
12 gel ORRNULMRITY ISSUES IN R KNOLEDGE-ORSED PROOW*HNG I
ENVIRONMENT.. CU) CARNEGIE-MELLON UNIV PITTSBURGH PR
SOMMNAE ENGINEERING INST. P N FEILER ET AL. SEP SE

UNLSIFIED C /SEI-B1ESOT-6-1E DT S61F/G12/5NL

El.

i-!iMLn L 66

w .dw ow :W v v v w

Technil Memorandm

Carnegie-Mellon University . .-

o Software Engineering Institute

Omnuler*lIses In a KnowledgeBmed rjB.s

N Programming Environment

by

cnc
Peter H. Felter

/

DTIC

,,"/ E.-

%

%
%

8'7 '7 2 9 0 9W5

,.:._:.,, /.,,... ,, .. :..... . _...:.j ,.o...¢... ;. .. € . .. : ..-. _...:.: . ., : : ... ,.....# ... :'/'

II
Ii

Technical Memorandum
SEI-86-TM-11
September 1986

Granularity Issues In a Knowledge-Based
Programming Environment

by

Peter H. Feller
Software Engineering Institute

and

Gall E. Kaiser* -- ,t's i-on For
Columbia University NTIS GRA&I

DTIC TAB
Unannounced [

Justification-
Approved for Public Release. Distribution Unlimited.

By
Distribution/

Availability Codqs

Di Avnil andl/or
SDist Special

eopy
'NSPFCTED

*This paper was written while Dr. Kaiser was a Visiting Computer Scientist at the Software
Engineering Institute, Carnegie-Mellon University, Pittsburgh, PA 15213.

,Z The development and maintenance of SMILE Is supported in part by the United States Army,
Software Technology Development Division of CECOM COMM/ADP, Fort Monmouth, NJ and in
part by ZTI-SOF of Siemens AG, Munich Germany.

Copyright (C). Peter H. Feller and Gall E. Kaiser I-1

Granularity Issues In a
Knowledge-Based Programming Environment

A Peter H. Feller, Gall E. Kaiser1

ABSTRACT. We are in the process of developing MARVEL, a knowledge-based programming
environment that assists mufti-programmer software development teams in performing and coor-
dinating their activities. During the design of MARVEL, " discovered that the granularity to which
logical entities are refined in its software database and the granularity with which its software tools
process the entities and report their results to the human users have a strong impact on the
degree of intelligence that can be exhibited, as well as on the friendliness and performance of the
environment. In p describe the many choices among alternative granularities and
explain the decisions we made during the design of MARVEL.

1 Introduction

We are currently developing a knowledge-based programming environment called
PROFESSORMARVEL, or MARVEL for short.2 MARVEL is knowledge-based in the sense that it under-
stands the logical entities and the activities involved in the software development process. It is an
environment rather than a software tool because it actively participates in the software develop-
ment process rather than remaining passive until explicit demands are made by ts users. The
primary functions of MARVEL are (1) to interactively answer queries about the current status of the
development effort and the relationships among components of the target software system and
(2) to automatically perform bookkeeping chores and simple development activities. This is in
contrast to some other intelligent assistance systems such as the Programmer's Apprentice (also
known as KBEmacs) [30], CHI (previously PSI) [24] and the Formalized System Development
system (FSD) [2], which focus on the separate problem of automatic programming and program
synthesis.

Unlike most other knowledge-based programming environments, MARVEL supports multi-
programmer software development teams as well as individual programming efforts. For ex-
ample, it includes facilities corresponding to Build [7] and SCCS [22] to coordinate simultaneous
and sequential activities among multiple developers. However, MARVEL approaches these
facilities in a participatory, knowledge-based fashion that enables it to automatically invoke the
tools at the proper times without human intervention.

MARVEL is our second multi-user programming environment. Our first system, called SMILE
[25, 9], was developed several years ago to support our research on the Gandalf project [20]. it

'The research presented in this paper was conducted while Dr. Kaiser was a Visiting Computer Scientist at the
Software Engineering Institute, Carnegie-Mellon University. Pittsburgh. PA.

