
RO-191 476 REPRESENTATION ISSUES IN SYSTEMIC FUNCTIONAL RRMMAR 1'
CLFRI MRIAELEY NFRMAIN SYSTEMIC GRAMMAR. (U) UNIVERSITY OF SOUTHERN

WIO.SSIFIED CMTTHIESSEN ETL A Y ISI/RS-97-1SF/ 7 L.

mh=7hhhhmomhhhhmhhll
mhhhhhhhhhhhhl
l--rn--Elmo

somhhhhhhmhhhu
I __mmmmmm

11W1 E& L.5

III1.25 111.4 l

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

STE fILE GMI~ 151 Reprint Series

ISIIRS-87-1 79
(0 May 1987

University Oh 4

of SouthernCalfoSiD Christian Matthiessen CaLfra

Robert Kasper

Representational Issues
in Systemic Functional Grammar

- and-

DTIC Systemic Grammar and Functional
DETC Unification Grammar
JUELE 7CTEitd rm h

Proceedings of the 12th International

S t D Systemic Workshop in Ann Arbor, MI.,
C.&- DAugust 21-24, 1985.

jyjS1BiUq1ON SrATEME=4 A
Approved to' Public 10l00'0

rVjt~ibu.ti.on unlimited

INFORMATION
SCIENCTESf238211

INSIU I - 4676 Am ralWyMarina del Rej/Califoriiia 90292-6695
9d'7a~ 6Way/

Unclassified
SECURIrY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTIONIAVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE This document is approved for public release;
distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

ISI/RS-87-179

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

USC/Information Sciences Institute (If apkl).

6c. ADDRESS (Oty, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

4676 Admiralty Way
Marina del Rey, CA 90292

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PI;REMENT INSTRUMENT IDENTIFICATION NUMBERORGANIZATION W/I apl~iablit), //. /4P RMN 4608--10NTUETIETFCOMA0.1C03NME

National Science Foundation (over) IST.4f-726

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

1800 G St. NW (over) ELEMENT NO. NO. NO. ACCESSION NO.
Washington, DC 20550

11. TITLE (Include Security Clasification)
A. Representational Issues in Systemic Functional Grammar -and-
B. Systemic Grammar and Functional Unification Grammar (Unclassified)

12. PERSONAL AUTHOR(S)
Matthiessen, Christian; Kasper, Robert

t3a. TYPE OF REPORT 13b. TIME COVERED 14. DATE 6F REPORT (Year, Month, Day) IS. PAGE COUNT
Research Report FROM TO 1 987, May . 83

16. SUPPLEMENTARY NOTATION
Reprinted from the Proceedings of the 12th International Systemic Workshop in Ann Arbor, Mi.,
August 21-24, 1985.

17. COSATI CODES I. SUBIECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP artificial intelligence, functional unification grammar, grammar, linguistics,

09 02 natural language, Nigel, parsing, syntax, systemic grammar, text generation

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Nigel is a large diverse computational grammar for text generation. Its framework is an
implementation of Systemic Functional Theory of grammar and it constitutes a context in which the
representation of systemic theory can be explored and studied.

This paper surveys the representational devices used in the Nigel grammar and the representational
issues that they raise in relation to systemic theory. These issues are diagnosed in the light of the
metafunctional differentiation of systemic theory.

(over)

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
,UNCLASSFIEDIUNUMITED 0 SAME AS RPT. E OTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL Sheila Coyazo 22b. TELEPHONE (include Area Code) 122c. OFFICE SYMBOL
Victor Brown 213-822-1511 I

D FORM 1473, e 8AR 03 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

Unclassified

J \ \ 'F.,(--**d",j

Unclassified
---- MITiYy CLASIFICAION Of TWIJ PAU

8a. (continued)
Air Force Office of Scientific Research
Defense Advanced Research Projects Agency

8c. (continued)

Building 410, Boiling Air Force Base
Washington, DC 20332

1400 Wilson Blvd.
Arlington, VA 22209

196.
Systemic Functional Grammar (SFG) and Functional Unification Grammar (FUG) are superficially very

U different approaches to grammatical knowledge, but they share an underlying comparability that
runs very deep. FUG shares with systemic descriptions an emphasis on the functions of linguistic
objects, and an explicit representation of feature choices. This paper explores how a systemic
grammar can be represented in FUG notation, as a step toward creating a grammatical analysis
program for English. Because FUG has been developed as a computational tool, expressing a
systemic grammar in FUG notation allows new computational techniques to be applied to it Among
other benefits, this program will make it possible to study how much the grammatical functions of
sentences are recoverable from them. It will also provide a method to test the amount of ambiguity
implicit in a systemic description, a topic which has so far been inaccessible. This use of FUG as an
alternate representation for SFG may have some additional benefits for both frameworks It
provides some solutions to problems in systemic notation which are described by Matthiessen (ii-tw-

A . Several extensions to the FUG framework are also suggested by this study

Unclassified
S&CUMiTY CLASiIFCATION OP THIi PA09

151 Reprint Series

ISIIRS-87-179
May 198 7

University
of Souiher

Christian Matthiessen California

Robert Kasper

~ Representational Issues
in Systemic Functional Grammar

-and-
Systemic Grammar and Functional

Unification Grammar
Rep$i d-rom the

Proceeding of the 12 International
Systemic Workshop in Any Arbor, Mi.,

Ajj~ust2 -24, 1985.

Accesion For

NTIS CRAMI
D1 IC TAB
Urnannournced

OI

By..........0

Do-LIt

INFORMATION
SCIENCES 238211

INSTITUTE 2138221-1467 Amialiy Wav/Marina del Rey/California 90292-6695
This research was supported in part by National Science Foundation Grant No. IST-8408726, in part by the Air Force Office of
Scientific Research Contract No. F49620 79 C 0181. and in part by Defense Advanced Research Projects Agency Contract No.
MDA903 S1 C 0335. The views and conclusions in this report are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either explicit or implied, of the National Science Foundation.
the Air Force Office of Scientific Research, the Defense Advanced Research Projects Agency, the U S. Government, or any

or a nx connected with them

ISI Reprint Series
This report is one in a series of reprints of articles and papers written by ISI

research staff and published in professional journals and conference
proceedings. For a complete list of ISI reports, write to

Document Distribution I
USC/Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292-6695
USA

1 TALK ABOUT TALK'

The lexlcogrammar of a language represents the semantics of that language, not as

one half of a sign represents the other half, but as a whole system of systems represents

another system of systems: representation as it is built into the organization of natural

languages is the symbolic relation we find or posit between different strata (levels) of

linguistic organization. Consequently, this is the kind of representation the linguist is

concerned with. But he/she must also be concerned with representation as it is defined

by linguistics itself, viz., the linguist's representation of natural language according to

some theory of language. The issue here is how to represent language

metalinguistically; how to talk about talk.

The two tasks of representation are comparable in many respects. Indeed, we could

turn linguistic theory back on itself and use the framework that has been devised for

the study of language to understand and talk about metalanguage. For instance, we

could try to do systemic metalinguistics in this way. What I will do in this paper is in

fact metalinguistics, but it would take too long to try to situate my topic within a

systemic metalinguistics here. It will, however, be useful to say something about the

context. The central topic is the representation of lexicogrammar.

The general purpose that has prompted the present exploration of representational

issues is text generation. It is text synthesis and contrasts with text analysis, but

both processes can be used to study text. It is the process of creating a text in response

to a communicative goal (purpose). The process is specified in a text generation model

(system). As a metalinguistic purpose for linguistics, text generation can be compared

and contrasted with other purposes such as text understanding, text analysis, the

grammatical tagging of a text corpus, literary interpretation, language education,

contrastive analysis, and typological linguistics. These purposes are all, of course,

I1n my work on representational issues, I have profited from discussions with a number of people,

including Michael Halliday, Bill Mann, Bob Kasper, Robin Fawcett, Peter Fries, Jay Lemke, and John
Bateman, and participants in the Systemic Workshop in Ann Arbor, all of whom I am very grateful to. I
am also greatly indebted to Susanna Cumming, Bob Kasper, and Lynn Poulton for helpful comments on a
draft of this paper. All errors and oversights are my own. U

- ~4'~ ~

systematically related as studies of language, but they also occur in different contexts

and raise different demands, e.g., on the representation of the theory. For example,

perspicuity is probably higher on the list of demands on grammatical representation in

language education than in text generation.

The computer is a highly useful tool in work on text generation -- not necessary, but

useful. It helps the linguist manage large bodies of data, such as a lexico-grammar, and

it enables him/her to run actual tests of the model of text generation being built.

There are several examples of systemic work on text generation or work using a

computational grammar closely related to systemic ideas. In the early 1970s, Davey

(1978) used a systemic grammar partly derived from Hudson's work (e.g., Hudson

(1971)) in a text generation system. McKeown (1982; 1985) used a Functional

Unification Grammar (FUG) in her TEXT system, and Appelt has included a FUG as

one of the levels in his generation system (Appelt (1983)). FUG was developed by

Martin Kay (see e.g., Kay (1979)) and is closely related to systemic functional grammar;

the grammar and its relationships to systemic grammar are discussed in Bob Kasper's

paper in this report.

In 1980, work on a large systemic grammar of English for text generation started at

the Information Sciences Institute of the University of Southern California. It is called

the Nigel grammar and is being developed as an integral part of a text generation

system. Bob Kasper is currently working on a version of Nigel to be used for parsing.

John Bateman has started work on a computational systemic grammar of Japanese, also

in the context of text generation (Bateman (1985)). Also, Robin Fawcett is developing a

computational systemic grammar of English, implementing his contributions to systemic

grammar (cf. Fawcett (1980)). The present discussion is derived from the work on the

Nigel grammar. For example, the constraints on realization operators to be discussed

are constraints in the Nigel grammar. The framework of the Nigel grammar is intended
to be as faithful as is currently possible to Michael Halliday's ideas. My paper is not,

however, an introduction to the Nigel grammar; for brief presentations see e.g., Mann & I
Matthiessen (1985), Matthiessen (1983), and Mann (1983).

2
O

* 'q,;~u% . N

What is the context of text generation, particularly in computational work? (For a

discussion of related issues, see also Fawcett's paper in this volume.) The context can

be characterized with the help of systemic theory, using field (the social action and

subject matter, what's going on), tenor (the social relationship, who's taking part), and

mode (how are the meanings exchanged); see e.g., Halliday & Hasan (1985).

In the field, processes are foregrounded. There must be dynamic accounts of

traversing the system network, activating realization statements, etc. in addition to

static accounts, in the text generation model; the two perspectives have been discussed

by Martin (1985). Most descriptive work has been focused on the system network at

rest and on structure as a static product of structure building. However, there are often

two interpretations, a dynamic one and a static one. For example, systems can be read

as instructions to choose under certain conditions (dynamic) or as statements about the

availability of options (static).

In the tenor, explicitness and formality are emphasized since the user of the text

generation model is a computer and not a knowledgeable linguist as in a lot of

descriptive work. When there are gaps in the account, the computer cannot fill them

in. It cannot clarify ambiguous statements.

The mode has to be algebraic rather than graphic; it has to be a mode that can be

manipulated in computer programs. In descriptive work, the graphic mode is very

valuable and has usually been favoured. Systems and system networks are represented

by graphic diagrams; and structures are represented by box diagrams.

Advances have been made in the work on Nigel in all three areas of the context so

that more demands can be met. For example, more is known about the process of

traversing a system network and about constituency ordering. However, the focus of

this paper will be on representational issues that have been discovered and remain and

not on these advances. Although I will discuss some approaches to solutions, this is

essentially a paper about problems and not about solutions. Whenever we consider

solutions, there is a high demand on them: the representation should be as natural and

3

%|

as iconic as possible with respect to the theory. Functional felicity is more important

than generative power.

Although I will try to mention the various aspects of systemic work the paper

addresses, the paper presupposes some familiarity both with systemic theory and with

systemic descriptions of English.

2 THEORY AND REPRESENTATION: LAG

There seems to be a general tendency for theory to precede the representation of it,

which is, of course, not surprising. There is a lag between theory and representation,

but the lag depends on the nature of the representation. Systemic linguistics has always

allowed for a cline in the explicitness of the representation: diagrams and algebraic

statements that can be interpreted formally coexist. This cline has proved very useful,

since different contexts place different demands on the representation. Aspects of the

theory can be represented diagrammatically, although we do not yet know how to give

them a representation explicit enough to be implemented computationally. (Cf.

Martinet's distinction between visualization and formalization in Parret (1974).) For

example, as we will see in Section 4.3, there is a graphic representation of the kind of

structure generated by the textual metafunction, "pulsive" or "periodic" structure, but

we do not yet know how to represent it in a formal algebraic mode.

Linear recursion. An example of explicit representation lagging behind theory

comes from the logical component of grammar. The theory of linear recursion had been

developed by the mid 1960s (cf. for example Halliday (1965); Hudson (1971: 60-63)). A

recursive system can be represented in an informal graphic way; see Figure 1.

(Conventions are given in the Appendix. There is a system with two options

represented by features, simplex vs. complex. If the feature 'complex' is chosen in the

system 'simplex/complex', the entry condition to the system 'a/b' is satisfied, but there

is also a "recursive" loop back to the system 'simplex/complex'. Associated with the

feature complex is a realization statement (x -> y, given in the box under the feature

complex), specifying a structure fragment. The meaning of it will be discussed in

Section 4.4.)

4 ,

1% .0

simplex

a

complex --o-

Figure 1: Informal graphic representation of recursive system

However, although the theory of linear recursion had been developed, the problem of

the explicit representation of it had not been solved. Henrici worked with an explicit

version of systemic representation. Comparing embedding recursion (recursion through

rankshift) with linear recursion (iteration), he notes that the latter is "rather more

troublesome" (Henrici (1966)). One problem is that the recursive system (i.e., a system

with a loop back to its disjunctive entry condition) "would not be a conventional

system, in that at least one of the terms in the system would also act as an entry

condition to the system, contrary to the partial-ordering imposed on ordinary systems".

In other words, the explicit interpretation of the system representation as a partial

ordering brought out the issue of what the recursive system means. We have had

similar experience in our work on the Nigel grammar.

In the case of linear recursion, the lag between theory and explicit representation is

5.

'M N ml

still very evident. Davey did not implement recursive systems in his computational

generation grammar; he writes (1978: 81): "It is clear that systemic functional grammar

cannot produce coordinate items without some extension of its purely classificatory

apparatus, but we do not feel confident that the right extension has been found."

Similarly, McCord (1975: 211) discusses a modification of conventions to handle linear

recursion. There is no generally accepted explicit interpretation of it for a formal

representation, neither for the recursive system (see Section 5.1) nor for the structural

output (see Section 4.4).

Box diagrams and realization statements. The representation of structure in

general is another example of the lag between theory and explicit representation, as we

will see. There are various structural relationships (e.g., discontinuity, which I will

discuss later) that do not pose a problem for the informal box diagram representation

but prove to be a problem for explicit realization statements.

The box diagram is like a tree diagram in that it represents a product rather than a

process, the product of a structure specification (realization statement), but it is used

instead of the tree diagram because it facilitates the representation of layering (see

Figure 9). Examples of box diagrams can be found in Figures 3, 10 and 15.

