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ON A LOWER CONFIDENCE BOUND FOR THE
PROBABILITY OF A CORRECT SELECTION: ANALYTICAL

AND SIMULATION STUDIES

by

Shanti S. Gupta* and TaChen Liang
Purdue University

Abstract

For the problem of selecting the best of several populations using the indifference (preference)

zone formulation, a natural rule is to select the population yielding the largest sample value of an

appropriate statistic. For this approach, it is required that the experimenter specify a number 6,

say, which is a lower bound on the difference (separation) between the largest and the second largest

parameter. However, in many real situations, it is hard to assign the value of 6 and, therefore,

in case that the assumption of indifference zone is violated, the probability of a correct selection

cannot be guaranteed to be at least P', a prespecified value. In this paper, we are concerned

with deriving a lower confidence bound for the probability of a correct selection for the general

location model F(z - 0.),i =,..., k. First, we derive simultaneous lower confidence bounds on

the differences between the largest (best) and each of the other non-best population parameters. s

Based on these, we obtain a lower confidence bound for the probability of a correct selection. The 00"

general result is then applied to the selection of the best mean of k normal populations with both

the known and unknown common variances. In the first case one needs a single-stage procedure
* I;!

while in the econd case a two-stage procedure is required Some simulation investigations are j

described and their results are provided
U..

InviLed paper to be presented by this author at the First International Conference on Sta-

tistical Computing, 30 March 2 April, 1987, to be held at Cesme, lzmir, Turkey
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1. Introduction

Let Xj, j = 1, ... n, be n independent observations from a population ir,, where 7r 1, 7r2 , ... k

are independently distributed with continuous cumulative distribution function G(x -,), I < i < k,

respectively. Let 0 = (01,.Ok) and let 0(j) < ... < 0(k) denote the ordered values of 0 1,... , 0k.

It is assumed that the exact pairing between the ordered parameters and the unordered parameters

is unknown. The population associated with the largest location parameter O(k) is called the best

population. Assume that the experimenter is interested in the selection of the best population. For

this purpose, we choose an appropriate statistic Y1 = Y(X,,... Xj,,) with cumulative distribution

function F, (y- 9j) and use the natural selection rule that selects the population yielding the largest

Y, as the best population. Let CS (correct selection) denote the event that the best population is

selected Then, the probability of a correct selection (PCS) applying the natural selection rule is

"o Jk- I

PO{CS} = _ f F.(y + O(k) - 0(,))dF,((y). (I.)

_ 4=l

Tit guarantee the probability of a correct selection, Bechhofer (1954) introduced the indifference

zone approach in which the experimenter is asked to assign a positive value 6" such that

0(k) > 8(k-1) 1- " (1.2)
S.

Thus, the subspace fl(6) - q{l0( ) > Op ) + 6"} is called the preference zone and its complement

(b " ) -- {j0 (k) < O(k-1) P} is the indifference zone. We also let Q n(b*)U .(P) On,

f(',we have,
nf Po{CS} -- J F.(y .)k 'dP,.(y) (0 3)

+il.p ,,'e 1},t the furi(-t.on on the right-hand-side f (1 3) is an increasin g funct ,t of the c , tn 'rt,

,,Arf d, ' A s, ?I itnild tends t, , i1e L ri tends t o infinity I'hfi, for ;A glien protkhiltt I" I P "

-'d.. IP t
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1), the minimum common sample size n0 that is required to guarantee the probability of a correct

selection to be at least P" over the preference zone is determined by

no -- no(6", P') = min{nI [F.(y + 6")j"dF&(y) > P}. (1.4)

However, in a real situation, it may be hard to assign the value of 6' such that 0(t) > 0(k- 1) +6"

since the parameter values Op,), O(_ -1' are unknown. So that if the above assumption is not satisfied,

then the probability of a correct selection cannot be guaranteed to be at least equal to P'.

Recently, retrospective analyses regarding the PCS have been studied by some authors. Olkin,

Sobel and Tong (1976, 1982) and Gibbons, Olkin and Sobel (1977) have presented estimators of the

PCS. Faltin and McCulloch (1983) have studied the small-sample properties of the Olkin-Sobel-

Tong's estimator of the PCS for the case when k - 2. Anderson, Bishop and Dudewicz (1977) gave

a lower confidence bound on the PCS in the case of normal populations having a common variance

which is either known or unknown. Kim (1986) presented a lower confidence bound on the PCS for

the case where the underlying probability density function f,,(y - 9) of F,,(y - 9) has the monotone

likelihood ratio property in yj and 0 and studied its application to the case of normal populations

with common known or common unknown variances.

