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1.0 SUMMARY

Approximations to the boundary integral equation (BIE) formulation for

acoustic wave propagation permit simulation of acoustic waves in

layered earth models with three dimensional layer boundaries. The

complete BIE solution is approximated by a series expansion analogous

to the more familiar generalized ray expansion widely used in

seismological modeling. A layer to layer propagation algorithm is

presented which is efficient enough to perform three dimensional wave

propagation on a modern minicomputer equipped with an array

processor. With an efficient propagation algorithm, iterative methods

for computing the layer coupling are feasible. The "ray expansion"

approach is most useful for approximating solutions on wave propagation

problems in which multiple interaction between boundaries can be

ignored.

The approximate BIE method is applied to an acoustic model of a

mountain in which a flat layered velocity structure is overlain by three

dimensional topography. For the solution that includes primary

reflection from the layered velocity structure and their corresponding

interaction with the topography, amplitude variations between several

profiles can be interpreted as they relate to the topography along the

profile. The location of the source and receivers on the near surface,

low-velocity material introduces strong acoustic waveguide effects

equivalent to Love waves in an elastic medium. Modeling these guided

waves requires including waves that reflect from the subsurface velocity

structure and interact with the free surface several times. These

guided waves dominate the solution over the source-receiver geometry

of interest. Peak amplitudes vary by a factor of 2 for stations spaced

at 1 kin; apparently the result of subtle changes in the interference of
waves that have interacted with the free surface in different ways.

The effect of three dimensional structure on peak amplitudes and

waveforms of these guided waves will be difficult to predict.

SGI-R-87-133
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2.0 INTRODUCTION

Efforts to understand the detailed structure of the earth requires the

capability to numerically model seismic wave propagation in complex two-

and three-dimensional structures. Computational techniques for

modeling wave propagation in complex structures range from simple ray

tracing to finite difference and finite element methods. Ray tracing

methods are elegant, conceptually simple to grasp, and form the

intuitive basis for understanding many types of wave phenomena. As

an interpretation and modeling tool, they are indispensible for

understanding the results of more complex calculations. For more

complete solutions, finite difference methods have received widespread

attention (e.g. Alterman and Karal, 1968; Boore, 1972; Kosloff and

Baysal, 1982, Vidale, 1986). These methods have large computational

requirements and it is not currently feasible to treat three-dimensional

problems. Further advances in computer technology, particularly in the

development of large parallel machines will remedy this situation.

However, alternative approximate methods that provide insight into

complex wave phenomena will always be necessary.

One method for posing wave propagation problems, dating from the

early nineteenth century, is the Boundary Integral Equation (BIE)
technique in which a wavefield in a region of interest is represented by

the values of the field and its gradient along a bounding surface. While

finite difference methods require sampling the wavefield in all spatial

dimensions, the BIE method requires that the wavefield be sampled only

along surfaces, which, at first glance, appears to be a huge saving of

effort in a three-dimensional problem. However, while the interaction

between samples in a finite-difference model is local, the interaction

between samples in a BIE representation is global: each point on a

surface interacts with every other point on the same surface and the

adjacent surfaces. Thus, for complex interaction of several boundaries,

(i.e. "lots of multiples" in raytracing terminology) it is not yet clear

that the BIE method represents an advantage. However, for problems

in which the interaction between boundaries is not severe (i.e. if

primaries and low order multiples are of interest), then BIE methods

SGI-R-87-133
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are an attractive alternative, particularly when propagation over many

wavelengths in a homogenous media is involved.

Several treatments of the BIE formulation have appeared in the

geophysical literature in recent years. Cole (1980) presented a

time-domain formulation for two-dimensional acoustic problems. For

many problems of seismological interest, this approach will be

unsatisfactory since it is difficult to suppress edge reflections and

include realistic attenuation. A frequency-domain treatment of the

two-dimensional elastic problem was studied by Ferguson (1982). Both

methods failed to handle the interaction integrals efficiently enough to

extend the results to three dimensions with current computer

technology. Schuster (1984) has studied several approaches to

efficiently solving the BIE's. He presents an iterative solution that is

directly analogous to familiar ray expansions used in plane-layered

media and, thus, has a strong intuitive basis. His formulation lends

itself to a variety of useful approximations and hybridizations; it is

virtually identical to the approach that we have adopted in the following

report.

Apsel et al. (1985, 1983) has formulated a frequency domain approach

that is stable, involves no matrix inversions, and that can include the

effects of realistic material properties such as attenuation. The

formulation i.z designed to calculate the total response, including all

kinematic and dynamic effects using a specially designed pertubation

treatment. The method appears to be more cost-effective than finite

difference algorithms, however computational demands for a three

dimensional model are still much too large for routine treatment.

An attractive feature of the BIE method is that it readily leads to

intuitively appealing approximations that allow some hope for

understanding complex wavefields in terms of simpler wave propagation

concepts such as rays, diffraction, reflection and transmission. An

example is the Kirchhoff approximation (Hilterman, 1970; Berryhill,

1979; Scott and Helmberger, 1982; Mellman et al., 1982) in which the

BIE equation is broken up into separate calculations for the propagation

SGI-R-87-133
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between layer interfaces and for the interaction along individual layer

boundaries. The self interaction is approximated by treating each point

as if the incident wavefield is a plane wave and the interface is a plane

oriented along the tangent to the surface at that point. Interaction

between two points on the same boundary is not considered and so this

approach is only valid if the topography along an interface is not

severe enough to introduce multiple scattering; i.e. waves reflected

from one part of an interface to another part of the same interface are

negligible. For the models that we will treat in this report, we will use

this assumption.