Tb,- representational problems I will identify and discuss are usually problems for a

representation that is more explicit than a box diagram representation. I will make

reference to Martin Kay's Functional Unification Grammar (FUG) and Bob Kasper's d

paper in this report where this kind of grammar is presented and discussed as a source%

of possible solutions to the problems: FUG was designed to be explicit and formal

enough for the computational tasks of generation and parsing.

3 DI1MENSIONS OF STRUCTURE

All parts of a systemic grammar are ultimately interconnected. The grammar is a

network of systems of options; each option may have one or more realization statements

associated with it, serving to specify a structure fragment or to predetermine the choice

of an option as the grammar is re-entered. Given this interconnectedness, we could

M * M6

choose various starting points in a discussion of representational issues, for example the

representation of the network of systems or the representation of structure. We could

discuss the issues in terms 6f the grammar as a system at rest (the potential) or of the

grammar as a process (the potential actualized). We could choose one of these various

angles on lexicogrammar and still hope to arrive at a diagnosis of representational issues

that is reasonably general.

In this section, I shall unravel the grammar by means of the various realization

operators used in Nigel: conflate, insert, order, expand, and preselect. They serve to

specify the structural output of the grammar; the representational issues will

consequently be exemplified first in terms of the specification of structure. There are

various reasons for starting with the realization operators. One is that they have been

discussed and explored less than the system network representation. Another is that

they are more restricted in representational applicability than the system network

representation (as we will see) and will serve to identify representational issues more

clearly.

3.1 Three dimensions of structure

Structure is a composite object or process in which each fragment is specified by the

realization operators. For the discussion of the realization operators, it is useful to

think of structure as organized in terms of three dimensions (cf. Halliday 1961;

Matthiessen 1985). The dimensions are manifested both in the system's potential for

creating structures and in examples instantiating this potential. For each dimension we

find one or more realization operators:

1. Structuring: insert, order, expand

2. Metafunctional layering: conflate

3. Rank: preselect

Structuring and metafunctional layering define the structure of a unit such as a

clause, a nominal group, or a verbal group as a configuration of functions. The

functions are realized by units of the rank below, through preselection. (There is a

7
I.g

% % % %-

distinction between a structure, a configuration of functions, and a syntagm, a sequence

of classes such as nominal group and verbal group: see Halliday (1966). To keep the

discussion manageable, I will not bring in the distinction, but will merely note here that

it exists and could be used to address certain representational problems. The realization

operator Preselect establishes the relation between a function in the function structure

of a unit at one rank and a grammatical class represented as a feature at the rank

below.) The realization operators to be discussed are as follows:

Name of operator Description

(Insert Subject) +Subject Function inserted as
constituent of the
structure of the unit
being specified

(Order Subject Finite) SubjectAFinite One function ordered to
precede another function

(Expand Mood Finite) Mood (Finite) One function is expanded
to have another funciton
as constituent

(Conflate Subject
Agent) Subject/Agent One function is conflated

with another function to
form part of the same
constituent function bundle

(Preselect Subject Subject:
singular) singular A function is preselected for

a feature; the realization
of the function is
constrained to display that
feature

8

3.2 Sample grammar

Before discussing the (Nigel) realization operators, I will present a fragment of the

Nigel grammar so that I can refer to it later for illustrations: see Figure 2. The

network fragment consists of systems belonging to MOOD, an interpersonal region in

the clause grammar, to TRANSITIVITY, an experiential region in the clause grammar,

and to VOICE, a textual region:

MOOD systems: MOOD TYPE, INDICI[ATIVE] MOOD PERSON, INDICEATIVE)
TYPE. INTER[ACTANT MOOD PERSON] TYPE, and [DECLARATIVE]
SUBJ [ECT] PRES [UMPTION]),

TRANSITIVITY systems: AGENCY and AGENTIVITY, and

VOICE system: VOICE.

Since it is only a partial fragment, the grammar in Figure 2 cannot be used to

generate complete clause structures. Graphic conventions are given in the Appendix.

For present purposes, the systems MOOD TYPE and AGENCY can be assumed to be

simultaneous, i.e. reachable from the same entry condition, viz., the feature clause.

Before the part of the grammar specified in the diagram above is entered, the

following has occurred: the functions Predicator, Medium, Process, and Finite have

been inserted; Predicator and Process have been conflated; Process has been preselected

to be a verbal group; and Medium has been preselected to be a nominal group.

Traversing the mood part of the network, we can choose the following path:

System: feature chosen Realization statement

MOOD TYPE: indicative +Subject, Subject: nominative,
Mood (SubJ ect)

INDICATIVE TYPE: declarative Subject A Finite

9 I.I

INDICATIVE MOOD PERSON:

interactant

INTERACTANT TYPE: speaker Subject: speaker, Finite: speaker

SUBJECT PERSON: explicit

Traversing the two transitivity systems AGENCY and AGENTYIVTY, we can choose

AGENCY: effective Process: effective

AGENTIVITY: agentive, +Agent, Agent: ngp

and in the VOICE system

VOICE: operative Subject/Agent

The structure fragment that results from the application of the realization statements

is given in Figure 3.

The structuro- above is a partial specification of examples like I have dissolved the

parliament, I have frightened my poor friend, and I will open the gate.. After this

brief example of the system network, realization statement associated with features in

it, and the function structure resulting from the application of realization statements, I

will now turn to the first dimension mentioned in Section 3.1.

3.3 Structuring

Structuring is the dimension that defines syntagmatic organization within one rank

and within one (metafunctional) layer of structure. Grammatical regions make

structural contributions such as transitivity structure (e.g., Agent Process Medium: see

Figure 3), mood structure (e.g., Subject Finite: see Figure 3), theme structure (e.g.,

Theme Rheme), tense structure, and modification structure.

10

Figure 2: Fragment of clause grammar

- implicit

declarative SUBJ. I "Subject

INDI. F ~~i~ePRES.

TYPE explicit

L interrogative speaker

Subject:

indicative _ -speaker
-- __indicative__ Finite:

+ Subject INE.speaker

MOOD Subject: interactant INTER.
nominative TYPE speaker-plus

TYPE Mood(Subject) INDIC.

MOOD a e

- imperative PERS other addressee

operative

VOICESubject/
agentive VOICE Agent

+ Agent
AGENT- Agent: -- receptive

effectiveI gSuj c
A Process: Medium

AGENCY effective icator:
non-agentive assive

Subject /
L middle Medium

Process: IPredicator:
middle passive

11

Agent Process Medium TRANSITIVITY
ngp vgp ngp

Subject Finite Predicator
speaker speaker MOOD
nomin.

Mood

Figure 3: Fragment of function structure

The realization operators used to specify structuring are Insert, Order, and

Expand. Their use will be illustrated with examples from the MOOD region of English

grammar. The presentation of each operator is organized into a characterization of it,

the result of its application, a specification of some constraints on it, and

representational problems.

3.3.1 Insert

Characterization. The Insert operator is used with a grammatical function such as

Subject, Agent, or Theme as its operand, e.g., (Insert Subject) or +Subject for short. It

specifies the presence of the function in (adds the function to) the function structure

being generated as a constituent of that structure. For example, in the specification of

a clause, we may associate the realization statement +Subject with the grammatical

feature indicative as in the grammar fragment above. This means that the function

Subject is present in the structure of a clause as a constituent of the clause structure.

Result. The result of the application of +Subject is simply a constituent branch and

node in a tree diagram or a constituent box in a box diagram; see Figure 4.

12

ILI

•• II
Su t Subject
Subject

(i) Tree diagram (ii) Box diagram

Figure 4: +Subject -- structural result in diagram

Constraints. I will mention two important constraints on the Insert operator, one

having to do with the status of an inserted function and one with its constituency:

1. When an inserted function is declared to be present, "present" means
'actually present' and not 'potentially present' or 'present in the default
case'. Once inserted, a function is, and remains, actually inserted.

2. The fact that Subject is a constituent of clause structure means that it is
available to other structure specifications within the clause but not outside
the clause. It also means that it is not a constituent of any other unit, e.g.,
arankshifted (embedded) constituent clause. Furthermore, a clause cannot
insert a function into e.g., a verbal group or a nominal group.

Problem: implicit functions. Both constraints are well motivated in principle, but

there are situations where they lead to some complex conditions in the grammar.

Consider the first constraint.

How do we deal with implicit functions, e.g., implicit Subjects? The function Subject

is explicit, actually present, in almost all indicative clauses. Consequently, it is

tempting to associate the realization statment +Subject with the feature indicative. If

we do (as in system MOOD TYPE of the sample grammar in Figure 2), we will get

13
.6

Subjects even where we do not want them, where they are implicit, as in [II haven It had

dinner yet.

There is no formal problem with adding to the conditions under which the statement

+Subject is applied so that Subject does not get inserted where it should be left

implicit, but the added conditions do complicate the grammar a bit. The insertion of

Subject can be stated in a gate whose disjunctive entry condition specifies under what

conditions a clause may have an explicit Subject. (A gate has an entry condition like a

regular system, but only one output feature /term /option.) The output is simply one

feature, explicit subject, with which the realization statement +Subject is associated.

This is illustrated for the sample grammar in the diagram below; cf. the gate for

Subject insertion in Matthiessen (1985: Figure 9). (The grouping of the features of the

entry condition is not formally significant.)

other

speaker-plus

addressee

explicitexplicit subject

(declarative) + ubject

interrogative

Figure 5: Gate for inserting SubjectI

14_

PI.N

The complication is increased when we add the conditionality for functions such as

Agent that may get conflated with Subject; see Section 3.4.

One solution. There is one way of dealing with the problem which involves a re-

interpretation of the Insert operator. Instead of defining its result as 'actually present',

we can define it as 'potentially present', I.e. 'present in the default case, unless the

function is declared not to be present'. We can then add a preventive operator, call it

*, to be used to specify absence. Assume that Subject has been inserted, + Subject

(MOOD TYPE: indicative). If the grammar states *Subject, the Subject, although

potentially present, is not actually present (system DECLARATIVE SUBJECT

PRESUMPTION: implicit). There would be two possible cases if a function has been

inserted:

+ Subject 'potential presence'

[] * Subject 'not actually present'

[liJ --- actually present, by default'

Potential presence can be compared with presence of a function in Fawcett's starting

structure (described in Fawcett (1980)).

3.3.2 Order

Characterization. The operator Order is applied to two functions, e.g., (Order

Subject Finite) or Subject ^ Finite. It introduces a precedence relation between the two

functions in realization sequence. There are two varieties of this operator, one that only

specifies the precedence relation and one that also specifies contiguity so that no other

constituent can intervene. I shall not distinguish them here. (I shall also omit

OrderAtEnd and OrderAtFront; cf. Mann & Matthiessen (1984) and Matthiessen

(1985).)

The realization operators that relate two functions or a function and a feature specify

relations that can be classified in terms of Halliday's theory of relational transitivity

(Halliday 1985). I will not elaborate on this typology of realization operators here, but

15

will indicate what relations they specify as we meet them in the presentation. For

example, the Order operator specifies a circumstantial (enhancing) relation, e.g., Subject

precedes Finite.

Result. The result of the application of Finite ^ Subject is represented

diagrammatically as follows:

I Fi nite Subject

Figure 6: Finite ^ Subject -- structural result in diagram

In a box diagram, we usually cannot tell whether the sequence is significant, i.e.

introduced by a sequencing statement like (Order Finite Subject), or not.

Constraints. I will mention three constraints on the Order operator, all of which

have to do with ordering and constituency status:

1. The Order operator specifies actual sequence and not potential sequence; it
does not specify a default sequence that could be overridden.

2. Only constituents of the unit whose structure is being specified can be
ordered in relation to one another. For example, the clause constituent
Subject can be ordered with respect to the clause constituent Finite but not
with respect to a Qualifier from a nominal group structure.

3. Once a functional constituent such as Subject has been ordered, all the
constituents of the unit realizing that function (Subject) have to obey the
ordering specification.

Although there is no inter-rank ordering, there is no constraint that disallows inter-

layer ordering, i.e. ordering statements involving functions from different layers of

structure. For example, there is no formal problem with an ordering statement such as

16

"R W~. W ' -

Subject ^ Medium with one mood function and one transitivity function. However,

there has not been any reason to use ordering statements of this kind so far in Nigel's

grammar of English.

There is a mechanism for ordering other than the Order operator: default ordering

lists. They list functions in the sequence in which they will appear unless another

ordering has been specified explicitly by means of the Order operator. The first

constraint says that the Order operator always specifies the actual sequence. In

contrast, the lists specify potential (default) sequence. A default ordering list in Nigel is

comparable to Fawcett's starting structure as an ordering statement.

The next two constraints are appropriate most of the time, but there are certain

situations where they are too strict, viz., theme and information prominence. These

situations typically involve discontinuity; one case will be discussed next.

Problem: discontinuity. Consider the example They called the meeting off from

Halliday (1985), with the process call ... off. Halliday gives it the following transitivity

structure in box diagram representation (the example is not covered by the grammar

fragment in Figure 2).

Although the box diagram looks different from those that have been used up to now,

there is no problem in drawing it. In other words, the discontinuity can be represented

in the box diagram. However, there is a problem for the formally interpreted

realization operators described above. None of these operators can serve to specify the

structure represented by this box diagram.

For example, we cannot state Process ^ Medium ^ Process because that is

contradictory, claiming that Process both precedes and follows Medium. Two

approaches to this kind of problem have been used in the literature.

1. Systemic grammarians have sometimes used a subscript to indicate two
parts of a split function: Process, 1 Medium ^ Process 2 where the first part
is realized by called and the second part is realized by off. However, this
device does not make explicit what the two parts are; the identification of
them is left to the knowledgeable grammarian.

17

-~ it W q W

They called the meeting off

Agent Pro- Medium -cess
mate- -rial

Figure 7: Transitivity structure of discontinuous example

2. Alternatively, we can introduce a new realization operator. For example,
Huddleston works with the notion of inclusion: one function can be
included within another function. Thus, we would have (Include Medium
Process), usually Process <Medium>. The problem with this strategy is
the same as with the above-mentioned splitting strategy. If we only specify
that one function (Medium) is to be included within another function
(Process), this does not provide enough information to assign the first
function a place within the second function. This problem does not
invalidate the use of inclusion, of course, but it indicates that inclusion alone
may not be enough, since more information is needed for an unambiguous
specification of ordering. We could take inclusion to mean that the function
included within another function is not given a unique ordering until the
cycle through the grammar when the second function is realized. This
method would need more communication between ranks than is presently
used in Nigel.)

of Process, we do not want to give it up. The sequential discontinuity is matched by

lexical continuity: 'call off' is one lexical item; it is not semantically decomposable.

I shall return to the problem of discontinuity after discussing the second dimension of

organization, i.e., metafunctional layering, in Section 3.4.

18

-0 N N '

V % * wrr,..

3.3.3 Expand

Characterization. The operator Expand is applied to one function to be expanded

and one or more expanding functions, e.g., (Expand Mood Subject) or Mood (Subject),

Mood (Subject, Finite), and so on. It creates a constituency relation between the

expanded function and the expanding function(s). Thus, Mood (Subject) means that

Subject is one of the constituents of the Mood constituent.

