
ESD-TR-86-282 3285-4-253/1

Program Office Guide to Ada Edition I

C.N. AUSNIT
E.R. ANSAROV
N.H. COHEN

AFGL/SULL
Research Library
Hanscom AFB, MA 01731

SofTech, Inc.
460 Totten Pond Road
Waltham, MA 02254

17 September 1986

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Prepared For

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
DEPUTY FOR DEVELOPMENT PLANS
HANSCOM AIR FORCE BASE, MASSACHUSETTS 01731

MAmut

LEGAL NOTICE

When U.S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

This technical report has been reviewed and is approved for publication.

MARK V. ZIEMBA, 2Lt, USAF
Project Officer, Software
Engineering Tools & Methods

ARTHUR G. DECELLES, Capt, USAF
Program Manager, Computer Resource
Management Technology (PE 64740F)

FOR THE COMMANDER

ROBERT
Director
Software Design Center
Deputy for Development Plans
and Support Systems

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1a. REPORT SECURITY CLASSIFICATION

Unclassified
lb RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

2b DECLASSIFICATION/DOWNGRADING SCHEDULE

3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release; Distribution
Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

3285-4-253/1

5 MONITORING ORGANIZATION REPORT NUMBER(S)

ESD-TR-86-282

6a NAME OF PERFORMING ORGANIZATION

SofTech, Inc.

6b OFFICE SYMBOL
(If applicable)

7a NAME OF MONITORING ORGANIZATION

Hq, Electronic Systems Division (XRSE)

6c. ADDRESS (City, State, and ZIP Code)
460 Tot ten Pond Road
Waltham, MA 02254

7b ADDRESS (City, State, and ZIP Code)
Hanscom AFB
Massachusetts, 01731

8a NAME OF FUNDING /SPONSORING
ORGANIZATION

Deputy for Development Plans

8b OFFICE SYMBOL
(if applicable)

ESD/XRSE

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F33600-84-D-0280
8c. ADDRESS (City, State, and ZIP Code)
Hanscom AFB
Massachusetts, 01731

10 SOURCE OF FUNDING NUMBERS
PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

WORK UNIT
ACCESSION NO

11 TITLE (Include Security Classification)

Program Office Guide to Ada Edition I

12. PERSONAL AUTHOR(S)
C.N. Ausnit, E.R. Ansarov, N.H. Cohen

13a. TYPE OF REPORT
Technical

13b TIME COVERED
FROM TO

14 DATE OF REPORT (Year, Month, Day)
1986 September 17

15 PAGE COUNT

16. SUPPLEMENTARY NOTATION

17 COSATI CODES

FIELD GROUP SU8-GROUP

18 SUBJECT TERMS (Continue on reverie if neceuary and identify by block number)

Ada, Ada Compiler, AJPO, Run-Time Support, Computer Languages

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

The purpose of the Program Office Guide to Ada is to discuss issues affecting the selection
development and maintenance of systems whose software is written in the Ada language. Each
volume focuses on a different set of topics and their implications for managers.
This edition concentrates on: Policy, run-time efficiency, customization of run-time
support environments, training, Ada program design languages and conversion to non-Ada code.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT
DUNCLASSIFIED/UNLIMITED G3 SAME AS RPT D DTIC USERS

21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL

M.V. Ziemba. 2Lt. USAF
22b TELEPHONE (Include Area Code)

(S17) 377-3HS
22c OFFICE SYMBOL

ESP/ERSE
DD FORM 1473.84 MAR 83 APR edition may be used until exhausted

All other editions are obsolete

i

SECURITY CLASSIFICATION OF 'HIS PAGE

Unclassified

ACKNOWLEDGEMENTS

This report is sponsored by the Computer Software
Systems Program Office, Software Design Center (XRSE),
Electronic Systems Division (ESD), United States Air Force
Systems Command, Hanscom AFB, Massachusetts 01731. Funding
for the effort was provided by the Air Force Computer
Resource Management Technology Program, PE 64740F, Project
2526 - Software Engineering Tools and Methods.

Program Element 64740F is the Air Force engineering
development program to develop and transfer into active use
the technology, tools, and techniques needed to cope with
the explosive growth in Air Force systems that use computer
resources. The goals of the program are to: (a) provide
for the transition of computer system developments in
laboratories, industry, and academia to Air Force systems;
(b) develop and apply software acquisition management
techniques to reduce life-cycle costs; (c) provide
improved software design tools; (d) address the various
problems associated with computer security; (e) develop
advanced software engineering tools, techniques, and
systems; (f) support the implementation of high-order
languages, e.g. Ada; (g) address human engineering for
computer systems; and (h) develop and apply computer
simulation techniques for the acquisition process.

iii

TABLE OF CONTENTS

Section Page

1 EXECUTIVE SUMMARY 1-1

2 POLICY UPDATE 2-1

2.1 AIR FORCE POLICY 2-1

2.1.1 Ada Introduction Plan 2-1
2.1.2 Waiver Policy 2-2

2.2 ADA JOINT PROGRAM OFFICE (AJPO) 2-4

2.2.1 DoD Directive Status 2-4
2.2.2 Validation Policy 2-4

2.3 ACTIVITY REPORTS ON ADA PROGRAMS 2-5

2.3.1 Programs Using or Designated to 2-5
Use Ada

2.3.2 Contact Points for Ada Information 2-6

3 RISKS AND RISK MANAGEMENT 3-1

3.1 IMPACT OF VALIDATION POLICY 3-1

3.1.1 Availability of Validated 3-1
Compilers

3.1.2 Reliability of Validated Compilers 3-3
3.1.3 Other Risks 3-5

3.2 RUN-TIME EFFICIENCY 3-6

3.2.1 Ada Language Support for Efficient 3-6
Code Generation

3.2.2 Ada Features Posing Short Term 3-8
Efficiency Risks
3.2.2.1 Run-time Checks 3-10
3.2.2.2 Generic Units 3-10
3.2.2.3 Dynamic Storage Allocation 3-11
3.2.2.4 Rendezvous 3-11

3.3 ALTERNATIVES IN CUSTOM RUN-TIME SUPPORT 3-12
ENVIRONMENTS (RSE)

3.3.1 Unique RSE for Each Application 3-12
3.3.2 Smart Linking 3-13
3.3.3 Run-time Customization 3-14
3.3.4 Costs of Custom Tailored Run-time 3-14

Systems

3.4 TOOL PORTABILITY AND THE CAIS 3-15

TRAINING AND RETRAINING 4-1

4.1 SYLLABUS 4-1

4.2 MEDIA 4-2

4.3 TRAINING COMMITMENT 4-3

4.3.1 Audience 4-3
4.3.2 Time Requirements 4-5

4.4 EVALUATION CRITERIA 4-5

4.5 EXISTING DOD AND AIR FORCE PROGRAMS 4-5

4.6 CATALOG OF RESOURCES FOR EDUCATION IN ADA
AND SOFTWARE ENGINEERING 4-7

4.7 ADA EDUCATION AND TRAINING STUDIES 4-8

ADA PROGRAM DESIGN LANGUAGE 5-1

5.1 PDL ISSUES 5-1

5.1.1 Automated PDL Processing Tools 5-2
5.1.2 Management Benefits 5-2

5.2 STUDIES ON ADA-BASED PDL'S 5-3

ADA COMPILER AND ENVIRONMENT TECHNOLOGY STATUS 6-1

6.1 VALIDATED HOST/TARGET COMBINATIONS 6-1

6.2 WORK IN PROGRESS 6-1

6.3 PERFORMANCE EVALUATION 6-2

6.3.1 Compilation Speed 6-2
6.3.2 Execution Speed 6-2
6.3.3 Run-time Memory Requirements 6-3

vi

CONVERTING NON-ADA PROGRAMS INTO ADA

7.1 INTERFACE PRAGMA

7.2 AUTOMATED TRANSLATION

7.2.1 Expert Systems Technology
7.2.2 Conversion of Artificial

Intelligence Algorithms to Ada

SUMMARY

LIST OF REFERENCES

BIBLIOGRAPHY

INDEX

APPENDIX 1 •

APPENDIX 2 -

APPENDIX 3 -

MCCR Focal Points

Dr. Donald A. Hicks Memorandum

APPENDIX 4

Validation Policies and Procedures
(Parts I and II)

Points of Contact for Ada Information

7-1

7-1

7-1

7-1
7-2

9

13

15

17

A-l-1

A-2-1

A-3-1

A-4-1

VII

SECTION 1

EXECUTIVE SUMMARY

This report is the first of four editions for the
Program Office Guide to Ada*. It complements the Program
Manager's Guide to Ada, ESD-TR-85-159, dated May 1985. This
effort was sponsored by the Air Force Computer Resource
Management Technology Program, Program Element 6474OF,
Project 2526, Software Engineering Tools and Methods.

The purpose of the Program Office Guide to Ada is to
discuss issues affecting the selection, development, and
maintenance of systems whose software is written in the Ada
language. Each edition focuses on a different set of topics
and their implications for managers. Points of contact are
provided where available.

The first edition concentrates on:

o policy

o run-time efficiency

o customization of run-time support environments

o training

o Ada Program Design Languages

o conversion of non-Ada code

The Air Force is continuing its policy that software
developed for major systems and Air Force designated
acquisition programs must be written in the Ada programming
language.

For all other programs a new version of AFR 800-14 has
been drafted which requires the Computer Resource Working
Group (CRWG) to consider the use of Ada and make a formal
recommendation to the program manager. Only DOD-validated
Ada compilers may be used and only in accordance with the
procedures for risk management for programming languages in
attachment 4 to AFR 800-14.

Waivers require solid technical and programmatic
justification. Waiver approval authority is now coordinated
at a much higher level than initially, specifically between
the offices of HQ USAF/SC, HQ USAF/LE and HQ USAF/RD.

*Ada is a registered trademark of the U.S. Government (Ada
Joint Program Office)

l-l

The Ada Joint Program Office is coordinating a draft
document explaining validation policies and procedures.
Based on three years practical experience, these proposed
new validation policies and procedures provide for more
validated Ada compilers, available sooner. This decreases
the risks associated with Ada compiler availability.
Program managers can minimize their risks for developing
standard Ada code by selecting for a project's baseline
compiler which has passed all of the Ada compiler Validation
Capability tests as recently as possible.

Production quality compilers along with benchmarks to
measure their efficiency are appearing in the marketplace.
There are several optimizations that a programmer can
specify to improve code performance further. In addition,
there are several alternatives in custom-tailoring the run-
time support environment to achieve maximum performance.

The Ada Joint Program Office has launched an initiative
to promote tool portability through the Common APSE (Ada
Programming Support Environment) Interface Set. A draft DOD
MIL-Standard is in final coordination and several prototypes
already exist.

The successful transition to Ada will require
substantial training and retraining of the work force. This
training should cover environment and methodology in
addition to the language itself. Managers, programmers and
support personnel will need varying degrees of training.
There are several efforts underway studying formal ways of
measuring the effectiveness of training.

Another aspect of the Ada transition is whether or not
existing code should be translated into Ada. Given the
current technology, using a multi-language interface
mechanism, if supported by the run-time system, is
preferable to converting code whose design may be obsolete
and poorly documented.

Ada provides an ideal base for a Program Design
Language. Several government and industry organizations
have developed Ada-based PDLs, and an IEEE Working Group has
drafted a Recommended Practice. An important consideration
is whether a compiler is a sufficient PDL processing tool
or a more sophisticated, specialized tool is needed.

1-2

SECTION 2

POLICY UPDATE

This section describes current Air Force and Ada Joint
Program Office (AJPO) policy with regard to the use and
implementation of Ada. The original policy documents that
were provided in Appendix 2 of the original Program
Manager's Guide to Ada are still valid; they are, therefore,
not reproduced in this Edition.

2.1 Air Force Policy

Section 2.1.1 reviews the Air Force policy on the
introduction of Ada. Section 2.1.2 discusses the current
position regarding waivers.

2.1.1 Ada Introduction Plan

The Air Force continues to follow its Interim Policy on
Computer Programming Languages that software developed for
major systems and Air Force designated acquisition programs
must be written in the Ada programming language. Certain
major systems have been designated to be Defense Systems
Acquisition Review Council (DSARC) or Air Force Designated
Acquisition Program (AFDAP). Typically these systems have
research, development, test and evaluation costs that exceed
$100 million, have production costs that exceed $500
million, or have special interest for the Department of the
Air Force or the Secretary of Defense. These acquisition
programs have been mandated to use Ada. An update on their
status may be found in Section 2.3. For all non-major
programs, the upcoming new version of AFR 800-14 will
require that the CRWG consider the use of Ada and make a
formal recommendation to the program manager.

All major mission critical programs with a scheduled
Milestone I review after 1 Jan 84 or a scheduled Milestone
II review after 1 July 84 must use Ada or seek a waiver.
Mission critical programs are defined to include:

o Intelligence systems
o Cryptologic systems related to national security
o Command and control of military forces
o Integral parts of weapons systems
o Systems critical to the direct fulfillment of

military or intelligence missions (e.g. logistics,
planning, environmental, warning, etc.)

2-1

Unless a program has made a formal language commitment
prior to 10 Jun 83, any mission critical program that wishes
to use a different language must request a waiver, discussed
in Section 2.1.2 below. In other words, there will be no
retroactive Ada designations. All programs, mission and
non-mission critical, are strongly encouraged to use Ada.
Ada is voluntary for use on automated data processing (ADP)
systems. It is an approved ADP language because it is now a
Federal Information Processing (FIPS) standard.

The four phases of the Air Force Systems Command (AFSC)
Ada introduction plan represent logical rather than
chronological phases, and there are funded programs
distributed across the first three phases. Phase I consists
of the use of Ada in the lab, as in the Wright Patterson AFB
AFWAL Ada Based Integrated Control System (ABICS) F-15
program. Phase II, the dual development phase is
characterized by such programs as the Common Ada Missile
Package (CAMP) program by AFATL at Eglin AFB and the Mobile
Information Management System (MIMS) for SAC at Offutt AFB.
Two programs, MILSTAR and WIS, are currently in Phase III,
the selected use phase. MILSTAR has selected Ada as the
major implementation language for the Ground Control
Segment. The WIS baseline design uses Ada, and a formal
language decision is expected by December 1986.

A Regulation 800 series is under development. This
draft regulation, 800-14, will direct that the CRWG,
comprised of the using, developing, operating, and
maintaining commands, work out all of the life cycle
arrangements for support of computer resources. These
arrangements must consider the use or nonselection of Ada as
a PDL and/or an implementation language. The net effect is
that because every program has a CRWG, every program will
have to address the use of Ada. This regulation will not
affect the required use of Ada on major programs.

Within Air Force Systems Command if Ada is not used for
on-board avionics software in aircraft, tactical & strategic
missiles, munitions or space systems then this software must
be written in JOVIAL J73. Only Air Force validated JOVIAL
J73 compilers may be used and only in accordance with the
procedures for risk management for programming languages in
attachment 4 to AFR 800-14.

2.1.2 Waiver Policy

The Air Force waiver policy continues to follow the 13
January 1984 memo. (This memo is reproduced in Section 3.6
of the original Program Manager's Guide to Ada.) Ada waiver
approval is now at a higher level than initially, through HQ

2-2

USAF/SC. Furthermore, Ada waivers must be coordinated
through the offices AF/LE and AF/RD.

Waivers require solid technical and programmatic
justification. They must be thoroughly documented and
submitted in a timely manner, as early as possible in the
system development life cycle so as not to be overtaken by
events, for instance as part of the source selection
process. Furthermore, waivers should not be written for an
entire program but only for as restricted a part of the
system as possible, in other words for a specific time/space
critical and hardware dependent component. Additional
information that should be filed with a waiver application
includes program name, overall description, and phase
(source selection, full-scale development, etc).

The technical justification for a waiver must, wherever
possible, provide hard data on the timing, memory and
technical capabilities (such as interrupt handling, extended
addressing ability, etc). Information such as benchmark
results, technical references and source to code expansion
ratios should be provided. Waiver requests should also
describe language alternatives considered, including
technical data showing that the alternate language is able
to meet requirements where Ada is unable to do so. For
example, efficiency alone is not a sufficient reason not to
use Ada if efficiency is not a critical factor.

A waiver request must include a life cycle cost
analysis. Factors to consider are the extent of
modifications to an existing system, the availability of
commercial off the shelf (COTS) software, the existence of a
vendor maintenance organization, cost estimation models,
training and compiler costs, and productivity effect. In
addition to the life cycle cost analysis, the waiver
application should discuss the impact on training,
especially the training for personnel who must provide long
term system support.