In the following, we will first review the BIE fornulation as presented

in Apsel et al. (1983, 1985) and provide details of some useful

approximations. Then we will apply the methods to some realistic

calculations to model strong ground motions on a mountain where

topography is expected to have significant effects on the wave

propagation.

SGI-R-87-133
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3.0 GENERAL FORMULATION OF BIE METHODOLOGY

The boundary integral equations describing wave propagation through

arbitrary three-dimensional elastic multilayered media are derived in two

steps. First, wave propagation within a single irregular, homogeneous

layer is described by integral representations using the full space

Green's functions with properties of that layer. Second, the wavefields

in each irregular layer are constrained to interact at the layer

boundaries to satisfy all of the boundary and continuity conditions,

which leads to a system of integral equations for the unknown boundary

values. Once this system of equations is solved for the boundary

values, the wavefield may be calculated at all of the receiver positions

of interest using the integral representations of the first step.

The model geometry for the wave propagation problem solved in the BIE

formulation is depicted in Figure 1 by N irregular layers overlying a

semi-infinite half-space. The layers are allowed to pinchout but not to

cross in this formulation. Each layer is characterized by constant

shear and compressional wave velocities and constant densities.

Material attenuation may be introduced by allowing the velocities to be

complex. Wave propagation within a given layer is expressed in terms of

the Green's functions for a full-space with the properties of that layer.

The formulation is not restricted to constant material properties within a

given layer, although the Green's functions for that case are quite

simple. In the following, the formulation is presented for the acoustic

case. Most of the corresponding elastic derivation is presented in

Apsel et al. 1983.

In the acoustic case, the field values pressure, P, and particle velocity,

can be described in terms of a potential, 4 (see Morse and

Feshback, 1953):

I,

aSGI-R-87-133
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.... boundary S,-