When the Insert operator is applied to a function, the function is inserted as a

constituent of the unit being generated. (It does not have to be an immediate

constituent.) For example, the statement +Subject inserts Subject as a clause

constituent. The Expand operator is used when a function is not an immediate

constituent of a unit (which it is by default) but rather an immediate constituent of a

function in that unit. For example, Mood (Subject) specifies that Subject is an

immediate constituent of Mood rather of the clause. (In principle, indefinitely long

constituency chains could be created; in practice, there has never been any need for a

situation more complex that the one illustrated by Mood (Subject), where Mood is an

immediate constituent of the clause and Subject is a constituent of the Mood

constituent.)

The Expand operator specifies a possessive (extending) relation of the part-whole kind,

e.g., Subject is part of Mood. (To bring it up to date with Halliday's terms for the

clause complex relations, we should perhaps call the operator Extend.)

Result. Figure 8 diagrams the structural result of the application of Expand.

Constraints. There are two constraints, the second of which anticipates another

realization operator, Preselect, which is described in detail in Section 3.5:

1. Expansion is actual expansion, not potential expansion. -,

2. A function expanded by another function cannot be preselected for a
feature. Only functions that are immediately realized by a grammatical
class can be preselected. There is no mechanism for spreading or
distributing preselected features from an expanded function to its expanding
functions.

19

* V.qf FL %r Y
%o . %

Subject Fnt

Mood

Figure 8: Mood (Subject, Finite) -- structural result in diagram

One example of the consequences of the second constraint will be mentioned in Section

4.2. Expand is not used often. In Nigel, its main uses are in mood structure reflecting

prosodic organization (see Section 4.2) and in theme structure reflecting thematic

prominence (see Section 4.3). In the second case, it crosses metafunctional layering (see

Section 3.4), as in Theme (Locative), where Theme is textual and Locative is

experiential.

3.4 Metafunctional layering

Metafunctional layering is the dimension that defines the organization across layers of

syntagmatic structuring such as transitivity structure, mood structure, and theme

structure; it represents the reconciliation of these various metafunctional contributions.

Characterization. The realization operator used to specify metafunctional layering

is Conflate. It is applied to two grammatical functions, e.g., (Conflate Subject Agent)

or Subject/Agent (sometimes the equal sign has been used, Subject = Agent). It means

that they describe the same constituent. Conflate specifies an identifying relation: -

Subject is Agent; Agent is Subject.

Result. The structural result of conflation is called a function bundle or fundle. It is

represented by a column in a box diagram; see Figure g (There is no commonly used

20

- - .r~ U --

tree diagram representation of layering, although there is a tree-like diagram in

Relational Grammar where the so-called strata are comparable to metafunctional

layers.)

Subject

Agent

Figure 9: Subject / Agent -- structural result in box diagram

Constraints. I will discuss three constraints and their associated problems.

1. Conflation is actual conflation, not potential conflation. Both functions in a
conflation statement have to be inserted at some point during the same pass
through the grammar as the conflation. If one or both functions do not get
inserted, there is an error in the grammar.

2. Only functions from the structural specifications of the same unit can be
conflated; there is no inter-rank conflation. For example, Subject (from the
mood structure of the clause) and Agent (from the transitivity structure of
the clause) can be conflated but Subject and Minirange (from a prepositional
phrase structure) cannot.

3. The functions conflated in a function bundle such as Subject/Agent always
describe the same constituent. It is not possible to apply Conflate to
functions and maintain different constituents for the different functions.
This constraint is related to the discontinuity problem that I introduced in
Section 3.3; I will return to the problem later.

Problem: implicit functions (continued from Section 3.3.1). What happens if

a function that has been inserted, say Agent, gets conflated with a function that has not

been inserted, say Subject? This situation was addressed above in the first constraint:

21

if Subject gets inserted after the conflation, there is no problem. As long as both

functions in a conflation statement get inserted at some point, the conflation is valid.

However, if one of the two functions does not get inserted, this is considered a

grammatical error. This is quite reasonable in most cases, but we have to consider how

the constraint affects implicit functions, the problem introduced in Section 3.3.1.

Assume that the transitivity of a clause is such that the function Agent gets inserted

(system AGENTIVITY: agentive in the grammar fragment above in Figure 2). Assume

further that the clause is operative (active; the VOICE system), resulting in a conflation

of Agent and Subject: Agent/Subject. Now, if mood choices lead to an explicit

Subject, there is no problem: Subject will be inserted as was Agent. But if mood

choices lead to an implicit Subject (system DECLARATIVE SUBJECT

PRESUMPTION: implicit), there is a problem: Agent is inserted but Subject is

declared to be implicit and hence absent ("'Subject" in the grammar fragment above),

resulting in a conflation between an inserted function and an absent function. How can

the presence of Agent be blocked?

Solutions. (i) One solution is simply to add conditions for the insertion of Agent so

that the function does not get inserted unless Subject is explicit in an operative clause.

This approach is used in Nigel and poses no formal problems. There is a gate, a

"system" with only one output feature, for inserting Agent with a complex entry

condition (a conjunction of the features agentive and explicit subject, from the sample

grammar and the gate for inserting Subject, respectively). The complexity of the entry

condition is a drawback, of course. It would arise for each function that may be

conflated with Subject.

(ii) Another solution is to rely on the distinction between potential presence and actual

presence discussed in Section 3.3.1. When the statement +Agent is applied, the function

Agent is potentially present. If it gets conflated with another function, Subject, that

has been inserted as potentially present, both functions will be actually present unless

there is a statement to the contrary. There could be a preventive statement, specifying

the absence of Subject (as in the system DECLARATIVE SUBJECT PRESUMPTION

22

OE-M= € i , :' - :, : " /.4 ,0 %. ,":. ::Y.-.'' :,

in the sample grammar): *Subject, which would cause the conflation Agent/*Subject to

be absent (implicit) as a whole. Or alternatively, Subject may never get inserted, in

which case a convention would prevent the potential presence of Agent from becoming

actual presence.

These conventions are not ad hoc, but functionally motivated: The presence of an

element of structure or a bundle of functions depends on more than one metafunction;

it is a layered object and unless all the layers are present, the object itself won't be

present.

Problem: conflation outside unit. The second constraint on conflation is usually

desirable. In fact, it reflects an important aspect of the functional organization of a

grammar: the units of the grammar are units because they unite particular functional

contributions, e.g., mood, transitivity and theme for the clause. However, there are

some cases, such as the Minirange of a prepositional phrase realizing a locative

circumstance of a clause (This bed has not been slept in), where the constraint is

problematic.

Problem: discontinuity (continued from Section 3.3.2). I left the example

They called the meeting off without a solution in Section 3.3.2. I noted that it

exemplifies both continuity and discontinuity in the process call ... off. Lexically, it is

continuous; that is, it is one lexical item. In terms of sequence, it is discontinuous.

Towards a solution of the discontinuity problem. Halliday (1985) provides a

solution to the problem of representing examples with discontinuously realized phrasal

verbs. It relies on the metafunctional layering, so it could not be stated only in terms of

one dimension of structuring (Section 3.3).

Halliday's account involves both transitivity structure and mood structure. The two
interpretations for They called the meeting off are:

1. Transitivity: one Process (of class 'material') call off. The lexical
specification can be stated in terms of Process: Process: 'material'. (In
other words, Process is preselected for the lexical feature 'material'.)

23

2. Mood: one Predicator call and one Adjunct off. The sequence can be
stated in terms of Predicator and Adjunct: Predicator ^ Complement
Adjunct.

Each interpretation alone captures only part of the facts, but we get the full picture,

when they are brought together. The mood structure is also used to state the

inflectional form of the verb. The function Finite is constrained to be 'past', and since

the clause is declarative and simple past, Finite is conflated with Predicator. The box

diagram for the example is given in Figure 10 (see Halliday (1985)).

They called the meeting off

Agent Pro- Medium -cess,
mate- -rial

Subject Finite Complement Adjunct
past

Predicator

Figure 10: Two layers of structuring for discontinuous example

Halliday's analysis represented in the box diagram avoids the earlier problems

discussed in Section 3.3.2: since there is no discontinuity in the sequence Predicator

Complement ^ Adjunct, there is no need to design a new inclusion operator and there is

no need to split the Process. (The problems with these two solutions were discussed

above.) Since we retain an unsplit Process function, there is no problem in constraining

it to be one lexical item. Finally, since Predicator and Adjunct are kept distinct, there

24

- 1,, ,I " :" - - N ,w ., , ' i" 'li , ' ' ' " . ':

is no problem in conflating Finite and Predicator, thus constraining that part of the

phrasal verb to be 'past' in our example (i.e. called off rather than call offed).

There is a problem, however, when we move from the box diagram representation to

look for a more formally interpretable realization statement. The problem is the

Conflate operator itself. If we conflate Process and Predicator and then also Process

and Adjunct to get the column alignment in the box diagram, the result is just one

constituent, Process/Predicator/Adjunct. Instead of this conflation, what we need to do

is to conflate Predicator and Adjunct with Process without conflating Predicator and

Adjunct with one another. We need to be able to state (Predicator & Adjunct)/Process.

Although this kind of conflation does not exist as a Nigel realization operator now,

something like it is supported in Functional Unification Grammar: Kasper's paper in

this report presents the solution in those terms.

3.5 Rank

The third dimension of organization to be discussed is rank. Structuring and layering

combine to form the function structure of one unit such as the clause. Rank organizes

the grammar into a scale of units: clause -group/phrase -word -morpheme.

Characterization. The realization operator that handles communication between

ranks is Preselect. The Preselect operator is applied to a function and a feature. For

example, Subject may be preselected to be singular: (Preselect Subject singular) or

Subject: singular. This means that the feature singular will be chosen (in the

NUMBER system) when the grammar is re-entered to realize the Subject function

bundle.

Result. The result of the application of the operator Preselect is like a two-cell

tagmeme with a slot (the function) and a filler (the feature). It is represented simply by

listing the preselected features under the function they have been associated with. For

example, Subject: singular is recorded in the following way; see Figure 11.

Constraints. I will mention two constraints. The first is a familiar one, having to

25

(2w jAL f m

Subject

singular

Figure 11: Subject: singular -- structural result in box diagram

do with the actuality of the result of the application of the operator. The second makes

reference to the rank scale.

1. Preselection is actual preselection. Once a feature has been associated with a
function through preselection it has to be chosen when the function is
realized and the system network is traversed. This constraint can be a bit
awkward, since it would sometimes be useful to be able to state that a
feature is to be selected if its system is entered without forcing the system to
be entered. For example, it would be useful to be able to state Subject:
nominative for all Subjects, although the feature nominative will only
actually be chosen if the Subject is pronominal.

2. In principle, the operator works downwards in terms of the rank scale, from
clause to group/phrase, from group/phrase to word, and from word to
morpheme. There may also be rankshift, e.g., preselection from clause to
clause as group/phrase or from group to clause as word. Preselection cannot
be stated within the same rank unless there is rankshift. For example, it is
not possible to use Preselect to state a preselection relation between a
nominal group and a verbal group when both realize clause functions such as
Subject and Finite/Predicator. The constraint can also be phrased in terms
of constituency. Preselection works downwards in constituency from a whole
to one of its parts; it does not work across from one part to another. The
control of selection exercised by Preselect is top-down control.

For example, if we want to use Preselect to ensure agreement between Subject and

Finite, we have to set up clause systems for SUBJECT PERSON (or perhaps more

accurately MOOD PERSON as in the sample grammar in Figure 2, cf. Section 4.2). If

the grammar contains a system for INTERACTANT SUBJECT where one of the

features is addressee subject, we can associate the two realization statements "Subject:

26

Ell I,

second person* and "Finite: second person" to ensure agreemen in examples such as

you are. This strategy works up to a point, but there are problems, which are discussed

in the following illustration of representational problems.

Problem: agreement. As we have seen, we can achieve agreement by preselecting

both Subject and Finite. When Subject is preselected to be plural, i.e., Subject: plural,

this feature can be instantiated in the nominal group in at least these four different

ways. We have for example:

additive plurality: The title and the purport are ...

plurality in disjunction: The title or subtitles are ...

multiplicative plurality: The titles are

collective plurality: The crew are ...

The main problem is one of anticipation. Although these examples are all plural, the

nominal groups are grammatically different. For example, the first is plural because the

nominal group is an additive complex while the third is a plural simple nominal group.

From a grammatical point of view, it is thus hard to anticipate how plurality will be

achieved in the nominal group.

It is important to emphasize that the "agreement" between Subject and Finite is a

clause phenomenon. Its existence and characteristics are interpretable in terms of the

mood organization of the clause, Mood (Subject, Finite) -- cf. Section 4.2. However, the

fact that its existence is a clause phenomenon does not entail that the various person

and number values necessarily have to be anticipated in the clause.

Towards a solution of the agreement problem. Instead of trying to anticipate

the different kinds of nominal group plurality in the clause, it seems preferable to adopt

a solution like the following:

27

q~~~ N*,%WV "-

1. Specify in a realization statement in the clause that Subject and Finite are
the same in person and number, but do not anticipate the various possible
values.

2. Let the values be determined across constituents so that the nominal group
choices of person and number values (Subject) determine verbal group
choices (Finite).

This possible solution seems like an obvious approach. The point here is that it

requires new "realization machinery". For the first step, we need to be able to state the

identity, say:

Finite: [PERSON = PERSON (Subject)]

which means that the PERSON system in the verbal group realizing Finite has the

same value as the PERSON system in the nominal group realizing Subject. For the

second step, we need to allow the choice of a feature in one system to be made

according to the choice of a feature in another system. In other words, we have to

allow the method of choosing -- not the particular feature value -- to be predetermined

in this case.

This procedure does not exist in Nigel at present. However, something similar is

supported by Functional Unification Grammar; see Kasper's paper in this report.

Clearly, there are other possible solutions to the "agreement problem". For instance,

instead of having the grammar ensure agreement through some kind of realization

statement, we can rely on semantic/conceptual consistency and make the person-

number choices twice -- once for the Subject nominal group and once for the Finite

constituent. Agreement will then obtain simply because the two sets of choices will be

guided by the same information. For example, the referent of the Subject of King

Arthur and his knights are valiant, 'King Arthur and his knights', will determine both

the person and number of the nominal group complex King Arthur and his knight's

and the form of the finite verb are. This is the kind of approach to "agreement" used

in Nigel at present.

28

"N N: K "

Whatever solution is adopted to solve the agreement problem, there is a high value to

the kind of approach to inter-rank communication supported by FUG and discussed by

Kasper. One reason for this is that agreement is one specific instance of a more general

phenomenon, viz., a different kind of structuring (prosodic structuring) that is difficult

to accommodate with the present set of (Nigel's) realization operators.

3.8 Summary of constraints on structuring operators

The following is a review of the most important restrictions on the realization

operators Insert, Expand, and Order:

1. Actual: The application of an operator leads to an actual result, not a
potential one. There is no way of stating 'potentially
inserted/ordered/expanded but not actually [in this case]'.

2. Domain: The operators only operate within the domain of the structure of
one unit (such as clause structure, nominal group structure, etc.) and within
the rank of that unit (clause rank, group rank, etc.).

