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W
prit For the problem of selecting the best of several populations using the indifference (preference)
;;::: zone formulation, a natural rule is to select the population yielding the largest sample value of an
"W
,Q.‘e|
L}
3;:;% appropriate statistic. For this approach, it is required that the experimenter specify a number §°,
b
oo say, which is a lower bound on the difference (separation) between the largest and the second largest
:-;.‘
'f." parameter. However, in many real situations, it is hard to assign the value of §* and, therefore,
b
::::' in case that the assumption of indifference zone is violated, the probability of a correct selection
LN cannot be guaranteed to be at least P°, a prespecified value. In this paper, we are concerned
) "1
1K
' j\ with deriving a lower confidence bound for the probability of a correct selection for the general
' i
-
" )' location model F(z - 8,),¢ = 1,...,k. First, we derive simultaneous lower confidence bounds on
an : :
, the differences between the largest (best) and each of the other non-best population parameters.
w0 sma
:‘ ;‘ Based on these, we obtain a lower confidence bound for the probability of a correct selection. The “::::,“
Wy .
_ general result is then applied to the selection of the best mean of k normal populations with both _4
LS L
M,
\f the known and unknown common variances. In the first case one needs a single-stage procedure a
> _ _ o o 0
Y, while in the second case a two-stage procedure is required. Some simulation investigations are ()
N described and their results are provided. =
: - -
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1. Introduction

Let X,;, 3 =1,...,n, be nindependent observations from a population x,, where 7y, 74, ... 74
are independently distributed with continuous cumulative distribution function G(z-6;), 1 <1 < k,
respectively. Let § = (0,,....6:) and let 8(,) < ... < () denote the ordered values of 6,...,0,.
It is assumed that the exact pairing between the ordered parameters and the unordered parameters
18 unknown. The population associated with the largest location parameter 8 ) is called the best
population. Assume that the experimenter is interested in the selection of the best population. For
this purpose, we choose an appropriate statistic Y; = Y (X;;, ..., X;,) with cumulative distribution
function F,(y—0;) and use the natural selection rule that selects the population yielding the largest
Y, as the best population. Let CS (correct selection) denote the event that the best population is

sclected Then, the probability of a correct selection (PCS) applying the natural selection rule is

oo k-1

PQ{CS} ‘—‘/ HFn(y+0(k) = 0(,))dFn(y). (1.1)

T 41

To guarantee the probability of a correct selection, Bechhofer (1954) introduced the indifference

zone approach in which the experimenter is asked to assign a positive value §° such that
0(*)20(*_1) f-é‘. (]2)

Thus, the subspace 2(6°) = {8144y > 8, _1)+ 6"} is called the preference zone and its complement
((8°) ~ {# 0k < Ox_y) + 8°} is the indifference zone. We also let (2 = Q(6°)JQ(&*) On

1(¢°). we have,

> o)
inf  Pp{CS} --/ "Faly « €)% YdF,(y) (13

Beriss) - oo
Suppose that the function on the night-hand-side of (1 3) 15 an increasing function of the commor,
<ample size noand tends to one as notends toanfinity Then for a given probability P22k 1o
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1), the minimum common sample size ng that is required to guarantee the probability of a correct

selection to be at least P* over the preference zone is determined by

no = no(6°, P*) = min{n| /—00 [Fa(y +6°))*"'dFa(y) > P°}. (1.4)

However, in a real situation, it may be hard to assign the value of §* such that () > 0(;_,)+8*
since the parameter values (), 8(,_» are unknown. So that if the above assumption is not satisfied,

then the probability of a correct selection cannot be guaranteed to be at least equal to P*.

Recently, retrospective analyses regarding the PCS have been studied by some authors. Olkin,
Sobel and Tong (1976, 1982) and Gibbons, Olkin and Sobel (1977) have presented estimators of the
PCS. Faltin and McCulloch (1983) have studied the small-sample properties of the Olkin-Sobel-
Tong’s estimator of the PCS for the case when k := 2. Anderson, Bishop and Dudewicz (1977) gave
a lower confidence bound on the PCS in the case of normal populations having a common variance
which is either known or unknown. Kim (1986) presented a lower confidence bound on the PCS for
the case where the underlying probability density function fa(y — 8) of F.(y — 8) has the monotone
likelihood ratio property in y and 8 and studied its application to the case of normal populations

with common known or common unknown variances.