Figure 1. Cross-sectional model geometry for layered half-space used
in BIE method formed by N irregular layers overlying
uniform half-space, with each layer characterized by
constant material properties. The source and receiver can
be located anywhere in the medium.

~~~~~~a e £. N . . . . . .
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S 1 V~
P

The potential, 0, then satisfies the wave equation:

V2 - 1 a20 0 (1)

a2 at 2

where a is the acoustic velocity and p is the density.

If we define the Fourier transform with respect to time as

o + iwt
X (W) f (x,t) e dt

-0*

then we have the Helmholtz equation

V2 * + k = 0 (2)

withk 2 = 22

The first step in the formulation is to write expressions for the

potential field within a single layer without consideration of the

boundary interaction. In layer I (k=1,2,...,N+1), the potential must

satisfy the homogeneous (P.# s) or inhomogeneous (Q=s) equations of

motion (depending on whether or not the source is located in layer 2)

for a full-space with properties of layer 2. The Kirchhoff integral

SGI-R-87-133
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representation (e. g. Stratton, 1948) or, equivalently, the

Representation Theorem of Elastodynamics (deHoop, 1958) provide

an expression for the potential located anywhere within

volume V. containing layer I in terms of integrals of the potential and
its normal field over the bounding surface of volume V£ multiplied by

the corresponding Green's functions for a full-space with properties of
4

that layer. The potential at location xI can then be written in the

frequency domain using the integral representation for a volume V.

bounded by layer interfaces SR and 5£+ 1 .

S£

I
H (x£,;y4) (Y )]dS(y2 )

[ Q _), P) +1 '£
- fI G(XIYI+)4 (Yk )-

S9+1

ksk+1

H£ (x 2 ,y 24 1 )4) (y2 +1  dS(y 2 1

+ 6Q f [GQ (x2 1z)f(G2 )] dV(z ) (3)

V2

in which the frequency arguments have been omitted for brevity and

Ym an integration point on bounding surface Sin;

SGI-R-87-133
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G (x 2,ym) the full-space Green's function for the potential
i at location ym on surface S due to point force in
the i-direction at location x mith properties oflayer 2;

4$0 (yM) = V0 (ym V ( )

H V Vy G (xy 2 )

f (Zn) the source function at location z anywhere in
layer 1 (assuming the source is a Delta-function
in space, then the volume integral reduces to the
evaluation of the integrand at point z2 );

1, if £=s1, if =s ,s= source layer number;

1, if x2 inside layer £
. -2

C(x)= , if x on surface bounding layer £

0, if x9 outside layer £

In Eq. (1), the layer comprising volume V is assumed to extend to

infinity at the horizontal extremes to eliminate the surface integrals

along those portions of the surface bounding volume VR and the

negative sign for the integral over surface S£+ 1 is associated with using
S2+I -+.1

the upward normal v : -v in the definition of the traction
components. Once the boundary values for 4(/) and p(. ) are

YM m
determined for bounding interfaces S£ and S +1 , Eq. (1) can then be

used to obtain the displacement field at any point x2 iwthin layer 2.

Expressions for the full-space elastic Green's functions with constant

SGI-R-87-133
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material properties are given in Appendix A of Apsel et al., 1983 for

two and three dimensional wave propagation in elastic as well as

acoustic media. This completes the propagation step of the BIE

formulation and it remains to impose the boundary interaction coupling.

The boundary interaction coupling requires simultaneous satisfaction of

a pressure-free surface (interface 1) and both continuous pressure and

normal components of velocity across each layer interface (2,3,...,N+1).

The coupled boundary integral equations arising from the continuity

conditions across each layer interface, S£ (9=2,3,... ,N+1), are obtained

by evaluating Eq. (4) in volumes V and V2 (layers k-1 and 2) at a
R-1k

discrete number (q£) of observations x2 along common surface S and
R2

imposing the boundary conditions:

_02-12
(x R 0 ¢(XR) and 1 t - = 1 4,

PR- 1  P2

for all quadrature points y9 on surface S . To derive an integral

representation for 0 when 0 is on the boundary requires special

treatment of the singularities present in the Green's functions G and

H Integration of the singularities is straightforward and is discussed

in work by Scott (1985), Cole (1980) and Banaugh (1962).

The resulting set of equations, for 2 = 1 to N+1, are

SGI-R-87-133
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2-1 - 2-1 ~1d(-
H 02~1 * Y- S -

21 42-1 4-1H (x 21 y) (vy) dS(y 2 ) +

6 2 1 F(X4 (4)

and

( f [GE (x 42 (4)

SR H)o dS(' 2

(5)

H i(x k, y 9+1 ) (Yf)I dS(Yi. 1 )

6 k F( k(i,j=1,2, 3 ), (2=2,3,..N1)

where F(x 9) f Gk(x k, z)f(z2 ) dV (z ).

SGI-R-87-133
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Equations (4) and (5) represent a simultaneous set of 2qI Fredholm
integral equations of the second kind for the same number of unknown

boundary values, 0£ and 9 on surface S., which are coupled to the

unknown boundary values on surface S and S£+ through the
integrals over surfaces S _I and S respectively. Note that when

1 -*R=1 or 2=2 in Eq. (4), then the term involving 0 (y 1 ) is identically zero

because of the tractionless free-surface conditions. Also, note that
when R=N+1 in Eq. (5), then the integral over surface S.+1 vanishes by
virtue of the radiation conditions implicit in the Green's functions for

the underlying semi-infinite space. Boundary integral equations (4)

and (5) are evaluated at a discrete set of q. example points xR on each

boundary S£ with sample points from one boundary becoming Green's
function quadrature points for the next boundary. When completely

discretized, Equations (4) and (5) represent a coupled system of
singular Fredholm integral equations of the second kind for the

unknown boundary values along all layer boundaries. Singularities

occur in the Green's functions when quadrature point Ym approaches

observation point xm in the second integral in Eq. (4) and the first
integral in Eq. (5). Singularities can also occur in the Green's

functions when to adjacent layer boundaries intersect and would be
evidenced in the first integral in Eq. (4) or the second integral of Eq.

(5), depending on where the intersections occur.

