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1.0 SUMMARY

Approximations to the boundary integral equation (BIE) formulation for

acoustic wave propagation permit simulation of acoustic waves in

layered earth models with three dimensional layer boundaries. The

complete BIE solution is approximated by a series expansion analogous .
to the more familiar generalized ray expansion widely used in )
seismological modeling. A layer to layer propagation algorithm is

presented which is efficient enough to perform three dimensional wave
propagation on a modern minicomputer equipped with an array
processor. With an efficient propagation algorithm, iterative methods

for computing the layer coupling are feasible. The '"ray expansion"

approach is most useful for approximating solutions on wave propagation

problems in which multiple interaction between boundaries can be

ignored.

The approximate BIE method is applied to an acoustic model of a d
mountain in which a flat layered wvelocity structure is overiain by three

dimensional topography. For the solution that includes primary

reflection from the layered velocity structure and their corresponding
interaction with the topography, amplitude wvariations between several
profiles can be interpreted as they relate to the topography along the
profile. The location of the source and receivers on the near surface,
low-velocity material introduces strong acoustic waveguide effects
equivalent to Love waves in an elastic medium. Modeling these guided
waves requires including waves that reflect from the subsurface velocity
structure and interact with the free surface several times. These

guided waves dominate the solution over the source-receiver geometry

of interest. Peak amplitudes vary by a factor of 2 for stations spaced
at 1 km; apparently the result of subtle changes in the interference of
waves that have interacted with the free surface in different ways.
The effect of three dimensional structure on peak amplitudes and
waveforms of these guided waves will be difficult to predict.
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2.0 INTRODUCTION

Y Efforts to understand the detailed structure of the earth requires the
S, capability to numerically model seismic wave propagation in complex two-
§ and three-dimensional structures. Computational techniques for

modeling wave propagation in complex structures range from simple ray

;:, tracing to finite difference and finite element methods. Ray tracing
X

5’,: methods are elegant, conceptually simple to grasp, and form the
,':' intuitive basis for understanding many types of wave phenomena. As

an interpretation and modeling tool, they are indispensible for
N understanding the results of more complex calculations. For more
;’ complete solutions, finite difference methods have received widespread
attention (e.g. Alterman and Karal, 1968; Boore, 1972; Kosloff and
Baysal, 1982, Vidale, 1986). These methods have large computational

¥ requirements and it is not currently feasible to treat three-dimensional
; problems. Further advances in computer technology, particularly in the
ﬁ development of large parallel machines will remedy this situation.

However, alternative approximate methods that provide insight into

:‘ complex wave phenomena will always be necessary.

‘,, One method for posing wave propagation problems, dating from the

™ early nineteenth century, is the Boundary Integral Equation (BIE)

R technique in which a wavefield in a region of interest is represented by

: the values of the field and its gradient along a bounding surface. While

EE' finite difference methods require sampling the wavefield in all spatial
dimensions, the BIE method requires that the wavefield be sampled only

" along surfaces, which, at first glance, appears to be a huge saving of

:;‘ effort in a three-dimensional problem. However, while the interaction

..": between samples in a finite-difference model is local, the interaction

e between samples in a BIE representation is global: each point on a

¥ surface interacts with every other point on the same surface and the

:‘\ adjacent surfaces. Thus, for complex interaction of several boundaries,

': (i.e. "lots of multiples" in raytracing terminology) it is not yet clear

B that the BIE method represents an advantage. However, for problems |
‘:.' in which the interaction between boundaries is not severe (i.e. if {
::'. primaries and low order multiples are of interest), then B{E methods i

SGI-R-87-133




RIS FUSE U PR VLR TRER SRS VEER T . e

I T S T YUY 7O VRN VAR TOR TURCPUR LI TUSUMUE YU PR P PO

are an attractive alternative, particularly when propagation over many

| wavelengths in a homogenous media is involved.

1 Several treatments of the BIE formulation have appeared in the

geophysical literature in recent years. Cole (1980) presented a
time~-domain formulation for two-dimensional acoustic problems. For
: many problems of seismological interest, this approach will be

unsatisfactory since it is difficult to suppress edge reflections and
include realistic attenuation. A frequency-domain treatment of the
two-dimensional elastic problem was studied by Ferguson (1982). Both
methods failed to handie the interaction integrals efficiently enough to
extend the results to three dimensions with current computer
technology. Schuster (1984) has studied several approaches to
efficiently solving the BIE's. He presents an iterative solution that is
directly analogous to familiar ray expansions used in plane-layered
media and, thus, has a strong intuitive basis. His formulation lends
itself to a variety of useful approximations and hybridizations; it is
virtually identical to the approach that we have adopted in the following
report.

Apsel et al. (1985, 1983) has formulated a frequency domain approach
that is stable, involves no matrix inversions, and that can include the
effects of realistic material properties such as attenuation. The
formulation is designed to calculate the total response, inciuding all
kinematic and dynamic effects using a specially designed pertubation
treatment. The method appears to be more cost-effective than finite
difference algorithms, however computational demands for a three

dimensional model are still much too large for routine treatment.

An attractive feature of the BIE method is that it readily leads to
intuitively appealing approximations that allow some hope for
understanding complex wavefields in terms of simpler wave propagation L
concepts such as rays, diffraction, reflection and transmission. An A
example is the Kirchhoff approximation (Hiiterman, 1970; Berryhill,
1979; Scott and Helmberger, 1982; Mellman et al., 1982) in which the

BIE equation is broken up into separate calculations for the propagation

[
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i

SGI-R-87-133

Y AR ""-'-,' _____ '_.'-.' L e
ﬁmﬂﬁ‘&:ﬁm- T QA B A A Vi A i VP S U UL




-

b

L (] 0y (I A a .t g 8" N 4 b 2.8 L.t aaf 4.8 .U A8 AL A 8 B0 Sk 2.3 0.5 A

between layer interfaces and for the interaction along individual layer
boundaries. The self interaction is approximated by treating each point
as if the incident wavefield is a plane wave and the interface is a plane
oriented along the tangent to the surface at that point. Interaction
between two points on the same boundary is not considered and so this
approach is only valid if the topography along an interface is not
severe enough to introduce multiple scattering; i.e. waves reflected
from one part of an interface to another part of the same interface are
negligible. For the modeis that we will treat in this report, we will use
this assumption.

