
-MOis 937 RELATIONSHIP BETUEEN IDL MITERFACE DESCRIPTION /
LANGUAGE) AND STRUCTURE E (U) CARNEGIE-MELLON UNIV
PITTSBURGH PA SOFTWARE ENGINEERING INST P N FEILER N

UCASIFIED SEP 86 MNU SEI-86-TM-13 ESD-TR- 6-228 F/G 12/5 W

INLA EONEh-hso hh h111E
sooni

IIL

MICROCOPY RESOLUTION TEST CHART

lo -mp

7 ;2
ILE ii i Technical Memorandum

- @Carnegie-Mellon University

-= Software Engineering Institute

"1% Relationship between IDL and Structure Editor
Generation Technology

00 by

0 Peter H. Feller

September 1986

IALIi /7*

J.4
.UN

341 8

4

* DDlC
-" ea ,a"/a

N3

0987

/E

a~ Juslot Mi hu

'SY~> 't ~ r r .ftIWC ,. 'N ~ 7 ' - %."/ .'

SECURITY CLASSIFICATION OF THIS PAGE/9

REPORT DOCUMENTATION PAGE
Is. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNLIMITED, UNCLASSIFIED NONE
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

N/A UNCLASSIFIED, UNLIMITED, DTIC, NTIS
2b. D 7 CLASSIFICATION/OOWNGRADING SCHEDULEN/A

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

SEI-86-TM- 13 ESD-TR-86-220

6. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 78. NAME OF MONITORING ORGANIZATION

SOFTWARE ENGINEERING INST. (Ifapplicable) SEI JOINT PROGRAMMING OFFICE
I SEI

6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

CARENGIE-MELLON UNIVERSITY ESD/XRS1

PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE

HANSCOM, MA 01731
Sm. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION1 (If applicable)

SEI JPO ESD/XRS1 F19628 85A0003
Sc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

CARNEGIE-MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT

PITTSBURGH, PA 15213 ELEMENT NO. NO. NO. NO.

63752F N/A N/A N/A
11. TITLE (Include Security Classification)

RELATIONSHIP BETWEEN IDL AND STRUCTURE EDIT R GENERATION TECHNOLOGY

12. PERSONAL AUTHOR(S)
PETER FELLER

13s. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT

FINAL FROM ... TO """ SEPTEMBER 86 12

16. SUPPLEMENTARY NOTATION

N/A

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB. GR.

19. ABSTRACT (Continue on reverse if necessary and identify by btoct number)

)THIS PAPER DISCUSSES OBSERVED COMMONALITIES AND DIFFERENCES BETWEEN IDL AND STRUCTURE

EDITOR GENERATION TECHNOLOGIES. IDL (INTERFACE DESCRIPTION LANGUAGE) IS TECHNOLOGY
FOR GENERATION OF TOOL INTERCOMMUNICATION SUPPORT WITH ROOTS IN COMPILER GENERATION.

STRUCTURE EDITOR GENERATION TECHNOLOGY HAS ITS ROOTS IN SYNTAX-DIRECTED EDITORS.

IT PRODUCES ENVIRONMENTS FOR INTERACTIVE VIEWING AND MANIPULATION OF FORMALLY SPECIFIED

STRUCTURES. BOTH TECHNOLOGIES USE A FORMAL NOTATION FOR STRUCTURAL AND CONSTRAINT

DESCRIPTIONS. FROM THESE DESCRIPTONS BOTH GENERATION TOOLS AUTOMATICALLY PRODUCE

SOFTWARE FOR READING, WRITING, AND MANIPULATING INSTANCES OF THE DESCRIBED STRUCTURES,
AS WELL AS FOR CHECKING SPECIFIED CONSTRAINTS ON INFORMATION CONTAINED IN THE STRUCTURES.

THE IDL TECHNOLOGY EMPAHSIZES GENERATION OF BATCH-ORIENTED APPLICATIONS WHILE THE
STRUCTURE EDITOR GENERATION TECHNOLOGY IS TAILORED TO SUPPORTING INTERACTIVE APPLICATIONS.