In this paper we are concerned with deriving a lower confidence bound for the probability

of a correct selection for the general location model G(z - 9,), : - 1,., k. First, we derive si-

multaneous lower confidence bounds on the differences between the largest (best) and each of the

* other non-best population parameters. Based on these, we obtain a lower confidence bound for the

. probability ot a c-orrcct -,.lection The general result is then applied to the selection of the best

mean of k normal po)llati ns , r ith I)h the known and unknown common variances In the first

t.- ()rie rn .. a single-st:,, ir, ,. jr,, hih, in lhe iecond c as a two-si age procedunts is required

Soni sir~ililation invest iratiois art, dft ribed anid their results are prov''ided

5%
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2. A Lower Confidence Bound on PCS

For given 6' and P', let no be the minimum common sample size determined by (1.4). Let

Yj = Y(Xil,... ,Xjo), be an appropriate statistic for inference regarding 0, and let us assume that

the distribution of Y, -9i is independent of 9i, 1 < i < k. Let Y111 < .-. < Y kl denote the order

statistics of Y,, 1 < i < k. Also, let 0{,j denote the (unknown) parameter associated with Y1$i. For

given c, 0 < a < 1, let c(k,no, a) be the value such that

.P { max (Y, - 9,) - min (Y, - 0,) < c(k, no, a)} = 1 - c. (2.1)
- I<$< Ic k<i<

Let E { max (Y, - 0,) - mn (Y, - 8j) _< c(k, no, a)}. Then, we have the following lemma.

1<s<k I<j

Lenuna 2.1. E c {(Y[k - Y1,1 - c(k,no,cx)) + S- - , 1 _ i <- k- 1}, where (y)+ =

max(0, y).

Proof: First note that for each= 1,..., k,

nY" min(Y,l - 1 <1)

Y- max0,!

< Y,,, , (2.2)

Thus,
od..

E { max (Y. 0,) -mm (Y, - 0,) _< c(k, no,a)}

c {,max (1', 0C)) - mn (, 0 ,) < c(k ,,o, o))

{(Ykj - makn (mi 011 c(k, no , c)}
1'-qk,- I

(Y. -, - ,rn(Y,. oil;) <_ c(k, ,ao, a) I < , < k - 1}

" Y -; 0(,,) (', 0,,) (k. n 1,a), I < , k I)(by (2.2))

Y, Y ,, (k, n,, ,k) 0(k) 0 ,,, I k - 1)

3*, (* . ,* V !, -(k , 0 , k I



Note that the last equality follows from the fact that O(k) - 0(,) > 0 for all i < i < k - 1. Hence,

we complete the proof of this lemma.

Note that in (1.1), the probability of a correct selection PO{CS} depends on the parameters

= (01,... ,01,) only via the differences 0 (k) - 0(,), 1 < i < k - 1. For convenience, we write

PO{CS} = P(61 ,...,5k- ) where 8, = O(k) - 0 (i) , 1 < i < k - 1. We see that P(8 1 ,. .. -i) is a

nondecreasing function of 6, for each i = 1, 2,..., k - 1.

For each i =1,...,k - 1, let

Li (Y[k] - Yl- c(k, no, o,))+, (2.3)

PL = P(L,I,' ",L,k-i) (2.4)

We propose PL as an estimator of a lower bound of the PCS. We have the following theorem.

Theorem 2.2. PO{PO {CS} > PL} > 1 - o, for all Ocl.

Proof: By nondecreasing property of P(b 1,.. . ,k-,1) with respect to 6, 1 < i < k - 1, from (2.1)

and Lemma 2.1, we have, for Offl,

I - PO{E}

PO{SL, _ 0(k) -0(,), 1 < i < k - 1}

- P9 {PL < Po{Cs}}.

This completes the proof ,f this theorem.

3. Selection of the Best Norinal Population in Terms of Means

Let X'), I < 3 - n be independent observations from N(0,, a2 ), i = 1,...,k where the

co ,nitl variance a may be either known ,,r unkmwn. The best population is the one associated

i

%



with the largest mean 0(k). We consider two situations according to whether the common variance

o is known or unknown.

