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A Measure of Rotatability for

Response Surface Designs

A. I. Khuri

Department of Statistics
University of Florida

Gainesville, FL 32611

ABSTRACT

A measure is introduced in this paper which quantifies the

amount of rotatability in a given response surface design. The

measure, which is expressible as a percentage, takes the value 100

if and only if the design is rotatable. One of the main

advantages of this measure is that it can be used to "repair" a

nonrotatable design by the addition of experimental runs which

maximize the percent rotatability over a spherical region of

interest. Four numerical examples are given to illustrate the

applications of this measure.

KEY WORDS: Nonrotatable designs; Percent rotatability; Repairing

rotatability; Design moments; Design augmentation;

Cone of rotatability.
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1. INTRODUCTION

Consider fitting a linear response surface model of order d

in k input variables, xlx 2 ,..., xk, over a spherical region of

interest, R, using a design consisting of n experimental runs.

This model can be written in vector form as

E(y) = x6, (1.1)

where y is a vector of n observations, E(.y) denotes the mean or

expected value of X, X is an nxp matrix of rank p whose elements

are known functions of the design settings of the input variables,

and A is a vector of unknown regression coefficients. We assume

that the variance-covariance matrix of y is given by a2 I , where

G2 is unknown and In is the identity matrix of order nxn. We

denote by Q the nxk design matrix whose uth row consists of the'th
settings of the k input variables at the ut h experimental run

(u 1,2,...,n).

,. The predicted response value at a particular point x =

p. (xl,X2 ,...,xk)' in the region R will be denoted by y(x). This

value is obtained by substituting the elements of S in model (1.1)

by the corresponding elements of S, the least squares estimator

of B, namely,

W= ) x . (1.2)

The design _Q is said to be rotatable if the variance of

y(x), which in general depends on XIX2,...,xk, i a function of

'A
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only the distance of the point Z from the center of the design.

Thus, when the design is rotatable, the prediction variance,

denoted by var[y(Z)I, is the same at all points Z which are equi-

distant from the design center. Consequently, in the space of the

input variables, surfaces of constant prediction variance form

concentric hyperspheres (circles and spheres in two-dimensional

and three-dimensional Euclidean spaces, respectively).

The concept of rotatability was first introduced by Box and

Hunter (1957) and has since become an important design criterion.

One of the desirable features of rotatability is that the quality

of prediction, as measured by the size of var[y(x)], is invariant

to any rotation of the coordinate axes in the space of the input

variables. Furthermore, if optimization of y(Q) is desired over

concentric hyperspheres within a certain region of interest, it

would be very desirable to have a rotatable design. Otherwise,

poor estimates of the optimum might result (see Khuri and Myers,

1979)

A simple characterization of rotatability is given in terms

of the elements of the X'X matrix. We shall refer to these ele-

ments as design moments (traditionally, the elements of the

matrix X'X/n are referred to as design moments). In general, a

design moment for a model such as (1.1) of order d and in k input
* vrialesis enoed y 1 62 6k)

variables is denoted by (0 2 ...k ) and is equal to

-2-
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61 62 6 k n 61 62 6 k
(1 2 ...k E Xu Xu 2 ...Xuk ,  (1.3)

u=l

where 2, ' .. ,k are nonnegative integers and x is the level

of the jth input variable used in the uth experimental run
k

(j1,2,...,k; u=1,2,...,n). The sum, E 6., is called the order

j = l 
)

of the design moment and is denoted by 6(6 = O,1,...,2d). For

example, (1 3 53) is a design moment of order 6 = 6 and is equal

n 2 3
to E x x xe.u1 ul u3 u5"

.'eu=lU

A necessary and sufficient condition for a design for fitting

a model such as (1.1) (of order d and in k input variables) to be

rotatable is that the design moments of order 6(6=0,1,...,2d) be

of the form

0, if any 6. is odd

61 62 6 k
( 2 ...k = (1.4)

08 .II 6,

6 j if all of the 6. 's are even,62k j

2 .II (6 /2)!
.;+.,

where 06 is a quantity which depends on d,6, and n (see Box and
6

Hunter 1957, Myers 1976, ch. 7). For convenience, we say that a

design moment is odd if at least one of its 6. s is odd and a

design moment is even if all of the 6.'s are even. Note that a

design moment of order 6 = 0 is equal to n. A design whose

moments do not conform to formula (1.4) is said to be nonrotat-

able.

