
'aD-ALS2 827 Ig OUJ1MENT OF JH SOFlIAAN I NN L/
NA N AOAN 'r INRAWGIAYT

UNCLASSIFIED IS14HAV3-3 L365~5C FIG125 M

EN D

1.0 It
L JJ -

u L2.2

~L3.

_______ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1. - __________________________

UTIC fiLE COD
CSA REPORT 85-233-013

IMPROVEMENT OF COMPUTER SOFTWARE QUALITY THROUGH

% SOFTWARE AUTOMATED TOOLS

0

i COMPUTER SOFTWARE ANALYSTS, INC.
S 333 Centinela Avenue

S Inglewood, California 90302

31 August 1986

FINAL REPORT FOR PERIOD COVERING 30 SEPTEMBER 1985 - 30 AUGUST 1986

CONTRACT NO. F33615-85-C-5109 (SBA 98511638)

Prepared for

AIR FORCE BUSINESS RESEARCH MANAGEMENT CENTER

Wright-Patterson AFB, Ohio 45433

Approved for Public Release: JU:' A
Unlimited Distribution

S87 6 15

CSA REPORT 85-233-013

IMPROVNIENT OF COMPUTER SOFTWARE

QUALITY THROUGH SOFTWARE

AUTOMATED TOOLS

FINAL REPORT
(For Period 30 September 1985 - 30 August 1986)

PREPARED BY

COMPUTER SOFTWARE ANALYSTS, INC.

5217 Wadsworth Road

Dayton, Ohio 45414

JI! .
:

<1

PREFACE

The work documented herein was performed by Computer Software Ana-

lysts, Inc. (hereinafter referred to as CSA) under Contract Numbers

98511638 and F33615-85-C-5109. It satisfies the requirements of CDRL

Sequence Number 4 (DI-S-3591 A/H, subject Technical Report). Principal

investigators for CSA were J. Peacher and P. Ikharebha. CSA acknowledges

the outstanding support provided by the Air Force Business Research Manage-

ment Center (AFBRMC), in particular Captain E. C. Mitchell. In addition,

the advice and counsel provided by Mr. Stan L. Brown of the Air Force

Contract Management Division (AFCHD) was essential to understanding the

needs of the Air Force Plant Representatives office. The cooperation of

Westinghouse Corporation (Baltimore) for participating in the demonstration

was also appreciated.

..A-4, &0,

JLf

--- Ada

TABLE OF CONTENTS

SECTION TLEPAGE

Preface
Table of Contents i
Glossary of Acronyms and Technical Terms iii
List of Illustrations v
Executive Summary vi
References X.

1.0 PROCEDURE TO EVALUATE SOFTWARE DEVELOPER'S USE
OF AUTOMATED TOOLS 1.

1.1 Objectives 1
1.2 Scope 1
1.3 Background 1
1.4 Study Approach 2

2.0 ANSt1ER TO QUESTIONS "DOES THE AIR FORCE NEED
A TOOL VALIDATION FACILITY? 8
2.1 Validation 8
2.2 Tool Availability 8
2.3 ASD Language Control Facility 10
2.4 Air Force Requirement 11

3.0 OVERALL SUMMARY 12
3.1 Conclusions 12
3.2 Recommendations 12

Appendix 1 Automated Software Tools Monitoring System 1-1

Appendix 2 Handbook 2-1

Appendix 3 Procedure Checklist 3-1

Appendix 4 Example of Tool's Characteristics 4-1

GLOSSARY OF ACRONYMS AND TECHNICAL TERMS

ADF Automated Design Facility

AFB Air Force Base

AFBRMC Air Force Business Research Management Center

AFCMD Air Force Contracts Management Division

AFPRO Air Force Plant Representative

AFR Air Force Regulation

AFSC Air Force System Command

AISIM Automated Interactive Simulation Modeling System

ARTS Automated Requirements Traceability System

ASD Aeronautical Systems Division

CADS Computer Analysis and Design

CCS Change Control System

CSA Computer Software Analysts, Inc.

DAS Design Analysis System

DDPM Distributed Data Processing Model

DEC Digital Equipment Corporation

DFD Data Flow Diagrams

DoD Department of Defense

FAR Federal Acquisition Regulations

FRC Functional Relationship Charts

GFP Government Furnished Property

LCA Language Control Agent

LCF Language Control Facility

IRS Internal Revenue Service

IV&V Independent Verification & Validation

MOA Memorandum of Agreement

QA Quality Assurance

RADC Rome Air Development Center

SBA Small Business Administration

SEI Software Engineering Institute

SOW Statement of Work

SPO System Program Office

STI Software Tool Information

ii

GLOSSARY OF ACRONYMS AND TECHNICAL TERMS (Cont'd.)

TAR Test Analysis Report
USAF United States Air Force
VHLL Very High Level Language
V&V Verification and Validation

iv

Am.
.i i i i a H m D a N n m

LIST OF ILLUSTRATIONS

FIGURE TITLE PAGE

1 Taxonomy of Tool Feature 16
2 Input 17

3 Function 22

4 Output 24
2-1 AST General Information 2-5

v

* b ~ . -.X .~

EXECUTIVE SUMMOARY

GENERAL

Under contract to the Air Force Business Research Management Center,

Computer Software Analysts, Inc. (CSA) was tasked to provide a study that

would include the development of a proposed standard that would contain

procedures for validating software automated tools. Accordingly, CSA would

research, identify and evaluate existing validated tools to understand the

current state-of-the-art process. The data obtained from the effort would

then form the basis for a standard set of procedures.

Specific study requirements initially required the development and

delivery of a detailed Management Plan. This plan was to include AFPROs to

be visited and the list of sources to be used as well as CSA's overall

approach to the study development. After several reviews, it was completed

and delivered.

Initial research identified a number of tools including over 400 from

a database located at RADC/COED, Griffiss AFB, KY. Contact was also made

with the Software Engineering Institute at Carnegie Mellon University in

Pittsburgh to gain from their experience with tools development. Unfortu-

nately since their efforts were primarily ADA development and ADA tools,

little was gained from this initiative.

Travel was completed to three contractor facilities: Rockwell (Los

Angeles), Boeing (Seattle) and Martin-Marietta (Denver). Discussions with

the contractors were primarily concerned with their current and future use

of software tools as well as what systems the tools were being applied to.

In addition, the contractors were queried as to whether they had developed

their own tools or obtained them off-the-shelf. Conversations with the

AFPRO9 had to do with their role in the acquisition process including

essentially how they do their job(s). There was also discussion of AFPRO

computer resources and anticipated future capabilities. Consensus was that

there existed a lack of standardization with software development and

documentation. Also the AFPR0s identified an acute need for education in

the application of tools.

vi

In late December 1985, CSA traveled to AFCMD at Kirtland AFB to

provide a status briefing and obtain feedback on CSA's Management Plan.

The broadness of the SOW was discussed. In particular, the identification

and evaluation of software tools would be limited to those used by DoD

aerospace contractors to develop software deliverables to DoD. A list of

reference material was provided by AFCMD personnel (i.e FAR, DoD software

tools training material and USAF documents) for incorporation as applicable.

CSA's basic charter was also to be limited to generating procedures that

software developers would use when selecting automated software tools and

procedures that AFPROs would use to monitor the contractor's use of tools.

This new emphasis on developer use rather than developer validation further

refined CSA's future efforts.

As a part of the initial SOW, CSA was also challenged to address

whether the Air Force should have a software validation facility or not.

This would be a parallel analysis based on insights derived while develop-

ing the basic study. The potential need was therefore addressed at every

opportunity.

As a result of reviewing information associated with approximately 900

tools, CSA identified 11 of these tools to gain preliminary insight in

developing procedures for AFPROs to use. Major areas to be covered within

the procedures were established.

In February 1986, CSA attended the Computer Science Conference in

Cincinnati, Ohio, sponsored by the Association for Computing Machinery. In

addition to attending sessions of fifth generation computing, software

engineering and artificial intelligence, private discussions were held with

noted individuals from High Technologies Laboratory Research and Carnegie-

Mellon University.

As per the contract, a Mid-Term Briefing was presented at AFCND in

March 1986. CSA provided three presentations including one to individuals

responsible for three other AFCMD sponsored studies. Further guidance was

also given to CSA in that CSA's study was to be heavily slanted for AFPRO

usage. More specifically, CSA would develop a standard or checklist to

assist the AFPRO in understahding how the developer uses his tool. In

vii

. -- i 6 . i .==,,==== a. 4,.

addition, CSA would develop a companion handbook .for the AFPRO to clarify

the intent and application of the standard. it was envisioned that these

two documents would eventually be submitted to the USAF as Appendix I and 2

to the overall study. Preliminary discussion also began concerning CSA's
demonstration of the above products. Westinghouse Electric Corporation

(Baltimore) was suggested as the potential location and tool provider. The

USAF was to enlist Westinghouse's participation. In mid April, copies of

the Appendix 1 standard were informally provided to the USAF for comments.

In late May, CSA visited Westinghouse and AFSC Headquarters., Westing-

house agreed to participate in the demonstration held at their Baltimore

facility on 21 July 1986. Information on the Westinghouse candidate tool

was provided to CSA prior to that date. A status briefing was also given

to HQ AFSC mission critical computer resources focal points at Andrews AFB.

Comments on the Appendix 1 (entitled, "Automated Software Monitoring

System") were forwarded to CSA by 6 June 1986. It was also pointed out

that the AFSC/PLR had been tasked to develop a number of DoD standards and

CSA's product(s) could possibly be used as an initial baseline for one of

them.

In addition to the demonstration, CSA delivered the draft study in

mid June for review. The final study was due in August.

As to the need for a validation facility, CSA's position presented at

the Mid-Term briefing remains essentially the same. That is, the USAF has

a role to play in the process but is not to provide a place where contractors

will submit and/or run their tools for approval /val ida tion. Rather, the

USAF could best provide a library-type facility where information could be

retained on file after the tools are validated. An automated data base

could easily be structured to maintain the status of the tools and associ-

ated documentation. The USAF could assume a semi-active role in the

generation of test plans or the approval of test reports. However for the

USAF to actually monitor the running of a tool would be very expensive and

add very little to the development or validation process.

viii

It would seem appropriate for the USAF to set up workshops or Bomne

similar activity to 'Provide thi's information to the AFPRO personnel.

Another suggestion would be computer based education which could be made

easily available on site. To develop this methodology and the associated

checklists without serious instruction would have questionable utility.

ix

REFERENCES

a. DoD-STD-2167 - Defense System Software Development

b. ST1185 - Software Life Cycle Tools Directory

c. AFPRO 800-14 - Management of Computer Resources in Systems

d. FAR, Federal Acquisition Regulation, (Part 42 Contract

Administration)

e. "Characteristics of Software Quality" - Boehm, Brown et al

f. "Tools and Techniques for Structured Analysis and Structures

Design" - unpublished BDM document

g. MIL-STD-483 - Configuration Management Practices

h. MIL-STD-490A - Specification Practices

i. MIL-STD-1521B - Technical Reviews and Audits

J. "Computer Science in Focus", Computer Science Conference

Proceedings, dated 4-6 February 1986.

x

1.0 PROCEDURE TO EVALUATE

SOFTWARE DEVELOPER'S USE OF AUTOMATED TOOLS

1.1 Objectives

The objective as described in the contract Statement of Work was for

the contractor (CSA) to develop a proposed USAF Standard that contains

procedures for validating software automated tools. Over time, however,

this was modified somewhat such that the proposed standard would be a

document to help the AFPRO better understand how the software developer

actually uses his tool. In addition, CSA was tasked to examine the utility

of the USAF establishing a tool validation facility.

