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A bst ract

The ultimate goal of work in cognitive architecture is to provide the foundation for a system
capable of general intelligent behavior. That is, the goal is to provide the underlying structure that
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Soar: An Architecture for General Intelligence'

Soar is an architecture for a system that is to be capable of general intelligence. Soar is to be able to: (1)

work on the full range of tasks, from highly routine to extremely difficult open-ended problems; (2) employ

the full range of problem-solving methods and representations required for these tasks: and (3) learn about all

aspects of the tasks and its performance on them. Soar has existed since mid 1982 as an experimental software

system (in Ops5 and Lisp), initially as Soar 1 [31, 321, then as Soar 2 [29, 351, and currently as Soar 4 [301. Soar

realizes the capabilities of a general intelligence only in part, with significant aspects still missing. But enough

has been attained to make worthwhile an exposition of the current system.

Soar is one of many artificial intelligence (AI) systems that have attempted to provide an appropriate

organization for intelligent action. It is to be compared with other organizations that have been put forth,

especially recent ones: MRS [22]; Eurisko [38, 39]; blackboard architectures [4, 16, 24, 56]; Pam/Pandora
[79] and Nasl [40]. Soar is also to be compared with machine learning systems that involve some form of

problem solving [10, 15, 37, 45, 46]. Especially important are existing systems that engage in some significant

form of both problem solving and learning, such as: ACT* [21; and Repair theory [8], embodied in a system

called Sierra [77]. ACT* and Repair theory are both psychological theories of human cognition. Soar, whose
antecedents have layed a strong role in cognitive theories, is also intended as the basis for a psychological

theory, but this aspect is not yet well developed and is not discussed further.

Soar has its direct roots in a continuous line of research that starts back in 1956 with the Logic Theorist

[53] and list processing (the IPLs) [55]. The line goes through GPS [17, 541, the general theory of human

problem solving [51] and the development of production systems, PSG [481, Psanls [661 and the Ops series [20,

211. Ttr roots include the emergence of the concept of cognitive architecture [48], the lnstructable Production

System project [67, 681 and the extension of the concept of problem spaces to routine behavior [49. They also

include research on cognitive skill and its acquisition [11, 35, 50, 63]. Soar is the current culmination of all this

work along the dimension of architectures for intelligence.

Soar's behavior has already been studied over a range of tasks and methods (Figure 1), which sample its

intended range, though unsystematically. Soar has been run on most of the standard Al toy problems [29, 31].

These tasks elicit knowledge-lean, goal-oriented behavior. Soar has been run on a small number of routine,

cssentially algorithmic, tasks, such as matching forms to objects, doing elementary syllogisms, and searching

for a root of a quadratic equation. Soar has been run on knowledgc-intensive tasks that are typical of current

expert systems. The tactic has been to do the same task as an existing Al expert system, using the same

1Wc would like to thank Da id Sticir and I)anny Bobrow for ictr helpful comments on earlier drafts of this article, and Randy
Gobbel for a.,,itancc in the fital p ft par;mtion ot Lhc manuscript.
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knowledge. "lhe main efiort has been RI-Soar [65], which showed how Soar would realize a classical expcrt

system. R1, which configures Vax and PDP-11 computers at Digital Equipment Corporation [3, 41]. RI is a

large system and RI-Soar was only carried far enough in its detailed coverage (about 25% of the functionality

of R1) to make clear that it could be extended to full coverage if the effort warranted [75]. In addition, Soar

versions of other substantial systems are operational although not complete: Neomycin [13], which itself is a

reworking of the classical expert system. Mycin [71]; and Designer [261, an AI system for designing al-

gorithms. Soar has also been given some tasks that have played important roles in the development of

artificial intelligence: natural-language parsing, concept learning, and predicate-calculus theorem proving. In

each case the performance and knowledge of an existing system has been adopted as a target in order to learn

as much as possible by comparison: Dypar [61, Version Spaces [441 and Resolution [601. These have so far

been small demonstration systems; developing them to full-scale performance has not seemed profitable.

A variety of different representations for tasks and methods can be realized within Soar's architecturally
given procedural and declarative representations. Essentially all the familiar weak methods [47] have been

realized with Soar and used on several tasks [31]. In larger tasks, such as Ri-Soar, different weak methods

occur in different subparts of the task. Alternative decompositions of a task into subtasks [75] and alternative

basic representations of a task have also been explored [31], but not intensively.

Soar has a general mechanism for learning from experience [33, 36] which applies to any task it performs.
Thus, it can improve its performance in all of the tasks listed. Detailed studies of its learning behavior have

been done on several tasks of varying characteristics of size and task-type (games, puzzles, expert-system

tasks). This single learning mechanism produces a range of learning phenomena, such as improvement in

related tasks (across-task transfer); improvement even within the learning trial (within-trial transfer); and the

acquisition of new heuristics, operator implementations and macro-operators.

Several basic mechanisms of cognition have not yet been demonstrated with Soar. Potentially, each such

mechanism could force the modification of the architecture, although we expect most of them to be realized

without major extension. Some of the most important missing aspects are deliberate planning, as developed

in artificial-intelligence systems [69]: the automatic acquisition of new tasks [231: the creation of new taskzrepresentations[1, 27]; extension to additional types of learning (e.g.. by analysis, instruction, example,

reading): and the ability to recover from errors in learning (which in Soar occurs by overgeneralization [34]).

It is useful to list these lacunae, not just to indicate present limitations on Soar. but to establish the intended

scope of the s)stem. Soar is to operate throughout the entire spectrum ofcognitive tasks.

The first section of this paper gives a preview of the features of Soar. The second section describes the Soar

architecture in detail. The third section discusses some examples in order to make clear Soar's structure and

operation. The final section concludes with a list of the principal hypotheses underlying the design of Soar.
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Small, knowledge-lean tasks (typical At toy tasks):
Blocks world, eight puzzle, eight queens, labeling line drawings (constraint satisfaction),
magic squares, missionaries and cannibals, monkey and bananas, picnic problem,
robot location-finding, three wizards problem, tic-tac-toc, Tower of Hanoi,
water-jug task

Small routine tasks:
Expression unification, root finding, sequence extrapolation, syllogisms, Wason verification task

Knowledge-intensive expert-system tasks:
Ri-Soar: 3300 rule industrial expert system (25% coverage)

* ,~.Neomycin: Revision of Mycin (initial version)
Designer: Designs algorithms (initial version)

Miscellaneous Al tasks:
Dypar-Soar: Natural language parsing program (small demo)
Version-spaces: Concept formation (small demo)
Resolution theorem-prover (small demo)

Multiple weak methods with variations, most used in multiple small tasks:
Generate and test, AND/OR search, hill climbing (simple and steepest-ascent), means-ends analysis,
operator subgoaling, hypothesize and match, breadth-first search, depth-first search,
heuristic search, best-first search, A*, progressive deepening (simple and modified),
B* (progressive deepening), minimax (simple and depth-bounded), alpha-beta, iterative deepening, B*

Multiple organizations and task representations:
Eight puzzle, picnic problem, Ri-Soar

Learning:
Learns on all tasks it performs by a uniform method (chunking)

Detailed studies on eight puzzle, Ri-Soar, tic-tac-toe, Korf macro-operators
Types of learning:

Improvement with practice, within-task transfer, across-task transfer, strategy acquisition,
operator implementation, macro-operators, explanation-based generalization

Major aspects still missing:
Deliberate planning, automatic task acquisition, creating representations, varieties of learning
recovering from overgeneralization, interaction with external task environment

Figure 1: Summary of Soar performance scope.

1. Preview
In common with the mainstream of problem-solving and reasoning systems in Al, Soar has an explicit

symbolic representation of its tasks, which it manipulates by symbolic processes. It encodes its knowledge of

the task environment in symbolic structures and attempts to use this knowledge to guide its behavior. It has a

general scheme of goals and subgoals for representing what the system wants to achieve, and for controlling

its behavior.
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Beyond these basic communalitics, Soar embodies mechanisms and organizational principles that express

distinctive hypotheses about the nature of the architecture for intelligence. Ilhese hypotheses are shared by

other systems to varying extents, but taken together they determine Soar's unique position in the space of

possible architectures. We preview here these main distinctive characteristics of Soar. The fu~ll details of all

these features will be given in the next section on the architecture.

1.1. Uniform task representation by problem spaces

In Soar, every task of attaining a goal is formulated as finding a desired state in a problem space (a space

with a set of operators that apply to a current state to yield a new state) [49). Hence, all tasks take the form ofI
heuristic search. Routine procedures arise, in this scheme, when enough knowledge is available to provide

complete search control, i.e., to determine the correct operator to be taken at each step. In Al, problem spaces
ON": are commonly used for genuine problem solving [18, 51, 57, 58, 59, 721, but procedural representations are

commnonly used for routine behavior. For instance, problem-space operators are typically realized by Lisp

~ ",,~code. In Soar, on the other hand, complex operators are implemented by problem spaces (though sufficiently

simple operators can be realized directly by rules). The adoption of the problem space as the fundamental

organization for all goal-oriented symbolic activity (called the Problem Space Hypothesis [49]) is a principal
feature of Soar.

Figure 1-1 provides a schematic view of the important components of a problem-space search for the eight
puzzle. The lower, triangular portion of the figure represents the search in the eight puzzle problem space,
while the upper, rectangular portion represents the knowledge involved in the definition and control of the

search. In the eight puzzle, there are eight numbered tiles and one space on a three-by-three board. The

states are different configurations of the tiles on the board. The operators are the movements of an adjacent

tile into the space (up, down, left and right). In the figure, the states are represented by schematic boards and

the operators are represented by arrows.

Problem-space search occurs in the attempt to attain a goal. In the eight puzzle the goal is a desired state

representing a specific configuration of the tiles - the darkened board at the right of the figure. In other

tasks, such as chess, where checkmate is the goal, there are many disparate desired states, which may then be

represented by a test procedure. Whenever a new goal is encountered in solving a problem, the problem
solver begins at some initial state in the new problem space. For the eight puzzle, the initial state is just a.

particular configuration of the ties. The problem-space search results from the problem solver's application

of operators in an attempt to find a way of moving from its initial state to one of its desired states. -

Only the current position (in Figure 1-1, it is the board pointed to by the downward arrow from the

knowledge box) exists on the physical board, and Soar can generate new states only by applying (ie operators.

...- .. .~ .4 ...U . -...
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Figure 1-1: The structure of problem-space search for the eight puzzle.

Likewise, the states in a problem space, except the current state and possibly a few remembered states, do not

preexist as data structures in the problem solver, so they must be generated by applying operators to states

that do exist.

'4-..
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S1.2. Any decision can be an object of goal-oriented attention

*, \I: Jcic:rm in Soar relate to searching a problem space (selection of operators, selection of states, etc.).
-" 0',,x , :,c !-I represents the know ledge that can be immediately brought to bear to make the

decisiwn in , partic.ilar space. Howeer. a subgoal can be set up to make any decision for which the

immedi,tc kn,, wledge IS 11',ufficient. For instance, looking back to state SI, three moves were possible:

mo\ ing tile .idj&.-ent to the blank left, right or dov'n. If the knowledge was not available to select which

* rmo e to r, then a subgoal to select the operator would have been set up. Or, if the operator to move a tile

left had been sclected, but it was not known immediate) how to perform that operator, then a subgoal would
ha-,e been set up to do that. (The moses in the eight puzzle are too simple to require this, but many operators

are more complex, e.g.. an operator to factor a polynomial in an algebraic task.) Or, if the left operator had

been applied and Soar attempted to evaluate the result, but the evaluation was too complicated to compute

directly then a subgoal would have been set up to obtain the evaluation. Or, to take just one more example, if

o. *.. Soar had attempted to apply an operator that was illegal at state S1, say to move tile 1 to the position of tile 2,

then it could have set up a subgoal to sausfy the preconditions of the operator (that the position of tile 2 be

blank).

In short, a subgoal can be set up for any problematic decision, a property we call universal subgoaling.

