

MICROCOPY RESOLUTION TEST CHART

US Army Corps of Engineers

TECHNICAL REPORT HL-86-7

888

AD-A181

SHELDRAKE RIVER TUNNEL MAMARONECK, NEW YORK.

Hydraulic Model Investigation

by

Charles H. Tate, Jr.

Hydraulics Laboratory

DEPARTMENT OF THE ARMY Waterways Experiment Station, Corps of Engineers PO Box 631, Vicksburg, Mississippi 39180-0631

6 30

Final Report

Approved For Public Release. Distribution Unlimited

Prepared for US Army Engineer District, New York New York, New York 10278-0090

Destroy this report when no longer needed. Do not return it to the originator.

.

•

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

REPORT DOCUMENTATION PAGE form Approved Date Nor Order get Exp Date Inv 100 assified 1a REPORT SECURITY CLASSFICATION Unclassified 1b. RESTRICTIVE MARKINGS 25 SECURITY CLASSFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; distribution unlimited. 25 DECLASSFICATION /DOWNGRADING SCHEDULE 3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; distribution unlimited. 4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) 7 NAME OF PERFORMING ORGANIZATION USAEWES 5. MONITORING ORGANIZATION REPORT NUMBER(S) 64. NAME OF PERFORMING ORGANIZATION USAEWES 66. OFFICE SYMBOL (# applicable) WESHS-L 70. ADDRESS (City, State, and JP/Code) 7b. ADDRESS (City, State, and ZIP/Code) PO Box 631 7b. ADDRESS (City, State, and ZIP/Code) PO Box 631 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 8b. AME OF ENDING (SONDORING ORGANIZATION 9b. OFFICE SYMBOL (# applicable) NANPL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS 76. ADDRESS (City, State, and ZIP Code) 70 F REPORT 130 TIME COVERED FROM 10. SOURCE OF FUNDING NUMBERS 76. ADDRESS (City, State, and ZIP Code) 711 TITLE (include Security Classification) <t< th=""><th></th><th>PAGE</th><th></th><th></th><th>_</th><th><u> </u></th><th>01</th></t<>		PAGE			_	<u> </u>	01
A REPORT SECURITY CLASSIFICATION Inclassified SECURITY CLASSIFICATION AUTHORITY Source of public release; distribution unlimited. Security CLASSIFICATION AUTHORITY Source of public release; distribution unlimited. Security CLASSIFICATION REPORT NUMBER(S) Source of public release; distribution unlimited. Security CLASSIFICATION REPORT NUMBER(S) Source of public release; distribution unlimited. Security CLASSIFICATION REPORT NUMBER(S) Source of public release; distribution unlimited. Security CLASSIFICATION REPORT NUMBER(S) Source of Public release; distribution unlimited. Security CLASSIFICATION REPORT NUMBER(S) Source of Public release; distribution State. and ZIP Code) So Box 631 Source of FUNDING/SPONSORING Source of FUNDING NUMBERS Source of FUNDING NUMBERS Source of FUNDING NUMBERS PROCREMENT INSTRUMENT IDENTIFICATION NUMBER SADDRESS(CHy, State, and ZIP Code) No SADDRESS(CHy, State, and ZIP Code) SADDRESS(CHy, State, and ZIP Code) No SADDRESS(CHy, State, and ZIP Code) SADDRESS(CHy, State, and ZIP Code) No SADDRESS(CHY, State, ANDING NUMBERS	, i	REPORT D	OCUMENTATIC	DN PAGE		Foi ON Exc	m Approved 48 No 0704-0188 5 Date Jun 30, 1986
22 SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT Approved for public release; distribution unlimited. 3 DECLASSIFICATION /DOWINGRADING SCHEDULE 1 DISTRIBUTION /AVAILABILITY OF REPORT Approved for public release; distribution unlimited. 4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S) 5 SEAMES 5 MONITORING ORGANIZATION REPORT NUMBER(S) 5 SCHERE 5 MONITORING ORGANIZATION (FEFORT NUMBER(S)) 5 ADDRESS (Chy, State, and ZHP Code) 70 NAME OF MONITORING ORGANIZATION NUMBER (H applicable) 7 DEAK 53 (Chy, State, and ZHP Code) 70 ADDRESS (Chy, State, and ZHP Code) 7 DEAK 53 (Chy, State, and ZHP Code) 70 ADDRESS (Chy, State, and ZHP Code) 7 DEAK 53 (Chy, State, and ZHP Code) 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER PROGRAM 7 SEAL 70 ADDRESS (Chy, State, and ZHP Code) 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER PROGRAM 7 SEAL 70 ADDRESS (Chy, State, and ZHP Code) 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER PROGRAM 7 SEAL 70 ADDRESS (Chy, State, and ZHP Code) 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER PROGRAM 7 SEAL 70 ADDRESS (Chy, State, and ZHP Code) 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER PROGRAM 7 SEAL 70 ADDRESS (Chy, State, and ZHP Code) 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER PROGRAM 7 SEAL 70 ADDRESS (Chy, State, and ZHP	PORT SECURITY CLASSIFICATIO	ON		1b. RESTRICTIVE	MARKINGS	······	
Approved for public release; distribution unlimited. Approved for public release; distribution unlimited. PERFORMING ORGANIZATION REPORT NUMBER(5) Scheels Sc	2a SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION	3. DISTRIBUTION / AVAILABILITY OF REPORT			
PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) echnical Report HL-86-7 5. MONITORING ORGANIZATION REPORT NUMBER(S) echnical Report HL-86-7 5. MONITORING ORGANIZATION REPORT NUMBER(S) states (ff applicable) ydraulics Laboratory (ff applicable) VESHS-L 76. ADDRESS(City, State, and ZIP Code) O Box 631 (issburg, Mississippi 39180-0631 Instate OF FUNDING/SPONSORING (ff applicable) ORGANIZATION (ff applicable) State Struct (ff applicable) ORGANIZATION (ff applicable) State Struct (ff applicable) APPE (ff applicable)<	2b. DECLASSIFICATION / DOWNGRADING SCHEDULE		Approved for public release; distribution unlimited.				
Pechnical Report HL-86-7 S NAME OF PERFORMING ORGANIZATION (M' appikable) (W' appikable) (N' appikable) (N	FORMING ORGANIZATION RE	PORT NUMBER	(5)	5. MONITORING	ORGANIZATIO	N REPORT NUMB	ER(S)
Sa NAME OF PERFORMING ORGANIZATION ISLEWES SUPPORT 65 OFFICE SYMBOL (If applicable) WESHS-L 78. NAME OF MONITORING ORGANIZATION (If applicable) WESHS-L Sc ADDRESS (Chy, State, and ZIP Code) 70. ADDRESS (Chy, State, and ZIP Code) 70. Box 631 JIcksburg, Mississippi 39180-0631 Sa NAME OF FUNDING (SONSORING ORGANIZATION USAGNIZATION NARDL, New York; Sc ADDRESS (Chy, State, and ZIP Code) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER PROGRAM ADDRESS (Chy, State, and ZIP Code) 76. ADDRESS (Chy, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS NANDE OF KUNDING (SONSORING ORGANIZATION NO 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER PROGRAM NET PROGRAM NET PROGRAM NET PROGRAM NET PROGRAM NET PROGRAM NET PROGRAM NET PROFECT 10. SOURCE OF FUNDING NUMBERS PROGRAM NET PROFECT 726 FERORT 117 THELE (Include Security Classification) 116 DATF OF REPORT (Year, Month, Day) 115. PAGE COUNT 114 727 FERORT 118 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD FIELD FIELD FIELD FIELD FIELD FIELD GROUP 118. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 114 Wamaroneck River (N,Y.) Shelltrake River (N,Y.	nical Report HL-86-	.7					-
10. State and ZIP Code) 20. Box 631 7b ADDRESS (City, State, and ZIP Code) 20. Box 631 7b ADDRESS (City, State, and ZIP Code) 20. Box 631 7b ADDRESS (City, State, and ZIP Code) 20. Box 631 8b OFFICE SYMBOL (# applicable) NANPL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 20. Rev York 10. SOURCE OF FUNDING NUMBERS PROGRAM 26. Federal Plaza PROGRAM ROUT Task 26. Federal Plaza PROGRAM ROUT NO MO 26. Federal Plaza PROGRAM ROUT NO MO ACCESSION NUMBERS 26. Federal Plaza PROGRAM PROGRAM ROUT NO ACCESSION NUMBERS 26. Federal Plaza PROGRAM PROGRAM NO NO MO ACCESSION NUMBERS 26. Federal Plaza FROM Instructure NO NO NO NO ACCESSION NUMBERS 26. Federal Plaza FROM Tunnels No ACCESSION NUMBERS NO ACCESSION NUMBERS 214 Datr FOR REPORT Task No Task NO ACCESSION NUMBERS 22610 The SUPPERFURATIV	AME OF PERFORMING ORGAN WES		66 OFFICE SYMBOL (If applicable) WESHS-1.	7a. NAME OF M	ONITORING OF	IGANIZATION	
PO Box 631 Vicksburg, Mississippi 39180-0631 Ba NAME OF FUNDING SPONSORING Bb OFFICE SYMBOL ORGANZATION BL Ba ADDRESS (CH, State and ZP Code) Ba ADDRESS (CH, State and ZP Code) PAGEAA ADDRESS (CH, State and ZP Code) Ba ADDRESS (CH, State and ZP Code) Comparison of the Security Classification) Sheldrake River Tunnel, Mamaroneck, New York; Hydraulic Model Investigation T2 PERSONAL AUTHOR(5) Fate, Charles H., Jr. T3a TYPE OF REPORT Boom TAB ADDRESS (Continue on reverse if necessary and identify by block number) FIELD GOUP SUB-GROUP FIELD GOUP SUB-GROUP H demannently divert the Sheldrake River (N.Y.) Sheldrake River through a concrete-lined tunnel into t vest Basin of the Mamaroneck Harbor. Included in the proposed plan are improvement of the existing channel, construction of an uncontrolled ogee drop structure and converging approa to a tunnel inte to the Mamaroneck Harbor. Included in the proposed plan are improvement of the existing channel, construction of 3,550 ft of concrete-lined tunnel into t vest basin of the onstruction of a 3,550 ft of concrete-lined tunnel, including a 16.25-ft-square section and a 17.5-ft horseshoe section with an intermediate transition, an construction of a standard stilling basin energy dissipator at the juncture with the West Basin. A 1:25-scale model was used to determine the flow conditions in the proposed projec 'or Manning's n values of 0.013 and 0.010 up to the Standard Project Flood (SPF), which 'eacted at 4,039 cfs. Tide effects were investigated for tides of -2.7 ft, 6.7 ft, 10.0 ft, ind 16.8 ft, National Geodetic Vertical Datum. Flow conditions were improved in the model	DDRESS (City, State, and ZIP Ci			76. ADDRESS (C	ty, State, and	ZIP Code)	