1.2 Scope

CSA was to identify and evaluate existing validated software automated

tools to aid in ascertaining the current state-of-the-art process. The

data thus derived from this evaluation "will be used to formulate a standard

set of procedures for validating software automated tools."

1.3 Background

CSA is a California firm which specializes in analysis, simulation,

software verification and validation (V&V), and software development. In

1971, the company introduced proprietary software V&V tools to the computer

industry enabling customers to provide quality assurance for large software

programs. Since that time, these automated tools have been modified for

various computers and computer languages. Later, CSA's capabilities were

expanded to include systems engineering and computer hardware applications.

As systems engineering performance requirements have become more com-

plex, industry has been forced to convert increasingly from analog to

digital technology. Subsequently more dependence has been placed on

software reliability to insure end item compliance. Therefore, out of

necessity, increased efforts have been expended to develop methodologies to

insure the integrity of the software. In modern systems where a single

failure may be extremely expensive and/or a safety issue, the importance of

development rigor must be a given. In particular, f or real-time systems or

for systems performing critical functions (e.g., flight controls), the

margin of safety is known to be minimal. This requirement for increased

emphasis on software quality assurance has lead to the creation of various

methods of verification and validation.

Experience has demonstrated that software of any complexity will

contain errors at the completion of development. Manual quality assurance

techniques, therefore, evolved to deal with these problems.

As the accelerating need for high-quality software increased, more

effective mechanisms were constructed. The result was a vast array of

methods, systems, languages and automated tools to assist in the process.

Given that the primary role of quality assurance is to provide some degree

of confidence that the delivered software product satisfies the user's

operational needs, it follows that a series of steps interfaced with the

development process is appropriate. In this manner, each phase serves as a

benchmark resulting in a verified baseline for the succeeding phase.

Essentially, there becomes a one-to-one (parallel) relationship between the

development process and the quality assurance program. Unfortunately,

there is no single method, tool or technique that can insure accurate,

reliable and cost effective software. Therefore, government and industry

have expended many manyears of effort creating automated tools and tech-

niques to allow the needed insight into the design, development and valida-

tion process for the Programmer Manager, Quality Assurance Engineer/Analyst

and the customer. Automated tools are used for the following reasons:

Early resolution of software errors.

Operational capability that meets requirements.

Software life-cycle cost savings.

Scheduled milestone compliance.

Increased development control to assist decisions, trade-of fs and

report ing.

Trained (in-house) users and maintenance personnel.

Improved software documentation.

Audit trail of testing process.

2

1.4. Study Approach

The contract was officially awarded on 30 September 1985. Several

minor contractual issues were identified and quickly resolved. Since all

dates in the contract were originally predicated on a 3 September 1985

start, everything had to be slipped accordingly to be consistent. Contract

monitor agreement was readily obtained. In addition, it was pointed out

that contract line 0002MA to deliver software would hot be implemented

because no software would be developed on this contract. Given the above

clarifications, CSA's first. task was to develop a Management Plan. A draft

was subsequently developed and provided to the USAF for review on 22

October 1985.

During the proposal preparation period, information was collected from

a number of software tool developers. This included information from

Digital Equipment Corporation (DEC), Reiter Consultants, and Sciences

Applications, Inc., as well as the ASD Computer Center. The result was the

immediate identification of over 200 tools. In addition to the shear

number and variety, it was obvious that categorization was greatly varied.

In some cases, tools were classified as to development application (i.e.

testing, auditors and traces). In other instances, compilers and other

programs integral to the software generation process were classified as

tools. It was, therefore, doubtful as to how one would develop a standard

approach for the validation of all tools.

In addition to the development of a Management Plan, CSA began the

required research to identify industry's automated software tools. A data

base was located at RADC at Griffiss AFB. This resulted in obtaining

information for more than four hundred tools. Contacts were also made with

Carnegie-Mellon University, Software Engineering Institute (SEI), in

Pittsburgh, PA. These discussions with R. Ellison revealed that SEI's

major emphasis was on ADA development and ADA tools. This information was

therefore not included in this study. Tentative travel plans were also

discussed with the contract monitor to visit various AFPROs to obtain their

views.

During mid-November, two CSA staff members visited three software

developers and their associated AFPROs: Rockwell (Los Angeles), Boeing

Ad3

(Seattle) and Martin-Marietta (Denver). Discussions with the Rockwell

AFPRO covered the status of the project, AFPRO problems, AFPRO responsibil-

ities in validating software, and AFPRO's role and relationship with the

applicable SPO. CSA was also allowed to observe the B-IB Mock-up and the

B-IB Iron Bird. During this visit, the role of quality assurance in the

software development process was reviewed. It was pointed out that the

AFPRO's role varied considerably depending on the Memorandum of Agreement

010A) between the AFPRO and the SPO. In particular the SPO has the final

decision on all reviews and software acceptance. Rockwell personnel also

briefed their software quality assurance procedures in which software tools

were an important part.

At Boeing, the initial meeting was limited primarily to software

maintenance. Some dynamic analysis tools were mentioned, and most of these

tools were developed by Boeing. At a second meeting, Boeing personnel

presented CSA with a detailed briefing on Boeing's automated Software

Standard (BSWS - 1000) in support of DoD-STD-2167, which establishes the

requirements to be applied during the development and acquisition of

mission critical computer system software. Also mentioned were 57 software

tools that were currently being used. These tools covered various aspects

of the software life cycle. An effort is underway to integrate these

software tools into packages that cover the entire software life cycle. In

turn, these packages will be used throughout the entire Boeing Corporation.

In discussions with the Boeing B-IB software test group, how validation

testing is performed on application software was covered. This included

many Boeing developed analysis tools which are hosted on mainframes. A

final meeting with the AFPRO personnel centered on the potential for using

automated tools. It appeared that some of the advantages were really not

understood. AFPRO education emphasizing the use and application of soft-

ware appeared warranted.

At Martin-Marietta, two validation techniques were emphasized: rapid

prototyping and program design language. As per Boeing, Martin was also

developing integrated tool packages that span the software life cycle. At

Denver Aerospace (Division of Martin-Marietta), their V&V Plan was briefed.

Details were also provided concerning their experience using automated and

4

manual software validation techniques on a major IV&V project. The AFPRO

also provided CSA with a list of requirements for which automated valida-

tion tools might be utilized.

In summary, the contractor/AFPRO visits identified the need for

unified procedures. It was also agreed that contractor documentation

techniques are becoming predominately automated, which emphasizes the need

for increased AFPRO training. The establishment of a unified automated

software documentation standard to be included in software development

contracts would be a great assist.

In late December 1985, CSA traveled to AFCMD at Kirtland AFB. The

purpose was to review the information collected to date and to discuss the

data obtained from the fact-finding trip to the contractors. Initial

subjects covered were the AFCMD role in the acquisition process, AFCMD's

automation plans, plus the background leading to CSA's contract. Later

discussions included the broadness of the SOW requirements, hardware

configuration at AFPROs (and AFCMD), and the effects of MIL-STD-2167 on the

AFPROs. It was also pointed out that since software tools (which are used

mostly for internal development) are rarely deliverable items, the USAF

needs to obtain information as to their selection and use. The final

meeting resulted in a further refinement of CSA's task. Basically CSA was

instructed to develop procedures for USAF personnel to use when evaluating

the software developers selection and utilization of automated software

tools.

Based on the contractor visits and the clarification provided by

AFCMD, the Management Plan was formally delivered on 17 January 1986.

During the same month, information was evaluated associated with almost 900

tools. Eleven were identified as having potential for AFPRO use. This

information provided the baseline for "CSA's standards" which are included

as Appendices 1 and 2 to this study.

A thorough review of DoD-STD-2167, AFR 800-14 and the FAR (Part 42

Contract Administration) was conducted next. Incorporating these documents

with what was learned in the field, CSA was able to develop procedures for

AFPRO usage in major areas under investigation. These included:

5

, i

* Tool description

* Tool name

* Classification

* Abstracts

* Functions

* Parameters

* Validation procedures

* Operating system

* Corporate history

* Tool user's training

* Tool user's supervision

* User's manual

In February, CSA attended the Computer Science Conference in Cincinnati,

Ohio which was sponsored by the Association for Computing Machinery. The

primary subject areas were fifth generation computing, Software

Engineering, Software Specification, and Artificial Intelligence, and

Robotics. Of particular interest, the topics under Software Specifications

were ENCOMPASS - a tool for the composition of programs and specifications,

TIPS - a tool for comunicating software requirements, and Case DL - a

design tool for specifications and prototyping. Besides the presentations,

CSA was able to have side conversations with some of the experts in

attendance to obtain their thoughts on tool generation, tool usage, and

tool documentation. A conversation with the Director of High Technologies

Laboratory Research centered around two types of software tool environments

described as "open" and "interactive". The former environment pertains to

off-the-shelf software whereas the interactive environment tools are those

that have been incorporated into the development package. A session with

the Carnegie-Mellon University Computer Science Department Head, was also

informative. This resulted in the identification of two more expert

sources for CSA to contact. CSA also talked with various publishers and

vendors concerning printed material on software tool evaluation. No one

appeared knowledgeable of publications on the subject.

Work started in preparation for the Mid-Term Briefing at AFCMD. In

addition to providing status information, CSA was striving to address its

basic charter to develop a draft s-tandard and address the need for a

validation facility. After all the research and discussions, five evalua-

tion categories appeared to be appropriate for inclusion in the standard:

a. Software tool identification

b Software tool schedule

C. Tool utilization and training

d. Validation of software tool and evaluation of tool documentation

e. Configuration change control

The format of the report could now be better defined. CSA's approach has

been described in Section 1.0 and the need for a validation facility in

Section 2.0. Appendix I (Automated Software Tool Monitoring System) is

what the original SOW described as AF standard with Appendix 2 being a

handbook written to assist the AFPRO; Appendix 3 is a checklist for applying

Appendices 1 & 2. Appendix 4 is an overview of Tool's Characteristics.

Prior directions to potentially include lists of useful tools and matrices

of validation processes were no longer to be addressed.

The Mid-Term Briefing(s) were conducted in late March. CSA was one of

four contractors presenting information on various aspects of software

procurement. For instance, one briefing was concerned with the cost of

software development, another with contract administration and one addressed

quality assurance.

CSA actually participated in three different forums. The first was a

presentation to the AFCMD staff and to the presenters of the other studies.