3. Compact functions: Furthermore, the operators operate on functions as
discrete objects, without presupposing any internal organization of these
functions; there is no overlap, fusion, or partial merger of functions. In
particular, there is no realization operator "Include" for inclusion
statements.

4. Complex operands: Except for the operators Expand and Preselect, the
realization operators do not allow complex operands. For example, only
Process / Predicator is a possible realization statement, Process / (Predicator
& Adjunct) is not.

Up to now, I have only examined a few representational problems, viz., implicit

functions, discontinuity, and agreement, and I will now turn to a more general

characterization of representational problems.

4 MODES OF MEANING AND MODES OF STRUCTURE:

CHARACTERIZATION OF REPRESENTATIONAL PROBLEMS

Pike (1959) and Halliday (1979) have pointed to the existence of different modes of

linguistic organization. Pike suggests that we can look at a linguistic phenomenon as

field, particle or wave. These different perspectives are complementary and bring out

different properties.

29

Halliday's point is different from Pike's but ultimately related (see Halliday 1979). He

identifies four modes of meaning, and suggests that four different modes of grammatical

organization correspond to these four different semantic modes. The modes correlate

with the different metafunctions:

experiential -- constituency

interpersonal -- prosody

textual-- pulse

logical -- interdependency (chain)

These modes represent four different principles of structuring, i.e. prosodic

structuring, and so on. In a function structure, two or more modes may exist in parallel

through metafunctional layering. This happens in the clause, which is characterized by

layers of transitivity constituency, mood prosody, and theme pulse.

The tools used in representing grammatical structure are well suited only to the

constituency mode of organization, and this gives us a basis for looking at

representational problems as related in particular to the other modes.

4.1 Constituency

I will start with the mode of organization our grammar is good at, viz., constituency.

Constituency is the grammar's mode for organizing experiential meaning: our

experience is organized grammatically in constituency terms. For example, a process

composite/configuration is decomposed into constituent parts such as the process itself,

the participants involved in it, and the attendant cirumstances (transitivity). A

participant is usually an object, and is further decomposed grammatically as a thing

and classifiers, epithets, and qualifiers (modification).

Our common notion of grammatical structure fits this mode of organization quite well;

we speak of grammatical constituents and draw tree diagrams. More specifically, the

30

6 1. , ;•~ ,- , - ~ q'w . w'q "q

realization operators discussed in Section 3 are constituency oriented. The structuring

operators (Insert, Expand, and Order) create constituency, while the layering and rank

operators rely on constituency.

1. Insert specifies the presence of a function as a constituent of a grammatical
unit.

2. Expand explicitly creates a constituency relation between two functions.

3. Order operates on functionally defined constituents (of the same unit).

4. Conflate creates an identity relation between two constituent functions; the
result is a constituent function bundle.

5. Preselect does not create constituency itself, since it specifies a constraint on
how to realize a function, but it presupposes the re-expression of a
constituent function of one unit (e.g., the Agent of a clause) as the structure
of another unit (e.g., Epithet ^Thing of a nominal group). In other words,
preselection is in terms of the overall constituency organization.

The functions themselves are (labels of) constituents. For example, (i) they are

segmental in nature; no function can stretch over more than one segment unless it

stands in a constituency relation to other functions (through the application of the

Expand operator). (Hi) They are clearly bounded segments of a categorical nature; there

is no gradience (cline).

The use of the operators is summarized diagrammatically in Figure 12 to bring out

their creation of, or reliance on, constituency.

Each constituent in an experiential layer of structure has a. unique value in relation to

the whole; the organization is multivariate. For example, a transitivity structure is

organized into functions such as Senser Process Phenomenon Manner Locative. Since

constituency is the experiential mode of structuring, experiential realization statements

are usually well accommodated by multivariate constituency organization. For example,

if a mental clause is metaphenomenal, there is a preselection stated in terms of one of

the multivariate functions, the Phenomenon: "Phenomenon: noun-clause". If a clause

is an unmarked intensive ascriptive one, the Process is constrained to be 'be' and the

31

structuring

I~Mood!

layering Expand

Insert
Subject Finite

/ '..OrderJ

Conflate

rank
Preselect

nominal group

Figure 12: Realization operators and constituency

Attribute is a group with either a nominal or an adjectival head. Default orderings are

also stated in terms of the multivariate constituent values. For example, we can state

(Process Manner Locative), which means 'Process precedes Manner which precedes

Locative'.

In contrast, realization statements other than those deriving from the experiential

32

metafunction are not as easily accomodated by multivariate constituency. For example,

logical realizations are stated more naturally in terms of (univariate) interdependency

than in terms of constituency: see Section 4.4 below.

The observation that the experiential mode of organization is (multivariate)

constituency does not mean that there are no problematic cases. Linguists have

sometimes felt a need to interpret structures as fusions/mergers and to leave constituent

status indeterminate; such interpretations are outside the scope of Nigel's present set of

realization operators.

4.2 Prosody

Agreement is an example of a mode of organization different from constituency; I

would suggest it is what Halliday calls prosodic. It is the organization of grammatical

structure, not as constituent segments, but as prosodies. If it is stated in terms of

constituency, it typically has to be characterized as running across more than one

constituent just as e.g., nasality may run across several phonological segments.

Agreement is a case in point. It is, as already suggested, a mood characteristic rather

than a Subject property or a Finite property per se, since it runs across these two

constituents.

Prosodic organization includes:

mood number & person (agreement)

moodtag

polarity

reflexivization

key

Moodtag. Mood number & person and moodtag are closely related. If a moodtag is

present, as in You are coming out tonight, aren't you?, the person and number

selections run through both the mood and the moodtag. This prosody is represented

diagrammatically in Figure 13.

33

% . ". %" " . . " .

You are coming out tonight, aren't you?

Figure 13: Mood and moodtag - number & person prosody

The existing realization operators cannot achieve more formally what is represented

diagrammatically in Figure 13. Features can only be manipulated as segments

associated with constituent functions; they cannot be introduced as prosodies.

Polarity. Polarity is similar: it is interpersonal in that it represents the speaker's

denial or affirmation, agreement or disagreement, command or prohibition, etc. with

respect to a proposition/proposal (cf. also Givon (1979: chapter on Negation)).

Structurally, it is often not locatable in any one particular place. In "non-standard"

English it is often realized wherever possible; the particular transitivity value does not

matter:
I ain't never had no trouble with none of 'em

(from Labov (1970)

"Standard" English is of course quite similar in this respect. The difference is that

the pattern is not not ... never no none as in the example above but rather not ... ever

34

any any with so-called non-assertive polarity items following not. The prosodic

character remains; the "non-assertive" forms are typically used wherever possible.

Diagrammatically, the polarity prosody can be represented in the same way as the mood

person & number prosody; see Figure 14.

ain't never had no trouble with none of 'em
haven't ever had any trouble with any of them

Figure 14: Polarity prosody

Just as before, there is no formal representation of the prosody, no realization

operator that can be used. And just as before, this is to be expected since the

realization operators are constituency-oriented rather than prosody-oriented.

Reflexivization. Reflexivization also seems to work as a prosody. Whenever

appropriate, a constituent following the Subject of a clause is marked for identity of
reference: -

Henry talked about himself to himself often in those days of intense
loneliness

The particular value in the transitivity structure of the constituent reflexivized (Goal,

Actor, Recipient, etc.) does not matter; what matters is whether the reflexive prosody

35

runs through it or niot, and whether it can expound the reflexive prosody or not. Again,

the formal problems in a treatment of reflexivization can be predicted from its prosodic

nature. There is no easy way to use the Preselect operator to achieve reflexivization

wherever appropriate.

Key. Key is perhaps more obviously realized prosodically than the other regions since

it is realized by tone; cf. for example Halliday (1979).

Representation of prosody by constituency: Expand. The representational

problems with prosodic organization are brought out when we try to capture the

prosodies in constituency terms. Halliday has introduced a constituency interpretation

of the clause as an interpersonal unit (the clause as exchange/interaction). This is the

Mood ^Residue structuring. Mood consists of Subject and Finite and Residue is, in

principle, the rest (Predicator, Complements, and Adjuncts). These constituents can be

used in stating the domains of the interpersonal prosodies, the domains of person &

number, polarity, etc. This possibility is illustrated in the two diagrams of Figure

Figure 15, first for the example from Figure 14 and then for an example also involving

reflexivization.

The features 'speaker', 'reflexive', and 'non-assertive' have been associated with the

Mood and Residue functions, not with the functions that are directly realized by groups

(Adjunct, Complement, etc.), to indicate their domains in constituency terms. (I use

the feature 'non-assertive' in the way it is used by Quirk et al. I intend it to be taken

only as a short-hand approximation.)

This approach could be a constituency solution to the problem of representing

grammatical prosodies. However, there is no formal correlate of the diagram cast in

terms of realization operators. Presently, the Preselect operator can only be used to-

associate a feature with a grammatical function that is directly realized by the

grammar. Both Mood and Residue are further expanded rather than directly realized.

Furthermore, the diagram presupposes that a knowledgeable procedure of feature

distribution will be activated where appropriate. For example, the feature 'non-

36

717

(a) haven't ever had any trouble with any of them

Subj. Finite: Adjunct Pred. Complement
negative

Mood Residue:
non-assertive

(b) I haven't ever asked myself any hard questions

Subj. Finite: Adjunct Pred. Complement Complement
negative

Mood: Residue:
speaker reflexive, non-assertive

Figure 15: Prosodic organization and constituency

assertive' should only be applied to adverbial and nominal groups that realize functions

expanding Residue. The feature 'reflexive' would not behave like other features. It

really means something like "check to see whether the nominal group is coreferential

with the Subject; if it is, choose 'reflexive' in that group". And just as with the feature
'non-assertive', there is the issue of appropriate applicability.

37

---- O -- --- N% '

4.3 Pulse

Halliday (1985) argues that the discontinuity in They called the meeting off arises for

textual reasons. In information structure, the function New is assigned to the process of

the clause in an unmarked way, which means that it should be the last open-class

lexical item of the clause. If there is a complement, this can be achieved by "splitting"

a phrasal verb, thereby creating discontinuity. The assignment of New is one of two

kinds of textual prominence that affect the clause. It is a culminative kind of

prominence (cf. Halliday (1979; 1985)), while the other is thematic prominence. Both

may lead to representational problems:

Culminative prominence: split Subject

split Complement

split Process

Thematic prominence: thematic Minor complement (in prep. phrase)

thematic participant from projected clause

thematic Qualifier of symbolic Thing

Culminative prominence. The representational problem with the first type,

culminative prominence, is essentially associated with discontinuity: a mood or

transitivity constituent is split into two parts, one of which appears later than the

other, presumably as unmarked New. (Interestingly, the part that is sequentially

"delayed" in this way can usually be interpreted as a 0 in a logical structure.) The

problem was illustrated above with a split Process. Here are some examples of the other

types:

Anyone is a fool who tries to Dat an alligator

I'll give anyone ten dollars who can help me find my cat

Questions remained about less fortunate enemies of the Marcos
regime (Time)

38
," -.

The attempt was made to find a practical way to solve the problem
without Zoin into its theoretical depths (Tillich)

I call a person bad who lies and cheats and is unkind (Maugham)

(Some of these examples may involve grammatical metaphor. For example, the last

example can perhaps be related to I call a person bad 11 if he lies and cheats and is

unkind.)

Thematic prominence. The second type, thematic prominence, may lead to

problems quite similar to those of the first type: an element is a constituent of one unit

under one interpretation (usually transitivity or modification structure) and a

constituent of another unit under a textual interpretation, more specifically as Theme.

For example, this house is the Minirange of the prepositional phrase realizing the

circumstance Locative (a transitivity function in the clause) and it is the Theme of the

clause in which it appears initially:

This house we lived in for ten years

The constituency problem is diagrammed in Figure 16 (the~sign indicates the non-

thematic position of the Minirange).

Notice that the constituency problem of the example is not an experiential one.

Rather, the conflict arises as the two metafunctions, the textual and the experiential,

are mapped onto one another through Theme selection. Textually, this house is a

constituent of the clause, but experientially, it is a constituent of the prepositional

phrase. (This kind of structure is very common in wh-clauses, of course, where the wh-

item is the unmarked Theme: Which house did you live in?)

Why does the textual metafunction not "respect" the constituency organization

created by the experiential metafunction? There are at least two related answers. One

answer is that we simply have two different constituent structurings, the textual

(Theme-Rheme) and the experiential (transitivity and minor transitivity); and that

although they are normally in phase with one another, there are situations where the

39

clause: Theme Rheme

Locative

prep. phr.: @Minirange Minirange @

This house we lived in for ten years

Figure 16: Theme and marked constituency

two structuring principles are out of phase with one another. This answer goes some

way towards describing the situation in a principled way and it certainly seems better

than merely observing that a constituent has been dislocated.

The second answer goes beyond distinguishing two distinct constituency principles. It

says that the textual principle of structuring is not really a constituency one, but has a

different character. I will call this kind of structure a pulse, because textual prominence

can be thought of as a pulse that ripples through the experiential structure. Halliday

calls this kind of structure periodic. The notion can be compared to Pike's wave.

There are at least three important reasons for the pulse or wave interpretation:

1. The pulse (wave) is periodic, with phases of prominence and phases of non-
prominence. (There are in fact two pulses: the thematic pulse and the
information pulse.)

2. The pulse (wave) is characterized by gradual transitions rather than sharp
constituency boundaries.

40

'II 11 10 1 110 1

3. The pulse (wave) is dynamic, running across the constituency hierarchy.

The third point in particular explains why textual structuring does not respect the

hierarchic organization created by the experiential metafunction. Note that the theme

pulse characterizes only clauses, not groups and phrases. Or rather, the pulse is built

into the nominal and verbal group structures realized sequentially with a deictic-finite

starting point (see Halliday (1985)), but there is no choice. The textual metafunction

does not generate a constituency hierarchy of themes in the way the experiential

metafunction generates a constituency hierarchy of phenomena decomposed into

processes, participants, and circumstances, and then e.g., participants in their turn

decomposed into things, epithets, and so on.

To represent textual structure graphically, Halliday uses a diminuendo-crescendo

diagram. Consider the following example with multiple themes:
In two or more years, both in London to which he went for the last part of

the season and to pay a round of country house visits in the early autumn,
and in Paris, where he had settled down, he knew everyone whom a young
American could know.

(Maugham)

The multiple themes can be represented graphically as follows (skipping part of the

example to accomodate it in the figure); see Figure 17.

Representation of pulse by constituency: Expand. The thematic pulse affects

interpersonal and experiential functions and it can be represented as if it were a

constituent function expanded by the functions it affects. We have to treat the non-

discrete pulse as if it were a discrete constituent Theme, finding a thematic boundary

somewhere (see Halliday (1985: chapter 3)). In addition, we have to give up on

representing the dynamic nature of the pulse and its disregard for experiential

constituency. The expand operator can be used, Theme (Place) and Theme (Time),

giving the following structure; see Figure 18.

41 1
"MO

In two years or more, both in London ... and in Paris ... he knew...

Time Place Senser Process

Theme

Figure 17: Thematic diminuendo part of the textual pulse -- graphic
representation

In two years or more, both in London ... and in Paris ... he knew...