Since setting up a goal means that a search can be conducted for whatever information is needed to make the

decision. Soar can be described as having no fixed bodies of knowledge to make any decision (as in writing a

specific Lisp function to evaluate a position or select among operators). The ability to search in subgoals also

implies that further subgoals can be set up wi thin existing subgoals so that the behavior of Soar involves a tree

of subgoals and problem spaces (Figure 1-2). Because many of these subgoals address how to make control

decisions, this implies that Soar can reflect [731 on its own problem-solving behavior, and do this to arbitrary

- :. levels [641.
-.Z--,

1.3. Uniform representation of all long-term knowledge by a production system

There is only a single memory organization for all long-term knowledge, namely, a production system [9,

14. 25. 42. 78]. Thus, the boxes in Figures 1-1 and 1-2 are filled in with a uniform production system.

Productions deher control knowledge, as when a production action rejects an operator that leads back to the.4-.,. -

prior position. Productions also proxide procedural knowledge for simple operators, such as the eight-puzzle

'- moes. which can he accomplished b. two productions, one to create the new state and put the changes in

place and ono to .op the unchanged tiles. (As noted above. more complex operators are realized by

opcriting in an nmplementatuin problcm space.) The dita structures examinable by productions - that is, -,

the piccc, ot'kn(wledzge in declaratike F orm -- are ail in the production ssteln's short-term working memory.

I h,,s c\ c; the limc trm storage of tls kri ,. ledge is in productioms s hich have actions that generate the data

strut to res.

-. %'%..

- - - - . ."
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Long-term

Task- implementation and search-control knowledge

selection imple taimpentat tonionenato

opera r oper or opera r oeao

imple entati selec on imple entati slco

Figure 1-2: Thie tree of subgoals and their problem spaces.
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Soar employs a specialized production system (a modified version of Ops5 [201). Ail satisfied productions

are fired in parallel, without conflict resolution. Productions can only add data elements to working memory.

All mrodification and removal of data elements is accomplished by the architecture.

1.4. Knowledge to control search expressed by preferences

Search-control knowledge is brought to bear by the additive accumulation (via production firings) of data

elements in working memory. One type of data element, the preference, represents knowledge about how

Soar should behave in its current situation (as defined by a current goal, problem space, state and operator).

For instance, the rejection of the move that simply returns to the prior state (in the example above) is encoded

as a rejection preference on the operator. The preferences admit only a few concepts: acceptability, rejection,

better (best, worse and worst), and indifferent. The architecture contains a fixed decision procedure for

interpreting the set of accumulated preferences to determine the next action. This fixed procedure is simply

the embodiment of the semantics of these basic preference concepts and contains no task-dependent

knowledge.

1.5. All goals arise to cope with Impasses

Difficulties arise, ultimately, from a lack of knowledge about what to do next (including of course

knowledge that problems cannot be solved). In the immediate context of behaving, difficulties arise when

problem solving cannot continue - when it reaches an impasse. Impasses are detectable by the architecture,

because the fixed decision procedure concludes successfully only when the knowledge of how to proceed is

adequate. The procedure fails otherwise (i.e., it detects an impasse). At this point the architecture creates a

goal for overcoming the impasse. For example, each of the subgoals in Figure 1-2 is evoked because some

impasse occurs: the lack of sufficient preferences between the three task operators creates a tie impasse; the

failure of the productions in the task problem space to carry out the selected task operator leads to a

no-change impasse: and so on.

In Soar, goals are created only in response to impasses. Although there are only a small set of architec-

turally distinct impasses (four), this suffices to generate all the types of subgoals. Thus, all goals arise from the

architecture. This principle of operation, called automatic subgoaling, is the most novel feature of the Soar

architecture, and it provides the basis for many other features.

1.6. Continuous monitoring of goal termination

The architecture continuously monitors for the termination of all active goals in the goal hierarchy. Upon

detection, Soar proceeds immediately from the point of termination. For instance, in trying to break a tie

between two operators in the eight puzzle, a subgoal will be set up to evaluate the operators. If in examining

* .4
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the first operator a prefercnce is created that rejects it. then the decision at the higher level can, and will, be

made immediately. The second operator will be selected and applied, cutting off the rest of the evaluation

and comparison process. All of the working-memory elements local to the terminated goals are automatically

removed.

Immediate and automatic response to the termination of any active goal is rarely used in Al systems because

of its expense. Its (efficient) realization in Soar depends strongly on automatic subgoaling.

1.7. The basic problem-solving methods arise directly from knowledge of the task

Soar realizes the so-called weak methods, such as hill climbing, means-ends analysis, alpha-beta search, etc.,

by adding search-control productions that express, in isolation, knowledge about the task (i.e., about the

problem space and the desired states). The structure of Soar is such that there is no need for this knowledge

to be organized in separate procedural representations for each weak method (with a selection process to III
determine which one to apply). For example, if knowledge exists about how to evaluate the states in a task,

and the consequences of evaluation functions are understood (prefer operators that lead to states with higher

evaluations), then Soar exhibits a form of hill climbing. This general capability is another novel feature of

Soar.

1.8. Continuous learning by experience through chunking

Soar learns continuously by automatically and permanently caching the results of its subgoals as produc-

tions. Thus, consider the tie-impasse between the three task operators in Figure 1-2, which leads to a subgoal

to break that tie. The ultimate result of the problem solving in this subgoal is a preference (or preferences)

that resolves the tie impasse in the top space and terminates the subgoal. Then a production is automatically

created that will deliver that preference (or preferences) again in relevantly similar situations. If the system

ever again reaches a similar situation, no impasse will occur (hence no subgoal and no problem solving in a

subspace) because the appropriate preferences will be generated immediately.

This mechanism is directly related to the phenomenon called chunking in human cognition [63], whence its

name. Structurally. chunking is a limited form of practice learning. However, its effects turn out to be

wide-ranging. Because learning is closely tied to the goal scheme and universal subgoaling - which provide

.n extremcb fine-grained, uniformly structured, and comprehensive decomposition of tasks on which the

learning can work - Soar learns both operator implementations and search control. In addition, the com-
hination of the fine-grained task decomposition with an ability to abstract away all but the relevant features ",

alhows SOar to exhibit significant transfer of learning to new situations, both within the same task and between

sinilar tasks. Ihis ahility to combine learning and problem solving has produced the most striking ex-

pcrimcnial results so tmr in Soar 133. 36. 62].

'4-il,.

%



PAGIO Soa 10htct rhietr SOAR: AN ARC[IIirtcruRE FOR GENERAL INTELLIGFNCE

In hissecionwe escib th Sor achiectresystematically from scratch, depending on the preview

primarily to have etbihdtecnrloeofproblem spaces and production system!-. We will continue to

use the eight puzzle as the example throughout.

2.1. The Architecture for Problem Solving4

Soar is a problem-solving architecture, rather than just an architecture for symbolic manipulation within

which problem solving can be realized by appropriate control. This is possible because Soar accomplishes all

of its tasks in problem spaces.

To realize a task as search in a problem space requires a fixed set of task-implementation functions. involv-

ing the retrieval or generation of: (1) problem spaces, (2) problem-space operators. (3) an initial state

representing the current situation,, and (4) new states that result from applying operators to existing states. To

control the search requires a fixed set of search-control functions, involving the selection of: (1) a problem

space, (2) a state from those directly available, and (3) an operator to apply to the state. Together, the task

implementation and search-control functions are sufficient for problem-space search to occur. The quality

and efficiency of the problem solving will depend on the nature of the selection functions.

The task-implementation and search-control functions are usually interleaved. Task implementation

generates (o eree)new polmspaces, states and operators; and then search control selects among the

alternatives generated. Together they completely determine problem-solving behavior in a problem Tpace.

Thus, as Figure 2-1 shows, the behavior of Soar on the eight puzzle can be described as a sequence of such

acts. Other important functions must be performed for a complete system: goal creation, goal selection, goal

termination, memory managemnent and learning. None of these are included in Soar's search-control or

task-implementation acts. Instead, they are handled automatically by the architecture, and hence are not

objects of volition for Soar. They are described at the appropriate places below.I

The deliberative acts of search-control together with the knowledge for implementing the task are the locus

of intelligence in Soar. As indicated earlier in Figure 1-1. search-control and task-implementation knowledge

is brought to bear on each step of the search. Depending on how much search-control knowledge the

problem solver has and how effctively it is employed, the search in the problem space will be narrow and

focused, or broad and random. If focused enough, the behavior is routine.

Figure 2-2 shows a block diagram of the architecture that generates problem-space search behavior. There

is a working memory that holds the complete processing state for problem solving in Soar. This has three

components: (1) a context stack that specifies the hierarchy of active goals, problem spaces, states and

- %,
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[Retrieve the eight-puzzle problem space]
Select eight-puzzle as problem space
[Generate Si as the initial state]
Select S1 as state
[Retrieve the operators Down, Left, Right]
Select Down as operator
[Apply operator (generate S2)]_I
Select Left as operator
[Apply operator (generate S3)]
Select Right as operator
[Apply operator (generate S4)]
Select S2 as state
[Retrieve the operators Down, Left, Right]
Select Down as operator
[Apply operator (generate S6)]
Select Left as operator
[Apply operator (generate S6)]
Select Right as operator
[Apply operator (generate S7)]
Select S7 as state

Figure 2-1: Problem-space trace in the eight puzzle. (Task implementation steps are bracketed.)

operators; (2) objects, such as goals and states (and their subobjects); and (3) preferences that encode the

procedural search-control knowledge. The processing structure has two parts. One is the production memory,

which is a set of productions that can examine any part of working memory, add new objects and preferences,

and augment existing objects, but cannot modify the context stack. The second is a fixed decision procedure

that examines the preferences and the context stack, and changes the context stack. The productions and the

decision procedure combine to implement the search-control functions. Two other fixed mechanisms are

shown in the figure: a working-memory manager that deletes elements from working memory, and a chunking

mechanism that adds new productions.

Soar is embedded within Lisp. It includes a modified version of the Ops5 production system language plus

additional Lisp code for the decision procedure, chunking. the working-memory manager, and other Soar-

specific features. The Ops5 matcher has been modified to significantly improve the efficiency determining

satisfied productions 170]. The total amount of Lisp code involved, measured in terms of the size of the source

code, is approximately 255 kilobytes - 70 kilobytes of unmodified Ops5 code, 30 kilobytes of modified Ops5

code, and 155 kilobytes of Soar code. Soar runs in CommonLisp, FranzLisp, Interlisp and ZetaLisp on most

of the appropriate hardware (Unix Vax, VMS Vax, Xerox D-machines, Symbolics 3600s, TI Explorers, IBM

RTPCs. Apollo and Sun workstations).
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Working Memory Manager

Decision
Procedure

Figure 2-2: Architectural structure of Soar.

2.2. The Working Memory

Working memory consists of a context stack, a set of objects linked to the context stack, and preferences

Figure 2-3 shows a graphic depiction of a small part of working memory during problem solving on the eight

puzzle. The context stack contains the hierarchy of active contexts (the boxed structures). Each context I ,

contains four slots, one for each of the different roles: goal, problem space, state and operator. Each slot can
be occupied either by an object or by the symbol undecided, the latter meaning that no object has been

selected for that slot. The object playing the role of the goal in a context is the current goal for that context;

the object playing the role of the problem-space is the current problem space for that context and so on. The

I1. ,
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top context contains the highest goal in the hierarchy. The goal in each context below the top context is a ,N"

subgoal of the context above it. In the figure, G1 is the current goal of the top context, P1 is the current

problem space, S1 is the current state, and the current operator is undecided. In the lower context, 02 is the

current goal (and a subgoal of G1). Each context has only one goal for the duration of its existence, so the

context stack doubles as the goal stack.

binding

01 narm,%

1 binding Coll olC

udd82 T 1

B3 Colle

item
01

02 '

03

goOPERATOR
supargolip"

G2 _nl -TIE

P2 SELECTION

Figure 2-3: Snapshot of fragment of working memory.