The second was a brief presentation to Col. Roelig and his staff. The

final presentation was for the AFPRO MCCR focal points. Basic agreement

was reached on how CSA was to proceed with the study. It was also deter-

mined that the UJSAF would approach Westinghouse (Baltimore) for participa-

tion in the demonstration. Conceivably, Westinghouse would be the

candidate tool developer and provide a tool to be subjected to CSA's

procedure. CSA's presentation also outlined what a viable USAF software

validation facility should entail. If one can accept the idea that a

7

A,- AM.':

validation facility is an activity that determines the correctness of a

program, or sof tware project in terms of its functional requirements, the

issue can be appropriately discussed. As covered in detail in Section 2,

CSA envisioned this capability to fulfill a library/ approval role rather

than a place for physical demonstrations.

In April 1986, a draft of CSA's Appendix 1 (i.e. "Standard") was

delivered to the Air Force for comment. Feedback was all positive. The
Air Force also decided that the final presentation would be at AFCI4D during

the week of 11 August 1986.

CSA was then asked to provide a list of information that the USAF

would need to provide for the demonstration. This later required some

clarification since the information would actually be generated by Westing-

house for USAF use. In preparation for this, CSA traveled to Westinghouse

with an outline of the anticipated demonstration. The subsequent discussions

were very positive resulting in Westinghouse nominating one of its tools

and the use of its facility for the demonstration. In addition, Westing-

house agreed to provide CSA with information on the subject prior to the

event taking place. After these discussions, CSA provided a status briefing

to AFSC Headquarters personnel at Andrews AFB. The possibility of using

GSA Appendix 1 as a foundation for a DoD standard was discussed.

In summary, the schedule for contract completion included delivery of

a draft study on 16 June 1986, a demonstration conducted at Westinghouse,

F and a final briefing at AFCHD. The final study with USAF comments incor-
porated would be delivered in August 1986, the scheduled final month of the

contract.

8

2.0 ANSWER TO THE QUESTION

"DOES THE AIR FORCE NEED A TOOL VALIDATION FACILITY?"

2.1 Validation

Historically, software has required extensive operational usage before

a respectable level of confidence is achieved. Subsequently, the software

community (including DoD developers) have been expanding development and

testing techniques to include the use of automated auditors, analyzers and

various test tools. This new automated QA methodology has increased the

effectiveness and reliability of software while it has reduced the time

required to "finalize" the system. The end product is typically more

reliable resulting in a higher degree of confidence.

The rapid advance in system sophistication during the last few years

has Riven rise to an increased requirement for more powerful and efficient

software systems which will replace those already proven and in the inven-

tory. This, in turn, has lead to an acceleration of the need for validated

tools for these new applications. Subsequently higher confidence, especial-

ly in military systems, must be achieved in a shorter period of time

(preferably prior to final acceptance). By providing a set of standards

and procedures for developers of QA tools, these improvements should be

realized. It seems only reasonable that by instilling the same discipline

in the generation of automated tools as the other portions contributing to

the weapon system, the final product will be of higher quality.

2.2 Tool Availability

As would be expected with the growth of the software industry, there

has been a similar increase in automated tools. In addition to CSA, many

firms have been involved, and as can be seen, for many different reasons

and applications.

Caine, Farber & Gordon Inc. developed the S-FORTRAN language. It is

an extension of the FORTR.AN language to allow easy, efficient and reliable

programming in a FORTRAN environment. The language results from the

adjunction of a carefully chosen set of control structures. These exten-

sions er~compass all those that have been proposed in the literature and

proven to be useful.

Adt.A -A9

The University of Michigan produced the Problem Statement Language

(PSL) and the Problem Statement Analyzer (PSA) as computer-aided techniques

for structured documentation and analysis of information processing sys-

tems. They are tools for describing information processing systems,

recording such descriptions in machine-processible form, and storing in a

database. Specifically, PSL is a language for describing systems; it is

not a programming language. PSA is a software prickage that is used to

check data as it is entered into the computer, store it and produce re-

ports.

The Digital Equipment Corporation developed VAX-I DEC/CMS which is a

program librarian for software development and evolution on a VAX/VMS

operating system. It is a set of commands that enable software developers

to manage the files of an ongoing project.

Reifer Consultants, Inc. list three types of automated tools available

from various sources. They are: Simulation Packages, Requirement Packages

and Configuration Management Packages. Several examples of each are:

• Automated Interactive Simulation Modeling System (AISIM).

• Computer Analysis and Design System (CADS).

* Distributed Data Processing Model (DDP).

* Automated Design Facility (ADF).

. Automated Requirements Traceability System (ARTS).

* Design Analysis System (DAS).

* Batch Librarian (B-LIBEXEC/7).

• Change Control System (CCS).

• Common Block Generation Program (COMGEN).

Science Applications Inc. has developed Science Applications Inc.

Software Design and Documentation Language (SAI-SDDL). It is a licensed

computer program which aids in the documentation, as well as the design of,

computer software. The three components are the processor (a PASCAL

program), the language and the methodologies. It can operate directly on

FORTRAN, PASCAL or SIHSCRIPT source code.

Historian Plus was produced by Opcode, Inc. It is a software package

that allows the user to store and update an entire library of source

materials, while keeping track of all changes. It executes in both batch

10

&A-h Ab*L

and interactive modes. At one time it was capable of running on eleven

(11) mainframes and nineteen (19) different operating systems. Some of its

users include several Japanese clients.

Logicon's Automated Requirements Engineering (LARE) and Computer

Response Time Simulation- (CRTSIM) have been developed- to aid the system

engineering process. The characteristics of quality requirements are

defined as testable, unambiguous, consistent, traceable, complete and

maintainable. It also assists configuration management and other manage-

ment functions. Logicon's Strategic Mission Data Preparation 'System

(SMDPS) is an interactive mission planning system that produces mission

data on magnetic tape for strategic avionics systems. It employs a complex

database management system to manipulate a large amount of mission-related

data.

ARINC Research Corporation System Testability and Maintenance Program

(STAM) is a computer-aided testability and fault diagnosis system. A

dependency analysis algorithm identifies all higher-order dependencies and

their implications with respect to fault isolation and maintenance. It

also provides testability measures that are useful in comparing competing

designs and evaluating the effects of testability design changes (e.g.,

test-point relocations).

The Aeronautical Systems Division Language Control Facility Newsletter

(April 1985) lists J73 and 1750/1750A software. This includes 1750/1750A

tools, tools for other embedded computer targets, support tools and compil-

ers. Of the fifty (50) tools listed, approximately fifteen (15) different

contractors are listed as the developers.

During the course of CSA's research activities, over 900 tools (as

described by various developers) were identified. The magnitude of the

number of different languages and different types of hardware was obviously

very large. In addition, with the seemingly constantly changing state-of-

the-art in the computer business, these numbers will continue to rapidly

increase.

2.3 ASD Language Control Facility

The Language Control Facility (LCF) is operated by the Language

Control Branch at the ASD Computer Center at Wright-Patterson AFB, Ohio.

It is supported by both government and contractor personnel. Its basic

charter is to support the Language Control Agent (LCA) in implementing

JOVIAL J73 as a standard Air Force language for avionics embedded computer

applications. Air Force Regulation 300-10 requires all JOVIAL compilers

(intended for use in Air Force avionics embedded computer applications) to

be validated before being accepted for Air Force use. MIL-STD-1589C

(USAF), entitled JOVIAL (J73), provides the basis for the validation

process.

As a service, the LCF conducts both formal and informal cotapiler

validations. For a formal validation, a Memorandum of Agreement is estab-

lished between the LCA, LCF and the requesting Program Office. Then, based

on inputs from the compiler developer, the LCF prepares a test plan. The

LCF next performs a prevalidation site inspection (as required), oversees

and controls execution of the JOVIAL Compiler Validation System at the site

specified by the Program Office. Upon completion, the LCF analyzes the

results and prepares a full Test Analysis Report (TAR). The TAR includes

the identification of all failed tests, as well as other inconsistencies,

with the MIL-STD. For informal validations, the LCF provides the requester

with a skeleton test plan and assists with the procedures for loading and

using the JOVIAL Compiler Validation System. After execution, the request-

er mails the results to the LCF for analysis which results in the prepara-

tion of an informal TAR.

2.4 Air Force Requirement

As was discussed at CSA's Mid-Term presentation, the Air Force needs

to be involved with automated tool development as well as tool usage. The

pertinent question is to what degree, based on the magnitude of the problem.

If a validation facility can be defined as an organization that determines

the correctness of a program or software product in terms of its advertised

functional requirements, then it might be a realistic undertaking.

One could envision a large building filled with many machines and

staffed with an appropriately large number of systeus analysts and pro-

grammers, etc. Then one could envision individual software developers

bringing their tapes and card decks and so forth to be run and therefore

12

validated. Even if it were possible to obtain all the required mainframe,

peripherals and support equipment, it would soon be out of date. So, in

addition to the large initial invest ment there would be a continuous update

expense.

A more practical solution could be described as a "Government Fur-

nished Property (GFP) Facility" in which a software tool database was

maintained. It could be interactive as per the ASD facility or simply

provide a library function. In either case, the facility would definitely

contribute to adding discipline to the process. Responsibilities could

include:

Managing software tools

Managing tool documentation

Tracking tool development

Overseeing validation of candidate tools

Maintaining qualified tools list

The Data and Analysis Center for Software (DACS) which is already a

central source for usable data and software technology could be utilized.

It is currently developing and maintaining a database and providing rapid

response to technical inquiries.

3.0 Overall Summary

3.1 Conclusions

A software automated tool is a software program and should most

appropriately be treated as such. During development, therefore, it should

be subjected to the same rigor as delivered software, (i.e., testing,

documentation, etc.). In addition, guidelines are necessary to avoid

having the USAF in the middle when there is a debate between the software

program developer and the software tool developer, particularly if the two

are procured separately. A much needed by-product of this structured

approach will be a better definition for tools, With the recent prolif-

eration of programs labeled as tools (for testing, IV&V, compiling and a

multitude of other uses), categorization is obviously needed. As an aid in

13

this process, the USAF could provide the regulatory function by providing

the standards and approval process. However, recognizing the large number

of tools which are constantly being upgraded, it would definitely be

impractical for the USAF to require a physical demonstration of each in a

government facility.

3.2 Recommendations

Appendix 1 is a document in military standard format which will assist

the AFPRO in the development /procurement process. It will greatly assist

the AFPRQ (and in turn the USAF) to understand how a particular -tool was

developed as well as how and why it was used. This document would be a

great help to both the developer and the USAF in the software development

process. Appendix 2 is a handbook which will assist the AFPRO with the

implementation of Appendix 1.

The USAF needs an information data base on software tools. The

function of this software tool database facility would be to hold/dissemi-

nate software tool information to industry and government organizations.

There would be minimal cost to the government since some facilities for

deliverable software tools already exist at RADC and WPAFB. The utilization

of this facility would aim towards the reduction of software tool duplica-

tion and waste. It would include a provision for a move in the direction of

standardization.