2 Professor Marvel was the (Kansas) name of 'the man behind the curtain in the movie The Wazard of Oz.

% 7:

has since been used extensively by other projects at Carnegie-Mellon University. at AT&T Bell
Laboratories and at the University of Pisa, and has been distributed to approximately forty sites.-
SMILE was imp~lemented In C and runs on Unixrm. SMILE presents a fileless environment to its
users, answers implicit and explicit queries, and automatically invokes various tools for its users.
However, SMILE's knowledge is hardcoded into the environment and is niot extensible; SMILE does
niot really 'understand' what it Is doing.

Although we found SMILE very useful, and in fact relied on it for the implementation and main-
tenance of most of our research projects, we became convinced that an environment that did '

understand what it was doing could provide much more valuable assistance. Because of this, wee
have based our design of MARVEL on an architecture for intelligent assistance that consists of an
objectbase and a model of the software development process. The objectbase maintains all
software objects, including tools such as the editor and the compiler. The objectbase provides
MARVEL with insight into the various classes of objects and the relationships among objects, such ' .

as one object is a component of another and a particular object may be applied to another object
to produce a third object.

The movdel imposes a structure on programming activities. It consists of an extensible collection
of production-like rules that specify the particular conditions that must exist for particular activities
to be carried out. Metarules permit MARVEL to understand the rules and support opportunistic
processing, where the environment can perform simple activities automatically, such as satisfying
the preconditions of an activity and then carrying out the activity when it knows the results of the
activity will soon be required by a user.

Insight and opportunistic processing are the topic of another paper [15], and will be discussed
only briefly In this paper. The focus of this paper is the granularity issues that arose during our
long experience with SMILE and during the subsequent design of MARVEL. In particular, we ran
into several problems regarding the appropriate refinement of logical entities to be maintained as
separate software objects and the units appropriate both for tools and for reporting the results of .

tool processing to the users. Choice of granularity affects the capabilities of the intelligent assis-
tant, the friendliness vs. intrusiveness of the programming environment and, of course, perfor-
mance and responsiveness. We believe that discussion of these issues, including an explanation .

of the decisions we made regarding MARVEL, Will prove useful to other researchers who are in the
process of building knowledge-based programming environments.

In the rest of this paper, we briefly explain the underlying basis for intelligent assistance utilized
by MARVEL. We then address three areas of granularity issues: the granularity of structure in the
objectbase, its impact on tools, and the granularity of processing automatically performed by the
environment. We conclude by summarizing the significance of these issues for achieving intel-
ligent assistance for software development.

2

2 A Basis for Intelligent Assistance

The distinguishing feature of an intelligent assistant Is that it understands what it Is doing [31]. ,
We believe that both an objectbase and a model of the software development process are prere- %"I
quiites to intelligent assistance. An assistant cannot understand why it performs particular ac- .'i

tivitles unless it knows 'V.
" the properties of the objects It manipulates,
9 the capabilities of certain objects (programmers and tools) to manipulate other ob-

ects,
" the preconditions required by each activity,

" the results or postconditions of each activity.
Therefore, MARVEL includes a general objectbase that maintains software entities and tools, and
an extensible collection of rules that describe the preconditions and postconditions of software
development activities. V,

"m

2.1 The Objectbase

There are several possible forms for our objectbase to take. To maximize flexibility, we chose an
objectbase similar to the objectbases of object-oriented programming languages, such as Loops
[26]. In particular, we adopted their support for multiple Inheritance and active values. The same

concepts are found in the objectbases supported by other knowledge-based programming en-
vironments, such as the CommonLisp Framework (CLF) [3] and RefineTm [24].

In the MARVEL objectbase, each object is an instance of a class, which defines certain attributes
of each object and inherits other attributes from its superclass(es). Some attributes define the
relationships among the objects, while others trigger activities when they are accessed and/or
updated. The software development activities applicable to the members of a class are defined
as methods for the class.

,. ,. 3.

MARVEL presents a 'fileless environment', exposing its users only to the logical structure of the
target software system. As far as the users are concerned, the environment consists of a set of
typed and interconnected software objects that represent both the system and its history of
development. Object types Include module, procedure, type, design description, user task (or
development step), user manual, etc. Typing of these objects permits MARVEL to provide an
object-oriented user interface similar to the Smaltalk-80TM environment 1111. This means that the
environment makes available to each user only those commands that are relevant to the object
under consideration.