The basic representation is object-centered. An object, such as a goal or a state, consists of a symbol, called

its identifier. and a set of augmentations. An augmentation is a labeled relation (the attribute) between the . -,-

object (the identifier) and another symbol (the value), i.e., an identifier-attribute-value triple. In the figure, ... ,,, ,,,

G1 is augmented with a desired state, DI. which is itself an object that has its own augmentations

(augmentations are directional, so G1 is not in an augmentation of DI, even though DI is in an augmentation

of G1). The attribute symbol may also be specified as the identifier of an object. Typically, however,

situations are characterized by a small fixed set of attribute symbols - here, impasse, name, operator,

binding, item, and role - that play no other role than to provide discriminating information. An object may

. "
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have any number of augmentations, and the set of augmentations may change over time. 2

A preference is a mare complex data structure with a specific collection of eight architecturally-defined

Y ~ relations between objects. Three preferences are shown in the figure. one each for objects 01, 02, and 03.

The preferences in the figure do not show their full structure (shown later in Figure 2-7), only the context in .
which they are applicable (any context containing problem space P1 and state Si).

The actual representation of objects in working memory is shown in Figure 2-4 . Working memory is a set

- attempting to add an existing element does not change working memory. Each element in working *
memory represents a single augmentation. To simplify the description of objects, we group together all
augmentations of the same object into a single expression. For example, the first line of Figure 2-4 contains a

single expression for the four augmentations of goal G1. The first component of an object is a class name that

distinguishes different types of objects. For example, goal, desired, problem-space, and state are the class

names of the first four objects in Figure 2-4. Class names do not play a semantic role in Soar, although they

allow the underlying matcher to be more efficient. Following the class-name is the identifier of the object.

The goal has the current goal as its identifier. Following the identifier is an unordered list of attribute-value

pairs, each attribute being prefaced by an up-arrow (t). An object may have more than one value for a single

attribute, as does state S1 in Figure 2-4, yielding a simple representation of sets.

The basic attribute-value representation in Soar leaves open how to represent task states. As we shall see

later, the representation plays a key role in determining the generality of learning in Soar. The generality is

maximized when those aspects of a state that are functionally independent are represented independently. In

the eight puzzle, both the structure of the board and the actual tiles do not change from state to state in the

real world. Only the location of a tile on the board changes, so the representation should allow a tie's location

to change without changing the structure of the board or the tiles. Figure 2-5 contains a detailed graphicI
example of one representation of a state in the eight puzzle that captures this structure. The state it represents
is shown in the lower left-hand comner. The board in the eight puzzle is represented by nine cells (the 3x3

square at the bottom of the figure), one for each of the possible locations for the tiles. Each cell is connected
via augmentahions of type cell to its neighboring cells (only a few labels in the center are actually filled in). In

addition, there are nine files (the horizontal sequence of objects just above the cells), named 1-8, and blank

(represented by a small box in the figure). The connections between the tiles and cells are specified by objects w

* called bindings. A given state, such as S1 at the top of the figure, consists of a set of nine bindings (the

'The exutent of the memory structure is necessarily limited by the physical resources of the problem salver, but currently this isI

assumed not to be a problem and mechanisms have not been ceated to deal with it.

3Some basic nlotation and structure is inherited from Opis.

L a mm..MA~~ m '. M'A~ ~tiA~5. &J~t. UP~ &AP~~.PPA~~ A~ ~N ~A~ A' Jrf 8 '~.



2. Tli'SOAR ARCIITECrURE PAGE 15

(goal GI tproblem-space P1 tstate S1 toperator undecided tdesired l)
(desired Di tbinding DB1 tbinding DB2 .)

(problem-space P1 tname eight-puzzle) i'
(state S1 tbinding BI B2 B3 .. )
(binding B1 tell C1 ttile Ti)
(cell C1 tcell C2 ...)
(tile TI tname 1)

(binding B2 tcell C2
(cell C2 icell C1 ...)

(binding B3 ...)

(preference tobject 01 trole operator tvalue acceptable
tproblem-space P1 tstate Si) , - :

(preference tobject 02 trole operator tvalue acceptable
1problem-space P1 tstate Si)

(preference tobject 03 trole operator tvalue acceptable
t problem-space P1 tstate Si)

(operator 01 ... )
(operator 02 ... )
(operator 03 ... )

(goal G2 tproblem-space P2 tstate undecided toperator undecided
tsupergoal GI trole operator timpasse tie
1titem 03 1item 02 1titem 01)

(problem-space P2 tname selection)

Figure 2-4: Working memory representation of the structure in Figure 2-3.

horizontal sequence of objects above the tiles). Each binding points to a tile and a cell; each tile points to its

value; and each cell points to its adjacent cells. Eight puzzle operators manipulate only the bindings, the

representation of the cells and tiles does not change.

Working memory can be modified by: (1) productions, (2) the decision procedure, and (3) the working-

memory manager. Each of these components has a specific function. Productions only add augmentations

and preferences to working memory. The decision procedure only modifies the context stack. The working-

memory manager only removes irrelevant contexts and objects from working memory.

2.3. The Processing Structure

The processing structure implements the functions required for search in a problem space - bringing to

bear task-implementation knowledge to generate objects, and bringing to bear search-control knowledge to

select between alternative objects. The search-control functions are all realized by a single generic control act: *
the replacemeni of an object in a slot by another object from the working memory. The representation of a

problem is changed by replacing the current problem space with a new problem space. Returning to a prior

state is accomplished by replacing the current state with a preexisting one in working memory. An operator is

selected by replacing tie current operator (often undecided) with the new one. A step in the problem space

occurs %hcn the current operator is applied to the current state to produce a new state, which is then selected

to replace the currcnt sttc in de context.

N-I
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TIL TILE TILE TILE TILE TILE TILE TILE TILE *~..

C ELL CELL

CELL

Ti 8 2 33 T 5T6 1 8

1 6 4
7 5 C7 oe "

Figure 2-5: Graphic representation of an eight puzzle state.

A replacement can take place anywhere in the context stack, e.g., a new state can replace the state in any of

the contexts in the stack, not just the lowest or most immediate context but any higher one as well. When an

object in a slot is replaced, all of the slots below it in the context are reinitialized to undecided. Each lower

slot depends on the values of the higher slots for its validity: a problem space is set up in response to a goal; a

state functions only as part of a problem space: and an operator is to be applied at a state. Each context below
the one where the replacement took place is terminated because it depends on the contents of the changed

context for its existence (recall that lower contexts contain subgoals of higher contexts).

The replacement of context objects is driven by the decision cycle. Figure 2-6 shows three cycles, with the

first one expanded out to reveal some of the inner structure. Each cycle involves two distinct parts. First, N.

during the elaboration phase, new objects, new augmentations of old objects, and preferences are added to

working memory. Then the decision procedure examines the accumulated preferences and the context stack,

and either it replaces an existing object in some slot, i.e., in one of the roles of a context in the context stack, or

it creates a subgoal in response to an impasse.

q% 
6s-
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DECISION 1 DECISION 2 DECISION 3

Elaboration Deci ion 4 4,
4Phase 4~Pro/cdure44,,,,,,

Gather %
Preferences

Quiescence Replace
Interpret - Context

Preferences Object 4

Impasse

Create
Subgoal

Figure 2-6: A sequence of decision cycles.

2.3.1. The elaboration phase *.i.

Based on the current contents of working memory, the elaboration phase adds new objects, augmentations

of existing objects, and preferences. Elaborations are generated in parallel (shown by the vertical columns of

arrows in Figure 2-6) but may still require multiple steps for completion (shown by the horizontal sequences

of elaborations in the figure) because information generated during one step may allow other elaborations to .f.J'.

be made on subsequent steps. This is a monotonic process (working-memory elements are not deleted or

modified) that continues until quiescence is reached because there are no more elaborations to be generated.4

The monotonic nature of the elaboration phase assures that no synchronization problems will occur during

the parallel generation of elaborations. However, because this is only syntactic monotonicity - data struc-

tures are not modified or deleted - it leaves open whether semantic conflicts or non-monotonicity will occur.

The elaboration phase is encoded in Soar as productions of the form:

if C and C2 and... and Cm then add A . A A

The C are conditions that examine the context stack and the rest of the working memory, while the A are

actions that add augmentations or preferences to memory. Condition patterns are based on constants, vari-

ables, negations, pattern-ands, and disjunctions of constants (according to the conventions of Ops5

productions). Any object in working memory can be accessed as long as there exists a chain of augmentations

4 In practice. the elaboration phase reaches quiescence quickly (less than ten cycles), however. if quiescence is not reached after a
prcspecfied number of tcrallons (t~pically 100). the elaboration phase terminates and the decision procedure is entered.

per,
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and preferences from the context stack to the object. An augmentation can be a link in the chain if its

identifier appears either in a context or in a previously linked augmentation or preference. A preference can "-

be a link in the chain if all the identifiers in its context fields (defined in Section 2.3.21 appear in the chain.

This property of linked access plays an important role in working-memory management, subgoal termination,

and chunking, by allowing the architecture to determine which augmentations and preferences are accessible

from a context, independent of the specific knowledge encoded in elaborations.

A production is successfully insiantiated if the conjunction of its conditions is satisfied with a consistent

binding of variables. There can be any number of concurrently successful instantiations of a production. All
4.

successful instantiations of all productions fire concurrently (simulated) during the elaboration phase. The

only conflict-resolution principle in Soar is refractory inhibition - an instantiation of a production is fired

only once. Rather than having control exerted at the level of productions by conflict resolution, control is

exerted at the level of problem solving (by the decision procedure).

2.3.2. The decision procedure r

The decision procedure is executed when the elaboration phase reaches quiescence. It determines which

slot in the context stack should have its content replaced, and by which object. This is accomplished by

processing the context stack from the oldest context to the newest (ie., from the highest goal to the lowest

one). Within each context, the roles are considered in turn, starting with the problem space and continuing

through the state and operator in order. The process terminates when a slot is found for which action is

required. Making a change to a higher slot results in the lower slots being reinitialized to undecided, thus

making the processing of lower slots irrelevant.

This ordering on the set of slots in the context stack defines a fixed desirability ordering between changes

for different slots: it is always more desirable to make a change higher up. The processing for each slot is

driven by the knowledge symbolized in the preferences in working memory at the end of the elaboration

phase. Each preference is a statement about the selection of an object for a slot (or set of slots). Three

primitive concepts are available to make preference statements:5

acceptability: A choice is to be considered.

rejection: A choice is not to be made.

desirability: A choice is better than (worse than, indifferent to) a reference choice.

" lhcre i an additional preference t~pe that allows the statemcnt that two choices for an operator slot can he explored in parallel lhis

is a spccial option to explore parallel processing where multplc slots arc created for parallel operators I or more dctails, ee the 1,oar
manual 301

-"4 e -
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Together. the acceptability and rejection preferences determine the objects from \hich a selection will be

made, and the desirability preferences partially order these objects. The re,,ult of prtcssing the slot, if

successful, is a single object that is: new (not currently selected for that slot): acceptable: not rejected; and

more desirable than any other choice that is likewise new, acceptable and not rejected.

A preference encodes a statement about the selection of an object for a slot into a set of attributes and

values, as shown in Figure 2-7. The object is specified by the value of the object attribute. The slot is

specified by the combination of a role and a context. The role is either the problem space, the state or the .

operator; a goal cannot be specified as a role in a preference because goals are determined by the architecture

and not by deliberate decisions. The context is specified by the contents of its four roles: goal, problem space, -',' "

state and operator. A class of contexts can be specified by leaving unspecified the contents of one or more of

the roles. For example, if only the problem space and state roles are specified, the preference will be relevant

for ali goals with the given problem space and state.