A Computer Based Education (CBE) software package is also recommended

for those AFPROs with lesser knowledge of software tools. No such package

Is available off-the-shelf but one could be readily developed under contract.

The AFPRO would also benefit from workshops to better understand the

application of Appendix 1 and Appendix 2 for the evaluation of software

tool procedures.

14

AUTOMATED SOFTWARE TOOL MONITORING SYSTEM

(This is a proposed Standard to be used by the USAF to better understand

the use of software tools in the development of the software life cycle.

Its application to non-delivered software will provide the greatest

benefit.)

APPENDIX 1

1.0 SCOPE.

1.1 Applicability. This document shall apply to all automated software

tools (deliverable or non-deliverable) used by contractors or subcontrac-

tores in the development of embedded (application) sof tware systems. In

this document the term automated software tool (or software tool) will be

defined as, "Firmware used to support in the development and maintenance

phases (i.e. requirement analysis, design, coding, testing and configura-

tion management) of a software system life cycle.

1.2 Contractual Intent. This document requires the establishment and

implementation of an automated software tool (AST) monitoring program by

the contractor or subcontractor. The objective of this document is to

assure that AST is identified, documented, tested, validated and maintained

in a manner that will provide AST information to other users. Also a move

in the direction of AST requirement standardization and control of AST

duplication.

1.3 Relation to Other Contractor Requirements. This document and any

procedure or document executed in implementation thereof, shall be in

addition to other contract requirements. The monitoring program require-

ments set forth in this document shall be satisfied in addition to all

detail requirements contained in the Statement of Work or in other parts of

the contract.

The contractor is responsible for compliance with all provisions of the

contract and for furnishing specified supplies and services which comply

with all requirements of the contract. If any inconsistency exists between

the contract schedule or its general provisions and this document, the

contract schedule and the general provisions shall control.

1-2

-Am,

2.0 APPLICABLE DOCUMEN~TS:

2. 1 Amendments and Revisions. Whenever this document is amended or

revised subsequent to its contractually effective date, the contractor may

f ollow, or authorize his subcontractor to follow, the amended or revised

document, provided no impact on schedule or increase in cost, price, or fee

is required. The contractor shall not be required to follow the amended or

revised document except as a formally authorized modification to the

contract. If the contractor elects to follow the amended or revised

document, he shall notify the contracting officer in writing, of this

election. When the contractor elects to follow the provisions of an

amendment or revision, he must follow them in full.

2.2 Ordering Government Documents. Copies of specifications,~ standards,

and documentation required by contractors in connection with specific

procurements may be obtained from the procuring agency, or as otherwise

directed by the contracting officer.

1-3

3.0 GENERAL REQUIREMENTS.

3.1 The contractor shall implement and document an AST monitoring program.

The contractor shall maintain information concerning this program in the

following format:

a. Volume I - General Information

b. Volume 2 - Specific Software Tool Information

3.1.1 Volume 1 - General Information. This volume will consist of five

sections that present generic information concerning the ASTs,-used on a

project.

3.1.1.1 The first section is the Introduction. The Introduction shall

contain:

a. Identification of the project(s) to which the AST has or will be

applied.

b. A listing of all other software tools (in software life cycle

order) that interface with the software tools.

c. A brief functional description of the AST.

3.1.1.2 The second section is a Master Schedule that indicates the date

all software tools (listed above) will become operational. A more detailed

schedule for each software tool will be presented in Volume 2.

3.1.1.3 Third is the Configuration Change and Control Plan section. In

this section the contractor shall describe how control of the software

tools' configuration is maintained.

3.1.1.4 The Personnel Training Plan section is the fourth section. The

contractor shall describe his overall and individual software tool training

plan. Also, a training schedule tracking each employee's progress through-

out the training process shall be provided.

3.1.1.5 Section five, Other Information, will contain any other generic

information (not discussed above) applicable to the ASTs.

1-4

jot , - ' ,

NON

3.1.2 Volume 2 - Specific Software Tool Information. This volume shallI describe information pertaining to each software tool used in the project.

IIVolume 2 contains specific software tool information. Each software tool

will be described by five (5) categories of information as follows:

a. Software Tool Identification

b. Software Tool Schedule

c. Validation of Software Tool and Evaluation of Documentation

d. Configuration Change and Control Status

d. Other Information

3.1.2.1 Software Tool Identification.. When identifying the software tool,I the following will be addressed:

Software tool taxonomy (General Characteristics - See attachment for

each tool)

3.1.2.2 Software Tool Schedule. A detailed schedule outlining the various

activities necessary to make the software tool operational is required.

Activities may vary from a straight acquisition and installation of a

software tool to a full-scale software tool development effort.

3.1.2.3 Validation of Software Tools and Evaluation of Documentation. The

elements of this category describe the methodologies and techniques used to

validate the software tool and evaluation of the software tool documenta-

Ation. The purpose of the test is to determine if the tool does what it

claims, and if the documentation reflects the software tool that was

Atested. The following documentation procedures shall be required:

a. Analysis of software requirements to determine testability

b. Review of test requirements and criteria for adequacy

c. Verification that tests are conducted in accordance with approved

test plans and procedures.

d. Review the documentation to verify that it-corresponds to the

actual test results.

e. The contractor shall ensure that test related media and

documentation are !maintained.

1-51

3.1.2.4 ConfIguration Change and Control of Software Tool and Documenta-

tion. This category is concerned with the management of any changes to the

baseline software tool. Subcategories to be addressed include:

a. Software tool baseline date

b. Software tool baseline configuration (if different from software

tool identified above)

c. Track of changes to software tool baseline

d. Software tool documentation baseline date

e. Description of baseline documentation

f. Track of changes to baseline documentation

3.1.2.5 Other Information. This section will be reserved for information

not covered in the above section applicable to the AST.

1-6

[! wL

ATTACHMENT 1-1

SOFTWARE TOOL TAXONOMY

The information provided in this attachment (which is part of

the AST monitoring system) will enable the AF to update its

software tool database at Griffis AFB, NY, and provide minimum

records for the non-deliverable software tools.

Page 1 of 4

I

THIS FORMAT IS IN COMPLIANCE WITH THE "SOFTWARE LIFE CYCLE TOOLS DIRECTORY"

DATABASE. THE CONTRACTOR SHALL IDENTIFY THE TOOL AS FOLLOWS:

TITLE: The name of the tool in Its long for.

DATE TOOL INFORMATION UPDATED: The date the tool information or

updated tools information was provided.

DATE OF DEVELOPMENT: The date the tool development was completed

(month/day/year).

CLASSIFICATION: One or more of the following classes that best

describe the tool's application:

*Software Management, Control, and Maintenance Tools

*Software Modeling and Simulation Tools

*Requirements and/or Design Specification and Analysis Tools

*Source Programming Analysis and Testing Tools

*Program Construction and Generation Tool

*Software Support System/Programming Environment Tools

*Other

FEATURES: The input, function, and output of a tool includes the

following data elements:

SUBJECT: The input which is subjected to the main functions

performed by a tool.

CONTROL INPUT: The types of operations and details associated

with the operations.

TRANSFORMATION: Changes that take place on the input to a toolI while it is being processed.
STATIC ANALYSIS: Operations, on the subject without regard to

A its executability.

DYNAMIC ANALYSIS: Operations that are determined during or

after execution takes place.
MACHINE OUTPUT: Output that can be directed to a target machine

or to another tool for further processing.

USER OUTPUT: The types of information that are returned from the

tools to the human user, and the forms in which these outputs are
presented.

Page 2 of 4

STAGE OF DEVELOPMENT: What development stage the tool is in: Concept,

Design or Implemented.

PURPOSE OF DEVELOPMENT: The purpose for which the tool was developed, can

be either Research, Experimental, or Production.

TOOL PORTABLE: Whether or not the tool can be easily transferred from one

machine to another without extensive modification.

PRICE: The purchase/lease price of the tool.

HOST COMPUTER: The hardware manufacturer and identification of the machine

on which the tool was developed.

TARGET COMPUTER(S): The hardware manufacturer, identification of the

machine(s) necessary for the operation of the tool.

WORDSIZE: The wordsize of the target computer(s).

OPERATING SYSTEM: The operating system nece -ary for the use of the tool.

OTHER SOFTWARE/UTILITIES REQUIRED: Other software necessary for the use of

the tool.

TOOLSIZE:

SOURCE WORDS: The number of bytes of the tool's source code.

OBJECT WORDS: The number of bytes of the tool's object code.

SOURCE LINE OF CODE: The number of source code lines of the tool.

MEMORY REQUIREMENTS: The number of bytes of memory required for

the operation of the tool.

IMPLEMENTATION LANGUAGE: The language(s) in which the tool is written.

TOOL AVAILABLE: Whether or not the tool is available to other users

(Yes/No).

Page 3 of 4

PUBLIC DOMAIN: Whether or not the tool is in the public domain (Yes/No).

TOOL SUPPORTED: Whether or not the tool is supported (Yes/No).

TOOL SUPPORTER: The organization responsible for maintenance and/or

configuration control.

ABSTRACTIONS (COPYRIGHTS, LICENSES, GOVERN~MENT APPROVAL, ETC.): The

restrictions on the availability of the tool.

TOOL SUIQIARY: A brief paragraph clarifying the features the tool provides;

indicating, if possible, the number of users; and discussing the experi-
ences with the use of the tool such as performance, applications, or any

other pertinent information.

DOCUMENTATION: The written documentation, documentation sources and

document reference numbers.

REFERENCES: Articles or publications that discuss the tool and experiences

with the tool.

CONTACT FOR MORE INFO: The contact to obtain more information about the

tool (name, organization, address, phone).

DEVELOPER: The tool developer (name, organization, address, phone).

DISTRIBUTOR: The tool distributor (name, organization, address, phone).

SPONSOR: The agency who sponsored the development of the tool (name,

organization, address, phone).

Page 4 of 4

HANDBOOK FOR AUTOMIATED SOFTWARE TOOL

MONITORING SYSTEM

APPENDIX 2

2-1

INTRODUCTION

This document and Automated Software Tool Monitoring Program (Appendix 1)

are based on established Department of Defense (DoD) concepts and policies

which provide that:

a. Contractors are solely responsible for the control of product

quality and for offering to the Government for acceptance only

products determined by them to conform to contractual require-

ments.

b. Government representatives are responsible for determining that

contractual requirements have, in fact, been complied with prior

to acceptance of the product.

C. Final decision of product acceptability is solely the respon-

sibility of the Government.

The contractor, in accordance with Appendix 1, must design and maintain an

effective and economical monitoring program that includes both processes

and products which makes data available to the Government adequate for use

in establishing AST acceptance criteria. Facilities, products, and manage-

ment techniques vary so widely within the broad pattern of national securi- 1

ty industrial establishments that this evaluation handbook cannot provide

detailed information to cover all intentions. Instead, it reflects the

most reliable quality program control, patterns used by much of American

industry. It encourages the training of planners and evaluators in all

areas that affect the program. The emphasis throughout this handbook is on

the planning and execution of a comprehensive monitoring program. The

evaluation of such a program depends upon how well decision criteria have

been selected, applied and enforced.