The Computer Resource Focal Point (CRFP) provides the
first level of review in the waiver process. Appendix 1
contains a list of the CRFP's at the product divisions and
labs at the time of this writing. The CRFP forwards the
application with his or her recommendations to the
developing Air Force Major Command (such as AFSC, TAC, SAC,
etc). A recommendation to disallow a waiver carries a great
deal of weight; moreover, the lack of a recommendation on a
waiver raises serious questions at higher review levels.
Systems Command works with Air Staff for final disposition
of waivers.

2-3

2.2 Ada Joint Program Office (AJPO)

The Department of Defense continues to show a high-
level interest in and commitment to the use of Ada. Section
2.2.1 summarizes the status of forthcoming DoD Directives.
Validation policy is reviewed in Section 2.2.2 below. The
effect of this policy on risks and risk management is
deferred to Section 3.

2.2.1 DoD Directive Status

Dr. Donald A. Hicks has issued a memorandum dated 2
December 1985, stating the Department of Defense's continued
commitment to Ada. This memo, reproduced in Appendix 2,
reaffirms Dr. Delauer's 10 June 1983 memo specifying the Ada
language as "the single common, computer programming
language for Defense mission-critical applications."

Draft DoD Directive 5000.29 and Draft DoD Instruction
5000.31 are in the review cycle. A copy of the draft of
5000.29 may be found in Appendix 1 of the Program Office
Guide to Ada.

2.2.2 Validation Policy

Validation is the process through which a compiler is
demonstrated to be in compliance with the MIL-STD-1815A Ada
language standard. A compiler must successfully pass all of
the Ada Compiler Validation Capability (ACVC) tests in order
to be designated an Ada compiler and to receive a validation
certificate. A validation certificate is valid for one year
and applies only to the base host/target compiler
configuration tested under a specific ACVC suite. At the
time of this writing, Ada compilers are tested against the
ACVC Suite Version 1.8, comprising some 2700 tests.
Validation in and of itself does not guarantee a production
quality compiler, and further acceptance testing should be
conducted. Sections 3 and 6 of this document provide
further guidance on the implications of validation policy as
well as on compiler and environment evaluation.

The AJPO has issued a draft version of the Ada
Validation Policies and Procedures Document, dated 10
February 1986. This document describes the definitions,
policies and procedures for Ada compiler validation. It is
divided into three parts, the first two of which are
reproduced in Appendix 3. Parts I and II discuss the
general framework and policies of validation. Part III,
available through the AJPO, enumerates the specific
validation procedures.

2-4

Key terms in the Ada Validation Policies and Procedures
Document are the concepts of a derived compiler and a
project-validated compiler. A derived compiler is a
compiler which is a slightly modified version of a validated
compiler. The modifications would typically reflect the
changes needed to accommodate a family of target
architectures. A derived compiler may be registered with
the AJPO and considered as a validated compiler if the
vendor affirms that this compiler in fact conforms to the
Ada standard.

A project validated compiler is a validated compiler
which at some point in a project's life cycle is baselined
for this project. Although the project validated compiler's
validation certification may lapse prior to project
completion, this compiler shall be considered validated for
the duration of the project. A project validated compiler
may be maintained or upgraded, as long as it continues to
pass at least all of the ACVC tests applicable at the time
its validation certificate was issued.

2.3 Activity Reports on Ada Programs

This section reviews ongoing Ada activities. It
provides contact points where the information is available

2.3.1 Programs Using or Designated to Use Ada

The following major programs, tentatively designated to
use Ada in the Air Force Interim Policy on Computer
Programming Languages, were removed from the list because
they were found not to meet the requirements of Paragraph
2.a. (language commitment prior to 10 June 1983, or
Milestone I or II reviews preceding 1 January 1984 or 1 July
1984 respectively):

- C-17
- HH-60D, Night Hawk

The following programs were granted an Ada waiver:

Interservice/Agency Automated Message Processing
Exchange (I-S/A AMPE)

Sensor Fused Weapon (SFW)

The following program has requested a waiver, whose
approval has been deferred until PDR:

Joint Surveillance and Targeting Attack Radar System
(JSTARS)

2-5

The following programs continue to be tentatively
identified to use Ada:

- Wide-Area Anti-Armor Munition (WAAM)
Enhanced Joint Tactical Information Distribution System
(JTIDS)

- Joint Tactical Missile System (JTACMS)
- World Wide Military Command and Control System (WWMCCS)

Information System (WIS)
- Advanced Tactical Fighter (ATF)
- Microwave Landing System (MLS), MIL-SPEC Avionics

Segment
Space Based Surveillance System (SBSS)

- COMBAT Identification Friend or Foe (IFF), MARK XV
portion

2.3.2 Contact Points for Ada Information

Appendix 4 contains a list of contact points for Ada
information. This section provides brief explanations of
selected items from the Appendix.

The AJPO is a focal point for Ada policy. The Ada
Information Clearinghouse provides information on MIL-STD-
1815A, compilers, environments, validations, and education
and training. The Ada Information Clearinghouse publishes a
quarterly newsletter.

The Ada Integrated Environment, now renamed the Ada
Compilation System, and the Ada Language System are Air
Force and Army funded efforts, respectively, to produce Ada
compilers and tools. More discussion of current DoD efforts
in this area may be found in Section 6.2.

The Ada Validation Organization manages the Ada
validation process and ensures that the validation policy
and guidelines are consistently followed. The Ada Compiler
Validation Capability is the test suite used in validating
compilers and is kept under configuration and control at
ASD.

DIANA is a machine-independent, intermediate language
representation used by some compiler vendors. A fuller
description of DIANA may be found in the Glossary of the
Program Manager's Guide to Ada.

The CAIS is the Common APSE (Ada Programming Support
Environment) Interface Set. It is briefly discussed in
Section 3.4 of this Edition.

2-6

SECTION 3

RISKS AND RISK MANAGEMENT

Given the relative newness of Ada technology, there are
risks associated with undertaking an Ada project. Because
Ada is maturing fast, the risks have changed. This section
examines these risks, in particular the impact of validation
policy and the issues relating to run-time efficiency and
support environments.

3.1 Impact of Validation Policy

There is an inherent tradeoff between the rigor of an
Ada compiler validation policy and the timely availability
of validated Ada compilers for a particular application.
Because the resources available for performing validation
are limited, more rigorous validation procedures increase
the time between the completion of a compiler conforming to
MIL-STD-1815A and its validation. Furthermore, stricter
policies decrease the number of compiler versions considered
validated and the number of target configurations for which
a given compiler is considered validated.

Based on three years practical experience, the proposed
new validation policies and procedures provide for more
validated Ada compilers, available sooner. This decreases
the risks associated with Ada compiler availability and are
discussed further in sections 3.1.1 and 3.1.2 below.
Section 3.1.3 discusses other risks affected by the proposed
new policies and procedures.

3.1.1 Availability of Validated Compilers

The proposed policy would promote the availability of
validated Ada compilers in several ways:

1. If a validated base compiler works without
modification on a target configuration other than the
base configuration, it need not be revalidated for the
new target configuration. If simply registered as a
derived compiler, the compiler will be considered
validated. This expedites the production of validated
compilers for an entire family of machines with
closely related architectures.

3-1

2. If a vendor modifies a validated base compiler to make
it work on a new target configuration, no revalidation
is necessary. Again, the new compiler will be
considered validated if it is registered as a derived
compiler.

3. Maintenance of a validated compiler does not nullify
its validation. Later versions of a validated
compiler are considered validated, as long as the new
versions are clearly distinguished and are not known
to fail any ACVC tests.

4. A validated compiler (along with subseguent versions
resulting from maintenance of that compiler) may
retain its status as a project-validated compiler even
after the compiler has lost its general validation.
(A compiler can lose its general validation when the
base compiler validation certificate expires, when a
registered derived compiler is found to fail an ACVC
test, or when the ACVC is modified in such a way that
the compiler no longer passes all tests.) This
permits a project to continue using the compiler
selected at the start of the project.

5. A compiler for a restricted target machine may be
considered project-validated even if the target
machine is incapable of running all ACVC tests, as
long as (a) the compiler is derived from a fully-
conforming project-validated compiler for a generic
target and (b) the derived compiler supports all
mandatory language features that can be supported on
the restricted target. This increases the
availability of Ada compilers for embedded computers
with limited I/O capabilities and memory.

6. A project-validated compiler may be derived by
tailoring run-time libraries to the needs of a
particular application, as proposed in Section 3.3 of
this document. As long as the application-specific
library is used only within that application, the
compiler with the original run-time libraries remains
project-validated for other applications. This
increases the availability of project-validated
compilers capable of meeting the time and space
constraints of a particular application.

7. The term of a validation certificate, now fixed at one
year, will be determined by the Director of the AJPO,
who can extend this period if the workload on Ada
Validation Facilities and Ada compiler maintainers
warrants such a change. In particular, such an
extension would be warranted if a reinterpretation of
language rules were to cause the ACVC to undergo a

3-2

major change, requiring major modification of many
existing compilers. These compilers would retain
their status as validated compilers throughout the
extended term, while modifications were implemented.

3.1.2 Reliability of Validated Compilers

Testing is never a foolproof way of ascertaining the
correctness of software. It has always been the case that
compilers containing errors could pass all ACVC tests.
Furthermore, a compiler that conforms to MIL-STD-1815A is
not necessarily usable in a practical sense. In the words
of the proposed Validation Policies and Procedures,

Users are responsible for understanding the
scope and limitations of compiler validation, which
is a means to increase confidence in the conformity
of an Ada compiler to the Ada language standard.
While such conformity is a first measure of
usability of the compiler, it by no means
guarantees that a Validated Compiler satisfies all
the usability requirements of a particular
project.

Just as the proposed Policies and Procedures make it
easier for a compiler used on a particular MCCR project to
be considered validated, so they increase the chance that a
nonconforming compiler will be inadvertently considered
validated. Designation of a compiler as project-validated
increases confidence that an Ada compiler conforms to MIL-
STD-1815A, but stricter policies would result in higher
confidence.

The risk of error in a validated compiler has several
sources:

1. Though the AJPO may require supporting information
from a compiler vendor, registration of a derived
compiler as validated rests principally on an
affirmation by the compiler vendor that the derived
compiler conforms to MIL-STD-1815A. The vendor has a
vested interest in this determination, and there are
no objective standards or procedures for making this
determination.

2. There may be subtle differences between the base
configuration and a closely-related configuration. A
vendor unaware of these differences may affirm that a
validated base compiler conforms to MIL-STD-1815A
under both configurations, and no ACVC testing is
needed to confirm this.

3-3

3. There are no guidelines requiring a derived compiler
to be closely related to its base compiler. Errors
may be introduced through major changes. Nonetheless,
the derived compiler need not be subjected to ACVC
tests.

4. Violations of MIL-STD-1815A may be introduced through
maintenance of a validated compiler, but the
maintained compiler is considered validated without
further ACVC testing.

5. A generic target that is thought to be a superset of
some restricted target may in fact not be, so that a
compiler validated on the generic target may not
behave correctly on the restricted target. ACVC
testing may be impossible on the restricted target.

6. Replacement of the run-time library used to pass the
ACVC with an application-specific run-time library may
introduce errors but may also make ACVC testing
impossible.

7. If the term of validation certificates is extended,
compilers will have to pass updated ACVC tests less
frequently.

The risk of an incorrect compiler passing the ACVC will
decrease steadily over time, though it will never reach
zero. As errors in validated compilers are discovered, the
ACVC is augmented with tests that would have caught such
errors. Since validation certificates periodically expire,
compiler vendors must eliminate such errors if their
compilers are to remain validated.

The greater risk is that, because compilers can be
considered validated without undergoing full ACVC testing,
compilers incapable of passing the ACVC tests may be used in
projects. To minimize this risk, program managers should
recognize that there are different levels of validation,
implying different degrees of confidence in a compiler's
conformance to the Ada standard. These levels can be ranked
as follows, starting with those compilers providing the
highest degree of confidence:

1. Validated base compilers, generating code for base
configurations. (Such compilers have current
validation certificates earned by passing a recent
version of the ACVC on the base configuration.)

2. Registered derived compilers that are really
unmodified base compilers generating code for
configurations other than the base configuration

3-4

3. Registered derived compilers that are variations or
revisions of base compilers

4. Project-validated compilers for a generic target

5. Variations and revisions of project-validated
compilers, including compilers for restricted targets

The proposed Policies and Procedures recommend that the
initial selection of a project-validated compiler be
contingent on that compiler passing all ACVC tests. If the
program manager follows this recommendation, a newly
project-validated compiler will be as reliable as a
validated base compiler. Nonetheless, project-validated
compilers are not subject to periodic revalidation, so a
generally validated compiler may over time become more
reliable than a project-validated compiler.

3.1.3 Other Risks

At the time of this writing, the Validation Policies
and Procedures are still in draft form, undergoing public
review. Changes to the draft can be expected. In the very
short term, uncertainty about the ultimate policy to be
adopted poses a risk.

There are more serious risks as well:

1. Designation of a particular version of a particular
compiler as project-validated does not require the
compiler vendor to continue to support that compiler
or to keep later versions compatible with the version
chosen as a project baseline. The project may be
forced to assume maintenance of the compiler or to
adopt unnatural coding practices to avoid compiler
errors.

2. The project must assume the burden of choosing a
project-validated compiler, performing acceptance
testing, and repeating the acceptance testing at each
baseline milestone in the maintenance cycle if the
current compiler version has not been subjected to
appropriate testing.

3. The designation of a compiler as project-validated
expires with a major system upgrade. The risks of
selecting and testing a new project-validated compiler
must be confronted at that time. The new project-
validated compiler must be one that is validated at
the time of the major system upgrade. It must reflect
any language changes that have taken place since the
last project-validated compiler was selected.

3-5

The proposed Policies and Procedures reduce the risk
that a compiler vendor will avoid the repair of known errors
for fear of having to revalidate the compiler. A maintained
compiler retains its status as a validated compiler, subject
to the vendor's affirmation that the compiler continues to
conform to MIL-STD-1815A.

3.2 Run-time Efficiency-

Fast execution of an Ada program depends on the guality
both of the code generated by the compiler and the run-time
system invoked by that code. The Ada language allows the
generation of very efficient object code. The Ada compiler
marketplace has become highly competitive, and evidence
suggests that, month-by-month, the guality of the code
actually generated by Ada compilers is guickly improving.

Nonetheless, the size, speed, and algorithms of the
run-time system may be the key to meeting the time and space
constraints of many Ada applications. In many cases, a run-
time system may have to be customized to the needs of the
particular application, an eventuality anticipated by the
proposed Validation Policies and Procedures. This approach
is feasible to the extent that a compiler's run-time system
has individually replaceable modules with well-defined
interfaces. The issue of custom-tailoring run-time support
environments is dealt with in greater detail in Section 3.3.

Section 3.2.1 below addresses the potential for
efficient code generation. Section 3.2.2 identifies the
features that pose the highest risk for fast execution and
provides guidelines for managing that risk.

3.2.1 Ada Language Support for Efficient Code Generation

The designers of the Ada language cite efficiency as
one of their principal design goals. The language design
reflects a strong awareness of current machine
architectures. Language rules provide many opportunities
for compile-time analysis and optimization. In addition,
the Ada programmer has a degree of direct control over code
generation, to further improve efficiency.

An awareness of the underlying machine is reflected in the
design of the Ada language by features like the following:

1. Scope rules for loop indices that allow efficient code
generation for a wide variety of instruction sets

3-6

2. Rules allowing a compiler to choose the most efficient
representation for a numeric type, once the programmer
has abstractly specified the minimum range and
precision reguirements

3. Rules facilitating the implementation of fixed-point
real arithmetic using integer arithmetic in machine
instructions

4. Description of private type representations in package
specifications rather than in package bodies (which
would logically be more appropriate), because
description in package specifications allows the
generation of more efficient object code for modules
using the private type

5. Multitasking rules that deliberately allow a wide
variety of implementations, compatible with different
architectures and application reguirements

Opportunities for compile-time analysis and optimization
include the following:

1. Compile-time evaluation of expressions, compile-time
analysis to eliminate run-time checks, and dead-code
elimination are specifically mentioned in section 10.6
of the Ada Language Reference Manual.

2. Section 11.6 of the Ada Language Reference Manual has
several rules ensuring that the possibility of
exceptions being raised does not prevent
optimizations. Classical optimizations are allowed
even if they would cause a program to behave
differently from an unoptimized program when
exceptions are raised.