To compute a numerical approximation to (5) we discretize the integral

equations to form matrix operations. First it is convenient to introduce

some additional shorthand:

G Gm(xi, ) y (y) dS(y.)

H m 0 H-,dS
I )I j ( j yHm CJ Hm(xi,y' )€ (y.) dS(y.)

M m%here G ,H are the Green's functions giving the response at point x
on the ith layer due to a source at point y on the jth layer with

SGI-R-87-133
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acoustic properties amI Pm' (m = i or j). The forcing term can be

written as

F.= I r (. GJ (p.,z) dZ.Fif f (z G ( i, j li

V

where F.. is the response at point x on boundary i due to a distribution
-+ th

of sources on z in the j layer.

We define submatrices, D (downgoing) and U (upgoing):

D -1 G2-1
-11 -1

the boundary interaction matrix:

H -G - 1/2 II =£ G£ 12I
-HG - 12£

and the forcing function matrix:

IF F

where I is the identity matrix.

The unknown boundary values are written:

SGI-R-87-133
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Then the integral equation (5) can be written as a system of equations:

F, B 11  U 1 2  01 (6)
D21 B 2 2  U2 3  4-2

FN+1 D N+1N BN+1 N+1 N+1

Note that the free surface boundary conditions can be included by

explicitly constraining 0)

and that the radiation conditions are explicitly included by not allowing

any upgoing waves from the N+1 region.

Despite a simple form, Equation (6) represents a formidable computational

effort. Each submatrix is dense and for problems of seismological

interest, say with grids of 1000 x 1000 nodes, when propagation over

many wavelengths is of interest, the U, D, and B matrices are of
6 6

order 10 x 10 in size. Obviously this formulation is only of symbolic

utility and some approximations are necessary. Furthermore, decomposition

into simpler, although approximate, methods is useful from the standpoint

of understanding the complex wave interactions in terms of the physical

parameters of the model.

Several ways to approximate a solution to Equation (6) may be suggested

by considering simple iterative solutions to ordinary systems of equations

of the same form. Formally, these solutions are known as Born

approximations (Schuster, 1983) but here we use a heuristic approach

to develop the same ideas.

SGI-R-87-133
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Consider the well known Gauss-Seidel iteration method for ordinary

linear equations where the ith iteration is given by:

40(i) -1 F D 1>(-1) U) 0+1(7
2 = B- [F - 2 1 4 (i-1) .4 (i-1)] (7)2(i k£ FR -D£1 2£-1 - 9U2+1 P-+1I

0

Now, on the first iteration, (V is set equal to 0. Beginning on the first

row and moving downward, 4, remains 0 for R<s where s contains a source.

At that layer

4(1) B_ B 1  (F
1-s ss FS

and 4(1) B 1  D(1)-s+l = s+Is+l Fs+I - s+I s s

and so on through the layers:

d1 1 DN4 ( 1

N+1 BN+1 N+1 N+1 N N

At the end of the first iteration down through the layers, we calculate

the second iteration from the N+1 interface up through the layers

)(2) 1  U )(2)
2 B22 k+1

SGI-R-87-133
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This formulation can be recognized as very similar to a ray expansion

with the U and D operators propagating the wavefield from one

interface to the next and the B determining the transmitted and
reflected wave field at each interface. It is identical to the Generalized

Born Series approach described by Schuster (1984). If the layer
interfaces are horizontal, the wavefield can be Fourier transformed into

a horizontal wavenumber spectra and the convolution operators U, D,
-1

and B can be easily computed and applied for each wavenumber. The

matrix equation then reduces to the familiar propagator formulation as

described in textbooks on seismology (e.g. Aki and Richards, 1980).
In general, however, application of each of these operators represents a

convolution in either the spatial or wavenumber domains. Each
2

convolution requires on the order of q operations where q is the
number grid nodes on each surface. For a model of grid size 103 x

3 1210 , this represents 10 operations. Clearly further approximations to

each of the operators are necessary.

SGI-R-87-133
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4.0 APPROXIMATIONS TO D£_If, U22 +1

To propagate a wavefield 49 from one layer boundary to an adjacent

layer boundary, we will use a Fourier transform method. Consider the

situation in Figure 2 in which we wish to propagate % to layer

boundary f+1. If the layer boundaries £ and Q+1 were horizontal ve

could apply a two dimensional Fourier transform and propagate the

wavefield by simple multiplication in the wavenumber domains.

The use of FFT's to compute the wave number spectra of the wavefield

allows us to calculate this operation in order n log n operations, where

n is the number of points defining the boundary, a large savings over

the explicit n 2 operations in the (x, y, z) domain.

Now consider the surface zf (x,y), a single-valued function of x and

and *f(x,y), the sampled wavefield. We sample %f(xy) along the

intersection of zR(x,y) and a horizontal plane tk = constant:

ak

4 (x,Yk)= 0R(x,y,zR) ( - I z-tRI )1 dxdy

(8)

for tk- < At < k + A t

= 0 for zR otherwise.

where At is the distance between planes on which a sampling of (P is

desired and vz is the z component of the surface normal. if (V

(x,y,zf) is sampled over K horizontal planes such that < z < K

then

D,, (x'y'z) $ (-H'+lp 09 +
p

f~f

G +i1 V 0£ • v dS :

(9)
K

k l DR +1  k 0 (x,y, k

SGI-R-87-133
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A
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,j -- ' max (Zl )

Figure 2. Cross-section description of propagation algorithm. Field

values (p and Vi(p. for t k-1 < z 2 < t k+I (shaded regions) are projected

onto a plane t k = constant. The project field values are the

propagated, using Fourier transform techniques to each plane tj (0=11,J)

on surface z -l (X, ) and projected onto z+ .
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where now Dkk represents the operator that propagates 4' from

horizontal level tk to layer 2.

After representing 4) (x,y,z 2 ) in terms of field values on horizontal

planes, we propagate these field values to horizontal planes cj, tj -

< z£+1 < Z+ + At and use these field values to estimate the actual values

