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" A PARAMETRIC PATCH SURFACE GEOMETRY 1

" DEFINITION FOR THE THREE-DIMENSIONAL |

w RETARDED POTENTIAL TECHNIQUE |
INTRODUCTION

This study is a part of the effort to apply the retarded potential integral to three-dimensional prob-
lems in fluid-structure interaction for arbitrary bounding geometries. This paper will be confined to a

‘ discussion of the geometric aspects of retarded potential computations. A related paper covers the |
application of the three dimensional technique to problems of shock [6].

Mitzner (1.2] developed a method for discretizing the integral spatially and temporally, and
applied the technique to the problem of a spherical rigid submerged body with two-dimensional axisym-
metry. Huang, Everstine, and Wang (3] extended the method to handle a non-rigid boundary coadi-
tion, and tested the case of a spherical elastic shell. modeiled axisymmetrically.

This work builds upon the computer program deveioped by Mitzner and extended to non-rigid

;;', boundaries by Huang, Everstine, and Wang. A fully three- dimensional boundary element formulation
hy for arbitrarily shaped surfaces has been impiemented. The entire approach is designed to be compatible
", with finite element methods. important in the case of coupied problems involving non-rigid submerged
; structures.

In the new deveiopment. the surface geometry is totally defined by the boundary element input
daa. The Cartesian coordinates, curvatures, and surface coordinate base vectors, which are needed at
various points by the coefTicients caiculation routine, are all derived from the natural surface coordinate
interpoiation (unctions of the boundary patch. The numerical definition of geometry is required for a
problem-independent retarded potential analysis capability, particularly when coupled to a finite element
program. This avouds the need (0 individually tailor surface parametric equations for each probiem
geometry encountered, which wouid require reprogramming. Beyond this considerauon. for an arbi-

K trary geometry it may be difTicult 10 obtain a set of closed-form parametric equations to define a paruc-
ular probiem.

RETARDED POTENTIAL FORMULATION
A discussion of the retarded potential equation and its discretized approximation may be found in
Refs. [1.2.3] with a derivation 1n Ref [4]. The form of the equation for caiculation of total pressures.

2. on the boundary of a smooth, closed surface in an infinite Nuid 1s as follows:

p(F.0) = 20" (X.1) — p/2w fs wi(x'.1) iS5

R
12w [ AptE 00 + %g{eﬁ'.m % % as’ (h
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where p and ¢ are the fluid density and sonic velocity, respectively, X is the surface position of
the field point, ¥ is the surface position of an integration point, R = |IX - X'| is the distance between

field and integration points, (' = ¢ — % is the retarted time of the integration point, p’™* is the incident

pressure field in the fluid, #’ is the surface normal at the integration point directed out of the fluid, and
w' is the normal direction acceleration of the surface.

From the integral, the basic geometric influence factors to be evaluated are as follows:

R e |x-%| (3a)
dS’/R (3b)

1 3R ..
and 2T an das (3¢)

Computation of the discretized forms of these for the parametric surface patch is the subject of this
report.

DISCRETIZATION

For computation, the retarded potential integral is discretized into a set of algebraic equations.
The surface pressure field is approximated by subdividing the surface into zones of spatially constant
pressure. The surface normal acceleration field, if not identicaily zero, is also approximated as constant
on the surface of the same zone. Once the pressure and acceleration (and pressure derivative) are
approximated as constant over a part of the surface, these quantities can be factored out of the integral
expressions. This results in integrals which are dependent on surface geometry alone. There is a need
to further subdivide the surface of zones into a mesh of subzone elements in order to accurately
numerically integrate the geometric influence factors, as well as 10 accurately obtain the time-deiayed
influences of pressures and accelerations (rom each preceding time step [1.2.3]. Then. the acceleration
influence and pressure influence integrals over the subzone element, S,. are as follows:

‘g'
—— (4‘
{ )

[ L 2R
— e A4S 4
5, R on’ b)

Discussion of the discretization of retarded time into sieps is left 10 the related report on the application
of the technique to shock response probiems (6] or can be found in the original references (1.2.3].

