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NOTATION

Symbol
A Pre-exponential constant in eq. (4), kg/(ms)
D Diffusion coefficient, m2/s
En Fluidization-energy parameter in eq. (4)
j"o,w Oxide dissolution flux kg/(m2 s)
Ky Mass transfer coefficient kg/(m2 s)
M Molecular weight, kg/kg mol
R Universal gas constant, J/(kg mol K)
s Streamline distance, m
T Temperature, K
X Mole fraction in liquid phase
A Latent heat, of fusion, J/kg mol
. » Dynamic viscosity, kg/(ms) E‘
3 &)
e Density, kg/m N
o Molecular diameter, A ~
T Shear stress, kg/(msz) -
w Mass fraction ;f
‘.
Subscripts »
b Bulk liquid -3
dp Dew point &'
o
eff Effective o
o Mass transfer N
mp Melting point %
g
o Oxide solute 3
x
e
o
.
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ABSTRACT

The potential of fuel additives to minimize
corrosion of blade material in gas turbine engines
has been analyzed by the following series of steps:
first, a computer program was employed for an
equilibrium thermodynamic prediction of condensed
solution composition; next relevant physico-
chemical properties of the molten solution were
estimated based on predicted equilibrium com-
- position; then oxide solubility and dissolution
rates were calculated for this solution in contact ‘
with various solid oxides. Finally, we compared our }
predicted oxide dissolution-rate results with )
available experimental data on hot corrosion rates,
seeking verification of the model for the rate-~
determining process -- i.e., oxide dissolution in
hot corrosionm. ¢
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INTRODUCTION .

[}

High chrome steels and superalloys, which are used extensively for high 2
temperature boilers and gas turbine (GT) engines and related components because of ~

s -, -
NN

their superior high temperature mechanical properties, are susceptible to a form

of environmental attack known as "hot corrosion.” Hot corrosion is encountered ;
~1

when, for example, liquid (¢) Na2504 is deposited either as a pure phase or in '
solution with vanadium compounds from combustion gases onto turbine blades and i‘
other hot components. Among the factors expected to affect the corrosion resis- E
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tance of the normally protective oxide coatings are the effective solubilities in
the deposited molten salts of protective oxide coatings, and accompanying rate of
"dissolution"” of the oxide layer. At locations where the oxide scale is partially

dissolved, the underlying metal is more accessible, and hence more vulnerable, to

corrosive attack.

THEORY OF HOT CORROSION: THE OXIDE DISSOLUTION CRITERION

A model has been developed [1] for life prediction for AISI 310 alloy and Navy
special fuel oil (NSFO, composition shown in table 1) based on statistical analysis
of an extensive body of data available from burner rig tests covering a wide
variety of metallic fuel additives [2]. Although current interest is in superalloys
for gas turbine applications, far more data for testing prospective models exist
for AISI 310 steel. Further, Cr203 is the major protective oxide, and more data
are avallable for that oxide than for other oxides which play an important role in
protective coatings of superalloys. This research [2] has concentrated on under-
standing the aggravating effects of trace vanadium in the fuel, and relatively
little data are available for model comparison with superalloy corrosion.

The approach described in this paper was to develop a model from theoretical
principles and then verify it by comparison with the experimental results, the
emphasis being on modeling the effect of fuel additives on hot corrosion. Qur
modeling of the rate of the hot corrosion process is based on the following
important hypothesis [3]: There is a strong correlation between regions on a blade

where the predicted oxlde dissolution rate is high and regions which ultimately

exhibit severe hot corrosion. Corrosion "maps,” which have been reported for a few
test turbine blades [4], have been found to agree reasonably well with our pre-

dicted relative oxide 4dissolution rate (RODR) profiles for the same blade.
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Table 1. NSFO fuel composition for burner rig tests.