4-3-
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Quite often, a nonrotatable design may exhibit surfaces of

constant prediction variance which are nearly spherical. In this

case, the design is described s being near rotatable. This

occurs, for example, when a rotatable design is deformed due to

incorrect settings of some of the input variables, or because

certain specified levels of the input variables may be difficult

to employ in practice. In another situation, a rotatable design

may undergo certain modifications to fit the needs of the experi-

ment. The modifications might involve adding new design points,

or shifting existing design points, in order to gain more informa-

tion in a certain region of interest (see Littell and Mott 1974).

In such situations it is of interest to assess the effects of

deformation or modification on the property of rotatability.

To assess the degree of rotatability, it has been customary

to inspect contour plots (in case of k=2 input variables) of

constant prediction variance to see how close they are to being

circular. Such a practice ,however, has its limitations when the

number of input variables exceeds 3 in addition to being subjec-

tive. In this paper, we provide a quantitative measure of rotat-

ability for a response surface design. This measure takes values

between 0 and 100 with the latter value being attained when the

design is rotatable. The proposed measure can be useful in the

following situations:

(i) to quantify the degree of rotatability of a nonrotatable

-4-
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design so that a determination of how "close" the design is

to being rotatable can be made.

(ii) to compare designs on the basis of their degrees of

rotatability.

-'- (iii) to assess the extent of departure from rotatability when an
I "...

already rotatable design is deformed or modified.

(iv) to repair a nonrotatable design.

2. A MEASURE OF ROTATABILITY

Consider again the model given in (1.1), which if we recall

is of order d in the input variables xl,x 2,...,xk. Let us suppose

that in the spherical region R over which this model is fitted the

input variables have been coded so that

n
£ z = , j=1,2,...,k

u=l
(2.1)

n
. . = a, j=l,2,...,k,

u=l

where zu. denotes the coded value of xuj, the actual value of the

u level of variable j, and a is some positive constant. The

coding can be accomplished by applying the transformation, z

(x uj- xj)/sj, where xj = F x */n and s. is given by

1Lu=u=IuN n
.,sj (x [- Z X x.)2/a] I/12 .

By adapting the notation described in (1.3) to the coded variables,

.;
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N the equalities described in (2.1) can be written as

(j) 0 j 1,,..k

(2.2)

(j 2 ) =a ,j =12..k

Under this coding scheme, the center of the design coincides with

the point at the origin of the coordinates system. The coding

also helps to standardize the input variables which may have

different units of measurements.. Furthermore, the spread of the

-\ design will be the same in all directions of the coordinate axes.

In terms of the coded variables, model (1.1) can be expressed

as

E(X) = (2.3)

where the matrix is of the same form as except that the z'js

are used instead of the x *'s, and y is the new regression coeffi-

cient vector. Throughout the remainder of this paper, the design

moments defined in (1.3) will be formulated in terms of thc coded

'4. variables.

We shall now introduce a measure of rotatability for a given

response surface design. Such a measure should be

(i) a function of the levels of the input variables used in the

* design,

(ii) invariant to the value of the scale parameter, a, in formula

(2.1)

(iii) invariant to the addition of points at the center of the

design (which coincides with the origin of the coordinates

-6-



system by the coding scheme).

The reason for condition (ii) is that there can be an infinite

number of designs that are derivative of one another by changing

the value of a. Since such designs are not different with respect

to rotatability, their measures of rotatability should be the

same. As for condition (iii), rotatability depends only on design

moments of order 6 > 1 and these remain invariant to the addition

of center points.

Three major steps are involved in the development of the

- proposed measure of rotatability. Details of these three steps

are given below.

Step 1: The Reduction of All Design Moments to Scale-Free
Quantities

Let us denote by v(Z'Z) the vector consisting of the elements

of Z'Z which are located above the diagonal as well as those along

the diagonal. This vector is, therefore, of dimension

p* = p(p+l)/2, where p is the number of parameters in model

(2.3). Its elements are obtained by listing the elements in the

p. *yfirst row followed by those in the second row, etc., of the upper

triangular half of Z'Z. It can be shown that the element at the

(i,j)th location (j > i) in this upper triangular half is the Zth

element of the vector v(Z'Z), where X = f(i,j) is the function

-7-
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f(ij) = (i-1)[p-(i/2)] + j, j > i. (2.4)

For example, for a second-order model of the form

,2+ YE(y) = yo + YlZ + Y z2 + Yl2Z z2 +  11z+ Y2z,

p 6, v(Z'Z) is of order 21x, and the (3 ,5 )th element of Z'Z,

2 twhich is equal to the design moment (1 2), is the 14 th element

of v(Z'Z).