of @£+1 on zk+ 1 using a simple linear interpolation method that is the

inverse of (8) above.

Clearly, the number of operations needed to propagate the wavefield to

or from a surface is directly related to the relief on the layer. Since

the sampling and interpolating is analogous to that used in some simple

finite difference schemes, a sample interval of about 10 levels per

wavelength will be necessary. Therefore if the total relief is

comparable to many wavelengths, this technique becomes less

advantageous. However, it should be remembered that in our frequency

domain formulation, the sampling can be adapted to the frequency of

interest, with only coarse sampling necessary for the low frequencies.

Nevertheless for most problems of seismological interest, variation in the

vertical direction is much less than the horizontal dimensions; handling

wave propagation in homogeneous layers using this te:hnique may allow

us to treat a limited set of realistic models without requiring a super-

computer.
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-1i
5.0 APPROXIMATION TO B£ 2

The operator B is very large and completely dense (no non-zero

elements). Calculating the inverse directly is not feasible in three

dimensions; even calculating the elements and applying the operator

directly is barely manageable. We will apply the propagation scheme

described in the last section to compute B *0, which may provide an

iterative means of calculating B2 2 1£.

Consider a field incident on a boundary 2, from the k-1 layer, with

field values V0, V.. Further suppose that we have an estimate of

the boundary values £ (x,) = 0 (X) and V0 (X)-v. An initial estimate

may be e (X) = 0 (x). Then the discretized boundary interaction

equations can be written

1/2 Of -GR-1 (a e-V + .- (b*e + 0E 1/2 j IJ i

2 ( 2 e (10)
1iIi11, i Gj (a e l V0VuH (b )i

e - ewhere (boe)j = b(y.) 0 (yj), and the function a(y) is defined

similarly. A similar set of equations is implied for V0. V:

j -*- e - R 1-1,2 V0£ : v.V G (aV dVe + H 2 1  (boe), + V "., ,j _ ,J °

(11)1/2 V4-. . = k( G *V G' *v - H' (be)j

I i ij a? e )ji I

SGI-R-87-133
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We propose to iteratively solve Equation (10) by assuming (1) that the

.l depends largely on a( ) and b(y) near = ., and (2) that a(y ) and

b(y) are slowly varying functions. Then we can write

if-h .-1 + o

112+ b h. +1/ -a = " (i) gi- + (i)

=(12)

i a(i )  gi - b i h.

where (i) indicates no summation is implied over i.

n nIn Equation 12, g hi are defined by

Gn.  )je

hn = n  ,e _,gi Gij V j

For Equation 11 we have

-2- -1 h .2-1 -*

1/2 VO' 4. = -a. 'V g. + b .v ;V h + * V
1vi  i -

1/2 V4v . = a. VVg. b. v V W
I I I I I I

The key assumption in the above manipulations is the removal of the

unknown functions a(y) and b(4) from the convolution of the Green's

functions, Gij and Hi, with the estimated field values 0e and V e.v.

These convolutions can now be computed in a way exactly analogous

to the methods described in the previous section.

SGI-R-87-133
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Now the continuity conditions at the boundary give two equations for

the unknowns a. and b. at each grid point, which will define theI I

functions a(x) and b(x) necessary to update estimates of the field

values.

By applying the boundary conditions to Oi and VO-i, we can solve for

the function a(*), b( ) for all surface points providing a new estimate

4e (.) = a(e)e (x)andVe (,) _ , = Ve (,) _v

new old new old

The procedure is then iterated several times. The propagation methods

discussed in the previous section to propagate field values from layer to

layer can be extended to propagate field values between different areas

of the same interface. The above iterative solution has undergone only

preliminary exploration and thus its convergence properties are

currently unknown. It is an appropriate way to start investigating

methods to solve the boundary interaction problem given a

computationally feasible way to apply the operator B£.

The models provided by AFGL that we will use in the subsequent

sections of this report require no elaborate approximations to B 1 The

only layer boundary that varies in these dimensions is the free surface

boundary. Furthermore, the topography is smooth enough to permit

some reasonable approximations that represent huge saving in the

calculations. At the free surface, the boundary condition is O=o. We

make the further assumption that V -V0-v where the

superscript, R, designates the reflected field and o, the incident field.

This assumption neglects energy that may reflect several times off of

the surface during a single interaction, such as in the "whispering

gallery" effect. This approximation is identical to the

Kirchhoff-Helmholtz approximation as described by Scott and HeImberger

(1983).

SGI-R-87-133
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6.0 AFGL MODEL CALCULATIONS

The earth structures used for the wave propagation studies are from

Cipar (Personal Comm.) and referred to as Generic Mountain, model 1

and model 2. Table 1 gives the model parameters, the S-wave velocity

being irrelevant for our purposes because we are dealing "ith acoustic

waves (i.e., we assume that the model is a fluid). The three

dimensional variation of the model is confined to the free surface; the

lower layers are flat. As discussed earlier, this feature greatly

simplifies the calculations since propagation and interaction between flat

layers can be handled with Fourier transforms.

Figure 3 gives a contour map of the surface, and Figures 4, 5, and 6

show several cross-sections through the model. The actual model used

in the calculation is a smoothed version of that provided b Cipar

(Personal Comm.). The contours were digitized, and converted to a

regularly sampled grid using a surface inversion algorithm that

determines the smoothest unaliased surface that fits the data values.

This gridding method removes the sharp corners found in the model as

described by Cipar (Personal Comm.) and creates a model more suitable

for numerical calculations.

The source locations and receiver arrays are shown in Figure 4 and

described in Table 2. In addition to the receiver arrays specified by

AFGL we have computed several profiles at the receiver depth in the