STRUCTURE EDITOR GENERATION TECHNOLOGY HAS BEEN APPLIED TO ITSELF, I.E., TO BUILDING

AN INTERACTIVE STRUCTURE EDITOR GENERATION ENVIRONMENT.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED Q SAME AS RPT OTIC USERS UNCLASSIFIED, UNLIMITED, DTIC, NTIS

22. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL

(Include Area Code,
KARL H. SHINGLER 412 268-7630 SEI JPO

DD FORM 1473. 83 APR EDITION OF I JAN 73 IS OBSOLETE.
SECURITY CLASSIFICATION OF THIS PAGE

LOR~l4 7 3 Waal

Technical Memorandum
SEI-86-TM-13
September 1986

Relationship between IDL and Structure Editor
Generation Technology

by

Peter H. Feller
Software Engineering Institute

Approved for Public Release. Distribution Unlimited.

Aocession For
NTIS GRA&I
DTIC TAB
Unannounced c
Justifioation

Distribution/
Avallability Codes

Avail and/or
Dist Speciael

This work was sponsored by the Department of Defense.

The views and conclusions in this document are those of the author and should not be interpreted
as representing official policies, either expressed or implied, of the Software Engineering Institute,
Carnegie-Mellon University, the Department of Defense, or the U.S. Government.

O Table of Contents
1 Introduction 1
2 History 1
3 Architecture For Applications 2
4 Structural DescripUon 3
5 Structure Composition and Views 4
6 Constraints and Processing 5
7 Generation Environment 5
8 Conclusions 8References 9

e11

List of Figures

Figure 1: Comparison of IDL and RDL Application Architectures 3
Figure 2: Description of a Production in RDL 7
Figure 3: Screen View of Prototyping Environment 7
Figure 4: Summary of Comparison of IDL and Structure Editors 8

Ii

Relationship betwen IDL and
Structure Editor Generation Technology

Peter H. Feller

Abstract. This paper discusses observed commonalities and differences between IDL and
structure editor generation technologies. IDL (Interface Description Language) is technology for
generation of tool intercommunication support with roots in compiler generation. Structure editor
generation technology has ts roots In syntax-directed editors. it produces environments for inter-
active viewing and manipulation of formally specified structures. Both technologies use a formal
notation for structural and constraint descriptions. From these descriptions both generation tools
automatically produce software for reading, writing, and manipulating instances of the described
structures, as well as for checking specified constraints on information contained in the structures.
The IDL technology emphasizes generation of batch-oriented applications while the structure
editor generation technology is tailored to supporting Interactive applications. Structure editor
generation technology has been applied to itself, i.e., to building an interactive structure editor
generation environment.

I Introduction

The intent of this article Is to share with the reader some observations about the relationship of
IDL (Interface Description Language) technology and structure editor generation technology. The
origins of the two technologies vary, and each of them addresses a different problem domain.
IDL technology has Its roots In compiler technology and provides support for tool intercommunica-
tion. Structure editor generation technology provides a shell for interactive applications that
manipulate structures. In both cases, the construction of applications that manipulate structures
Is supported through a generation approach. The characteristics of the structures are described in
a high-level notation. Both technologies have chosen similar notations for the descriptions. From
such a description code is generated for inclusion In an application. The differences in the ap-
plication domains are reflected in the functionality of the code being supplied to the application.

For the discussion In this article we have chosen the Dose structure editor generation environ-
ment and its Representation Description Language RDL [10] as a representative of structure
editor generation technology. We first give a short history of both technologies. Then, the ar-
chitectures implied for the applications are compared. This is followed by a discussion of the
structural description facilities, the support for composing and viewing structures, and the notation
for expressing constraints on structures as found in IDL and in RDL. The article concludes with a
description of the two generation environments.

2 History

The IDL technology effort originated In compiler technology and grew out of the POCC project at
Camegie-Mellon University. One component of this technology Is a language (referred to in this
article as IDL) that was developed as a generalized data definition language to pert interfacing

SA

of results from different project components. IDL was used to define the intermediate represen-
tation for AdaTM called Diana [31. A full description of IDL can be found in [13]. The other com-
ponent of IDL technology Is a generation tool. Generation of software based on an IDL descrip-
tion and the tool supporting the generation are discussed in a thesis by Lamb [121. More recently,
the SoftLab project at the University of North Carolina has been building a UnixTM/C-based IDL
generation tool [17.