The desirability of the object for the slot is specified by the value attribute of a preference, which takes one

of seven alternatives. Acceptable and reject cover their corresponding concepts; the others - best, better,

indifferent, worse, and worst - cover the ordering by desirability. All assertions about ordering locate the

given object relative to a reference object for the same slot. Since the reference object always concerns the

same slot., it is only necessary to specify the object. For better, worse, and some indifferent preferences, the

reference object is another object that is being considered for the slot, and it is given by the reference attribute

of the preference. For best, worst, and the remaining indifferent preferences, the reference object is an ,

abstract anchor point, hence is implicit and need not be given. Consider an example where there are two... ,

eight-puzzle operators, named up and left, being considered for state SI in goal G1. If the identifier for the

eight-puzzle problem space is P1, and the identifiers for up and left are 01 and 02, then the following

preference says that up is better than left:
(preference tobject 01 trole operator tvalue better treference 02

tgoal Gl tproblem-space PI tstate Si)

The decision procedure computes the best choice for a slot based on the preferences in working memory

and the semantics of the preference concepts, as given in Figure 2-8. The preference scheme of Figure 2-8 is a

modification of the straightforward application of the concepts of acceptability, rejection and desirability.

The modifications arise from two sources. [he first is independence. The elaboration phase consists of the

contributions of independentl) firing individual productions, each expressing an independent source of

knowledge. Thcre is no joint constraint on what each asserts. These separate expressions must be combined,

and the only way to do so is to conjoin them. Independence Ipl11pies that one choice can be (and often is) both

acceptable and rejected. For a decision to be possible with such preferences. rejection can not be

% .,.
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Attribute

Object The object that is to occupy the slot

Role The role the object is to occupy
(problem space, state, or operator) ,

Goal

Slot
Problem space I

Context in which the preference applies '
-  prState (A set of contexts can be specified) I

-~~ Operator

Value acceptable The object is a candidate for the given role

reject The object is not to be selected

best The object is as good as any object can be

better The object is better than the reference object

indifferent The object is indifferent to the reference object
if there is one, otherwise the object is indifferent
to all other indifferent objects

worse The object is worse than the reference object
(the inverse of better)

worst The object is as bad as any object can be
(the inverse of best)

Reference The reference object for order comparison

Figure 2-7: The encoding of preferences.

-'acceptable, which would lead to a logical contradiction. Instead, rejection overrides acceptable by eliminat-

ing the choice from consideration. Independence also implies that one choice can be both better and worse
than another. This requires admitting conflicts of desirability between choices. Thus, the desirability order is
quite weak, being transitive, but not irreflexive or antisymmetric, and dominates must be distinguished from

simply better- namely, domination implies better without conflict. The possibility of conflicts modifies the

notion of the maximal subset of a set to be those elements that no other element dominates. For example, in

the set of {x, y} if (x > y) and (y > x) then the maximal subset contains both x and y.

The second source of modifications to the decision procedure is incompleteness. The elaboration phase will

deliver some collcction of preferences. iliese can bc silent on any particular fact, e.g., they may assert that x is
better than y, and that y is rejected, but say nothing about whether x is acceptable or not, or rejected or not.

Indeed. an unmentioned object could be better than any that are mentioned. No constraint on completeness

* L ,
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Primitive predicates and functions on objects, x, y, z,
current The object that currently occupies the slot
acceptable(x) x is acceptable
reject(x) x is rijected
(x > y) x is better than y
(x < y) x is worse than y (same as y > x)
(x - y) x is indifferent to y
(x >> y) x dominates y = (x > y) and -'(y > x)

Reference anchors
indifferent(x) -Vy [indifferent(y) (x - y)]
best(x) Vy [best(y) -(x - y)] A r-'best(y) A -'(y > X) (X > y)] N
worst(x) Vy [worst(y) =*(x - y)] A [-'worst(y) A -'(y < X) =*(X < y)]

Basic propertiesk
Desirability (x > y) is transitive, but Lo complete or antisymmetric
Indifference is an equivalence relationship and substitutes over >

(x > y) and (y - z) implies (x > z)
Indifference does not substitute in acceptable, reject, best, and worst.

acceptable(x) and (x - y) does not imply acceptable(y),
reject(x) and (x - y) does not imply reject(y), etc.

Default assumption
All preference statements that are not explicitly mentioned and not

implied by transitivity or substitution are not assumed to be true

Intermediate definitions
cons idered-cho ices = (xeobjects I acceptable(x) A -reject(x))
maximal(X) = (xEX I Vy -'(y >> x))
maximal-choices = maximal(considered-choices)
empty(X) = -'3xEX
mutually-indifferent(X) -,Vx,yEX (x - y)
iandom(X) = choose one element of X randomly
select(X) = if currentEX then current else random(X)

Final choice
empty (maximal -choices) A -'reject (current) =*f inal -choice (current)
mutual ly-indif ferent(maximal -choices) A -'empty (maximal -cho ices)

=final -choice(select(maximal-choices))

Impasse
empty (maximal -cho ices) A reject(current) -impasse
-'mutual ly-indifferent(maximal -choices) =* impasse(maximal-choices)

Figure 2-8: T7he semantics of preferences.

'mm
* 0 ' '
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can hold, since Soar can be in any state of incomplete knowledge. lhus, for the decision procedure to get a

result, assumptions must be made to close the world logically. The assumptions all flow from the principle

that positive knowledge is required to state a preference - to state that an object is acceptable, rejected or has

%! some desirability relation. Hence, no such assertion should be made by default. [hus, objects are not

acceptable unless explicitly acceptable: are not rejected unless explicitly rejected: and are not ordered in a

specific way unless explicitly ordered. To do otherwise without explicit support is to rob the explicit state-

ments of assertional power.

Note, however, that this assumption does allow for the existence of preferences implied by the explicit

preferences and their semantics. For example, two objects are indifferent if either there is a binary

indifferent-preference containing them, there is a transitive set of binary indifferent-preferences containing

both of them, they are both in unary indifferent-preferences, they are both in best-preferences, or they are

both in worst-preferences.

The first step in processing the preferences for a slot is to determine the set of choices to be considered.

These are objects that are acceptable (there are acceptable-preferences for them) and are not rejected (there

are no reject-preferences for them). Dominance is then determined by the best, better, worst, and worse

' preferences. An object dominates another if it is better than the other (or the other is worse) and the latter

object is not better than the former object. A best choice dominates all other non-best choices, except those

that are explicitly better than it through a better-preference or worst-preference. A worst choice is dominated

by all other non-worst choices, except those that are explicitly worse than it through a better or worst
preference. The maximal-choices are those that are not dominated by any other objects. %

Once the set of maximal-choices is computed, the decision procedure determines the final choice for the

slot. The current choice acts as a default so that a given slot will change only if the current choice is displaced

by another choice. Whenever there are no maximal-choices for a slot, the current choice is maintained, unless

the current choice is rejected. If the set of maximal-choices are mutually indifferent - that is, all pairs of

elements in the set are mutually indifferent - then the final choice is one of the elements of the set. The

default is to not change the current choice, so if the current choice is an element of the set, then it is chosen:

otherwise, one element is chosen at random.6 The random selection is justified because there is positive

knowledge, in the form of preferences, that explicitly states that it does not matter Ahich of the mutually

% indifferent objects is selected.

If the decision procedure determines that the Nalue of the slot should he changed -- that is, there is a final

6
In place of a random sclcction. there is an option in Sitar to A] low the ur.er to wIcti froth the wt of ridtT rcii Ihoice,,

l4O
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choice different from the current object in the slot - the change is installed, all of the lower slots are

reinitialized to undecided, and the elaboration phase of the next decision cycle ensues. If the current choice is

maintained, then the decision procedure copsiders the next slot lower in the hierarchy. If either there is no

final choice, or all of the slots have been exhausted, then the decision procedure fails and an impasse7 occurs.

In Soar, four impasse situations are distinguished: V

1. Tie: This impasse arises when there are multiple maximal-choices that are not mutually indif-
ferent and do not conflict. These are competitors for the same slot for which insufficient
knowledge (expressed as preferentes) exists to discriminate among them.

2. Conflict: This impasse arises when there are conflicting choices in the set of maximal choices.

3. No-change: This impasse arises when the current value of every slot is maintained.

4. Rejection: This impasse arises when the current choice is rejected and there are no maximal
choices: that is, there are no viable choices for the slot This situation typically occurs when all of
the alternatives have been tried and found wanting.

The rules at the bottom of Figure 2-8 cover all but the third of these, which involves cross-slot considerations

not currently dealt with by the preference semantics. These four conditions are mutually exclusive, so at most

one impasse will arise from executing the decision procedure. The response to an impasse in Soar is to set up

a subgoal in which the impasse can be resolved.

2.3.3. Implementing the eight puzzle

Making use of the processing structure so far described - and postponing the discussion of impasses and

subgoals until Section 2.4 - it is possible to describe the implementation of the eight puzzle in Soar. This N

implementation consists of both task-implementation knowledge and search-control knowledge. Such

knowledge is eventually to be acquired by Soar from the external world in some representation and converted

to internal forms, but until such an acquisition mechanism is developed, knowledge is simply posited of Soar, *4

encoded into problem spaces and search control, and incorporated directly into the production memory.

Figures 2-9, 2-10. and 2-11 list the productions that encode the knowledge to implement the eight puzzle

task.3 Figure 2-9 contains the productions that set up things up so that problem solving can begin, and detect. %

when the goal has been achieved. For this example we assume that initially the current goal is to be

augmented with the name solve-eight-puzzle, a description of the initial state, and a description of the desired

state. The problem space is selected based on the description of the goal. In this case, production .

select-eight-puzzle-problcm-space is sensitive to the name of the goal and suggests eight-puzzle as the

7 rhe term was first used in this sense in Repair theor) [81: we had onginally used thc term difficulty [29].

PLThese d-scniptons of the productions are an abstraction of the actual Soar productions, which are given in the Soar manual [30].

-------------- , - .



PAGE 24 SOAR: AN ARCHITECTURE FOR GENERAL INTELLIGENCE

problem space. The initial state is determined by the current goal and the problem space. Production I
define-initial-state translates the description of the initial state in the goal to be a state in the eight-puzzle

problem space. Similarly, define-final-state translates the description of the desired state to be a state in the

eight-puzzle problem space. By providing different initial or desired states, different eight puzzle problems

can be attempted. Production detect-eight-puzzle-success compares the current state, tile by tile and cell by

cell to the desired state. If they match, the goal has been achieved.

select-eight-pule-slace:
If the current goal is solve-eight-puzzle, then make an acceptable-preference for eight-puzzle as the current problem
space.

defl,-iniial-state:
If the current problem space is eight-puzzle, then create a state in this problem space based on the description in the
goal and make an acceptable-preference for this state.

define-flal-state:
If the current problem space is eight-puzzle, then augment the goal with a desired state in this problem space based
on the description in the goal.

detect-eight-puzzle-success:
If the current problem space is eight-puzzle and the current state matches the desired state of the current goal in
each cell. then mark the state with success.

Figure 2-9: Productions that set up the eight puzzle.

The final aspect of the task definition is the implementation of the operators. For a given problem, many
different realizations of essentially the same problem space may be possible. For the eight puzzle, there could

be twenty-four operato, one for each pair of adjacent cells between which a tile could be moved. In such an

implementation, all operators could be made acceptable for each state, followed by the rejection of those that

cannot apply (because the blank is not in the appropriate place). Alternatively, only those operators that are

applicable to a state could be made acceptable. Another implementation could have four operators, one for

each direction in which tiles can be moved into the blank cell: up, down, left, and right. Those operators that

do not apply to a state could be rejected.

In our implementation of the eight puzzle, there is a single general operator for moving a tile adjacent to the

blank cell into the blank cell. For a given state, an instance of this operator is created for each of the adjacent
cells. We will refer to these instantiated operators by the direction they move their associated tile: up, down,

left and right. To create the operator instantiations requires a single production, shown in Figure 2-10. Each

operator is represented in working memory as an object that is augmented with the cell containing the blank

and one of the cells adjacent to the blank. When an instantiated operator is created, an acceptable-preference

is also created for it in the context containing the eight-puzzle problem space and the state for which the

instantiated operator was created. Since operators are created only if they can apply, an additional production

that rejects inapplicable operators is not required.

An operator is applied when it is selected by the decision procedure for an operator role - selecting an
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instantiate-operator:
If the current problem space is eight-puzzle and the current state has a tile in a cell adjacent to the blank's cell. then -'

create an acceptable-preference for a newly created operator that will move the tile into the blank's cell.