directions of the receivers arrays. These profiles are useful for

identifying the origin of the arrivals based upon the moveout of the

various phases.

The maximum feasible grid size for the calculation is currentl 128 \

128. To obtain the maximum frequency bandwidth we performed the

calculations using two different grid node spacing depending upon the

frequency. A single grid with node spacing of 0.24 km was used to

calculate the response at the three profiles from 0 to 5.4 hz. For"

higher frequencies, 5.6 to 11 hz, separate grids were used; one for the

SGI-R-87-133
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TABLE 1

MODEL 1

SEISMIC VELOCITY DENSITY

LAYER P-WAVE S-WAVE g/cm3

1 2.6 1.49 2.65 mountain

2 3.2 1.86 2.65 basement

3 6.0 3.50 2.80 granite

MODEL 2

1 2.60 1.49 2.65 caprock

2 2.21 1.27 2.25 low velocity

3 3.20 1.86 2.65 basement

4 6.00 3.50 2.80 granite

SGI-R-87-133
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TABLE 2

SOURCE - RECEIVER GEOMETRY

X (N-S) Y (E-W) Z (DEPTH) LAYER
(km) (km) (km)

Source 25.0 20.0 0.8 1

RECEIVER PROFILES AT Z (DEPTH) = 0.4572 km

Profile AZIMUTH* DISTANCE TO DISTANCE TO RECEIVER
1st RECEIVER LAST RECEIVER SPACING

(degrees) (kin) (km) (km)

A 338 5 10 1
B 67 3 10 1
C 116 5 10 1

RECEIVER ARRAYS AT Z (DEPTH) = 0.4572 km

DISTANCE AZIMUTH
ARRAY STATION X (N-S) Y (N-S) FROM SOURCE

(km) (km) (km) (degrees)

A 1 16 16 9.85 336
A 2 16 17 9.49 342
A 3 17 16 8.94 333
A 4 17 17 8.54 339

B 1 22 25 5.83 59
B 2 22 26 6.71 63
B 3 23 25 5.39 68
B 4 23 26 6.32 72

C 1 28 27 7.62 113
C 2 28 28 8.54 111
C 3 29 27 8.06 119
C 4 29 28 8.94 117

*Source receiver azimuth measured clockwise from N.
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A profile and one for the B and C profiles, with 1/2 the grid node

spacing used in the low frequency calculation. The high and low

frequencies for each receiver response were then merged. For each

calculation, the model was sampled on a 128 x 128 grid, centered on the

area of interest. The grid was smoothly tapered to a horizontal

boundary on the edges and extended to 256 x 256 points for the

calculation. The frequency range of the calculations were from 0 to 11

hz at an interval of 0.2 hz giving a 5 s time window for each response.

Tapering and padding the model suppressed only some of the

wraparound and edge effects resulting from using the Finite Fourier

Transform in the calculations. We are still faced with aliasing and

wraparound effects that cannot be removed by simply increasing the

size of the model. These result from the implicit spatial and temporal

periodicity of the wavefield in the frequency domain using finite Fourier

transforms: the source is assumed to be both periodic in time and

located at regular intervals in space. The amplitude decay with

distance between source and receiver that results from the wave

equation cannot sufficiently attenuate arrivals from adjacent intervals

and from sources other than the one of interest. The numerical

techniques necessary to describe three dimensional wave propagation

using Fast Fourier Transforms is described by Bouchon (1979) and is

further discussed in Aki and Richards (1980). Essentially, the

response is computed using a complex value for frequency, of which the

imaginary part is assigned to suppress the amplitude of propagating

waves with distance. After computing the time domain response, the

effects of the complex frequency value can be removed for the time

window of interest by multiplying by an exponentially increasing time

function.
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7.0 RAYTRACING AND BIE CALCULATIONS FOR AFGL MODEL

To check the results, we compared the profiles with results from
TMSierra's raytracing package QUIKSHOT T . The BIE formulation

presented earlier makes these comparisons easy since we can effectively

compute a ray expansion and explicitly include the same propagation

paths modeled in the raytracing. To trace rays we used model 2 as

described in the previous section and, again, simulated a fluid medium

by making the S-wave velocity negligibly small. We designed the

raytracing problem to be simple enough to easily interpret the results,

yet complex enough so that complications due to three dimensional

effects can be checked and compared. We compute what we will call the

primary response, which includes all primary reflections from the

subsurface layers as well as the direct wave. Because of the proximity

of the source and receivers to the free surface we include all of the

interaction with the free surface near both the source and the

receivers. In all, 13 raypaths were deemed necessary to compute a

"primary" solution; these are schematically given in Figure 7.

The comparison of the BIE and raytracing results are presented in

Figures 8 and 9. The source function in all cases is a "Ricker"

wavelet, shown in Figure 10, which is the second time derivative of a

Gaussian pulse with a peak frequency response at 5.5 hz. We have

plotted both pressure and the vertical component of displacement.

There is some disagreement between the results at receivers 6, 7 and

8; note the larger relative amplitude of the second arrival. This is

because the rays interacting with the lower layers go through the

critical angle at these distances. The amplitudes of the raytracing

results are least accurate near the critical angle. Overall, the

agreement between the raytracing solution and the BIE solution is very

good, providing confidence that the BIE calculations are working

correctly. Conversely, it shows that ray tracing provides very useful

results for some problems.

To compare the AFGL models, Model 1 and 2 from Generic Mountain B,

we show the three profiles for the two models in Figures 11 to 16.
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, . , .', % ' r...-. .. '. .. ' .'. . . . . . . . . - , ." " " " . • . . .. . . . . .



32

N-S=25. 500 N-S,22. 000
E-W= 19. 250 E-W-25. 000

OISTANCE: iILOMETERS

0.0 1.0 2.0 3.0 4.0 5.0 6.0

t

1.5

2.0I. 0-

-L 2. 0-

--

2. 5

3.5+ , .

4.5 -7

71r.

4 LRTER GENERIC MOUNTAIN MODEL

FIGURE 7. Raypaths used in raytracing calculations between the
SOiLiroe i tid a single rec(-iver . Tf,e, ,a ,s also shov conceptually the
propagation andt interactions used in the B IE calculations.

.-, , ,, % V . . . ---. ,. -. -"""-



33

U JL V%
0 rc

IL l -J >)