Structure editor generation technology has its roots in syntax-directed editors. An early syntax-
directed editor system, Emily [91, based its model of structure manipulation on BNF. Later the
Mentor system [4] started to use as Its structural representation an abstract syntax tree represen-
tation - as was done In Diana. In the Aloe system [6] of the Gandalf project and later other
structure editor systems [10, 16], structural information was not handooded Into the system, but
described in a notation with many similarities to IDL. From that description an Implementation
was generated. Structure editors provide a good basis for Interactive applications dealing with
structures. Originally, syntax-directed editors supported incremental program construction, I.e.,
programming in the small. Later structure editor-based environments such as Gandalf, a com-
plete development environment [15], structure editor generation environments, e.g., AloeGen
[5] and Dose [8), and non-programming applications [14, 7] were built.

3 Architecture For Applications

IDL technology assumes that an application reads in one or several structures, manipulates them,
and then writes them out. For that purpose the IDL generation tool produces from an IDL
description reader and writer routines, structure manipulation routines, runtime support routines
(e.g., specialized memory allocation routines), and constraint checking code. Reader and writer
routines operate both with an external ascii representation to aid portability across machine ar-
chitectures, and with a binary representation for efficiency. Structures that are read or written can
be subsets of structures maintained within the application, I.e., the reader and writer act as filters.
An application Is built on top of these routines. Constraint checking code is available as a
separate program that can be invoked on structures that are read or written by applications. An
application can be composed of one or more IDL processes. An IDL process represents a logical
processing unit that takes structures as input, manipulates them, and produces structures as
output. IDL processes are interconnected through their input and output structures. Several IDL
processes can be mapped Into one application program. In this case reader and writer routines
act as filters for in-core structures. The left diagram of Figure 1 illustrates such an IDL-based
application architecture.

Structure editor generation technology supports the construction of application for interactive
manipulation of structures. Such applications are created from an interactive structure manipula-
tion shell that Is provided by the generation system. The shell consists of two layers. This is
llustrated for the Dose environment in the right diagram of Figure 1, yet apples to other structure

editor systems as well. The lower layer of the shell corresponds to the generated IDL routines,
I.e., It consists of reader and writer routines, structure manipulation routines, and runtime routines

2

Interactive Application

Application DOSE

User iterfrL

IDL Astion Trlgpr

MwiputiehROL

ACea.r Vrter .eder Write.

Figure 1: Comparison of IDL and RDL Application Architectures

such as specialized memory management. Readers and writers work according to views, I.e.,
they can read and write substructures and as a result act as filters for passing structures between
different Instances of structure editor shells. This layer of the shel Is complemented with a
second layer that provides facilities for Interactive manipulation of the structures and for triggering
constraint checking and applIcation-specfIc processing. The interactive facilities include a
window- and menu-based user interface, a command Interprter with on-line help support, and
capabilities for viewing, browsing, and modifying structures. Multiple views, both textual and
graphical [M1, are supported. Display of views Is generated at runtime on demand, i.e., only for the
part of the structure the user actually desires to examine. Views permit the user as well as
application code to Interact with a subset of the structure. Multiple views providing access to
different levels of detail In the structure effectively provide browsing facilities. The trigger facility
of the shelf is activated whenever the user manipulates a part of the structure. A symbol process-
Ing mechanism is invoked when an Identifier is entered, touched, or removed in the structure.
Constraint checking routines and application processing routines are invoked both on movement
of the editor cursor and on manipulation operations. Triggering at small granularity permits In-
cremental checking and processing, resulting in an interactive application.

4 Structural Description

The structural description specifies structures in terms of typed, attributed, directed graphs.
Productions define node types, and the names and types of their attributes.

IDL suppc '- the following primitive types: boolean, Integer, rational, and strig. Other types are
defined through composition. IDL supports sets, sequences, user supplied type declarations, and
classes. Sets and sequences can be applied to any attribute. They can be empty. User defined
type declarations refer to types that are Imlemented in separate packag. This permits new
types to be introduced and different hilementations for existing types to be given, e.g.,
representation of an integer with range 1 .100 as a byte. Classes define unions of node types.
IDL supports a non-herarchIcal class structure. Enumerations can be xpressed as classes of

' productions with no attributes for the productions.

i3

In RDL the prnitIve types are integer, string, and identifier. In the latter case definition and use of
identifiers are distinguished. This simplifies the mechanisms for symbol processing. Composition
facilities Include enumerated types, class, sequence, and optionality. Different from IDL,
enumeration is represented explicitly, permitting the generation system to optimize its represen-
tation. Boolean is defined as an enumerated type. In RDL a class definition consists of a list of
production names. Sequences apply to any attribute and are expected to have one or more
elements. Optionality Indicates whether an attribute Is required or not. This results in cardinality
restrictions on attribute values (attribute -> 1; optional attribute -> 0 or 1; sequence -> 1 or more;
optional sequence -> 0 or more). Sets were not felt to be necessary. Instead, the notion of
symbols (identifiers) and associated name and symbol tables are explicit in structure editors.