3. The detailed type and subtype information found in an
Ada program can make certain optimizations easier to
find, eliminating the need for many run-time checks
and allowing certain Boolean expressions to be
evaluated at compile-time rather than run-time.
[Wel78] reported that analogous subrange information
in Pascal programs allowed a fairly simple
optimization algorithm to eliminate most run-time
checks.

Furthermore, an Ada programmer may specify performance-
improving beyond those provided by an optimizing compiler,
including the following:

1. Selective suppression of run-time checks not
eliminated by optimization.

3-7

2. Treatment of a subprogram call as a macro call, so
that the code of the subprogram is expanded inline and
the call does not incur linkage costs.

3. Specification of whether the primary optimization
criterion for a particular program unit or a
particular data type should be execution time or
storage space.

4. Specification of a particular data representation
efficiently implementable on the target hardware.

5. Control over how much storage is set aside for
execution of certain tasks or dynamic allocation of
variables to be pointed to by certain access types.

6. The ability to bypass Ada's normal type-checking
mechanisms so that an Ada programmer can exploit bit
representations in the same way as an assembly-
language programmer.

7. The ability to control deallocation of dynamically
allocated variables.

8. The ability to write small, critical portions of a
program in assembly language or some other language.

3.2.2 Ada Features Posing Short-Term Efficiency Risks

In comparing the efficiency of Ada and earlier
languages, one must recognize that the Ada language provides
certain capabilities not provided by earlier languages.
These capabilities are provided in such a way that, in a
good implementation, they will incur no performance penalty
if they are not used. It follows that programs in a
language like FORTRAN can be transliterated into Ada with no
significant loss of efficiency.

Some of the capabilities provided by the Ada language,
but not by its predecessors, impose no additional run-time
overhead. Such features include packages, programmer-
defined types, strong type checking, private types, separate
compilation without loss of consistency checking,
overloading, and (arguably) exception handling. Such
features do much to enhance the reliability and
maintainability of an Ada program, but are processed almost
entirely at compile-time.

3-8

Some features provided by the Ada language do
potentially entail run-time overhead. These features are:

Run-time checks
Generic units
Dynamic storage allocation
Rendezvous

The efficiency of these features may vary widely from
implementation to implementation. Within an implementation,
the performance impact may vary from use to use.

Use of these features should not be discouraged,
because they provide tangible software engineering benefits,
and it is difficult to determine in advance whether or not a
particular use will incur a significant performance penalty.
Furthermore, programs that use these features can be
transformed in a fairly straightforward way to programs that
do not. Such transformations can be applied selectively,
after a program has been constructed and the sources of
inefficiency have been pinpointed by metering tools.

These considerations suggest the following strategy for
minimizing efficiency risks:

1. A program should be written in an appropriate abstract
Ada style, without concern for the efficiency with
which certain features are implemented.

2. If the program fails to run fast enough, it should be
metered to pinpoint the bottlenecks.

3. If a particular use of a particular feature is
creating a bottleneck, that use should be eliminated
by transformation. The original, untransformed
program can then be viewed as a high-level design from
which the final program was derived. The
untransformed program should be retained as a design
document.

4. Later program modifications should be applied to the
untransformed program, and the transformations should
then be repeated to the extent they are still
applicable, to generate a new version of the program.

5. Later improvements in hardware or Ada compilers may
make the higher-level, untransformed program usable
directly for the generation of efficient code.

Project planning must account for the time that will be
necessary to meter and transform programs.

3-9

The remainder of this section describes specific
performance issues and transformation strategies.

3.2.2.1 Run-time Checks

In principle, the Ada language requires many run-time
checks. As noted earlier, many of these are eliminated by a
good optimizing compiler. Most of the remaining checks will
not significantly impact performance. Those that do can be
eliminated by a simple transformation -- the introduction of
a Suppress pragma.

Correct handling of unanticipated exceptions may be crucial
for an embedded application to terminate harmlessly in case
of a software error. Therefore, Suppress pragmas should be
applied to a limited region of the program, and this region
should be carefully scrutinized to ensure that the checks
being eliminated are indeed unnecessary. Empirical studies
[Knu72] show that a program spends most of its time
executing five percent of the program text. Improvements in
this small region of the program will significantly improve
performance of the overall program, but improvements
elsewhere will have minimal impact. The role of metering is
to pinpoint the parts of a program that are critical to
overall performance.

3.2.2.2 Generic Units

There are many different ways to implement generic
units [Bra83]:

Making a separate copy of the generic template for each
instantiation, so that each instance is as fast as a
nongeneric program unit, but each instantiation
greatly expands the size of the object code

Compiling generalized object code directly from the
template (for example, compiling an assignment as a
loop copying a number of bytes specified in a control
block set up during the generic instantiation), so
that there is only one copy of the object code, but
the code runs more slowly than code generated from an
ordinary program unit

A compromise in which different copies of the instance
are made only for instances that manipulate different
sizes of objects, so that instances dealing with data
of the same size can share copies and each copy is as
efficient as an ordinary program unit

3-10

An ideal implementation would provide the programmer with
pragmas to control the instantiation mechanism on a case-by-
case basis.

Generic instantiations in a design can be simulated
manually in production code by editing a copy of the generic
template and inserting it in place of the instantiation.
The effect of sharing a copy applicable to many types can be
achieved by unchecked conversion. This is a low-level
approach that has many drawbacks, and it should be viewed
solely as the pragmatic implementation of a higher-level
construct.

3.2.2.3 Dynamic Storage Allocation

For some implementations, dynamic allocation may be a
source of significant inefficiency, though there is no
inherent reason why this must be so. Some allocators in Ada
programs can be eliminated by the use of declarations inside
block statements. In other cases, programmers can implement
their own storage allocation schemes. This can be done
either at the source level or by modification of the run-
time system. Source-level implementation of storage
management involves declaration of a large array to serve as
a heap and the writing of allocation and deallocation
routines tailored to the application.

3.2.2.4 Rendezvous

Rendezvous are intended to be the primary means of
inter-task synchronization and communication in the Ada
language, but current implementations of rendezvous are
generally not fast enough for most real-time applications.
Researchers have long been aware ([H&N80], [Hil82]) of the
potential to implement certain patterns of rendezvous quite
efficiently (often without need for a context switch) by
exploiting pragmas in which the programmer notifies the
compiler of the pattern. At least two validated Ada
compilers now take this approach. Because of the
competitive nature of the Ada compiler market, others can be
expected to follow suit quickly.

In the long run, improvements in rendezvous speed may
also come from hardware. One approach is an Ada-oriented
machine with specific instruction-set support for
rendezvous. Another [R&M76] is a multiprocessor
architecture in which each application processor is
accompanied by an "agent processor" that handles entry queue
management and other housekeeping details for the tasks
running on the application processor.

3-11

In the short run, rendezvous ought to be used as the
first step in designing a multitask system. If the
resulting performance is unacceptable, entry parameters can
be replaced by shared variables. Entry calls will then
serve solely to synchronize tasks. If performance is still
unacceptable, entry calls can be replaced by application-
specific synchronization primitives like semaphores. These
can be invoked directly from the Ada language, by calling
code procedures or application-specific run-time system
routines. In a cyclic system, an Ada multitask design using
rendezvous can be used as the underlying design before
assigning specific work to specific cycles of a frame, as
described in [H0086].

3.3 Alternatives in Custom Tailoring Run-time Support
Environments (RSE)

The minimal Ada compilation system must include a Run-
time Support Environment (RSE). The code generated by a
typical Ada compiler calls on the RSE to obtain the run-time
system services necessary for execution. The RSE consists
of primitive and system data objects as well as a set of
routines that provide functionality not supported by the
target computer system. On a bare target the RSE plays the
role of a virtual operating system. It provides task
scheduling services to implement Ada language constructs
like entry calls, accept statements, delay statements and
selective waits.

Recent research on developing real-time systems in Ada
has shown the need for a mechanism whereby a completed
system can be tuned to meet specific real-time reguirements.
In evaluating the risks of an Ada project, a project manager
must understand the role and functionality of the run-time
system. Significant performance improvements in the Ada
code can result from judicious use of tools provided in the
run-time system. Three alternatives are presented in the
following subsections: unique RSEs for each application,
smart linking, and run-time customization.

3.3.1 Unique RSE for Each Application

Embedded computer system applications often have space
and performance requirements that are not necessarily
satisfied by the standard RSE configuration of an Ada
compiler. One way to meet these requirements is to
customize the RSE. Certain aspects of an Ada program's
behavior, including scheduling and storage-allocation
algorithms, are not completely determined by the rules of
the language. It is therefore possible for a single
compiler to have several alternative RSEs. A typical

3-12

example would be to substitute time sliced with strictly
preemptive scheduling in the RSE (or vice versa, depending
on the application). Other examples might include special
memory allocation schemes (such as a multiple heap vs. a
single heap scheme), or support for specialized entry call
optimizations (such as fast interrupt entries).

3.3.2 Smart Linking

In some implementations the elaboration of the library
packages of the RSE may generate references to practically
all of the RSE packages, even though the application might
only need a subset. A typical alteration would minimize the
RSE to include only those functions required by the systems
design constraints. For example, it is highly unlikely that
an embedded application will require high level I/O or time
management support. To meet memory constraints these
functions might be omitted from the RSE. The obvious
solution is to link to the application code only those RSE
modules which are called. Deleting functions from the RSE,
however, is not a simple task. It may require changes to
the entire run-time environment because of interpackage
dependencies within the RSE. There is ongoing research in
software reconfigurability techniques, specifically in ways
of removing portions of the RSE from the executable image.

At present, "smart linking" to the RSE modules required
for a particular application is usually done through
multiple statically configured RSEs. For each new set of
application requirements for run-time support, another
static configuration of the RSE is created. This is costly
and difficult to maintain.

Current research in software reconfigurability is
investigating alternate approaches. One solution is to
remove the interpackage dependencies during the compilation
of the RSE. Another approach is to build a flexible RSE so
that the compiler user, instead of the vendor, tailors the
RSE configuration. This effort will be facilitated through
the work of the Ada Run-Time Environments Working Group
(ARTEWG), a working group of SIGAda which is studying the
standardization of RSE interfaces. At the time of this
writing, ARTEWG is chaired by Mike Kamrad, whose address is:

Honeywell
M/S MN65-2100
3660 Marshall St. NE
Minneapolis, MN 55418
(612) 782-7321
Kamrad @ HI-MULTICS

3-13

3.3.3 Run-time Customization

Validation of a program's timing characteristics
requires sophisticated timing analysis tools in the run-time
support environment. These profiling tools should measure
program operation, throughputs and response time.
Additional tools will be needed in order to identify the
cause of a timing problem, recording information such as the
task interactions and scheduling decisions. This will allow
specific alteration to be made in the application code and
run-time system to solve any particular run-time problem.

The ability to modify the timing performance of a
system is crucial to all successful real-time system
development. Depending on the desired behavior, different
solutions may be appropriate, ranging from increasing system
throughput to trading speed for more deterministic timing
characteristics. The RSE can provide extensive support for
the range of tuning actions. Specifically, the following
run-time customizations would be useful:

1. Modify the scheduler to eliminate pathological cases
of inter-task interference.

2. Provide fast versions of some of the support programs,
for use in special cases.

3. Support source level optimizations through run-time
system capabilities (such as replacing monitor tasks
with semaphore operations).

3.3.4 Costs of Custom Tailored Run-time Systems

Custom tailoring of run-time systems may be necessary
in many cases but the cost is always high. Three of the
most important impact areas of this cost are:

Development cost
Portability/Reusability

- Verifiability/Reliability.

Development costs are high because a run-time system
must be worked on as well as the application code.

Portability and reusability are affected because the
software is relying on custom enhancements to meet
performance constraints. When the software is moved to a
new environment (either to be reused on another project or
to be ported to a new system) there is no guarantee that it
will work because it may not have the same custom
enhancements.

3-14

Verifiability and reliability are threatened by
multiple implementations of the same run-time feature (such
as the scheduler) that differ in subtle ways. It becomes
difficult to build a precise statement describing program
behavior, making the program difficult to verify. This in
turn leads to possible reliability problems with software
that has not been adequately validated.

3.4 Tool Portability and the CAIS

The Common APSE Interface Set (CAIS) is intended to
promote portability by defining a standardized interface
between tools and the Kernel Ada Programming Support
Environments (KAPSEs). A KAPSE defines a virtual operating
system, including such services as file management,
input/output, communications, and process control. Section
2.2.1.3 of the Program Office Guide to Ada explains the
purpose and concept of a KAPSE more fully.

The KAPSE Interface Team (KIT) and KAPSE Interface Team
from Industry and Academia (KITIA), collectively composed of
representatives from government, industry, academia, NASA,
and foreign governments and institutions, has produced the
proposed CAIS standard, issued in January 1985. This
standard is undergoing public review and is expected to
become a MIL-STD.

The goal of the CAIS is to promote source-level
portability of Ada programs across DoD APSEs. The CAIS
document defines two key concepts ([KITPR]):

Interoperability is defined as the ability of
APSEs to exchange data base objects and their
relationships in forms usable by tools and user
programs without conversion. Transportability of
an APSE tool is defined as the ability of the tool
to be installed on a different KAPSE; the tool
must perform with the same functionality in both
APSEs. Transportability is measured in the degree
to which this installation can be accomplished
without reprogramming.

These interrelated goals are extremely important in
increasing the cost effectiveness of the software
development process.

The work of the CAIS has entered a second phase, whose
goal is to continue to refine the existing CAIS standard as
well as to resolve issues deferred by the original document.
The AJPO, through the Naval Ocean Systems Center (NOSC), has
awarded SofTech, Inc. a contract to continue the CAIS

3-15

development. A draft and final CMS 2 Standard will be
produced, along with a Rationale, a Guide for CAIS
Implementors, a Formal Semantic Description, and a
prototype. The tentative publication schedule is:

Early 1987: Draft CAIS 2 and Rationale
Early 1988: Final CAIS 2 and Rationale
1989: Implementor's Guide, Semantic

Description, prototype

Both the draft and final standards will be developed with
responsive public review.

Issues addressed in the CAIS 1 effort focused on
specifying the interfaces for the major structural elements,
in particular for the data structuring model, the process
control model and input/output. Major issues to be
addressed in CAIS 2 include multilevel security, distributed
environments, a sophisticated file system, a database typing
mechanism, robust access control, history of database
objects, a standard data interchange format, and
interprocess synchronization and communication. CAIS 2 does
not require a specific configuration management capability;
however, the structure of CAIS 2 should allow several
methods to be supported.

The CAIS is intended to be a long term, portable
environment. This project is still in the requirements
stage, thus its design is not yet known. Although there
exist ongoing efforts within industry to develop early CAIS
prototypes, a fully viable CAIS will not become available
until the mid 1990's. Consequently, mandating the use of
the CAIS on an Ada project during the next few years will
entail a high risk for the project.

The second Edition will address the CAIS effort and
portability issues in more detail.

3-16

SECTION 4

TRAINING AND RETRAINING

In order to achieve the transition to software
engineering with Ada, program managers must address the
issue of training, or in some cases retraining, their
personnel. Section 4.1 explains the need for balanced
training addressing not only the Ada language but also
software engineering methods and programming support
environments. Section 4.2 compares and contrasts the three
primary training media, namely live instruction, videotape,
and computer aided instruction. The extent of commitment,
in terms of knowledge level and time, is analyzed in Section
4.3. Section 4.4 raises issues about measuring the
effectiveness of the training. The last two sections
explore existing programs focused on Ada training.

4.1 Syllabus

The design of the Ada language is based on modern
software engineering principles, including structured
programming, information hiding, data abstraction, the
distinction between a module's interface and implementation,
strong cohesion within a module, weak coupling among
modules, and the reuse of modules. The benefits of using
the Ada language come not from using a new syntax, but from
the fact that the language facilitates the application of
these software engineering principles. Training in the use
of the Ada language will be incomplete if it emphasizes
syntax and does not address the underlying software
engineering principles.

Besides addressing language rules and software
engineering principles, an effective Ada training program
must provide programmers and their managers with the
practical tools they will need to construct Ada programs.
This reguires effective training in a software engineering
methodology and an Ada Programming Support Environment.