The interconnections among software objects represent the logical structure of the system. The
more detailed the structure, the more Information is available for browsing and querying, and the
more MARVEL can deduce which activities it can suitably perform and understand those tasks that
the users carry out. These issues are addressed In Section 3.

3 d

%

2.2 The Model

There are also several possible forms for the rules we use to model the software development
process. Again to maximize flexibility, we chose a style of rule developed in the program verifica-
tion community. Each software activity is associated with preconditions and postconditions, as
defined by Hoare [14]. The postconditions of an activity may satisfy the preconditions of future
activities.

Our rules are similar to the production rules of Ops5 [5) and the automation rules of CLF [2] in
that each rule has both a condition and action. When the condition is true, or satisfied, then the
action may be carried out. Our rules are different from productions in that the action Is divided
Into two parts, an activity and the postconditions. Because we have added postconditions to our
rules, we refer to the original conditions as preconditions. We use the activity part of a rule to
represent an integral software development task. For example, "compile module" is one activity
and "edit procedure" is another. The preconditions of "compile module" are that the module is not
compiled and that all its components have been analyzed without errors; there are two possible
postconditions, exactly one of which is true: the module was compiled correctly and the compila-
tion detected errors. Preconditions and postconditions are written as well-formed formulas (wffs)
in the first order predicate calculus.

Our rules are maintained in a knowledgebase that also includes metarules, which permit MARVEL
to perform activities and explain activities in terms of the rules. One metarule supports forward

chaining: If the preconditions of a rule are satisfied, then MARVEL may perform the activity; the
postconditions may satisfy the preconditions of other rules, which may then be applied. Another
metarule defines backward chaining: If a user requests a particular activity, then MARVEL may
attempt to satisfy its preconditions; this often requires the environment to first perform other ac-
tivities whose postonditions match the preconditions of the original rule. MARVEL determines
when to apply a particular metarule by employing strategies, which are collections of rules and
metarules.

These and other metarules, together with the rules and the objectbase, support insight and op-
portunistic processing. One simple example of insight occurs when a user invokes the "change
procedure" command, which enables editing of both the specification (header) and body of a
particular procedure. MARVEL uses the results of its incremental analysis of dependencies among
software components to inform the user of the potential consequences of this action; for example,
each calling procedure will have to be modified it the number or order of the parameters are
changed. A simple example of opportunistic processing occurs after a user completes the
"change procedure" command by writing out the procedure from the editor. MARVEL notices that
a postcondition of this activity is that the procedure is not analyzed, which is also the precondition
of the "analyze procedure" activity; MARVEL uses forward chaining to automatically update its
incremental analysis.

A full treatment of our objectbase and model and their application to insight and opportunistic
processing is given in [15].

4

t,, ,...L.,,,...-.. ,.. .-. ... " , .' ." " " ".. ..'- - .' .'." -'.. --' .'- ". .' .' ." " ." "." . -. -'-" . -." ." .'-''. ". '.' .''" ..'- ". '-"".0

3 Granularity of Structure

The degree of intelligence that can be demonstrated by MARVEL, or any knowledge-based pro-
gramming environment, is intimately tied to the granularity of independent entities maintained by
its objectbase and to the granularity of the processing tools it has available. The granularity of .0
structure determines to what extent the target software system is decomposed into separately
stored entities. Separate storage may take the form of independent objects or of attributes of
other objects. An appropriate choice of decomposition is influenced by several factors, including
the need for separately recognizable logical entities, viewing and manipulation of the structure by
the users, and space/time tradeoffs (191.

It is desirable to have the logical entities of the target system separately accessible for several
reasons. In the first place, an object or attribute can be referenced from other parts of the
system, while it is not possible to refer directly to only a portion of the information within an
attribute. Examples of such entities are modules, procedures, macros, and global variables in the
program domain, sections and subsections in the document domain, and plans, tasks, and

developers in the management domain.

Logical entities depend on each other in various ways, and the interconnection structure must be
accessible to maintain a consistent representation of the target system. These connections are
viewed and manipulated both by the human users and by the environment. If the entities are -

accessible as separate objects, then the connections can be represented as relations among
these objects. Examples include actual use dependency among software components such as
procedures, macros and variables, Intentional use dependency as expressed through export and
import clauses of modules, compilation order, or referential use such as reference to a section or
a citation in a document.