VICKBOURG, MISSISSIPPI 39100-031 Be NAME OF FUNDING/SPONSORING ORGANIZATION Bb OFFICE SYMBOL (# applicable) NANPL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER Be ADDRESS(GV, State, and ZIP Code) NANPL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBERS 26 Federal Plaza PROFECT TASK NO WORK UNIT ACCESSION NUMBERS 26 Federal Plaza PROFECT TASK NO WORK UNIT ACCESSION NUMBERS 27 FEGORAL AUTHOR(S) Tate, Charles H., Jr. The COVERED FROM	lox 631	20190-061			, ,,		
ORGANIZATION OUT PERMITTY OF CONTRACT ON NUMBER ORGANIZATION USAED, New York R: ADDRESS (City, State and ZIP Code) NANPL 26 Federal Plaza PROGRAM New York, NY 10278-0090 NO 11 TITLE (Include Security Gassification) Sheldrake River Tunnel, Mamaroneck, New York; Hydraulic Model Investigation 12 FERSONAL AUTHOR(S) Tate, Charles H., Jr. 13a TYPE OF REPORT Final report FROM TO Lis SUPPLEMENTARY NOTATION Available from National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. 17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Hydraulic models Tunnels Mamaroneck River (N.Y.) Sheldrake River (N.Y.) Sheldrake River (N.Y.) Sheldrake River through a concrete-lined tunnel into tweets the sheldrake River, in southeast New York, from upstream of the confluence with the Mamaroneck River through a concrete-lined tunnel into the existing channel, construction of 3,550 ft of concrete-lined tunnel, including a 16.25-ft-square section and a 17.5-ft horseshoe section with an intermediate transition, an construction of a standard stilling basin energy dissipator at the juncture with the West Basin. A 1:25-scale model was used t	SDUNG, MISSISSIPPI	39100-063	Bh OFFICE SYMBOL		T INSTRUMENT	IDENTIFICATION	
BC. ADDRESS (City, State, and ZiP Code) 10. SOURCE OF FUNDING NUMBERS 26 Federal Plaza PROGRAM New York, NY 10278-0090 TASK 111 TITLE (include Security Classification) Sheldrake River Tunnel, Mamaroneck, New York; Hydraulic Model Investigation 12 FERSONAL AUTHOR(S) Tate, Charles H., Jr. 13a TYPE OF REPORT Final report FROM	RGANIZATION		(If applicable)	3. FROCUREIMEN			
26 Federal Plaza PROGRAM PROJECT TASK WORK UNIT New York, NY 10278-0090 1017EE (include Security Classification) No ACCESSION NU Sheldrake River Tunnel, Mamaroneck, New York; Hydraulic Model Investigation 12 PERSONAL AUTHOR(S) Tate, Charles H., Jr. 13b TIME COVERED 14 DATE OF REPORT (Vear, Month, Day) 15. PAGE COUNT Tate, Charles H., Jr. 13b TIME COVERED 14 DATE OF REPORT (Vear, Month, Day) 15. PAGE COUNT Final report FROMTO 10 December 1986 114 fs SUPFLEMENTARY NOTATION Available from National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Hydraulic models Tunnels Mamaroneck River (N.Y.) Sheldrake River (N.Y.) Sheldrake River (N.Y.) Sheldrake River, in southeast New York, from It is proposed to permanently divert the Sheldrake River, in southeast New York, from pstream of the confluence with the Mamaroneck River through a concrete-lined tunnel into the io a tunnel inlet portal, construction of 3,550 ft of concrete-lined tunnel, including a 16.25-ft-square section and a 17.5-ft horseshoe section with an intermediate transition, an construction of a standard s	DDRESS (City, State, and ZIP Co		ana 10	10. SOURCE OF	FUNDING NUM	BERS	
Preceral Fizza NO ACCESSION NO New York, NY 10278-0090 NO ACCESSION NO New York, NY 10278-0090 NO ACCESSION NO Ni Title (include Security Classification) Sheldrake River Tunnel, Mamaroneck, New York; Hydraulic Model Investigation 12 PERSONAL AUTHOR(5) To 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT 71al report 13b TIME COVERED FROM TO 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT 114 Interport FROM TO December 1986 114 16 SUPPLEMENTARY NOTATION Is SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Hydraulic models Tunnels 17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Hydraulic models Tunnels 19 ABSTRACT (Continue on reverse if necessary and identify by block number) It is proposed to permanently divert the Sheldrake River, in southeast New York, from 19 ABSTRACT (Continue on reverse if necessary and identify by block number) It is proposed to permanently divert the Sheldrake River, in southeast New York, from 19 ABSTRACT (Continue on reverse if necessary and identify by block number) It is proposed to permanently divert the Sheldrake River, in southeast New York, from <t< td=""><td></td><td></td><th></th><td>PROGRAM</td><td>PROJECT</td><td>TASK</td><td>WORK UNIT</td></t<>				PROGRAM	PROJECT	TASK	WORK UNIT
IN TITLE (include Security Classification) Sheldrake River Tunnel, Mamaroneck, New York; Hydraulic Model Investigation 12 PERSONAL AUTHOR(S) Tate, Charles H., Jr. 13a TYPE OF REPORT 13b TIME COVERED 14 DATF OF REPORT (Year, Month, Day) 15 PAGE COUNT 13a TYPE OF REPORT 13b TIME COVERED 14 DATF OF REPORT (Year, Month, Day) 15 PAGE COUNT 114 114 16 SUPPLEMENTARY NOTATION 114 DATF OF REPORT (Year, Month, Day) 17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 19 ABSTRACT (Continue on reverse if necessary and identify by block number) 11 t is proposed to permanently divert the Sheldrake River, in southeast New York, from upstream of the confluence with the Mamaroneck River through a concrete-lined tunnel into t less Basin of the Mamaroneck Harbor. Included in the proposed plan are improvement of the existing channel, construction of a uncontrolled ogee drop structure and converging approa to a tunnel inlet portal, construction of 3,550 ft of concrete-lined tunnel, including a 6.25-ft-square section and a 17.5-ft horseshoe section with an intermediate transition, an construction of a standard stilling basin energy dissipator at the juncture with the West Basin. A 1:25-scale model was used to determine the flow conditions in the proposed projec for Maning's n val	ederal Plaza York, NY 10278-009	0		ELEMENT NO.	NU.	NO.	ALLESSION NO
Abeldrake River Tunnel, Mamaroneck, New York; Hydraulic Model Investigation 2 PERSONAL AUTHOR(S) ate, Charles H., Jr. 3a TYPE OF REPORT Inal report 13b TIME COVERED FROMTO 14 DATF OF REPORT (Year, Month, Day) December 1986 15 PAGE COUNT 114 6 SUPPLEMENTARY NOTATION Vallable from National Technical Information Service, 5285 Port Royal Road, Springfield, A 22161. 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Hydraulic models Mamaroneck River (N.Y.) Sheldrake River (N.Y.) 9. ABSTRACT (Continue on reverse if necessary and identify by block number) It is proposed to permanently divert the Sheldrake River, in southeast New York, from pstream of the confluence with the Mamaroneck River through a concrete-lined tunnel into t est Basin of the Mamaroneck Harbor. Included in the proposed plan are improvement of the xisting channel, construction of an uncontrolled ogee drop structure and converging approa o a tunnel inlet portal, construction of 3,550 ft of concrete-lined tunnel, including a 6.25-ft-square section and a 17.5-ft horseshoe section with an intermediate transition, an onstruction of a standard stilling basin energy dissipator at the juncture with the West asin. A 1:25-scale model was used to determine the flow conditions in the proposed projec or Manning's n values of 0.013 and 0.010 up to the Standard Project Flood (SPF), which eaked at 4,039 cfs. Tide effects were investigated for tides of ~2.7 ft, 6.7 ft, 10.0 ft, nd 16.8 ft, National Geodetic Vertical Datum. Flow conditions were improved in the model (Catinucd)	TLE (Include Security Classifica	ation)		1			I
12 PERSONAL AUTHOR(S) 13a TYPE OF REPORT 13b TIME COVERED 11a report 13b TIME COVERED 16 SUPPLEMENTARY NOTATION 10 16 SUPPLEMENTARY NOTATION 110 17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Hydraulic models Tunnels Mamaroneck River (N.Y.) Sheldrake River (N.Y.) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) It is proposed to permanently divert the Sheldrake River, in southeast New York, from ipstream of the confluence with the Mamaroneck River through a concrete-lined tunnel into t lest Basin of the Mamaroneck Harbor. Included in the proposed plan are improvement of the xisting channel, construction of an uncontrolled ogee drop structure and converging approa 0 a tunnel inlet portal, construction of 3,550 ft of concrete-lined tunnel, including a 6.25-ft-square section and a 17.5-ft horseshoe section with an intermediate transition, an ionstruction of a standard stilling basin energy dissipator at the juncture with the West lasin. A 1:25-scale model was used to determine the flow conditions in the proposed projec <t< td=""><td>drake River Tunnel,</td><td>Mamaronec</td><th>ck, New York;</th><td>Hydraulic Mod</td><td>del Invest</td><td>igation</td><td></td></t<>	drake River Tunnel,	Mamaronec	ck, New York;	Hydraulic Mod	del Invest	igation	