0-IN-

0> '. U
(m c cr

SL

Ewc
a)~ CJ

u '

I-o et0

0

z c

u C>
CCn IL

00

'V - L

U -

0 - L
U

~00 MC

~~o .o
0 0
0 0 ~ 0

(33SW) 3WIi



34

cm
0;
0)

z
z

Nm

L) i

CD 6

LLJc 0 J
LLl 0 C3g

IL c

zz

V)

(n

jc

7- 1

-J.x

Luu

C-

0 C 0 0 0 0

(03s) 3wiJl

el pl %4~ J . L,



35

LUL

M -J

LALJ a~
LLL

-0 cc
LLLJ o

SC 0
wJ I >, _ _ _ _ _

Im E

QL

UJ CC V) E

0-r LUC
crv.

0E
C0

>- cnL. U r

8r M
w

cc cc

(~~W) 3W1



36

z
LUJ
z -

CC-

LLJNCCd
Uc

M J-LI

LIaJ

I- N

z

N

LAJN

U,

0-4

LUJ

0 0 0 0
0 0 0 0 0
0 U, 0 W~ 0

Oi tf U,;

(33s) 31411

,kmm



37

- - - - --

lon 40

hLi

ua U
Lcc

-. 1 1 - 1 1L

CD IC3 a-
e 3 LiC3In0.
in N - in z

d s ;C;C

1313AM wnw33LU



38

z -z0

0 0 0
L r

-l L
u V0. C.,

0~ 0 L L

cr N. . - E
P Ug 0 c E. Y @

M 'W - 0J. C l
ccq E CL 3

CC U L. C E

U z. l ~ E

DL P- +j T

n I

0 ED
(I) *a 4a

P* 0n
z E G

X:* L

P- u.~

.2 m -v

a; a a L U 0

a0 4DaIn0- .

a n 0- 0 th ' 0. L
-. ~~~ ~ m mU. 2 ~ E .(L3S CW11

" '~'~ ,



39

z
z - L 0 L

C

u C

0 -

cc L4

0r L

- a lt

a 4
cc- U~ L~*

cc to 0

U- I- C

- *

U4)

n
0* E

E - 0

In u

UL

oi a
o <~ 0 n

00

-N -N

0Y tv in N

(33S) 3W1±-0 ET
u- E o



rwwwrWN-LKM- Wu vu w K-

40

L in L

z in

z Ia 0 a

CL

CL >

N E

cc N 0
In U Sa: a

- w 0

mm

-Z C.-

LL I-

CCE E

IDD

Wi N

z

x o 4J

Li . 4
CC C I-@3

E: o
Ln in

C! wl W '
-y S A

(0S-3~



41

z0 C 0

z StE
0 0 u

CL c-

ID.L
UJS-'

N E .
OAd

A L

cc .C; 4)

06 0

o L

Lu0.. - 1

0- C EC E

LA-

a - a 0d

Li Pg

FMU

cn L U L
l- t!40D I m

Lu) C

0 0 0 c
0 C3 a )a' G

10 0 vi V)0-0

C %u En 0 '

(33S) 3M1.L



42

zo C

Li T

z CL 4 -

a.L.
E 1..

c U.
,0 n #A o

o 114, to0

L) E E

X E
-0 

0 W~

a: z
IL. - C

* 0 00
LIC

M -.

4~ln

E nh -

OX 0

w U.-k W

U. I 04-
x Ln

0 Ln .k
a: .. 

V

p.~(3S __ __ _ __ l*



Io m" W- w ~ n MEnwn . w i w n ~--

43

IL V) L.
0 C 0

zC -

LLL

0--

In a) IV 94

Ih.Ih CO o

a ,

* CU

o >f 0

-JE -0

W in 0 ~(

x- -

Z 6L U L-

LU N

ITO u

a a

C3 C 0

C3 C2 u. 0 ~ -

EL E

133S) 3W11

~ '~ ~ . ? ?



Wqrvr~~JrWIrvW rwWI1W.JJrjK yi. VWVVUW

44

These calculations were made for the primary response, which considers

only those raypaths (or energy paths) diagrammed in Figure 7. In all

cases we give the radial component of displacement, since, for the

geometry under consideration, this will be the dominant component of

motion. The amplitudes are scaled to a pressure source with a step

function time history of 1 N-m amplitude. The seismograms have been

low-pass filtered with a frequency taper between 8.8 and 11 hz. Each

profile extends from about 5 to 10 km; the plane of the receivers (at Z

= 0.4572 km) intersected the free surface near 4 km along profiles A

and C. Therefore, the closest receiver located below the surface of the

mountain was beyond the distance where critical reflection from the 3.2

km interface occurs for both models (this critical distance is 2.5 km for

model 1 and 2.2 km for model 2).

The difference between the two models (i.e., the low velocity zone)

shows up in differences in the peak amplitude of the first arrivals. In

model 1 the first arrival is an interference of the direct ray, head wave

from the 3.2 km interface, the post-critical reflection from the 3.2 km

interface and all of the associated interactions with the free surface.

These arrivals are all within 0.12 s. The firs large arrival on all of

the model 1 profiles is the result of the interference of the direct wave

and the post critical reflection from the 3.2 km interface. A small head

wave from the 3.2 km/s layer becomes evident at farther ranges. In

model 2, the direct wave arrives almost 0.2 s before the post critical

reflection from the 3.2 km/s layer, which results in a more dispersed

group of first arrivals with lower peak amplitudes than for model 1. In

both models the amplitude of the later reflection from the 6 km/s

interface is similar; this arrival has a critical distance of about 8 km.

While the difference in peak amplitudes between models 1 and 2 can be

explained by the presence of the low velocity zone, the difference in

amplitudes among the three profiles may be explained by the structure

of the free surface. One large difference is at the near distance range

of S and 6 kin: profile C shows markedly smaller peak amplitudes than

profiles A and B, which are similar. Reference to Figures 3, 4, 5 and

6 show that two effects are likely important. First, for profiles A and

SGI-R-87-133
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C, the receiver at 5 km distance is in a "shadow" for the direct wave,

i.e. a ray from the source to the 5 km receiver intersects the free

surface, which reduces the amplitude of the direct arrival. This effect

likely explains the slight amplitude differences between profiles A and

B. Second, profiles A and B encounter largely t~o-dimensional

structure (see Figure 3) for the wavelengths of interest; in other

words, the energy propagates along the same direction as the major

variations in the structure. The free surface interaction along profile

C is more three dimensional, the structure varying obliquely to the

direction of wave propagation, and energy is scattered out of the plane

of propagation, significantly reducing the amplitudes at the near

ranges.

The amplitude pattern among the profiles changes at the more distant

ranges (9-10 km) where profile B shows peak amplitudes less than 1,2

those of profile A and C. The reason is similar to that discussed

above. Profiles A and C are encountering two-dimensional structure at

these ranges while profile B encounters three dimensional structure that

causes significant out-of-plane scattering in the free surface

interaction.

Consideration of the more familiar "ave propagation phenomena in plane

layered media indicates that at the distance ranges of interest in this

study, the primary reflections are not the dominant contribution to the

seismogram. The distances are well beyond critical, and the source is

located in a low velocity layer, which means that considerable energy is

propagating as trapped waves in the near surface layers. In our

acoustic model, these trapped waves are analogous to the Love waves in

elastic models for the earth. To model these waves the calculations

must account for several interactions between the lower layers and the