A software engineering methodology is a set of concrete
steps that can be followed to implement software engineering
principles. Some methodologies are applicable during
specific phases of the software life cycle while others span
the entire life cycle. Some methodologies may be oriented
towards specific application areas. Since the advent of the
Ada language, several methodologies have been promoted as
particularly effective when used in conjunction with the Ada
language. These include Object-Oriented Design [Boo83],
Process Abstraction Method for Embedded Large Applications

4-1

(PAMELA) [F&C86], and the use of an Ada-based Program Design
Language [IEEE86]. Any of these methodologies would be
appropriate for inclusion in an Ada training program.

Current Ada Programming Support Environments range from
the bare essentials to sophisticated tools. At the least,
an environment must provide a compiler, linker, loader,
library manager, and run-time support. To meet the Stoneman
requirements, moreover, an APSE must provide a set of tools
which help automate all aspects of the software life cycle,
including configuration management, documentation, project
control, verification, debuggers, database manager, etc. In
order to be productive, it is important that both
programmers and managers understand the type and operation
of the tools available to them. Furthermore, because APSEs
may be extended through the addition of user-defined tools,
environment training should address the writing and
incorporation of new tools.

4.2 Media

As the use of Ada has become more widespread, the
variety of training options has increased. Ada training is
offered in lecture format, through videotapes, with
computer-aided instruction (CAI), and in textbooks. The
remainder of this section considers the first three of these
media. Textbooks in and of themselves are usually not
sufficient, but they are a necessary and vital supplement to
all the other methods. ACM Ada Letters regularly publishes
reviews of new textbooks.

Live instruction is used both in technical courses and
in management seminars. Some technical courses provide
additional lab time in which the students gain experience
implementing Ada programs. Individual courses range in
length from a half day to six weeks intensive study. Live
instruction is the most effective training medium, in part
because Ada training requires teaching knowledge (software
engineering concepts) as well as skills (syntax and
semantics). Students benefit from the interaction with the
teacher and the ability to ask any kind of questions.
Moreover, the instructors can assess those areas where
individuals have conceptual difficulty, and they can
dynamically adapt the material to address those needs.

Videotapes can be an extremely effective training
medium. They can provide a good overview of software
engineering principles and the capabilities of the Ada
language that put these concepts into practice. Because
they lack a hands-on component and student-teacher
interaction, however, they do not fully answer the need for
in-depth technical training. Furthermore, they may not

4-2

convince those programmers experienced in older languages
such as FORTRAN, Assembler or COBOL who are resistant to Ada
and to a new approach.

Computer-aided instruction has the advantage of being
hands-on. It is most effective for technical training,
giving the user practice in exercising APSE tools and
writing Ada code segments. Unlike videotapes, there is some
student-teacher dialogue, albeit one limited to the teaching
program pointing out an incorrect response. The more
sophisticated CAI packages try to explain not only what is
wrong but also why it is wrong. CAI learning is essentially
learning by example and by repetition. One of the problems
is that the program cannot alter dynamically the explanation
of some concept which a student finds difficult, as measured
by how often each lesson is repeated. Furthermore, most CAI
programs do not have the flexibility to allow students to
create their own lesson plans; they must follow a predefined
seguenee.

Live instruction is the most intensive of the three
methods. Courses are usually taught on consecutive days, so
there is a risk of overloading the students. This method
requires the commitment of larger blocks of the students'
time, thus having an inevitable impact on project schedules.
Videotapes and CAI, on the other hand, are self-paced.
Because the time commitment is staggered, there is less
adverse impact on project schedule. In general, some time
should be anticipated for training and built into the
project schedule.

Of the three media, live instruction is the most
expensive. Whereas video tapes and CAI packages have a one
time acquisition cost and offer the opportunity for infinite
reuse, thus reaching the largest audience, live instruction
is limited to a particular class, so the acquisition cost is
incurred with each presentation.

4.3 Training Commitment

There are two aspects to training: who needs to know
how much, and how long will it take. These questions are
discussed in the sections below.

4.3.1 Audience

In preparing for the transition to Ada, personnel in
many different job categories will need some level of Ada
training. At a top level one can distinguish between
managerial and technical training. Management awareness and
commitment at all levels is crucial to the success of an Ada
project. Executive management training should focus on the

4-3

transition issues, and on the benefits and costs of using
Ada. A very brief language overview is appropriate. At
lower management levels, the training emphasis should be on
successfully running an Ada project. These personnel should
be familiar with the purpose of Ada's major features as well
as with the applicable software development methodologies.
They should also understand the more technical aspects of
transition issues, such as environment selection, technical
training needs, methodology selection, compiler validation
issues, portability, and reusability.

Technical training needs range from the introductory
through the advanced. Junior personnel can become
productive after some initial hands-on training, using the
same environment they will use on the project. They do not
need to know the whole language in order to code from the
detailed design. It is important that this training stress
good software engineering practice so that they acquire good
habits and the "Ada mindset" from the beginning. Senior
personnel and system designers should receive thorough
training in both language and methodology- They should
understand the design tradeoffs of Ada's program structuring
features. Quality assurance and testing personnel also need
advanced Ada training. QA should understand the
characteristics of a good design and testing should be
familiar with program verification techniques.

In addition to the management and technical personnel
training needs, other support personnel, such as contracts
and configuration management, should also receive some
formal exposure to the Ada solution. Contracts personnel
should understand the motivation for using Ada, the need for
a "total" approach encompassing software engineering, tools
and language, as well as the cost impact in different phases
of the software life cycle.

Configuration management personnel should understand
the program structure facilities of the language. They
should also understand the compilation ordering rules and
the impact of program changes on recompilation requirements.
Moreover they should be familiar with the configuration
management, documentation, library and database tools of the
APSE.

Current experience has shown that recent computer
science graduates (1980's) are very well prepared to learn
Ada and modern software engineering techniques. A small but
growing proportion are able to take an Ada course as part of
their curriculum. Among experienced programmers, on the
other hand, Ada project managers may find a combination of
resistance to change and difficulty in mastering new
concepts. Veteran programmers will have to unlearn their
familiar program and data structuring techniques so that
they do not write, say, FORTRAN code in Ada syntax.

4-4

4.3.2 Time Requirements

In-depth technical training can seldom be accomplished
in the space of a week - there is too much material to cover
in more than cursory fashion. Because the most effective
training combines both lecture and lab time, Ada project
managers should expect that their most senior people will
spend several weeks undergoing Ada software engineering
training. In order to achieve a high retention rate, the
training should not occur over consecutive weeks. Ideally
it would be scheduled so that students have the opportunity
to practice on the job what they have learned in class.

4.4 Evaluation Criteria

Current training offerings vary widely with regard to
their student evaluation mechanism. Some courses award
certificates based on attendance while other programs
administer formal testing. These tests stress a student's
mastery of Ada syntax and semantics.

At present there is much interest in a formal mechanism
through which to ascertain Ada competency. Analogies have
been drawn to other disciplines which require formal
certification. The key issues in the certification debate
are:

Should it be done?

Who should administer certification (AJPO, Institute
for the Certification of Computer Professionals)?

Are different levels of certification needed?

What are the costs associated with certification?

Three groups are independently investigating the topic of
certification: the Education Subcommittee of SIGAda, the
Ada Software Engineering Education and Training (ASEET) task
force, and the Armed Forces Communications and Electronics
(AFCEA) Ada Education and Training Study (ADETS) study.
Section 4.6 below describes the work of ASEET and ADETS in
greater detail.

4.5 Existing DoD and Air Force Programs

Within the Air Force there are three centers providing
Ada education and training, namely Keesler AFB, Air Force
Institute of Technology (AFIT) and the Air Force Academy. A

4-5

fourth curriculum, developed under Army sponsorship, is
available through the Defense Technical Information Center
(DTIC).

The Air Training Command has developed 4 courses at
Keesler AFB. They are:

Ada for Executives - 1 Day
Ada Managers Orientation - 4 Days
Ada Project Manager - 10 Days
Ada Application Programmer - 6 Weeks

The first three courses may be taught at Keesler, or on site
using the Mobile Training Team. The programmer's course is
only offered at Keesler. Future courses planned will
address low level implementation and system design. Over
700 people were trained in Fiscal Year 1985. Keesler has a
capacity to train up to 3000 people per year through the
expansion of their instructor staff. The point of contact
is Mary Rivers at AV 868-3110 or (601) 377-3110.

AFIT is offering two graduate courses in their Ada
curriculum. There is an introductory computer science
course which gives students an overview of the Ada language,
emphasizing the program structure built through packages.
The second course, "Effective Programming with Ada,"
discusses the entire language, with emphasis on data
structures. An advanced course is planned, focusing on the
APSE and on developing special projects. AFIT trained 125
in Fiscal Year 1985 and has a capacity to train 150. The
point of contact is Lt. Col. Rick Gross at AV 785-3098 or
(513) 255-3098.

The Air Force Academy has a computer literacy
requirement; however, it currently teaches Pascal in this
core course. The Academy continues to offer Ada seminars to
interested students. The point of contact is Maj. James
Nielson at AV 259-4112 or (303) 472-3590.

The Army has investigated Ada curriculum requirements,
leading to the development of 9 language modules and 4
software engineering modules. Supplementary materials
include 3 workbooks containing tutorial, exercises, and
annotated solutions as well as a set of case studies. The
Defense Technical Information Center (DTIC) Accession
Numbers for these course materials are listed in the table
below. The numbers in parentheses indicate the length of
the course:

Ada Primer A165345
Advanced Ada Workbook A146257
Real-Time Ada Workbook A146258
Ada Case Studies II A140818
Ada Orientation for Managers (L101) (1) A165351

4-6

Ada Technical Overview (L102)
Introduction to Ada - a Higher Order

Language (L103)
Ada for Software Managers (L201)

Volume I
Volume II

Basic Ada Programming (L202) (5;
Volume I
Volume II
Lab Manual and Exercises

Advanced Ada Topics (L305) (5;
Volume I
Volume II
Volume III
Exercises

Real-Time Systems in Ada (L401)
Volume I
Volume II

Using the Ada Language Reference
Manual (L402)

Software Engineering for Managers (M101)
Exercises (M101)

Introduction to Software Engineering (M102)
Exercises (M102)

Software Engineering Methodologies (M201)
Volume I
Volume II
Volume III
Workbook

Programming Methodology (M203)

(1) A165352
(1) A141848

(3)
A165314
A165315

10 wi th lab)
A166366
A166367
A166043

10 wi th lab)
A165075
A165076
A165077
A165288

(5)
A166351
A166352

(2) A143582

(1) A165123
A145094

(2) A165122
A144237

(5)
A165300
A165301
A165302
A165299

(2) A143581

4.6 Catalog of Resources for Education in Ada and Software
Engineering (CREASE)

The Catalog of Resources for Education in Ada and
Software Engineering (CREASE) is a comprehensive listing of
Ada training materials offered within industry and
government. It is published annually by the AJPO, and
Version 4.0, May 1986, is the current version.

The CREASE organizes the training by the following
categories: CAI, Lecture/Seminar, Informational Resources,
videotape, and textbooks. The course listings are further
subdivided by class of offering: company, government
agency, and university. The amount of information given in
each listing is determined by the offeror and does not
represent the opinions of the AJPO or DoD. The information
typically includes:

4-7

o [course] objective
o concepts covered
o intended audience
o prerequisite
o course materials
o offeror name, address, and background
o price

4.7 Ada Education and Training Studies

Three organizations are chartered with investigating
Ada education and training: Ada Software Engineering
Education and Training (ASEET), Armed Forces Communications
and Electronics Association (AFCEA) Ada Education and
Training Study (ADETS), and the Software Engineering
Institute (SEI). Both ASEET and ADETS are tasked with
analyzing needs and making recommendations. The ASEET Team
is a tri-service group chaired by Maj. Samuels of Keesler
AFB at AV 868-3728 or (601) 377-3728. It was established in
1985 to identify a comprehensive training plan for DoD.
This plan will begin with a needs analysis to determine
learning objectives in addition to numbers of personnel
needing training at what level. ASEET will study ongoing
research projects, coordinate course materials, and examine
certification.

The ADETS group was formed in late 1985 and is chaired
by Frank Druding of Ford Aerospace, Palo Alto, California.
Its purpose is to provide information and recommendations to
assist DoD and industry in providing the education and
training required for introducing and supporting the Ada
language. Topics to be addressed include training
requirements, capacity, shortfall, and certification. As
part of the data collection task, the ADETS team will
examine a cross-section of existing major Ada programs from
both DoD and contractor perspectives. The ADETS findings
will be published in a report in December 1986.

The SEI was founded in the early 1980s to accelerate
the transfer of Ada technology. It is located at Carnegie-
Mellon University in Pittsburgh. Its overall mission is to
establish a standard of excellence for the art and practice
of software engineering. One of its tasks is to create a
Master's Degree program in Software Engineering.

4-8

SECTION 5

ADA PROGRAM DESIGN LANGUAGE

A Programming Design Language (PDL) is a formal
notation used for describing software design. A PDL
increases productivity, improves software quality, and
minimizes the risks in development and maintenance. It is
important for a PDL to be abstract and flexible, as well as
to be able to express naturally modern design methodologies.
A PDL must encourage a high level of abstraction; otherwise
it could lure designers into specifying too much detail too
soon, in which case they would be programming instead of
designing. A PDL must be flexible; it should not place
artificial constraints on the design, thereby discouraging
designers from considering designs that could not be
conveniently expressed in the PDL.

Section 5.1 discusses three issues relating to Ada
PDLs: the use of automated tools, the advantages and
disadvantages of compilability, and management benefits.
Section 5.2 reviews the IEEE PDL working group activities as
well as several DoD inspired PDLs.

5.1 PDL Issues

Ada is abstract and flexible. It contains features
that support modularity, abstraction, information hiding,
concurrent processing, reusability, and error processing.
These features, which are lacking in the commonly used HOLs
prior to Ada, reflect the goals of modern design
methodologies and make Ada an ideal base for design
language. An Ada-based PDL could be a subset of the Ada
language, or it might contain language extensions. The
benefits of an Ada-based PDL, which derive from the fact
that the attributes of a good PDL are incorporated into the
Ada language, can be enjoyed regardless as to whether the
intended implementation language is Ada or another HOL.

If the implementation language is not Ada, a correct
translation of a consistent design will produce a consistent
program. Ada constructs that are not easily translated into
the implementation language should be identified and
avoided. When the implementation language is Ada, there are
additional benefits such as

An easier transition from design to code
The ability to apply a common set of tools and methods
to both the design and the program

Reduced costs of training.

5-1

5.1.1 Automated PDL Processing Tools

Automated tools to process the design produced by an
Ada-based PDL are crucial if the benefits of increased
productivity and design correctness are to be achieved. The
advantage of analyzing the design automatically is to
provide an early check on the consistency of the software
interfaces. The validation of design consistency before
coding and the performance of semantic analysis, such as
data flow analysis, will minimize the risks through the
entire software life cycle.

There are two ways of fulfilling the need for automated
PDL processing tools. If the PDL contains no extensions to
the Ada language, such analysis can be performed by an Ada
compiler; otherwise a special PDL processing tool must be
built. The compilability of an Ada-based PDL is a
controversial issue. The benefits of a compilable PDL are
designs that can be processed by standard Ada tools, and a
more straightforward mapping from designs into Ada programs.
Furthermore, the compiler output could be treated as a
prototype of an executable design, revealing design errors
at an early stage.

A compilable PDL, however, can have an adverse effect
on the design process, whereas special-purpose PDL tools do
not. Compilable PDLs encourage premature coding and are
ill-suited for expressing evolving designs. An Ada compiler
cannot check for structured comments which convey design
information. The primary goal of a compiler is to generate
efficient object code, a goal which is not relevant in the
case of PDL. If a compiler is used to process PDL, then the
PDL must be complete and all entities fully declared. At
the design level, however, it is neither necessary nor
advisable to give the full implementation of a private type.
Yet, the designer using a compiler as a tool must provide
some skeleton declaration in the private part of the
package, adding a level of detail to satisfy the compiler
rather than to elucidate the design. Finally a special PDL
processor, unlike a compiler, could combine Ada constructs
with more abstract design notation, such as an iterator that
processes each element of a collection.

Current thinking, as evidenced by the guidelines set
forth in the IEEE Recommended Practice (see Section 5.2),
favors a compilable PDL.