Tate, Charles H., Jr. Tate, Charles H., Jr. Tate, Charles H., Jr. Tata TYPE OF REPORT Tinal report FROM To December 1986 SuppleMentary Notation Vailable from National Technical Information Service, 5285 Port Royal Road, Springfield, Tate: To COSATI CODES FIELD GROUP Sub-GROUP Hydraulic models Tunnels Mamaroneck River (N.Y.) Sheldrake River, in southeast New York, from Ipstream of the Confluence with the Mamaroneck River through a concrete-lined tunnel into the Visiting channel, construction of an uncontrolled ogee drop structure and converging approator a tunnel inlet portal, construction of 3,550 ft of concrete-lined tunnel, including a 6.25-ft-square section and a 17.5-ft horseshoe section with an intermediate transition, an ionstruction of a standard stilling basin energy dissipator at the juncture with the West Vasin. A 1:25-scale model wasu	RSONAL AUTHOR(S)						<u> </u>
3a TYPE OF REPORT 13b TIME COVERED 14 DATF OF REPORT (Year, Month, Day) 15 PAGE COUNT 11al report FROM TO December 1986 114 6 SUPPLEMENTARY NOTATION National Technical Information Service, 5285 Port Royal Road, Springfield, A 22161. 7 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Hydraulic models Tunnels Mamaroneck River (N.Y.) Sheldrake River (N.Y.) Sheldrake River (N.Y.) Sheldrake River (N.Y.) 9 ABSTRACT (Continue on reverse if necessary and identify by block number) It is proposed to permanently divert the Sheldrake River, in southeast New York, from Typstream of the confluence with the Mamaroneck River through a concrete-lined tunnel into the lest Basin of the Mamaroneck Harbor. Included in the proposed plan are improvement of the existing channel, construction of an uncontrolled ogee drop structure and converging approato a tunnel inlet portal, construction of 3,550 ft of concrete-lined tunnel, including a 6.25-ft-square section and a 17.5-ft horseshoe section with an intermediate transition, an construction of a standard stilling basin energy dissipator at the juncture with the West Basin. A 1:25-scale model was used to determine the flow conditions in the proposed projec for Manning's n values of 0.013 and 0.010 up to the Standard Project Flood (SPF), which heaked at 4,039 cfs. Tide effects were investigated for tides of -2.7 ft, 6.7 ft, 10.0 ft, ind 16.8 ft, National Geodetic Vertical Datum.	, Charles H., Jr.		. <u> </u>				
6 SUPPLEMENTARY NOTATION 10 10 1900 114 6 SUPPLEMENTARY NOTATION 11 <td>YPE OF REPORT</td> <td>136 TIME COV</td> <th>VERED</th> <td>14. DATE OF REPO</td> <td>ORT (Year, Mor</td> <td>nth, Day) 15. PA</td> <td></td>	YPE OF REPORT	136 TIME COV	VERED	14. DATE OF REPO	ORT (Year, Mor	nth, Day) 15. PA	
Wailable from National Technical Information Service, 5285 Port Royal Road, Springfield, A 22161. IT COSATI CODES FIELD GROUP SubGROUP SubGROUP Hydraulic models Tunnels Mamaroneck River (N.Y.) Sheldrake River (N.Y.) Sheldrake River (N.Y.) Sheldrake River (N.Y.) Sheldrake River through a concrete-lined tunnel into t It is proposed to permanently divert the Sheldrake River, in southeast New York, from ABSTRACT (Continue on reverse if necessary and identify by block number) It is proposed to permanently divert the Sheldrake River, in southeast New York, from Apstream of the confluence with the Mamaroneck River through a concrete-lined tunnel into t Jest Basin of the Mamaroneck Harbor. Included in the proposed plan are improvement of the existing channel, construction of an uncontrolled ogee drop structure and converging approa io a tunnel inlet portal, construction of 3,550 ft of concrete-lined tunnel, including a 6.25-ft-square section and a 17.5-ft horseshoe section with an intermediate transition, an construction of a standard stilling basin energy dissipator at the juncture with the West Basin. A 1:25-scale model was used to determine the flow conditions in the proposed projec for Manning's n values of 0.013 and 0.010 up	IPPLEMENTARY NOTATION			December 1			
7 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Hydraulic models Tunnels Mamaroneck River (N.Y.) Sheldrake River (N.Y.) 9 ABSTRACT (Continue on reverse if necessary and identify by block number) Sheldrake River (N.Y.) 9 ABSTRACT (Continue on reverse if necessary and identify by block number) Sheldrake River the Sheldrake River, in southeast New York, from pstream of the confluence with the Mamaroneck River through a concrete-lined tunnel into t test Basin of the Mamaroneck Harbor. Included in the proposed plan are improvement of the xisting channel, construction of an uncontrolled ogee drop structure and converging approa o a tunnel inlet portal, construction of 3,550 ft of concrete-lined tunnel, including a 6.25-ft-square section and a 17.5-ft horseshoe section with an intermediate transition, an onstruction of a standard stilling basin energy dissipator at the juncture with the West asin. A 1:25-scale model was used to determine the flow conditions in the proposed projec or Manning's n values of 0.013 and 0.010 up to the Standard Project Flood (SPF), which eaked at 4,039 cfs. Tide effects were investigated for tides of -2.7 ft, 6.7 ft, 10.0 ft, nd 16.8 ft, National Geodetic Vertical Datum. Flow conditions were improved in the model	lable from National 22161.	Technical	Information	Service, 528	5 Port Roy	al Road, Sp	ringfield,
FIELDGROUPSUB-GROUPSUB-GROUPHydrafilt modelsTunnelsMamaroneck River (N.Y.)Sheldrake River (N.Y.)Sheldrake River (N.Y.)19ABSTRACT (Continue on reverse if necessary and identify by block number)It is proposed to permanently divert the Sheldrake River, in southeast New York, fromupstream of the confluence with the Mamaroneck River through a concrete-lined tunnel into the text sting channel, construction of an uncontrolled ogee drop structure and converging approation a tunnel inlet portal, construction of 3,550 ft of concrete-lined tunnel, including a 6.25-ft-square section and a 17.5-ft horseshoe section with an intermediate transition, and construction of a standard stilling basin energy dissipator at the juncture with the West lasin. A 1:25-scale model was used to determine the flow conditions in the proposed project for Manning's n values of 0.013 and 0.010 up to the Standard Project Flood (SPF), which weaked at 4,039 cfs. Tide effects were investigated for tides of -2.7 ft, 6.7 ft, 10.0 ft, ind 16.8 ft, National Geodetic Vertical Datum. Flow conditions were improved in the model	COSATI CODES		18. SUBJECT TERMS	(Continue on rever	se if necessary	and identify by L	block number)
Sheldrake River (N.Y.) 19 ABSTRACT (Continue on reverse if necessary and identify by block number) It is proposed to permanently divert the Sheldrake River, in southeast New York, from upstream of the confluence with the Mamaroneck River through a concrete-lined tunnel into t lest Basin of the Mamaroneck Harbor. Included in the proposed plan are improvement of the existing channel, construction of an uncontrolled ogee drop structure and converging approa to a tunnel inlet portal, construction of 3,550 ft of concrete-lined tunnel, including a 16.25-ft-square section and a 17.5-ft horseshoe section with an intermediate transition, an construction of a standard stilling basin energy dissipator at the juncture with the West Basin. A 1:25-scale model was used to determine the flow conditions in the proposed projec 'or Manning's n values of 0.013 and 0.010 up to the Standard Project Flood (SPF), which beaked at 4,039 cfs. Tide effects were investigated for tides of -2.7 ft, 6.7 ft, 10.0 ft, und 16.8 ft, National Geodetic Vertical Datum. Flow conditions were improved in the model (Continue)	IELD GROUP SUI	8-GROUP	Mamaroneck I	Daeis River (N.Y.)	Tun	neis	
9 ABSTRACT (Continue on reverse if necessary and identify by block number) It is proposed to permanently divert the Sheldrake River, in southeast New York, from pstream of the confluence with the Mamaroneck River through a concrete-lined tunnel into t est Basin of the Mamaroneck Harbor. Included in the proposed plan are improvement of the xisting channel, construction of an uncontrolled ogee drop structure and converging approa o a tunnel inlet portal, construction of 3,550 ft of concrete-lined tunnel, including a 5.25-ft-square section and a 17.5-ft horseshoe section with an intermediate transition, an onstruction of a standard stilling basin energy dissipator at the juncture with the West asin. A 1:25-scale model was used to determine the flow conditions in the proposed projec or Manning's n values of 0.013 and 0.010 up to the Standard Project Flood (SPF), which eaked at 4,039 cfs. Tide effects were investigated for tides of -2.7 ft, 6.7 ft, 10.0 ft, nd 16.8 ft, National Geodetic Vertical Datum. Flow conditions were improved in the model (Continue)			Sheldrake R	iver (N.Y.)			