5 Structure Composition and Views

IDL and structure editor generation technology take different approaches to dealing with structure
composition and views on structures. IDL takes a process-oriented view of the application
whereas structure editor generators take a data base/object base-oriented view.

In IDL, structures are specified with structure declarations. Structure declarations consist of a set
of productions and classes, and a reference to the type of the structure root. Structures can be
refined or derived from other structures. Refinement allows the specification of a more detailed
representation of the old structure. Derivation permits the specification of a new structure by
indication of differences with another structure - a convenience for dealing with several similar
structures. An IDL process is composed of input and output structures as well as structures that
are maintained within an application.

In RDL, a structure is specified in a representation description (RD) through a set of productions
and classes, and a structure root. This structure is decomposed into substructures. Substruc-
tures are specified by defining views on the structure. A view specification is attached to each
production. It indicates a subset of the node types and attributes that are accessible. They can be
accessible with modification rights or read-only. Views are augmented with templates for genera-
tion of displayable representations. The same template Information can be used to generate
parsers. A set of views showing a structure at different levels of detail provide the basis of a
structure browsing facilty. Conditional views allow queries to be specified on structures. Ex-
amples of queries that can be defined through views are "what are all the procedures" or "which
modules still contain errors." A more extensive discussion of the power of structure editors as
structure viewer% can be found in [7].

In RDL, an application can make use of multiple representation descriptions. The specification of
an attribute in one RD can refer to a class in another RD. This permits partitioning of represen-
tation descriptions, which is desirable for applications with large structures such as development
environments (see for example the Gandalf system [15]). This partitioning of the RD implies that
structures based on these descriptions are managed accordingly. Each structure partition can be
stored to and loaded from secondary storage as a separate unit. Mu"tiple representation descrip-

4

tions are managed by the generation environment DOSE rather than through additional language
constructs.

6 Constraints and Processing

IDL supports the specification of assertions on structures. The assertion language has constructs
for conveniently dealing with graph structures, sets, and sequences. Assertions are expected to
hold when a structure enters and leaves an IDL process. No constraints are implied while the
process is manipulating the structure. In the SoftLab implementation assertions are translated
into a checker program that can be invoked on a structure it has written or read before. If not
translated Into checking code assertions still act as specifications in that they document con-
straints on the structure that the application is expected to adhere to at certain times.

Structure editors emphasize interactive manipulation of structures and incremental processing.
For that purpose two triggering mechanisms are provided with structure editors: an action routine
mechanism, and a symbol processing mechanism.

The action routine mechanism activates actions as the structure is manipulated or traversed, e.g.,
by editing or cursor motion commands. Constraints and application processing are associated
with node types, and are activated when a node of that particular type Is operated on. Con-
straints and application processing are expressed in a high-level procedural language with sup-

S port for traversal and manipulation of graph structures and sequences. It supports the description
of both checking and processing. Static semantic checking as well as additions and changes to
the structure, for example derivation of a procedure call template with actual parameters from its
specification, can be expressed. In order to fully support application code an escape into an
underlying programming language is provided where necessary. Efforts on other structure editor
generation systems have resulted in Incremental attribute grammars [2], and in active constraints
[11] as constraint languages.

The symbol processing mechanism activated routines for handling definitions and uses of iden-
tifiers. It is triggered by operations on instances of the primitive types identifier-definition and
identifier-use. The generation environment supplies a default implementation for symbol process-
ing, which can be augmented by the user of the generation environment. The user does so by
supplying a description of the new symbol table structure using the structure description language
as well as of the necessary processing in terms of the graph-oriented processing language.