In the following, we will first review the BIE for:nulation as presented
in Apsel et al. (1983, 1985) and provide details of some useful
approximations. Then we will apply the methods to some realistic
calculations to model strong ground motions on a mountain where

topography is expected to have significant effects on the wave
propagation.
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3.0 GENERAL FORMULATION OF BIE METHODOLOGY

The boundary integral equations describing wave propagation through

}“. arbitrary three-dimensional elastic multilayered media are derived in two
S‘:‘ ) steps. First, wave propagation within a single irregular, homogeneous
W layer is described by integral representations using the full space
v i Green's functions with properties of that layer. Second, the wavefields
:'..:‘ in each irregular layer are constrained to interact at the layer
EE:: boundaries to satisfy all of the boundary and continuity conditions,
:':' which leads to a system of integral equations for the unknown boundary
" values. Once this system of equations is solved for the boundary
;:li: values, the wavefield may be calculated at all of the receiver positions
z::; of interest using the integral representations of the first step.

e

. The model geometry for the wave propagation problem solved in the BIE
1 formulation is depicted in Figure 1 by N irregular layers overlying a
é semi-infinite half-space. The layers are allowed to pinchout but not to
N cross in this formulation. Each layer is characterized by constant
N shear and compressional wave velocities and constant densities.
‘::‘ Material attenuation may be introduced by allowing the velocities to be
:.:’, complex. Wave propagation within a given layer is expressed in terms of
o the Green's functions for a full-space with the properties of that layer.
z The formulation is not restricted to constant material properties within a
*E given layer, although the Green's functions for that case are quite
ﬁ" simple. In the following, the formulation is presented for the acoustic
<4 case. Most of the corresponding elastic derivation is presented in
‘- Apsel et al. 1983.

-

“ In the acoustic case, the field values pressure, P, and particle velocity,
:'.' - 3, can be described in terms of a potential, ¢ (see Morse and
P Feshback, 1953):

”
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boundary Sue
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Figure 1. Cross-sectional model geometry for layered half-space used
in BIE method formed by N irregular layers overlying a
uniform haif-space, with each layer characterized by
constant material properties. The source and receiver can
be located anywhere in the medium.
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The potential, ¢, then satisfies the wave equation:

Vo- 1 %= o0 M
2 2
o ot

where o is the acoustic velocity and p is the density.

If we define the Fourier transform with respect to time as
- - +iwt
¢ (x,w) = ¢ (x,t) e dt

then we have the Helmhoitz equation

Vo + K¢ = 0 (2)

with k2 = w?/al.

The first step in the formulation is to write expressions for the
potential field within a single layer without consideration of the
boundary interaction. In layer 2 (2=1,2,...,N+1), the potential must
satisfy the homogeneous (£ # s) or inhomogeneous (£=s) equations of
motion (depending on whether or not the source is located in layer 2)
for a full-space with properties of layer 2. The Kirchhoff integral

SGI-R-87-133




representation (e.g. Stratton, 1948) or, equivalently, the

Representation Theorem of Elastodynamics (deHoop, 1958) provide
an expression for the potential located anywhere within
volume V2 containing layer £ in terms of integrals of the potential and -

its norma! field over the bounding surface of volume V, multiplied by

2
the corresponding Green's functions for a full-space with properties of

that layer. The potential at location X, can then be written in the

2
frequency domain using the integral representation for a wvolume Vl

bounded by layer interfaces 52 and 52*1.

CRTICH =I[G‘ (X ¥) ¥ -
9

HY (2,.7,) o“(s}’g)]ds(%)

g > 2+1,~»
I [G (ley‘e+1)¢‘ (V2+1) =
SR

+1

g » - 2+1,~» >
H™ (Xg/¥g,1)0 (y£+1)] ds(ygy,,)

+ 8, J’ {c“ (22,22)“32)} av(z,) (3)

Vo

in which the frequency arguments have been omitted for brevity and

<y
"

an integration point on bounding surface Sm;

SGI-R-87-133
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G (xz,y ) = the full-space Green's function for the potential

¢ at location y__ on surface S_ due to point force in
the i-direction at location x, with properties of

layer £; £
2 _ 2 > > >
v (y,) = Vo (yy) - v {y,)
g > o _ 2 -+ -

H™ (Xp,y) = vV G (xz,yg) v(yy)

f (;2) = the source function at location z, anywhere in
layer £ (assuming the source is a Delta-function
in space, then the volume integral rgduces to the
evaluation of the integrand at point 22);

6 = 0, if £=s _ .

£2s 1, if g=s ,$ = source layer number;

- > . .
1, if Xy inside layer £
2,2 v ose 32 .
€ (xﬂ) = Y, if X, on surface bounding layer ¢

0, if ;2 outside layer £

In Eq. (1), the layer comprising volume V}Z is assumed to extend to
infinity at the horizontal extremes to eliminate the surface integrals

along those portions of the surface bounding volume V, and the

2
negative sign for the integral over surface SR+1 is associated with using
the upward normal 32” = -:/‘Q in the definition of the traction

components. Once the boundary values for M;;m) and w(;m) are
determined for bounding interfaces 52 and Sgﬂ, Eq. (1) can then be
used to obtain the displacement field at any point X, within layer £.

