed, the user
maps his software design onto the hardware system and can then model the
operation of his software design instead of the postulated hardware design.
Doing this iteratively, for either the hardware or the software, supplies a
means of comparatively analyzing various combinations of a design (hardware/
software). This tool provides a means of finding and correcting flaws before
producing a final specification and design.

7

A- 4 % . . .

INTEGRATION OF INFORMATION

The goal of employing multiple integrated methods or tools, each of which
offers a different view of a system, is to provide a consistent view of all
aspects of the system design to anyone using the tools. To provide this
integration and consistent view implies a data base. This data base and its
multiple views provide a means of integrating the various tool outputs into
one system view usable by all (refer to figure 1).

This approach implies the selection of a data model that is easily
adaptable to a wide range of internal storage structures. To meet this
requirement, the SAW developers have examined and embraced the use of an
object-based storage environment that provides a means of associating an
object with any data type (graphic, text, icon, table, program, template,
etc.).

The use of this type of data base has allowed easy association of the
various icons and their templates with one another (e.g., figures 5).

The key elements of this data base are the definition of the core
templates and their relationships. The iterative application of the data
structure to the offered data, along with their associated activations,
provides the integrated environment for SAW to operate within. This data base
supplies the framework for management controls on SAW tools. Details of the
data base, its schema design, and use will be published in future reports.

VI

r
qI

9!
r.

log

am
'

o

0

la.

10

Ii, i

.1iii
I I U

a i ~ 3-a~j1

~ -~I I II - -I

I a 0

£
I ~ fl as

a - ____ - 0
-. -ii

-- - - i'll -J

* UKu

i U
:I'tIa 0 'Sjw~ a ~-)

- ~-Im.a
all 3.~3E

11~ -- U "S

I 4)
I

-J1u I
Ia .4:

N 0

ija ~ El

- ~ I 'U
U ~ Eu 2

~ W * 8

hi 4)
_______ I..

U-
La..

I
I -J

a, * I *n J -ii I I a

I I
II .~1,. IU

~ Ca
'S

1.1
'4

e ~ ~%w ~ - ~;- -
-- N.

USER INTERACTION

The user interface is of extreme importance to the success of the SAW as
a software architect's tool. This interface comprises the method and the
mechanisms used to provide information to the users. These mechanisms for
manipulating information must be consistent, friendly, helpful, and
understandable for best results.

To achieve these objectives, the SAW uses an object orientation for the
screen interface. Functions available are shown either as icons (as in the
Apple Macintosh Tu) or as pulldown menus. The icons and menus provide the
available options to users. To examine the screen, users employ a mouse to
move the cursor about and select the proper function to perform or object to
manipulate. Once an option has been selected, the next level of options is
brought up into active mode. This process occurs for all levels of the
methods and across methods. Once selected, objects can be expanded to view
internals or contracted to further recess detailing.

The following example involving the surface-to-air missile (SAM)
s; mulator will help to clarify and highlight some of the qualities of the SAW
technique.

The SAM simulator (figure 6) consists of a simulated track TV camera,
track radar, acquisition radar, and three control consoles requiring a
three-person crew. The crew responsibilities are, in a general sense, divided
into three areas; the Fire Control Officer is the commander and is responsible
for aircraft acquisition, missile launching, and overall control of the
system. The other two operators, elevation and azimuth, are responsible for
tracking the threat aircraft in either the 0-plane or the azimuth-elevation
plane so that effective threat evaluation and missile launch/intercept can
take place.

During the incoming attack, the crew is responsible for evaluating C3

(command, control, and communications) information, for acquiring the aircraft
with the acquisition radar, for transitioning from the acquisition mode to the
track mode, for tracking the aircraft with the track radar, and for launching
missiles at the aircraft. These activities are optimized by effectively
evaluating C3, TV, and radar data, and by communications among the crew.

To design such a system, a user would begin by formulating an
understanding of the system, and then developing the IDEF activity and
behavior diagrams in a hierarchical topdown fashion (e.g., figure 7). All
items on the screen are viewed as objects and therefore have associated with
them their own context. By defining/selecting an item, a software architect
can construct or examine underlying templates that are automatically provided
upon item creation as part of its data base object definition (see figure 5).
The user iteratively develops the diagrams in a topdown fashion and fills in
the generated templates to construct a nearly complete description of the

system being studied.

13

N '

TV CANOW

NOW" AND
LAUNCHO

- - - - - - - - - - - -

VIADM %* dzd; V. . .0
ANT2MM -IV ky"INW7,

TV TV

b .0m

MAN CW cm WAS CM

0-- -6 a. L_

HAPEWHIMA

Pwa COM"a Op"M wjrtvff M OPGMATM ARINWO OPCROMA

Figure 6. Simulation of a SAM System

14

---. ------

I

I

I
8 III K I

I-' I I
II

~~0I
I

I II
S
he

I II U p

pI ! S1311 II ii
3. Ii

1 t~ ~jII It I
I 4

i .;

I ~
15

I
.*.~e.*.*. %.. >****;.~i*

To further enhance the completeness of the design, the user develops the
SCRP descriptions. These provide a means of capturing information not readily
available from the IDEF models; included in this are such factors as:

" Distinguishing characteristics of the computer environment

(rotary switch, touch panel, etc.

" Input and output data items

" Modes of operation

" Time-independent description functions

" Timing requirements

" Accuracy constraints on functions

" Undesired event responses

* Required subsets

" Expected types of changes

• Sources for further information.