3.1. Lower Confidence Bound for PCS: a 2 Known Case.

When the value of the common variance 2 is known, for 061f, the probability of a correct

selection applying the natural selection rule is:

Pe{CS} k- + Vi°(O(k) - o)(3.1)
PO C S 1 =J0 f (± (

where t(.) is the standard normal distribution function, and the value of the sample size no, for

the indifference zone formulation, is determined by

no = min{nI [D(x + 6)]k-Id-,(x) >_ P -}. (3.2)

no
Let - n, = X A ',,. For given 0 < a < 1, choose the value c(k, no, a) such that

j=1

P0{ max (X - 0,) - min (X, - 0,) c(k, no,a )} = 1 - a. (3.3)~ <i<k l<y<k-

Note that here, c(k,no,a) = o q*,.,where q,.'o is the 100(1 - a)%th percentile of Tukey's

studentized range statistic with parameters (k,oo). The value of q ,oo is available from Harter

(1969). Then, we define

h9- = (X[k] - j] - c(k, no, c))+ (3.4)

9and

k-I

PL = P(6L,,...,L k+) J P ((xx (3.5)
--oi=1I

Then, by Theorem 2.2, PO{PO{CS} _ n} _ 1 - a for all Mfl.

/*9. 5



3.2. Lower Confidence Bound for PCS : a 2 Unknown Case.

When the common variance a 2 is unknown, Bechhofer, Dunnett and Sobel (1954) presented a

two-stage selection rule, which is briefly described as follows.

Take a first sample of no(no _ 2) observations from each of the k populations. Compute

no k no 22
X = X,3., (1 < i < k), and s' (X13 -X)2 . Define N = max{no, [ j-'1}

3=1 i=i 3=1

where the symbol [y[ denotes the smallest integer not less than y, and h is a positive value such

that

fJ [4)(. + wh)]'-'d-D(x)dFw(w) = P% (3.6)

k- < P* < 1, and Fw(.) is the distribution function of the nonnegative random variable W with

k(no - 1)W 2 following X2 (k(no - 1)) distribution.

Then, take additional N - no observations from each population. Compute the overall mean

N

-,(N) = X,,, 1 - i < k. We then select the population yielding the largest observation
j=l

Xlkj(N) as the best population.

For this two-stage selection rule, the probability of a correct selection is:

Po{CS} = Po{X(k)(N) > X(,)(N), i k}
= _PO(N -0(k)) t _V(O(_) - 0(,)) >v (Xc,) - 6(j))e- 0/k() O'/N) - --- >,i $ k}

VN () - O(k)) O(k) - O(,) S )) /K(X() -h(()) k
PO' + - >  ,i k-- or ° or

S2 h2

(since N 15.21) (3.7)

= P{Zk+ h(O(W)-O(,)) W > Z,, i k}

o fi
where Z,. ..,Zk are iid ran,lomi variables having starilard normal distribution, and W S/a with

k(no - I)W2 x (k(n-- I)) ani( (Z, Zk) and W arv independent.



Thus, to obtain a lower confidence bound for Po{CS}, it suffices to find simultaneous lower

confidence bounds for O(k) - 0(,), I < i < k - 1. Then, replacing the O(k) - 0(j), 1 < i < k - 1,

by the corresponding lower confidence bounds into the function on the right-hand-side of (3.7), we

obtain a lower confidence bound for Po{CS}. For convenience, we let

O~b,,... ,k,, -[ I(+ h(°c'k) - ((i)))
Q(bl 1 5k ) = JO/a ] q ~(+ b(6  d-P)W ()ZdFw (w). (3.8)

-o F =1

Let c = Sq'.k(n0 ll/V-, where q",( o) is the 100(1 - a)%th percentile of Tukey's studen-

tized range statistic with parameters (k, k(no - 1)). Define

(Xikl(N ) - X[j](N) - c)+,  (3.9)

" "and

QL =O(L,1,..., SL,k-1). (3.10)

-¢ We propose QL as an estimator of a lower bound of PO{CS}.

Lemma 3.1. Let E = { max (Xj(N) - 0j) - min (X(N)- 03) < c}. Then, Po{E}

1 - a for all 061.

Proof:

Po(E) = PO0 max (X 1(N) - 0j) - min (Xj (N) - 0,) _< c}
- - 1<i<k jk

= F0O max N1CX(,(N) - 0,) - min vN'?(Xj(N) - 0j) Sqkk(n.oI)l

J,.,

where the last equality follows from the definition of qa. (-o-1)"

Lennna 3.2. PO{SLI, < () - 0(i), 1 < i < k -- } >_ 1 - for all 0d).