We note that the vector v(Z'Z) is scale dependnt since it

depends on the value of a used in formula (2.1). To remove this

dependency, we divide each design moment of order 6(6= 0,1,...,2d)

by , where T is given by

k 1/2
T [ (j 2 )/k]i , (2.5)

j=1

that is, T2 is the average of all even design moments of order

2. We note that by the coding scheme described in (2.2), =

a 1l2 . This operation amounts to premultiplying v(Z'Z) by a

diagonal matrix, denoted by 4, of order p* x p*. The diagonal

elements of A are in a one-to-one correspondence with the eLements

of v(Z'Z): If an element of v(Z'Z) is a design moment of order

6(6=0,1I,...,2d), then the corresponding diagonal element of 4 is

equal to l/ . Hence, the elements of the vector

u(Z'Z) A v(Z'Z) (2.6)

are scale-free quantities.

.%.
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Step 2: The Introduction of a Canonical Representation of the

Z'Z Matrix for a Rotatable Design

If the design for model (2.3) is rotatahle, then its design

moments of order 6(6 = O,1,...,2d) must have the special form

described in (1.4). Hence, all the elements of v(Z'Z) corre-

sponding to odd design moments should be equal to zero and all

those corresponding to even design moments must have the form

0 (6 62, ... 6 k) where

k

kkC(6116 2,9...,6 k )  k E 6 =6(6:=0,2,...,2d). (2.7)

6/2 (6.12)! j=l j

2 T
j-1

Let Z denote the Z matrix when the design is rotatable. In this

case the vector v(Z'Z ) can be represented as

-r-r YO 22
V(Zr~ r  = 0*O+ '2* 2 + . 2d-2d, 28

where w (6=0,2,...,2d) is a vector of order p*xl whose elements
-6

are in a one-to-one correspondence with the elcents of v(Z'Z ):

All those corresponding to design moments of order different from

6 and odd design moments of order 6 are equal to zero, whereas

those corresponding to even design moments of order 6 have values

given by formulo (2.7). In other words, w deptds only on the

values of the 6's which designate the even design moments of

order 6(6=0,2,...,2d) of a rotatable design. From (2.7) we note

that the elements of w are all zero except for (lhe f irst element

"-.9-
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which is equal to one. Also, from (1.4) it can be seen that 00 =

.4 n and that 02 = a by the coding scheme of formula (2.2). Hence,

by (2.5), 02 = T2 .

Since the elements of the diagonal matrix A in (2.6) that

correspond to design moments of order 6 are equal to i/T6, then

from (2.6) and (2.8) the following canonical representation

of u(Zr'Zr ) can be obtained:

d 2m
U(ZrZr) = d r2m
'-r-r mO2m 22mm=O

d
n w0 + W 2 + E 2m 2m' (2.9)

m=2

where K2m = / 2m/ , or equivalently,

K2m= 02m/0 , m= 2,3,...,d. (2.10)

Since e2m is a design moment of order 6= 2m as can be seen from

(1.4) by taking m of the 6.'s equal to 2 and the remaining 6j'sJ

equal to zero, the K 2m's in (2.10) are, therefore, scale free.

The parameters K4,K6 ,...,K 2d can be chosen by the experimenter

depending on whatever additional properties the rotatable design

is required to have. It is to be noted that the w 2m s

(m=0,1,...,d) in (2.9) are pairwise orthogonal, that is,

m 22m' = 0 for m t m'. This follows from the fact that all the

elements of W2m are zero except for those corresponding to even

design moments of order 2m. For these latter elements, the

corresponding elements of -2m'' for mm', must be zero by

-10-
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definition. Consequently, the vectors w 4 ' 6,'''' W2d span a

(d-1)-dimensional Euclidean space. Furthermore, since K2m 0 for

m=2,3,...,d, then

d"1 K - (2.11)
'" = 2m "-2m

represents a vector in a closed convex cone K in this Euclidean

space. By definition, a closed subset S of a Euclidean space is a

closed convex cone if for any vectors, x and x2, in S and any

nonnegative scalars, X, and A2' the vector Xl + X 2x2 belongs to

S. We shall refer to the cone K as the cone of rotatability.

Step 3: The Derivation of the Rotatability Measure

Let us now suppose that we have an n-point design, D, not

necessarily rotatable, for fitting model (2.3). As before, the

input variables are coded as in (2.2). The corresponding

vector u(Z'Z) in (2.6) can then be written as

u(Z'Z) = n w 0
+  

2+ u*(Z'Z), (2.12)

where w and w are the same as in (2.9), which holds for a rotat-

able design having the same number, n, of runs. The elements

of u*(Z'Z) are equal to the corresponding elements of u(Z'Z)

except for those that correspond to design moments of order 6 = 0

- -and even design moments of order 6 : 2, which are equal to zero.