Figure 8 shows the relationship of IDEF behavior and activity diagram
components to SCIP tablets. (Details of SCIP use and interpretations can be
found i.n references 1, 4, and 6.) These relationships can be used to
construct SAINT task models to study the operations of the postulated system.
Through iterative modeling and refinement of IDEF/SCRP descriptions, a sound
design can be realized.

Once a high-level system design is fairly stable, the user develops the
detailed software architecture using the AICON tool. For example, using the
information associated with activity diagram, a user can construct a
high-level design of the system. This high-level design may then be further
broken down into submodes with details of the specified interfaces. The
graphic capabilities of the AICON tool allow the user to create data flow
graphs and structure graphs of the system under design.

By iterating in a topdown fashion, a detailed view of the software system
in Ada iconic form (figure 9) can be developed. This detailed vie% of the Ada
program can then be automatically turned into Ada code to examine its
correctness, or it can be turned over to CSSIM to be analyzed against the
postulated hardware design.

Using CSSIM, the user builds models of the hardware and software
architecture and examines various mappings of one to the other. These models
allow tuning of the system load before actual construction or coding is
performed. CSSIM is in detail in reference 9.

16

TMM LOCI-OU LowT Oll TO AMC SOlS OUT OF SYSIUM LOMS DI

TOW=K LOCK-"N LOST 0 "AN-OPP

AIC

TUKEAT

TWOUT AIC

9" an ~ ACCUATS AIC LAISH3
TPA=K AM- 1 8M los" 11=0 - AN

EVALUATIR
M T

TAMLE TITLE~ WTOPT THIAT AACAPT MOOMS CONDITIONS -I MOOE CONDITION

IITHOWATINOII u IACTRACL/I Other

Acquir. * POhMS Op oNINUMMISLHI -c 2
SNolOCkS

Track SThrents - iNUMM6LH/I - 2

(/INUMMISLH// z:0)
Lauanch $ ThwOdtS $Lock$ OR (IINUMMSLHII I AND

ISecond launch dwd a IY)

(I/NUMIMSLHII1 a I AND
EvOeIMnGeg $ThroWt -ISecond launch dect z No)

ON /INUMM5>LH/I = 2

Figure 8. Relationship of IDEF Behavior and Activity Diagrams
to SCRP Tablets

II 0L,.~2~II Ii
II I I,114 II ~ii I C

Ii II ~
II ga--, III

I. .1 C

II -. I II 1 1I1I~ L '

4

I I~iIi~~ I
0

SD

r~~~1
I 3m
up.. -JU

I fl3~I
~

ii ~'Li S

- UI
I..a.
'U

I-
3

*r.mm.%~ .~%s. .. -. . . .

SUMMARY

The software architect's workstation (SAW) is a tool constructed to aid
designers of Ada code for real-time C3 systems. The SAW's methodology
comprises a number of integrated methods and techniques for evaluating the
various portions of the software development process. The methodology
provides a means of effectively describing a software system in terms of its
structure, behavior, and information flow, and of documenting a wide rang, of
information associated with these views.

The biggest challenge in the development of the SAW has been (and will
continue to be) the integration of the items within the data base. The object
view of data and the qualities embedded within this view have been found to
supply the wanted effect. That is, thay have provided a means of storing,
retrieving, and associating various data types within the schema model without
complex translations and processing.

Future reports will address the problems, solutions, and findings
associated with implementing the data base on a workstation, as well as the
use of this tool in the requirements analysis, specification, design, and
management of real-time C3 system software for DoD projects.

I

T8

9

o-

REFERENCES

1. R. Charette, "SOEM: Putting Theories into Practice," Third International
Workshop on Software Specifications and Design, August 1985.

2. R. Charette and R. Wallace, "A Methodology for Addressing System
Operability Issues," IEEE/NAECON 85 Proceedings, May 1985.

3. R. Wallace, J. Stockenberg, and R. Charette, A United Methodology for
Developing Systems, McGraw-Hill, New York, 1987.

4. P. Fortier and L.D. Juttelstad, "Real Time Hardware/Software Simulation,
Design and Use as a Performance Evaluation and Prediction Tool,"
Proceedings of 16th Hawaii International Conference on Systems Sciences,
January 1983.

5. D. Ross, "Structured Analysis (SA): A Language for Communicating Ideas,"
IEEE Transactions on Software Engineering, vol 17, no. 7, July 1977.

6. K. Henninger, R. Parker, D. Parnus, and J. Shore, "Software Requirements
for the A7B Aircraft," NRL Memorandum Report 3876, Naval Research
Laboratory, Washington, DC, November 1978.

7. D. Seifert and G. Chubb, "SAINT: A Combined Simulation Language for
Modeling Large Complex Systems," Report AMRL-TR-78-48, Aerospace Medical
Research Laboratory, Wright-Patterson Air Force Base, Ohio, 1978.

8. R.J. A. Buhr, System Design with Ada, Prentice Hall, Englewood Cliffs,
NJ, 1984.

9. P. Fortier, "Generalized Simulation Model for the Evaluation of Local
Computer Networks," Proceedings of the 15th HICSS, January 1982.

20

,* ~ ~ .. **-*.~* ~ -.' *-:: .* .* .:-

INITIAL DISTRIBUTION LIST

Addressee 1o. of Copies

3osc 1

NSWC, White Oak I

DTIC 12

_Ile

-~~~ % -