{n the original solution procedure, the computations are based on a surface coordinate system,
(a.8). common 1o the entire boundary and, unique 10 the 10 the particular geometry Then the subdi-
vision of the surface into zones and subzone eclements is made to follow the lines of the coordinate sys-
tem (1.2). The Nexibility of the new development ailows for a series of independent surface coordinate
systiems, one per surface paich, as will be described later. In the following discussion the dimensions of
a subzone element, expressed in surface coordinates, are Aa by A8, and the element’s surface area is
S, -

Computationally. the subzone ciements are clasmified 1nto two types, singular and non-singular
The area of a non-singuiar element 13 approximated as a flat surface tangent (0o the integration point it
its center. With the boundaries of the element foilowing the lines of the surface coordinate system. the
cross product of the Euclidean base vectors becomes the key quantity 1n obtaining the physical size of
the element and s normal-direction vector The resulting expressions for dS'R and

f 1/R23R/3n’ dS’ over the non-singular element are
s




Aa AB T, xZGl/R B4 (5a)
and
Aa AB/R? (X'-X) - (F,x3y) M (5b)

respectively. Distance measurement between a non-singular element and the field point of a zone is
approximated by locating the field point at the center of the field zone and the integration point at the
center of the integration subzone element.

For the surface area immediately surrounding the field point, modified calculations must be used
to compute the pressure and acceleration integration influences, because of the close proximity of the
field point and the presence of a singularity at the field point itself. For the pressure integral, the sur-
face surrounding the field point is approximated by an osculating paraboloid, with principal curvatures
matching at the central field point, and an exact integral is evaluated over this surface. In the current
implementation, this integral has been simplified by requiring the surface coordinate system to be
aligned with the principal curvature directions. With the simplification, the expression for

1/R?*3R/an’ dS’ over the singular element becomes

5,
2(x, Yoln ’°;f" + xgX,ln "’;OY") m (6)
where
X, =1/213,| Aa
Y, = 1/2 |3,l a8
and

r, = (XI+YH*

In the above formuias the «'s are the principal curvatures at the field zone center, with the rest of the
quantities derived from the Euclidean base vectors and the element size, as measured in surface coordi-
nates. The singular element computations require the distance, R, in the expression R/c of the pres-
sure derivative term. [n this case the integration point is taken to be a distance of one-fourth the diag-
onal dimension of the singular subzone from the zone-centered field point (‘Yargy).

For the acceleration influence, a cruder approximate integral is used here. This is acceptable
becauss the weaker singularity yields a less significant influence of the near-by accelerations. The
approximation invoives replacing the rectangular element with a circle of the same area, and integrating
the expression dS'/R over a fat surface. The result is 4(w X, Y,)” [3al. As can be seen from the above
expressions, the influence coefTicients calculations require the evaluation of three basic local geometric
quantities: the position vector, the coordinate base vectors, and the curvatures. The subzone element
sizes are determined from the user —specified subzone eiement mesh refinement.

PARAMETRIC PATCH SURFACE DEFINITION

The surface geometry definition impiemented for the retarded potential method is the same as
that used for isoperametric finite element shells in three dimensional space (S|. The boundary surface
is divided into patches 10 coincide with zones of constant pressure. When coupled to a structural
analysis code .these also coincide with the shell surface finite elements. allowing one surface definition
to be given to both the structural problem and the fuid pressure problem. Each surface patch has its
own curvilinear, non-dimensional coordinate system, which (ollows the surface contour with coordinate
values varying from -1 to + 1. This is referred to as a natural coordinate system. with coordinate direc-
tions r and s. The surface zone used in this study has a 3 x J arrangement of nodal points to match
the 9-noded version of the ADINA shell finite element. The nodes lie at whole number values of the
parametric coordinate pairs, designated (7..s,) for node . The nodal coordinates, X", define the Carte-
sian coordinates of the entire element surface through biquadratic interpolation functions of the two
natural coordinates. 4«3 shown in Eq. (7)




X(r,s) = 3 H(r,5) XY ¢)

The interpolation functions are built up from elementary terms of the form, F, shown as Eq. (8),
which, in turn, are products of the unidirectional factors, Q, shown in Egs. (8a).

F(r,s,r,,5) = Q(r.r;)) Q(s.s) 8
for |’i|-l Q(f.’]) =4 (l+r,r)
for |7, |=0 Q(r,r)) = (1-7%) (8a)

The function, F, has a value of one at the node / and a value of zero at all edges of the finite element
that do not touch node i. For edge and corner nodes, achieving an interpolation function that has a
zero value at all nodes other than i requires subtraction of fractional values of other interpolation func-
tions from the F expression. The full interpolation functions are related to the F expressions and to
each other by the following expressions.

Hy = Flr,s,1,1) = .5 (Hs+Hy) — 25 Hy

Hy= F(r,s,=1,1) = .5 (Hs+Hg) — 25 Hy
Hy = F(r,s,~1,-1) = .5 (He+Hy) — 25 H,
Hy= F(r.s. 1,=1) = .5 (H,+Hy) - .25 Hy

Hs= F(rs,0,1) - .5 H, (9)
Hy= F(r,s,~1,0) -5 Hyg
Hy= F(r,s,0,~1) -5 Hy
Hy= F(r.s,1,0) -.5 H,

H9 - F(l’.S. l,—l)
where H, = H.(r.3).