To measure the rotatabi1ity of the design 1) it is necessary

to determine how well the vector u*(Z'Z) cain he approximated with

. 1b

-ll
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a vector v of the form given in (2.11). This is equivalent to

finding a vector v e K, the cone of rotatability described

earlier, that is closest (in terms of the Euclidean norm)

to u*(Z'Z). For this purpose the parameters K 4 ' K 6 ''', K 2 d in

(2.11) are chosen so that

d

Qn(D)= Hu*(Z'Z) - E K2m W2m 2  (2.13)
m=2

is minimum, where 11-11 denotes the Euclidean norm, or length, of a

vector. In Appendix A it is shown that the minimum value of QnP)

is given by the formula

d
min[Q(D)] = nu*(Z'Z)II 2 

- £ [u*'(Z'Z)w2 ] 2/ 2
2 . (2.14)

m=2

It is interesting to note that with K2m being given as in (A.3) in

d
Appendix A, the vector E K W22m is the projection of the

m=2

vector u*(Z'Z) on the cone of rotatability K. The square of the

Euclidean norm of this projection is given by the absolute value

of the second term on the right side of (2.4) and represents the

portion of pu*(Z'Z)II2 which can be attributed to rotatability.

Hence, as a measure of rotatability for the design D I choose the

quantity

n(D ) = 1OO{lu*(Z'Z)11
2 

- min[Q(D)]}/i0u*(Z'Z)ll2

d

1 00{ E [ '(Z'Z)W2 12/11 22 /Ru*(Z'Z)1 2 ' (2.15)
m= 2

which represents the percent contribution of rotatability to the

-12-
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magnitude of fu*(Z' Z)I2 . In other words, n( Q) represents the

percent rotatability that is inherent in the design D. This is

analogous to the use of the coefficient of determination, R2 , in

regression, which measures the proportion of the total variation

in the response that is caused by, or attributed to, the fitted

model. If Q is rotatable, then u*(Z'Z) must belong to the cone of

rotatability K, hence min[Qn(D)] = 0 and 1n(D) = 100. A large

value of 0n( ) is, therefore, an indication that the design V is
An

near rotatable.

The measure of rotatability defined in (2.15) satisfies

conditions (i), (ii), and (iii) stated earlier in this section.

This follows from the fact that the vector u*(Z'Z) is scale free

and its elements depend on design moments of order two or higher,

hence they are unaffected by the addition of center points.

3. REPAIRING ROTATABILITY

The measure developed in Section 2 can be used effectively to

increase the percent rotatability of a nonrotatable design by

augmenting it with additional runs chosen appropriately. This is

particularly useful in situations where, because of technical

limitations, some of the input variables of a rotatable design are

set at levels different from those in the original design causing

it to become nonrotatable. Also, it frequently happens that a

rotatable design is purposely modified by the introduction of new

-13-
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a.

runs in order to concentrate information in certain areas of

interest (see Littell and Mott 1974). This modification usually

results in loss of rotatability.

The choice of points to be added to a nonrotatable design to

increase its percent rotatability can be accomplished in a

sequential manner as follows: Let Q(O) denote a given

nonrotatable design consisting of no experimental runs. For any

point, A, in the experimental region R, the design D -0 ) consists

(0)
of the design D augmented with x. The percent rotatability

D is given bytoD t .A ne einpit ,isno

added to D to obtain the design D ( 0 )  This new point is

' chosen by maximizing the percent rotatability of D 0 ) with respect

to x over R. For simplicity the design D ( is written as

We thus have

:2 Ono~l ( ~D
( I0 n max[ On l ~ 0 )

0 xeR 0

A second design point, Z2' is subsequently added to V(1) by

repeating the same process as above, but with D(1) replacing

Q[.. Let 'D(2) be the design consisting of (l) augmented with

42- By continuing this process we obtain the sequence of designs,
D (2) .. . D (i) ,... where D M ) is obtained fromD ( '- l) by

augmenting it with x (i=1,2,...).