2
Expressions for the full-space elastic Green's functions with constant

SGI-R-87-133
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material properties are given in Appendix A of Apsel et al., 1983 for
two and three dimensional wave propagation in elastic as well as
acoustic media. This completes the propagation step of the BIE

formulation and it remains to impose the boundary interaction coupling. .

The boundary interaction coupling requires simultaneous satisfaction of
a pressure-free surface (interface 1) and both continuous pressure and
normai components of velocity across each layer interface (2,3,...,N+1).
The coupled boundary integral equations arising from the continuity
conditions across each layer interface, S2 (2=2,3,...,N+1), are obtained
by evaluating Eq. (4) in volumes V2_1 and V2 (tayers 2-1 and £) at a
discrete number (qﬁ) of observations §2 along common surface S‘2 and
imposing the boundary conditions:

for all quadrature points ;2 on surface 52. To derive an integral
representation for ¢ when ¢ is on the boundary requires special

treatment of the singularities present in the Green's functions G’Q and

HQ. Integration of the singularities is straightforward and is discussed
in work by Scott (1985), Cole (1980) and Banaugh (1962).

The resulting set of equations, for £ = 1 to N+1, are

SGI-R-87-133
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=1, = -» - -
w' (X) = I[c” RV ) o' () -
S -

2-1

2-1,- - 2-1 > -
H™ (xg¥p.q) © (y2_1)} ds(y,_4)

2-1, > o - >
-I [G (x2'y2)¢2 1(y,z) -

Sy

2-1,+ - g-1,» >
H (xn,yﬂ) ¢ (yg)} dS(yg) +
69-1sFxg) (4)

and

[G‘ Ry VW (¥ )

{h
”~~
xX¢
o
A
n

L > > 2 - >
H™ (x5, yp)0 (yz)] dS(y,)

(5)
2 > o 2 -
I[G (X2:Y2+1)¢' (YR,”) -
Sp1
HE (v 6%y, | dsiy,. )
ji g Y4 Yo+ Yo41
+ égsF(xQ) ' (i,j=1,2,3), (2=2,3,...,N+1).

where F(;R) =J‘ Gz(ig,zl)f(-z’n) dav (32).

Ve
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Equations (4) and (5) represent a simultaneous set of 2q£ Fredhoim

integral equations of the second kind for the same number of unknown

2

boundary wvalues, ¢~ and \bg on surface S which are coupled to the

2!
unknown boundary values on surface 52-1 and S‘e+1 through the .
integrals over surfaces S and S respectively. Note that when

2-1 2+1’
2=1 or £=2 in Eq. (4), then the term involving ¢1(;1) is identically zero

because of the tractionless free-surface conditions. Also, note that

when 2=N+1 in Eq. (5), then the integral over surface S vanishes by

+
virtue of the radiation conditions implicit in the Green'zs 1functions for
the underlying semi-infinite space. Boundary integral equations (4)
and (5) are evaluated at a discrete set of q, example points ;2 on each
boundary 52 with sample points from one boundary becoming Green's
function quadrature points for the next boundary. When completely
discretized, Equations (4) and (5) represent a coupled system of
singular Fredholm integral equations of the second kind for the
unknown boundary values along all layer boundaries. Singularities
occur in the Green's functions when quadrature point ;m approaches
observation point ;m in the second integral in Eq. (4) and the first
integral in Eq. (5). Singularities can also occur in the Green's
functions when two adjacent layer boundaries intersect and would be
evidenced in the first integral in Eq. (4) or the second integral of Eq.

(5)., depending on where the intersections occur.
To compute a numerical approximation to (5) we discretize the integral

equations to form matrix operations. First it is convenient to introduce

some additional shorthand:

c™ w - GMex, ;," w (Jj) dS(Jj)

I
bg
"

H"‘({i,i’) o (Jj) dS(Qi)

<>
where GT}.,HT}. are the Green's functions giving the response at point x

on the i'th layer due to a socurce at point ;/ on the jth layer with

SGI-R-87-133
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acoustic properties ae P (m = i or j). The forcing term can be

m ’
written as

j ->
I f (Zj) G (xi’zj) de

A\

where Fij is the response at point x on boundary i due to a distribution

nd - -
of sources on z in the ;th layer.

We define submatrices, D (downgoing) and U (upgoing):

I 2-1
Dgg-1 = He-1 Goo-1
0 0
L
Upge = 0 0
2 2
Hog+1 “Gho+1
-

the boundary interaction matrix:
£-1 2-1

_ H,Q,Q -G22 - 1/2 1
8 =
22 9 P)
-H,Q,Q GJUZ - 1/2 1

and the forcing function matrix:

Fo = Fo-1 2

FQ.Q

where | is the identity matrix.

The unknown boundary values are written:

SGI1-R-87-133
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Then the integral equation (5) can be written as a system of equations:

Fi B, Uz ¢, |(6) ’
. D2, B2z Ugzs ¢,
PN+ PN+ BNat Net | [One

Note that the free surface boundary conditions can be included by
explicitly constraining ¢,

w and that the radiation conditions are explicitly included by not aliowing

i any upgoing waves from the N+1 region.

Despite a simpte form, Equation (6) represents a formidable computational
effort. Each submatrix is dense and for problems of seismological
interest, say with grids of 1000 x 1000 nodes, when propagation over

w many wavelengths is of interest, the U, D, and B matrices are of
order 106 X 106 in size. Obviously this formulation is only of symbolic
utility and some approximations are necessary. Furthermore, decomposition
into simpier, although approximate, methods is useful from the standpoint
of understanding the complex wave interactions in terms of the physical
parameters of the model.

Several ways to approximate a solution to Equation (6) may be suggested .
by considering simple iterative solutions to ordinary systems of equations
of the same form. Formally, these solutions are known as Born
approximations (Schuster, 1983) but here we use a heuristic approach

to develop the same ideas.