GEOMETRIC COMPUTATIONS

As discussed earlier, three types of geometric information are needed for the calculation of the
retarded potential influence coefficients.

1.  The Cartesian Position Vectors are needed to locate the field and integration points in space.

2. Base Vectors (which the derivatives of the position vector with respect to the natural coordinate
directions) are needed to determine the orientation and size of the integration subzones.

3. Principal Surface Curvatures are required at the field points to determine the osculating paraboloid
for the singular subzone calculation discussed earlier.

The expressions for the base vectors, §, and g,, can be obtained by taking the r- and s-direction
derivatives (i.e. a derivative with respect to one of the natural coordinates) of the position vector inter-
polation function and are given by:

X oH, =N
- —— - — )
g,(r.8) 3 (r.s) ; 3 (r.5) X (10

where g isr or s.




The rate of change in surface orientation is expressed as the rate of change of a unit normal vec-

tor with respect to a position change in a given direction along the surface. Because the unit vector can

. only change in direction and not length, its change from one point to another is a measure of angle

change, with the added feature of showing the direction of the angle change. The component of the

angle change in the direction of position change gives the angle of deflection. If one considers a rare of

change in the unit normal instead, then the component in the direction of position change becomes the

curvature. This component is obtained (in Eq. (11)) by taking the dot product of the rate of change of
the unit vector and the unit vector in the direction of travel. (7]

’v. ——
) i, 4 -
':: . Ko ™= -6_:7 7.:- g an

where ¢ = either one of the natural coordinate directions, r or s

& s, = physical distance in the ¢ direction
& i, = unit vector normal to the surface

‘ -

i, = unit vector in the ¢ direction

The derivation of the factors in Eq. (11) are as follows:

" dg = , I
3y -— where g, = the base vector in the ¢ direction
'.-zf d‘ﬂ |8ql
W -
% ip =%,/%,l
‘: 7; - _V.,,/lv,,l where v, = Z, X g
v -
¢ di 37, av,
o — = —/IV,| =¥, (== - V)/I5,?
g i KT PR
where
.
;;: ¥ _ 9% .. _ 9%
A d¢ d¢ T 3¢ 7
;‘ As can be seen, the curvature calculation requires the evaluation of the the base vector derivatives, i.e.

A the second derivatives of the position vector with respect to the surface coordinates.

All the calculations for position vector, base vectors, and curvatures can use the same interpola-
tion scheme expressed by Equations (5). By simply taking the appropriate derivatives of the F terms.
the corresponding appropriate derivatives of the H functions are obtained. These, in turn, make up the
expressions for all the quantities needed.
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TEST PROBLEM

The retarded potential technique was studied for the rigid scattering problem to verify the 3-
dimensional integration method. The test was run to duplicate the Gaussian pulse loading on a sphere
case that Mitzner [1] tested. The resuits obtained, plotied in Fig. 3, are virtually identical to the separa-
tion of variables solution, validating the numerical geometry formulation.

RN

The structural model used for the rigid body test problem is shown in Fig. 1. This is a quarter
section of a sphere used to model an entire spherical rigid body with symmetry conditions imposed on
the two cutting planes. The retarded potential program allows for such symmetry conditions. The sym-
metries are imposed to save computation cost and can be allowed because both the test structure and
the test loadings are axisymmetric with respect to the loading direction. The subdivision into pressure

R
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zones is more refined in the direction of wave travel in order to capture the detailed response expected
in that direction. Subzone division for this problem is two refinements, one for the influence between
two different pressure zones and one for the influence of a pressure zone on itself. These are shown in
Figs. 2.

The list of x, shows that, even with parametric surfaces stretched over 45 degrees of circumference,
the curvature values are reasonably close to the exact value, 0.01, for a sphere of radius = 100., and
the values of x4 are virtually exact.

CONCLUSIONS

of the discretized retarded potential integral. The parametric patch definition establishes the retarded
potential integral as a fully developed boundary element formulation. With the added programming
enhancement to eliminate the requirement that surface patch grid lines follow the principal curvature
directions on the surface, compliete flexibility in surface geometry specification will be achieved.
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The computed curvat ‘res at the centers of the pressure zones
are as follows:

0 Ky Ko

9.0 0.01027 0.010043
225 0.01040 0.010015
31.5 0.01040 0.010015
40.5 0.01040 0.010015
49.5 0.01040 0.010015
58.5 0.01040 0.010016
67.5 0.01040 0.010015
76.5 0.01040 0.010016
85.5 0.01040 0.010015

This study has developed a parametric patch formulation for the surface geometric computations
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