The percent rotatability associated with design D (C is

PnD where ni = no + i (i=0,1,...). In Appendix B it is

-14-



shown that

I.,

n n i  ) n i+ I

II Inequality (3.1) implies that the sequence, to n(D(i)J1-io, is

monotonically increasing. Since this sequence is bounded by 100

as can be seen from (2.15), it must coverge to 100 (see, for

example, Rudin 1976, p. 55), that is,

lim c (D(i) = 100.
ij+0n i

In Khuri (1985) it is further shown that (3.1) is in fact a strict

inequality.

The addition of new runs to increase the percent rotatability

is tantamount to "repairing" rotatability. Ilebble and Mitchell

(1972) have indirectly done so by maximizing the determinant

X through design augmentation, where X is the matrix given in

(1.1). The reason rotatability can be partially restored by their

method is based on theoretical results by Wynn (1970) and Kiefer

(1961). More specifically, the method of liebble and Mitchell

leads in the limit to a D-optimal design as was shown by Wynn

(1970). On the other hand, Kiefer (1961) showed that D-optimal

designs over a spherical region are rotatable.

4. EXAMPLES

Four numerical examples, 4.1 - 4.4, are presented in this

-p ,
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section in order to illustrate the applications of the measure of

rotatability. The purpose of example 4.1 is to demonstrate the

actual implementation of formula (2.15). Example 4.2 shuw . how

the measure can be used to compare designs on the basis of their

degrees of rotatability. Examples 4.3 and 4.4 serve to highlight

the utility of the measure in repairing rotatabilit y with the

latter example describing an actual experimental situation.

Example 4.1

Consider fitting a second-order model of the form

E(y) 0 +1X1+ +2x2+ B x2+ x1 2 2 x 2 2 (4.1)
0-1.5 2 x2O+$ 12 Xlx 2  11+ 22x2

- using a 32 factorial design with the j th factor having the levels

-1,0,1(j=1,2). The coding described in (2.2) is already satisfied

with (j 2 ) = 6(j=1,2). In this case a=6, d=2, k=2, and n=9. The

elements of the vectors v(Z'Z), u(Z'Z), u*(Z'Z), w0 24'

and the diagonal elements of the diagonal matrix A (see 2.6 and

2.12) are given in Table 1. The value of min[Qn (D)j in (2.14) is

.00555 and Pn (D) in formula (2.15) is thus equal to 93.08. We

conclude that the 32 factorial design is 93.08% rotatable.

7V:.

Example 4.2: Roquemore's (1976) Hybrid Designs

These designs were introduced by Roquemore (19/6) to emulate

-1 6



certain characteristics of central composite or regular polyhedral

designs. They are economical and are supposed to be near rotat-

able. Roquemore constructed three 3-variable designs, labeled by

him as 310, 311A, and 311B, for a second-order model. These

designs are reproduced in Table 2. He pointed out that the 311A

design was the most nearly rotatable. This was based on observing

contour plots of prediction variance and on a comparison of the

values of the ratio (j4)/(j2X2), j *2, with the value 3 (this

ratio must be equal to 3 in order for a design for a second-order

model to be rotatable as can be verified from 1.4). By applying

the measure of rotatability given in (2.15) it was found out that

the percent rotatability values for the 310, 311A, and 311B

designs were, respectively, 94.89, 99.40, and 98.99. This con-

firms Roquemore's assertion concerning the 311A design. It can

also be seen that all three designs have high percent rotatability

and that the 311B design is as nearly rotatable as the 311A

design. Design 311B was also reported as the most efficient of

the three designs with respect to both the D- and G-optimality

criteria.

This example clearly shows that in conjuction with other

measures of design efficiency, the rotatability measure can be

utilized to select a design that possesses several characteristics

of interest to the experimenter.

-17-
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Example 4.3: Hebble and Mitchell (1972, Example 1, p. 769)

A second-order model in two input variables is fitted using

the ten-point design D(0) described in Table 3. This design was

originally planned as a rotatable central composite design with

two center points. The region of interest, R, is circular with

center at (0,0) and radius = 2. In terms of the coded variables,

zI and z2, the model is written as

2 2
E(y) = y 0 + Y1zI+ y 2 z 2 + Y1 2zIz 2 + Yll l + Y22 Z 2

The percent rotatability of P(O) according to formula (2.15)

is 80.65. This design was subsequently augmented with three

additional repair points, one at a time, to get the sequence of

(1) (2) (3)
designs, D , D , and D 3  As was described in Section 3, the

design D( i ) is obtained from the design D(i - 1 ) by the addition of

ds(i-e)a

the point x. that maximizes 4 (Dr11 )x with respect to x over the
1

region R(i=1,2,3). The maximization of 0 was carried out by using

SEARCH, a computer program written by Conlon (1979) and is based

on the controlled random search procedure introduced by Price

(1977). The optimal locations of the additional three points and

the corresponding percent rotatability of the ensuing designs,

,'..- (1) (2) (3)
"), P and L) are given in Table 4. Note that the first

two points cause a sizable increase in the percent rotatability

beyond the value 80.65 for thc intitial design n(0) A total of

gO,
"; -..::---,: -: .i." -_ : , : - .::,_:- . v ; ,,.-: .:. ::., .,.: ++, '+--,-...--_,'.:- : .,.,--, .-18.-...-
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less than six seconds of CPU time was needed to locate the

additional three points.