It is proposed to permanently divert the Sheldrake River, in southeast New York, from stream of the confluence with the Mamaroneck River through a concrete-lined tunnel into t st Basin of the Mamaroneck Harbor. Included in the proposed plan are improvement of the isting channel, construction of an uncontrolled ogee drop structure and converging approa a tunnel inlet portal, construction of 3,550 ft of concrete-lined tunnel, including a .25-ft-square section and a 17.5-ft horseshoe section with an intermediate transition, an nstruction of a standard stilling basin energy dissipator at the juncture with the West sin. A 1:25-scale model was used to determine the flow conditions in the proposed projec r Manning's n values of 0.013 and 0.010 up to the Standard Project Flood (SPF), which aked at 4,039 cfs. Tide effects were investigated for tides of -2.7 ft, 6.7 ft, 10.0 ft, d 16.8 ft, National Geodetic Vertical Datum. Flow conditions were improved in the model (Certinued)	STRACT (Continue on reverse	if necessary a	nd identify by block	number)			
pstream of the confluence with the Mamaroneck River through a concrete-lined tunnel into t est Basin of the Mamaroneck Harbor. Included in the proposed plan are improvement of the xisting channel, construction of an uncontrolled ogee drop structure and converging approa o a tunnel inlet portal, construction of 3,550 ft of concrete-lined tunnel, including a 6.25-ft-square section and a 17.5-ft horseshoe section with an intermediate transition, an onstruction of a standard stilling basin energy dissipator at the juncture with the West asin. A 1:25-scale model was used to determine the flow conditions in the proposed projec or Manning's n values of 0.013 and 0.010 up to the Standard Project Flood (SPF), which eaked at 4,039 cfs. Tide effects were investigated for tides of -2.7 ft, 6.7 ft, 10.0 ft, nd 16.8 ft, National Geodetic Vertical Datum. Flow conditions were improved in the model (Continued)	It is proposed to	permanent	ly divert the	Sheldrake R:	iver, in s	outheast Ne	w York, from
est Basin of the Mamaroneck Harbor. Included in the proposed plan are improvement of the xisting channel, construction of an uncontrolled ogee drop structure and converging approa o a tunnel inlet portal, construction of 3,550 ft of concrete-lined tunnel, including a 6.25 -ft-square section and a 17.5-ft horseshoe section with an intermediate transition, an onstruction of a standard stilling basin energy dissipator at the juncture with the West asin. A 1:25-scale model was used to determine the flow conditions in the proposed projec or Manning's n values of 0.013 and 0.010 up to the Standard Project Flood (SPF), which eaked at 4,039 cfs. Tide effects were investigated for tides of -2.7 ft, 6.7 ft, 10.0 ft, nd 16.8 ft, National Geodetic Vertical Datum. Flow conditions were improved in the model	ream of the conflue	nce with t	he Mamaroneck	River through	gh a concr	ete-lined t	unnel into the
xisting channel, construction of an uncontrolled ogee drop structure and converging approa o a tunnel inlet portal, construction of 3,550 ft of concrete-lined tunnel, including a 6.25-ft-square section and a 17.5-ft horseshoe section with an intermediate transition, an onstruction of a standard stilling basin energy dissipator at the juncture with the West asin. A 1:25-scale model was used to determine the flow conditions in the proposed projec or Manning's n values of 0.013 and 0.010 up to the Standard Project Flood (SPF), which eaked at 4,039 cfs. Tide effects were investigated for tides of -2.7 ft, 6.7 ft, 10.0 ft, nd 16.8 ft, National Geodetic Vertical Datum. Flow conditions were improved in the model (Continued)		oneck Hart	or. Included	in the prope	osed plan	are improve	ment of the
o a tunnel injet portal, construction of 3,550 ft of concrete-lined tunnel, including a 6.25 -ft-square section and a 17.5-ft horseshoe section with an intermediate transition, an onstruction of a standard stilling basin energy dissipator at the juncture with the West asin. A 1:25-scale model was used to determine the flow conditions in the proposed projec or Manning's n values of 0.013 and 0.010 up to the Standard Project Flood (SPF), which eaked at 4,039 cfs. Tide effects were investigated for tides of -2.7 ft, 6.7 ft, 10.0 ft, nd 16.8 ft, National Geodetic Vertical Datum. Flow conditions were improved in the model (Continued)	Basin of the Mamar	ruction of	an uncontrol	led ogee drop	o structur	e and conve	rging approac
onstruction of a standard stilling basin energy dissipator at the juncture with the West asin. A 1:25-scale model was used to determine the flow conditions in the proposed projec or Manning's n values of 0.013 and 0.010 up to the Standard Project Flood (SPF), which eaked at 4,039 cfs. Tide effects were investigated for tides of -2.7 ft, 6.7 ft, 10.0 ft, nd 16.8 ft, National Geodetic Vertical Datum. Flow conditions were improved in the model (Continued)	Basin of the Mamar ting channel, const	1, constru	E-ft however	U IT OF CONCI	rete-lined	cunnel, in	cluding a
asin. A 1:25-scale model was used to determine the flow conditions in the proposed projec or Manning's n values of 0.013 and 0.010 up to the Standard Project Flood (SPF), which eaked at 4,039 cfs. Tide effects were investigated for tides of -2.7 ft, 6.7 ft, 10.0 ft, nd 16.8 ft, National Geodetic Vertical Datum. Flow conditions were improved in the model (Certinued)	Basin of the Mamar ting channel, const. tunnel inlet porta	and a 17		e section Wit	un an inte	uncture ut	ansition, and
or Manning's n values of 0.013 and 0.010 up to the Standard Project Flood (SPF), which eaked at 4,039 cfs. Tide effects were investigated for tides of -2.7 ft, 6.7 ft, 10.0 ft, nd 16.8 ft, National Geodetic Vertical Datum. Flow conditions were improved in the model	Basin of the Mamar ting channel, const tunnel inlet porta 5-ft-square section	and a 17.	ng basin ener	av dissinato	, ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 4 5 1 5 1 1 1 1 1 1 T 1 M 1 1 1	h tha Waat
eaked at 4,039 cfs. Tide effects were investigated for tides of -2.7 ft, 6.7 ft, 10.0 ft, nd 16.8 ft, National Geodetic Vertical Datum. Flow conditions were improved in the model (Continued)	Basin of the Mamar ting channel, const tunnel inlet porta 5-ft-square section truction of a stand n. A 1:25-scale mo	and a 17. ard stilli	ng basin ener. Ang to determine	gy dissipaton	r at the j conditions	in the pro	h the West
and 16.8 ft, National Geodetic Vertical Datum. Flow conditions were improved in the model	Basin of the Mamar ting channel, const tunnel inlet porta 5-ft-square section truction of a stand n. A 1:25-scale mo Manning's n value	and a 17. ard stilli del was us s of 0.013	ng basin ener and to determi and 0.010 un	gy dissipaton ne the flow of to the Stand	r at the j conditions dard Proje	in the pro	h the West posed project PF), which
(Continued)	Basin of the Mamar ting channel, const tunnel inlet porta 5-ft-square section truction of a stand n. A 1:25-scale mo Manning's n value ed at 4,039 cfs. T	and a 17. ard stilli del was us s of 0.013 ide effect	ng basin ener aed to determi and 0.010 up s were invest	gy dissipaton ne the flow o to the Stand igated for t:	r at the j conditions dard Proje ides of2	in the pro ct Flood (S 2.7 ft. 6.7	h the West posed project PF), which ft, 10.0 ft.
(continued)	Basin of the Mamar ting channel, const tunnel inlet porta 5-ft-square section truction of a stand n. A 1:25-scale mo Manning's n value ed at 4,039 cfs. T 16.8 ft, National G	and a 17 ard stilli del was us s of 0.013 ide effect eodetic Ve	ng basin ener and to determi and 0.010 up s were invest ertical Datum.	gy dissipator ne the flow (to the Stand igated for to Flow condition	r at the j conditions Jard Proje ides of2 tions were	in the pro ct Flood (S .7 ft, 6.7 improved i	h the West posed project PF), which ft, 10.0 ft, n the model by
DISTRIBUTION / AVAILABILITY OF ARSTRACT	Basin of the Mamar ting channel, const tunnel inlet porta 5-ft-square section truction of a stand n. A 1:25-scale mo Manning's n value ed at 4,039 cfs. T 16.8 ft, National G	and a 17. ard stilli del was us s of 0.013 ide effect eodetic Ve	ng basin ener and to determi and 0.010 up s were invest ertical Datum.	gy dissipaton ne the flow (to the Stand igated for t Flow condit	r at the j conditions dard Proje ides of2 tions were	in the pro oct Flood (S 7 ft, 6.7 improved i	h the West posed project PF), which ft, 10.0 ft, n the model by (Continued)
	Basin of the Mamar ting channel, const tunnel inlet porta 5-ft-square section truction of a stand n. A 1:25-scale mo Manning's n value ed at 4,039 cfs. T 16.8 ft, National G	and a 17. ard stilli del was us s of 0.013 ide effect eodetic Ve	ng basin ener ad to determi and 0.010 up s were invest ertical Datum.	gy dissipaton ne the flow of to the Stand igated for t: Flow condit	r at the j conditions dard Proje ides of2 tions were	FICATION	h the West posed project PF), which ft, 10.0 ft, n the model by (Continued)