Time hem Place Senser Process

Theme

9

Figure 18: Representation of thematic pulse by constituency

42

- -.~ ".~" ~ 'N&
Nkl

4.4 Interdependency (chain)

The logical metafunction generates interdependency or chain structures; for a general

discussion, see Martin (1986). When a logical element of structure is inserted, it is

inserted as interdependent on the previous logical element and not as a constituent of

some whole. The structure is thus like a chain. Each new link is defined in relation to

the previous link. In principle, this is the structuring that characterizes complexes of

units rather than simplex units: Tom, Dick, and Harry as opposed to Tom; I went to

Joe's Place and had a steak as opposed to I went to Joe's Place. In particular, clause

complexes and prepositional phrase complexes have interdependency structures, but

clauses and prepositional phrasts do not. Groups can, however, be interpreted as

having interdependency structures (see Halliday (1985: ch. 6)). The structure of the

nominal group complex Tom, Dick, and Harry can be diagrammed as follows in Figure

19.

Tom, Dick, and Harry

1 2 3

11

Figure 19: Graphic representation of interdependency structure I[

The functions in the interdependency structure do not have unique constituency

values. Instead, the functions are values in a logical ordering such as 1 2 3 4; the value

of each function is determined by its logical ordering. Tom is 1 because it is the first"''

coordinate, Dick is 2 because it is the second coordinate, and Harry is 3 because it is

the third coordinate.

The general representational problem with interdependency structures is that there are
VIO

43

I &PO , e *

currently no realization operators that can be used to specify them. In Figure 1, I used

x -> y to mean 'Insert y as interdependent on x', but there is no formal interpretation

of it. The Insert operator discussed in Section 3.3.1 cannot be used to insert a logical

function, since it inserts a function as a constituent of some unit and not as

interdependent on another function. Examples of interdependency structures include

Clause complexes: clause coordination, etc.

Nominal group complexes, etc.

Modification in nominal groups

Tense in verbal groups.

As already mentioned in Section 4.1, realization statements deriving from the logical

metafunction are easier to state in terms of interdependency than in terms of

constituency. Experiential realization statements make reference to (multivariate)

functions with unique values in relation to the whole. Logical realization statements

make reference to (univariate) functions whose values reflect their logical ordering in

interdependency. I will discuss clause tense and coordination only.

Tense. As an example of tense structure, I will take the verbal group '11 have been

going to be being tested from Halliday's example below (Halliday (1976: 145)):
Can I use that machine when I come in at this time tomorrow?

No -- it's going to be being tested. I

It'll have been going to be being tested every day for a fortnight soon.

The logical structure given to the verbal group includes tense and voice auxiliaries as

follows in Figure 20. (The structure is a dependency structure and the letters of the -

Greek alphabet are used to represent the logical functions; the structure is Figure 19 is

a paratactic one. The difference is discussed in Halliday (1985: Chapter 7).) NO
Realization statements have to specify the sequence of the functions of the verbal

TI have been going to be being tested

Figure 20: Logical interdependency structure of verbal 6,roup

group and they have to specify the inflectional forms. Both specifications are stated

most naturally in terms of the dependency ordering. (i) A dependent function follows

the function it is dependent on: 68 follows alpha, and so on. (Hi) The inflectional form of

the verb realizing a dependent function is determined by the realization of the function

it is dependent on: have (#) determines the past participial form of been going to(y)

(For a thorough discussion of dependency and auxiliary order, see Schachter (1981).)

Clause coordination. Coordination is similar to tense in respect to what realization

statements need to refer to. The sequence of coordinated clauses reflects the order in

which they are coordinated. Furthermore structural ellipsis is determined by

interdependency relations. For example, Subject ellipsis works forwards in the

interdependency structure (progressive ellipsis) while Complement ellipsis works

backwards (regressive ellipsis). Both kinds of ellipsis make reference to direction in the

interdependency structure, not to constituency. Furthermore, progressive ellipsis of

Subject, for example, can continue for as long as the interdependency chain continues.

It is also worth noting that structural markers such as and and or are specified by

reference to the ordering of the chain, before the last link. In this respect, they contrast

with both case marking and marking by preposition.

~% % % * ~ ~ ~ 5. %VV ~ .5*. . ~ " ., .

5 MODES OF MEANING AND MODES OF CHOICE

The main point of the previous section is that different kinds of meaning (experiential,

interpersonal, textual, and logical) are associated with different kinds of structure

(constituence, prosody, pulse, and interdependence). This enables us to characterize the

representational problems pertaining to realization operators in a principled way: the

operators are constituency-oriented, and other kinds of structure will cause various

types of problems for them. Although we can represent prosodies, pulses, and

interdependencies diagrammatically, there are at present no realization operators that

can introduce and operate on prosodies, pulses, and interdependencies. For example,

insertion means insertion as a constituent in the structure of a unit; there is no insertion

operator for interdependents (no 'insert x as interdependent on y').

The presentation so far has focused on problems in structural representation.

However, I think that the different modes of meaning are reflected not only in the

syntagmatic organization (defined by the realization operators) but also in the

paradigmatic organization, i.e., in the network of systems.

The experiential mode of meaning leads to multivariate constituency structures. The

systemic organization is similar: systems have unique multivariate feature values and

are ordered hierarchically in delicacy. The other metafunctions raise representational

issues. This is true particularly of logical and textual systems. I will look at them in

that order. (I will not discuss interpersonal systems and the representation of

interpersonal clines and prosodic features.)

5.1 Logical: recursive systems

Logical systems have long been recognized as having special status. The

representational problem that arises from this special status was mentioned in Section 2

and I will return to it now. Logical systems are assumed to be (linearly) recursive. The

recursion is represented by a loop back to the entry condition in the system, as in

Figure 1.

Problem, systemic recursion. Henrici's (1966) diagnosis of the problem with

46

W
m

wu

-

recursive systems has already been quoted (Section 2). They cannot be represented

formally in the same way as "conventional systems". The output of the system also

provides an input to it (the loop in Figure 1). Systemic features are distinguished by

their names, and since the feature complex in the system in Figure 1 can be chosen

more than once, there is a naming problem. It is not clear how the feature chosen the

first time is distinct from the feature when it is chosen the second time, and so on.

This is related to Henrici's remarks about partial ordering. Moreover, how is a

realization statement to be applied recursively when a system is entered more than

once?

Towards a solution. One approach towards a solution is in terms of the type-token

distinction. We can think of a system as a system type. Each time it is entered a

system is instantiated as a token of the type. For conventional systems, there would

only be one token per pass through the grammar, but recursive systems would allow

multiple tokens. These tokens would have to be ordered by a counter so that each %I

token has a unique place in the ordering: token 1, token 2, token 3, and so on. (Note

that this approach appeals to the generation algorithm for traversing the system

network. If we see the logical resources as essentially dynamic rather than static, the

appeal to the generation algorithm follows naturally. For the distinction between

dynamic and static systems, cf. Martin (1985).)

In this approach, the difference between multivariate and univariate is the difference I
between instantiations of multiple types and multiple instantiations of the same type.

For example, in the multivariate structure Actor Process Goal Recipient (I gave the

report to Henry), the participants are inserted by realization statements associated with

three different systems. In the univariate structure 1 2 3 [and] 4 (Tom, Dick, Harry,

and Henry), the coordinates are inserted by the same system in successive instantiations

of it.

47

% % e.. e

5.2 Textual: variable/dynamic systems

Textual structure can be characterized as a pulse or a wave. Is there a systemic

correlate, a system pulse comparable to the structure pulse? Arguably there is, if the

pulse is interpreted as dynamic/variable in nature: a possible correlate is a

dynamic/variable system.

As an example, consider theme selection. The issue here is how to represent the

resources of thematization. What are the thematization options? For example, what

are the experiential theme options from the transitivity of a clause? The answer

depends on transitivity choices (e.g., is the clause middle or effective, benefactive or

non-benefactive, ranged or non-ranged?); on related circumstantial choices (e.g., is there

a Locative, a Cause, a Manner, etc.?); and also on voice choices (e.g., is the Agent or the

Medium the Subject and thus the unmarked Theme candidate?).

The theme potential varies with the transitivity choices. It can be characterized, at

least informally, as a (set of) dynamic/variable system(s). For example, in a middle

(non-ranged) clause, there is only one participant Theme candidate, the Medium; in an

effective (agentive) clause, there are two, the Medium and the Agent; and in a

benefactive clause, there are three, the Medium, the Agent, and the Beneficiary.

Similarly, there are as many circumstantial Theme candidates in a clause as there are

circumstances.

The notion of a dynamic or variable system is merely a way of thinking about a

problem like theme selection; it is not a solution. It raises the issue of process-oriented

accounts mentioned in Section 1. It does not seem unreasonable that some systems are

inherently dynamic rather than static, particularly systems deriving from the textual

metafunction, i.e., the enabling metafunction concerned with the process of meaning

itself.

48

%~ %\

6 CONCLUSION: LOOKING FOR SOLUTIONS

I have discussed various problems of representation and mentioned a few possible

solutions. I have tried to diagnose the problems in terms of the four different

metafunctional modes of organization, suggesting specific problems associated with each

of the non-constituency modes.

There are, of course, problems in lexicogrammatical representation not discussed in

this paper. They include: theme predication, ellipsis; grammatical metaphor, play on

the system; and the accomodation of certain lexical information (e.g., collocation, and

lexical functions), lexical items not corresponding to grammatical constituents, lexical

items at ranks above word rank, and so on. These problems are not caused simply by

non-constituency modes of organization, as are the problems I have focused on in the

paper, but they can also be explained in principled ways. For example, one significant

set of problems is caused by re-representation within the linguistic system itself. The

set includes textual organization re-represented as identifying relational transitivity

organization (theme predication and theme nominalization), as well as grammatical

metaphor in general, where e.g., one transitivity structure is re-represented by another

transitivity structure (see Halliday (1985: Chapter 10)).

Where can we find solutions? If we take natural language as a model for our

metalanguage, our "language" of representation, two of the methods for expanding the

potential that suggest themselves are metaphor and borrowing.

(i) Metaphor. The prevailing metaphor is in a sense the source of the problems

discussed in this paper. It is the constituency metaphor: treat all modes of structuring

as if they were constituency. For example, as I showed in Section 4.2 (Representation of

prosody by consituency), a prosody running across constituents can be represented as if

it were a function expanded by these constituents and a pulse can also be represented as

if it were a function expanded by the functions affected by the pulse (Section 4.3:

Representation of pulse by constituency). U
(ii) Borrowing. We may borrow from other systemic "dialects": problems for Nigel

49

J~~ ~ r % 1k-.X

may not be problems for Fawcett's and Hudson's grammars, for example. We may also

borrow resources from other grammatical frameworks to represent aspects of systemic

theory. Some frameworks are typologically too far away from the systemic one; we are

not likely to find much of any use to us in transformational grammar. Other

frameworks are typologically much closer and in some cases there is a long tradition of

exchange, e.g., stratificational linguistics. One kind of representation close enough to be

of considerable interest is Kay's Functional Unification Grammar. I have not explored

it in this paper, but have pointed to places where a FUG treatment is developed in

Kasper's paper in this volume. Finally, we may borrow representational resources from

other disciplines which have strong notions of e.g., processes and non-constituency

organizations.

50 .

Qm
APPENDIX: REPRESENTATIONAL CONVENTIONS

[i] System network

[a] The MOOD type system has the entry condition (input features) clause and the

terms (output features) indicative vs. imperative. If clause has been chosen, either

indicative or imperative is chosen.

indicative

MOOD
clause

TYPE

imperative

fbj The [DECLARATIVE] SUBJECT PRESUMPTION system has the entry condition

(the input features) declarative and speaker and the terms (output features) implicit vs.

explicit. If the features declarative and speaker have been chosen, either implicit or

explicit is chosen.

implicit

declarative SUBJ.

Sexplicit

rspeaker
51

[c] The MOOD TAG system has the entry condition (input features) declarative or

imperative and the terms (output features) tag.ed vs. untaged. If the feature

declarative or imperative has been chosen, either taged or untagged is chosen.

declarative
tagged

imperative untagged

(d] The CLAUSE COMPLEXITY system has the entry condition (input features)

clause or complex and the terms (output features) simplex vs. complex. If the feature

complex is chosen, the entry condition of the system has been satisfied again. This is a

so-called recursive system.

clause --simplex

CLAUSU
CLAUSE

52

1 -I

[III Realisation statements

Name of operator Description

(Insert Subject) +Subject Function inserted as
constituent of the structure
of the unit being specified

(Withhold Subject) *Subject Function that is present by
default is withheld from the
function structure [Discussed,
but not implemented
in Nigel]

(Depend 1 2) 1 -> 2 Function 2 inserted as
interdependent on function 1
[Used as an illustration,
but not implemented
in Nigel]

(Order Subject Finite) Subject^Finite One function
ordered to precede
another function

(Include Goal Process) Process <Goal> One function is included
within another function

[Sometimes used in
systemics, but not
implemented in Nigel]

(Expand Mood Finite) Mood (Finite) One function is expanded
to have another function
as constituent

(Conflate Subject Subject/Agent One function is conflated
Agent) with another function

to form part of the same
constituent function bundle

(Preselect Subject Subject: A function is preselected for
singular) singular a feature; the realization of

the function is constrained to
display that feature

53

. .F

BIBLIOGRAPHY

1. Allerton, D. J., Carney, E., and Holdcroft, D. (eds.). 1979. Function and
Context in Linguistic Analysis: Essays Offered to William Haas.
Cambridge University Press.

2. Appelt, D. 1983. TELEGRAM: A grammar formalism for language planning.
In Proceedings of the lst Annual Meeting of the Association for
Computational Linguistics.

3. Bateman, J. 1985. A Systemic Grammar of Japanese. MS, Kyoto University.

4. Benson, J. D., and Greaves, W. S. (eds.). 1985. Systemic Perspectives on
Discourse, Volume 1. Ablex Publishing Corporation.

5. Benson, J. D., and Greaves, W. S. (eds.). To appear. Systemic Functional
Approaches to Discourse. Ablex Publishing Corporation.

6. Davey, A. 1978. Discourse Production. Edinburgh University Press.

7. Fawcett, R. P. 1980. Cognitive Linguistics and Social Interaction. Julius
Groos Verlag Heidelberg and Exeter University.

8. Fawcett, R. P. 1984. System networks, codes, and knowledge of the universe.
In Fawcett, Halliday, Lamb, and Makkai (eds.).

9. Fawcett, R. P., Halliday, M. A. K., Lamb, S. M., and Makkai, A. 1984. The
Semiotics of Culture and Language. Volume 2: Language and other
Semiotic Systems of Culture. Frances Pinter (Publishers).

10. Fawcett, R. P. 1986. What makes a 'good' system network good? -- Four
pairs of concepts for such evaluations. To appear in Benson and Greaves
(eds.).

11. Givon, T. 1979. Understanding Grammar. Academic Press.

12. Halliday, M. A. K. 1961. Categories of the theory of grammar. Word, 17:3.

13. Halliday, M. A. K. 1965. Types of structure. In Halliday and Martin (eds.).

14. Halliday, M. A. K. 1966. The English verbal group. Reprinted in Halliday
(1976).

54

15. Halliday, M. A. K. 1976. Halliday: System and Function in Language.
Selected papers edited by G. Kress. Oxford University Press.