For each of the four designs, D(0) (1) (2) (3)

contour plots of var[y(z)]/0 2 were drawn within a region in the

space of the coded variables which corresponds to R, where a2 is

the random error variance and z = (z1 ,z2 )'. These plots are shown

in Figure 1. It can be clearly seen that the addition of the

optimal three runs has caused the variance contours to have a much

more circular appearance, particularly in the the case of run

13. This demonstrates the usefulness of the proposed measure as
S.

an effective tool to rectify nonrotatability.

Example 4.4

A company manufactures a liquid material for coating

automobile window glass which when dried provides a barrier to

ultraviolet rays and also reduces glare from the sun. The coating

liquid consists of water combined with three active solid

ingredients: a polymer (P), a coupling agent (CA), and a

lubricant (L). A film is formed by passing the liquid through an

extruder, oven drying it and then placing it on a roller.

An experiment is to be conducted consisting of several

.% different combinations of the amounts of P, CA, and I. with a fixcd

amount of water. The objective of the experimient i, to determine

the combination of P, CA, and I, that is most effect ive in terms of

-19-



reducing light penetration. Light penetration is measured by

taking a bright colored cloth affixed to the coated glass and

exposing it to light for a fixed period of time. Thie color of the

cloth is then compared to that of an unexposed piece of cloth of

the same color and recording the degree of fading that has

occurred. A low percent fade value is considered to be desirable.

In making up the combinations of water, polymer (P), coupling

agent (CA), and lubricant (L) to produce the different coatings, a

central composite rotatable design in P, CA, and L is set up.

Listed in Table 5 are the amounts (in gramns) of P, CA, and L to be

*combined with 2500 ml of water. The following transformation was

applied so that the desing settings in the factorial portion have

the familiar ±1 values:

x1-P-250 -CA-22.5 -L-7.5(42

The design settings in terms of values of x,, x2 , and x3are

displayed in Table 6.

In this experiment, high ratios of the total amount of the

active solid ingredients to water are considered undesirable

* - because of problems with solubility. For the amount of water used

(2500 ml), it was determined that a total of more than 305 gm of

solid ingredients would be undesirable. From Table 5 we note that

design points No. 8 and 10 fall in that category. Their settings

had to be reduced to conform to the 305 upper bound constraint.

-20 -



The experimenter chose to reduce the levels of P for these points

, from 275 and 292.05 to 262 and 275, respectively. The levels of

CA and L were not altered. The total amounts of active solid

ingredients for these two points are now 297 and 305 gm
J.

respectively. The design settings in terms of values of xl, x2 ,

and x 3 for the resulting design are given in Table 6. The

corresponding percent rotatability value is 81.69, a drop of

18.31% from the original central composite design. This clearly

demonstrates the impact that this change of design settings has

had on rotatability.

*To recover the loss of rotatability, repair points were added

to the central composite design with points No. 8 and 10 modified

as was described earlier. The experimental region in the space of

the xl, x2 , and x3 variables is a sphere of radius /-3 centered at

the origin. The first optimal point selected by the computer

program SEARCH is shown in Table 6 as point No. 17. The

-'.. corresponding total of P, CA, and L is 256.77 gm, which does not

• exceed the 305 limit. This point is therefore considered

admissible. The percent rotatability value for the resulting 17-

.r" point design is 88.79. This represents a relative percent

increase in rotatability of about 8.7. The second point selected

S- by SEARCH increased the rotatability value to 95.31%. However, at

this point x I = 1.617, x .20, and .119, which restlts in

a total of 321.023 grm of solid ingredients. The point is

-21-
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inadmissible and was subsequently dropped. For the next point,

the optimization was restricted to a smaller region, namely, a

sphere of radius /.98 centered at the origin. The optimal point

(No. 18 in Table 6) selected by SEARCH in this region was

admissible with a corresponding total of 304.9 gm of solid

ingredients. With the addition of the latter point, the

rotatability value increased to 90.83%. At this stage, the

sequential procedure was terminated. It was felt that additional

points inside the smaller region would only produce marginal

increases in the percent rotatability. To rapidly restore

rotatability, SEARCH should be allowed to operate near the

periphery of the experimental region (with radius equal to / ).