A consistent format has been followed throughout this handbook. In order

to relate the program evaluation suggestions (directly as possible) with

2-2

the requirements of Appendix 1, each subsection of Appendix 1 is quoted

verbatim and is followed by appropriate comments as follows:

SUBSECTION OF APPENDIX 1

A. "Review of Requirements" -Discussion of the requirements set

forth in the subsection.

B. "Application" -Description and examples of practices applied

by contractors in the past that are typical and illustrative

C. "Criteria for Evaluation" - Questions which should be asked to

evaluate that particular part of a contractor's quality program.

It is most important to note that the questions contained in the various

"Criteria for Evaluation" are essentially YES/NO questions. Asking and

answering them alone will not provide a thorough and complete evaluation of

a contractor's monitoring program. The questions serve only as indicators

and reminders of important points to cover; the evaluation is expected to

cover them in appropriate depth and detail to assure an effective and

complete evaluation.

2-3

EVALUATION OF A CONTRACTOR'S SOFTWARE TOOL PROGRAM

1.0 SCOPE.

1.1 Applicability. This document shall apply to all automated software

tools (deliverable or non-deliverable) used by contractors or subcontrac-

tors in the development *of embedded (application) sof-tware systems. in

this document the term automated software tools (or software tools) will be

defined as, "Firmware used to support in the development and maintenance

phases (i.e., requirements analysis, design, coding, testing, and configu-

ration management) of a software system life cycle.

1.2 Contractual Intent. This document requires the establishment and

implementation of an AST monitoring program by the contractor or subcon-

tractor. The objective of this document is to provide for the user (AFPRO)

a better understanding of how contractors are using software tools, and a

method of evaluating the software tools.

1.3 Relation to Other Contract Requirements. This document and any

procedure or document executed in implementation thereof, shall be in

addition to other contract requirements. The monitoring program re-

quirements set forth in this document shall be satisfied in addition to all

detail requirements contained in the Statement of Work or in other parts of

the contract.

2.0 APPLICABLE DOCUMENTS:

2.1 Amendments and Revisions. Whenever this document is amended or

revis ed subsequent to its contractually effective date, the contractor may

follow, or authorize his subcontractor to follow, the amended or revised

document, provided no impact on schedule or increase in cost, price, or fee

is required. The contractor shall not be required to follow the amended or

revised document except as a formally authorized modification to the

contract. If the contractor elects to follow the amended or revised

document, he shall notify the contracting officer in writing of this

election. When the contractor elects to follow the provisions of an

amendment or revision, he must follow them in full.

2-4

2.2 Ordering Government Documents. Copies of specifications, standards,

and documentation required by contractors in connection with specific

procurements may be obtained f rom the procuring agency, or as otherwise

directed by the contracting officer.

3.0 GENERAL REQUIREMENTS:

3.1 The contractor shall implement an AST monitoring program in the

following format:

a. Volume 1 - General Information

b. Volume 2 - Specific Software Tool Information

3.1.1 Volume I - General Information. This volume will consist of five

sections that present generic information concerning the AST used on a

project.

3.1.1.1 Introduction. This is an identification of the Software System

and the project(s).

A. REVIEW OF REQUIREMENTS.

Appendix 1, para. 3.1.1.1, requires the contractor to: a) identi-

fy the project(s) to which the AST has been or will be applied;

b) list all other software tools (in software life cycle) that

interface with the AST; and c) give a brief functional descrip-

tion of the AST.

B. APPLICATION.

During the development cycle of software, many individual func-

tions are performed to ensure quality of the software. This

includes reviews of software documentation from the initial

specification documents through the final test reports. Many

software tools may have been used to suf port these individual

functions. The contractor governed by the above requirement will

identify the project and provide the listing of all software

tools that interface with this software. To better understand

the specific function of the AST, the contractor will provide a

brief functional description of the input and output of the AST.

See Figure 2-1 of AST General Information.

2-5

C. CRITERIA FOR EVALUATION.

- Has the contractor identified the project(s) to which the

AST has or will be applied?

- Are software tools listed in software life cycle?

- Has the AST been evaluated under DoD-STD-2167?

- Is all documentation Available to government personnel, and

furnished upon request?

- Has the contractor provided the AST functional

description?

- Does the description provide information on input, output

and expected results?

2-6

41 0 -

00
v. 0 0 soI

S. 4- ot 0.
44 034 P.,Z

:3 Sv 1.4 -4
00

'4.0 0(.

(A. 0- 054 : " 1CO 0U 4 0 4

SI :1 4 w4. w 1 I

a0:3w 1 ww : 3 54:312U -rO44' 014J000a wu
Cd ~ (00 ti 0 9 c4)c r 4 r -

.=u00 4 H41XA 0010 'd .1 w too~ 0 oU 0 . -4
w 0 w -4 .41 o00 W 0m0 >, W > 0 0100.0w
P. . 1 - 41 w 44 4S ' 4 r4 44 *.r0 1q41

&I aw j1 FA 4-4 W r . to - 4 04IJr W. 0 w t 1:1 w 0

z 0 W0w 41 (A 301)0 0 w 10 0 u 0 00a r.r. w 0
o l w3 :3. 10 u w 4 0 4 c0)0000..~O A >01c0Q

2H W14J N i0):14 0101w441 wJ1m4 0.Ou "14
00 4J1 m0 0 0 w A4 Ia. 0 P*041 0 00 0 H-
rl U40u 44 v~uu 01000,4EO "OW00

1-4 0 Z $ 0 .1-0 0 a CCf:" 00 4) W '-4 0: r.0
P:w 0m o 4.4 01 W0.00- 4 0140 -H

4 1000 4 0
u 96 bo-4 Aj '4. *0 04100 4J 4J > 1 44 441W 0 0 41I=

z P .04401 -H-4 "4 4i1 4 4 103 V *-A 0 :3 0(c 01410
P- M. 1-4 0 r4 IJ E.0 r. c A c) 0 0 r-4 u)4103

co 4)- 00140u c 00 IL.W p4 w0 0 (0 .00 0 43 0
z~ (0 .4 V a) 01 A'd oA v 4: .

0-4 14 : v JJW 4J0 d 0 i041 U0 103010W 1' W M'W-4 0 4.1

Q2 O-4 01 V34 0'4 (m :V4 - w..0(0.4. >. goc w 0u4

0 cc0 0 0A 4).-4 6 c 1 0-4 0" 0 a10 .0 0) 00
44 w 4) i w w m 04.~ X p0 14000)00 .2 c (00tor4

E-1- 4otJ Z 9j w0. -HJ- 0 10 p -A > 0 u&J 4~4 Ai C:4.
p2 w e 010 4 00 10i.0 9: cc w 4 .0 4.04 0 1 43(0

1-4

r14 0n

02-

H- 9k4

3.1.1.2 MIASTER SCHEDULE PLAN. This is primarily a listing of all tools

and major milestones. The plan shall reference or document the starting

dates of all ASTs based on the date the ASTs become operational.

A. REVIEW OF REQUIREMENTS. Appendix 1 of para 3.1.1.2 requires

contractors to establish a master schedule indicating the date

the software tool will become operational.

B. APPLICATION.

Contractors usually have formal procedures for describing the

master schedule on a given project. This procedure's formality

will depend on a contractor and the contract under consideration.

The real significance is whether the procedures provide adequate

information. The AFPRO, will use his judgement in exercising this

requirement as optional, particularly since developed software

tools may not be applicable.

C. CRITERIA FOR EVALUATION.

- Has the contractor provided the master schedule plan?

- Are there provisions for monitoring and tracking the

changes that may have an effect on the plan?

- Are the listings of ASTs and the major milestone

schedule provided?

- Has the contractor shown a close out of completed tasks?

3.1.1.3 Configuration Change and Control Plan. The contractor shall be

required to produce a plan for all contract and modification procedures

made to the AST.

A. REVIEW OF REQUIREMENTS.

Appendix I of para. 3.1.1.3 requires the contractors to describe

how control of the AST's configuration is maintained.

B. APPLICATION.

Once a baseline has been established for AST or supporting

documentation, i~e., specification, design, test plan, etc., the

integrity of the baseline or documentation is protected to ensure

that there are not any unauthorized changes. It is important

2-8

that the AST change control plan identify the authority to enter

material under configuration control and identify the authority

for removal of controlled items from the configuration management

activity. The plan shall provide explicit instructions for

Identification of baseline materials and subsequent revisions or

versions. The plan shall provide procedures that will preclude

the control facilities from being used as a repository for

unapproved, or uncontrolled ASTs.

C. CRITERIA FOR EVALUATION. (

- Has the Contractor provided procedures to ensure that

changes to the baseline specification and documentation are

authorized?

- Is the Contractor complying with internal procedures

for placement and removal of items from the. control facili-

ty?

- Does the Contractor's plan preclude the control facilities

from being used as a repository for unapproved or uncon-

items and subsequent revision or version of the AST?

3.1.1.4 PERSONNEL TRAINING PLAN. The plan shall reference or document

procedures for the training plan on AST.

(A. REVIEW OF REQUIREMENTS.

Appendix 1 of pars. 3.1.1.4 requires contractors to describe the

overall and individual software tools training plan. This also

includes training schedule tracking each employee's progress

throughout the training process.

B. APPLICATION.

The application of AST at any given phase of the development is

very important. To ensure the quality of software, it is neces-

2-9

* a. ..- . .%

- .. I-

sary that individuals have proper knowledge of operating AST.

Before such individual operates a tool, it is necessary to

M establish training plans. These plans shall describe the overall

training of AST and the individual training plans. Appendix I

also requires the contractor to provide a schedule that would

track/monitor this training plan.

C. CRITERIA FOR EVALUATION.

- Has the contractor provided a training plan? Who monitors

this training plan?

- Has a procedure been developed to track the training system?

- How well are these training plans administered?

Note that the training plans for all ASTs will be applied to the

individual AST. Hence individual AST training is not discussed.

3.1.1.5 Othexr Information.

This section will be reserved for other information that was not

covered in the above sections. Typically it will cover generic

information that is also applicable to ASTs as specified in

Appendix 1 of para. 3.1.2.4.

3.1.2 Volume 2 - Specific Software Tool Information. This volume shall

describe information pertaining to the AST used in the project. The AST

will be described by five (5) categories of information as follows:

a. Software Tool Identification

b. Software Tool Schedule

C. Validation of Software Tool and Evaluation of Documentation

d. Configuration Change Control Status

e. Other Information

3.1.2.1 AST Identification. The contractor shall provide a description of

the AST and the important specifications. This information will enable the

Air Force to update its software tool database at Griffiss AFB, NY, and

2-10

provide minimum records f or the non-deliverable software tools.