16. Halliday, M. A. K. 1979. Modes of meaning and modes of expression: Types
of grammatical structure, and their determination by different semantic
functions. In Allerton et al. (eds.).

17. Halliday, M. A. K. 1985. A Short Introduction to Functional Grammar.
Edward and Arnold.

18. Halliday, M. A. K., and Hasan, R. 1985. Language, context, and text:
Aspects of language in a social-semiotic perspective. Deakin University.

19. Halliday, M. A. K., and Martin, J. R. 1983. Readings in Systemic
Linguistics. Batsford.

20. Henrici, A. 1966. Some notes on the systemic generation of a paradigm of
the English clause. In Halliday and Martin (eds.).

21. Hudson, R. A. 1971. English Complex Sentences: An Introduction to
Systemic Grammar. North Holland.

22. Kay, M. 1979. Functional grammar. In Proceedings of the 5th Annual
Meeting of the Berkeley Linguistic Society.

23. Labov, W. 1970. Negative attraction and negative concord. In Labov,
Language in the Inner City: Studies in the Black English Vernacular. The
University of Pennsylvania Press, Inc.

24. McCord, M. C. 1975. On the form of a systemic grammar. Journal of
Linguistics, 11.

25. McKeown, K. 1982. The TEXT system for natural language generation: An
overview. In Proceedings of the 20th Annual Meeting of the Association
for Computational Linguistics.

26. McKeown, K. 1985. Text Generation. Using Discourse Strategies and Focus
Constraints to Generate Natural Language Text. Cambridge University
Press.

27. Mann, W. C. 1983. A linguistic overview of the Nigel text generation
grammar. In The Tenth LACUS Forum.

28. Mann, W. C., and Matthiessen, C. 1984. The Nigel realization operators.
Network 7.

55N
Jr1

-~~ VV1i - N(~~~~1i

29. Mann, W. C., and Matthiessen, C. 1985. A demonstration of the Nigel text
generation computer program. In Benson and Greaves (eds.).

30. Martin, J. R. 1985. Process and text: Two aspects of human semiosis. In
Benson and Greaves (eds.).

31. Martin, J. R. 1986. Recursive systems in English: Towards a functional
interpretation. MS, Department of Linguistics, Sydney University. To
appear in Benson and Greaves (eds.).

32. Matthiessen, C. 1985. The systemic framework in text generation: Nigel. In
Benson and Greaves (eds.).

33. Matthiessen, C. 1983. Systemic grammar in computation: The Nigel case. In
Proceedings of the First Conference of the European Chapter of the
Association for Computational Linguistics.

34. Parret, H. 1074. Discussing Language. Mouton.

35. Pike, K. L. 1959. Language as particle, wave, and field. The Texas
Quarterly, 2:2.37-54.

36. Quirk, R., Greenbaum, S., Leech, G., and Svartrik, G. 1972. A Grammar
of Contemporary English. Longman.

37. Schachter, P. 1081. Explaining Auxiliary Order. Indiana University
Linguistics Club.

56

hA,

Systemic Grammar and
Functional Unification Grammar

Robert Kasper
USC / Information Sciences Institute

1 Background

As this paper is being presented in the context of a workshop on systemic linguistics, it
will assume some familiarity with systemic grammar. No familiarity with computer science
or Functional Unification Grammar will be assumed. This section provides a historical
perspective to what follows.

Functional Unification Grammar (FUG) was first formulated by Kay (1979) as a creative
method for experimentation in computational linguistics. It is a framework that represents
a grammar in a form that is simultaneously readable by linguists and suitable for use
by computer programs that generate or analyze text. Unlike many previous grammatical
formalisms, which required a different representation for analysis than for generation, FUG
is intended to be neutral in this respect.1 In earlier work, FUG was also called Functional
Grammar or Unification Grammar.

The notation of PUG looks very different from that of Systemic Functional Gram-
mar (SFG); but if we look beyond the differences of format, we find that PUG and SFG
make many of the same assumptions about language and grammar. The similarities are
due, in part, to the fact that when Martin Kay (1979) formulated PUG he was responding
to many of Michael Halliday's ideas.

Both PUG and SFG organize a grammatical description around feature choices, stress-
ing the paradigmatic aspects of language structure. Structural realizations are stated as
consequences of these feature choices. Both represent the function of constituents explicitly
in addition to the position of constituents in a sequence. Both provide a means for multi-
functional description, making possible the expression of textual and interpersonal roles in
addition to ideational roles.

Given these similarities, I was led to consider PUG as a promising tool for constructing
an analysis program based on systemic grammar.2 A more careful investigation has shown
that it is possible to represent most of a systemic grammar in PUG without any significant
loss of clarity. Some natural extensions to the PUG framework handle the residue (see
Section 4.3). Such rerepresentation of a grammar is motivated by Halliday's idea (1964)
that the form of notation used to express a grammar should suit the task for which it is to
be used. PUG notation is especially well suited to the task of computational processing.
If we are able to represent SPG in PUG, then we have at our disposal the computational
tools that have already been developed for PUG.

'Any modifications to the generation grammar that are needed for the computational analysis program
should be performed automatically by the program, as explained in (Kay, 1985).

2 Bill Mann originally suggested that FUG might be an appropriate tool for this purpoee.

1

* I'd N ~%

The grammar being used for the study is Nigel (Mann & Matthiessen, 1985), a large
grammar of English that is the result of a collective effort with significant contributions by
several systemic linguists. This grammar has been used as part of a computer program for
text generation, but there has previously been no program for text analysis.

Section 2 provides an introduction to the basic concepts of FUG. Section 3 demonstrates
how the systems of the Nigel grammar can be represented in FUG notation. Section 4
explains some of the differences between FUG and SFG. Section 5 shows how the FUG
framework provides some potential solutions to problems in systemic notation. Section 6
describes a computational analysis program, which uses the FUG representation of the Nigel
grammar, and indicates some of its uses.

2 The Ingredients of FUG

This section is a brief introduction to FUG. For a more thorough treatment the reader is
referred to Kay's work (Kay 1979, 1985).

2.1 Functional Descriptions

In FUG each linguistic object is represented by a functional description (hereafter abbrevi-
ated as FD). FDs contain lists of attributes, each composed of a label/value pair. Figure 1
shows a simple FD, which contains three attributes, with the labels Rank, PrimaryClass,
and Animacy. An equal sign (=) is used to separate the attribute label, which appears on
the left, from the value, which appears on the right. The order of attributes in a description
is not usually significant.

FDs are also called feature structures in the computational linguistics literature. In this
paper the features of an FD will be called attributes, in order to distinguish them from the
features of systemic grammar.

FDs can be used to represent linguistic objects of any size, such as words, phrases,
clauses, and even grammars. Each value in Figure I is a simple atomic symbol. An atom
is a string of characters defining a value that is not further decomposed. Note that the
case of the letters used in atoms can be significant. Thus, AGENT and agent would be
regarded as different symbols. The values of attributes may also be FDs, allowing one FD
to be embedded inside others. Figure 2 shows how embedded descriptions may be used to
describe groups that are constituents of a clause. The FD of Figure I is used as the value
of the AGENT attribute in the clause description. Since an FD may contain values that
are themselves instantiated by FDs, a functional description can be viewed as a hierarchy
of label/value pairs.

Rank = Group ~PrimaryClass -- Nominal

Animacy = Animate J

Figure 1: A simple functional description

2

% %e %

Rank = Clause
Rank = Group

AGENT = PrimaryClass = Nominal
Animacy = Animate

Rank = Group
PROCESS = PrimaryClass = Verbal

Agency = Effective

Figure 2: Embedded Functional Descriptions

2.2 Unification

Unification is an operation that combines two FDs, reconciling them into a single structure.
The result of unification is an FD that contains all attributes of both of the original de-
scriptions provided that they are compatible. The criteria of compatibility depend on the
type of value. Simple atomic values are compatible only when they are identical. Values
instantiated by complex FDs are compatible when all of their attributes are compatible.
If a particular attribute is present in both FDs, then its values from both FDs are uni-
fled. Those attributes which are present only in one of the FDs are retained in the result.
Thus, unification is a recursive process, terminating when all embedded attributes have
been unified. If any of the attributes fail to unify, then the entire unification is a failure.

For example, Figure 5 is the FD that results from the unification of the FDa in Fig-
urea 3 and 4. The attributes having labels Rank and PrimaryClass appear in both FDs and
they are compatible, because they have the same atomic value. The remaining attributes
of each FD do not appear in the other, so they are simply copied into the result.

2.3 Paths

Paths are expressions that refer to the values of particular attributes in a FD. A path is
composed of a sequence of labels enclosed in angle brackets. The value denoted by a path
is found by a recursive procedure that extracts the value of its first attribute label, and
applies the remainder of the path to that value.

Let us illustrate this procedure by considering the value of the path <AGENT Rank>
when it is applied to the FD of Figure 2. First, we locate the value of the attribute of the
FD that has the label, AGENT, identical to the first label of the path. The value of this
attribute is itself a FD composed of three attributes. Next, we use the second label of the
path, Rank, to locate one of these attributes, Rank = Group, and extract its value. Thus,
the path refers to the value Group.

In general, each label of the path is used to locate attributes of successively embedded
FDs. When the last label of the path has been used to locate an attribute, the value of
that attribute is taken to be the value denoted by the path. If any of the labels of the path
cannot be found in the FD, then the path has the special value NIL.

A path may be used within the description of a grammar as the value of another attribute
in order to indicate the unification of two attributes. For example, in the FD of Figure 6,
the path <AGENT> is used as the value of the SUBJECT attribute. This signifies that
the value of the SUBJECT attribute is to be unified with value of the AGENT attribute.

3

M111.1 1 11 jN

rRank = Group
AGENT = PrimaryClass = Nominal

Animacy = Animate

Figure 3: FD for AGENT.IRank =Group
PrimaryClass = Nominal

SUBJECT =Number = Singular
person = 3
Lax = John

Figure 4: FD for SUBJECT.

[Rank = Group

Pr mrClass = Nominal

AGENT =SUBJECT = Animacy =Animate

Number =Singular

IPerson =3
Lox = John

Figure 5: Unification of AGENT and SUBJECT.

Rank = Clause
[Rank = Group iIAGENT =PrimaryClass = Nominal
IAnimacy = Animate

SUBJECT = <AGENT>J

Figure 6: FD containing a path as the value of an attribute.

4

2.4 Patterns

A special type of attribute, which has the label pattern, describes how a function is realized
by its constituents. Patterns specify the ordering of constituents with respect to each other.
Pattern values contain a list of elements enclosed by parentheses. An element of a pattern
may be the label of an attribute, which stands for a constituent function, or a special symbol
(ellipsis) that indicates that any number of constituents may intervene in the pattern at
that point.

For example, the pattern shown in Figure 7 specifies that SUBJECT and PROCESS are
constituents of the clause represented by this FE), that SUBJECT is ordered immediately
before PROCESS, and that any number of other constituents may come before SUBJECT
or after PROCESS. More complicated patterns are possible, but the details will be omitted
here.

2.5 Disjunctions

FDs may also contain disjunctions, which represent sets of alternative descriptions. The
alternatives of a disjunction are surrounded by curly braces (i.e., {})in the most common
notation, as shown by the value A in Figure 8. When the disjunctive value, A, is unified
with another value, B (also shown in Figure 8), at least one of the alternatives of A must be
compatible with B in order for the unification to be successful. If two or more alternatives
are compatible with B, then the result of the unification is a disjunction containing the result
of unifying B with each compatible alternative. Only one alternative of A is compatible
with C. In this case, the result is a non-disjunctive value formed by unifying C with that
alternative.

2.6 Representing a Grammar

We now have enough basic ingredients to state how a grammar can be represented by an
FD. For each unit described by the grammar (such as a clause or group), the grammar
will contain a FD giving its attributes. In general, this FD will be quite large, containing
alternatives for all possible values of each attribute. In systemic terms, each attribute
corresponds to the description of a feature or a function. An attribute that describes a
feature usually has an atomic value. An attribute that describes a function usually has a
complex FD as a value, giving the attributes of the constituent which realizes the function.
By representing all possible alternative values for each attribute, an FD can be written to
express the grammatical potential of a language, in a way analogous to a system network.

Rank = Clause
pattern = (... SUBJECT PROCESS ...)

SUBJECT- [Rank =Group1
IPrimaryClass = NominalJ

PROCSS - Rank = Group * 1
PROCSS = PrimaryClass = Verbal

Figure 7: FD containing a pattern attribute.

5

Anumber singular number = singular number pluralperson=1 person=2 p

Br number = singular]

form = unmarkedJ number = singular] Fnumber = singular]
A = B = person = 1 person = 2

form = unmarked form = unmarked JJ
C number = plural

I form = unmaked

form = unmarked

Figure 8: Unification with Disjunctive Values

3 Representing Systemic Grammar in FUG

This section demonstrates by example how systemic grammar can be translated into the
notation of FUG. Figure 9 shows the feature choices for two systems (MoodType and Indica-
tiveType) from the clause network of the Nigel grammar. Figure 10 shows the translation
of these systems into FUG notation.

3.1 Systems and Feature Choices

Each systemic choice is encoded by a disjunction that expresses the alternatives of the
system. Each alternative of the disjunction contains an attribute with one of the systemic
features that can be chosen in that system as its value. The system name is used as the
label of that attribute. Notice that the symbol ':=' is used (in place of '=') to designate all
attributes that correspond to systemic features. The reason for this notation is explained
in Section 4.3.

The alternatives may also contain consequences of choosing a particular feature, includ-
ing realizations and the representation of other systems that may be entered when that
feature is chosen. Thus, delicacy can be expressed in FUG by embedding. The Indica-
tiveType system is entered when the Indicative feature is chosen in the MoodType system,
and it is represented by a FD embedded within the description of MoodType.

U

3.2 Realization

Figures 11 and 12 add the realization components of these two systems. This section
explains the representation in FUG notation of five common systemic realization operators:
insertion, preselection, classify, order, and conflation.

Insertion is indicated in FUG by a pattern containing the name of the inserted function.
For example, when the Imperative feature is chosen, the NONFINITIVE function is inserted.
This pattern states that the function must be present as a constituent of the clause, but it
does not place any constraint on how NONFINITIVE may be ordered with respect to other
constituents of the clause.

Jow Kw, 111% SU

Imperative

lause MOOD Declarative

RANK LIndicative INDICATIVE

TYPE
Interrogative

Figure 9: The MoodType and IndicativeType Systems

Rank = Clause1
MoodType := Imperative]
MoodType := Indicative1

[IndicativeType: Declarative 1
IndicativeType := Interrgtv

Figure 10: The MoodlType and IndicativeType Systems in FUG

Imperative
+NONFINITIVE

omase MOOD NONFINITIVE!StemDelrtv
SUBJECT A FINITE

-Indicativ INDICATIVE
+SUBJECT TP
+FINITE -nergtv
SUBJECT:NominativeInergtv

Figure 11: MoodType and IndicativeType Realizations

Rank = Clause[MoodType :=Imperative1
pattern = (... NONFINITIVE ...)
NONFINITIVE =[Form =Stem
MoodType := Indicative
pattern = (... SUBJECT ...)
pattern = ... FINITE ...)