7-C
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Proof: Following the same argument as in Lemma 2.1, we have E C {SLi ! O(k) - 0(i), 1 <5

k - 1}. Then using Lemma 3.1 leads to the conclusion of Lemma 3.2.

Lemma 3.2 and the increasing property of the function Q(61,. . . , 1) with respect to bi, 1 <

i < k - 1, lead to the following main result.

Theorem 3.3. PO{PO{CS} _ QL} > 1 - a for all 01.

Proof: Note that P0 {CS} Q(1,... ,Sk-1) for all M lI. Therefore, PG{PO{CS} _ Qi} >

P9 {Q(8 1,.. . , 8k - 1 ) > QL} > 1- a for all O9e.

4. Remark and Example

Anderson, Bishop and Dudewicz (1977) and Kim (1986) have also studied the problem of

finding a lower confidence bound on PCS. They considered the retrospective analysis to approach

a lower confidence bound for PCS no matter what the sampling rule is. However, our approach is

different from theirs. We use the following example to illustrate our procedure and describe the

difference between ours and Kim's approach.

Example (The data is taken from Problem 3.1, page 97, of Gibbons, Olkin and Sobel (1977)).

The experimenter wants to compare dry shear strength of k = 6 different resin glues for bonding

yellow birch plywood. Assume that the distributions of the strength for each glue are normal with

common unknown variance a 2 . Based on some past information, the experimenter assigns V = 20.

Then, using indifference zone formulation, a two-stage natural selection rule is applied here. Let

P* = 0.90 and let the initial sample size of no be 6. The observations (readings) are taken to

measure the strength of the glue. Thus, large values are more desirable in this application. The

data are given in the upper part of Table 1.

Now, N -: rnax{no, [ .- }. For k = 6, no = 6, P" = 0.90, from Gupta,

Panchapakesan and Sohn (1985), h 1.97982V"2. Therefore, N = 10 and hence N - no= 4

8



Table 1. Shear Strength of Six Types of Glue

Glue
1 2 3 4 5 6

102 70 100 120 151 220
observations 58 83 102 110 156 243

taken at the 45 78 80 182 192 189
first-stage 79 93 119 130 162 176

68 98 59 95 166 176
63 66 99 143 158 181

no 6 6 6 6 6 6

Xi 69.17 81.33 93.17 130.00 164.17 197.50

k no
,2 = k~no-ZE E (X,3 - X,) = 479.51

i=I3=1

117 92 100 113 173 206
observations 94 79 109 140 157 233

-" "i taken at the 99 134 128 123 233 162
second-stage 63 131 138 132 238 179

N 10 10 10 10 10 10

1Xi(N) 78.8 92.4 103.4 128.8 178.6 196.5

k N2 (N)) E (Xe, - X,(N))2 = 656.98
j =I1

additional observations should be taken from each population. The observations taken at the

second-stage are given in the lower part of Table 1.

We then have the overall sample means: X,(N)= 78.8, X2(N) 92.4, X 3 (N) 103.4,

X4(N) --- 128.8, X 5 (N) = 178.6, 7(3(N) = 196.5. According to the two-stage natural selection

rule, Glue 6 which yields the largest sample mean is selected as the best.

However, we do not know whether the largest and the second largest unknown means differ

.- at least by 6 = 20 or not. A reasonable question is: What kind of confidence statement can

be made regarding the PCS? By the method described in Section 3.2, for a = 0.10, from Harter

(1969), qkk(.,-I) 3.851. Thus, c Sqk,k(, ,,_)/v'N = 26.667. Therefore, 3
LL = 91.033, 6 L,2

9
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77.433, il,, 
= 66.433, SL,4 = 41.033, 3 LS 0. After some computation, we have QL = 0.5000.

Therefore, we can state that with at least 90% confidence that PCS Qi. = 0.5000 for all values

of true unknown means.