In this paper we are concerned with deriving a lower confidence bound for the probability
of a correct selection for the general location model G(z - 8,), ¢ = 1,. .., k. First, we derive si-
multaneous lower confidence bounds on the differences between the largest (best) and each of the
other non-best population parameters. Based on these, we obtain a lower confidence bound for the
probability ot a correct selection The general result 1s then applied to the selection of the best
mean of k normal populations with both the known and unknown common variances In the first
case une needs a single-stave procedure while in the second case a two-stage procedure 15 required

Some simulation investigations are descnbed and their results are provided
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2. A Lower Confidence Bound on PCS

For given §* and P*, let ny be the minimum common sample size determined by (1.4). Let
Y, = Y(Xi1,...,Xin, ), be an appropriate statistic for inference regarding 6, and let us assume that
the distribution of Y; — 0, is independent of §;, 1 < 1 < k. Let Y|;) < ... < Y}i) denote the order
statistics of Y;, 1 <1 < k. Also, let 8 denote the (unknown) parameter associated with Y}, For

given a, 0 < a < 1, let ¢(k,ng, a) be the value such that

Py{ max (Y, - 8;) - lg]}igk(Y, -0,) < clk,no,a)} =1-a. (2.1)

Yiici<k

Let E = { max (Y; - 8,) - min (Y, — 0;) < c(k,no,a)}. Then, we have the following lemma.
1<e<k 1<5<

k

Lenuna 2.1. £ ¢C {(Y[k] - Y[‘l - c(k,no,a))+ < 0()‘) - 0(,), 1< 1 < k- 1}, where (y)+ =

max(0,y).

Proof: First note that for eachs = 1,...,k,
min(¥},) ~ 81;)) < min(¥y,) - 6y)
= Yy - maxd;,,

<Yy, -0 (2.

[ 2~]
(2]
~—

Thus,

E = { max (Y, - 6,) - lrSn]i;lk(Y, ~8,) < c(k,no,a)}
¢ { max (Y, - 8)) - 1?}2:‘“’“’ - 0p5)) < elk,no, a)}
(Yo 0iny) - 1<'P<?2—1(}"’; - 0,1) < e(k,no,a)}
= {(Yx, - 0)) - 'ﬁg{‘(yn 8,,) < c(k,no,a), 1 <1< k- 1)
{(Yi; - 0x)) (Y, —0,)) < clkonoa), 1 <o < k- 1}by (2.2))

(Y Yoo (kg o) a0 102 k-1

(Vi Yoo clhngal™ <80 4, 1 <v< k1)

2
N
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Note that the last equality follows from the fact that () — (i) 2 0 for all i < ¢ < k- 1. Hence,

we complete the proof of this lemma.

Note that in (1.1), the probability of a correct selection Py{CS} depends on the parameters
§ = (0,...,0:) only via the differences Oy — 0y, 1 £ ¢ < k-~ 1. For convenience, we write
Pg{CS} = P(S,,. .. ,5’;_1) where 5,' = H(k) - 0(,’), 1< ) < k — 1. We see that P(61,...,5k_1) is a

nondecreasing function of §; for each¢ =1,2,..., k- 1.
Foreachi=1,... k~ 1, let

a

b1 = (Y(k) — Yji) — c(k,no, @)™, (2.3)

P =Pr1,...,bLk-1). (2.4)

We propose Py as an estimator of a lower bound of the PCS. We have the following theorem.

Theorem 2.2. Pyp{Py{CS} > PL} > 1 - afor all 002

Proof: By nondecreasing property of P(8,,...,8k_1) with respect to &, 1 <1 < k-1, from (2.1)

and Lemma 2.1, we have, for §(],

l-a= Pg{E}
< PG{SL,i <Oy -0y, 1<i<k-1}
< Py{P(bLr,- - 8Lk—1) < P(61y...,6k-1)}

This completes the proof of this theorem.

3. Selection of the Best Norinal Population in Terms of Means

Let X,,, 1 < j < n be independent observations from N(6,, 0?), ¢ = 1,...,k where the

2

common variance 0° may be either known or unknown. The best population is the one associated

4

.....



;:‘ {c with the largest mean ;). We consider two situations according to whether the common variance

[ o? is known or unknown.

BALS 3.1. Lower Confidence Bound for PCS : ¢? Known Case.