Carbon (wt%) 87.2
Hydrogen (wtZ) 10.8
Sulfur 1.83
Water & Sediment (wt%) 0.10
Ash (wt%) 0.043
Vanadium (ppm) 170
Sodium (ppm) 22
Other Metals (ppm) 47
Heating Value (Btu/1b) 18,617

OXIDE DISSOLUTION RATE (ODR) CALCULATION: SINGLE LIQUIDS

We assume the oxide dissolution rate in the flowing molten salt solvent layer
(solution) to be limited by the rate of oxide (solute) diffusion from the
oxide/solvent interface to the bulk-liquid. The Brownian high-Schmidt number
diffusional flux of oxide into the liquid may be represented as a product of a
mass transfer coefficient and a concentration gradient:

j"o,w = km *( %, b €y ) . (1)

Where @ is the oxide mass fraction at the melt/oxide interface (w) or in the

w
o,w

bulk 1iquid solution b, and km, the mass transfer coefficient,* is estimated to

be:

*  Qur convective diffusion mass transfer approach to the prediction of the
steady-state oxide dissolution rate is patterned after that of Stewart [11].

- e _an B W

“ o o w = &




k, = 0.53837 0, ¢ y (2)

-3/2 s
Tw r 1/2, .1/3
[Do"(“l ) / (Tw/ng) ™" "ds]
o
The Brownian diffusion coefficient, Do ¢ of the oxide solute in the condensed
b b

liquid is calculated according to the Stokes-Einstein equation [5]:

k T

w
D = . 3
ot STk 9 eff >

where k is the Boltzmann constant, Tw is the local blade surface temperature, &,
is the viscosity of the liquid phase, and ao,eff’ the effective size of the
solute molecule in the solvent, is tentatively estimated as the "hard-sphere”
diameter of the corresponding metal element (e.g., Cr in the case of Cr203 -
protective coating).** Molten sulfate, vanadate and oxide viscosities hu.ve been
measured over a wide temperature range [6,7] and can be expressed as a function of
temperature in the following activation-energy formulation:

u,(Tw) = A exp ( - Ey/Tw) . (&)

Other factors involved in the estimation of km (eq. (2)) include the liquid
density, ¢, , and the shearing stress due to the mobile liquid layer, r, . Con-
densate layer flow due to gas aerodynamic, centrifugal (in the case of rotor
blades), and surface-tension shear forces provide a continuous "fluxing” mechanism
by which fresh solvent is supplied to the dissolution site and the dissolved oxide
is transported away toward the tip and trailing edge of the blade [8]. This ap-

pears to be a more logical framework to explain why the melt does not saturate

** In view of the limited experimental data and consequent uncertainty regarding
the identity of the oxide species in solution, we here estimate in effect its

"maximum” diffusion coefficient in order to provide a safe or conservative
estimate of 1life.
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locally with the oxide than proposed explanations involving local oxide dis-
solution/reprecipitation processes sustained, by a negative (normal) gradient of
oxide solubility at the oxide/salt interface [9], or by a thermally-induced sur-
face tension gradient [10].

The integral in the denominator of the right-hand side of eq. (2) is to be

performed along streamlines of the shear-driven condensate flow. Thus s stands for
the streamwise distance. The oxide mass fractions in the liquid that provide the

concentration gradient for the dissolution process are estimated as follows: The

W SR AP KX

. oxide saturation mass fraction at the melt/oxide interface, @ is taken to be
- b ’

:i the following “"ideal-solubility"” ("saturation”) value [12] in the absence of in-
W,

»

~ herent interfacial kinetic limitations to the maximum local dissolution rate [13]

M

w
o,wW o,w,sat M,

(5)

W

A
exp (R L Ly

M and M, are the molecular weights of the oxide and liquid, respectively; A
) ¢ o

is the latent heat of oxide fusion, R the universal gas constant, and Tmp o is

the melting-temperature of the oxide. For a given oxide/solvent combination, this
saturation mass fraction is then a function only of local surface temperature.