SGI-R-87-133
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Consider the well known Gauss-Seidel iteration method for ordinary

linear equations where the ith iteration is given by:

(i) _ -1 (i-1) _ (i-1)
%97 T By [Fz © DPgg-q %y Ygou “’zn} (7

0
Now, on the first iteration, ¢ is set equal to 0. Beginning on the first

row and moving downward, ¢, remains 0 for £<s where s contains a source.

2
At that layer

1 _ -1 . (1)
and ¢s+1 - Bs+1 s+1 Fs+1 Ds+1s ¢

and so on through the layers:

) - 1 (M
®Ne1 T Brar e Pner N ON

At the end of the first iteration down through the layers, we calculate

the second iteration from the N+1 interface up through the layers

(2) _ -1 (2)
2} = Byp Upger %gar .

SGI-R-87-133
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This formulation can be recognized as very similar to a ray expansion
with the U and D operators propagating the wavefield from one
interface to the next and the B;; determining the transmitted and
reflected wave field at each interface. It is identical to the Generalized
Born Series approach described by Schuster (1984). |If the layer
interfaces are horizontal, the wavefield can be Fourier transformed into
a horizontal wavenumber spectra and the convolution operators U, D,
and B-1 can be easily computed and applied for each wavenumber. The
matrix equation then reduces to the familiar propagator formulation as
described in textbooks on seismology (e.g. Aki and Richards, 1980).
In general, however, application of each of these operators represents a
convolution in either the spatial or wavenumber domains. Each
convolution requires on the order of q2 operations where q is the
number grid nodes on each surface. For a model of grid size 103 x
103, this represents 1012 operations. Clearly further approximations to

each of the operators are necessary.

SGt-R-87-133
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4.0 APPROXIMATIONS TO D

2-12" Ypge1

To propagate a wavefield ¢2 from one layer boundary to an adjacent

layer boundary, we will use a Fourier transform method. Consider the
situation in Figure 2 in which we wish to propagate ¢JZ to layer
boundary £+1. If the layer boundaries £ and £2+1 were horizontal we

could apply a two dimensional Fourier transform and propagate the

wavefield by simple multiplication in the wavenumber domains.

The use of FFT's to compute the wave number spectra of the wavefield
allows us to calculate this operation in order n log n operations, where
n is the number of points defining the boundary, a large savings over

the explicit n2 operations in the (x, y, 2) domain.

Now consider the surface 22
and ¢£(x,y),

(x,y), a single-valued function of x and v

the sampled wavefield. We sample ¢2(x,y) along the

intersection of zl(x,y) and a horizontal plane gk = constant:
o, (x,v,8 ) = o,0cy,z) (88 - |zt | \ 1 anay
Y3 Y
z (8)
for gk- AE £ z, < §k + A
= 0 for z, otherwise.

where Af is the distance between planes on which a sampling of ¢>E is

+f ¢£

<[;K

is the 2 component

desired and vz of the surface normatl.

(x,y,zg) is sampled over K horizontal planes such that §1 <

then
2
J('H2+19 % *

Dpep &g (X/V12y) =

Pradn o™

S

-

SO, v|ds = A
o410 ¥V %9 ° VY =
(9) "
2 |
D ¢ (x,y.¢ .
k=1 241 K :
SGI-R-87-133
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max(Z;)

"’miﬂ(Z'”)

max ( zld)

Figure 2. Cross-section description of propagation algorithm. Field

values ¢ and V¢-3 for E_’,k_1 <2z, < E"kﬂ (shaded regions) are projected

2
: onto a plane E_,k = constant. The project field wvalues are the -
{ propagated, using Fourier transform techniques to each plane gj (j=1,4)
F on surface zgﬂ(x,)) and projected onto 2041

Nn)

l-(:n';(.I-('.'xc&-m";ﬁfﬁi-\‘.-:t{l-rl*l-:l-\i.ﬁ-"' AT I AT AT RIS
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where now Dk2 represents the operator that propagates ¢ from

horizontal level §k to layer 2.

After representing ¢£ (x,y,zg) in terms of field values on horizontal

planes, we propagate these field values to horizontal planes .gj, !;j - Af

s Zo41

of ¢2+1 on 22+1

inverse of (8) above.

£ £_’,J. + Af and use these field values to estimate the actual values

using a simple linear interpolation method that is the

Clearly, the number of operations needed to propagate the wavefield to
or from a surface is directly related to the relief on the layer. Since
the sampling and interpolating is analogous to that used in some simple
finite difference schemes, a sample interval of about 10 levels per
wavelength will be necessary. Therefore if the total relief s
comparable to many wavelengths, this technique becomes less
advantageous. However, it should be remembered that in our frequency
domain formulation, the sampling can be adapted to the frequency of
interest, with only coarse sampling necessary for the low frequencies.
Nevertheless for most problems of seismological interest, variation in the
vertical direction is much less than the horizontal dimensions; handling
wave propagation in homogeneous layers using this technique may allow
us to treat a limited set of realistic models without requiring a super-

computer.

SGI-R-87-133
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5.0 APPROXIMATION TO a;;

The operator BM is very large and completely dense (no non-zero

elements). Calculating the inverse directly is not feasible in three

dimensions; even calculating the elements and applying the operator

directly is bareiy manageable. We will apply the propagation scheme

described in the last section to compute 822 ¢2, which may provide an

; . . -1

iterative means of calculating 822 ¢2.