In this example, however, this can lead to inadmissible points as

was seen earlier.

5. CONCLUDING REMARKS

When a design is nonrotatable, it may be of interest to

assess the extent of its departure from rotatahility. This can be

particularly useful in situations where a design is required to

possess several desirable characteristics, including rotatability.

It is important here not to confuse priorities when considering a

choice of a response surface design. The introduction of the

rotatability measure does not mean that rotatability should be

emphasized at the expense of other design criteria. On the

contrary, the variance and bias design criteria, for example, cati

-22-
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be by far more important. Only after these criteria (or perhaps

others that may be of interest to the experimenter) have been

fully pursued might one consider rotatability. In fact,

rotatability may sometimes be compromised in favor of other

desirable design features.

The measure of rotatability introduced in this paper gives

the experimenter greater freedom and flexibility in selecting from

a pool of efficient designs those that have high percent rotat-

ability. These designs can be made even more rotatable, if

S--necessary, by proper addition of design points as was shown in

Section 3. Certainly, this action will not reduce the efficiency

- of the augmented designs.
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APPENDIX A: THE DERIVATION OF FORMULA (2.14)

The w2m vectors that appear in formula (2.9) are pairwise

orthogonal. Formula (2.13) can therefore be written as

d d

Qn(D) = [u*'(Z'Z) - E Km 2 m][U*(Z'Z)- £ K2 ]
m=2 m=2

d
- Iu*'(Z'Z)112 - 2 E K u*'(ZIZ)w

m=22m --- m

d
+ E )m 1w2 112. (A.1)

m=2 2M -2m

By differentiating Qn(,Q) with respect to K 2m(m=
2 ,. ..,d) and

equating the derivatives to zero we get

3Q n (D )

= - 2u*'(Z'Z)w2+ 2K 1w 212 = 0, m=2,3,...,d. (A.2)

aK 2 m -- 2m 2m "2m

By solving for K2m we obtain

K = u*'(Z'Z) W /0 W 112 ,  m=2,3,...,d. (A.3)
*2m - 2m "2m

The solution (A.3) satisfies the constraint K2m > 0 (m=2,3,...,d)

since u*'(Z'Z)w ) 0 for m=2,3,...,d. This follows because
" - "-2m

u*(Z'Z)w2m is a positive linear combination of the even design

moments of order 6 = 2m (m=2,3,...,d) for Ihe design V. It is

easy to verify that the solution (A.3) represents an absolute

minimum that has the value

d

min[Qn(D)] IIu*(Z'Z)112 - m[u*'(Z'/ (A.4)
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APPENDIX B: PROOF OF INEQUAIJTY ( 3. 1)

tt
Let x(') denote the u1t level of the jt input variable foruj

the design D M (i=0,1,...; j=1,2,...,k; u=,,., Let

-(i) n iM
. = I ix In. (j =,. I ,k) . The center of this design is the

point M = ( x (,X ,..MXkJ). By condition (iii) in Section

2, the addition of this point to D(') will not alter its measure

of rotatability, that is,

(B.1

n i -(i)' n.i

Now, since

nID ( (i+1)) = maxR (i')], iO1. ,(B.2)

then from (B.1) and (B.2) we obtain

i+l

-'2) 2'-



Table 1. The Elements of the Vectors v(Z'Z), u(Z'Z), u*(Z'Z),

~ ~2' w4,and the Diagonal Elements of the 'Matrix Z for

the 32 Factorial Design (Example 4.1)

V(Z'Z) AU(ZZ) !!*(Z'Z) w2

9 19 0 1 0 0

0 6-1/2 0 0 0 0 0

0 6-1/2 0 0 0 0 0

*0 6-1 0 0 0 0 0

6 6-1 1 0 0 1 0

6 6-1 1 0 0 1 0

6 6-1 1 0 0 1 0

0 6- 0 0 0 0 0

o 6-3/2 0 0 0 0 0

0 6-3/2 0 0 0 0 0

o 6-3/2 0 0 0 0 0

6 6-1 1 0 0 1 0

o ~ ~ 63/2 00000
o 63/ 0 0 0 0 0

o 6-3/2 0 0 0 0 0

4 6-2 4/36 4/36 0 0 1

o 6- 2 0 0 0 0 0

0 6-2 0 0 0 0 0

6 6- 2 6/36 6/36 0 0 3

4 6-2 4/36 4/36 0 0 1

6 6-2 6/36 6/36 0 0 3
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Table 2. Roquemore's (1976) Three-Variable