Figure 2-10: Production for creating eight puzzle operator instantiations. 7

operator produces a context in which productions associated with the operator can execute (they contain a

condition that tests that the operator is selected). Whatever happens while a given operator occupies an

operator role comprises the attempt to apply that operator. Operator productions are just elaboration produc-

tions, used for operator application rather than for search control. They can create a new state by linking it to

the current context (as the object of an acceptable-preference), and then augmenting it. To apply an instan-

tiated operator in the eight puzzle requires the two productions shown in Figure 2-11. When the operator is .p

selected for an operator slot. production create-new-state will apply and create a new state with the tile and

blank in their swapped cells. The production copy-unchanged-binding copies pointers to the unchanged

bindings between tiles and cells. -

create-new-state:
If the current problem space is eight-puzzle, then create an acceptable-preference for a newly created state, and
augment the new state with bindings that have switched the tiles from the current state that are changed by the
current operator.

copy-unchanged-binding:
If the current problem space is eight-puzzle and there is an acceptable-preference for a new state, then copy from
the current state each binding that is unchanged by the current operator. a..-.. ;.

Figure 2-11: Productions for applying eight puzzle operator instantiations.

The seven productions so far described comprise the task-implementation knowledge for the eight puzzle. "-'-

With no additional productions, Soar will start to solve the problem, though in an unfocused manner. Given .

enough time it will search until a solution is found.9 To make the behavior a bit more focused, search-control

knowledge can be added that guides the selection of operators. Two simple search-control productions are

shown in Figure 2-12. Avoid-undo will avoid operators that move a tile back to its prior cell.

Mea-operator-select is a means-ends-analysis heuristic that prefers the selection of an operator if it moves a

tile into its desired cell. This is not a fool-proof heuristic rule, and will sometimes lead Soar to make an

incorrect move.

avoid-undo:
If the current problem space is eight-puzzle, then create a worst-preference for the operator that will move the tile
that was moved by the operator that created the current state.

mea-operator-selection: ' "
If the current problem space is eight-puzzle and an operator will move a tile into its cell in the desired state, then
make a best-prcference for that operator.

Figure 2-12: Search-control productions for the eight puzzle.

1he default scarch is dcpth-first where the choices between competing operators are made randomly. Infinite loops do not arise
bccau~c the choices arc made non-decerministically.

, VM
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Figure 2-13 contains a trace of the initial behavior using these nine productions (thc top of the figure shows

the states and operator involved in this trace). The trace is divided up into the activity occurring during each

of the first five decision cycles (plus an initialization cycle). Within each cycle. the activity is marked

according to whether it took place within the elaboration phase (E), or as a result of the decision procedure

procedure (D). The steps within the elaboration phase are also marked; for example, line 4.1E represents

activity occurring during the first step of the elaboration phase of the fourth decision cycle. Each line that is

part of the elaboration phase represents a single production firing. Included in these lines are the

production's name and a description of what it does. When more than one production is marked the same. as

in 4.2E, it means that they fire in parallel during the single elaboration step.
S1 S2 D1

2 8 3 down 2 1
16 > 1 4 8 4

.,7 5 7685 765

0 G1 is the current hoal G1 is already augmented with solve-eight-puzzle

1E select-eight-puzzle-space Make an acceptable-preference for eight-puzzle

S,.e ID Select eiaht-puzzle as problem soace

2E define-final-state Augment goal with the desired state (0)
2E define-initial-state Make an acceptable-preference for S1
2D Select S1 as state
3.1E instantiate-operator Create 01 (down) and an 4cceptable-preference for it

3.1E instantiate-operator Create 02 (right) and an acceptable-preference for it
3.1E instantiate-operator Create 03 (left) and an acceptable-preference for it
3.2E mea-operator-selection (01-down) Make a best-preference for down
3D Select 01 (downl as operator

4.1E create-new-state Make an acceptable-preference for S2, swap bindings
4.2E copy-unchanged-binding Copy over unmodified bindings
4.2E copy-unchanged-binding
4.2E copy-unchanged-binding
4.2E copy-unchanged-binding
4.2E copy-unchanged-binding
4.2E copy-unchanged-binding
4.2E copy-unchanged-binding
40 Select S2 as state

5E instantiate-operator Create 04 (down) and an acceptable-preference for it
5E instantiate-operator Create 05 (right) and an acceptable-preference for it

5E instantiate-operator Create 06 (left) and an acceptable-preference for it
5E instantiate-operator Create 07 (up) and an acceptable-preference for it
5E Avoid-undo (07-up) Make a worst-preference for up
50 Tie impasse, create subgoal

Figure 2-13: Trace of initial eight puu.le problem solving.

The trace start- where the current goal (called GI) is the only object defined. In the first cycle, the goal is

,%A 6K ,-

" ?,7. TM . ; . J, % " .'€. ,z, - ;. ,. ". ". " .-. ". " %., ,., *" ". _,,. .. , . "., -je ," "t ". ", ". ". ", ",:., ., ., ... ' ,'.." " ,'. " ',4'".'
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augmented with in acceptable-preference for eight-putzle for die problem-space role. The decision proce-

dure then selects eight-pu/zle as the current problem space. In cycle 2, the initial state. Si. is created with an

acceptable-preference for the state role. and the problem space is augmented with its operators. At the end of

cycle 2. the decision procedure selects S1 as the current state. In cycle 3, operator instances, with correspond-

ing ,cceptable-preferences. are created for all of the tiles that can move into the blank cell. Production ,," .'d

inca-operator-selection makes operator 01 (down) a best choice, resulting in its being selected as the current

operator. In cycle 4. the operator is applied. First, production create-new-state creates the preference for a

new state (S2) and augments it with the swapped bindings, and then production copy-unchanged fills in the

rest of the structure of the new state. Next, state S2 is selected as the current state and operator instances are

created - with corresponding acceptable-preferences - for all of the tiles that can move into the cell that

now contains the blank. On the next decision cycle (cycle 5). none of the operators dominate the others, and

an impasse occurs.

2.4. Impasses and Subgoals %

When attempting to make progress in attaining a goal, the knowledge directly available in the problem

space (encoded in Soar as productions) may be inadequate to lead to a successful choice by the decision

procedure. Such a situation occurred in the last decision cycle of the eight puzzle example in Figure 2-13.

The know ledge directly available about the eight puzzle was incomplete - it did not specify which of the

operators under consideration should be selected. In general, impasses occur because of incomplete or

inconsistent information. Incomplete information may yield a rejection, tie, or no-change impasse, while

inconsistent information yields a conflict impasse.

When an impasse occu-s, returning to the elaboration phase cannot deliver additional knowledge that might

remove the impasse, for elaboration has already run to quiescence. Instead, a subgoal and a new context is

created for each impasse. By responding to an impasse with the creation of a subgoal, Soar is able to &

deliberately search for more information that can lead to the resolution of the impasse. All types of

knowledge, task-implementation and search-control, can be encoded in the problem space for a subgoal.

If a tie impasse between objects for the same slot arises, the problem solving to select the best object will
?'¢. , ,,

usually result in the creation of one or more desirability preferences. making the subgoal a locus of search-

control knowledge for selecting among those objects. A tie impasse between two objects can be resolved in a

number of ways: one object is found to lead to the goal. so a best preference is created, one object is found to

be better than the other, so a better preference is created; no difference is found between the objects, so an

indifferent preference is created: or one object is found to lead away From the goal, so a worst preference is

created. A number of different problem sol% ing strategies can he used to gcnerate these outcomes, including:

further clabortion of the tied objects (or tie other objects in the context) so that a detailed comparison can be

.% ,*j, ,.
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made: look-ahead se.irches to detcrinc the effects of choosing the competing objects, and analogical map-

pings to other situations where the choice is clear.

If a no-change impasse arises with the operator slot filled, the problem solving in the resulting subgoal will

usually invohe operator implementation, terminating when an acceptable-preference is generated for a new

state in the parent problem space. Similarly, subgoals can create problem spaces or initial states when the
required knowledge is more easily encoded as a goal to be achieved through problem-space search, rather

than as a set of elaboration productions.

When the impasse occurs during the fifth decision cycle of the eight-puzzle example in Figure 2-13, the

following goal and context are added to working memory.
(goal G2 tsupergoal GI timpasse tie tchoices multiple trole operator

titem 04 05 06
tproblem-space undecided tstate undecided toperator undecided)

The subgoal is simply a new symbol augmented with: the supergoal (which links the new goal and context

into the context stack): the type of impasse: whether the impasse arose because there were no choices or

multiple choices in the maximal-choices set: the role where the impasse arose; the objects involved in conflicts
or ties (the items); and the problem-space, state, and operator slots (initialized to undecided). This infor-

mation provides an initial definition of the subgoal by defining the conditions that caused it to be generated

and the new context. In the following elaboration phase, the subgoal can be elaborated with a suggested

problem space, an initial state, a desired state or even path constraints. If the situation is not sufficiently

elaborated so that a problem space and initial state can be selected, another impasse ensues and a further

subgoal is created to handle it.

Impasses are resolved by the addition of preferences that change the results of the decision procedure.

When an impasse is resolved, allowing problem solving to proceed in the context, the subgoal created for the

impasse has completed its task and can be terminated. For example, if there is a subgoal for a tie impasse at

the operator role, it will be terminated when a new preference is added to working memory that either rejects

all but one of the competing operators, makes one a best choice, makes one better than all the others, etc. The

subgoal will also be terminated if new preferences change the state or problem-space roles in the context,

because the contents of the operator role depends on the values of these higher roles. If there is a subgoal

created for a no-change impasse at the operator role - usually because of an inability to implement the

operator directly by nles in die problem space - it can be resolved by establishing a preference for a new

state. most likely the one generated from the application of the operator to the current state.

In general, any change to the context at the affected role or above will lead to the termination of the
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subgoal. Lik wise, a change in any of the contexts above a subgoal will lead to the termination of the subgoal

because its depends on the higher contexts for its existence. Resolution of an impasse terminates all goals

below it.

When a subgoal is terminated, many working-memory elements are no longer of any use since they were

created solely for internal processing in the subgoal. The working-memory manager removes these useless

working-memory elements from terminated subgoals in essentially the same way that a garbage collector in

Lisp removes inaccessible CONS cells. Only the results of the subgoal are retained - those objects and

preferences in working memory that meet the criteria of linked access to the unterminated contexts, as _

defined in Section 2.3.1. The context of the subgoal is itself inaccessible from supergoals - its supergoal link . -V

is one-way - so it is removed.

The architecture defines the concept of goal termination, not the concept of goal success or failure. There

are many reasons why a goal should disappear and many ways in which this can be reflected in the

preferences. For instance, the ordinary (successful) way for a subgoal implementing an operator to terminate

is to create the new result state and preferences that enable it to be selected (hence leading to the operator role .

becoming undecided). But sometimes it is appropriate to terminate the subgoal (with failure) by rejecting the

operator or selecting a prior state, so that the operator is never successfully applied.

Automatic subgoal termination at any level of the hierarchy is a highly desirable, but generally expensive,

feature of goal systems. In Soar, the implementation of this feature is not expensive. Because the architecture

creates all goals, it has both the knowledge and the organization necessary to terminate them. The decision

procedure iterates through all contexts from the top, and within each context, through the different roles:

problem space, state and operator. Almost always, no new preferences are available to challenge the current

choices. If new preferences do exist, then the standard analysis of the preferences ensues, possibly deter-

mining a new choice. If everything remains the same, the procedure continues with the next lower slot; if the %

%alue of a slot changes then all lower goals are terminated. The housekeeping costs of termination, which is

the removal of irrelevant objects from the working memory, is independent of how subgoal termination

occurs.