Consider a field incident on a boundary £, from the £-1 layer, with

field wvalues oo, V¢°-§;. Further suppose that we have an éestimate of
L, > e, > e, > - . .

the boundary values ¢ (x) = ¢ (x) and V¢ (x)-v. An initial estimate

may be ¢S(x) = ¢°(x). Then the discretized boundary interaction

equations can be written

- IR R

Cant e au e A8 4

17260 = -6l (a )+ HETTb o)+ o?
> (10)
: 17268 = &Y (a vty - HE (b ¢%).
z ! 1) J ] }
where (b‘»e)j = b(;j) Qe(yj), and the function a(;) is defined

similarly. A similar set of equations is implied for VQ?-G:

I

12v6l v = T (-G’Z’?j (ave®-i) ¢ H’zi'j1 (b¢e)j> + VoV,

(1)

(awe-?/)j - HY (boe)j)

SGI-R-87-133
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We propose to iteratively soive Equation (10) by assuming (1) that the
O‘ie depends largely on a(;) and b(;) near ; = ;i’ and (2) that a(\?) and

b(;) are slowly varying functions. Then we can write

L _ 2-1 2-1 0
(12)
g _ ) ) 2

where (i) indicates no summation is implied over i.

In Equation 12, g?, h? are defined by

©Q
n
(A
=:3
7~
<
R-3
(i)
<y
\—.\/

1/2 v«pf-%’i = -a, vV &1 b .v:v h2;1 + - v
1/2 v¢f-3i = a v.'Yg. - b, Vv Vh%

The key assumption in the above manipulations is the removal of the

unknown functions a(;) and b(;) from the convolution of the Green's
functions, Gij and Hij’ with the estimated field wvalues ¢e and Vq;e-c.
These convolutions can now be computed in a way exactly analogous

to the methods described in the previous section.

SGI-R-87-133
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Now the continuity conditions at the boundary give two equations for
the unknowns a, and bi at each grid point, which will define the
functions a(x) and b(;) necessary to update estimates of the field

values.

By applying the boundary conditions to ¢i and V¢f~§/’i, we can solve for

| the function a(;), b(;) for all surface points providing a new estimate

0 () = a(x)¢® (X)and Vof (x) rv = W° (X) -V
new old new old

The procedure is then iterated several times. The propagation methods
discussed in the previous section to propagate field values from layer to
layer can be extended to propagate field values between different areas
of the same interface. The above iterative solution has undergone only
preliminary exploration and thus its convergence properties are
currently unknown. It is an appropriate way to start investigating
methods to solve the boundary interaction problem given a

computationally feasible way to apply the operator 822'

The models provided by AFGL that we will use in the subsequent

-1
20" The

only layer boundary that varies in these dimensions is the free surface

sections of this report require no elaborate approximations to B

boundary. Furthermore, the topography is smooth enough to permit
some reasonable approximations that represent huge saving in the
calculations. At the free surface, the boundary condition is ¢=0. We
make the further assumption that V¢R-3 = -V¢°-§/’, where the
superscript, R, designates the reflected field and o, the incident field.
This assumption neglects energy that may reflect several times off of
the surface during a single interaction, such as in the "whispering
gallery" effect. This approximation is identical to the
wirchhoff-Helmhoitz approximation as described by Scott and Helmberger
(1983).

SGI-R-87-133
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6.0 AFGL MODEL CALCULATIONS

The earth structures used for the wave propagation studies are from
Cipar (Personal Comm.) and referred to as Generic Mountain, mode! 1
and model 2. Table 1 gives the model parameters, the S-wave velocity
being irrelevant for our purposes because we are dealing with acoustic
waves (i.e., we assume that the model is a fiuid). The three
dimensional variation of the model is confined to the free surface; the
lower layers are flat. As discussed earlier, this feature greatly
simplifies the calculations since propagation and interaction between flat

layers can be handled with Fourier transforms.

Figure 3 gives a contour map of the surface, and Figures 4, 5, and 6
show several cross-sections through the model. The actual model used
in the calculation is a smoothed version of that provided by Cipar
(Personal Comm.). The contours were digitized, and converted to a
regularly sampled grid using a surface inversion algorithm that
determines the smoothest unaliased surface that fits the data wvalues.
This gridding method removes the sharp corners found in the mode! as
described by Cipar (Personal Comm.) and creates a mode!l more suitable

for numerical calculations.

The source locations and receiver arrays are shown in Figure 4 and
described in Table 2. |In addition to the receiver arrays specified by
AFGL we have computed several profiles at the receiver depth in the
directions of the receivers arrays. These profiles are useful for
identifying the origin of the arrivals based upon the moveout of the

various phases.

The maximum feasible grid size for the calculation is currently 128 x
128. To obtain the maximum frequency bandwidth we performed the
calculations using two different grid node spacing depending upon the
frequency. A single grid with node spacing of 0.24 km was used to

calculate the response at the three profiles from 0 to 5.4 hz. For

higher frequencies, 5.6 to 11 hz, separate grids were used; one for the

SGi-R-87-133
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TABLE 1

MODEL 1

SEISMIC VELOCITY

LAYER P-WAVE

1 2.6
3.2
6.0

2.60
2.21
3.20
6.00

AW N =

SG!-R-87-133

S-WAVE

1.49
1.86
3.50

MODEL 2

1.49
1.27
1.86
3.50

24
DENSITY
3
g/cm
2.65 mountain
2.65 basement

2.80 granite

2.65 caprock
2.25 low velocity
2.65 basement
2.80 granite

-------
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EAST-WEST DISTANCE IN KILOMETERS
10,0 15,0 20.0 25,0 30,0 35.0 40.0 45,0 50,0
AJ V" LA L]
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10.0

15.0

20.0+

25.0 -

30. 0 1
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FIGURE 3. Contour map of surface topography of generic mountan
model. Depth units are in km.
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TABLE 2