A. REVIEW OF REQUIREHENTS.

Appendix 1 of para. 3.1.2.1 requires that when identifying the

AST, the following will be addressed:

Software tool Taxonomy (General characteristics - see Atch

for each tool of Appendix 1)

B. APPLICATION.

Examples and information needed to help identify the AST are:

title of the AST, date the AST information was updated, date the

AST was developed, classification of the AST (i.e., what phase of

software development are the ASTs applicable). If such

information is not relevant to the AST, the contractor shall

respond "not applicable". However, if such information is

applicable to the AST, but the information was not given, the

AFPRO shall then take necessary action to obtain such

information.

C. CRITERIA FOR EVALUATION.

- Has the contractor provided information to properly identify

the AST?

- For the information not provided, are there special means to

furnish the government the information missing?

- Is the AST information accurate and complete?

- Is the AST approved to be used on this project?

- Is the AST in development stage?

- If yes, is the development included in the project contract?

- Has the contractor researched current government tools

to avoid duplication?

- What are the advantages of this AST compared to the existing

software tools?

- Is the AST a non-deliverable item?

- If yes, are there effective means for providing information

to government personnel during and after the development of

software life cycle?

2-11

3.1.2.2 Software Tool Schedule. Appendix 1 shall require contractors to

provide all information regarding the AST milestone schedule.

A. REVIEW OF REQUIREMENTS.

Appendix 1 of para. 3.1.2.2 requires contractors to provide a

detailed schedule outlining the various activities necessary to

make the software tool operational. Activities may vary from a

straight acquisition and installation to a full-scale software

tool development effort.

B. APPLICATION.

During the development of software, contractors shall identify

the detailed status of the AST. Contractors may already have in

their library an AST to be used on a particular task, and often

the AST may need some modifications, to meet the need of that

particular task. In the case where an AST has not been developed

or needs modification, the program requires contractors to

provide in detail, the status at any given point of the AST and

when the AST becomes operational.

C. CRITERIA FOR EVALUATION.

- Has the contractor
provided a milestone

schedule for
the

- Is information provided in the milestone schedule accurate?

- Has the contractor provided date(s) the AST will become

operational?

3.1.2.3 Validation of Software Tools and Evaluation of Documentation.

The elements of this category describe the methodologies and techniques

used to test the software tool and evaluation of the AST documentation. The

purpose of the test is to determine if the tool does what it claims, and if

the documentation reflects the software tool that Vas tested.

A. REVIEW OF REQUIREMENTS.

Appendix I of para 3.1.2.3 requires documentation procedures for

the following:

2-12

a. Analysis of software requirements to determine testability

b. Review of test requirements and criteria for adequacy

C. Verification that tests are conducted in accordance with

approved test plans and procedures

d. Review the documentation to verify that it corresponds to

the actual test results.

e. The contractor shall ensure that test related media and

documentation are maintained.

B. APPLICATION. The qualification of software can be accomplished

through the application of stringent testing. Each phase of the

development of a software system will normally require testing

and validation prior to continuing to the next step. For

example, some computer programs are tested prior to integration

or subsystem testing. If modules are produced in a top down

order, top down testing will be employed. However, the contrac-

tor shall be required to identify those procedures or techniques

to ensure the AST has been tested in accordance with its test

requirements and specifications. Test procedures shall include

prevention, detection, diagnosis, recovery and correction of

errors.

C. CRITERIA FOR EVALUATION.

- Has the contractor pidtfed test arctivitesan

- Has the contractor
protied test

pcedurtesan

documentation for internal testing and evaluation?

- Have various levels of testing been identified and scheduled

as required?

- Do test procedures comply with the test specification,

data item descriptions and other contractual requirements?

- Are test results actual findings of the test?

- Are test-related media and documentation maintained to allow

repeatability of tests?

- Are software tool requirements testable?

2-13

- Are all software and hardware used to develop the AST

acceptable to the government?

- If acceptable, is there necessary documentation provided to

substantiate this fact?

3.1.2.4 Configuration Change and Control of Software Tool and Documents-

tion. This category is concerned with the management of any changes to the

baseline software tool.

A. REVIEW OF REQUIREMENTS.

Appendix 1 of para. 3.1.2.4 requires the following sub-categories

to be included:

1. AST baseline date

2. AST baseline configuration (if different from software tool

identification above)

3. Track of changes to software tool baseline

4. Description of baseline documentation, date(s) of changes,

and track of changes to baseline documentation.

B. APPLICATION.

Once a baseline has been established for an AST, the integrity of

the baseline and documentation is protected to ensure that there

are no unauthorized changes. However, if changes are made to the

baseline, the contractor shall provide date(s) the changes were

made, types of changes, and the overall effect the changes will

have on the AST. Contractors shall provide tracking procedures

for all changes to the baseline. The AST documentation shall

reflect all changes and the tracking of baseline documentation.

C. CRITERIA FOR EVALUATION.

- Has the contractor established the baseline date?

- Have changes been made to the AST bAseline?

- Has the contractor provided description for changes made to

AST documentation.

- Have dates been provided to baseline changes?

2-14

-- *- -AW

- Has the contractor provided AST baseline configuration?

- Has the contractor provided procedures to track changes made

to the baseline?

3.1.2.5 Other Information . This section will be reserved for other AST

information not covered in the above sections.

2-15

AST CHECKLIST PROCEDURES

APPENDIX 3

3-1

AST CHECKLIST PROCEDURES

CSA took further steps for better evaluation of procedures by developing a

checklist consisting of Appendix I and Appendix 2. Each requirement is

evaluated step-by-step as opposed to Appendix 2 (Handbook), in which the

requirements are evaluated together. The purpose of this checklist is to

assure that all requirements are thoroughly evaluated.- The checklist is

arranged in the following format: first page - general information of the

AST; following pages - five (5) columns with first column being item

number, second column the title of the AST and its requirements, third

column, the paragraph number corresponding to Appendices I and 2, and

criteria for evaluation. A blank page is also provided for any additional

comments. This checklist method was used to demonstrate the AST procedure

at the Westinghouse facility in Baltimore, Maryland.

3-2

.0 -co-
Q L. 0

0-4 0 -

EJ V

CU 4'

0Q)0 0
C C/) . - 4'

V) 0 -U

co u. 0 0 0 - 0
co .- 4- 4-J 0 1 w .

E4--J 0 ~ -4 U)
4-' co -, 0.0.

4- (1o 4-' 0

w. -C 4-i 4 .J4~U
E E- --- (. C: nC

L. 0L. E 0 4-' > o 0
0 0CK3 0- =3 U) oW -1 V

4-- -a 0 0 U) L.Q 0 4j
w4-J 0 (L) -0 k~ 0- w

0) >.. 0 (a 0cu 0 r. r-
4-44-

- V 4- 4-0 C .. L 0 x4 0
m--. cu 0 CL) MU- 4-)

0/ oc0J 4-) .- -. 0 +-' 4-' >1
L 4-J 0 4-' a-U) Z 4- E c cu 0

4- 4- 0. 0 cu~ OE 0 E-'
*)0 .- 0 .0 4- C (.L- . . - 0

c a)E 4- - cu C

_0 '0.w 0 =3C 0--
V)a.) CD (D*-0 .) a.) -H 4 0

0 4- 4-1 4-' 0 L- k. (n C

4-J) 0. (1) W. Ca._) M -4

0 - - 4O - 4- C0 p-

W - :3) 0~ (C -- c0n
4-J U 0 4- -J CC W 0

0 1--4- L..a. (U :z > cd
4-- 34- E E: w

w. (U. aj =3 3.
.cC *.4 a. C) p * -'-

-H 0 -4

CI 4-J 0- 0 C) 4

ci LU 0 1l 0 "o

C) - .C) 0 0 0

LL) LU >- C) -H 0 4)

LU) :3 u -
IL.) C0.. X: cxL :v (D 0 0.

X- EU C) P- "

CD (..) V) LU L

LUJ H-...J
F-- I-(/ C) ()0
V) :Z C) C) C) C) z

3-3

0
z

1.4 44)
.2 1.4

A. 02.a.

44 0 41 bc W 0

41 01 &PC0

4.t1> 4.1 ..4)f 140 2 04.

0- 4- M.D. W~

E-4 CW oe- C'.* P.0
.02 0 4. 0

V. 1-4 rfr
40 - 02 a1f 4.1 1 '-~~4- 0.0

41cC-) N 4 w.4 00 ~ -r- 4
Q- * 1W a) w C u41 cc tWi eW0 41

U~ 1 1- 4-4 4j " m@ :43 m

0n M2 0 1-4 04. 004 0 21.4

Z * .0 "0 4j 0 0) C. @1
1-4 0 4 41 @1 w0 cc .0 0 0

04zC 0 .02 H1W .0-t - 4 04
4.w5W Q I n CLWt A 4.41 q 00

rH -I 4.3 u CW 0 ul : U @0@w
1-)0-4 go m @4) 4 go02 4-4 V @0 00.

104 44 0 414)

%144

-4 44
.02 @0

00

.0 0
LW 0

4: H 44.4

z 41
t4 .02 X21

0 0 0
41 0 4 0

0 0 -4 A-'41

zH @2W r

0- 0t .4 d4

0 40

1V-4

ZI3-4

0
z

U)

'I
~R)

3-5

0 0

qo
0 00 >f

.C to 0.
*,44 41 c 0 .

0~* 00uv $ 0

En ") 4 0w
u- .0 v 10 1 A

u& 0.k
14 (A0 4 0

0 x9 1 44.' 410
10-

4 0
fj 0C'. 0 4-1

0- w M w 0049)W -O1W14 w '4.4 ti 00 4)C
0i"- 0094 (JO.- 0)0

'-0 -4 0 w A 0~ v .0
4- Me) .h

u coo m 0'0

00 0

14 0

-4 0

1-40H
4.

z 0

t (-40 cc 1

0 0

4'f-4

z0

3-6

0-

zA

0:c

cc ~ ~ ~ 0oc 1)I
V401 .1 0 H -

0 W0 . 44 4.5w0 00013
$4 0 u 6 ~ 0 M H 414:

A4j u c -it, ..4 1 "z to 41S~). 00 U u"U V
ccV0 p04.4 00t0A c 4t

>4 C0 0 $4 0 '141 0 w 1 4
41V V.a U 0 i 0 - 4 0to0u 0 0 010 > 44lu L 440

4.w500~ r-4 ~ ~ a.'1 w cu 0

0- -C 4100 r - 10 A4 0 "q410
W =..0 1.4$ w40 t4 W.00 4 w

0 0 0 41~'4 coe- 0 40
z d c0 0. mc 00. o :CC 0 44 0 0 m r4

w i o 40 . V c C.-0 V t010 go 0

4.10
pe0. E-4 00h- 1 0 0

0

0
0 $.4

z 0
00

0 d 04 0
z 0

w ~ u

-~ 0H

HU,

I3-8

143.tI

0z

p4

*1 ______

U _____________

3-9

I

THIS PAGE LEFT BLANK INTENTIONALLY

3-10

V0
.Y. P- c

0 0A
0~. 4.8 0

cn 41

It 0 b

0 SIN r

w- zS U)

ud to -4cd a

Id Was w $

~~*4. 0 bo -*4~
0 C: ~

to 14
1-40N A-4 Uc. SI

402
0~&. 00 0..8

000

-4

zo 0
0 00

4b0

1-4 C0 1 u
w C80

401.
o co

0-4t

~3-11

I I l I

'II
.. ._i..__o, .i ..