However, the oxide mass fraction in bulk liquid, depends on the relative

o,b’
rates of local solvent deposition and solute dissolution, as well as the stream-
line inflow of material from upstream locations. In the present analysis, we
assume that @b is negligible compared to ©o thereby suppressing a major

s b

flow effect but blasing for maximum dissolution rates, which are of {interest to

design engineers.
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ODR CALCULATION: MULTICOMPONENT LIQUIDS
Once physico-chemical properties of pure liquids, e.g., NaZSOA’ NAVO3,
and VZOS’ have been obtained, properties of ideal multicomponent solutions

between these may subsequently be approximated as arithmetic (weighted) means of

the constituent properties, i.e.,

@ = Xp e, v Xy e,
ke = Xy mpg v Xy Ky (6)
Mg = X Mot Xy,

where 1 and 2 are the components in a binary solution, and X's represent liquid
compositions. The effect of nonideality, neglected here, can be incorporated as a
correction factor that is related closely to the heat of mixing [14].

The composition dependence of a solution's freezing point is determined from
available phase diagrams [15], and may also be obtained using computer programs
written to generate phase diagrams (e.g., POTCOMP [16]). The effect of lowering
the melting point of solution condensates below the pure-component values is
important in view of the fact that solid condensed phases on turbine blades are
relatively benign with respect to hot corrosion. Typical illustrations of this
effect are low-temperature hot corrosion by CoSO4 - Na2 SOA mixtures [17])
and corrosion by NaZSO4 - V205 - NaZVZO6 solutions in gas turbines
burning liquid fuels containing sodium and vanadium [18,19].

In addition to lowering the freezing point, sclution-forming contaminants
increase the solution dew point, thereby further widening the potentially danger-

ous temperature interval (po - Tmp) in which hot corrosion can occur. Intro-

duction of a second trace species can potentially lower the vapor pressure of the
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primary species at the gas/condensate interface (w) if the introduced species
forms a solution condensate with primary species, and the effect would increase
the vapor-diffusional flux of that species toward (w). In our present theory,
single species diffusional deposition fluxes, e.g., N32804 () on the surface,

are taken as single vapor (precursor, e.g., NaZSOA(g)) concentration diffusion
through a chemically frozen boundary layer (CFBL). In the multicomponent case,
individual constituents still deposit by single species vapor diffusion, but their
molar fluxes have to be in the same ratio as their mole fractions in the condensed
phase. A more detailed discussion of these aspects, and other considerations and
limitations of the total deposition rate calculation is available elsewhere
[3,5,8,13]). The theoretical rate, j"o,m, (see figures la-c) is scaled pro-
portionally by deposition rate calculated on the basis of trace vapor diffusion

model.

EFFECT OF ADDITIVES

Modeling the effect of fuel additives in hot corrosion environments involves
the following steps: (1) Calculate equilibrium thermodynamic compositions of the
condensed solutions; (2) Obtain or estimate necessary physico-chemical properties
of the molten equilibrium solutions; (3) Model oxide solubilities and dissolution
rates for the various solid oxides in contact with the equilibrium solution, and
(4) Compare the predicted oxide dissolution rates with available experimental data
to verify this oxide dissolution model for the rate-determining process in hot

corrosion.
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EQUILIBRIUM THERMODYNAMIC PREDICTION OF SOLUTION COMPOSITION