SOURCE - RECEIVER GEOMETRY

X (N-S) Y (E-W) Z (DEPTH) LAYER
(km) (km) (km)
Source 25.0 20.0 0.8 1
RECEIVER PROFILES AT Z (DEPTH) = 0.4572 km
Profile AZIMUTHX* DISTANCE TO DISTANCE TO RECEIVER
1st RECEIVER LAST RECEIVER SPACING
(degrees) (km) (km) (km)
A 338 5 10 1
B8 67 3 10 1
C 116 5 10 1
RECEIVER ARRAYS AT Z (DEPTH) = 0.4572 km
DISTANCE AZIMUTH
ARRAY STATION X (N-5) Y (N-S) FROM SOURCE
(km) (km) (km) (degrees)
A 1 16 16 9.85 336
A 2 16 17 9.49 342
A 3 17 16 8.94 333
A 4 17 17 8.54 339
B 1 22 25 5.83 59
B8 2 22 26 6.71 63
8 3 23 25 5.39 68
B8 4 23 26 6.32 72
C 1 28 27 7.62 113
C 2 28 28 8.54 111
C 3 29 27 8.06 119
C 4 29 28 8.94 117

*Source receiver azimuth measured clockwise from N.
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A profile and one for the B and C profiles, with 1/2 the grid node
spacing used in the low frequency calculation. The high and low
frequencies for each receiver response were then merged. Ffor each
calculation, the model was sampled on a 128 x 128 grid, centered on the
area of interest. The grid was smoothly tapered to a horizontal
boundary on the edges and extended to 256 x 256 points for the
calculation. The frequency range of the calculations were from 0 to 11

hz at an interval of 0.2 hz giving a 5 s time window for each response.

Tapering and padding the model suppressed only some of the
wraparound and edge effects resulting from using the Finite Fourier
Transform in the calculations. We are still faced with aliasing and
wraparound effects that cannot be removed by simply increasing the
size of the model. These result from the implicit spatial and temporal
periodicity of the wavefield in the frequency domain using finite Fourier
transforms: the source is assumed to be both periodic in time and
located at regular intervals in space. The amplitude decay with
distance between source and receiver that results from the wave
equation cannot sufficiently attenuate arrivals from adjacent intervals
and from sources other than the one of interest. The numerical
techniques necessary to describe three dimensional wave propagation
using Fast Fourier Transforms is described by Bouchon (1979) and is
further discussed in Aki and Richards (1980). Essentially, the
response is computed using a complex value for frequency, of which the
imaginary part is assigned to suppress the amplitude of propagating
waves with distance. After computing the time domain response, the
effects of the complex frequency value can be removed for the time
window of interest by multiplying by an exponentially increasing time

function.
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7.0 RAYTRACING AND BIE CALCULATIONS FOR AFGL MODEL

To check the results, we compared the profiles with results from
Sierra's raytracing package QUIKSHOTTM The BIE formulation
presented earlier makes these comparisons easy since we can effectively
compute a ray expansion and explicitly include the same propagation
paths modeled in the raytracing. To trace rays we used model 2 as
described in the previous section and, again, simulated a fluid medium
by making the S-wave velocity negligibly small. We designed the
raytracing problem to be simple enough to easily interpret the results,
yet complex enough so that complications due to three dimensional
effects can be checked and compared. We compute what we will call the \
primary response, which includes all primary reflections from the A
subsurface layers as well as the direct wave. Because of the proximity :
of the source and receivers to the free surface we include all of the

interaction with the free surface near both the source and the

receivers. In all, 13 raypaths were deemed necessary to compute a

"primary" solution; these are schematically given in Figure 7. ]

The comparison of the BIE and raytracing results are presented in

Figures 8 and 9. The source function in all cases is a "Ricker"

wavelet, shown in Figure 10, which is the second time derivative of a

Gaussian pulse with a peak frequency response at 5.5 hz. We have

plotted both pressure and the vertical component of displacement.

There is some disagreement between the results at receivers 6, 7 and

8; note the larger relative amplitude of the second arrival. This is

because the rays interacting with the lower tlayers go through the '

critical angle at these distances. The amplitudes of the raytracing

results are least accurate near the critical angle. Overall, the
. agreement between the raytracing solution and the BIE solution is very

good, providing confidence that the BIE calculations are working

correctly. Conversely, it shows that ray tracing provides very useful

results for some problems.

To compare the AFGL models, Model 1 and 2 from Generic Mountain B,

we show the three profiles for the two models in Figures 11 to 16.
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FIGURE 7. Raypaths wused in raytlracing calculations between the
source and a single receiver . Tte rays also show conceptually the

propagation and interactions used in the BIE calculations.
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These calculations were made for the primary response, which considers

only those raypaths (or energy paths) diagrammed in Figure 7. In all
cases we give the radial component of displacement, since, for the
geometry under consideration, this will be the dominant component of
motion. The amplitudes are scaled to a pressure source with a step
function time history of 1 N-m amplitude. The seismograms have been
low-pass filtered with a frequency taper between 8.8 and 11 hz. Each
profile extends from about 5 to 10 km; the plane of the receivers (at Z
= 0.4572 km) intersected the free surface near 4 km along profiles A
and C. Therefore, the closest receiver located below the surface of the
mcuntain was beyond the distance where critical reflection from the 3.2
km interface occurs for both models (this critical distance is 2.5 km for
model 1 and 2.2 km for model 2).

The difference between the two models (i.e., the low velocity zone)
shows up in differences in the peak amplitude of the first arrivals. In
model 1 the first arrival is an interference of the direct ray, head wave
from the 3.2 km interface, the post-critical reflection from the 3.2 km
interface and all of the associated interactions with the free surface.
These arrivals are all within 0.12 s. The firs large arrival on all of
the model 1 profiles is the result of the interference of the direct wave
and the post critical reflection from the 3.2 km interface. A small head
wave from the 3.2 km/s layer becomes evident at farther ranges. In
model 2, the direct wave arrives almost 0.2 s before the post critical
refiection from the 3.2 km/s layer, which results in a more dispersed
group of first arrivals with lower peak amplitudes than for model 1. In
both models the amplitude of the later reflection from the 6 km/s

interface is similar; this arrival has a critical distance of about 8 km.