5.1.2 Management Benefits

An Ada-based PDL can be used as a management tool; it
provides information that helps the manager organize,
coordinate and control large software projects. The

5-2

information most relevant to management during the
development life cycle relates to project organization,
planning, status tracking and design review. This
information, in a document or report form, can be obtained
from analysis of the design description by various design
analysis tools. Some of the reports produced by these tools
relevant to management include completeness, consistency,
design reliability, design review, performance prediction,
project history, and software metrics. A more detailed
description of these tools is provided in the IEEE
Recommended Practice. Traditionally, most of this
information was gathered during the implementation phase;
however, an Ada-based PDL makes this information available
earlier, during the design stage.

An Ada-based PDL subdivides the overall system design
into separate units. Partitioning the design in this way is
very helpful to the project manager because it supports the
division of work among team members. The explicit
dependencies between the design units make it possible to
derive work scheduling information from the design
information. Completeness criteria for design units are
established in the design methodology. A unit might be
considered complete, for example, if it satisfies
requirements such as having interfaces named and logically
typed, having functional descriptions, and having complete
specifications. These criteria may be useful for status
reporting and tracking.

An organization that uses an Ada-based PDL has made a
visible commitment to the DoD directives for producing high
quality, maintainable software. Inevitably, such an
organization is adjusting its software design and
development practices when it chooses to capture a design in
an Ada-based PDL. At the same time, the organization is
acquiring expertise in Ada and modern software engineering
principles and in the case of contractors, improving their
competitive edge and viability. The long term benefits of
this transition are increased productivity and improved
software quality.

5.2 Studies on Ada-based PDLs

There are numerous studies on the use of Ada as a PDL.
The IEEE workinq qroup on "Ada as a Program Design Language"
has defined guidelines for evaluating and developing a PDL
based on the syntax and semantics of Ada. According to
these guidelines, an Ada-based PDL should be compilable.
Any extensions to the Ada language should be in the form of
commentary text, flagged by a special indicator. Besides
describing design language characteristics, features, and
support tools, this study also covers management issues.
Reballoting on this document is taking place in June 1986,

5-3

because only 75% of the ballots were returned in Oct 1985.
Meanwhile the draft has been updated to accommodate the
responses from the first ballot. The new ballots have been
sent only to those who responded to the first ballot, and
because the majority had voted affirmatively, passage is
likely.

The World Wide Military Command and Control System
(WWMCCS) Information System (WIS) program has developed
guidelines for the Ada Design Language (ADD, which is a PDL
that uses fully compilable Ada. ADL is a single design
notation that will be used by a wide variety of
organizations designing WIS systems. These organizations
will be able to tailor the ADL to some extent in order to
meet a particular design goal. Guidelines for such
tailoring, which must be done within Ada itself, are
provided. Structured comments that provide design
information not readily expressed in Ada will be used.
Annotations are to be distinguished from ordinary comments
by a "sentinel character," and from each other by predefined
keywords.

The Joint Interoperability Tactical Command and Control
System (JINTACCS) Automated Message Processing System
(JAMPS) Program Design Language (JPDL) is another Ada based
PDL, which is used in the Air Force's effort to reimplement
JAMPS in Ada. JPDL contains extensions to Ada such as
predefined library units and additional pragmas. These are
ignored by an Ada compiler, which makes JPDL compilable.
Mappings from JPDL to FORTRAN and C are described because,
even though JAMPS itself will be written in Ada,
implementations using FORTRAN and C will use the JAMPS
database.

An Ada-based PDL survey was performed for the Naval
Avionics Center (NAC). Twenty-five separate companies
involved in Ada-related work were contacted, and guidelines
were developed for the Navy's development of an Ada PDL.

The Ada Design Language Developers Matrix is a useful
source of information on the availability and the ongoing
development of Ada-based PDLs by various organizations. The
matrix is updated periodically in the ACM Ada Letters. It
provides information on the closeness of the PDL to Ada and
on the scope of the tool development effort. The next
complete matrix will be published in the November-December
1986 Ada Letters.

5-4

SECTION 6

ADA COMPILER AND ENVIRONMENT TECHNOLOGY STATUS

As increasing numbers of validated compilers become
available, the focus among Ada users is shifting from merely
validated compilers to production quality validated
compilers. This section points to sources of information on
validated compilers and highlights the ongoing performance
evaluation work.

6.1 Validated Host/Target Combinations

The number of validated host/target combinations is
increasing rapidly, and any list included in this report
would shortly become obsolete. Up-to-date information may
be obtained either through the Language Control Facility
Ada-JOVIAL Newsletter or through the Ada Information
Clearinghouse. Points of contact for both organizations may
be found in Appendix 4.

6.2 Work in progress

This section updates the status of Ada compilers under
development by the U.S. Government.

Host Computer and
Operating System

Target Computer and
Operating System

Air Force: (AIE, renamed Ada Compilat. Lon System)

RADC
AFWAL

IBM 370 family
VAX/VMS

IBM 370 family
MIL-STD-1750A

Air Force: (other)

AFATL

ESD

Cyber 176
NOS or NOS/BE
VAX/VMS
(ALS retarget)

Zilog 8002

INTEL 8086

Army: (ALS)

CECOM VAX/VMS VAX/VMS

Army: (NYU Ada/Ed Interpreter)

CECOM VAX/VMS VAX/VMS

6-1

Navy: (ALS/N)

NAVSEA VAX/VMS AN/UYK 44 and 4 3

The Air Force compilers listed above have all been validated
with the exception of the 1750A target. Both Army compilers
have been validated. The Navy compiler is still under
development.

6.3 Performance Evaluation

The three most important measures for evaluating
compiler performance are compilation speed, execution speed
and run-time memory requirements. Compilation speed refers
to the elapsed time required to turn source code into
executable object code measured in lines per minute.
Execution speed is the elapsed time required to execute a
compiled program. Run-time memory requirements include run-
time library, required I/O packages, and application data
storage. The remainder of Section 6.3 presents guidelines in
evaluating compilation and execution speed.

6.3.1 Compilation Speed

In comparing the compilation speed of Ada with another
HOL, it is important to remember that the Ada compiler and
run-time system are freeing the programmer from doing such
tasks as ensuring consistency of package and unit
specifications, instantiations of generics, resolution of
overloading, and constraint checking for initialization.
This in itself significantly decreases the programmer's
burden, but the tradeoff is increased compilation time.

In comparing the compilation speeds of several Ada
compilers, the following issues should be considered. The
ease with which a compiler can be rehosted or retargeted
varies inversely with compilation speed. Furthermore a
compiler hosted on a Stoneman compliant APSE must meet more
stringent data collection requirements (i.e. statistics,
history, and other information on the program submitted to
the compiler), exacting a penalty in compilation speed.

6.3.2 Execution Speed

Ada performs extensive run time checks. In comparing
execution speeds between Ada and another language, it is
important to qualify what Ada run-time checks are performed
during benchmark execution. Because other languages provide
very limited run-time checks, if any, the Ada test results
could be distorted. When general execution speed is the
primary evaluation criterion, then comparable checks should

6-2

be inserted into the benchmark source code in the other
language. If real-time performance is the primary
evaluation criterion, then all run-time checks should be
suppressed. Run-time checks, however, should never be
suppressed during software development and testing.
Suppression of run-time checks should only be used as a
measure of last resort in performance tuning. Global and
local optimization provide a superior alternative for
improving the run-time performance.

There should be a good language correspondence in the
benchmark on the algorithmic level. Certain Ada language
constructs may be impossible to translate because they do
not exist in the other languages under consideration. For
example FORTRAN lacks records and pointers, in which case
the benchmark results may be misleading.

The frequency distributions of language constructs will
vary among applications. At the beginning of a compiler
evaluation it is important to isolate the language
constructs used most frequently by the application and to
find appropriate benchmarks which reflect them, because the
effectiveness of a compiler for a particular application is
determined by these constructs' demand for computer
resources. Different combinations of features can have
different performance characteristics. It is highly
recommended both to perform more than one compiler benchmark
test and to consider future application developments, as
each application is a unique mixture of Ada constructs.

In most cases, benchmark results indicate both compiler
and computer system performance. The compiler workload
produced by a synthetic benchmark could have a bottleneck
effect on the entire system configuration. This bottleneck
does not necessarily reflect the overall resource
requirements imposed by a particular application.

The Ada Evaluation and Validation (E&V) team at the
Institute for Defense Analyses produced the Prototype Ada
Compiler Evaluation Capability (ACEC), an organized suite of
compiler performance tests as well as support software for
executing these tests and collecting performance analysis
data. The ACEC and other existing benchmarks will be
covered in the second Edition.

6.3.3 Run-time Memory Requirements

Compiler technology is mature enough to handle the Ada
data structuring capabilities in an efficient manner. The
source for inefficiencies in memory utilization result from
the size of the run-time library which is loaded prior to
execution. Section 3.3 discussed run-time memory options in
detail.

6-3

SECTION 7

CONVERTING NON-ADA PROGRAMS INTO ADA

The transition to Ada raises two problems: finding a
way of reusing existing software written in another
language, and cutting down the costs of redesigning and
reimplementing existing software in Ada. There are no easy
solutions to these problems. The desirable solution in some
cases could be to create an interface between the existing
code and Ada, as discussed in Section 7.1. Another
solution, discussed in Section 7.2, is to attempt to convert
the original code into Ada. This is a complicated process
and in most cases, it will not produce the software
engineering benefits associated with Ada.

7.1 INTERFACE Pragma

The life span of existing software written in another
language could be expanded by interfacing the original with
Ada. The interfacing can be done by using Ada's predefined
INTERFACE pragma. The interface routine would link the non-
Ada with the Ada run time environment, and it would allow
non-Ada code to be invoked from an Ada program.

An implementation is not required to provide the
INTERFACE pragma, and the implementations offered by
different compilers will have different capabilities.
Certain restrictions could be placed on this pragma,
depending on the particular implementation of the Ada
compiler. One implementation may allow full interface,
another may allow partial interface, while others will not
allow any interface at all.

7.2 Automated Translation

Transition to Ada may require conversion of some
existing software to Ada. Short term costs are minimized by
performing direct translation by hand or by partially or
fully automated converters. These methods, however, are
deceiving, because in many cases conversion entails long
term costs, such as increased code size, memory space, and
execution time, but most of all, reduced maintainability.

7.2.1 Expert Systems Technology

Some vendors are applying expert systems technology to
the translation problem. Interactive transformers and
source-code analyzers for this purpose now exist. The

7-1

resulting Ada source code, however, may be slower, less
readable, and less maintainable compared to the original,
especially for large complicated software systems that
require a large amount of maintenance.

Conversion is not a simple line-for-line translation.
On the contrary, it requires careful preparation and
understanding of the code to be converted. The first step
is to examine the architecture of the code that needs to be
translated. The system design documentation is likely to be
obsolete. The original design may have been modified in a
way that reduces its coherence. The design may be
impossible to translate efficiently into Ada without major
redesign effort, in which case the translation project
should be abandoned.

If it is decided to continue with the conversion then
the conversion rules must be specified in detail.
Conversion rules fall in the specific language constructs,
and global language organization areas. Specifying rules
for specific language constructs is often straightforward,
but specifying rules for mapping overall program structure
into Ada is more difficult. Programs with tasks, for
example in RTL/2, are likely to be difficult to translate
into Ada programs with tasks because the two languages are
based on different models of concurrency and intertask
communication. In addition, implementation strategies for
the two languages may be different. Writing a conversion
specification has a twofold benefit: it isolates problem
areas and it is a valuable training exercise in both Ada and
in sound software engineering principles.

A translation resulting in a FORTRAN or COBOL program
written in Ada syntax should be avoided. Unfortunately,
present day technology is incapable of converting an
outdated design to an Ada-based design that concurs with
current program design methodologies. The reason is that it
does not exploit the advanced capabilities of the Ada
language and does not provide the software engineering
benefits that can be expected from the appropriate use of
the Ada language.

7.2.2 Conversion of Artificial Intelligence Algorithms to
Ada

The use of Ada in general artificial intelligence (AI)
research is controversial. As with other languages, it is
theoretically possible to convert any application from an AI
language such as LISP, Prolog, Simula, or SAIL into Ada. In
reality, the Ada code would be obscure, unreadable, and
unmaintainable, and it would likely have poor run-time
performance. The inefficiencies in the resulting Ada code
stem from the lack of features in the Ada language necessary

7-2

to the efficient expression of AI techniques supported by
the AI languages. These features include dynamically
definable functions, subprograms as parameters, and garbage
collection.

Dynamically definable routines are an inherent feature
of AI languages, allowing function or program segments to be
developed and executed at run time. This feature is used in
creating programs that "learn." Ada lacks this capability.
It is possible to simulate dynamic construction and
execution of Ada code by implementing a table-driven
machine; however, this approach is inefficient and less
maintainable.

Many AI applications rely on using procedures as
storable, denotable objects. Object templates can use a
knowledge representation which includes names of procedures
(or functions) that are called in order to instantiate the
values of some of a particular object's characteristics. In
Ada, it is not possible to store or pass procedures as
objects. They are represented as control structures, rather
than values of some data type. Attempting a direct mapping
of this AI technique into Ada would sacrifice both
efficiency and maintainability. A partial solution would
entail building a specialized interpreter in Ada, which
could understand the primitives from which a program is
constructed.

Whereas AI applications routinely perform garbage
collection, Ada does not guarantee it. For real-time
applications, a sophisticated storage management system
should be developed. Ada's private typing mechanism
provides the primitives with which to build such a system.

Ada and AI are not incompatible. Artificial
intelligence techniques and lanquages should be used to
develop rapid prototypes. They promote unconstrained
experimentation because they do not commit the application
to the restrictions of an early design. Once both the
problem and its solution are well understood, then the
prototypes should be abandoned and the system should be
built using a disciplined software engineering approach.
The algorithms developed for the prototypes are
transportable, although the actual AI code is not.

Ada offers AI applications several strong advantages.
Strong typing promotes reliability. An Ada system will
likely be more efficient than its AI counterpart because of
the extensive Ada compile-time analysis. An Ada compiler
has much more information at its disposal than, say, a LISP
compiler, and the Ada compiler can therefore generate more

7-3

efficient code. Last and equally important, an Ada
implementation offers coherence and understandability
because of the control and data abstraction and of the
modularity that are an inherent part of the language.

7-4

SUMMARY

The first edition of the Program Office Guide to Ada
has focused on several aspects of risks and risk management.
Key topics discussed include policy, with an in depth
analysis of validation policy, and run-time issues, with
special consideration of efficiency. The Guide has also
addressed training options, the benefits of an Ada-based
Program Design Language, and the implications of converting
non-Ada programs.

Ada policy is being continually reviewed and updated to
reflect the changing status of Ada technology. Waivers are
becoming much more difficult to obtain. With the increasing
number of validated compilers available for a greater
selection of target processors, there is decreasing risk
associated with procuring an Ada compiler.

The AJPO is coordinating a draft document on validation
policies and procedures. These policies address the use of
a validated compiler during a system life cycle. A compiler
may be baselined and used for the duration of a project,
although its validation certificate may lapse prior to
project completion. This compiler, even if upgraded, must
pass all validation tests in force at the time of its
validation. A related issue is that of a compiler which is
modified to reflect a family of target architectures. These
derived compilers are registered and may be considered
validated under certain circumstances.

With the expanding supply of validated compilers,
attention is focusing on production quality compilers.
Validation alone does not ensure good performance, only
conformance to the language standard, MIL-STD-1815A.
Compilers can achieve efficient object code; the language is
not inherently inefficient and does provide many
opportunities for compile-time optimization. Furthermore,
the programmer may specify some performance improvements
directly in the code.

Performance will most likely be affected by run-time
checks, generic units, dynamic storage allocation, and
rendezvous. These features provide tangible software
engineering benefits and although they may entail some run-
time overhead, their use should not be restricted.
Transformations can be applied selectively at bottlenecks in
the program in order to remove inefficiency. Numerous
benchmarks are being developed to measure compiler
characteristics such as compilation speed, execution speed,
and run-time memory requirements.

The run-time support environment is an important
component of an Ada system. Interoperability of tools
between different environments through standard interfaces
is the objective of the CMS work. Additional research
efforts are investigating options in custom tailoring the
environment to meet real-time requirements. Existing
alternatives include unique run-time environments for each
application, smart linking, and run-time customization.
Each option affects the development cost, portability,
reusability, verification, and reliability.

In order to achieve the transition to software
engineering with Ada, program managers must address the
issues of training and retraining. Unlike earlier
languages, Ada training requires not only language syntax
and semantic training but also software engineering and
environment training. There is a great deal of language
training available in the marketplace. Several full
curricula which include methodology and tool training also
exist. Both industry and government task forces are
studying training issues, including the relative merits of
different training media, the time needed to become
proficient, and the costs/benefits of certification.