Status information is associated with particular logical entities. Status can represent the need to
or the result of processing an entity, such as analysis of a procedure, code generation for a
module, or running a section of a document through the document processor. It can also indicate
coordination Information among multiple users and between users and tools, i.e., synchronization
and version information [28]. MARVEL stores status information as attributes of objects.

The set of logical entities attributed with status information determines to some extent the degree
of intelligence that can be built into the facilities provided by a knowledge-based programming
environment. For example, to support 'smart recompilation' [29, 231, it is necessary to store
status information about each intermodule symbol definition and use. This enables MARVEL to
recompile only those entities that actually use modified symbols, as opposed to recompiling all
modules that depend in any way on the module whose interface has changed. In contrast, SMILE ..

supports import and export clauses, but does not permit more detailed relations among individual
components, so it is not able to provide this kind of intelligent processing.

It may be desirable for users to navigate and manipulate the target system according to the
structural units represented by logical entities. Syntax-directed editors [27] usually support cursor

.* -a_-,

movement and manipulation at the language construct level; Rationalk [1) takes this to an ex-
treme by performing all processing in terms of the Diana [61 representation of Adarm programs.
Even text editors support a certain amount of structure, such as the electric-lisp mode in Emacs
[13] recognizing matching parentheses. Graphical editors support manipulation of basic graphi-

cal symbols such as lines, circles and icons as well as composite graphical units. Word process-
ing systems support character, word, sentence and paragraph manipulation. MARVEL supports
viewing at the level of objects, using certain of their attributes as paths that can be followed by the
browser to other objects.

User actions, especially modifications, have different effects for different logical entities. For
example, editing of a comment does not affect analysis or code generation but is relevant to
updating of hardcopy listings, whereas modification to a design specification not only aff ects other
parts of the design, but also the implementation. Thus, MARVEL provides object-oriented corn-
mands to reflect these distinctions. MARVEL can then recognize a user's focus of attention as well 4
as the extent of his or her modifications in order to be able to provide insight and to intelligently e
and effectively restore consistency of the target system. SmiLE's More primitive user interface
requires the user, for example, to give the "edit procedure" command to edit the body of a proce-
dure and the distinct "change procedure" command to edit its specification (header).

4 Impact of Structure Granularity on Tools

The question arises as to the choice of the smallest logical entity that should be separately -

represented as an object. The answer must consider that there are two ways to have logical
entities separately recognizable. One is by analyzing a 'larger' entity that is stored as a separate
object in the objectbase, and deriving the 'smaller' entities as needed. The altemnative is to
represent each logical entity as a separate object. The appropriate choice is a tradeoff between
the proliferation of objects and explosion of information to be stored on the one hand and
reprocessing of information on the other. This manifests itself in a variety of ways.

Tools provided as part of a knowledge-based programming environment may require a special
interface to the objectbase as they may not be able to cope directly with composite objects. For
example, a compiler requires adaptation to be able to process modules as separate compilation
units when they consist of sets of references to objects representing imported entities and a
composition of objects representing the procedures, etc., comprising the module. It is preferable
to bring in existing tools without modifications; DSEETO [18] does this for version control by
providing a virtual interface between each tool and the version manager. We would like to do this
in the general case, SO MARVEL provides multiple views corresponding to the normal interfaces of
the tools [10]. SMIE does not support views, and so is forced to store objects in the form ex-
pected by Its tools; this sometimes results In duplication of information when the same kind of
object is processed by multiple tools.

The status information of all components of a composite object may be accessed frequently. For %
example, the result of analysis of all components of a module must be positive before code

6 ~

generation should be done. MARVEL can either compute the composite status value every time it
is desired or t can cache the value in the module object and maintain it incrementally, as com-
ponents are modified and re-analyzed, using, for example, finite differencing techniques [12].

Another example of status information is the error messages resulting from unsuccessful
processing. Users tend to query them at times other than the time they are produced by the
processing tool, except when the activity is performed on user demand. MARVEL stores error
messages explicitly for strongly-typed languages, since recomputation is costly.