While the difference in peak amplitudes between models 1 and 2 can be
explained by the presence of the low velocity zone, the difference in
amplitudes among the three profiles may be explained by the structure
of the free surface. One large difference is at the near distance range
of 5 and 6 km: profile C shows markedly smaller peak amplitudes than
profiles A and B, which are similar. Reference to Figures 3, 4, 5 and

6 show that two effects are likely important. First, for profiles A and

SGI-R-87-133
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C, the receiver at 5 km distance is in a "shadow" for the direct wave,
i.e. a ray from the source to the 5 km receiver intersects the free
surface, which reduces the amplitude of the direct arrival. This effect
likely explains the slight amplitude differences between profiles A and
B. Second, profiles A and B encounter largely two-dimensional
structure (see Figure 3) for the wavelengths of interest; in other
words, the energy propagates along the same direction as the major
variations in the structure. The free surface interaction along profile
C is more three dimensional, the structure varying obliquely to the
direction of wave propagation, and energy is scattered out of the plane
of propagation, significantly reducing the amplitudes at the near

ranges.

The amplitude pattern among the profiles changes at the more distant
ranges (9-10 km) where profile B shows peak amplitudes less than 1,2
those of profile A and C. The reason is similar to that discussed
above. Profiles A and C are encountering two-dimensional structure at
these ranges while profile B encounters three dimensional structure that
causes significant out-of-plane scattering in the free surface

interaction.

Consideration of the more familiar wave propagation phenomena in plane
layered media indicates that at the distance ranges of interest in this
study, the primary refiections are not the dominant contribution to the
seismogram. The distances are well beyond critical, and the source is
located in a low velocity layer, which means that considerable energy is
propagating as trapped waves in the near surface layers. In our
acoustic modei, these trapped waves are analogous to the Love waves in
elastic models for the earth. To model these waves the calculations
must account for several interactions between the lower layers and the
free surface, requiring considerably more computer effort. The
convergence of the ray expansion has been considered by several
authors (e.g. Hron, 1971); we simply argue thal, since 10 km s
approximately 3 times the critical distance, we can reasnnably expect to
model these waves by considering up to three reflections from the lowner
layers.

SGI-R-87-133
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We performed the more complete calculations only for Model 2 because of
the effort involved. Large differences between the two results are not
expected, and, given the level of approximation involved by neglecting
many important elastic effects (such as Rayleigh waves), it is not
expected that meaningful comparisons between the two models would
result. Figures 17 through 19 show the radial displacement components
for the three profiles for Model 2. In all instances the trapped waves
dominate the responses; there is very little amplitude decay with
distance. Now it is profile B that shows consistently larger amplitudes
out to a distance of 9 km. Again, the waveforms for profiles A and C
are remarkably alike, although the amplitudes on the near traces are
about 25% larger on profile A. The three dimensional structure between
the source and the near receivers on profile C is likely causing the
reduced amplitudes; the similarity in waveforms between A and C is

remarkable in view of the very different waveforms for profile B.

From the prcfiles presented in Figures 17-19 we see that interpreting
trapped waves, or equivelently, surface waves that have propagated
through arbitrary three-dimensional structures will be difficult. More
modeling studies will be necessary to determine data analysis techniques
that can map observable features onto structural parameters. Faster
computers and improved algorithms for quickly calculating partial
solutions are essential for learning how to interpret and predict

three-dimensional wave propagation effects.

To wverify the completeness of the solution within the context of an J
acoustic model, we computed complete synthetics using a wavenumber
integration method (VESPATM) developed by Apsel (1979) for a
flat-layered acoustic approximation to Model 2. The model was modified
so that the free surface was at a depth of 0.4 km, with the source, ’ h
receivers, and deeper structure unchanged. The results are shown in 5
Figure 20. Although a seismogram by seismogram comparison is not very
revealing, many of the features in the profiles computed by the BIE
method are found in the VESPA solution. In particutar, the
approximate, relative decay of amplitudes is similar, as well as the

duration of the high amplitude portions of the seismograms.

- awraa S S-S S
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We present the calculations for each of the three receiver arrays for
both the primary and extended response caiculated for Model 2. The
traces have been convolved with a Ricker wavelet, peaked at 5.5 hz, to
. simulate the source spectrum as suggested by AFGL; the wavelet and
its spectrum are shown in Figure 10. Figure 21 through 23 show the
. vertical and radial primary responses for the three arrays. Table 2
gives the array locations. The variations, within the arrays, of the
relative amplitudes and the waveforms are slight indicating that the
primary response is stable over 1 km distances. There is some
amplification at station B-3 over what would be expected from normal
decay with distance from the source. Array B shows the largest peak
amplitude variation, only part of which is due to source-receiver

distance.

The amplitude and waveform stability of the primary response is in
contrast to the variations observed in the extended response. Figures
24-26 give the radial and vertical displacement response, including y
multiples up to the third order, for each array. Now peak amplitude
variations of a factor of 2 between stations become evident for arrays A
and C. This wvariation is larger than that associated with normal decay
of amplitude with distance as can be seen by examining Figure 20. The
amplitude wvariations are the result of subtle differences in the way the
muitiple responses combine. There is no obvious way to predict these
amplitude variations short of modeling; it is very difficult to explain the g

behavior in the modeling results in terms of simple wave phenomena.