Another aspect of the transition to Ada lies in the use
of an Ada program design language. An Ada PDL allows an
organization to prepare for Ada by acquiring expertise in
the language features which support modern software
engineering and design principles. Moreover, when the
implementation language is also Ada, overall costs are
reduced by choosing a common medium of expression for the
two most time-consuming phases of the software development
life cycle. In order to gain the full benefits of an Ada
PDL, it must be used in conjunction with automated PDL
processing tools. At the minimum, such tools would verify
the consistency of the design. Sophisticated tools would
also facilitate the documentation and coding process.

Finally, in undergoing a transition to Ada, one must
consider the transition of the operational software. At one
extreme, all of the software would be redesigned and
reimplemented in Ada, while at the other end of the
spectrum, all of the software would be converted to Ada
through an automated translator. Neither extreme is viable.
Automated conversion entails many risks, especially the
generation of unreadable, unmaintainable code. Converters
which apply expert systems technology to the translation
process reduce this risk. Complete redesign is usually too
costly, both in time and money. A compromise lies in
writing enhancements and major overhauls in Ada, using Ada's
INTERFACE pragma to link the non-Ada code to the Ada run-
time environment, allowing the non-Ada routines to be
invoked from the Ada program.

10

The introduction of Ada into the DoD has resulted in
many new issues and complexities which program management
must understand. The original Program Manager's Guide to
Ada (ESD-TR-85-159) as well as this and upcoming editions of
the Program Office Guide to Ada attempt to reflect the
progress of Ada by keeping program managers informed of Ada
news, issues and their solutions.

11

LIST OF REFERENCES

[Boo83] Booch, Grady. Object-oriented Development. IEEE
Transactions on Software Engineering, SE-12, No. 2 (February
1986), 211-221

[Bra83] Bray, Gary. Implementation Implications of Ada
Generics. Ada Letters 3, No. 2 (September-October 1983),
62-71

[F&C86] Flick, R.L., and Connelly, R.W. A Software
Development Environment Using PAMELA. Proceedings, First
International Conference on Ada Programming Language
Applications for the NASA Space Station, Houston, June 1986,
D.4.3

[HS.N80] Habermann, A.N., and Nassi, I.R. Efficient
Implementation of Ada Tasks. Technical report CMU-CS-80-
103, Carnegie Mellon University, January 1980

[Hil82] Hilfinger, Paul N. Implementation Strategies for
Ada Tasking Idioms. Proceedings of the AdaTEC Conference on
Ada, Arlington, Virginia, October 1982, 26-30

[H0086] Hood, Philip E. Ada and Cyclic Run-time Scheduling.
Proceedings, First International Conference on Ada
Programming Language Applications for the NASA Space
Station, Houston, June 1986, D.3.3

[KITPR] KAPSE Interface Team, Public Report, Volume I, 1
April 1982, Cl

[IEEE86] IEEE Recommended Practice on Ada as a Design
Language (preliminary draft), P990 D18, April 2, 1986

[Knu72] Knuth, Donald E. An Empirical Study of FORTRAN
Programs. Software — Practice and Experience 1, No. 2
(April-June 1972), 105-133

[R&M86] Rogers, Patrick, and McKay, Charles W. Implementing
distributed Ada for real-time applications. Proceedings,
First International Conference on Ada Programming Language
Applications for the NASA Space Station, Houston. June 1986,
E.3.1

[Wel78] Welsh, J. Economic Range Checks in Pascal.
Software -- Practice and Experience 8 (1978), 85-97

13

BIBLIOGRAPHY

Ada Design Language Developers Matrix, ACM Ada Letters,
Vol. IV, No. 3, 1986.

Ada Run-time Environments Working Group (ARTEWG) Report,
March 1986, ACM Ada Letters, Vol. IV, No. 3, 1986.

Ardo, Anders and Lars Philipsom, "A Simple Ada Compiler
Invalidation test," ACM Ada Letters, April 1984.

Bafes, Paul and Brian West, "Interfacing Ada and other
Languages," Proceedings, First International
Conference on Ada Programming Language Applications
for the NASA Space Station, NASA Johnson Space
Center, Houston TX, June 1986.

Chase, A. and M. Gerhardt, "The Case of Full Ada as a Design
Language," ACM Ada Letters, Vol. II, No. 3, 1982.

Grover, Vinod, "Guidelines for a Minimal Ada Run-Time
Environment," (ESD-TR-85-139), SofTech, MA, 1985.AD A160451

Harbaugh, Sam and John A. Foraris, "Timing Studies Using a
Synthetic Whetstone Benchmark," ACM Ada Letters, Vol.
IV, No. 2, 1984.

Hood, Philip E. and Vinod Grover, "Real Time Support Issues
for an Ada Run-Time System," SofTech, December 1985.

Hook, A. Audrey, Gregory A. Riccardi, Michael Vilot, and
Stephen Welke, "User's Manual for the Prototype Ada
Compiler Evaluation Capability (ACEC) Version 1" (IDA
Paper P 1879), Institute for Defense Analysis, VA,
October 1985.

Howe, R.G., M. Hagle, W.E. Byrne, E.C. Grund, R.F. Hilliard
II, and R.G. Munck, Program Manager's Guide to Ada
(ESD-TR-85-159), May 1985.

Kamrad, M. "Run-time Organization for the Ada Language
System Programs," ACM Ada Letters, Vol. Ill, No. 3,
1983.

Laird, James D., Dr. Bruce A. Burton, and Mary R. Koppes,
"Implementation of an Ada Real-Time Executive - A
Case Study," Proceedings, First International
Conference on Ada Programming Language Applications
for the NASA Space Station, NASA Johnson Space
Center, Houston TX, June 1986.

15

LeGrand, S. and R. Thall "The CMS 2 Project," Proceedings,
First International Conference on Ada Programming
Language Applications for the NASA Space Station,
Houston TX, June 1985, D.2.5.

Martin, Donald G., "Non-Ada to Ada Conversion," Journal of
Pascal, Ada, & Modula-2, Vol. IV, No. 6, 1985.

Sheffield, James R., "Ada Programming Design Language - A
Report on their Status," Naval Avionics Center,
Indianapolis IN, 1984.

Santhanam, V. "A Practical Approach for Translating FORTRAN
Programs to Ada," Proceedings of the Fourth National
Conference on Ada Technology, Fort Monmouth NJ, March
1986.

SofTech, "Ada Programming Design Language Survey, Final
Report," Naval Avionics Center, Indianapolis IN,
October 1982.

SofTech, "Analysis of Concerns Raised About Space Systems
Use of Ada," Prepared for NASA Headquarters Office at
Space Station, January 1986.

SofTech, "JAMPS PDL Guide," October 1984.

SRI International, "The Suitability of Ada for Artificial
Intelligence Applications," Report for the Army
Research Office, May 1980.

TRW Defense System Group, "A Risk Management Approach to
CAIS Development," Proceedings of the First
International Conference on Ada Programming Language
Applications for the NASA Space Station, Houston TX,
June 1986.

Wallis, P. J. L., "Automatic Language Conversion and its
Place in the Transition to Ada," Proceeding of Ada
International Conference, Cambridge University Press,
1985.

Wichman, B. A., "Ackermann's Function in Ada," AMC Ada
Letters, Vol. IV, No. 3, 1986.

Yavne, Nancy Linden, "A Simple Approach to a Relaxed Syntax
for an Ada PDL," ACM Ada Letters. Vol. V, No. 1,
1985.

16

INDEX

Abstraction 3-7, 3-9, 5-1, 5-2, 7-4
ACEC 6-3
ACVC 2-4, 2-5, 2-6, 3-2, 3, 3-4, 3-5
Ada Design Language Developers Matrix 5-5
Ada Information Clearinghouse 2-6, 6-1
Ada Letters 4-2, 5-5
Ada/Ed 6-1
ADETS 4-5, 4-8
AFCEA 4-5, 4-8
AFIT 4-5, 4-6
AFSC Ada Introduction Plan 2-2
AIE 2-6, 6-1
Air Force Academy 4-5, 4-6
AJPO 2-1, 2-4, 2-5, 2-6, 3-2, 3-3, 3-15, 4-5
ALS 2-6, 6-1, 6-2
APSE 4-2, 4-3, 4-4, 4-6, 6-2
Architectures 2-5, 3-1, 3-6, 3-7, 3-11, 7-2
ARTEWG 3-13
ASEET 4-5, 4-8
Assembly language 4-3, 3-8

Base compiler 3-1, 3-2, 3-3, 3-4, 3-5
Baseline 1-2, 2-2, 2-5, 3-5
Benchmark 1-2, 2-3, 6-2, 6-3

CAI 4-1, 4-2, 4-3
CAIS 2-6
CAIS 3-15, 3-16
Certification 4-5, 4-8
COBOL 4-3, 7-2
Code generation 3-5, 3-6, 3-7, 3-9, 3-10, 3-12, 5-2
Cohesion 4-1
Compilation speed 6-2
Compiler 1-1, 1-2, 2-2, 2-3, 2-4, 2-5, 2-6, 3-1, 3-2, 3-3,

3-4, 3-5, 3-6, 3-7, 3-9, 3-11, 3-12, 4-2, 4-4, 5-2, 5-4,
6-1, 6-2, 6-3,, 7-1

Concurrent processing 5-1
Configuration 2-4, 2-6, 3-1, 3-2, 3-3, 3-4, 3-12, 3-13,

3-16, 4-2, 4-4, 6-3
Consistency 5-2
Constraints 3-2, 3-6, 3-12, 3-13, 3-14, 5-1, 6-2
Conversion 1-1, 7-1, 7-2
Correctness 3-3, 5-2
Costs 2-1, 2-3, 3-14, 3-15, 4-3, 4-4, 4-5, 7-1
Course length 4-2
CREASE 4-7
CRFP 2-3
CRWG 1-1, 2-1, 2-2
Curriculum 4-4, 4-6
Customization 3-6, 3-12, 3-14

17

Data 2-2, 2-3, 3-8, 3-16, 4-4, 4-6, 4-8, 5-2, 7-3, 7-4
Data abstraction 4-1
Database 3-15, 3-16, 4-2, 4-4, 5-4
Derived compiler 2-5, 3-1, 3-2, 3-3, 3-4, 3-5
Design 2-2, 3-9, 3-11, 3-12, 4-4, 5-1, 5-2, 5-3, 5-4, 7-1,

7-2, 7-3
DIANA 2-6
Directives 2-4, 5-3
Documentation 2-3, 3-9, 3-15, 4-2, 4-4, 5-3, 5-4, 7-2
Dynamic allocation 3-8, 3-9, 3-11

Efficiency 1-2, 2-3, 3-1, 3-6, 3-7, 3-8, 3-9, 3-10, 3-11,
5-2, 6-3, 7-2, 7-3, 7-4

Environment 1-2, 2-4, 2-6, 3-1, 3-6, 3-12, 3-13, 3-14, 3-16,
4-1, 4-2, 4-4, 6-1, 7-1

Error processing 5-1, 5-2
Evaluation 2-1, 2-4, 3-7, 4-5, 5-4, 6-1, 6-2, 6-3
Exceptions 3-7, 3-8, 3-10, 5-1
Execution speed 3-6, 3-10, 3-11, 6-2, 7-1
Expert Systems Technology 7-1

FORTRAN 3-8, 4-3, 4-4, 5-4, 6-3, 7-2
Functionality 3-15, 5-3

Generic target 3-2, 3-4, 3-5
Generic units 3-9, 3-10, 3-11, 6-2
Guidelines 2-6, 3-4, 3-6, 5-2, 5-4, 6-2

Hands-on training 4-2, 4-3, 4-4
Host 2-4, 6-1, 6-2

I/O 3-2, 3-13, 3-15, 3-16, 6-2
Implementation 2-1, 2-2, 3-7, 3-8, 3-9, 3-11, 3-13, 3-15,

4-1, 4-6, 5-1, 5-2, 5-3, 5-4, 7-1, 7-2, 7-4
Information hiding 4-1, 5-1
Instruction-set 3-6, 3-7, 3-11
Interface 1-2, 3-6, 3-13, 3-15, 3-16, 4-1, 5-2, 5-3, 7-1
Interoperability 3-15

JAMPS 5-4

KAPSE 3-15
Keesler AFB 4-5, 4-6, 4-8

Language extensions 5-1, 5-2, 5-4
Life cycle 2-3, 3-5, 4-1, 4-2, 4-4, 5-2, 5-3
LISP 7-2, 7-3
Live instruction 4-1, 4-2, 4-3, 4-5

Maintainability 3-8, 5-3, 7-1, 7-2, 7-3
Maintenance 1-1, 2-3, 3-2, 3-4, 3-5, 3-6, 3-13, 5-1, 7-2
Mandated 2-1
Memory 2-3, 3-2, 3-13, 6-2, 6-3, 7-1

18

Metering 3-9, 3-10, 5-3
Methodology 1-2, 4-1, 4-2, 4-4, 4-7, 4-8, 5-1, 5-3, 7-2
MIL-STD-1815A 2-4, 2-6, 3-1, 3-3, 3-4, 3-6
Mission critical 2-1, 2-2, 2-4, 3-3
Mobile Training Team 4-6
Modularity 5-1, 7-4
Multiprocessor 3-11
Multitasking 3-7, 12, 5-1, 7-2

NAC 5-4

Object code 3-10, 5-2, 6-2
Object-Oriented Design 4-1
Optimization 1-2, 3-6, 3-7, 3-8, 3-10, 3-13, 3-14, 6-3

Packages 3-7, 3-8, 3-13, 4-6, 5-2, 6-2
PAMELA 4-2
PDL 1-2, 2-2, 4-2, 5-1, 5-2, 5-3, 5-4
Performance 1-2, 3-7, 3-8, 3-9, 3-10, 3-12, 3-14, 5-2, 5-3,

6-1, 6-2, 6-3, 7-2
Personnel 1-1, 2-3, 4-1, 4-3, 4-4, 4-7, 4-8
Policy 1-1, 2-1, 2-2, 2-4, 2-5, 2-6, 3-1, 3-3, 3-5, 3-6
Portability 1-2, 3-14, 3-15, 3-16, 4-4
Pragma 3-10, 3-11, 5-4, 7-1
Production guality 2-4
Productivity 2-3, 4-4, 5-1, 5-2, 5-3
Program units 5-3, 5-4
Project planning 3-9, 5-3
Project validated 2-5, 3-2, 3-3, 3-5
Prolog 7-2
Prototype 1-2, 3-16, 5-2, 6-3, 7-3

Quality assurance 4-4, 5-1, 5-3

Readability 7-2
Real-time systems 3-11, 3-12, 3-14, 4-7, 4-8, 6-3, 7-3
Reconfigurability 3-13
Registered 2-5, 3-1, 3-2, 3-3, 3-4, 3-5
Reliability 3-3, 3-8, 3-14, 3-15, 5-3, 7-3
Rendezvous 3-11, 3-12
Restricted target 3-2, 3-4, 3-6
Reusability 3-1, 4-1, 4-3, 4-4, 5-1, 7-1
Risk 1-1, 1-2, 2-2, 2-4, 3-1, 3-2, 3-3, 3-4, 3-5, 3-6, 3-8,

3-12, 3-16, 5-1, 5-2
RSE 3-6, 3-11, 3-12, 3-13, 3-14, 7-1
Run-time checks 3-7, 3-9, 3-10, 6-2, 6-3
Run-time libraries 3-2, 3-4, 6-2, 6-3
Run-time overhead 3-8, 3-9
Run-time system 1-2

Schedule 3-15, 4-3
Scheduling 3-13, 3-14, 5-3
SEI 4-8
Self-paced 4-3

19

Seminars 4-2, 4-6
SIGAda 3-13, 4-5
Smart linking 3-12, 3-13
Software engineering 1-1, 3-9, 4-1, 4-2, 4-4, 4-5, 4-6, 4-7,

4-8, 5-3, 7-1, 7-2, 7-3
Source to code expansion 2-3, 6-2
Specifications 3-7, 3-8, 5-1, 6-2, 7-2
Standard 1-2, 2-2, 2-4, 2-5, 3-3, 3-13, 3-15, 3-16, 4-8
Stoneman 4-2, 6-2
Structured comments 5-2, 5-4
Structured programming 4-1
Subprogram 3-8, 7-3
Synchronization 3-11, 3-12, 3-16