Interconnection information, such as actual use, may not require explicit representation, but this is
orthogonal to whether the information is explicitly stored or dynamically determined. In other
words, an attribute can be calculated only when needed, and information can be stored as part of
some composite attribute rather than separately. One example of the first category is use depen-
dency of local variables. This is rarely queried because all use sites are often displayed simul-
taneously. A user can visually search or use a viewer (editor) search command. Where explicit
representation is necessary, the environment may explicitly store only the module in which an
exported procedure is actually used (because the whole module has to be recompiled) and
dynamically analyze the module when queried about the calling procedures, or it may explicitly
store the procedure that calls the exported procedure but not every callsite within the procedure ..

as those are easily found by direct search when needed. SMILE follows the former strategy, but -.

the response time is widely variable and sometimes unacceptable, so MARVEL follows the latter

course.

An objectbase permits tracking of modifications to objects. Representing logical entities as , , 1

separate objects at appropriate granularities eliminates additional processing such as recognition
of changes within regions of an object by the editor or content comparison algorithms (such as
Diff [28]). For example, procedures may be represented as composite objects consisting of the
specification, a description, and the implementation. Using this as the lowest level structural
granularity permits MARVEL to limit side-effect propagation considerably, since other entities can 0A
be affected only when the specification is changed.

Decomposition of the target system into separate objects at a small grain places certain require-
ments on the object-viewing and browsing capabilities of the environment. On one hand, a user
should not be starved of information as is the case with single-level object viewers. For example,
viewing a module may result in display of only the names of components, without even an indica-
tion of their type. More context should be provided to the users.

On the other hand, a user should not be overloaded with information, which may lead to disorien- 16

tation and confusion. An example of this is the presentation of the target system as a single
textual unit, decorated with all available status information - possibly encoded in a range of
symbols. A balance must be struck as to the amount of information to be displayed at any time ,

and the desire to reduce explicit querying for information. This may change over time as the
users carry out different activities. For example, while making major changes to the system a user
has little interest In code generation status. Similarly, when examining an imported module, the

7

user's view should be limited to its specif ication. SMILE solves these problems with distinct com-
mands for different levels of detail, while MARVEL includes an objectbase viewing and browsing
capability supporting multiple views and multi-level viewing, which makes best use of available
screen space through multiple viewing panes.

5 Granularity of Processing
As previously discussed, the tools as well as the users can take advantage of multiple views. A
related issue is whether or not the users should have multiple 'views' of the tools. The granularity
of processing determines the responsiveness of the environment as well as the intelligence per-
ceived by its users. Responsiveness refers both to feedback to the users regarding inconsis-
tencies in the target system and to processing of the target system to derive other represen-
tations, e.g., to prepare for execution or for formated printing. MARVEL and other knowledge-
based programming environments are interactive environments that attempt to increase user
productivity. This means that each user should get feedback while in the context of the problem
spot; the environment displays intelligence by understanding the users notion of context and
relating it to the results of the tools.

This also means that a user should not have to wait excessively for the computer to complete its
share of the work. This is accomplished by processing at the appropriate level of granularity and
by processing opportunistically. The availability of both forward and backward chaining permits
MARVEL to perform activities any time between when the preconditions are satisfied and when the
postconditions are required. Furthermore, not all processing has to be done at the same level of
granularity. Granularity of processing that results in feedback to the user is strongly influenced by
the context and time in which feedback Is expected. Note that feedback may involve simple
visual cues, such as changing the font of the prompt, rather than immediately dumping all the
error messages on the users display.

Granularity of processing resulting mainly in derived entities such as object code is primarily
influenced by the following tradeoff. On the one hand, we have the possibility of processing many
small units, thus reducing the time of processing one unit, yet causing possibly redundant
processinp of the same unit when it is frequently affected by changes to other small units. On the
other hand, processing larger units at less frequent intervals leads to the expense of longer
delays when the users need the results. In some cases, this problem means exploration of
separate processing techniques in order to avoid processing of the complete target system. Ex-
amples include linking in pieces through use of indirect references 181, and formatting in pieces by
a document processor through maintenance of formatting context - as is supported by
Scribe (21]

Feedback to the users can occur at several levels of granularity, where the grain size chosen may
be different for different kinds of analysis. One form of feedback is enforcement of a particular
kind of consistency. The most prominent example is enforcement of syntactic consistency, as
done by syntax-directed or form editors. This is accomplished either by limiting the choices of

8

$m

entry to acceptable ones, e.g., by providing a menu with the legal set of constructs, or by im-
mediately checking and rejecting invalid entries. Another form of feedback is checking for consis-
tency and reporting any violations, but accepting the input into the objectbase. In this case,
MARVEL records whether or not objects have been checked for each kind of consistency and, if
so, the results of each analysis.