DD FORM 1473, 84 MAR

22a. NAME OF RESPONSIBLE INDIVIDUAL

e" F

States and

.

83 APR edition may be used until exhausted All other editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE Unclassified

22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Unclassified SECUNTY CLASSIFICATION OF THIS PAGE

19. ABSTRACT (Continued).

0.00000000

modifying the tunnel alignment, the shape of the tunnel, and transitions near the middle of the tunnel. The stilling basin was modified to improve flow conditions for the varying tide effects. Riprap protection downstream of the stilling basin was verified as being adequate for the SPF. Stage-discharge relations were determined as were flow velocities and watersurface profiles in the tunnel approach. Hydraulic grade lines were determined for the tunnel for several flows. Flow velocities at the stilling basin end sill are presented as are velocities in the West Basin of the Mamaroneck Harbor.

> Unclassified SECURITY CLASSIFICATION OF THIS PAGE

PREFACE

The model investigation reported herein was authorized by the Office, Chief of Engineers, US Army, on 8 August 1984 at the request of the US Army Engineer District, New York (NAN). The studies were conducted by personnel of the Hydraulics Laboratory (HL), US Army Engineer Waterways Experiment Station (WES), during the period September 1984 to February 1986. All studies were conducted under the direction of Messrs. F. A. Herrmann, Jr., Chief, HL, and J. L. Grace, Jr., Chief of the Hydraulic Structures Division. Tests were conducted by Messrs. C. H. Tate, Jr., J. Cessna, L. East, and N. Ford of the Locks and Conduits Branch under the supervision of Messrs. G. A. Pickering, former Chief of the Locks and Conduits Branch, and J. F. George, Acting Chief of the Locks and Conduits Branch. This report was prepared by Mr. Tate and edited by Mrs. Marsha Gay, Information Technology Laboratory.

During the course of the investigation, Messrs. J. Rosen, J. Urbelis, and R. Schembri, and Ms. L. Koeth of NAN visited WES to discuss model results and correlate these results with concurrent design work.

COL Allen F. Grum, USA, was the previous Director of WES. COL Dwayne G. Lee, CE, is the present Commander and Director. Dr. Robert W. Whalin is Technical Director.

Jeesien For JIS CR381 \Box TAB here a second [] Balt Heaters 5. Ditt the L 7. But any Codes 1. OT the clai A-1

CONTENTS

	Page
PREFACE	1
CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT	3
PART I: INTRODUCTION	5
The Prototype Purpose of Model Investigation	5 6
PART II: THE MODEL	7
Model Appurtenances Scale Relations	7 9
PART III: TESTS AND RESULTS	10
Manning's $n = 0.013$ Manning's $n = 0.010$	10 15
PART IV: CONCLUSIONS AND RECOMMENDATIONS	19
TABLE 1	
PHOTOS 1-21	
PLATES 1-80	

68

CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to SI (metric) units as follows:

Multiply	By	To Obtain		
cubic feet per second	0.02831685	cubic metres per second		
feet	0.3048	metres		
feet per second	0.3048	metres per second		
inches	25.4	millimetres		
miles (US statute)	1.609344	kilometres		
pounds (mass)	0.4535924	kilograms		
square miles	2,589988	square kilometres		

ee 2

SHELDRAKE RIVER TUNNEL, MAMARONECK, NEW YORK

Hydraulic Model Investigation

PART I: INTRODUCTION

The Prototype

1. The Sheldrake River Tunnel is located in the Village of Mamaroneck, N. Y., on the north coast of Long Island Sound, northeast of New York City (Figure 1). The Sheldrake River joins with the Mamaroneck River approximately 3,000 ft* upstream of the mouth of the Mamaroneck River at the East Basin of the Mamaroneck Harbor. Between the confluence and the harbor, the Mamaroneck River channel is confined by steep rock banks, the tops of which have been heavily developed. This existing channel will not adequately convey the flood flows from both the Sheldrake and the Mamaroneck basins, which subjects large areas to flooding upstream of the confluence.

2. The proposed Sheldrake River Tunnel will intercept the Sheldrake River immediately upstream of Fenimore Road and permanently divert the river through a tunnel under Fenimore Road to the West Basin of the Mamaroneck Harbor. Channel improvements along the Mamaroneck River and the diversion of flow from approximately 5.57 square miles of the Sheldrake River basin will render the Mamaroneck River capable of passing the flood flows from the remaining drainage basin.