04

a) 1 0.4 0
k 9: '-0 u s

4 l 4 11 t w-
IV1., 0 0- 0D> G

4.4 410 93 GD H~ ~
0. 41 41 bO PO 0 V gs *- "0
.r4. Vr4 to- 41 1 b 0 45 'G Uv 0

1-4 >00 $A4 w 4 .414 @ 0 aD GDl wU A
WD'0 :0 1 0 41 .415 -H 4L6 1

14 frC l w (p U v 0 .0 449w
z V AGA V 4.1 ". 14M 4.1 c H

GD .4 G04 0 '44 0) GD'40.-41a C .0 0 0 C: 0 1 . m w0 0V-
1.4 00 -4 0 4.1 1:. fA GDU (A 44 ' 9 '0 j
0.. .- 44 0, 4 011 la M) r- -4 A0 -4 V44 41 '0 -q pfr.A 4U 010 GD "00be1v1

GDA 0) 1 $4 0 00 0 10 r.00a0 4 44 : > > ?A 0 41 (d 41 1 0 .- 409x4 4 0 1 0 GD V'40 9: 41 a0 $4,a0 0uG 4-5 0 64 V0 ".4 000: 0 ca r4 9 4
64W- 10 W 0 0.- 0 '.40 '10 > 14 4

0lI 41 0 v.4 0v4.1 -'.4 GD >. 10 4.) 0o w6 0. 0
9:>1 '440fa00 u 010 000 m00 CL0 V0

0- -4I-i 3 -4l 0 U " E44p4 -4 w -A cd cire- U) V.4 -4 wI cdH 0)m vend w - W 1-40 m 0.00ute 1)w0 0 GC 0o4 a1. w013 m .M 4 0 0 IV0 C GD 4-i1 W
41. W0 GDG 'aO 0 41 41 -4 4.1. C.0$

GD 0.. .0.4S 41 mw 0 1 GD .- a 0 v 0
0. W. V4 4.1) CO4I- >. 400 D 4

C0 0 w C ' G 4 4)I 00 14- 41- 0 W

0 mI
-4 41

od 0

-40

0 f00

0~ 0 0
ga -4 [-

0 w4

0 010
11-4 "4. u1

01 -

gL4 0-4
0-0.

v44

0

nj un

(13)13

F4
0

3-14

411

IL 4J 4
C d4) 4) c

-'4 V4 g
0 0t

E- En

040

0o

'-4 ~ . ~4-4
-A' 0) O

000.45 0C

U) 4.4~4 .4~E-J

U) 0~ 1.s- ~ I
-4 0W ~ -
04) to -

o~t ii40 0C:-

0-4. H .4 0).
1-4 4

301

>41

I V -
U ~ c -44 04 -

U 1 1 4~ 41 0- 0 1
U) 41 w w34 Q4 P1g. :

41 0) cu JJ 1 411 4
4. "- w 0 0 1 11 41.

44 41 ~ co 14) cu10 -0

4.14 u . v11 044 f: A411'

-4 14 co 4) 4.41 1 C9- . 4
C) 4 44 r 4 1. 041 44 0d too 0 :3U ' . 4 4 W4~ j 0~- 0 "

1-4 41 9-4 c~ 0-4 -41 04
I-'~4 u W- -14 4 11 44
04 w1 Oi 0~ r_ 0 to u,4.1.

C 4w >4 4 1 A-. 4 4 $ 4 1 0 q1 -0 C .
M U w 4 0 q C. =41 ~ 0 A4w10

4 .1 t o4H 0 > 41 r4V c c c,- 4 4 1" ' 4 W E 4 1
0 w14 0 41 c Ll.4 U 1 C- 4o1A c

W (A4 m 41 414 U -H t4 U-H44 to4 F..U4 030:WW 4('-4 0 0 - 41 0 411 04441. 41. 41)1"4 c-.

041 4 41 1 041 -44 4141 44Z W 4) m %&4 W-4 ca .)41 0 44 0 4'-0 w- ,4 U) > 14-I 4 4140 410 w 1~E414E- > 1 '4 - &1 - 4 3 0 4 "a- .4 w14 -H" 41
0-4 ~ P-4 4H34) L c" 0 4-r4 414V143
0< 04 41 ~ 4 >4 W f'14 W114 410 "a A Um.-4)"u o14$ W.0 ca4 v 410cr.41 0) W4 W 144 144CC-4 40 0

w4 4a <4C to &414 ~ U 1 1-4 4. CID

C4

41 0
-4 41

0 go 14 41
9. 14 al 4

0 041

414 0 4 1
41 w 14 14

u1' V 0 4 co
0-%J 40. r 0 4U '4E 4 10 co 0a41o 0 0 114 *01 0Q 41 0 to1

zz 1400 04 A 11-4 tv -H- U1) ~ 4
w1 0 0 4 41 4

140. 0 414 1o z 41 41 41 U 4

H4 44 0 41 "4*

C.14 u 04 4
U *43 0 4 14

OU 041 d0 41 M34 44
L4 > m .- H X $4 41 ..40 1

-a1-4 41. 41 C. 0
N0 v44 u4 m4 4

..- 14- 4 :)
41 444 >4H p1 4

414 41 14 0)10 w 00 41
>U Ad1 cd ou wz to

3-16

0z

* 'I
0

3-17

z

>4

0.

0 V-4

W0 - . 0

z3 03.
0 41 0

0 0 ow 0 0 >
w~4 I0 w 0 0

0 U) 0 .0

>. .1 ~ 4 4.11 U 0

* UU oo lu u 04

o- $CO -H. t
*4 41. 14. 4U4 w4.8 k

nC 0 1 C 0 41. 003 4

ca0- 40g 14 r. 4)~ w3

000 to~ 0 A34 03~~(C 4

1-4~ 4J4*.404
03 41 0) 03 0. 3

94.= 0

044

44
o

.4.4 4.1 c

E-4 z .U

zO 030

0 4-4 "J-4 0 U)

0 03c C
1-4

4
.

7 4..

"44. 03'

0 00 1-4
U) :

z 0 07 v 0

V4- '4-4 4-U1

z 03

41 w 0

-411.0 5-4
)u 2 U) cci W C U 4

lIJ 0 cc
P. U ow 0 . .0 03

03 w 10 u .
V 03t4.4 Z7 U)

>1 > 0 014
o 0 4-10 0dj

)-4 4o w

3-18

3-19

3-6

EXAMPLE OF TOOL'S CHARACTERISTICS

APPENDIX 4

4-1

OVERVIEW OF AUTOMATED SOFTWARE TOOL

S The information below provides general characteristics of an automated

Software tool. It is presented to help the AFPRO understand what a soft-

ware tool is and how it works.

There are many ways in which one can view the characteristics of soft-

ware tools. The approach in this section uses two different vantage

points. The first vantage point is a coarse functional view of tools. A

very simple classification system that consists of only six categories is

used. This view is followed by the second vantage point which is a much

more detailed perspective that is based on the taxonomy (characteristics)

of tool features. Each feature is described and defined.

Tool Classification

The tools in the STI Database are not extensively classified according

to traditional schemes because of their limitation in describing current

technology. The number of categories in the traditional classification

scheme was reduced to six. The following table lists the six categories

and the number of tools identified in each category:

Tool Class

Software Management, Control and Maintenance

Software Modeling and Simulation

Requirements and/or Design Specification and Analysis

Source Program Analysis and Testing

Program Construction and Generation

Software Support System/Programming Environments

Since the above classes are not mutually exclusive, this catego-

rization provides only a broad overview of the types of tools currently

available. If another classification exists, the classification and a

definition of the classification should be presented.

Tool Features

To provide a more useful way of identifying tools of interest, each of

the tools in the STI Database is classified according to the taxonomy of

4-2

Tool Features

To provide a more useful way of identifying tools of interest, each of

the tools in the STI Database is classified according to the taxonomy of

(general characteristics) of tool features. The features taxonomy. dis-

played in Figure 1, graphically illustrates the hierarchical relationship

of tool features. The INPUT, FUN~CTION, and OUTPUT categories are described

below.

Input

Tool input features are based on the forms of input which can be

provided to a tool. These features fall into two classes, one based on

what the tool operates on (Subject), and the other based on how the tool

operates (Control Input). The difference between these classes is clar-

ified further in the following paragraphs.

Subject.

The subject is usually the main input to a tool. It is the input

which is subjected to the main functions performed by a tool. The four

types of tool subjects are: code, very high level language (VHLL), data,

and text. Although the difference between these types is somewhat arbi-

'4 trary, the taxonomy has very specific definitions for each.

(1) Code Input - accepts a program written in a high level,

assembly or object language. Code is the language form in which most4 programming solutions are expressed.
(2) VHLL Input - accepts a program written in a very high level

language that is typically not in an executable form. Tools with this

feature may define programs, track program requirements throughout

their development, or synthesize programs through use of some non-

procedural VIILL. Typical VHLLs are:

Design Specification Language

. Requirements Specification Language

Program Specification Language

System Specification Language

4-3-

* Algebraic Specification Language

* Model Specification Language
* Description Language

* Structured Language

* Requirements Language

* Design Language

Specification Language

'

TOOL FEATURES

I I I
I U "

SUBJECT CONTROL TRANS- STATJIC DYNAMIC MAC.IN USER
INPUT O=RATION ANALYSIS ANALYSIS OUTPUT OUTPUT

ndividual Feature Individual Features Individual Features

FIGURE 1: TAXONOMY OF TOOL FEATURES

4-5

III

(3) Data Input - accepts a string of characters to which meaning

is or might be assigned. The input (e.g. raw data) is not in an

easily interpreted, natural language form.

(4) Text Input - accepts statements in a natural language form.

Certain types of tools are designed to operate on text only (e.g.,

text editors, document preparation systems) and require no other

input except directive or commands.

Control Input.

Tools that have control input features accept statements or data

that specify the type of operations and any detail associated with the

operations. They describe any separable commands that are entered as

part of the input stream (HOUG82B). The following describe the two

control inputs features:

(1) Commands - accepts character strings which consist primarily

of procedural operators, each capable of invoking a system function

to be executed. A directive invoking a series of diagnostic

commands (i.e., TRACE, DUMP, etc.) at selected break-points is an

example. A tool that performs a single function will not have this

feature but will most likely have the next (HOUG82B).

(2) Parameters - accepts character strings which consist of

identifiers that further qualify the operations to be performed by

a tools. Parameters are usually entered as a result of a prompt

from a tool or may be embedded in the tool input. An interactive

trace routine that prompts for break-points in an example of a

tools with parametric input (HOUG82B).

The following figures provides an enlarged illustration of the INPUT

category in Figure 1.