During different phases of development and maintenance, a user may desire feedback for the
same kind of consistency at different granularity levels. For example, while writing a new piece of
code, a user does not want to be told repeatedly about the use of an undefined identifier until he ",
has completed his activity with the procedure or module. However, when carrying out minor :.
corrections, more immediate feedback is desirable. MARVEL offers such flexibility by separating
checking from reporting. In this way, checking for a particular kind of consistency is always
performed at the same level of granularity - the smallest level for which feedback is desired - .
with one set of analysis processes. Reporting can be realized by querying the results of check-
ing, and MARVEL does this by performing queries automatically at different times as determined
by the reporting strategy.

This behavior is in contrast to SMILE, which initially performed compilation at the level of
procedures and immediately informed the user of any errors. We found this behavior unaccept-
able. SMILE was modified to perform symbol resolution and type checking at the procedure level,
but to apply compilation only to modules. Errors were no longer reported except in response to
user queries, but their detection was indicated by an unintrusive visual change in the display that
remained until the errors were corrected.

6 Conclusions

The fundamental tradeoffs regarding granularity of logical entities and of automatic processing I"'

demonstrate the impact of the choices of granularity on the apparent intelligence of an environ-
r-- - as well as on its responsiveness and performance. The most notable choices we made for
PROFESSORMARVEL are notably

" A knowledge-based programming environment can more quickly answer more com-
plex queries when it incrementally updates its analysis of the relationships among
logical entities of the target software system and also maintains these entities refined
to the level of relationships among individual software components rather than
among modules;

" An environment is less intrusive and more informative when the granularity of Q'

automatic processing is separated from the granularity for automatic reporting of the
results of processing, and it is not difficult to separate these behaviors for semantic
analysis, compilation and other activities.

We believe that these choices are also appropriate for most other knowledge-based programming
environments. While SMILE was targeted for C, we designed MARVEL to support either C, Com-
monLisp, or Ada. We also kept in mind document formatting languages such as Scribe and -
project management facilities such as those found in CMS [16] and DSEE [17]. Thus our conclu-
sions cover a wide range of possible entities as well as tools.

9

REFERENCES

[1] James E. Archer, Jr. and Michael T. Devlin.
Rational's Experience Using Ada for Very Large Systems.
In Proceedings of the First International Conference on Ada Programming Language Ap- I,,

plications for the NASA Space Station, pages B.2.5.1-B.2.5.11. Houston, TX, June,
1986.

[21 Robert Balzer.
A 15 Year Perspective on Automatic Programming.
IEEE Transactions on Software Engineering SE-11 (1 1):1257-1268, November, 1985.

[3] Robert M. Balzer.
Living in the Next Generation Operating System.
In Proceedings of the 10th World Computer Congress (IFIP Congress '86). Dublin,

Ireland, September, 1986.
To appear.

[4] David R. Barstow, Howard E. Shrobe and Erik Sandewall.
Interactive Programming Environments.
McGraw-Hill Book Co., New York, NY, 1984.

[5] Lee Brownston, Robert Farrell, Elaine Kant and Nancy Martin.
Programming Expert Systems in OPS5.
Addison-Wesley Publishing Co., Reading, MA, 1985.

[6] Diana Reference Manual
Carnegie-Mellon University, Department of Computer Science, 1981.

[7] V.B. Erickson and J.F. Pellegrin.

Build - A Software Construction Tool.
AT&T Bell Laboratories Technical Journal 63(6) :1049-1059, July-August, 1984.

[8] Peter H. Feiler and Raul Medina-Mora.
An Incremental Programming Environment.
IEEE Transactions on Software Engineering SE-7(5):472-482, September, 1981.

(91 Peter H. Feiler and Gail E. Kaiser.
Intelligent Assistance without Artificial Intelligence.
Submitted for publication.

1101 David Gartan.
Views for Tools in Integrated Environments.
In Proceedings of the IFIP WG 2.4 International Workshop on Advanced Programming

Environments. June, 1986.
To appear as a book published by Springer-Verlag.