SBJECT = [Came =Nominative]

I IndicativeType :=Declarative1

pattern = ... SUBJECT FINITE ...)
Indicativellype Interrogative] J

Figure 12: MoodType and IndicativeType Realizations in FUG

7

41 Il I li11 1dr w w r;or or

M , zf) M l2-0IN

Preselection is translated into FUG by specifying an FD for the given function. This
FD constrains one attribute of the function so that it must have the value of the preselected
feature. For example, when Indicative is chosen, the SUBJECT of the clause is preselected
to have the Nominative feature. In Figure 12, the attribute labeled by SUBJECT has a
value that is an FD containing the statement Case = Nominative. The label, Case, is
taken from the name of the system that selects the feature, Nominative, in the grammar
for nominal groups.

ClaUssify, the operator in Nigel that preselects lexical features, is translated by the
same method as preselection, as shown by the classification of NONFINITIVE as a Stem.
There is no formal distinction between lexical features and grammatical features in FUG,
so preselection and classification are represented in exactly the same way. This is as things
would be if Nigel used a fully systemic lexicon.

Order is translated into FUG by a pattern that contains the names of the functions in
the required order. For example, when the Declarative feature is chosen, an ordering relation
is specified requiring SUBJECT to immediately precede FINITE. The dots on either side of
these functions are necessary, because this ordering relation does not specify any constraint
on what may occur to the left of SUBJECT or to the right of FINITE.

Conflation is encoded precisely by unification. When two functions are conflated, they
become identified as a single function bundle sharing all properties of both functions. The
same kind of identification is the result of unifying two FDs, as illustrated in Figure 5. This
unification corresponds to the conflation of AGENT with SUBJECT. A single FD is created
to represent the value of both functions.

Table 1 summarizes how the realization operators of SFG can be translated into FUG.
Different types of ordering can be expressed as different pattern configurations, as shown
in Table 2.

During a first experiment, approximately 80 systems from the clause rank of the Nigel
grammar were translated into FUG. Subsequently, a program was implemented to auto-
matically translate any system network into a functional description. This program verifies
the effectiveness of the method outlined here for translating a system network into FUG
notation. In practice, it is convenient to translate each rank of a grammar into a separate
FD.

Translating the information of individual systems presented very few problems. The
most significant problems have been encountered in making sure that the dependencies
between different systems are adequately expressed. The methods used in solving these
problems are described in section 4.3.

4 How FUG Differs from Systemic Grammar

4.1 Purpose

The primary difference between FUG and SFG is one of purpose. FUG is a method for
representing grammars so that they may be used by computational tools, while SFG em-
bodies a particular theoretical model of language. FUG allows a great deal of flexibility;
it can easily encode many different types of grammatical information as attributes, since
attributes may contain as much information and embedded structure as needed. By leaving
many options open in this way, the FUG framework by itself does not attempt to serve
as a complete theory of language. Rather, FUG is a vehicle for expressing grammatical
information in a way suitable for use by a variety of computational processes. FUG and

8
8 A

--
%

SFG realisation FUG description
Insert + SUBJECT pattern = (... SUBJECT...)

Preselect SUBJECT: Nominative SUBJECT = [Case - Nominative]
ClassIy FINITE I Singular FINITE = [Number = Singular]

Lexify FINITE = has FINITE = [Lex = has!
Conflate SUBJECT / AGENT SUBJECT = <AGENT>

Table 1: Summary of FUG equivalents for SFG Realization Operators.

REALIZATION OPERATOR FUG PATTERN
Order SUBJECT A FINITE (... SUBJECT FINITE ...)

Partition FINITE I POLARITY ... FINITE ... POLARITY ...)

OrderAtront $-THEME (THEME...)
OrderAtEnd TOPICAL-$ (... TOPICAL)

Table 2: Realization Operators for order expressed in FUG.

closely related models (e.g., PATR-H, described by Shieber, 1984) have been used to repre-
sent grammars originating from several linguistic traditions, including Systemic Grammar,
Generalized Phrase Structure Grammar and Lexical Functional Grammar.

4.2 Notational Differences

Some superficial differences of notation exist between systemic grammar and its encoding
in FUG. The most notable differences are:

1. System names are used as attribute labels, whenever a systemic feature is used
as a value in an FD, as noted in Section 3. This use of system names is redundant
in systemic grammar, because the normal practice is to give a unique name to every
feature in the grammar. In FUG the same value might appear with many different
attributes, so it is necessary to specify a label. There is no such thing as an unlabeled
feature in FUG.

2. Order operators are expressed as pattern configurations, as shown in Table 2.
The patterns of FUG provide a general framework for describing order constraints.
Several alternative methods have been developed as a means of using these patterns
in actual computer programs. I use the pattern notation here because of its clarity; I
will not elaborate on the specific details of how patterns are handled computationally.

3. Encoding of Features and Functions. Features and functions are both encoded
by the values of attributes in FUG. A feature is encoded by an atomic value, and a
function is encoded by a value that is an FD, specifying the attributes of the con-
stituent that realizes the function. The attributes corresponding to functions can be
precisely identified by their occurrence in constituent patterns. Note that as a matter
of convention, the labels for attributes corresponding to systemic functions are written
in upper case.

These differences stem from the generality of FUG as a representation for grammatical
information.

9

4.3 Extensions to FUG Motivated by SFG

The translation of systemic grammar into FUG has suggested two extensions to the FUG
framework:

1. designating attribtes that correspond to systemic features,

2. distinguishing selection conditions that correspond to complex input conditions of
systems.

The first extension was already illustrated in the examples of Section 3. The second exten-
sion will be introduced later in section 4.3.2.

4.3.1 Designated attributes for systemic features

The attributes corresponding to systemic features are designated by using the ':=' notation
for unification in place of the usual '=' notation. This special designation is necessary to
insure that all of the dependencies between different systemic features are enforced. For
example, consider the IndicativeType system in the network of Figure 11. Both of the
following implications are intended for this network.

1. If a clause has the feature Indicative, then it must also have exactly one of the features
from the IndicativeType system (either Declarative or Interrogative).

2. If a clause has one of the features from the Indicative Type system (either Declarative
or Interogative), then it must also have the feature Indicative.

Now consider the FUG representation of this network, which is shown in Figure 12.
If the attributes corresponding to the systemic features were not designated with the ':='
notation, only the first of the two implications would hold. It would be possible to unify
a FD containing the attribute IndicativeType = Declarative with the alternative of the
grammar that contains MoodTye = Imperative, because there is no attribute with the
label IndicativeType in that alternative. Remember that when two FDs are unified, any
attributes present in only one of the FDs are simply copied to the resulting FD.

A two-way dependency exists between the features of these two systems, but only
one of the ways is encoded in the FUG representation. Only some of the attributes
in a FD should have this kind of two-way dependency. For instance, the attribute
pattern = (... SUBJECT FINITE ...) does not imply MoodType = Indicative, although
it occurs in the same alternative with the attribute Indicativenpe = Declarative. It is not
possible to reliably determine which attributes of a FD should have the two-way dependency,
unless those attributes are explicitly marked in some way.

By giving a special designation to the attributes that correspond to systemic features it
is possible to enforce both of the desired implications. The following interpretation is given
to designated attributes. The presence of an attribute with the ':=' notation implies that
any disjunctive FD that contains this attribute must have a valid alternative that contains
this attribute. Therefore, the presence of a designated attribute (i.e., IndicativeType) also
implies that all other such designated attributes in the surrounding portions of the descrip-
tion (i.e., MoodType) must have the value (i.e., Indicative) that is given in the alternative
containing this attribute (IndicativeType). Usually at most one attribute of each alterna-
tive of a disjunctive FD will be marked as a designated attribute, and this attribute will
correspond to a systemic feature.

10

V .-

4.3.2 Distinguishing selection conditions for complex input conditions of sys-
tems

Martin Kay's formulation of FUG [Kay79] provides a natural way to express the dependen-
cies between systems by embedded FDs. For example, the system IndicativeType has input
condition Indicative and Indicative is a feature chosen in the system MoodType. In FUG,
the FD corresponding to the IndicativeType system is embedded within the alternative of
MoodType where Indicative is chosen. The method of embedding, combined with desig-
nated attributes, works well for simple input conditions, but it does not provide a solution
for input conditions made up from complex boolean expressions.

Consider, as an example, the DoingType system from Nigel, shown in Figure 13. Its
input condition is the conjunction of two features. One way to express this input condition
in FUG is to use a disjunction having two alternatives, as shown in Figure 14. One al-
ternative corresponds to what happens when the DoingType system is entered. The other
alternative corresponds to what happens when the DoingType system is not entered. The
alternative containing the DoingType system also includes the attributes of the input con-
dition. The other alternative includes the attributes of the negated input condition. Notice
that the input condition and its negation must both be stated explicitly, unlike in sys-
ternic notation.5 This method of encoding input conditions also requires a computational
treatment of negated attributes. Although such a treatment of negation is possible, it can
increase the complexity of unification (see Karttunen, 1984).

It should not be necessary to state the negated input condition explicitly, since it can'%
always be derived automatically from the unnegated condition. It is also rather inefficient
to mix the attributes of the input condition with the other attributes of the system. The
attributes of the input condition contain exactly the information that is needed to choose
between the two alternatives of the disjunction (i.e., to choose whether the system is entered
or not). Therefore, it would be more efficient and less verbose to have a notation in which
the attributes of the input condition are distinguished from the other attributes of the
system, and in which those attributes only need to be stated once.

In order to handle complex input conditions we have developed an extension to FUG
that uses the input condition as a selection condition on alternatives of a disjunctive FD.
This selection condition is expressed as an FD, but it is a description that has a new kind
of interpretation in the context of the entire grammar. When the condition is satisfiable
(i.e., when all of its attributes can be unified with the values specified for them) then
an alternative containing the FD corresponding to the system is chosen. Otherwise, an
alternative that does not contain the FD of the system is chosen. This second alternative
may be omitted in many cases. The use of a selection condition for the DoingType system
is illustrated in Figure 15. The FD of the selection condition appears to the left of the -*

symbol, and the FD to be used when the selection condition is satisfiable appears to its
right.

4.3.3 Summary of extensions

The two extensions described here may have a rather general application. In both cases
there is a way of encoding the same information in terms of standard unification, but it

"If the negation of the input condition were not included in the alternative that does not include the

description of the system, it would be possible to use this alternative even when the input condition for the
system holds. Thus the description of the system would not be used when it should be.

MIS =Y.MA A

-Ceative

Elebctive - DOING PROCESS:Creative

DuROCispsiiv

Figure 13: The DoingType System

Rank =Clause

SAgency = Effective
Procm"Type = MaterialEDoingType Creative]

PROCESS [[Type = Creative fFDoingType Dispositive
PROCESS [[Type = DispositiveJj
Agency = NOT Effective] }I
ProcessType = NOT MaterialIDoingType :=none]

Figure 14: Doing7Iype system in FUG, using disjunction and negation.

[Rank =ClauseDoingType: Creative1]
Agecy Efectve ROCSS [Type = Dieaptive]

[ey =EecveRCES [Tp Ceav] = Material DoingType DispositiveJ

Figure 15: DoingType system in FUG, simplified by using a selection condition.

12

requires at least doubling the amount of information which encodes that information in the
systemic description. Therefore, by adding these extensions, we have not changed what FUG
can do, but we have developed a representation that is more perspicuous, less verbose, and
computationally more efficient. It appears that these mechanisms may be useful additions
to the FUG framework, even when it is not used to directly model a systemic grammar.
They suggest that a general treatment of logical implication between FDs might be useful
in FUG. One of the most inefficient aspects of the standard unification procedure is the
selection of alternatives in disjunctions. The selection condition provides a way of singling
out attributes that may be particularly significant in making a selection, so that those
attributes can be examined before attempting to unify the rest of the attributes.

Two factors in this study have led to the need for these extensions. The first is, quite
naturally, the particular ways in which features are organized in a systemic description.
The second is the size of the grammar. Most previous work with FUG has concentrated on
the representation of particular phenomena occuring in natural language, but few, if any,
attempts have been made to use FUG for a large grammar (i.e., one which approximates
an entire language). These extensions may not be important for small grammars, but they
seem to become crucial as the size of the grammar grows.

5 Solutions to Problems in Systemic Notation

Matthiessen (in the first part of this report) indicates several problems in developing a more
formal algebraic account for phenomena that have been described by systemic linguists. As
mentioned in Section 4, FUG offers some flexibility, and this flexibility might be used to
augment systemic notation. Here, two of the problems presented by Matthiessen will be
addressed: discontinuous constituents and feature propagation.

5.1 Discontinuous Constituents

The problem of discontinuity arises when the constituents that realize a particular function
are not sequentially continuous. Matthiessen has indicated that it would be desirable to have
a method of simultaneously representing functional continuity and sequential discontinuity.
FUG provides such a method, since there is no stipulation that a FD must represent a
sequentially continuous unit.

A common type of discontinuity is a split process in a clause, as exemplified by They
called the meeting off. Figure 16 shows the desired analysis for this clause according to
Matthiessen. 4 Figure 17 shows how this analysis can be represented in FUG.

In the FUG representation, a discontinuous constituent (PROCESS) of a CLAUSE
contains two subconstituents (PREDICATOR and ADJUNCT), each of which is continuous.
Each subconstituent is functionally a part of the PROCESS constituent, but sequentially
ordered with respect to other constituents of the CLAUSE, as specified in the pattern,

(... PREDICATOR COMPLEMENT ADJUNCT ...).
The FUG description accounts for both transitivity structure and mood structure. The

information about transitivity structure is contained in the description of the PROCESS

attribute, and the information about mood structure is contained in the PREDICATOR and

'The analysis is adapted from Halliday (1985, p. 186).

13%

OW '. *.P,10 '. 'e

They called the fleeting Off

Moodtiit [AGENT PRO MEDIUM I-CESS

Mo SUBJECT PREDICATOR COMPLEMENT ADJUNCT

Figure 16: Desired Analysis of Split Process

CLAUSE GRAMMAR contains:

Rank = Clanse
pattern = ... PREDICATOR COMPLEMENT ADJUNCT-..)

rProcessType = Material1
PROCESS m= PRDCTOR = Class = Verb]

I ADJUNCT = [Clam -Adverb]
PREDICATOR = <PROCESS PREDICATOR>
ADJUNCT = <PROCESS ADJUNCT>I[PrimaryTense = Past 1

FINITE = [Form = Past
PrimaryTense = Present]

PrimaryTense = Future]

[SecondaryTense = none - FINITE =< PREDICATOR>]

LEXICON contains: [ProcessType =Material 1
'call off" Predicator [lex =canl

Adjunct = [lex = off J

'f* Class =Adverb

'o lex = off J

Figure 17: FUG Description of Split Process

141

ADJUNCT attributes. In general, FUG is able to handle almost any sort of multifunctional
description.

The description also shows how the choice of particular features in the clause grammar
adds attributes selectively to the realization of particular subconstituents. When the clause
is declarative and the tense is simple (there is no secondary tense), then FINITE is conflated
with PREDICATOR. Thus the inflectional form is added to PREDICATOR, but not added
to ADJUNCT, although they both function as part of PROCESS.