2.5. Default Knowledge for Subgoals

An architecture proxidcs a frame within which goal-oriented action takes place. What action occurs

depends on the knowledge that the system has. Soar has a basic complement of task-independent knowledge

jhOUt its own operation ,and about the attainment of goals within it that may be taken as an adjunct to the .
% %

architecture. A total of fifty-two productions embody Jiis knowledge. With it. Soar exhibits reasonable

dJfJiut bct lior: %kthoUt it (or other task knowledge), Soair can flounder and fall into an infinitely deep series

• % €,.
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of impasses. We describe here the default knoldge and how it is represented. All of this knowledge can be

over-ridden by additional knowledge that adds other preferences.

Conunon search-control knowledge. During the problem solving in a problem space, search-control rules

are available for three common situations that require the creation of preferences.

1. Backup from a failed state. If there is a reject-preference for the current state, an acceptable-
preference is created for the previous state. This implements an elementary form of backtracking.

2. Make all operators acceptable. If there are a fixed set of operators that can apply in a problem
space, they should be candidates for every state. This is accomplished by creating acceptable-
preferences for those operators that are directly linked to the problem space.

3. No operator retry. Given the deterministic nature of Soar, an operator will create the same result
whenever it is applied to the same state. Therefore, once an operator has created a result for a state
in some context, a preference is created to reject that operator whenever that state is the current
state for a context with the same problem space and goal.

Diagnose impasses. When an impasse occurs, the architecture creates a new goal and context that provide

some specific information about the nature of the impasse. From there, the situation must be diagnosed by
search-control knowledge to initiate the appropriate problem-solving behavior. In general this will be task-

dependent, conditional on the knowledge embedded in the entire stack of active contexts. For situations in

which such task-dependent knowledge does not exist, default kncwledge exists to determine what to do.

1. Tie impasse. Assume that additional knowledge or reasoning is required to discriminate the items
that caused the tie. The selection problem space (described below) is made acceptable to work on
this problem. A worst-preference is also generated for the problem space, so that any other
proposed problem space will be preferred.

2. Conflict impasse. Assume that additional knowledge or reasoning is required to resolve the
conflict and reject some of the items that caused the conflict. The selection problem space is also
the appropriate space and it is made acceptable (and worst) for the problem space role.

3. No-change impasse.

a. For goal, problem space and state roles. Assume that the next higher object in the context is
responsible for the impasse, and that a new path can be attempted if the higher object is
rejected. Thus, the default action is to create a reject-preference for the next higher object in
the context or supercontext. The dclault action is taken only if a problem space is not
selected for the subgoal that was generated because of the impasse. This allows the default
action to be overriden through problem solving in a problem space selected for the no-
change impasse. If there is a no-change impasse for the top goal, problem solving is halted
because there is no higher object to reject and no further progress is possible.

10 There has been little expericncc with conflict subgoals so far Thus, little confidence can be placed in the trcatncnt of conflicts and
they Aill not be discus.,cd fuither
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b. For operator role. Such an impasse can occur for multiple reasons. The operator could be
too complex to be performed directly by productions, thus needing a subspace to implement , -. ,

it. or it could be incompletely specified, thus needing to be instantiated. Both of these 6

require task-specific problem spaces and no appropriate default action based on them is
available. A third possibility is that the operator is inapplicable to the given state, but that it
would apply to some other state. This does admit a domain-independent response, namely
attempting to find a state in the same problem space to which the operator will apply
(operator subgoaling). This is taken as the appropriate default response.

4. Rejection impasse. The assumption is the same as for (nonoperator) no-change subgoals: the
higher object is responsible and progress can be made by rejecting it. If there is a rejection
impasse for the top problem space, problem solving is halted because there is no higher object.

The selection problem space. This space is used to resolve ties and conflicts. The states of the selection

space contain the candidate objects from the supercontext (the items associated with the subgoal). Figure 2-14

shows the subgoal structure that arises in the eight puzzle when there is no direct search-control knowledge to

select between operators (such as the mea-operator-selection production). Initially, the problem solver is at r.

the upper-left state and must select an operator. If search control is unable to uniquely determine the next

operator to apply, a tie impasse arises and a subgoal is created to do the selection. In that subgoal, the .-.

selection problem space is used.

initial desired - -

state state
task goal 2a3dw

leight puzzle
Lproblem space 7 5.7.

uwdown>1eft % W%-

down>right
left=right

operator tie evaluate-object evaluate-object evaluate-object -. ,'
subgoal

selection ..... ....
problem space

evaluation
Isubgoal 2 8 3 2 l 8 8 3

eight puzzle 16"4 1 4 64 164 164 164

problem space 7 5 76 5 5 7 5 7 5 7 5
"A

Figure 2-14: The subgoal stncture for the eight puzzle.

%. ,~ .I
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he one operator in dic selection space, e\ahiate-objcct, is a general operator that is instantiated with each

t\ ing (or conflicting) object; that is, a unique evaluate-object operator is created for each instantiation. Each

state in the selection space is a set of evaluations produced by evaluate-object operators (the contents of these

states is not shown in the figure). In the figure, an evaluate-object operator is created for each of the tied
operators: down. left. and right. Each evaluate-object operator produces an evaluation that allows the crea-

bon of preferences involving the objects being evaluated. This requires task-specific knowledge, so either

productions must exist that evaluate the contending objects, or a subgoal will be created to perform this
evaluation (see below for a default strategy for such an evaluation). Indifferent-preferences are created for all
of the evaluate-object operators so that a selection between them can be made without an infinite regression

of tie impasses. If all of the evaluate-object operators are rejected, but still no selection can be made, problem

solving in the selection problem space will have failed to achieve the goal of resolving the impasse. When this

happens, default knowledge (encoded as productions) exists that makes all of the tied alternatives indifferent

(or, correspondingly, rejects all of the conflicting alternatives). This allows problem solving to continue.

The evaluation subgoal. In the selection problem space, each evaluate-object operator must evaluate the

item with which it is instantiated. Task-dependent knowledge may be available to do this. If not, a no-change

impasse will occur, leading to a subgoal to implement the operator. One task-independent evaluation tech-

nique is lookahead- try out the item temporarily to gather information. This serves as the default. For this,

productions reconstruct the task context (i.e., the supercontext that lead to the tie), making acceptable-

preferences for the objects selected in the context and augmenting the new goal with information from the

original goal. In Figure 2-14, the original task problem space and state are selected for the evaluation

subgoals. Once the task context has been reconstructed, the item being evaluated - the down operator - is

selected (it receives a best-preference in the evaluation subgoal). This allows the object to be tried out and

possibly an evaluation to be produced based on progress made toward the goal.
.d.-

When knolA edge is available to evaluate the states in the task space, the new state produced in the evalua-

tpion subgoal will recci'c an evaluation, and that value can be backed up to serve as the evaluation for the

down operator in this situation. One simple eight-puzzle evaluation is to compute the number of tiles that are

changed relative to the locations in the desired state. A value of 1 is assigned if the moved tile is out of

position in the original state and in position in the result state. A value of 0 is assigned if the moved tile is out .-

of position in both states. A Nalue of-I is assigned if the moved tile is in position in the original state and out p U.

of position in the result state. When an evaluation has been computed for down, the evaluation subgoal

terminates, and then the %Ahole process is repeated for the other two operators (left and right). These

exahutins can be used to generate preferences among the competing operators. Since down creates a stateS %ith a better caluanon than the other operators, better-preferencecs (signified hy > in the figure) are created

%I

A : A- I
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for down. An indifferent-preference (signified by = in the figure) is also created for left and right because

they have equal esaluations. The preferences for down lead to its selection in the original task goal and''

problem space, terminating the tie subgoal. At this point down is reapplied to the initial state, the result is

selected and the process continues.

Figure 2-15 shows, in a state-space representation, two steps of the search that occurs within the eight puzzle -

problem space. The distinctive pattern of moves in Figure 2-15 is that of steepest-ascent hill climbing, where

the state being selected at each step is the best at that level according to the evaluation function. These states

were generated in the attempt to solve many different subgoals, rather than from the adoption of a coor- -
dinated method of hill climbing in the original task space. Other types of search arise in a similar way. If no

knowledge to evaluate states is available except when the goal is achieved, a depth-first search arises. If it is

known that every other move is made by an opponent in a two-player game, a mini-max search emerges. The

emergence of methods directly from knowledge in Soar is discussed further in Section 3.2.

,. 94 i,
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Figure 2-15: A trace of steepest ascent hill climbing.
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2.6. Chunking

Chunking is a lcarning scheme for organi/ing and remembering ongoing experience automatically on a .

continuing basis. It has been much studied it psychology 17, 12. 43, 50] and it was developed into an explicit . ...

learning mechanism within a productian-sy stm architecture in prior work [35, 61, 63]. The current chunking .Q' -.

scheme in Soar is directly adapted from this latter work. As detined there, it was a proc:ess that acquired

Shit nks that generated the results of' a goal. Si Cen the goal and its parameters. Thle parameters of a goal were

VJ" % "4'

'., :11 1,::
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defined to be those aspects of the system existing prior to the goals creation that were examined during the

processing of the goal. Each chunk was represented as a set of three productions, one that encoded the

parameters of a goal, one that connected thi encoding in the presence of the goal :o (chunked) results, and

one that decoded the results. Learning was bottom-up: chunks were built only for terminal goals - goals for

which there were no subgoals that had not already been chunked. These chunks improved task performance

bv substituting efficient productions for complex goal processing. This mechanism was shown to work for a

set of simple perceptual-motor skills based on fixed goal hierarchies [61] and it exhibited the power-law speed

improvement characteristic of human practice [50]. Currently, Soar does away with one feature of this

chunking scheme, the three-production chunks, and allows greater flexibility on a second, the bottom-up

nature of chunking. In Soar, single-production chunks are built for either terminal subgoals or for every

subgoal, depending on the user's option.

The power of chunking in Soar stems from Soar's ability to generate goals automatically for problems in

any aspect of its problem-solving behavior: a goal to select among alternatives leads to the creation of a

chunk-production that will later control search; a goal to apply an operator to a state leads to the creation of a

chunk-production that directly implements the operator. The occasions of subgoals are exactly the conditions

where Soar requires learning, since a subgoal is created if and only if the available knowledge is insufficient

for the next step in problem solving. The subgoal is created to find the necessary knowledge and the

chunking mechanism stores away the knowledge so that under similar circumstances in the future, the

knowledge will be available. Actually, Soar learns what is necessary to avoid the impasse that led to the %

subgoal, so that henceforth a subgoal will be unnecessary, as opposed to learning to supply results after the R-.t

subgoal has been created. As search-control knowledge is added through chunking, performance improves

via a reduction in the amount of search. If enough knowledge is added, there is no search; what is left is an p,

efficient algorithm for a task. In addition to reducing search within a single problem space, chunks can

completely eliminate the search of entire subspaces whose function is to make a search-control decision or

perform a task-implementation function (such as applying an operator or determining the initial state of the

task).

2.6.1. The chunking mechanism

A chunk production summarizes the processing in a subgoal. The actions generate those working-memory

elements that eliminated the impasse responsible for the subgoal (and thus terminated the subgoal). The

conditions test those aspects of the currcnt task that were relevant to those actions being performed. The

chunk is created when the subgoal terminates - that is when all of the requisite information is available. The

chunk's actions are based on the results of the subgoal - those working-memory elements created in the

subgoal (or its subgoals) that are accessible from a supcrgoal. An augmentation is a result if its identifier

either existed before tie subgoal was created, or is in inothcr result A prefcrence is a result if all of its

--

N.'
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specified context objects (goal, problem space, state and operator) either existed before the subgoal was

created, or are in another result.

The chunk's conditions are based on a dependency analysis of traces of the productions that fired during the

subgoal. The traces are accumulated during the processing of the subgoal, and then used for condition .

determination at subgoal termination time. Each trace contains the working-memory elements that the

production matched (condition elements) and those it generated (action elemnents). 1 Only productions that

actually add something to working memory have their traces saved. Productions that just monitor the state

(that is, only do output) do not affect what is learned, nor do productions that attempt to add working- ..

memory elements that already exist (recall that working memory is a set). 6

Once a trace is created it needs to be stored on a list associated with the goal in which the production fired.