[11] Adele Goldberg.
The Influence of an Object-Oriented Language on the Programming Environment.
In Proceedings of the 1983 ACM Computer Science Conference. February, 1983.
Reprinted in [4].

[12] Allen T. Goldberg.
Knowledge-Based Programming: A Survey of Program Design and Construction Tech-

niques.
IEEE Transactions on Software Engineering SE-1 2(7):752-768, July, 1986.

10

LaO taaI . Ft<

[13] James A. Gosling.
Unix Emacs
Carnegie-Mellon University, Department of Computer Science, 1982.

[14] C.A.R. Hoare.
An Axiomatic Approach to Computer Programming.
Communications of the ACM 12(10):576-580, 583, October, 1969.

[15] Gail E. Kaiser and Peter H. Feiler.
Intelligent Assistance for Software Development and Maintenance.
In progress.

116) Beverly L. Kedzierski.
116] Knowledge-Based Project Management and Communication Support in a System

Development Environment.
In Proceedings of the 4th Jerusalem Conference on Information Technology. Jerusalem,

Israel, May, 1984.

[17] David B. Leblang and Robert P. Chase, Jr.
Computer-Aided Software Engineering in a Distributed Workstation Environment.
In Proceedings of the SIGSOFT/SIGPLAN Software Engineering Symposium on Practical

Software Development Environments, pages 104-112. Pittsburgh, PA, April, 1984.

[18] David B. Leblang and Gordon D. McLean, Jr.
Configuration Management for Large-Scale Software Development Efforts.
In GTE Workshop on Software Engineering Environments for Programming in the Large,

pages 122-127. June, 1985.

[19] John R. Nestor.
Toward a Persistent Object Base.
In Proceedings of the IFIP WG 2.4 International Workshop on Advanced Programming

Environments. June, 1986.
To appear as a book published by Springer-Verlag.

[20] David Notkin.
The GANDALF Project.
The Journal of Systems and Software 5(2):91-105, May, 1985.

[21] Brian K. Reid and Janet H. Walker.
SCRIBE Introductory User's Manual
Carnegie-Mellon University, Department of Computer Science, 1979.
2nd edition.

[22] M. J. Rochkind.
IC The Source Code Control System.

IEEE Transactions on Software Engineering SE-1:364-370, 1975.

[23] Robert W. Schwanke and Gail E. Kaiser.
Version Inconsistency in Large Systems.
Technical Report RTL-86-TR-072, Siemens Research and Technology Laboratories,

April, 1986.

[24] Douglas R. Smith, Gordon B. Kotik and Stephen J. Westfold.
Research on Knowledge-Based Software Environments at Kestrel Institute.
IEEE Transactions on Software Engineering SE-1 1(11):1278-1295, November, 1985.

11 '"'

[251 Barbara J. Staudt, Charles W. Krueger, A.N. Habermann and Vincenzo Ambriola.
The GANDALF System Reference Manuals.
Technical Report CMU-CS-86-130, Carnegie-Mellon University, Department of Computer

Science, May, 1986.

[26] Mark Stefik and Daniel G. Bobrow.
Object-Oriented Programming: Themes and Variations.
Al Magazine 6(4):40-62, Winter, 1986.

[27] Tim Teitelbaum and Thomas Reps.
The Cornell Program Synthesizer: A Syntax-Directed Programming Environment.
Communications of the ACM 24(9), September, 1981.
Reprinted in [4].

[28] Walter F. Tichy.
RCS --%A System for Version Control.
Software - Practice and Experience 15(7) :637-654, July, 1985.

[291 Walter F. Tichy.
Smart Recompilation.
ACM Transactions on Programming Languages and Systems (TOPLAS) 8(3):273-291,

July, 1986.

[30] Richard C. Waters.
KBEmacs: Where's the Al?
The Al Magazine VI1(1):47-56, Spring, 1986.

[31] Terry Winograd.
Breaking the Complexity Barrier (Again).
In Proceedings of the ACM SIGPLAN-SIGIR Interface Meeting on Programming Lan-

guages - Information Retrieval, pages 13-30. Gaithersburg, MD, November, 1973.
Reprinted in [4].

12.

'p

=:: .

12

so