3. The proposed Sheldrake River Tunnel, with a peak discharge of 4,039 cfs, is designed to accommodate the Standard Project Flood (SPF). Improvements to the existing channel will result in a trapezoidal approach channel with a 40-ft-wide base upstream of a 60-ft-wide ogee drop structure that is located 230 ft upstream of the tunnel entrance. The sides of the channel between the ogee drop structure and the 16.25-ft-wide tunnel entrance converge on a 1V on 8H slope. Downstream from the tunnel entrance, the tunnel will turn and follow Fenimore Road to the south. The tunnel will change shape to accommodate the subsurface conditions with the upper cut-and-cover section

* A table of factors for converting non-SI units of measurement to SI (metric) units is presented on page 3. being 16.25 ft square and the drill-and-blast sections being a 17.5-ft horseshoe shape (Plate 1). Flow will enter the West Basin of the Mamaroneck Harbor through a standard stilling basin designed for 4,039 cfs and a tide elevation of -2.7 ft NGVD.*

Purpose of Model Investigation

4. Due to the unusually complex design and the many changes in flow control, a hydraulic model study was considered necessary to verify the adequacy of and to develop desirable modifications to the project design. Specifically, the model study was to

- a. Ensure that the design water levels are not exceeded.
- b. Determine if undesirable eddies or wave patterns develop at the tunnel inlet.
- c. Ensure the hydraulic capacity of the tunnel.
- d. Observe and define flow conditions within the tunnel to ensure that undesirable flow conditions do not develop.
- e. Develop an energy dissipator at the tunnel outlet that will function over a long range of discharges and tailwater (tide) elevations.
- <u>f</u>. Determine the size, extent, and thickness of riprap required to prevent scour downstream from the energy dissipator.
- g. Determine the current patterns and velocities in the West Basin to identify possible problems to existing structures and the Federal navigation project.

* All elevations (el) cited herein are in feet referred to the National Geodetic Vertical Datum (NGVD).

PART II: THE MODEL

5. The 1:25-scale model (Figure 2) reproduced approximately 400 ft of the channel approaching the drop structure upstream of the tunnel, the drop structure and converging approach to the tunnel, 3,550 ft of tunnel in various cross sections, the stilling basin at the downstream end of the tunnel, and the West Basin of the Mamaroneck Harbor to a point seaward of the permanent pier located on the south side of the harbor (Plate 1). Concrete was used to form the approach channel, and artificial roughness was added to the channel to develop the approach depth at the entrance to the model. Galvanized sheet metal and polyethylene-coated plywood were used to construct the drop structure and converging tunnel inlet. The tunnel was constructed of hand-molded acrylic plastic. Polyethylene-coated plywood and sheet aluminum were used to construct the stilling basin with minor portions being made with plastic fillers or wood. The harbor seawall was built with brick and the outlying topography formed with concrete. Conditions within the seawall were simulated with molded sand and scaled rock to simulate the riprap protection downstream from the stilling basin. Piling for the floating docks was installed using steel rods, and the permanent pier was built of wood dowels and plywood.

6. The coefficient of roughness of the conduit model surface had previously been determined to be approximately 0.009 (Manning's n). Basing similitude on the Froudian relation, this n value would be equivalent to a prototype n of 0.0154. The n value used in the design and analysis of the prototype channel varied from 0.010 to 0.013; therefore, supplementary slopes were added to the model to correct for this difference in the n values of the model and prototype.

Model Appurtenances

7. Flow to this model was supplied through a circulating system. Discharges were measured and controlled through a feedback system using a mechanized rotating disk valve and a venturi meter equipped with a differential pressure cell. Control voltages were compared with the output from the differential pressure cell, and the valve position was adjusted by the control system as required to satisfy the control input. This system allowed the use of a varying control voltage to reproduce a hydrograph. Constant flows could

Sector Sectors

Figure 2. Dry bed view of model looking upstream

also be set, and the control system compensated for changes in supply pressure to maintain a constant flow to the model.

8. Tide elevations were controlled using a manually operated tailgate. Tide elevations were set in the harbor without flow through the tunnel, and the water surface was allowed to fluctuate with the flow in the tunnel.

9. Velocities were measured in the model with pitot-static tubes and with propeller meters with a minimum measurable velocity of approximately 0.4 fps prototype. Point gages and piezometers were used to measure watersurface elevations throughout the model. Flow conditions were observed for all designs tested, with the original designs and the potentially usable designs and associated flow conditions being recorded photographically.

Scale Relations

10. The accepted equations of hydraulic similitude, based on the Froudian criteria, were used to express mathematical relations between the dimensions and hydraulic quantities of the model and prototype. General relations for the transference of model data to prototype equivalents are as follows:

<u>Characteristic</u>	Dimension*	Model:Prototype
Length	L _r	1:25
Area	$A_r = L_r^2$	1:625
Velocity	$V_{r} = L_{r}^{1/2}$	1:5
Discharge	$Q_r = L_r^{5/2}$	1:3,125
Volume	$V_r = L_r^3$	1:15,625
Weight	$W_r = L_r^3$	1:15,625
Time	$T_{r} = L_{r}^{1/2}$	1:5
Roughness coefficient	$N_r = L_r^{1/6}$	1:1.710

* Dimensions are in terms of length.

Model measurements of discharge, water-surface elevations, and velocities can be transferred quantitatively to prototype equivalents by means of the scale relations. Experimental data also indicate that the model-to-prototype scale ratio is valid for scaling stone in the sizes used in this investigation. Evidences of sand scour are considered only qualitatively reliable, since it is not yet possible to reproduce quantitatively in the model the resistance to erosion of fine-grained prototype bed material.

PART III: TESTS AND RESULTS

11. Tests were conducted to determine the general flow conditions into and through the tunnel and in the harbor area downstream of the tunnel. Depending on the quality of the tunnel construction and finish work, the Manning's n value was expected to range between 0.013 and 0.010. Tests were first conducted with the slope adjusted to reproduce the energy gradient for the n value of 0.013.

Manning's n = 0.013

Approach channel and drop structure

12. The original design for the tunnel approach and drop structure (Plate 2) was tested, and discharge rating curves were determined for sta 40+80, 39+15, and 38+00 at tide el -2.7 and 6.7 (Plate 3). Velocity cross sections were collected at sta 40+80 (Plate 4) and 39+15 (Plate 5) for discharges of 512 cfs (1 year), 1,208 cfs (10 year), 2,551 cfs (100 year), and 4,039 cfs (SPF) for tide elevations -2.7 and 6.7. Flows approaching the drop structure were satisfactory through the converging wing walls and over the ogee crest. Surface currents at discharges of 2,551 cfs and 4,039 cfs are shown in Photos 1 and 2 for tide el of 6.7 and -2.7, respectively. Backwater effects caused by the tunnel submerged the ogee crest at approximately 3,500 cfs. Conditions at flows higher than this tended to be rougher due to the presence of standing waves near the crest. A hydraulic jump formed at the base of the ogee crest for lower flows. Flow downstream of the ogee crest was generally subcritical due to the tunnel backwater. Water-surface profiles between sta 42+00 and 37+00 for tide el -2.7 and 6.7 are shown in Plate 6. Tide elevations are important for some flow conditions because the entrance portal invert is at el 2.2, and thus subjected to changing backwater effects.

13. The New York District (NAN) provided a modified crest design designated as type 2 (Plate 7) for testing in an attempt to reduce the water level upstream of the drop structure. This design eliminated the raised crest and used a smooth curve to drop from the channel invert. Water levels upstream of the drop structure were lowered for low flows, but due to the effects of the tunnel entrance, the water levels were not significantly different at the design flow of 4,039 cfs (Plate 8). Additionally, flow conditions were

rougher with the type 2 design crest (Plate 9). This design was not considered acceptable and was not used for the remainder of the study. Instead, the original design ogee crest was returned to the model for the rest of the study.

Tunnel

14. Flow conditions in the tunnel as originally designed with discharges greater than 3,700 cfs were unsatisfactory. Flows between the two shape transitions (Plate 1) tended to fill the tunnel due to the flow resistance and backwater effects of the transitions and the curve located between the transitions. The downstream transition, located between sta 18+35 and 18+10, was designed to converge the 17.5-ft-wide flat invert to a point invert over 25 ft. This sharp convergence and the decreased area in the lower half of the tunnel produced a backwater effect that reached through the curve immediately upstream of the transition and the intermediate shape tunnel to the upstream transition located between sta 20+75 and 20+50. With the losses associated with the shape change at the upstream transition added to the backwater effect of the curve and downstream transition, the flow tended to fill the conduit at less than the design discharge of 4,039 cfs. Flow exiting the downstream transition accelerated forming an undular condition that continued through the remainder of the tunnel (Photo 3). Hydraulic grade lines through the tunnel are shown in Plates 10-13.