Tailoring 3-2, 3-6, 3-12, 3-13, 3-14, 5-4
Target 2-4, 2-5, 3-1, 3-2, 3-8, 3-12, 6-1, 6-2
Tasking 3-11, 3-12, 3-14
Testing 2-4, 3-2, 3-3, 3-4, 3-5, 4-4, 5, 6-3
Textbooks 4-2
Timing 2-3, 3-2, 3-14
Tools 2-6, 3-9, 3-12, 3-14, 3-15, 4-1, 4-2, 4-4, 5-1, 5-2,

5-3, 5-4, 5-5
Training 1-1, 2, 2-3, 2-6, 4-1, 4-2, 4-3, 4-4, 4-5, 4-7,

4-8, 5-2, 7-2
Transformation 3-9, 3-10, 7-1
Transition 1-2, 4-1, 4-3, 4-4, 5-1, 5-3, 7-1
Translation 1-2, 5-1, 7-1, 7-2
Transliterated 3-8
Transportability 3-15, 7-3
Tuning 3-12, 3-14, 6-3
Types 3-7, 3-8, 3-11, 5-2, 5-3, 7-3

Validated 3-1, 3-2, 3-3, 3-4, 3-5, 3-6, 3-11, 3-15, 6-1, 6-2
Validation 2-4, 2-5, 2-6, 3-1, 3-2, 3-14, 4-4, 5-2, 6-3
Validation certificate 2-4, 2-5, 3-2, 3-4
Vendor 2-3, 2-5, 2-6, 3-3, 3-4, 3-5, 3-6, 3-13, 7-1
Verification 3-14, 3-15, 4-2, 4-4
Videotape 4-1, 4-2, 4-3

Waivers 1-1, 2-1, 2-2, 2-3, 2-5
WIS 2-2, 5-4
WWMCCS 5-4

20

APPENDIX 1

Mission Critical Computer Resource (MCCR)
Focal Points

As of 14 February 1986

AD/ENE
Attn: Ms. Sharon Brooks
Eglin AFB FL 32542-5000
AUTOVON 872-8505
Comm (904) 882-8505

AFWAL/AAAF
Attn: Ms. Donna Morris
Wright-Patterson AFB OH
AUTOVON 785-3826
Comm (513) 255-3826

45433-6543

AFCMD/EPER
Attn: Mr. Brown
Kirtland AFB NM 87117-5000
AUTOVON 244-0859
Comm (505) 844-0859

BMO/ACD
Attn: Lt Col Stajanowski
Norton AFB CA 92409-6468
AUTOVON 876-4620/482
Comm (714) 832-4620/4829

ASD/EN (CRFP)
Attn: Mr. Babel
Wright-Patterson AFB OH 45433-6503
AUTOVON 785-3656/2146
Comm (513) 255-3656/2146

AMD/SIX
Attn: Mr. Muniz
Brooks AFB TX 78235-5000
AUTOVON 240-3264/2369
Comm (512) 536-3264/2369

ESD/ALS
Attn: Mr. Kent
Hanscom AFB MA 01731-5000
AUTOVON 478-5023
Comm (617) 861-5023

AFATL/DLCM (CRFP)
Attn: Ms. Anderson
Eglin AFB FL 32542-5000
AUTOVON 872-2961
Comm (904) 882-2961

RADC/COEE
Attn: Mr. Motto
Griffiss AFB NY 13441-5700
AUTOVON 587-3655
Comm (315) 330-3655

AFALC/AXTS
Attn: Lt Col Murphy
Wright-Patterson AFB OH 45433
AUTOVON 785-5945
Comm (513) 255-5945

SD/ALR
Attn: Lt Col Stevens
P.O. Box 92960
Worldway Postal Center
Los Angeles CA 90009-2960
AUTOVON 833-2532
COMM (213) 643-2532

A-l-1

INFORMATION:

AEDC/SI
Attn: Mr. Bond
Arnold AFS TN 37389
AUTOVON 340-5454
Comm (615) 455-5454

AFSTC/XNR
Attn: Captain Strickland
Kirtland AFB NM 87117
AUTOVON 246-5545
Comm (505) 846-5545

AFFTC/SI
Attn: Mr. Vonklargaard
Edwards AFB Ca 93523-5000
AUTOVON 350-2344
Comm (805) 277-2344

6575 School Squadron
Attn: Captain Vinyard
Brooks AFB TX 78235-5000
AUTOVON 240-2770
Comm (512) 536-2770

ESMC/RSC
Attn: Mr. Thorne
Patrick AFB FL 32925
AUTOVON 854-2001
Comm (305) 494-2001

AFALC/EREC
Attn: Captain Carlton
Wright-Patterson AFB OH
AUTOVON 785-4991
Comm (513) 255-4991

45433-5000

WSMC/EN
Attn: Mr. Salazar
Vandenberg AFB CA 93437-6021
AUTOVON 276-7968
Comm (805) 866-7968

Det 1, HQ AFSC/IGK
Eglin AFB FL 32542

A-1-2

APPENDIX 2
THE UNDER SECRETARY OF DEFENSE

WASHINGTON DC MJOI

ftcscAffCM ANO i DEC 1985
CMClNCEffING

MEMORANDUM FOR SECRETARIES OP THE MILITARY DEPARTMENTS
CHAIRMAN OP THE JOINT CHIEPS OP STAPP
UNDER SECRETARY OP DEFENSE FOR POLICY
ASSISTANT SECRETARY OP DEFENSE, COMPTROLLER
ASSISTANT SECRETARY OF DEFENSE, ACQUISITION

AND LOGISTICS
ASSISTANT SECRETARY OP DEFENSE, COMMAND,

CONTROL, COMMUNICATIONS AND INTELLIGENCE
GENERAL COUNSEL, DEPARTMENT OF DEFENSE
INSPECTOR GENERAL, DEPARTMENT OP DEFENSE
DIRECTOR, DEFENSE INTELLIGENCE AGENCY
DIRECTOR, DEFENSE NUCLEAR AGENCY
DIRECTOR, NATIONAL SECURITY AGENCY
DIRECTOR, DEFENSE ADVANCED RESEARCH PROJECTS

AGENCY

SUBJECT: Implementation of Ada* in Department of Defense
Programs

Since June 1983, when we stated our intention to establish
Ada as the single, common computer programming language for
Defense mission critical applications, the Military Departments •
and agencies have initiated numerous efforts to facilitate that
process.

We must continue to enforce the use of Ada in new systems
and seek opportunities to insert Ada technology into major
software system upgrades in order to reap the benefits of
increased productivity and reliability. Based upon early
examples of successful use of the Ada language and the stability
of Ada compilers, the time has come to capitalize on the
investment which has been made in Ada by the department, various
government agencies, and industry. Your support of this
important initiative to improve defense software is appreciated.

J

Donald A. Hicks

•Ada is a registered trademark of the U. S. Government (Ada
Joint Program Office).

A-2-1

APPENDIX 3

VALIDATION POLICIES AND PROCEDURES

PART I - VALIDATION POLICY

PART II - THE USE OF ADA* COMPILERS IN DoD

PART III - PROCEDURES FOR CONDUCT OF THE ADA* VALIDATION PROCESS

(NOT INCLUDED)

DRAFT

24 January 1986

* Ada Is a registered trademark of the U. S. Government (Ada Joint
Program Office).

A-3-1

PART I

VALIDATION POLICY

1.0 PURPOSE. Validation of an Ada compiler 1s the process of testing
the conformity of the compiler to the Ada programming language
standard, ANSI/MIL-STD-1815A. The goal of validation is to prevent the
proliferation of subsets, supersets, or dialects of the Ada language,
1n order to promote software re-useab1Hty and to reduce life-cycle
costs.

This validation policy provides the means to realize the goal of
validation, while minimizing the hindrances for the availability of Ada
compilers that may be caused by the requirement of validation.

2.0 SCOPE: This document defines the general framework for the
process of Ada Compiler validation, which is responsive to both general
trade and DoO concerns, and to identify the reponsibiTitles of all
parties directly Involved in the validation process. A policy
regarding DoD-spedfic procurement and project management issues that
are related to the use of Ada compilers, rather than to the validation
process itself, is separately formulated in "PART II - THE USE OF AOA
COMPILERS IN DoO." Detailed procedures for implementing this
validation policy are specified in "PART III - PROCEDURES FOR CONDUCT
OF THE ADA VALIDATION PROCESS."

3.0 DEFINITION OF TERMS:

Ada Compiler: The compilation and execution system required to
compile and execute Ada programs in accordance with the Ada language
standard, ANSI/MIL-STD-1815A.

Ada Compiler Validation Capability (ACVC): The set of Ada programs
that test the conformity of a compilation and execution system to
the Ada language standard, ANSI/MIL-STD-1815A, 1n addition to the
documentation and tools that facilitate the conformity testing.

Base Compiler: The Ada Compiler originally tested as part of the
validation process.

Base Configuration: The host machine, host operating system, target
architecture, and target operating system (1f any) under which the
Base Compiler is originally tested as part of the validation
process.

Derived Compiler: A Base Compiler that has been modified for any
reason, or a Base Compiler 1n a configuration not fully tested by an
AVF, which is affirmed by the vendor to remain completely 1n
conformity to the Ada language standard, ANSI/MIL-STD-1815A.

A-3-2

Validated Compiler: A Base Compiler for which a Validation
Certificate 1s in effect, a Derived Compiler that has been
registered with the AJPO, and any versions of these compilers
maintained 1n conformity with the Ada language standard. A Base
Compiler and any derivation of that compiler will be considered
validated compilers while the Base Compiler's Validation Certificate
1s 1n effect.

Validation: The process of checking the conformity of an Ada
compiler to the Ada Standard, ANSI/MIL-STD-1815A.

Validation Certificate: The certificate issued by the Ada Joint
Program Office that certifies the successful test of a Base
Compiler on a Base Configuration against all ACVC tests that are
applicable for the specified Base Compiler and Base Configuration.

Vendor: The supplier of an Ada compiler.

4.0 VALIDATION OF BASE COMPILERS: Ada Compilers shall be validated
and subsequently revalldated on a periodic basis. A successful
validation shall consist of a successful test of the Ada Compiler
against all applicable tests provided by a version of the ACVC that is
admissible for validation at the time of testing. The testing of the
Ada Compiler as part of validation shall be performed by an independent
team which operates under the auspices of an Ada Validation Facility
(AVF) as authorized by the Director of the AJPO. The results of such
testing shall be documented 1n a Validation Summary Report (VSR).

After successful completion of the testing of an Ada Compiler and
preparation of the VSR, a Validation Certificate shall be issued by the
Director of the AJPO to the Vendor. The Validation Certificate shall
uniquely Identify the Base Compiler and Base Configuration as well as
the version of the ACVC under which the testing was performed.

The period after which Validation Certificates expire shall be
determined by the Director of the AJPO. An automatic extension, valid
until adjudication of a pending revaluation, shall occur whenever a
Vendor has submitted his Compiler for revaluation in a timely manner
as defined by the validation procedures. In such cases the existing
Validation Certificate shall be considered valid until the VSR for the
revaluation has been Issued. Compilers for which current Validation
Certificates exist shall be considered to be Validated Compilers.

The AJPO will maintain and make publicly available a list of Ada
Compilers for which Validation Certificates have been issued. The AJPO
will also make the VSR publicly available for any compiler on this
list.

5.0 REGISTRATION OF DERIVED COMPILERS: In accordance with validation
procedures. Vendors may submit requests for the registration of Derived
Compilers with the AJPO following the successful validation of a Base

A-3-3

Compiler. As part of this registration, the Vendor shall affirm that
the Derived Compiler is a correct implementation of the Base Compiler
on a configuration other than the Base Configuration and that the
Derived Compiler conforms to the Ada language standard, ANSI/MIL-STD
1815A. The AJPO may request additional Information to be provided by
the Vendor to credibly substantiate the claim of conformity to the
standard.

The AJPO will maintain and make publicly available a list of all
registered Derived Compilers, together with a description of their
configurations, of their relation to a Base Compiler, and of any
information supplied by the Vendor 1n substantiation of compliance to
the standard. No Validation Certificate will be issued for a Derived
Compiler.

Registered Derived Compilers shall be considered as Validated
Compilers. This status expires no later than the Validation Certi-
ficate of the associated Base Compiler. A Derived Compiler will be
removed by the AJPO from the 11st of Registered Derived Compilers and
no longer considered a Validated Compiler, 1f 1t 1s determined to fail
an applicable ACVC test.

6.0 MAINTENANCE OF VALIDATED COMPILERS: Maintenance changes to a
Validated Compiler do not affect its status as a Validated Compiler,
provided that the compiler continues to be 1n conformity to the
language standard. A maintained compiler shall not be advertised as a
Validated Ada Compiler if 1t 1s known that this compiler fails an
applicable ACVC test that was passed by the associated Base Compiler
during the validation testing.

The nomenclature of the version identification of a maintained Base
Compiler shall differ from the version Identification of the Base
Compiler noted on the Validation Certificate for any Ada Compiler that
includes maintenance changes.

7.0 RESPONSIBILITIES:

The Director of the Ada Joint Program Office (AJPO) shall:

o Be responsible for establishing and maintaining the Ada Vali-
dation Process

o Designate an Ada Validation Organization (AVO) and delegate the
authority for managing the Ada Validation Process to the AVO

o Approve the establishment of Ada Validation Facilities (AVFs) to
perform the actual validations according to this validation policy
and the validation procedures established for and by the AVO

o Have final authority 1n the decision over disputes raised by
Vendors over validation issues.

A-3-4

The AVO shall:

o Establish a detailed set of guidelines and procedures which is
consistent with the validation policy and procedures set by the
AJPO. These guidelines and procedures, which shall be approved by
the Director of the AJPO, shall establish the operating guidelines
for the AVO and AVFs.

o Ensure that the validation policy and the established guidelines
and procedures are consistently followed by all AVFs

o Maintain accurate records pertaining to each validation and to
the validation process

o Maintain the list of Validated Compilers

o Advise the Director of the AJPO on all validation issues.

Each AVF shall follow the guidelines and procedures set forth by the
AJPO and AVO. The AVFs shall be responsible for conducting validation
1n a timely and impartial manner, for producing the Validation Summary
Report (VSR), and for forwarding disputes raised by a Vendor to the AVO
for a binding decision.

Vendors are responsible for providing accurate and sufficient
Information to perform the validation process or to register a Derived
Compiler according to the established policies and procedures. Vendors
are responsible for maintaining the conformity of their Ada Compilers
to the Ada language standard, ANSI/MIL-STD 1815A.

Users are responsible for understanding the scope and limitations of
compiler validation, which 1s a means to increase confidence in the
conformity of an Ada compiler to the Ada language standard. While such
conformity is a first measure of usability of the compiler, it by no
means guarantees that a Validated Compiler satisfies all usability
requirements of a particular project.

A-3-5

PART II

THE USE OF ADA COMPILERS IN OoO

1.0 PURPOSE. The purpose of this document is to provide
policy and applicable guidelines to promote the use of Ada
for Mission Critical Computer Resource (MCCR) programs.

2.0 SCOPE. This document integrates the policies and
procedures of Ada compiler validation (references a and b)
with the need for developing, deploying, and maintaining MCCR
software 1n accordance with DoO life-cycle management policy,
procedures, and practice, using Ada compilers that conform to
the Ada language standard, ANSI/MIL-STD-1815A. This policy
applies to all managers of DoO MCCR programs and provides
guidance to these managers 1n their compliance with the
required use of Ada compilers that conform to the Ada
language standard.

3.0 DEFINITION OF TERMS: The following terms are used 1n
the DoD General Policy for Validation and associated
procedural guidelines for implementing that policy. List I
repeats the terms that apply to general use of Ada compilers
(including MCCR projects) provided in Reference (a). List II
defines the terms that specifically apply to MCCR projects.

List I: General Terms

Ada Compiler: The compilation and execution system
required to compile and execute Ada programs 1n
accordance with the Ada language standard,
ANSI/MIL-STD-1815A.

Ada Compiler Validation Capability (ACVC): The set of
Ada programs that test the conformity of a compilation
and execution system to the Ada language standard,
ANSI/MIL-STD-1815A, in addition to the documentation and
tools that facilitate the conformity testing.

Base Compiler: The Ada Compiler originally tested as
part of the validation process.

Base Configuration: The host machine, host operating
system, target architecture, and target operating system
(if any) under which the Base Compiler is originally
teZted as part of the validation process.

A-3-6

Derived Compiler: A Base Compiler that has been modified
for any reason, or a Base Compiler in a configuration
not fully tested by an AVF, which 1s affirmed by the
vendor to remain completely in conformity to the Ada
language Standard, ANSI/MIL-STD-1815A.