7 Generation Environment

The generation environment for IDL consists of your favorite text editor for developing IDL
descriptions, an IDL translator that processes IDL descriptions, an IDL library that contains struc-
ture description independent IDL routines and is linked in with the generated routines and the
application code, and some debugging tools. Compilation and linking Is done with application
language tools. The SoftLab implementation of the IDL translator maps structural information

0
5

directly Into the application language, taking advantage of its structural constructs and type
mechanisms. Lant's translator chose a table-driven implementation for the generated code. It
has been realized that changes in the structure can require massive recompilation of the applica-
tion [11. Therefore, both an efficient production implementation and a more flexible development
implementation have been proposed. Two debugging tools are provided with the SoftLab im-
plernentation. One program graphically plots externally stored IDL structures. A second program
generates cross-reference information for structures.

The most obvious generation environment for structure editors is similar to that of IDL. On several
occasions, however, the generation environment has been built as an instance of a structure
editor based interactive application. Both AkoeGen and Dose are good examples. The formal
notation of structure descriptions is described in Itself resulting in an instance of a structure editor
shell for structure descriptions. These interactive generation environments take full advantage of
the capabilities provided by the structure editor shell. Users can structurally manipulate descrip-
tions. Users can develop the structural description, the constraints and application actions, and
auxiliary structures in the same environment. Multiple views provide browsing and querying
facilities, reducing the amount of information seen at any one time. Through these views the user
can examine structures and cross-reference information interactively. The description is checked
for constraint violation interactively as the description is being developed (i.e., the description of
the formal notation includes constraints and processing).

AloeGen takes a table-driven approach for the implementation. The generated ;ystem consists
of a structure independent part and a structure dependent part. The structure independent part is
a shell or kernel consisting of the manipulation routines, reader and writer, user interface, and
command interpreter. The structure dependent part consists of a table containing the structural
information, and a collection of routines representing the constraints and the application actions.
A new instance of a structure editor application is created by linking the kernel code with the
constraint and application routines and linking in or dynamically reading in the table. AloeGen
accomplishes the translation of a structural description or a constraint description through multiple
textual views. One view of the description is that of the description notation or constraint lan-
guage, whereas a second view transforms the description into C code representing the table and
the checking and processing routines, i.e., the structure editor is not only a tool for developing
descriptions, but also acts as the generation tool.

Dose takes a different approach. Structural information and constraint descriptions are created
by the - ucure editor as a structure. This structure represents the structure dependent part of
the system. This structure is directly interpreted by the structure editor kernel, i.e., the Dose
structure editor system does not require a translation or generation step. The structure
representing a structure description or constraint description is read into the editor and accessed
using the same kernel facilities that are used to deal with the application structure. The structure
editor does so by interpreting a description for structure descriptions, which is represented as a
structure in turn. Fig. 2 gives a structural description of an RDL production described in RDL.

6

114~~~, 1'' 111!I'I'k

production =>
prodname : identdof,
arity :integer,
coq*onents :SEQ 01' couponerit,
schmna SE8Q or scheme,
hz9 1 : iJp2,_nfo(o);

schemes:
(structure view)::

i<prodmaue*> ' -> S>B>On

(full view):

Figure 2: Description of a Production in RDL

DOEVersion 2.7Coyih 4e 15

*w I se e I forpendt~oulo)c nil ' 2 Ils fo Stascntal
THEN I~~F Representationi~on Decito for Schemin

PARAMETERSo (Wnot boossw nxA (aIFto ooisogra

IF so Sign l DI Im s ROL M Dr Fie Io

ELSFgEr I: Scree Vie oftelo rooyin Envioneme

THENWHENam S thn: tateent

ImW: ~ ~ IFgtyen&tcmlin *n IO tttet()

The direct interpretation of structure descriptions turns Dose Into a prototyping environment for
description and language development. The user of the Dose generation environment can inter-
actively switch between working on the description and testing it by creating structures based on
the description. A screen snapshot of the Dose generation environment, showing a window with a
Pascal structure description, a window with an application processing routine, and a window
displaying an Instance of the discribed structure, I.e., a Pascal program, Is provided In Figure 3.

8 Conclusions

The comparison of IDL and structure editor generation technology are summarized in Fig. 4.