I uo7ic.-jLEo jrO

FIGURE 2
*4 -6

III

Function

The features for this class describe the processing functions

performed by a tool and fall into three classes: Transformation, Static

Analysis and Dynamic Analysis.

Transformation.

Transformation features describe how the subject is manipulated to

accommodate the user's needs. They describe what transformations take

place as the input to the tool is being processed. The following list

includes the features that are classified as transformation:

(1) Formatting is arranging a program according to predefined or

user defined conventions. A tool that "cleans up" a program by

making all statement numbers sequentiel, alphabetizing variable

declarations, indenting statements, and making other standardizing

changes has this feature.

(2) Translation is coverting from one language form to another.

The following lists includes a representative sample of features

that are classified as Translation:

• structured preprocessing
. complication
• macro expansion
• conversion

(3) Instrumentation is adding sensors and c¢-anters to a program

for the purpose of collection information useful for dynamic

analysis. Most code analyzers instrume.c the source code at

strategic points in the program to collect execution statistics

required for coverage analysis and tuning. See Dynamic Analysis

features.

(4) Editing is modifying the content of the subject by inserting,

deleting, or moving characters, numbers, or data. Of course, there

are a very large number of tools that have this feature that are

not included in the STI Database. Many of the ones that are

included provide editing to enhance the capability of the user

environment.

4-7

(5) Synthesis is generating an application or program f rom a

specification or from an intermediate language. Toole that have

this feature include application generatorso program generators,

compiler compilers and preprocessor generators.

(6) Restructuring Is reconstructing and arranging the subject in a

new form according to well-defined rules. A tool that generates

structured code from unstructured code is an example of a tools

with this feature.

(7) Optimization is modifying a program to improve performance,

e.g. to make it execute faster or to make it use fewer resources.

Static Analysis

Static Analysis features describe operations on the subject without

regard to its executability. They describe the manner in which the

subject is analyzed. All management-related operations are classified

at Static Analysis. The following list includes the features that are

classified as Static Analysis:

(1) Management is aiding the management or control of software

development. The following includes a representative sample of the

features that are classified as Management:

configuration
global variable

* project management
database management
change control

* test data management
files management

* library management
* version control

documentation management
performance management
capacity planning
management planning

(2) Cross Reference is referencing entities to other entities by

logical means.

(3) Scanning is examining an entity sequentially to identify key

areas of structure.

(4) Auditing is conducting an examination to determine whether or

not predefined rules have been followed.

(5) Data Flow Analysis is graphical analysis of the sequential

patterns of of definitions and references of data.

(6) Consistency Checking is determining whether or not each entity

is internally consistent in that it contains uniform notation and

terminology and is consistent with its specification.

(7) Statistical Analysis is performing statistical data collection

and analysis.

(8) Error Checking is determining discrepancies, their importance

and/or their cause.

(9) Structure Checking is detecting structural flaws within a

program (e.g. improper loop nestings, unreferenced labels, unreach-

able statements with no successors).

(10) Comparison is determining and assessing differences between

two or more items.

(11) Completeness Checking is assessing whether or not an entity

has all its parts present and if its parts are fully developed.

(12) Complexity Measurement is determing how complicated an entity

(e.g., routine, program, system, etc.) is by evaluating some number

of associated characteristics. For example, the following charac-

teristics can impact complexity: instruction mix, data references,

structure/control flow of interactions/interconnections, size, and

number of computations.

(13) Tracking is tracking the development of an entity through the

software life cycle.

(14) Interface Analysis is checking the interfaces between program

elements for consistency and adherence to predefined rules and/or

axioms.

(15) I/0 Specification Analysis is analyzing the input and output

specification in a program, usually for the purpose of generating

input data.

(16) Type Analysis is evaluating whether or not the domain of

values attributed to an entity are properly and consistently

defined.

(17) Cost Estimation is assessing the behavior of the variables

which impact life cycle cost.

(18) Units Analysis is determining whether or not the units or

physical dimensions attributed to an entity are properly defined

and consistently used.

(19) Scheduling is assessing the software development schedule and

its impact on the software life cycle.

Dynamic Analysis

Dynamic Analysis features specify operations that are determined

during or after execution takes place. Dynamic Analysis features differ

from those classified as static by virtue of requiring some form of

symbolic or machine execution. They describe the techniques used by the

tool to derive meaningful information about a program' s execution

behavior. The following lists includes the features that are classified

as Dynamic Analysis:

(1) Coverage Analysis is determining and assessing measures

associated with the invocation of program structural elements to

determine the adequacy of a test run. Coverage Analysis is valu-

able when the user is attempting to execute each statement, branch,

path or interactive structure (i.e., Do loops in FORTRAN~) in a

program.

(2) Tracing is tracing the historical record of execution of a

program. The following list includes a representative sample of

the features that are classified as Tracing:

path flow tracing

break-point control

logic flow tracing

data flow tracing

(3) Tuning is determining what parts of a program are being

executed the most.

(4) Simulation is representing certain features of the behavior of

a physical or abstract system by means of operations performed by a

computer.

410

(6) Resource Utilization is analysis of resource utilization

associated with system hardware or software.

(7) Symbolic Execution is reconstructing logic and computations

along a program path by executing the path with symbolic, rather

than actual values of data.

(8) Assertion Checking is checking of user-embedded statements

that assert relationships between elements of a program. An

assertion is a logical expression that specifies a condition or

relation among the program variables. Checking may be performed

with symbolic or run-time data.

(9) Regression Testing is rerunning test cases which a program has

previously executed correctly in order to detect errors spawned by

changes or corrections made during software development and mainte-

nance.

(10) Constraint Evaluation is generating and/or solving path input

or output constraints for determing test input or for proving

programs correct.

The following figure provides an enlarged illustration of the

FUNCTION category in Figure 1.

ses .-4-- L__ "

FIGURE 3

I

.. - - ; . t

Output

Output features provide links from the tool to both the human user

and the target machine (where applicable). They describe the types and

forms of outputs that are produced by a tool.

User Output. User output features describe the types of informa-

tion that are returned from the tool to the human user and the forms in

which these outputs are presented. The following includes the features

which fall into this class:

(1) Listings are output that lists source programs or data and

that may be annotated.

(2) Tables are output that is arranged in parallel columns to

exhibit a set of facts or relations in a definitive, compact and

comprehensive form.

(3) Diagnostics are output that simply indicate what software

discrepancies have occurred.

(4) Graphics are a presentation with symbols indicating opera-

tions, flow, etc. The following list includes a representative

sample of the output features that are considered Graphics:

* flow charts
* hierarchical tree
* design charts
* activity diagram
* charts
* HPO charts
* line graphs
* bar charts
* control map
* histograms
* milestone charts
* activity diagrams
* structure charts

(5) User-Oriented Text is output that is in a natural language

form. User-Oriented Text is further extended into the following areas:

* documentation

* reports

'Z -:1 2

Machine Output.

Machine Output features handle the interface from the tool to a

non-human user. The machine output can be directed to a target machine

or to another tool for further processing. Machine Output features

describe what the receiving tool or machine expects as output. The

following list includes the features that fall into this class:

(1) Source Code is a program written in a procedural language that

must be input to a translation process before execution can take place.

(2) Data is a set of representations of characters or numeric

quantities which meaning has been assigned.

(3) Object Code is a program expressed in machine language which

is normally an output of a given translation process.

(4) Intermediate Code is a code that is between source code and

machine code.

(5) VHLL is a program written in a very high level language.

(6) Prompts are a series of procedural operators that are used to

interactively inform the system in which to tool operates that it is

ready for the next input.

The following figure provides an enlarged illustration of OUTPUT

from Figure 1.

FIGURE 4

4-13

SECURITY CLASSIFICATION OF THIS PAGEA

REPORT DOCUMENTATION PAGE
is. REPORT SECURITY CLASSIFICATION 1b. RIESTRICTIVIE MARKINGS

IINCIACT~rCn________________________
I@. SECURITY CLASSIFICATION AUTHORITY 3. DISTRISUTION/AVAILASILITY OF REPORT

26. DECLASSIPICATION/DOWNGRADINGCmGEO.E Aprovcd for Public Release:
Distribution Unlimited

A. 0PRFORMING ORGANIZATION REPORT NUMEERISI a. MONITORING ORGANIZATION REPORT NUM8EERISI

BRM-85-5 109-1
411a NAME OF OSRFORMINO ORGANIZATION 11 OPFICE SYMBOL 74L N4AME OF MONITORING ORGANIZATION
Computer Software Analysts, 01P~ebopAir Force Business Research Management Ctr

Inc.AFBRMC (RDCB)
6c. ADDRESS SCily. Sidi@ @Rd XII' Cade 41 lob. ADDRESS (City. State ,rd ZiP Cdorl

333 Ce~tinela Avenue Wright-Patterson AFB Oil 4S5133
Inglewood CA 90302

go. NAME OF FUNDING/SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

AFR.CRDB F33615-85-(:-5109
Sc. ADDRESS (City. Stee Good 71P Cadef 10. SOURCE OF FUNDING NOS.

Area B, Bldg 125 PROGRAM PROJECT TASK WORK UNI0T

Wright-Patterson APR Oil 45433 ILE MOENT NO NO. NO No.

Alr een~ Ot 1$Wt!*~r s/W Quality Through 7130Il0

12. PERSONAL AUITHORISIJ. Peacher and P. Ikharebha
13. TYPE OF REPORT 13b. TIME COVERED 0 DATE OF REPORT (Y,, M.. D.,) Is PAGE COUNT

FinalI FROMD2T0- T 860A_ 143030 lio
IS. SUPPLEMENTARY NOTATION

Ii COSATI COOES 1S SUBJECT TERMS WItoqI.e *#, 'er of macem'? and Ide.Itify by block "Womb..

FIELD JGROUP S1,1S GR. _Air Force, Automation, Computer Programs, Quality
.2 13.8C Istandardization, Standards. Software Tools

19. BSTACT(Coml~w 0.our#* I neoes7 ad Identlify by Micac 9IlhEt

The principal objective of the study was to develop a standard set of procedures for
validating nan-deliverable computer software automated tools to aid the Air Force Plant
Representative Offices (AFPROs) in understanding and documenting the origin of the soft-
ware automated tool and how the developer actually used the tool. Approximately 900 com-
puter software automated tools were identified arnd reviewed for use in development of
this state-of-the-art set of standards. Five evaluation categories are included in the
standard: tool identification, tool schedule, tool utilization and training, tool docu-
mentation, and configuration change control. A handbook is provided to describe the
application of the software automated tool monitoring system..

20. DIST RIOUTIONIAVAILAMI LIT Y OF ASTRACT 21 ASTRACT SECURITY CLASSIPICATION

UNCLASSIPIEOS'UNLIMITEO MSAME AS APT 0 DYIC USERS 0 UNCASSIFIED
22. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 122C OFFICE SYMOOL

(Inade Aye Code#

Capt Edward C. Nlitchell 1(S13) 255-6221 RDCB

DO FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE.

SECURIT Y CLASSIFICATION OF THIS PAGE

4