free surface, requiring considerably more computer effort. The

convergence of the ray expansion has been considered by several

authors (e.g. Hron, 1971); we simply argue that, since 10 km is

approximately 3 times the critical distance, we can reasnmably e\pect to

model these waves by considering up to three reflections from the lo~e,-

layers.
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We performed the more complete calculations only for Model 2 because of

the effort involved. Large differences between the two results are not

expected, and, given the level of approximation involved by neglecting

many important elastic effects (such as Rayleigh waves), it is not

expected that meaningful comparisons between the two models would

result. Figures 17 through 19 show the radial displacement components

for the three profiles for Model 2. In all instances the trapped waves

dominate the responses; there is very little amplitude decay with

distance. Now it is profile B that shows consistently larger amplitudes

out to a distance of 9 km. Again, the waveforms for profiles A and C

are remarkably alike, although the amplitudes on the near traces are

about 25% larger on profile A. The three dimensional structure between

the source and the near receivers on profile C is likely causing the

reduced amplitudes; the similarity in waveforms between A and C is

remarkable in view of the very different waveforms for profile B.

From the prcfiles presented in Figures 17-19 we see that interpreting

trapped waves, or equivalently, surface waves that have propagated

through arbitrary three-dimensional structures will be difficult. More

modeling studies will be necessary to determine data analysis techniques

that can map observable features onto structural parameters. Faster

computers and improved algorithms for quickly calculating partial

solutions are essential for learning how to interpret and predict

three-dimensional wave propagation effects.

To verify the completeness of the solution within the context of an

acoustic model, we computed complete synthetics using a wavenumber

integration method (VESPA T M ) developed by Apsel (1979) for a

flat-layered acoustic approximation to Model 2. The model was modified

so that the free surface was at a depth of 0.4 km, with the source,

receivers, and deeper structure unchanged. The results are shown in

Figure 20. Although a seismogram by seismogram comparison is not very

revealing, many of the features in the profiles computed by the BIE

method are found in the VESPA solution. In particular, the

approximate, relative decay of amplitudes is similar, as well as the

duration of the high amplitude portions of the seismograms.
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We present the calculations for each of the three receiver arrays for

both the primary and extended response calculated for Model 2. The

traces have been convolved with a Ricker wavelet, peaked at 5.5 hz, to

simulate the source spectrum as suggested by AFGL; the wavelet and

its spectrum are shown in Figure 10. Figure 21 through 23 show the

vertical and radial primary responses for the three arrays. Table 2

gives the array locations. The variations, within the arrays, of the

relative amplitudes and the waveforms are slight indicating that the

primary response is stable over 1 km distances. There is some

amplification at station B-3 over what would be expected from normal

decay with distance from the source. Array B shows the largest peak

amplitude variation, only part of which is due to source-receiver

distance.

The amplitude and waveform stability of the primary response is in

contrast to the variations observed in the extended response. Figures

24-26 give the radial and vertical displacement response, including

multiples up to the third order, for each array. Now peak amplitude

variations of a factor of 2 between stations become evident for arrays A

and C. This variation is larger than that associated with normal decay

of amplitude with distance as can be seen by examining Figure 20. The

amplitude variations are the result of subtle differences in the way the

multiple responses combine. There is no obvious way to predict these

amplitude variations short of modeling; it is very difficult to explain the

behavior in the modeling results in terms of simple wave phenomena.

For the frequencies and wavelengths considered here, (<10 Hz, >0.25

kin) the effects of surface topography on the amplitude and duration of

strong shaking is not large compared to typical uncertainties in

seismology arising from unknown velocity structure. Given these

unknowns, the amplitude prediction from a flat layered wave-number

integration method or even a generalized ray method are adequate.

Given the dominance of the waveguide effects, either of these methods

will be much more satisfactory than simple ray tracing.
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8.0 CONCLUSION AND RECOMMENDATIONS

The modeling results presented in this report represent an initial effort

at calculating the response of three dimensional structures. We have

successfully demonstrated that wave propagation in a limited class of

acoustic models can be numerically simulated. Because the results in
this report rely on acoustic models, the amplitude predictions for what

are essentially surface waves must be interpreted carefully. It is

expected that the Rayleigh waves will contribute to the solution as much
or more than the trapped waves in the above calculations. Since these

propagation modes travel at less than the S-wave velocity, the duration

of large amplitude motion will be increased. The Rayleigh waves will

also be most affected by the surface topography and nothing in these

calculations is useful to predict these effects.

The techniques developed in this report will be useful for certain

elastic problems in which multiple interaction between boundaries are
not important. Problems concerning three dimensional modeling of

reflection seismograms of teleseismic body waves are examples. The
propagation algorithm presented in this report has proven to be

economical for propagating a wavefield from one boundary to another in

a three dimensional structure. It remains to develop an algorithm to

efficiently compute the boundary interaction terms.
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