When the value of the common variance o2 is known, for §ef2, the probability of a correct
Yy selection applying the natural selection rule is:

oo k=1

T2+ \f"_"(e";’ @) 4a(z), (3.1)
0 =1

Py{cS} = /

g 2 where ®(-) is the standard normal distribution function, and the value of the sample size ng, for

the indifference zone formulation, is determined by

o no = minfn| [ [8(z + Y2 )¢~ daz) > P, (3:2)

':‘.,i . no
Let X, = ;- 3, X,;. For given 0 < a < 1, choose the value c(k, no, @) such that
A =1
sl J

Pp{ max (Xi - 6:) - min (X; ~0;) < c(k,no,a)} =1 - o (3.3)

- Note that here, c(k,no,a) = —\/%; gf oooWhere ¢p  is the 100(1 — a)%th percentile of Tukey’s
el studentized range statistic with parameters (k,00). The value of 9% oo is available from Harter
(1969). Then, we define

Bpi = (X — Xps) — ek, no,a)) (3.4)

and

k—1 2
r e ; et nod s
By=P(p,. brk1) =/ I] o= + L84 da(z). (3.5)

4

- \
X Then, by Theorem 2.2, Py{Py{CS} > PL} 2 1 - a for all §eq.
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3.2. Lower Confidence Bound for PCS : ¢2 Unknown Case.

When the common variance o2 is unknown, Bechhofer, Dunnett and Sobel (1954) presented a

two-stage selection rule, which is briefly described as follows.

Take a first sample of ng(ng > 2) observations from each of the k populations. Compute

X = "0 Z Xij, 1 <i<k),and S?= -—m E E(X.,— - X;)?. Define N = max{no, | 2"2]}
1=1 1=1j5=1
where the symbol [y] denotes the smallest integer not less than y, and h is a positive value such

that
/:o /—oo [®(z + wh)]k“ldQ(z)de (w) = P*, (3.6)

k=! < P* < 1, and Fw /() is the distribution function of the nonnegative random variable W with

k(no — 1)W? following x?(k(no — 1)) distribution.

Then, take additional N — ngy observations from each population. Compute the overall mean

N
X.(N)= &3 X5, 1 <1< k. We then select the population yielding the largest observation
i=1

X|(x](N) as the best population.

For this two-stage selection rule, the probability of a correct selection is:

PQ{CS} = PQ{)_((k)(N) > 7(')(1\[), T # k}
_ Pg{‘/ﬁ(y(k)(N) —0w) VN - b)) VN(X ()~ 0(s)
g

;i # k)

g o
VN(Xm(N) = 6) , A0w —0w) S VN (X ~ 0w)

2 PQ{ o N o o 1 # k}
2p2
( since N > [q h ) (3.7)
:P{Zk+_ﬁ(k—)6_:—-—2W> Z,, i # k)

o k 1 -
/ / z+ ﬂq(_’c)—é-_—-q('_)).w)d@(z)df‘w(w)»

where Zy, ..., Zx are iid random variables having standard normal distribution, and W = S/c with
k(no - )W? ~ x2(k(ny ~ 1)) and (Z,, ... Zi) and W are independent.

6
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Thus, to obtain a lower confidence bound for Py{CS}, it suffices to find simultaneous lower
confidence bounds for §(x) — 65, 1 < i < k — 1. Then, replacing the Oy — 0y, 1 <1< k-1,
by the corresponding lower confidence bounds into the function on the right-hand-side of (3.7), we

obtain a lower confidence bound for Py{CS}. For convenience, we let
Qéy,...,86k-1) = f f H 3(z 42 “" ('))w)d<1>(z)de(w). (3.8)

Let ¢ = Sq,fl,,(no_l)/\/ﬁ, where g ., _;) is the 100(1 — &)%th percentile of Tukey’s studen-

tized range statistic with parameters (k, k(no — 1)). Define
8ri = (Xigy(N) = Xg(N) - o)t (3.9)

and

~

Qr=Qr.1,--»or.k-1). (3.10)

We propose Q, as an estimator of a lower bound of Py{CS}.

Lemma 3.1. Let E = { max (Xi(N) — 6;) - min (X;(N) - 8,) < ¢}. Then, Py{E} =
1<i<k 1<5<k 7 7 8

1 — a for all de(1.
Proof:

Py(E) = Pa{ max (X (N)-46,) - 11570}2,‘(71(1\[) ~8;) <c}
= PQ{JE?S’% VN (X(N) - 6;) - lg@gkﬁ(z(w) = 8,) = 5% k(no-1)}

=1-a,

where the last equality follows from the definition of q?,k(no—l)'

Lemma 3.2. Pp{61 <0y — 00y, 1< i<k~ 1) > 1~ o for all §ef.