However, determining the appropriate goal is problematic in Soar because elaborations can execute in parallel

for any of the goals in the stack. The solution comes from examining the contexts tested by the production.*- -,-

The lowest goal in the hierarchy that is matched by conditions of the production is taken to be the one

affected by the production firing. The production will affect the chunks created for that goal and possibly, as %.

we shall see shortly, the higher goals. Because the production firing is independent of the lower goals - it

would have fired whether they existed or not - it will have no effect on the chunks built for those goals. -

When the subgoal terminates, the results of the subgoal are factored into independent subgroups, where . %..-.

two results are considered dependent if they are linked together or they both have links to a third result

object. Each subgroup forms the basis for the actions of one production, and the conditions of each produc-

tion are determined by an independent dependency analysis. The effect of factoring the result is to produce -

more productions, with fewer conditions and actions in each, and thus more generality than if a single

production was created that had all of the actions together. For each set of results, the dependency-analysis

procedure starts by finding those traces that have one of the results as an action element. The condition

elements of these traces are then divided up into those that existed prior to the creation of the subgoal and

those that were created in the subgoal. Those created prior to the subgoal become conditions of the chunk.

The others are then recursively analyzed as if they were results, to determine the pre-subgoal elements that -

were responsible for their creation.

Earlier versions of chunking in Soar [36] implicitly embodied the assumption that problem solving was

perfect - if a rule fired in a subgoal, then that rule must be relevant to the generation of the subgoal's results. .

.% %..

If there is a condition that tests for the absence ofa working-mcmory element, ai copy of that negated condition is saved in the trace

with its %anablcs insiaitiated from the values bound clsewhcrc in dhe production

, . -, ...
-I., %



PAG F36 SOAR. A\ ARCiIIIl.C'ILRL I ORLNIRAL IN ILL IiNC-

The conditions of a chunk were based on the working-memory crmcnts matched by all of the productions

that fired in the subgoal. When the assumption was Niolated. as it was when the processing inobed searches

down paths that led to failure, overly specific chunks were created. By working backward from the results,

the dependency analysis includes only those working-memory elements that were matched by the productions

that actually led to the creation of the results. Working-memory elements that are examined by productions, I
but that turn out to be irrelevant, are not included.

IM
A generalization process allows the chunk to apply in a future situation in which there are objects with the

same descriptions, but possibly different identifiers. Once the set of chunk-productions is determined, they

are generalized by replacing the identifiers in the working-memory elements with variables. -ach identifier

serves to tie together the augmentations of an object, and serves as a pointer to the object, but carries no

meaning of its own - in fact, a new identifier is generated each time an object is created. Constant symbols

- those that are not used as the identifiers of objects - are not modified by this vanablization process, only

the identifiers. All instances of the same identifier are replaced by the same variable. Different identifiers are

replaced by different variables which are forced to match distinct identifiers. This scheme may sometimes be

in error, creating productions that will not match when two elements just happen to have the same (or

different) identifiers, but it always errs by being too constraining.

The final step in the chunk creation process is to perform a pair of optimizations on the chunk productions.

The first optimization simplifies productions learned for the implementation of a complex operator. As part

of creating the new state, much of the substructure of the prior state may be copied over to the new state. The

chunk for this subgoal will have a separate condition, with an associated action, for each of the substructures

copied. The chunk thus ends up with many condition-action pairs that are identical except for the names of

the variables. If such a production were used in Soar during a new situation, a huge number of instantiations

would be created, one for every permutation of the objects to be copied. The optimization eliminates this

problem by removing the conditions that copy substructure from the original production. For each type of

substructure being copied, a new production is created which includes a single condition-action pair that will

copy substructures of that type. Since all of the actions are additive, no orderering of the actions has to be
maintained and the resulting set of rules will copy all of the substructure in parallel.

The second optimi/ation is to order the producuon conditions in an attempt to make the matcher faster.

Fich condition acts like a query - returning all of the %orking-memory elements that match the condition -

and the ocrall match process returns all of the production ,nstaniatim~is that match the conjunctive queries

specified by the condition sides of the productions. I lic ettiency of such a m.ach process is h'avily

dependent on the order of the queries [741 . IBy autromai.illy ,idcring die conditions in Soar, the number of -5
a.''m
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nLIMCr dCi uLtnations ofa production is greatly reduced and heoralcfcncimovd 12

2.6.2. An example of chunk creation

Fieure 2-16 -;hows a trace of the productions that contribute to a chunk built for the evaluation subgoal in

the cighit-pu.iiic examnple dISCus~sed in Section 2.5. The first six decision cycles lead up to the subgoal that
tmpLrnients e .tluate-ohject( down) (evaluate the eight-puzzle operator down). G1 is tie initial goal, G2 is the
Sl.h"Ol to climnahte a tie between operators, and G3 is the subgoal to implement evaluatc-object(down).
Iniuded in this tr~tLC are the names of those productions fired during subgoal G3 that provide traces used by *. .

the dependency ainalysis. Listed for each of these rule firings are the condition elements that existed prior to

the oal, and vich therefore become the basis of the chunk's conditions-, and the action elements that are

linked to preexisting structure, and which therefore become the basis of the actions of the chunk.

Cycle
0 G G I (Solve the eight puzzle] N~
1 P PI [Eight-Puzzle]
2 S. St
3 G G2 (Tie impasse. operators (01[down] 02[left] 03[right]))

4 P P2 [Selection]
5 5 521
6 0 04 [evaluate-object[01[down)
7 G G3 (No-change impasse, operator)
evalsolect-role-ope-ator ;wmn elements tested to

(goal G2 toperator 04) ;establish the context
(operator 04 'name evaluate-object tdesired DI :in which operator O1[downJ

'role operator tsuperoperator 01 ;Can be evaluated
'superprobleni-space Pt tsuperstate St)

8 P PI [Eight-Puzzle]

0 01 (lIownl

fpr~hlemr-space Pt rname eight-puzzle) ;wmn elements tested to
(ojpprator 01 tname move-tile tadjacent-cell ci) ;apply operator that moves

stt±St 'binding Eli tbinding B2) ;the tile in CIL into the
iInd I g Hi 'tile TI 'cell C2) ;cuell with the blank (C2)

t 1lo T I 'name blank) JT1 is the blank
b IndIng 132 rtile TZ 'cell CI) J12 is the tile in cell C1

IIS S2
ew lli' it-, plus-one

,, 2, 1 1 ,i ce P1 'niame eight-puzzle) ;wi elements tested to
*pv-,itor 0.1 n*irne evaluate-object :create evaluation for b~

'desired Ot 'evaluation El) ;state based on detecting
1e~ d01 b~uuig 13) ;that the operator

rj n t 'n PIcell C2 'tile 12) ;has moved a tile Into
f Ce I CI) ;its desired position

.Vitilin f1 'value 1) ;the result/action____

1,, 0 0 [ ,valu~i objPit021 lert]I

I igu re 2- 16: I',i r ~l In duction trcC of an Cight-uI)Ilc evaluation subgoal.

-. , 1 .p O are i not M rllinl here. eceptji il1;t the nost recent %cision (Sept 86), by D~an Scalcs and

e- g_ el'
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Once the evaluation ,,ubgoal is generated. the production eval*sclcct-role-operator fires and creates

acceptable-prcferences for the original task problem space (P1), the original task state (SI), and the operator

being evaluated (01). The production also augments goal G3 with the task goal's desir-"d state (DI). Many of

the production's conditions match working-memory elements that are a part of the definition of the

evaluate-object operator, and thus existed prior to the creation of subgoal 03. These test that the subgoal is to

implement the evaluate-object operator, and they access identifiers of super-objects so that the identifiers can

be included in the preferences generated by the actions of the production. Following the selection of PI and

SI, a production instantiation fires to generate a best-preference for operator 01 for this specific goal, J
problem space, and state. This production firing is not shown because it does not add new conditions to the

chunk.

15
The problem solving continues with the selection of 01 and the generation of a new state (S2). The

unchanged bindings are copied by a rule that is not shown because it does not affect the subgoal's result. S2 is

selected and then evaluated by production eval*state-plus-one, which augments object El with the value of

the evaluation. This augmentation is a result of the subgoal because object El is linked to the state in the

parent context. Immediately afterwards, in the same elaboration phase, a production generates a reject-

preference for operator 04, the evaluate-object operator. This production has no effect on the chunk built for

subgoal G3 because it looks only at higher contexts. Once the reject-preference is created, operator 04 is

rejected, another operator is selected, the no-change impasse is eliminated, subgoal G3 is terminated, and a

chunk is built.

Only certain of the augmentations of the objects are included in the chunk; namely, those that played an

explicit role in attaining the result. For instance, only portions of the state (SI) and the desired state (DI) are

included. Even in the substructure of the state, such as binding B2, its tile ('12) has only its identifier saved,

and not its value (6), because the actual value was never tested. The critical aspect to be tested in the chunk is

that the tile appears as a tile-augmentation of both bindings B2 and D131 (a binding in the desired state, DI).

The exact value of the tile is never tested in the subgoal, so it is not included in the chunk. The conditions

•; •~. created from these working-memory elements will test: that a tile (in this case T2) in the current state (SI) is

in a cell adjacent to the cell containing the blank; and that the cell containing the blank is the cell in which the

tile appears in the desired state. In other words, the chunk fires whenever the evaluate-object operator is
selected in the selection problem space and the operator being evaluated will move a tile into place.

The actioni ot the chunk is to create an evaluation of 1. This value is used to create preferences by comipar- -

ing it to the ,alues produced by evaluating other operators. The other evaluation values arise when a tile is

neither moved into nor out of its desired cell (0), or when a tile is move out of its desired cell (-1). Symbolic

values cOuld have been used in place of the numeric ones, as long as there are additional productions to

compare the values and create appropriate preferences.
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Figure 2-17 contains the one-production chunk built for this example in the format used as input to Soar.
which is similar to that used for Ops5 productions. Each production is a list, consisting of a name, the

condtions, the symbol "--Y, and the actions. Each condition is a template to be matched against working-

memory elements. Symbols in a production of the form "...>" (e.g., <G>) are variables, all others are

constants. The actions are templates for the generation of working-memory elements. In building the chunk,

all identifiers from the original working-memory elements have been replaced by variables. The constants in

the working-memory elements, those symbols that have no further augmentations (evaluate-object,

eight-puzzle, blank), remain as constants in the conditions. Identifier variablization is also responsible for the

additional negation predicates in the specification of objects <SI> and <B2>, such as > <BI> <B2> } in
object <SI>. This is a conjunctive test that succeeds only if <B2> can be bound to a value that is not equal to

the value bound to <B>, thus forcing the objects that are bound to the two variables to be different.

(sp p0038
(goal <G2> toperator <04>) ',

(operator <04> tname evaluate-object 'role operator
tsuperproblem-space <Pl> Isuperstate <Sl>
tsuperoperator <01> tevaluation <El> tdesired <Dl>)

(problem-space (P1> tname eight-puzzle)
(operator <01> 'adjacent-cell <Cl>)
(state <Sl> tbinding <81> tbinding ( > <81> <82> )
(binding <81> 'tile <Ti> tcell <C2>)
(tile <Ti> 'name blank)
(binding <B2> tcell ( > <C2> <Cl> }ttile 0 (> <Ti> <T2> })
(cell <C2> tcell <C>)
(desired Dl> tbinding <DBI>)
(binding <DB1> tcell <C2> ftile <T2>)

(evaluation <El> tvalue 1))

Figure 2-17: Production built by chunking de evaluation subgoal.

V %;
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3. Discussion
The Soar architecture has been fully described in the previous section. However. the consequences of an

architecture are hardly apparent on surface e.amination. The collection of tasks that Soar has accomplished.

'lr. exhibited in Figure 1, provides some useful information about viability and scope. However, simply that Soar

can perform these tasks - that the requisite additional knowledge can be added - is not entirely surprising.
%: The mechanisms in Soar are variants of mechanisms that have emerged as successful over the history of Al

research. Soar's accomplishing these tasks does provide answers to other questions as well. We take up some

of these here. This discussion also attempts to ensure that Soar's mechanisms and their operation are clear.