" For the problem of selecting the largest normal mean from among k (k > 2) normal populations

having a common unknown variance or2 , Kim (1986) proposed a lower confidence bound using a

retrospective analysis based on the observations X,-, 1 < i < k, I < j < n, where the common

sample size n is arbitrary. Ilis proposed lower confidence bound is given as follows: With at least

100(1 - a)% confidence,

PCs > Dk- I + V, /-f- X k Itl(f L V'(Xis )Ida() (4.1)

where v-' k(n - 1) and the function h,(.) is implicitly defined by

j ,4(h,(t) - tw) t- 4,(-h,(t) - tw)]dFw(w) = (4.2)

for t > t~j(,) and h,(t) 0 for 0 < t tj(v). Ifere, tf(v) is the upper . quantile of the t

distribution with v degrees of freedom and Fw(.) is the distribution of a non-negative random

variable ;V with LAV' - x 2(L. Kim (1986) also provided some tables for the h(t) values to

implement his procedure.

For the data set given above, following Kim's procedure, we have n = 10, z = k(n - I) = 54,

and the pooled sample standard delviation ba.sed on the total 60 observations is S = 25.63. Thus,

t 1.5, 2 < ti(v) z 1.671 where a 0.10. Therefore, by the definition of

h,(.), Iti2) 0. Then, by (4.1), ope can only claim: With at least 90% confidence,

fN _ Clearly, our lower confideice bound, in this example, is better than that of Kim.

5. Siimlation Stidihs

For the normal means s lvction problem, for varo, . parameter configurations, the behaviors

of I'. and~QL were. sirmilated. Two types of Vir:tmeter configurations were simulated: a slippage

10
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configuration 0(0) . 0(k- 1) = 0(k) - A and an equally spaced configuration 0(,) -(,_1)

A, iz =2,..., k. For simulation, we suppose that the assigned value of P Is l and also the assigned

probability levels are P = 0.90 and P" = 0.95. When the common variance a'2 is known, the

common sample size no is determined by (3.2). When a2 is unknown, the initial common sample

size is set equal to ten. The simulation process was repeated M = 1000 times for the case where

a 2 is known and M = 400 times for the a 2 unknown case. For each simulation, the random

* observation Xq is generated from N(0,, a2) with a 2 = 1. The values of PL and QL were computed.

The averages of the 1000 PL and 400 QL are reported in Table 2 and Table 3, respectively. In each

, table, the numbers in the parentheses are the standard errors of the corresponding estimators.

For convenience, we let PL (P*,A,&,T) and L(P , A,a,T) denote the corresponding PL and

QL for given values of P*, A, a and T, where T denotes the type of parameter configuration. The

slippage configuration is denoted by S and the equally spaced configuration is denoted by ES.

The simulation results indicate the following:

1. Note that for fixed P', c and T, the PCS is a nondecreasing function of A. Therefore, it is

reasonable to expect that both PL(P*,A,a,,T) and ,L(PA,a,T) be nondecreasing in A.

The simulation results indicate that this is so.

2. For fixed P*, a and A, the PCS under equally spaced parameter configuration is larger than the

PCS under the slippage configuration. The simulation results also indicate that this behavior

holds. That is, from the simulation results, we find: PL(P, A,a, ES) > PL(PA^aS) and

L, Q,(P., A, c,, ES) > , .(P", A,oa, S).-

3. For fixed values P,A and T, the simulation results indicate that PL(P-,A,0.2,T) >

PL(P*,A,O.1,T) and QL(P ,A,0.2,T) > QL(P',A,0.1,T). These results are as expected

since q" is nondecrea-sing in a for fixed k and v.

11I
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4 For fixed A, a and T, PL(P, A, o 7) is nundecreasing in I". Note that according to the

sampling rule used in this paper, assigning large P'-vatlue implicitly implies taking more ob-

servations. Thus the simula.tion results seeii to indicate that PL(P', A, a, T) is nondecreasing

in the sample size. For the az unknown case, for both k -: 3 and .5, the corresponding values

of QL (P, A, t, T) are also nondecreasiig in I"

%'.
'.

a.

o.',
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In this paper, we are concerned with deriving a lower confidence bound foi-
the probability of a correct selection for the general Iocation modelF(x-o i ), i = 1,...,k. First,-w derive simultaneous lower confidence

bounds on the differences between the largest (best) and each of the other
non-best population parameters. Based on these, we-obtain & lower
confidence bound for the probability of a correct selection. The general
result is then applied to the selection of the best mean of k normal
populations with both the known and unknown common variances. In the first
case one needs a single-stage procedure while in the second case a two-stag
procedure is required. Some simulation investigations are described and
their results are provided.
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