.

be

K>

7 Proof: Following the same argument as in Lemma 2.1, we have £ C {51,,.- SOy -8y, 11 <
: k — 1}. Then using Lemma 3.1 leads to the conclusion of Lemma 3.2.

,\ Lemma 3.2 and the increasing property of the function Q(8y,...,£:~1) with respect to §;, 1 <
“

.-; 1t <k — 1, lead to the following main result.

' Theorem 3.3. Pp{Py{CS} > Qr} > 1 -« for all §eq.

~‘ Proof: Note that Pp{CS} > Q(é1,...,6k-1) for all ¢Q0. Therefore, Py{Py{CS} > QL) >
‘ Py{Q(81,...,6k-1) > Qr} > 1 — & for all §eq.

4. Remark and Example

3 Anderson, Bishop and Dudewicz (1977) and Kim (1986) have also studied the problem of
ft finding a lower confidence bound on PCS. They considered the retrospective analysis to approach
: ) a lower confidence bound for PCS no matter what the sampling rule is. However, our approach is
i

“‘ different from theirs. We use the following example to illustrate our procedure and describe the
: difference between ours and Kim’s approach.

.

:L Example (The data is taken from Problem 3.1, page 97, of Gibbons, Olkin and Sobel (1977)).

‘.‘, The experimenter wants to compare dry shear strength of k = 6 different resin glues for bonding
A

o yellow birch plywood. Assume that the distributions of the strength for each glue are normal with
% common unknown variance o®. Based on some past information, the experimenter assigns §* = 20.
3 Then, using indifference zone formulation, a two-stage natural selection rule is applied here. Let
'3 P* = 0.90 and let the initial sample size of ng be 6. The observations (readings) are taken to
" measure the strength of the glue. Thus, large values are more desirable in this application. The
g data are given in the upper part of Table 1.

Now, N = max{ng, [§;—'§1]} For k = 6, np = 6, P* = 090, from Gupta,

N Panchapakesan and Sohn (1985), h = 1.97982y/2. Therefore, N = 10 and hence N — no = 4
;Z g

2
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g ¢ Table 1. Shear Strength of Six Types of Glue
B Glue

vy 1 2 3 4 5 6
oy

0L

O 102 70 100 120 151 220
Aoy

' observations 58 83 102 110 156 243

K taken at the 45 78 80 182 192 189
. first-stage 79 93 119 130 162 176
I 68 98 59 95 166 176
Tt 63 66 99 143 158 181
s.’:-ﬁu

o no 8 6 6 8 6 6
o4 3(-‘- 69.17 81.33 93.17 130.00 164.17 197.50
»,::...
:..::! ) 1 k ng < \2

W 55 = k(no—~1) Z Z(Xij - X)) = 479.51
?':|;‘ =1 7=1

117 92 100 113 173 206
RN observations 94 79 109 140 157 233
-~ taken at the 99 134 128 123 233 162
2 second-stage 63 131 138 132 238 179
f&-

* L]

i N 10 10 10 10 10 10
NN Xi(N) 788 924 1034 1288 1786  196.5
’S-j:.

= 2 1 £ XY 5'd 2

) 1=1)=1

::"‘ additional observations should be taken from each population. The observations taken at the
L
b

:-:: second-stage are given in the lower part of Table 1.

: We then have the overall sample means: X;(N) = 78.8, X3(N) = 92.4, X3(N) = 103.4,

X4(N) = 1288, X5(N) = 178.6, X¢(N) = 196.5. According to the two-stage natural selection

rule, Glue 6 which yields the largest sample mean is sclected as the best.

However, we do not know whether the largest and the second largest unknown means differ
at least by 6° = 20 or not. A reasonable question is: What kind of confidence statement can
be made regarding the PCS? By the method described in Section 3.2, for a = 0.10, from Harter
(1969), 47 (ny—1) = 3.851. Thus, ¢ = Sqg (.. _,,/VN = 26.667. Therefore, b1 = 91.033, b, =

9
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77433, bp3 = 66.433, 6, 4 = 41.033, 6,5 = 0. After some computation, we have @, = 0.5000.
Therefore, we can state that with at least 90% confidence that PCS > QL = 0.5000 for all values

of true unknown means.