Hybrid Designs (Example 4.2)*

310 311A 311B

xI  x2  x3  xI  x2  x3  xI  x2  x3

- 0 0 1.2906 0 0 2 0 0 61/2

0 0 -.136 0 0 -2 0 0 -61/2

-1 -1 .6386 -21/2 _2112 1 -.7507 2.1063 1

1 -1 .6386 21/2 21/2 1 2.1063 .7507 1

-1 1 .6386 -21/2 21/2 1 .7507 -2.1063 1

1 1 .6386 21/2 21/2 1 -2.1063 -.7507 1

1.1736 0 -.9273 2 0 -1 .7507 2.1063 -1

- -1.1736 0 -.9273 -2 0 -1 2.1063 -.7507 -1

0 1.1736 -.9273 0 2 -1 -.7507 -2.1063 -1

0 -1.1736 -.9273 0 -2 -1 -2.1063 .7507 -1

0 0 0 0 0 0

* The first digit in a design title is the number of variables,

the next two digits are the number of points. A letter

differentiates designs of the same size.
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Table 3. The Initial Nonrotatable Design D(0 ) (Example 4.3)

x1 x2

-1 1.35

1 -1. 25

-1.6 - .85

1 1

-1.5 0

1.55 0

0 -I

0 1.55

.55 .30

0 0

-28-
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Table 4. Repair Points and Percent Rotatability Values

for the Corresponding Augmented Designs for Example 4.3

(The Initial Design is Given in Table 3 and has a

Percent Rotatability Value of 80.65)

Run x x2  Augmented Design % Rotatabilitv Increase in

No. % Rotatability

11 -. 1188 -1.8593 DM = D (0 ) Plus 89.99 9.34

Run No. 11

12 -.8295 .0091 D ( 2 )= DO') Plus 96.47 15.82

Run No. 12

.5.

13 -. 1450 -.2764 D( 3 )= D (2 ) Plus 97.03 16.38

Run No. 13

-'"
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Table 5. The Actual Levels (in grams) of P, CA, and L to be

Combined with 2500 ml of Water for the Central

Composite Rotatable Design of Example 4.4

. Run No. P CA L Total Amount of
Active Solids

1 225.0 20.0 5.0 250.0

2 275.0 20.0 5.0 300.0

3 225.0 25.0 5.0 255.0

4 275.0 25.0 5.0 305.0

5 225.0 20.0 10.0 255.0

6 275.0 20.0 10.0 305.0

7 225.0 25.0 10.0 260.0

8 275.0 25.0 10.0 310.0*

9 207.95 22.5 7.5 237.95

10 292.05 22.5 7.5 322.05*

11 250.0 18.295 7.5 275.795

12 250.0 26.705 7.5 284.205

13 250.0 22.5 3.295 275. 795

14 250.0 22.5 11.705 284.205

15 250.0 22.9 7.5 280.0

16 250.0 22.5 7.5 28o.0

*The total exceeds 305 gin.

q~s3 0

%.%- %,. - 3 ( - * - . .-



TABLE 6. The Rotatable Central Composite Design Under the Coding

of Eqs. (4.2), the Design Settings for the Modified

Design with the Additional Repair Points, and the

Corresponding Rotatability Values (Example 4.4)

Rotatable Central Modified Central

Run No. Composite Design Composite Design % Rotatability

x I  x 2  X3  x I  X2  x 3

12 -I -1 -l -1 -1 -12 1 -l -1 1 -1 -1

.-- 3 -1 1 -1 -1 1 -1

4 1 1 -1 1 1 -1

5 -1 -1 1 -1 -1 1

-.. 6 1 - 1 1 1 - 1 1

*.... 7 -1 1 1 -1 1 1

8 1 1 1 .48 1 1

9 -1.682 0 0 -1.682 0 0

10 1.682 0 0 1 0 0

11 0 -1.682 0 0 -1.682 0

12 0 1.682 0 0 1.682 0

13 0 0 -1.682 e 0 -1.682

14 0 0 1.682 0 0 1.682

15 0 0 0 0 0 0

16 0 0 0 0 0 0 81.69
17" -.828 -. 506 -. 506 88.79

18* .966 .151 .151 90.83

*Repair points
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