15. An additional flow feature was observed immediately downstream of the tunnel entrance portal at approximately sta 36+40. Flows above 3,600 cfs produced a standing wave at this location after the rapid drawdown through the entrance portal (Photo 4). For flows above approximately 3,600 cfs, the standing wave impacted the top of the tunnel.

16. The original design was not satisfactory primarily due to the flow conditions in the vicinity of the two transitions. The conduit design was revised by NAN based on the previous observations. The intermediate shape was deleted and a single transition was installed between sta 20+75 and 19+67 which joined the 16.25-ft-square section to the 17.5-ft horseshoe. The curve originally located between sta 18+83 and 18+35 was redesigned with a longer radius (268.85 ft) and constructed between sta 19+17 and 18+00 with the horseshoe shape (Plate 14). The new curve in the type 2 design conduit shortened the tunnel by 1.04 ft. In order to keep common references for identifying points, the type 2 design conduit has a 1.04-ft break in

stationing at the downstream end of the redesigned curve.

17. Flow conditions in the type 2 design conduit for the Manning's n of 0.013 were significantly improved over the original design. Discharge rating curves for the original drop structure and the type 2 conduit are shown in Plates 15 and 16. As can be seen in Plate 16, the tide elevation of 16.8 ft limited the structure to less than the design flow. At the design flow of 4,039 cfs, the short straight section downstream of the transition and the new curve would occasionally flow full; however, this condition was temporary and the conduit downstream of the transition would return to open channel flow (Photo 5). During the periods that the conduit was flowing full, the hydraulic grade line was within 1 ft of the roof of the tunnel for the design discharge and tide elevations of 6.7 and below. Conditions near the entrance portal remained the same as with the original tunnel design. Hydraulic grade lines in the tunnel approach and through the tunnel are shown in Plates 17-23 for flows of 512 cfs, 1,208 cfs, 2,551 cfs, and 4,039 cfs and tide elevations -2.7 ft, 6.7 ft, 10.0 ft, and 16.8 ft.

Stilling basin

18. The design of the original stilling basin (Plate 24) was based on using a length of approximately $6D_2$ (D_2 equals the tailwater depth) for the basin length. Observation of the action in the basin indicated that the flow was not spreading with the apron flare and that eddies were forming in the basin that extended beyond the end sill. These conditions resulted in unstable jump action even at the design condition of the SPF of 4,039 cfs and a -2.7-ft tide elevation. Some of the flow instability was due to the flow not spreading on the apron flare. This appeared to be caused by the absence of a curved transition from the parallel tunnel walls to the 1:6 flare. The remaining instability appeared to be due to excess width and length in the basin design. Velocity cross sections at the end sill are shown in Plates 25 and 26. Stilling basin action and surface currents are shown in Photos 6-8.

19. An extended flare was installed to limit the basin width at the location of the jump (type 2 stilling basin design, Plate 27). This type of design is usually avoided in confined exit channels because the expanding exit flow impacts the banks and can cause significant scour problems. The harbor, however, allows the exit flow to spread without impacting the banks. Some improvement was realized with this design, but eddies still formed downstream of the jump with the potential to bring material into the basin. Due to the

width of the stilling basin, the jump was unstable.

20. Parallel walls were added to the type 2 stilling basin at the intersection of the downstream end of the trajectory and the flaring sidewalls to form the type 3 stilling basin design (Plate 27). This was done to try to stabilize the jump action and to confine the flow to inhibit the formation of eddies in the basin. Strong eddies formed at intermediate flows and caused highly unstable jump conditions. In an attempt to stabilize the hydraulic jump for various flow conditions, a single row of baffle blocks, 9 ft high, was installed in the type 3 stilling basin design to form the type 4 stilling basin design (Plate 27). Because minimal improvement was observed, a second row of baffle blocks was installed (type 5 stilling basin design, Plate 27). Flow conditions were not significantly improved with the type 5 stilling basin and the addition of baffle blocks caused severe drawdown over the end sill.

21. The type 6 stilling basin design modified the original stilling basin from a width of 55 ft to 45 ft and from a length of 72 ft to 47 ft with a 3-ft-high sloping end sill. Baffle blocks were not used since the tailwater was sufficient to cause a hydraulic jump to occur in the basin and NAN indicated that they could cause a maintenance problem. The riprap immediately downstream from the stilling basin was offset 2 ft below the top of the end sill and sloped 1V on 10H upward to el -10. The riprap and channel downstream from that point remained as originally designed. The type 6 design stilling basin is shown in Figure 3 and Plate 28.

22. Performance of the type 6 stilling basin was superior to the performance of the other designs tested. Some eddy action still occurred with this design; however, the eddies were less severe and were confined to the stilling basin. Flow conditions for this design and the tunnel n simulated at 0.013 are shown in Photos 9-11, and velocities at the end sill are shown in Plates 29-30.

Harbor

23. Harbor circulation and velocities were checked with the tunnel Manning's n simulated at 0.013, but the major effort in studying the flow conditions was reserved for the simulation of the 0.010 value for n. The greater energy level entering the stilling basin and harbor for the 0.010 n value was expected to have a greater impact than the simulation of the rough n value.

Landson (Same

Figure 3. Dry bed of type 6 design stilling basin

Approach channel and drop structure

24. The original drop structure was used in these tests based on the results of the tests simulating n = 0.013. For the smoother tunnel, the flow conditions and the discharge rating curves did not change upstream of the drop structure for flows up to approximately the design flow of 4,039 cfs. For flows higher than the design condition, the water surface was slightly lower due to reduced backwater effects from the tunnel. Water-surface elevations between the entrance portal and the drop structure were lower throughout the flow range. Stage-discharge relations are shown in Plate 31 for tide el -2.7 and 6.7. Tide elevations above 6.7 could not be simulated in the approach area for a Manning's n of 0.010 due to the excess slope distortion required.

Tunnel

25. Flow conditions were satisfactory throughout the type 2 design tunnel (Photo 12). Open channel flow was maintained up to the design discharge and tide el 8.7. The undular condition at the tunnel entrance that was observed for the rough n value did not exist for the smoother condition (Photo 13). Hydraulic grade lines for flows of 512 cfs, 1,208 cfs, 2,551 cfs, and 4,039 cfs are shown in Plates 32-35 for tide el -2.7 and 6.7 and for tide el 10.0 for the design discharge.

Stilling basin

26. The type 6 stilling basin performed as expected for the smooth n value. Flow conditions were acceptable and very similar to the conditions observed for the rough n value. Surface currents are shown in Photos 14-16, and velocities over the end sill are shown in Plates 36-38. Water-surface elevations through the stilling basin are shown in Plate 39 for the -2.7-ft and 6.7-ft tide and the design flow.

Harbor

27. For various flow conditions, several circulation patterns or eddies were set up in the harbor area. These eddies were generally fairly large with low velocities. Surface circulation patterns are shown in Photos 17-21 for several flow conditions. Surface, middepth, and bottom velocities in the harbor are shown in Plates 40-75. Flow exiting the stilling basin tended to bend slightly to the east and cross the harbor to the south shore and then

flow generally east past the permanent pier toward Long Island Sound. The outflow velocities at the permanent pier did not exceed 3.5 fps for the flow conditions observed as shown in Plates 76-79. These velocity cross sections are shown as Section A-A on Plate 75. The major circulation cell existed in the southwest portion of the harbor where clockwise flow was established by the outflow from the stilling basin. Harbor water-surface elevations for 4,039 cfs and tide elevations of -2.7 ft, 6.7 ft, and 10.0 ft were level at -1.55 ft, 7.75 ft, and 11.30 ft, respectively.

28. The design hydrograph (Plate 80) was used to test the stability of the riprap protection downstream of the stilling basin and to investigate the scour conditions downstream of the riprap. Initial bottom conditions are shown in Figure 4 prior to the application of the design hydrograph. Harbor bottom conditions are shown in Figure 5 after the hydrograph. This figure shows that although minor changes can be seen in the channel bottom, the riprap remained in place. These tests were conducted with the tide elevation set at -2.7 ft.

Figure 4. Dry bed view of area downstream from stilling basin prior to test

W.