This solution to the problem of discontinuous constituents also indicates a method for
describing compound lezical items, or lexical items realized by phrasal units. The lexical
item for the compound unit ceall-off has separate attributes for each of the simple lexical
items, ceall and off. When call-off is selected as the realization of PROCESS, its FD is
unified with the FD of PROCESS in the clause grammar. As a part of this unification, the
attributes for PREDICATOR and ADJUNCT are automatically supplied with appropriate
lexical realizations.5

5.2 Feature Propagation

Common systemic notation provides one way to specify features that must be selected
for a constituent function: preselection. There is no way to specify that two constituents
must have some features in common without preselecting those features independently for
each constituent. In other words, there is only one type of feature propagation between
constituents, the top-down propagation specified by preselection. Because unification is a
method for specifying when particular attributes must share the same value, it can be used
to produce the effect of more general feature propagation.

An example of feature propagation between different constituents of the same rank is
agreement. It will be illustrated here by agreement between the subject and finite verb of
a clause. At clause rank we would like to specify simply that the finite verb has the same
features of person and number as the subject. This relation should hold independently of
the particular method that is used to select those features for the subject. A solution of
this problem in terms of FUG is shown in Figure 18.

In this solution all attributes that must agree are grouped into a single FD, which is

labeled Agr. For English, the Agr attribute would include the features for person and
number with the alternatives:

Agr =[Person = {I 2 3)
Number = {singular plural}

In other languages, agreement might include attributes for gender or case. With this group-
ing, it is possible to specify agreement at clause rank simultaneously for all of the appropriate
attributes.

The grammar of the nominal group specifies the criteria for choosing the values of the
agreement attributes, and these values are unified with the Agr attribute for the group. For
simplex nominal groups, the Agr attribute of the group has exactly the same values as the
THING function of the group, as indicated by the unification, THING = [Agr = <Agr>].
The path <Agr> denotes the value of the Agr attribute for the entire FD of the nominal

'For an analysis program it Is necessary to provide a more detailed description, so that the composite
lexical Item call-off can be recognised. One way to do this is to have a sens of the word ceall that requires it
to be a part of a compound lexical item that contains the adjunct off. Other senses of call would not require
an adjunct. The design of a phrasal lexicon involves many issues that go beyond the scope of this paper.

15

CLAUSE GRAMMAR contains:

Rank =Clas1

<FINITE Agir> = <SUBJECT Agr>
SUBJECT = [Rank = NounGroup J

NOMINAL GROUP GRAMMAR contains:

Rank = NounGroupEComplexity = Simplex 1
THING = [Agr = <Agr>
Complexity = Complex

ComplexType = Addition 1--Agr = [Number = Plural][ComplexType = Alternation]jj

Figure 18: FUG Description of Agreement.

group. For complex nominal groups of the additive type, the Agr attribute for the nominal
group will have the value [Number = Plural].

When a nominal group realizes the SUBJECT function of a clause, these same values
will also be added to the Agr attribute for FINITE, because the paths <FINITE Agr> and
<SUBJECT Agr> are unified in the clause grammar. Thus the FINITE function must be
realized by a constituent having an Apr attribute that is compatible with the Agr attribute
of the SUBJECT.

The solution provided should be applicable to many different types of agreement phe-
nomena. For example, agreement in tag questions could also be handled using the same
method. Similar techniques could be used to describe other prosodic phenomena.

These two examples show that translation to FUG can provide a more formal elaboration
of ideas that have already been developed informally in systemic theory. Several other
notational problems also appear to have a reasonable solution in terms of FUG. For instance,
other kinds of interaction acros cycles of the grammar are also possible. FUG allows the
ranks of systemic grammar to be encoded, using an FD for each rank. However, there
are no restrictions on the interdependencies that can be created between ranks, since the
framework allows any two attributes of any two FD's to be unified (provided they are
compatible).

161

UZI !jll - .INfS1 '1 -1

6 A Grammatical Analysis Program U
The grammatical analysis program,6 which has been under experimental development at
USC/ISI, performs the following tasks:

1. segments a sentence into its constituents,

2. assigns functions to each constituent,

3. determines the set of systemic features chosen at each rank (produces a selection
expression).

The first two steps represent syntagmatic analysis, and the last step represents paradigmatic
analysis. These steps are not necessarily performed in the order given above, rather they
are usually performed in an interleaved fashion. Usually particular features need to be
recognized before assigning a function to a constituent, and the properties of a function
may lead to the determination of additional features.

6.1 How the program works

The type of analysis program most often used with FUG is called a chart parser. A good
description of how a chart parser works can be found in Winograd's text (Winograd, 1983,
pp. 116 - 127). A brief summary is all that can be included here.

A chart is a kind of bookkeeping mechanism, which stores all the information that is
known about constituents that have been recognized. It contains vertices representing points
in the sentence, and edges representing constituents (and partially recognized constituents).
The vertices are placed between the words of the sentence, and are labeled with indices,
beginning with the index 0 to the left of the first word and ending with the index n after
the nt h word. Each edge connects a pair of vertices and represents a constituent that is
composed of the words between those vertices. When a chart is used for FUG, the edges
also contain FDs for the constituents that they represent.

The program begins to construct the chart by inserting an edge corresponding to each
word of the sentence. A lexicon contains an FD for each sense of a word. These FDs contain
attributes for the lexical features of the word. An edge containing a FD for the nth word
would have a starting vertex n - 1 and an ending vertex n. The FD for a word is thus made
available to the parser, as it attempts to build larger constituents. In order to build the FD
for a constituent, edges from the chart are matched with the descriptions of functions in
the grammar. This matching is accomplished by unifying the FD of an edge with the FD
for a function. The functions are selected from the grammar, so that they match edges in
an order that is consistent with the pattern attributes of the grammar.

The program proceeds (in a bottom-up manner), recognizing groups first, and creating
a FD for each group. The FD for each group is then unified with the FD's for functions
in the clause grammar. This is the sequence that would be followed for simple clauses.
A different sequence would be followed to recognize constructions that result from rank
shifting. For example, when a clause occurs as a constituent of a group, then the program
would first build an FD for the clause and then unify this FD with the FD for the function
of the group that has the attribute Rank = Clause in its description.

eThe program extends the PATRII system, which has been developed by Shieber et al. at SRI Interns- %
tional (Shleber, 1984).

17

Provided with a method for interpreting the constituent patterns,7 the chart parsing
algorithm and the unification algorithm specify all the work necessary for grammatical
analysis of FUG. The chart parsing algorithm determines a strategy for selecting a particular
FD from the grammar and the FD for some constituent that has already been recognized.
Then, the unification algorithm determines whether these two FDs match, and builds a
more complete FD if they can be unified. When the process builds an FD of clause rank
covering the entire sentence, then a complete analysis for the sentence has been formed.

6.2 Potential Uses of the Program

The resources offered by a computational analysis program based on systemic functional
grammar include:

1. a grammar testing and research tool,

2. text analysis in bulk quantities,

3. a functional approach to natural language processing.

6.2.1 Gramar testing and research tool

Using a grammar in a computational environment requires a degree of precision that may
not be necessary in descriptions written for human consumption. It forces the linguist to
develop an explicit interpretation of its statements where intuition is replaced by rigour. The
grammar becomes more accurate as inconsistencies are detected by a computer program
that does not know what the linguist has in mind. A computational program can also
reveal examples that are given an analysis other than what was intended by the linguist.
The computer cannot correct most mistakes, but it can locate areas of the grammar that
need more attention.

I am not proposing that a computer program can replace linguistic intuition, rather that
it can help verify and refine linguistic descriptions. It can provide an answer to the question,
"Does this system network really work?" When a network gets large it becomes practically
impossible for any person to enumerate all possible combinations of feature choices. It may
even take a long time for a computer to do this, but computers do not get tired as people
do.

This type of analysis program allows a linguist to study aspects of a grammar that have
been previously inaccesible. It opens up the possibility of validating the grammar with a
much larger body of data than can be done by an individual linguist. Such grammar testing

7In order to recognize constituents In an efficient manner, the patterns in an FD must be compiled into an
appropriate form. There is a considerable variety of techniques from computer science that can be applied
to this task. Kay (1985) gives one method for compiling the patterns into augmented transition networks.
Another method involves using a set of phrase structure rules to represent the patterns. This is the method
used in the PATR-H parser. The phrase structure rules are used as a processing technique, but they are not
significant In the final descriptions produced by the parser.

Using the PATR-II parser, it Is not necessary to convert every pattern into explicit phrase structure rules.
Some of the patterns may be converted into statements about attributes that mark the start and end of each
constituent, corresponding to its endpoints in the chart. For example, in order to encode the pattern (1)
the unification (2) can be used.

(... SUBJ FINITE ...) (1)
< SUBJ end > = < FINITE start > (2)

18
-E

can provide information about the following areas which are described below: coverage,
delicacy, consistency, ambiguity, and recoverability.

Coverage: Can the grammar recognize "x"?

The program detects sentences which should be recognized, but which the current
expression of the grammar does not include.

Delicacy: Is the set of features adequate for describing "x"?

A superficial grammar will have no features to distinguish sentences that should be
given different interpretations. For example, is the position of an adverbial group
in a clause functionally significant, or arbitrary? By enumerating the features that
are actually assigned to a particular clause by the grammar, an analysis program
may show that a feature has been assigned incorrectly, or it may become clear that a
feature is missing. Automatic analysis allows an examination of the consequences of
treating such variations as either accidental or purposeful.

Consistency: Can all lines of analysis be reconciled?

One of the strengths of systemic grammar is its multifunctional description of lan-
guage. While desirable, multifunctionality makes it hard to determine whether the
grammar is consistent. It is important to know whether the analyses given by the
different metafunctions are compatible with each other. If there are incompatibilities,
the analysis program will not be able to form a unified description, and it will show
some attribute(s) that fail to unify.

Another type of inconsistency can result from the large number of systems in a gram-
mar. The systems are, in general, highly interdependent, so it is not always easy to
grasp what effects a change in one system will have on the grammar as a whole. The
computational analysis of specific sentences brings out cases where the features of one
system do not match the expectations of another.

Ambiguity: How many alternative analyses does the grammar produce for "x"?

It is common for an untested grammar to produce many alternative analyses for some
sentences. Only some of these alternatives may be intended by the grammar writer.
For example, a fragment of the Nigel grammar produced two analyses for the subject
of the clause "Norman is running."

1. SUBJECT = MEDIUM = "Norman"

2. SUBJECT = RANGE = "Norman'

Clearly, only the first interpretation is correct, but the fragment of the grammar
that was being tested did not contain enough information to eliminate the second
interpretation. The program helps detect such unintended analyses.

Recoverability: Which grammatical functions can be determined for "x"?

Some grammatical functions can be determined only from the context in which a
sentence is used. Using the analysis program, it is possible to see which functions
cannot be recovered by the grammar. By isolating the difficult cases, it is easier to
decide whether the grammar needs to be refined to make better use of the information
that it has, or whether the disambiguating information must be found in the extra-
sentential context.

19

V. 4n.W

6.2.2 Text analysis In bulk quantities

The idea of developing an automated corpus for language studies has interest for many
scholars, including some systemic linguists. A program that uses an explicit representation
of a grammar offers a qualitative difference from previous work (e.g., syntactic tagging) by
developing a more complete account of grammatical features, structures and functions.

6.2.3 Functional approach to natural language processing

In any computer application that requires simulating some degree of understanding human
language (e.g., as a method of extracting information from a large database), it is necessary
to determine the functions of each constituent in a sequence. Many programs accomplish
this task using a limited grammar for specific patterns that occur most often, but it is
difficult to extend these grammars to new domains of discourse. A program that has the
capability of using any systemic grammar as a basis for language analysis would be able
to provide a more general and comprehensive account of grammatical functions than most
programs that are currently used for natural language processing.

7 Conclusions

We have shown some ways in which rerepresentation and computational analysis can be used
as a testbed for refinement of a systemic grammar. The rerepresentation in the notation
of FUG shows that systemic grammars can be made formally explicit, and it is a way
of extending the computational techniques that may be applied with the grammar from
sentence generation to sentence analysis.

A trial version of the computational analysis program described in Section 6 has been
implemented. This program is still under development. Several refinements are necessary to
improve its efficiency, and make it available for the practical uses that have been mentioned
here.

The comparison of SFG with FUG has indicated some ways in which both frameworks
may be enriched. The task of representing a large systemic grammar in FUG has shown
where some extensions to FUG are necessary, if it is to be used for grammars approxi-
mating those of real human languages. In turn, the solutions to notational problems in
terms of FUG have shown some ways in which systemic notation might be enriched. This
study has been beneficial for both frameworks; the tools of FUG can be used to improve
systemic descriptions by testing and refinement, and applying FUG to systemic grammar
has sharpened it as a tool.

The FUG notation also enables a comparison of systemic grammar with other models
that use feature-based descriptions, and could make the insights of systemic descriptions
available to a wider community of scholars.

Acknowledgements

I would like to acknowledge the role of my colleagues, Bill Mann and Christian Matthiessen,
in making this research possible. They introduced me to the Nigel grammar, and have
provided a stimulating environment for carrying out this research. Many of the ideas devel-
oped in this paper were first formulated during discussions with them. I am also grateful
to Susanna Cumming, Lynn Poulton, Fred Swartz, and Christian Matthiessen for helpful
comments on an earlier draft of this paper.

20

.7

fr~ %%~ Ng

References

[Halliday64] Halliday, M. A. K. Syntax and the consumer. In Report of the 15 th Annual
Roundtable Meeting of Linguistics and Language Study. Washington, D.C.: Georgetown
University Press. Monograph Series on Languages and Linguistics, 1964. (pp. 11 - 25).

[Halliday85] Halliday, M. A. K. An Introduction to Functional Grammar. London: Edward
Arnold, 1985.

[Karttunen84 Karttunen, L. Features and values. In COLING 84: Proceedings of the Tenth
International Conference on Computational Linguistics. Stanford: Association for Com-
putational Linguistics, 1984. (pp. 28 - 33).

[Kay79] Kay, M. Functional grammar. In Proceedings of the Fifth Annual Meeting of the
Berkeley Linguistics Society. Berkeley: Berkeley Linguistics Society, 1979.

[Kay85] Kay, M. Parsing in functional unification grammar. Chap. 7 in Dowty, D., Kartun-
nen L., & Zwicky A. (Eds.). Natural Language Parsing. Cambridge: Cambridge University
Press, 1985.

[Mann & Matthiessen83] Mann, W. C., & Matthiessen, C. Nigel: a s ystemic grammar for
text generation. Marina del Rey: University of Southern California, Information Sciences
Institute (RR-83-105), 1983. Also in Benson, R., & Greaves, J. (Eds.). Systemic Perspec-
tive. on Discourse: Selected Theoretical Papers from the Ninth International Systemics
Workshop. Norwood, NJ: Ablex, 1985.

[Shieber84] Shieber, S. M. The design of a computer language for linguistic information.
In COLING 84: Proceedings of the Tenth International Conference on Computational
Linguistics. Stanford: Association for Computational Linguistics, 1984. (pp. 362 - 366).

[Winograd83] Winograd, T. Language as a Cognitive Process, Volume 1: Syntax. Reading,
Massachusetts: Addison-Wesley, 1983.

21

or e e '4-

%Now Waf