The complex Chemical Equilibrium Calculation (CEC) computer program developed
at NASA Lewis Research Center (LeRC) [20] makes use of an extensive thermodynamic
database and an efficient free-energy minimization algorithm to make local thermo-
chemical equilibrium (LTCE) calculations of gas and liquid compositions at
assigned temperature, pressure, and elemental ratios, for example, of the fuel
entering a combustor [21]. While a few generally available computer programs [22]
apparently have the ability to consider solutions at other than unit activity of
the components, they are unsuitable for computations of mixtures as complex as
Navy fuel. Calculation of solutions at realistic activities is essential to avoid
completely erroneous thermodynamic predictions. The NASA CEC program is being
modified at LeRC* and the current version, which treats ideal solution conden-
sates, was used here to compute solution compositions. The LeRC solution-capable
version of the CEC code certainly has limitations in its present form -- e.g.,
singular matrices are sometimes encountered when condensed phases are added, or
reintroduced as the temperature is lowered from an all-vapor state; the code
occasionally fails to converge, getting caught in an infinite cycle of condensed
phase additions and removals. Avoiding these problems requires care. More serious
is a fallure to model the physical state in that the database form requires use of
the most stable pure phase thermodynamic functions for all components in a

solution. This results in the curious inclusion of solid species in a liquid

* F.J. Zeleznik, unpublished work, National Aeronautics and Space Administration,
Lewils Research Center, Cleveland, Ohio (1986)
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solution. However, for this work, the temperatures considered are above, or near,

all liquidus temperatures, so this problem is minor. In many respects, however the
CEC code is still more robust than many other free-energy minimization codes,
e.g., it aggressively selects the atomic/molecular basis to improve convergence
and avoid singularities. It has been deliberately optimized to {mprove accuracy
for parts-per-million level trace species. The CEC was used to compute mole
fractions.

Equilibrium thermodynamic calculations were performed at a surface temperature
of 1144 K and at atmospheric pressure. The additive level i{s expressed as the
atomic ratio of metal additive to vanadium in the fuel. Results indicate that all
additives considered tend to increase the mole fraction of NaZSU4 () in
solution, by preferentially forming gaseous and solid compounds with the vanadium
present. Potassium, sodium, barium, {ron, lead, and magnesium induce the greatest
enrichment of the sulfate in the condensed phase, whereas introduction of 7n, Al,
Nd, and Ce leads to least sulfate enrichment. The concentration of the corrosive
sodium vanadate is reduced since vanadium forms vanadates with additive metals.

The phase fraction of entire condensed material as a function of the
additive's metal concentration was also obtained from CEC calculations (plots not
shown here). Except for Na and Zn, all other additives tend to depress the imount
of condensed solution that forms. The less the amount of deposition of molten
liquid phases, of course, the less the extent of hot corrosion initfated hv oxiie
layer dissolution. It is worth noting that while nearlv all add{tives consftered
here are quite effective in reducing net deposition of the molten phase,
increasing the additive concentration beyoni a certain level -- usuallv

corresponding to a metal-to-vanadium atom ratfo of ahout 2 -- {g at hest

marginally successful, and often clearlv counter-productive. Another interesting
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observation is that zinc appears to be a "bad™ additive based on this observation;

however, a closer examination of condensed species formed reveals that the
additional deposit is made up almost entirely of solid zinc vanadates which
corrode surfaces only to a negligible extent. An analysis of the effect of metal
additive concentration on NaZSOA (f) condensation indicates that the total
amount (product of mole fraction and phase fraction) of Na,50, (t) which
condengses is raised to the greatest extent by zinc, bariua, iron, and magnesiunm

additives, whereas cerium, aluminum and nickel have the least effect.

ESTIMATION OF SOLUTION/OXIDE DISSOLUTION PROPERTIES BASED ON PREDICTED EQUILIBRIUM
COMPOSITION

Having acquired ideal solution composition data by using the CEC (solution)
program, we proceed to estimate solution properties, such as density, viscosity
and molecular weight, by the simple approximate “rules” stated in eq. (6). Among
the pure liquids, considered here, NaZSOQ (t) is the least dense and least
viscous; NaVO, (t) is the most viscous and V,05 () has the highest
molecular weight and is most dense. Thus, in a NaZSOA (e) - NaVO3 (t) binary
ideal solution, with increasing NaZSOa (t) concentration, the solution
molecular weight increases, while the density and viscosity decrease; in a
NaVO3 (r) - VZOS (f) solution with increasing NaVO3 (t) concentration,
molecular welight and density decrease while viscosity increases; in the third

binary solution in this ternary system, Na () - V205 (t), with

25%
increasing NaZSOA (t) concentration, molecular weight, density and viscosity

of the solution decrease.
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OXIDE SOLUBILITY AND DISSOLUTION RATE CALCULATIONS BASED ON PREDICTED SOLUTION
PROPERTIES !