For the problem of selecting the largest normal mean from among k (k > 2) normal populations
having a common unknown variance %, Kim (1986) proposed a lower confidence bound using a

retrospective analysis based on the observations X,;, 1 <1 < k, 1 € j < n, where the common

17
sample size n is arbitrary. His proposed lower confidence bound is given as follows: With at least

100(1 — a)% confidence,

V(X ik = Xix-1

)
=)o () (4.1)

PCSZ/ QF Mz + vk, (
where v = k(n — 1) and the function h,(-) is implicitly defined by
/ DA (1) - tw) + D(=ho(t) - tw)]dFw (W) = a (4.2)
0

for t > ty(v) and hy(t) = 0 for 0 < ¢ < ty(v). Here, tg(v) is the upper § quantile of the ¢
distribution with v degrees of freedom and Fy (-) is the distribution of a non-negative random

variable W with viV? ~ x*(v). Kim (1986) also provided some tables for the h,(t) values to

implement his procedure.

For the data set given above, following Kim’s procedure, we have n = 10, v = k(n — 1) = 54,

and the pooled sample standard deviation based on the total 60 observations is § = 25.63. Thus,

(X, Nin-1)

¢ e - Lis2 < ty(v) ~ 1671 where a = 0.10. Therefore, by the definition of
he(), ho( Y”\A“\%S&—'*—)) = 0. Then, by (14.1), one can only claim: With at least 90% confidence,

pes > 1o &. Clearly, our lower confidence bound, in this example, is better than that of Kim.

5. Simulation Studies

For the normal means selection problem, for varwus parameter configurations, the behaviors

of I, and Q were simulated. Two types of parameter configurations were simulated: a slippage

10
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configuration 8(yy = ... = 8(x_1) = 0(x) — & and an equally spaced configuration 6,y - 6(,_y)
A, 1 =2,...,k. Forsimulation, we suppose that the assigned value of § is 1 and also the assigned
probability levels are P* = 0.90 and P* = 0.95. When the common variance o? is known, the

common sample size ng is determined by (3.2). When o?

is unknown, the initial common sample
size is set equal to ten. The simulation process was repeated M = 1000 times for the case where
o? is known and M = 400 times for the ¢% unknown case. For each simulation, the random
observation X, is generated from N (§;,5?) with 0? = 1. The values of PL and Q| were computed.

The averages of the 1000 P, and 400 QL are reported in Table 2 and Table 3, respectively. In each

table, the numbers in the parentheses are the standard errors of the corresponding estimators.

For convenience, we let P (P*,A,a,T) and QL(P",A,a,T) denote the corresponding P and

Qy for given values of P*,;A,a and T, where T denotes the type of parameter configuration. The

slippage configuration is denoted by S and the equally spaced configuration is denoted by ES.
The simulation results indicate the following:

1. Note that for fixed P*,a and T, the PCS is a nondecreasing function of A. Therefore, it is
reasonable to expect that both PL(P‘,A,Q,Y') and QL(P‘,A,a,T) be nondecreasing in A.

The simulation results indicate that this is so.

2. Forfixed P*,a and A, the PCS under equally spaced parameter configuration is larger than the
PCS under the slippage configuration. The simulation results also indicate that this behavior
holds. That is, from the simulation results, we find: ]:‘L(P‘, A,a,ES) > PL(P*,A,a,S) and

OL(P*,A,a,ES) > QL(P*,A,a,S).

-

3. For fixed values P*, A and T, the simulation results indicate that PL(P*,A,02,T) >
PL(P*,A,0.1,T) and Q1 (P",A,02,T) > QL(P",A,0.1,T). These results are as expected
since qj , is nondecreasing in a for fixed k and v.
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4 For fixed A,a and T, f’dP‘.A,a.T) 13 nondecreasing 1n F>°. Note that according to the

<

sampling rule used in this paper, assigning large P"-vilue implicitly implies taking more ob-
servations. Thus the sunulation results seem to indicate that PL(P' ,A,a,T) s nondecreasing
in the sample size. For the 0% unknown case, for both k = 3 and 5, the corresponding values

of QL(P", A,a,T) are also nondecreasing in .
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where (y)Y - max(y, 1) Replacing 8(,,/6;,, w (6.1) by b1 ., we ob.am

= k)
P [T EabravldFaty) (65)
]
[}
We propose Pp as an estimator of a lower bound for the PCS We have

Pp{ Py{C'S} - Pr} -1 - afor all 00 (6.6)
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