Validated Compiler: A Base Compiler for which a
Validation Certificate 1s 1n effect, a Derived Compiler
that has been registered with the AJPO, and any versions
of these compilers maintained 1n conformity with the Ada
language standard. A Base Compiler and any derivation
of that compiler will be considered validated compilers
while the Base Compiler's Validation Certificate is in
effect.

Validation: The process of checking the conformity of
an Ada compiler to the Ada Standard, ANSI/MIL-STD-1815A.

Validation Certificate: The certificate issued by the
Ada Joint Program Office that certifies the successful
test of a Base Compiler on a Base Configuration against
all ACVC tests that are applicable for the specified
Base Compiler and Base Configuration.

Vendor: The supplier of an Ada compiler.

List II - MCCR Program Terms

Generic Target: A hardware and/or software
Implementation of a Real MCCR Target that is equivalent
to or a superset of the real target and is capable of
executing all applicable ACVC tests. A Generic Target
;s equivalent to the Real MCCR Target if it possesses
the same instruction set and run-time interface. A
superset of a Real MCCR Target is one to which the Real
MCCR Target could be made equivalent by adding more
memory, input-output capabilities, Instructions, etc.

Program Manager: An Individual who has responsibility
and accountability for the acquisition and/or
maintenance of a DoO system.

Project-Validated Compiler: A validated Ada compiler
which 1s baselined 1n accordance with DoD life-cycle
management policies, procedures, and practices. Such a
compiler retains Its status as a Project-Validated
Compiler throughout the duration of the project: its
status as a Validated Compiler is not retained beyond
one year.

Real MCCR Target: A hardware component of an MCCR system
that has been designed to comply with operational form,
fit, and function specifications of the MCCR system
which may execute object code generated by an Ada

A-3-7

compiler.

Restricted Target: A Real MCCR Target on which not all
ACVC tests can be executed but which can execute object
code generated by a validated compiler and an
application specific run-t1me library.

4.0 POLICY. The following policy applies to the management
of projects that develop or maintain Ada software for use 1n
MCCR programs.

4.1 USE OF PROJECT-VALIDATED ADA COMPILERS: Any MCCR Ada
software delivered for operational testing, deployment and
maintenance shall be compiled with Project-Validated
Compilers. A Project-Validated Compiler shall maintain its
status for the duration of a project and any contractual
arrangement that requires usage of this Project-Validated
Compiler, regardless of the validation status of the compiler
under the general validation policies and procedures.
Maintenance of Project-Validated Compilers shall not affect
Its status as a Project-Validated Compiler, as long as the
modified Compiler 1s capable of passing all applicable tests
of the ACVC 1n a version equal to or more recent than the
ACVC version that was in effect at the time of the basellnlng
of the Project-Validated Compiler.

4.2 ADA COMPILERS FOR RESTRICTED TARGETS: An Ada compiler
used to generate object code for a Restricted Target will be
considered to be a Project-Validated Compiler if all of the
following conditions are satisfied.

a. The compiler was derived from a Project-Validated
Compiler for a Generic Target.

b. The Project-Validated Compiler for the Generic
Target is a fully conforming implementation of the Ada
language, even though Its use may be solely for the
development of application software for Restricted
Targets.

c. All mandatory features of the Ada language that can
be supported on the Restricted Target are supported by
the compiler for the Restricted Target. Compilers for
the Restricted Target shall not be arbitrarily
constrained to sub-set implementations of the Ada
language.

d. The code executes on the Restricted Target in
confomance with the Ada language Standard.

e. All application-specific run-time libraries for
Restricted Targets shall be contained within that
application and shall not affect the Ada compiler for

A-3-8

the Generic Target or the Restricted Target when used to
generate code for other applications.

4.3 ADA COMPILERS IN MCCR SOFTWARE DEVELOPMENT: Ada
Compilers used to develop MCCR software are not required to
be Project-Validated throughout the development phase. The
Program Manager shall determine when the compilers shall be
basellned for development of that software, at which time the
compiler must satisfy the criteria of a Project-Validated
Compiler.

4.4 QUALITY ASSURANCE DURING OPERATIONAL TESTING: Upon
delivery of a MCCR software release for operational testing,
the Project-Validated Compiler used to compile this software
shall be tested against all applicable tests of the ACVC in a
version equal to or more recent than the ACVC version that
was in effect at the time of basellning the compiler. Quality
assurance testing of the Project-Validated Compiler shall be
Implemented 1n accordance with the action that is appropriate
for the size of the software release: The following criteria
apply:

a. Less than 2,000 Ada statements:
Compiler testing 1s optional.

b. Up to 100,000 Ada statements:
Compiler testing by the Program Manager is
mandatory.

c. Over 100,000 Ada statements:
Validate according to the policies for general
Validation.

When an MCCR software release has been compiled on several
Project-Validated Compilers, these acceptance testing
requirements apply to each of these compilers and the
respective Ada source code compiled with them. The
requirement for acceptance testing of a Project-Validated
Compiler shall be waived if the Project-Validated Compiler is
an unmodified Base Compiler for which a Validation
Certificate 1s in effect.

4.5 QUALITY ASSURANCE DURING DEPLOYMENT AND MAINTENANCE: At
each baseline milestone in the maintenance cycle, the
acceptance testing of a Project-Validated Compiler shall be
repeated as specified for acceptance during operational
testing. These requirements are waived 1f the
Project-Validated Compiler is identical to the one of the
previous baseline milestone, or if it has been replaced by an
unmodified Base Compiler for which a Validation Certificate
1s in effect.

4.6 MAJOR SYSTEM UPGRADES: Major system upgrades shall be

A-3-9

combined with an upgrade of the Project-Validated Compilers
to the Validated Compilers. The results of acceptance
testing of these Validated Compilers shall be part of the
project documentation.

5.0 PROCEDURES. These procedures provide guidance to program
managers in implementing policy for the initial acquisition
of an Ada compiler, use of that compiler through the software
development phase, the transition from development to
maintenance activity, and maintenance activity.

5.1 INITIAL ACQUISITION OF AN AOA COMPILER FOR AN MCCR
PROJECT: A program manager 1s responsible for Identifing the
requirement for the delivery of a validated Ada compiler as
an action within the context of project milestones. A
compiler may be selected from the registered list of Derived
Compilers or may be a Base Compiler with a current Validation
Certificate. It 1s recommended that acquisition of all
Validated Compilers for MCCR software development or
maintenance be contingent on a successful testing against all
applicable ACVC tests. This condition 1s automatically
satisfied by selection of an unmodified Base Compiler for
which a Validation Certificate 1s 1n effect. If the compiler
1s developed in-house, the program manager will be required
to obtain a certificate for this compiler 1n accordance with
the formal validation process explained 1n reference c.

5.2 SOFTWARE DEVELOPMENT WITH A VALIDATED ADA COMPILER: Ada
software may be developed prior to obtaining a Validated
Compiler and baselining this compiler as a Project-Validated
compiler. However, use of a Validated or Project-Validated
Compiler at the earliest practical time is encouraged, to
reduce risk and potential problems during the acceptance of
the software for operational testing. When a validated
compiler has been accepted for a project, configuration
control procedures should be established to ensure complete
documentation for changes made to the Project-Validated
Compiler and for derivations from it. Program managers are
encouraged to ascertain 1n periodic Intervals that
maintenance changes and derivations have not affected the
capability of the Project-Validated Compiler to pass all
applicable ACVC tests used to initially validate 1t. Program
managers are encouraged to update the Project-Validated
'ompilers for their projects at major project milestones.
After expiration of a validation certificate for a
Project-Validated compiler, a program manager will ensure
that the compiler is a conforming implementation throughout
the life of the project by taking the following actions:

a. Re-test the Project-Validated Compiler and derived
compilers using the ACVC version used to originally
establish the conformity of the base compiler. This
periodic re-testing may be scheduled as part of project
baseline milestones. A program manager will determine

A-3-10

whether this testing will be done by project personnel
or by an AVF. Cost, schedules, and contractual
obligations will be considerations in determining the
conduct of re-testing.

b. At each baseline milestone, certify that the
Project-Validated Compiler has successfuly passed all
applicable ACVC test. This certification will become
part of the project documentation .

c. Ensure that all application specific run-time
libraries for Restricted Targets are developed and
documented as modules of the application software, and
that these libraries do not affect the validatable
status of the Ada compiler used to generate object code.

d. Ensure that planned program product improvement
(P3I) actions are incorporated Into project baseline
milestones and contracts well in advance of the
projected action. P3I actions may result in the
acquisition of a replacement compiler with a current
validation certificate. Total project cost and
schedules will be considerations for P3I actions which
must be approved by a program manager.

5.3 TRANSITION TO MAINTENANCE: A program manager is
responsible for defining the test and evaluation requirements
for the host/target configurations and support software that
will be required for the maintenance activity. The program
manager will be responsible for ensuring that, to the maximum
practical extent, the inventory of application specific
compilers are minimized. The use of a Generic Target which
1s capable of supporting multiple targets is strongly
encouraged. The acceptability of Ada applications for
maintenance activity will be contingent upon the program
manager's compliance with baseline ACVC testing to establish
the conforming status of Project-Validated Compilers and
operational suitability testing delineated by the maintenance
activity.

5.4 MAINTENANCE: Since MCCR software generally has a long
operational period, P3I actions will be required for appli-
cations and for the software support environment. Upgrades
for the software support environment will be maintained by
periodic replacement of Ada compilers that are formally
validated and will be baselined and periodically re-tested
according to the procedures used during software development.

6.0 ORGANIZATIONAL ROLES AND RESPONSIBILITIES:

a. The Ada Joint Program Office (AJPO) shall:

o Maintain OoDproject case histories as provided by DoO
program managers for specific projects and make these

A-3-11

available to all DoO program managers to facilitate the
use of Ada.

o Provide technical and policy guidance to program
managers with respect to specific issues.

o Update guidelines to reflect experience of program
managers.

b. Program Management Organizations shall:

o Provide program guidance on the use of Ada.

o Maintain configuration control procedures for the use
of Ada.

o Provide procurement guidance that clarifies the
requirements for a Project-Validated compiler, Its
testing, and P3I actions.

o Establish a project reporting system to track the
implementation of this guidance.

o Maintain laison with the AJPO so that issues can be
resolved at the earlist possible time.

7.0 REFERENCES.

a. Part I - Validation Policy: Validation Policies and
Procedures. Draft of 24 January 1986

b. Part II - Use of Ada Compilers in DoD: Validation
Policies and Procedures. Draft of 24 January 1986.

c. Part III- Procedures for Conduct of the Ada
Validation Process: Validation Policies and Procedures.
Oraft of 24 January 1986.

A-3-12

APPENDIX 4

Points of Contact for Ada Information

Ada Joint Program Office Points of Contact

Virginia Castor
Director

LTC David Taylor

LCDR Philip Myers

Maj. Allan Kopp

Ray Boswell

Burt Newlin

Ada Joint Program Office
3D139 (1211 S. Fern, Rm. C-107)
The Pentagon
Washington, DC 20301-30812
(202) 694-0210

Army Deputy Director of AJPO
Ada Education & Training

(including ASEET Team and
AFCEA study)

International & NATO Ada activities

Navy Deputy Director of AJPO
Ada Environments

(including KIT, KITIA, E&V and
SIGAda ARTEWG effort)

Air Force Deputy Director of AJPO
Ada Promotion, Ada Trademark

Advisor to AJPO

Standardization

DoD Ada Related Programs and Points of Contact

Ada Information Clearinghouse

Ada Integrated Environment
(AIE)

Ada Language System (ALS)

3D139 (1211 S. Fern, Rm. C-107)
The Pentagon
Washington, DC 20301-3081
(703) 685-1477

Elizabeth Kean
RADC/COEE
Griffiss AFB, NY 13441
(315) 330-2762

United States Army Communications
Electronics Command (CECOM)

Ft. Monmouth, NJ 07703
POC: Dennis Turner
(201) 544-4149

A-4-1

Ada Math Library

Ada Validation Office

Naval Ocean Systems Center
Code 423
San Diego, CA 92152
POC: Gil Myers
(619) 225-7401

Audrey Hook
Institute for Defense Analyses
1801 Beauregard Street
Alexandria, VA 22311
(703) 845-5501

Ada Verification Technology Terry Mayfield
Institute for Defense Analyses
1801 Beauregard Street
Alexandria, VA 22311
(703) 845-2263

Ada Compiler Validation
Capability (ACVC)

Language Control Facility (LCF)
ASD/SIOL
Wright-Patterson AFB, OH 45433
POC: Georgeanne Chitwood
(513) 255-3813

DIANA

E&V Team

Commanding Officer
Naval Research Laboratory
Attn: Code 5150
POC: Rudy Krutar
(202) 767-2197

AFWAL/AAAF
Wright-Patterson AFB, QH 45433
POC: Ray Szymanski
(513) 255-2446

CAIS Naval Ocean Systems Center
421 Catalina Boulevard
San Diego, CA 92152
POC: Patricia Oberndorf
(619) 225-6682

United States Air Force
Program Manager

Col. Kenneth Nidiffer
HQ AFSC/PLR
Andrews AFB, MD 203 31
(301) 981-5731

United States Army
Program Manager

Col. Harold Archibald
AMCDE-SB
5001 Eisenhower Avenue
Alexandria, VA 223 33
(703) 274-9310

A-4-2

United States Navy
Program Manager

CDR Scott Gordon
Space & Naval Warfare Systems

Command, SPAWAR 034
Washington, DC 20363-5100
(202) 692-3966

Ada Language Journals and Newsletters

Ada Information Clearinghouse Newsletter
3D139 (1211 S. Fern, Rm. C-107)
The Pentagon
Washington, DC 20301-3081
(703) 685-1477

Ada-Jovial Newsletter
ASD/SIOL
Computer Operations Division
Information Systems & Technology Center
Wright-Patterson AFB, OH 45433-6503
(513) 255-4472/4473

Ada Letters
Association for Computing Machinery
11 West 42nd Street
New York, NY 10036
(212) 869-7440

Journal of Pascal, Ada & Modula-2
Wiley Journals
John Wiley & Sons, Inc.
605 Third Avenue
New York, NY 10158

A-A-3

Point of Contact for Some Ada Programs and Activities

•r ABICS
Ada Based Integrated Control System

Paul Korkemaz
McDonnell Douglas
(314) 234-3623

CAMP
Common Ada Missile Package

Ms. Chris Andersen
AFATL/DLCM
Eglin AFB, FL 32542-5000
AV 872-2961
(904) 882-2961

MILSTAR Lt. Col. Kacena
(SYSTO)
AV 858-6885
(301) 981-6885

Col. McNevin
(PM)
AV 833-1834
(213) 643-1834

MI MS
Mobile Information Management System

Maj. Smith
HQ SAC/SICA
Offutt AFB, NB
(402) 294-3412

SRAM II
Short Range Attack Missile

SARAH
Standard Automated Remote Autodyn Host

Cpt. Bauman
AV 858-3356
(301) 981-3356

Col. Bevelhymer
AV 785-5080
(513) 255-5080

Cpt. Salisbury
CCSO/SKAS
Tinker AFB, Oklahoma City
OK 73145
(405) 734-2457

WIS
World Wide Military Command and Control
Information System

Missile Warning System

ARTEWG
* Ada Run-Time Environment Working Group

Ltc. Courtwright
(703) 285-5065

Col. Egolf
HQ, AFSpaceCOM/LKD5T
Peterson AFB, CO 80914-5001

Mike Kamrad
Honeywell, M/S MN65-2100
3600 Marshall St. NE
Minneapolis, MN 55418
(612) 782-7321
Kamrad 9 HI-MULTICS

ASEET
Ada and Software Engineering Education
and Training

Maj. Samuels
AV 868-3728
(601) 377-3728

C-l

Points of Contact for Ada Programs and Activities

Keesler AFB Mary Rivers
AV 868-3110
(601) 377-3110

AFIT Lt. Col. Rick Gross
AV 785-3098
(513) 255-3098

USAFA Maj. Nielson
AV 259-4112
(303) 472-3590

MCS Bob Whited Col. Brooks LaGree
Chief of Software Support

Division
Maneuver Control Software
Support Division, Software

Life Cycle Engineering Center
Ft. Leavenworth, KS
(913) 684-7642

An updated list of AFSARC/DSARC Ada programs and points of contact may be
found in a future Edition of this Guide

C-2