An examination of eqs. (2), (3) and (5) indicates that the dissolution rate of
a given oxide* should increase with

e decreasing liquid viscosity,

o increasing liquid density, and

o decreasing liquid molecular weight.

As the liquid phase composition changes, the oxide dissolution rate responds
to physical-property changes acting in concert. The resulting relative oxide dis-
solution rate, liquid deposition rate, and oxide saturation mass fraction in
solution profiles are plotted against composition for the three tdeal binary
solutions in figures la, 1lb, and lc. In solutions of NaZSOA (¢) with NaVO3
and VZOS’ as the sulfate mole fraction increases, so does the oxide dis-
solution rate; however, the oxide solubility decreases with increasing
Na, 50, (t) mole fraction in the Na2804 - NaVO3 solution and increases with
Na,SO, (t) mole fraction in Na, S0, - V,0, solution. Thus a simplistic
viewpoint of oxide solubility as the key factor in determining hot ccrrosion rates
may lead to serious errors in analysis should our more general dissolution-rate
criterion, which incorporates in it the oxide solubility, prove to be more
relevant. In the case of the NaVO3 - VZO5 liquid solution, the oxide mass

fraction in the solution increases with {increasing mole fraction of Navo, (¢,

3

whereas the relative oxide dissolution rate decreases to a small extent inftiallv,

* When comparing different oxide species, smaller, faster-d{ffusing molecules of
greater molecular weight, greater latent heat of fusion, and lower melting point
appear to dissolve readily in a given molten-solvent l1iquii phase.
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and then increases slowly. The effect of composition change on the total solution

deposition rate is minimal because the surface temperature is very low, presumably

well below the dewpoint for the solution.

CORRELATION OF COMPUTED OXIDE DISSOLUTION RATE WITH EXPERIMENTAL HOT CORROSION DATA
The corrosion rate with no additive for a 310 alloy in a turbine burning Navy
special grade fuel (see Table 1 for its composition) has been reported at 1600° F
(1144 K) by Schab {2] to be 910 mg/inchZ/IOO hours. This number is divided by
the calculated oxide 4{ssolution rate value {n the presence of the appropriate
liquid condensed phase and (no-additive) fuel make-up reported in table 1, to
ohtaln a scale-up factor. Subsequent oxlde dissolution rate predictions were
multiplied by this scale-up factor in order to compare them directly with reported
hot corrosion {ata. In figures 2a, 2bh, and 2c, we present scaled-up corrosion
rates (computedi values based on our oxide dissolution rate model) as a function of
metal aliitive-to-vanadiium atom ratlo. In figure 3 we have reproduced the experi-
mental results of Schab [2] pertaining to hot corrosion of 310 alloy in the
presence of organo-metallic salt addi{tives. Predicted trends indicate that
magnesium, cadmium, cobalt, manganese, and nickel additives were the most
effective suppressants of ilssolution-controlled hot corrosfon, whereas cerium and
aluminum were among the less effective, Alded sodium tends to enhance the
corrosion rate consiierably with respect to its zerov-atiftive value; this appears
reasonable {n view of the fact that adiet sodtum increases teposition rate of the
condensed solution, as well as the fraction of soilum sulfate {n 1t. In atif{tion,
this prediction is in agreement with other reports of Na invnlvement {n corrosion.