06.66

1.0

Figure 5. Dry bed view of area downstream from stilling basin after test with design hydrograph

PART IV: CONCLUSIONS AND RECOMMENDATIONS

29. Tests to determine the adequacy of the Sheldrake River Tunnel to convey the design flow conditions indicated that the project with certain modifications would perform satisfactorily. After these modifications to the conduit transitions, the maximum capacity of the system was 4,750 cfs with a tide elevation of 6.7 and the tunnel Manning's n at 0.013. At this discharge, flow overtopped the walls at the tunnel entrance portal. With the smoother n of 0.010, the capacity was 5,200 cfs. Table 1 lists stagedischarge relations.

30. Flows approaching the drop structure were relatively smooth and were below the level specified by NAN (el 25 at sta 40+80) for the design flow. Flow over the crest of the drop structure was controlled by the crest until the backwater effects of the tunnel submerged the crest. At this point the upstream water-surface elevations were controlled primarily by downstream conditions.

31. Minor surface waves were observed downstream of all the curved sections in the tunnel. These waves did not have any significant adverse effects on the flow conditions in the tunnel.

32. For the rough n value tested, flow tended to fill the transition between the square and the horseshoe-shaped conduit. This flow pattern indicates that the tunnel is barely capable of passing the design flow without causing the tunnel to flow full. The pressures exerted on the conduit when the flow caused the tunnel to flow full were very low and were definitely less than the pressures exerted on the conduit when the tide backed the flow into the tunnel.

33. The type 6 stilling basin design provides an acceptable flow transition from the tunnel to the harbor in spite of the fact that this type of energy dissipator is designed to have an increasing tailwater with an increasing flow. Because this stilling basin is located in a tidal basin, the downstream water surface is largely independent of the flow through the stilling basin. NAN studies indicate that tidal stages are usually, but not always, above the astronomical tide levels during flood flow periods. The stilling basin design must therefore be based on the design flow and a minimum tide. All other flow combinations necessarily result in degraded stilling basin performance. Riprap protection downstream of the stilling basin was

stable for the conditions tested. Based on NAN's determination that this riprap protection plan contains the minimum diameter rock that would be installed, smaller diameter rock was not tested.

34. Flow conditions in the harbor generally consisted of low-velocity flow. Areas near the stilling basin and directly in line with the outflow from the stilling basin were subjected to the high velocities at higher discharges. These areas include the floating dock facilities in the northwest portion of the harbor. Presently many small craft moor with anchors in the southwest portion of the harbor. With the construction of the project these boats would be anchored sideways to the eddy flow. This condition should be evaluated.

35. Scour problems seem to be minimal based on sand movement in the model. The sediments in the harbor may be considerably finer than that represented by the sand in the model. Consequently, further studies should be considered to address the scour question.

36. The testing program resulted in the following changes.

- <u>a</u>. Elimination of the intermediate tunnel section (circular roof with vertical sides (Plate 1)) and the substitution of an elongated transition directly from the box shape to the horseshoe shape (Plate 14).
- b. Revision of the original stilling basin (Plate 24) to that shown in Plate 28.

Table 1

Water-Surface Elevations for Various

Tide Elevations and Flows

Tide					
Elevation	Station	1 year	10 years	100 years	SPF
		n = 0.0	013		
-2.7	40+80	16.9	18.2	19.9	22.3
	39+15	16.9	18.1	19.5	21.8
	38+00	7.1	11.1	16.6	21.6
6.7	40+80	16.9	18.2	19.9	22.3
	39+15	16.9	18.1	19.5	21.8
	38+00	7.8	11.1	16.6	21.6
10.0	40+80	16.9	18.2	19.9	22.4
	39+15	16.9	18.1	19.5	22.0
	38+00	11.2	13.1	17.0	21.8
16.8	40+80	17.5	19.3	25.4	x
	39+15	17.5	19.3	25.2	x
	38+00	17.5	19.3	25.2	x
		n = 0.0	010		
-2.7	40+80	16.9	18.2	19.9	22.3
	39+15	16.9	18.1	19.5	21.7
	38+00	6.8	10.7	16.3	21.4
6.7	40+80	16.9	18.2	19.9	22.3
	39+15	16.9	18.1	19.5	21.7
	38+00	7.4	10.7	16.3	21.4

A DECEMBER OF STREET, S

C)

Photo 2. Sischarge #,)39 cfs, tide el -2.7

Puoto 1. Dismarge 7,551 cfs, tide el 6.7

BADOCC.

Photo 3. Flow conditions in type 1 design tunnel transition. Discharge 4,039 cfs, tide el 6.7, n 0.013

0.013 C Flow conditions at tunnel entrance, type 1 design tunnel, discharge 3,600 cfs, tide el 6.7, Photo 4.

0.013 Flow condition in type 2 design transition, discharge μ ,039 ofs, tide el 6.7, n Photo 5.

Photo 6. Stilling basin action and surface currents, discharge 512 cfs, tide el 6.7

Photo 7. Stilling basin action and surface currents, discharge 1,208 cfs, tide el 6.7

Photo 8. Stilling basin action and surface currents, discharge 4,039 cfs, tide el -2.7

Photo 9. Flow conditions, type 6 design, n 0.013, discharge 512 cfs, tide el 6.7

Photo 10. Flow conditions, type 6 design, n 0.013, discharge 1,208 cfs, tide el 6.7

Photo 11. Flow conditions, type 6 design, n 0.013, discharge 4,039 cfs, tide el -2.7

þ

Photo 12. Flow conditions in type 2 design tunnel, discharge 4,039 cfs, tide el 6.7, n 0.010

Flow conditions at tunnel entrance, type 2 design tunnel, discharge 4,039 cfs, tide el 6.7, n 0.010 Photo 13.

Photo 14. Surface conditions, type 6 stilling basin, discharge 512 cfs, tide el 6.7

Photo 15. Surface conditions, type 6 stilling basin, discharge 1,208 cfs, tide el 6.7

Photo 16. Surface conditions, type 6 stilling basin, discharge 4,039 cfs, tide el -2.7

Photo 17. Surface circulation patterns, discharge 512 cfs, tide el 6.7

Photo 18. Surface circulation patterns, discharge 1,208 cfs, tide el 6.7

Photo 19. Surface circulation patterns, discharge 4,039 cfs, tide el -2.7

Proto 20. Surface circulation patterns, discharge 0,651 ofs, tide el 6.7

vyody o kongo od stanik se st 11. kongo se stanik s

ومؤور والمؤولين والمراد والروام والمراجع والمراجع المراجع

4

•

•

4"+ 3*= 4*+ 8

10.05 10.05 10.05

Made (

, T

4 4 4

د د د د د

100 M - 245220 - 4000000 K - 245660 - 245220

0.5

PLATE 10

67 Y A

LAN AGAS

0.00.00.00.00.00.00

169/66

asta V)

1.25

1. 3. 4. 1.

.....

8¹ 4¹ 6¹

いち ちょうかい

2. J. 6. 1. 1.

からない しいちょういん

DODKO DOCO

PLATE 15

PLATE 16

LOGALOGO CONTRACTO

WK

NATION CONTRACTOR SALES SAL

e^b

1. 2. 6. 1. C. ---

PLATE 18

110,000,02

NOON

New .

X X 54 MANY

PLATE 23

ť.

5012-06-06

NO PAR

1.1.5

Q.

PLATE 25

PLATE 27

PLATE 28

0.5350,40

1. 2. 1

PLATE 29

PLATE 30

The second s

160,09,80,80,80,60,00

PLATE 33

ACCORPORATION AND A CONTRACTOR

20.000000

SEL CONTRACTOR

PLATE 37

0.1

A ADDALLAND

10,40

<u>D</u>U

10

N **4** - 2 - 4

PLATE 39

and the for the second

PLATE 40

- 21

ANAAAAAA

.

1 · · · · ·

-

A CONTRACTOR OF A CONTRACTOR

5 * * * * * * * * * * *

R.

and the state of the

**

0.00000000000000

040

0.000

хÀ

PLATE 54

₁. .

.

したのななのたい

REAL PROPERTY

CHONOMOUS -

AND AN AN AN AN AN AN

「「「「「「」」」

. پر ۲

PLATE 60

0

THE REAL

PLATE 62

8.0

MICROCOPY RESOLUTION TEST CHART

NO

NAME OF T

180

and the second second

), (A)

040804

Ú.

NE KEREKEREND KERENDE

.

SARANS.

No.V

AND AND ADDRESS OF

. . .

1.22

The second se

100 A 10

.....

Ъч

X).

R)

CONDITION OF CONDITICON OF CONDICONO OF CONDICONO OF CONDICONO

.

135 S 10 S

CALLER CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRA

n,

PLATE 79

i au

1

MAR PARTY

н н н н н