For the frequencies and wavelengths considered here, (<10 Hz, >0.25
km) the effects of surface topography on the amplitude and duration of f
strong shaking is not large compared to typical uncertainties in
seismology arising from unknown velocity structure. Given these
unknowns, the amplitude prediction from a flat layered wave-number
integration method or even a generalized ray method are adequate.
Given the dominance of the waveguide effects, either of these methods

will be much more satisfactory than simple ray tracing.
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8.0 CONCLUSION AND RECOMMENDATIONS

The modeling results presented in this report represent an initial effort
at calculating the response of three dimensional structures. We have
successfully demonstrated that wave propagation in a limited class of
acoustic models can be numerically simulated. Because the results in
this report rely on acoustic models, the amplitude predictions for what
are essentially surface waves must be interpreted carefully. It is
expected that the Rayleigh waves will contribute to the solution as much
or more than the trapped waves in the above calculations. Since these
propagation modes travel at less than the S-wave velocity, the duration
of large amplitude motion will be increased. The Rayleigh waves will
also be most affected by the surface topography and nothing in these
calculations is useful to predict these effects,

The techniques developed in this report will be useful for certain
elastic problems in which multiple interaction between boundaries are
not important. Problems concerning three dimensional madeling of
reflection seismograms of teleseismic body waves are examples. The
propagation algorithm presented in this report has proven to be
economical for propagating a wavefield from one boundary to another in
a three dimensional structure. It remains to develop an algorithm to

efficiently compute the boundary interaction terms.

SGI-R-87-133




LG RN B L RE AR NE SRR AR RN A KN LN RN A KK AN AT L A e e I ON N RN o g & av Al ab 1, 3% A%s &'

59

| 9.0 REFERENCES

Alterman, 2Z2.S5. and F.C. Karal, Jr., 1968, Propagation of elastic
‘ waves in layered media by finite difference methods, Bull.
| Seismol. Soc. Am., 58, 367-398
i
|

Apsel, R.J., Dynamic Green's functions for layered media and

applications to boundary-value problems, Ph.D Thesis, University

of California, San Diego, 349 p

Apsel, R.J., R.K. Wyss and G.R. Mellman, 1983, Three-dimensional
wave propagation using boundary integral equation techniques,
Sierra Geophysics Technical Report for DARPA, Contract No.
N00014-81-C-0148

Apsel, R.J., G.R. Mellman and P.C. Wong, 1985, Three-dimensional
wave propagation using bocundary integral equation techniques,
Sierra Geophysics Technical Report AFGL-TR-85-0245, ADA164498

Banaugh, R., 1962, Scattering of acoustic and elastic waves by

surfaces of arbitrary shape, Ph.D Thesis, University of California,

Lawrence Radiation Laboratory

Boore, D.M., 1972, Finite difference methods for seismic wave

propagation in heterogeneous materials in Seismology: Surface

Waves and Earth Oscillations, (Methods in Computational Physics,

Vol. 11), New York: Academic Press

1329-1344

Bouchon, M., 1979, Discrete wave number representation of elastic
wavefields in three-space dimensions, J. Geophys. Res., 84,
3609~3614

)
|
Berryhili, J.R., 1979, Wave equation datuming, Geophysics, 44,
|
\
|

|
|
SGI-R-87-133
|
|
\

T Y , g . P AT "R s 28 P R m A~ R PR PR "RD " [ N A L S S S - '
&ﬁﬁﬁxltzdkfdzﬂﬂ(mﬁ‘ﬁ’n‘:ﬁﬁ VRS L N S PN A N T N N i A A N R A T A A T A T PV



2 g

3

R

s} AL TS % T T5 ] N e N " P T P
e Y )

WA RN )

L™

‘p k' *g 4l PR AT IR VTS UN YUY WL VY U Y UY W LT O R AN AU T R W TR TN R Sah rak +

Cipar, J.J., 1985, (Private Communications)

Cole, D.M., 1980, A _numerical boundary integral equation method

for transient motions, Ph.D Thesis, California Institute of

Technology, 228 p.

deHoop, A.T., 1958, Representation theorems for displacement in an

elastic solid and their application to elastodynamic diffraction

theory, D.Sc. Thesis, Technische Hogeschool, Delft, The
Netherlands

Ferguson, J.F., Geophysical _investigations of Yucca Flat, Nevada,
Ph.D Thesis, Southern Methodist University

Hilterman, F.J., 1970, Three dimensional seismic modeling, Geophysics.
35, 1020-1037

Hron, F., 1971, Criteria for selection of phases in synthetic
seismograms for layered media, Bull. Seismol. Soc. Am, 61,
765-799

Koslof, D.D. and E. Baysal, 1982, Forward modeling by a Fourier
method, Geophysics, 47, 1402-1412

Mellman, G.R., R.S. Hart, G.M. Lundquist and D.M. Hadley, 1982,
Investigations of near-source structural effects on body waves,
Part | - Yucca Flats, Sierra Geophysics Technical Report for
DARPA, Contract F08606-79-C-0009

Morse, P.M. and H. Feshbach, 1953, Methods of Theoretical Physics,
New York, McGraw Hill Book Company, Inc., 1978 p.

SGI-R-87-133

Pl i e I



Schuster, G.T., 1983, Some boundary integral equation methods and

their application to seismic exploration, Ph.D Thesis, Columbia
University

Scott, P.F. and D.V. Helmberger, 1983, Applications of the Kirchhoff-
Heimholtz integral to problems in seismoiogy, Geophys. J.R.
astr. Soc, 72, 237-254

Stratton, J.A., 1941, Electromagnetic Theory, New York, McGraw-Hill
Book Company, Inc.

Vidale, J.E., 1987, Application of two-dimensional finite-difference

wave simulation to earthquakes, earth structure and seismic

hazard, Ph.D Thesis, California Institute of Technology, 149 p.

SGI-R-87-133

.. » RO TR LA e
DECMCRA WA P W ol W WO W L M M M o7 M W o Ly