IDL RDL/Dose
Application structure manipulation and shell for manipulation by Interactive

Architecture read/write primitives applications

Primitive Types boolean, Integer, string, rational integer, string, identifier

Composition set, sequence, class sequence, class, enumeration, optimality

Constraints graph oriented assertion graph oriented assertion and processing
language language with symbol processing

Generated Code direct encoding, table-driven table-driven, interpretive

Generation collection of offline-oriented structure-editor-based
Tools/Environments processing tools Interactive environment

Figure 4: Summary of Comparison of IDL and Structure Editors

IDL technology and structure editor generation technology have their separate origins and were
developed to address different application domains. They both have addressed the issue of more
effectively building software that operates on structures (typed object bases). Formal high-level
descriptions specify the structure and constraints. These descriptions can be translated into a
variety of (quite efficient) Implementations. The differences come In because IDL was targeted to
support tool Intercommunication, whereas with structure editors the emphasis was in providing a
shell for building highly interactive applications.

Both technologies can profit from each other. IDL can benefit from an Interactive generation
environment based on a structure editor. It can also incorporate into its generation process dif-
ferent flexible Implementation techniques and additional support routines, especially in supporting
the development of Interactive applications. Structure editor generation technology can take ad-
vantage of the implementations generated by IDL tools for the Implementation of structure
editors. The result could be very time and space efficient structure editor Impleentations.

S

MI References

[1] Lori A. Clarke, Jack C. Wileden, Alexander L. Wolf.
Graphite: A Meta-Tool For Ada Environment Development.
In Proceedings of Second International Conference on Ada Applications and

Environments. IEEE Computer Society. April, 1986.

[2] Alan Demers, Thomas Reps and Tim Teitelbaum.
Incremental Evaluation for Attribute Grammars with Applications to Syntax-directed

Editors.
In Proceedings of 8th POPL Conference. January, 1981.

[3] Diana Reference Manual
Carnegie-Mellon University, Department of Computer Science, 1981.

[4] Veronique Donzeau-Gouge, Gerard Huet, Gilles Kahn, and Bernard Lang.
Programming Environments Based on Structured Editors: The Mentor Experience.
Interactive Programming Environments.
McGraw-Hill Book Co., New York, NY, 1984.

15] Robert J. Ellson and Barbara J. Staudt.
The Evolution of the GANDALF System.
The Journal of Systems and Software 5(2):107-119, May, 1985.

[6] Peter H. Feiler and Raul Medina-Mora.
An Incremental Programming Environment.
IEEE Transactions on Software Engineering SE-7(5), September, 1981.

[7] Peter H. Feiler and Gal E. Kaiser.
Display-Oriented Structure Manipulation in a Multi-Purpose System.
In Proceedings of IEEE COMPSAC 83, pages 40-48. November, 1983.

[8] Feller, P.H., Jalili, F., Schlichter, J.H.
An Interactive Prototyping Environment for Language Design.
In Proceedings of Hawaii International Conference on System Sciences. IEEE, January,

1986.

[9] Wilfred J. Hansen.
User Engineering Principles for Interactive Systems.
In Fall Joint Computer Conference Proceedings. 1971.

[10] Gail E. Kaiser and Peter H. Feller.
Generation of Language-Oriented Editors.
In Programmierungebungen und Compiler, pages 31-45. B. G. Teubner, Stuttgart, April,

1984.

[11] Gail E. Kaiser.
Semantics of Structure Editing Environments.
PhD thesis, Carnegie-Mellon University, May, 1985.
Technical Report CMU-CS-85-131.

[12] David A. Lamb.
Sharing Intermediate Representations: The Interface Descrtion Language.
PhD thesis, Carnegie-Mellon University, May, 1983.

[13] John R. Nestor, William A. Wulf and David A. Lamb.
IDL - Interface Description Language: Formal Descrption.
Technical Report, Software Engineering Institute, Pittsburgh, PA, February, 1986.

9

[14] David S. Notkin.
Interactive Structure-Oriented Computing.
PhD thesis, Carnegie-Mellon University, February, 1984.

[15] David Notkin.
The GANDALF Project.
The Journal of Systems and Software 5(2):91-105, May, 1985.

[16] Thomas Reps and Tim Teitelbaum.
The Synthesizer Generator.
In Proceedings of the SIGSOFT/SIGPLAN Software Engineering Symposium on Practical

Software Development Environments. Pittsburgh, PA, April, 1984.

[17] W. B. Warren, J. Kickenson, and R. Snodgrass.
A Tutorial Introduction to Using IDL.
Technical Report, Computer Science Department, University of North Carolina, Nov,

1985.
SoftLab Document No. 1.

10