However, most such reports are for Na it 1 few ppm. Hig' solium -oncentrations

bt ek eadadadades o g oo o O PP PPy
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results reported by Schab [2] have also been reported elsewhere in literature
[19]. Agreement between experimental hot corrosion rate results and our model pre-
dictions for the corrosion rate based on an oxide-dissolution criterion {s en-
couragingly good; especially in a qualitative sense. Indeed, as per our theory,
Mn, Cd, Co, Ni, Mg and Fe are found to be effective inhibitors of hot corrosion.
There 1s a discrepancy between theory and experiments in the case of Na and K
additives; potassium apparently has little influence on hot corrosion rates when
used as an additive, and added sodium apparently decreases rates. These results
are contrary to our findings. Perhaps, future refinements in our theory for hot
corrosion and in the corrosion test procedures to obtain rate data would provide a
closer match between theoretical expectations and experimental realizations.

In quantitative terms, predicted and observed corrosion rates are in closest
agreement for tests involving magnesium, iron, cobalt, and nickel as additives,
and in poorer agreement for sodium, potassium, and lanthanum additives. For some
additives, e.g., Nd, La, Mn, experiments indicate a far greater corrosion sup-
pression effect than the model predicts. Both experiments and model predictions
show a leveling off in the reduction in corrosion rate beyond a certain con-
centration of the additive, but the leveling predicted by our model begins sooner
(at an additive-to-vanadium atomic ratio of about 1 to 1.2) than observed experi-
mentally. In addition, the predicted corrosion rate curves turn up eventually,
corresponding to additive concentrations which continue to enrich the solution in
the sulfate after an asymptotic limit to the total condensed-phase fraction has
been reached. This behavior is not manifested by experimental hot corrosion rate

data.
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3 he following steps are expected to improve the agreement between theoretical
; model predictions and the experimental results [3]. First, instead of a single

, vapor dAiffusional model, the model can include wmulticomponent transport for

'2 boundary layer deposition suitable for the marine environment. Kinetic 1limitations
B to interfacial oxide/solvent rate process, if incorporated will reduce the maximum
&. ) diffusion controlled oxide dissolution rate [8]. Also, additional experiments

should be performed with modified additives which include compounds to delib-

-
-

erately promote or prevent the nucleation of inorganic condensates (aerosols). In

'3

ﬁ addition, the CEC code needs improvement. Having more accurate thermodynamic data
:E for all of the vanadium compounds used in the computer calculations is certainly
,E the key to obtaining more accurate results. It is important to remember that the
t, burner rig 1s not a research instrument and the corrosion measurements are ouly
tz approximate. And finally, the estimation process is to be refined by using better
Z; support data like viscosities, shearing stresses and densities.

3

N CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

: The work presented here represents a new major effort to study the inter-

~ related problems of molten-condensate deposition and subsequent hot corrosion. It
3 is an attempt to apply a theoretically-based model of the deposition process,

o coupled with a thermodynamic equilibrium solution-based calculation of the liquid
- deposit to permit a dynamic dissolution model calculation. Previous work in this
% area has been confined predominantly to statistical regression analyses, coupled
X
b with simplified mechanistic models. The use of regression analvses to identify
F;- ' significant parameters or to provide working correlations has its values for
ES analyzing the quality of experimental data as well as in identifving sensitive

.
..
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v

model parameters. However, corrosion data continues to be accumulated at a steady
pace, and unless theoretical or computer-modelling based efforts are undertaken,
analyses of the data will remain a collection of empirical correlations. Several
possible improvements in the theory presented here have been discussed elsewhere
in other applications [8], and will be incorporated as data become available.
Identification of underlying theoretical frameworks can only improve the use of
such methods in analysis of experimental data. The use of local thermodynamic

equilibrium codes, such as the NASA LeRC CEC code used here, to predict gas and

liquid phase compositions, and the development of a mass transfer model to predict

the rate of oxide dissolution into the liquid phase constitute the first steps in

what will undoubtedly be a continuous process of model refinement on the basis of

feedback obtained from comparison with hot corrosion test data. The long term goal

of this research is life prediction for turbine blades used in hot corrosive

environments.
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