We limit ourselves to aspects that will shed light on the architecture. The details of Soar's behavior on specific

tasks can be found in the references.

The first question we take up is what Soar is like when it runs a real task consisting of multiple aspects with

varying degrees of knowledge. The second question is how Soar embodies the weak methods, which form the

foundation of intelligent action. The third question involves learning by chunking.

3.1. Combining knowledge and problem solving

IRI is a well-known large knowledge-intensive expert system - consisting of 3300 rules plus a data base of

over 7000 component descriptions, circa 1984 - used at Digital Equipment Corporation to configure Vax and

PDP-11 computers [3, 411. Ri1-Soar is an implementation in Soar of a system that exhibits about 25% of the

functionality of R1, using the same knowledge as obtained from R's Ops5 rules [65, 751. This is a big enough

fraction of RI to assure that extension to a complete version would be straightforward, if desired. 13 The part

covered includes the most involved activity of the system, namely, the assignment of modules to backplanes,

taking into account requirements for power, cabling, etc.

Ri-Soar was created by designing a set of problem spaces for the appropriate subpart of the configuration

task. The problem spaces were added to the basic Soar system (the architecture plus the default knowledge,

as described in the previous section). No task-dependent search-control knowledge was included. The

resulting system was capable of accomplishing the configuration subtsk, although with substantial search.

R I-Soar's behavior was initially explored by adding various amounts of search control and by turning chunk-

ing on and off. Later experiments were run with variations in the problem spaces and their organization.

Thus, Ri-Soar is a family of systems, used to explore how to combine knowledge and problem solving.

In the eight puzzlc there was a single operator which was realized entirely by productions within a single

problem space. However, the configuration task is considerably more complicated. In an extended version of

1Indccd. a rc'ison of RI is tinderay at I)IC that draws on the probliem Ntucture dcclopcd for RI-Soar [7b.
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eW

RI-Soar [751, which covered about 25% of RI (compared to about 16% in the initial version [65]), there were .J-.

thirty-four operators. Twenty-six of the operators could be realized directly by productions, but eight were

complex enough to require implementation in additional problem spaces. Figure 3-1 shows the nine task

spaces used in the extended version of RI-Soar. This structure, which looks like a typical task-subtask -,

hierarchy, is generated by the implementation of complex operators. In operation, of course, specific in-

stances of these problem spaces were created, along with instances of the selection problem space. hus.

Figure 3-1 represents the logical structure, not the dynamic subgoal hierarchy.

Initialize Order P Unibus Priority

Conf igure Cabinet%

Configure System Configure CPU 1-,ir-

Configure o_. ~ Backplane _

Configure Unibus - ICnfgr .

'Cnigr Module ., '

Figure 3-1: Task problem spaces for the extended version of R 1-Soar [75].

The total set of task operators is given in Figure 3-2. Many operators are generic and have instantiations, a

feature of the operator in the eight-puzzle task as well. H-owever, in RI -Soar, some of the instantiations of the

same operator ha'e quite distinct character. Two problem spaces, configure-cpu and configure-unibus, make

use of the sarme generic operators (although they instantiate them differently), such as configured-cabinet.

This Accounts for Figure 3-1 not being a pure hierarchy, with both configurc-cpu and configure-unibus

linking to tile '.line four subspaces.

[he task dcomposition uied by RI-Soar is very different dian the one used by RI. Soar is a problem .

solter c.apablc of toi kinig in lean spaices by extensive search. RI is a knowledge-intensive shallow expert

'tcm. In %hich as much direct recognition and as little search as possible is done. It is built around a very . .

large pre-cst.thlishcd suht,rPk hierarchy (some 321 subtasks, circa 1984) plus a database containing templates

N,,

*,c& .%=
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PROBLEM-SPACE OPERATOR 16-

configure-system initialize order
configure CPU
configure unibus

instance x place modules in sequence
instance - maximum module placement

show output

Initialize-order get component data from database

assign unibus-module priority numbers

unibus-priority sequence unibus modules

configure-cpu configure cabinet
instance = cpu cabinet

configure box
Instance - cpu box

configure backplane
instance - cpu backplane

configure module
instance = maximum module placement

unused component
go to previous slot

configure-unibus configure cabinet
instance - unibus cabinet
instance = empty cabinet

configure box
instance = unibus box
instance - empty box

configure backplane
instance - unibus backplane
instance - empty backplane
instance - unibus repeater
instance = special backplane

configure module
instance - place modules in sequence
instance x maximum module placement -

unused component
remove backplane

instance - replace backplane with repeater
instance = put backplane in next box

configure-cabinet configure cabinet
add component to order

configure-box configure box
next cabinet
install unibus repeater
add component to order

configure-backplane configure backplane
next section
next box
install unibus repeater
add component to order

configure-module configure module in special backplane
configure module with one board
configure module with more than one board
next slot

Figure 3-2: Task operators for die xtended version of RI-Soar 1751.

for the variety of conponents available. RI-Soar was given a set of basic spaces that corresponded closely to

the physical manipulations used in configuring comnputers. Thbe componenlt templates arc encoded as rulcs
that unplcmcnt the operator that adds components to the order. It thus has an appropriate physical model in

terms of which to do basic reasoning about die task.

The use of basic spaces in the initial version of RI-Soar was deliberate, to demonstrate that a general
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problem solver (Soar) could operate in knowledge-intensive mode; and could also mix search-intensive and

knowledge-intensive modes as appropriate, dropping back to search whenever the task demanded it (and not

by predesign). To do this, Soar was given only the task-implementation knowledge - the basic spaces.

desired states, and path constraints - without heuristic search control. Expertise was then to be given by ,'. ,
'--. (....

adding search control. Thus, in one small configuration task die base system (no domain-dependent search ,

control at all) took 1731 decision cycles to solve the task; a version with a small amount of search control took

243 cycles; and a version with a large amount of search control (equal to that in the original RI) took 150 _

cycles [65].14 One surprise in this experiment was how little search control was involved in moving to the

knowledge-intensive versions. Thus, the base system contained a total of 232 rules (for basic Soar plus the -

configuration task): only two productions were added for the small amount of search control; and only 8

more productions for the large amount of search control (for a total of 242). Ihus, there is no correspondence

at all between the number of productions of R 1 and the productions of R 1-Soar. . -

The version of RI-Soar described in Figures 3-1 and 3-2 extended the coverage of the system beyond the

initial version and modified the problem spaces to allow it to run larger orders more efficiently. The

previously separate rules for proposing and checking the legality of an operator (using acceptable and reject e

preferences) were combined into a single rule that only made the operator acceptable when it was legal. Also, "-

additional domain-dependent search-control productions were added (a total of 27 productions for the nine . ,.:-

spaces). These changes converted Ri-Soar to a system somewhat more like the original RI. Figure 3-3 shows

the performance of this system on a set of 15 typical orders. This figure gives a brief description of the size of %

the order (Components) and the number of decision cycles taken to complete the order (Decisions). From

the performancc figures we see that the times range from one to three minutes and reflect the amount of work

that has to be done to process the order, rather than any search (approximately 60 decisions + 7

decisions/component). The extended version of Ri-Soar pretty much knows what needs to be done. These .

times are somewhat slower than the current version of RI (about a factor of 1.5, taking into account the speed .- "

differences of the Ops5 systems involved). This is encouraging for an experimental system, and more recent

improvements to Soar have improved its performance by a factor of 3 [70]. .FA&

3.2. Weak Methods 6, h.'

Viewd as behavior, problem-solving methods are coordinated patterns of operator applications that attempt,.

to attain a goal. Viewed as behavioral specifications, they are typically given as bodies of code that can control

behavior for the duration of the method, where a selection process determines which method to use for a

.*

14 ,Ilese runs took about 29. 4 and 2.5 rninutcs respctnively on a Symbolics 3600 running at approximnately one decision cycle per
ccond ach dccimon c~clc compriscs about 8 production firings .,prcad ovcr two cycles of the elaboration phase (because of the parallel
firing of rules)

.N

. , , - " , , • d - . . % •% , . . .% • , , ;" " . " ., , %L , , % "
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Tasks
TI T2 T3 T4 T5 T6 T7 T8 TO 110 T1 T12 T13 T14 T15

Components 5 5 2 7 5 8 2 3 5 5 15 2 11 7 9

Decisions 88 78 78 196 94 100 70 74 88 go 173 78 124 123 129

..4Figure3-3: Performance of the extended vcrsion of R1-Soar (without learning). a".'-o

given attempt. In Soar, methods are specified as a collection of search-control productions within a set of .,-

related problem spaces - a given task problem space and its subspaces. Analogously to a code body, such a

collection can be coordinated by making die search-control productions conditional on the method name
(Plus perhaps other names for relevant subparts), where method selection occurs by establishing the method

name in working memory as part of a goal or state. Thus, methods in Soar can be handled according to the

standard scheme of selecting among pre-established specifications.

aMethod behavior may also emerge as the result of problem solving being guided by the appropriate .

knowledge, even though that knowledge has not been fashioned into a deliberate method (however specified).

Behind every useful method is knowledge about the task that justifies the method as a good (or at least

possible) way to attain the goal. As bodies of code, methods are simply the result of utilizing that knowledge ,

at sonc prior design time, in an act of program synthesis. The act of program synthesis brings together the

relevant knowledge and packages it in such a way that it can be directly applied to produce behavior. What

normally prevents going directly from knowledge to action at- behavior time is the difficulty of program

synthesis. However, under special conditions direct action may be possible, hence avoiding the task of

program synthesis into a stored method, and avoiding the pre-choice of which knowledge is relevant for the

task. Instead, whatever knowledge is relevant at the time of behavior is brought to bear to control behavior.

Although no prepackaged method is being used, the behavior of the system follows the pattern of actions that

characterize the method. '

.,

This is the situation with Soar in respect to the weak methods15 - methods such as depth-first search, hill
climbing, and means-ends analysis. This situation arises both because of the nature of the weak methods and

because of the nature of Soar. First, the weak methods involve relatively little knowledge about the task [47].

Thus, the generation of behavior is correspondingly simple. Second, all the standard weak methods are built

on heuristic search. Thus, realizing their behavior within Soar, which is based on problem spaces, is relatively -D

straightforward. In addition, search control in Soar is realized in a production system with an additive

elaboration phase and no built-in conflict resolution. Thus, new search control can be added without regard

to the existing search control, with the guarantee that it will get considered. Of course, the relevant total

15 We have called this a univerwal weak method. on the analogy that Soar behaves according to any weak method, given the appropriate
knowledge about the task [3 11. .,

I
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search-control kno ledge does interact in the decision procedure, but according to a relatively clean seman-

tics that permits clear establishment of the role of each bit of added knowledge.

Our previous example of steepest ascent hill climbing in Figure 2-15 provides an illustration of these three

factors. First. the central knowledge for hill climbing is simply that newly generated states can be compared '

to each other. The comparison may itself be complex to compute, but its role in the method is simple. a..

Second, the other aspects of hill climbing, such as the existence of operators, the need to select one, etc., are

implicit in the problem-space structure of Soar. They do not need to be specified. Third, the knowledge to

climb the hill can be incorporated simply by search-control productions that add preferences for the operators

that produce better states. No other control is necessary and hence complex program synthesis is not re- .,

quired. In short, Soar can be induced to hill climb simply by providing it the knowledge of a specific function ."V

that permits states to be compared plus the knowledge that an operator that generates a better state is to be

preferred. J_:_cd

Methods require two types of knowledge. The first is about aspects of objects or behavior. Examples are

the position of the blank square in the eight puzzle or the number of moves taken since the blank was in the ...

center. Such knowledge says nothing about how a system should behave. The second type of knowledge --.

provides the linkage from such objective descriptions to appropriate action of the system. For the weak

methods in Soar this takes the especially simple form of single productions that have objective task descrip-

tions as conditions and produce preferences for behavior as actions. No other coordinative productions are r

required, such as cuing off the name of the method or explicitly asserting that one action should follow

another as in a sequential program. Sometimes several control productions are involved in producing the

behavior of a weak method, but each are independent, providing links between some aspect of task structure

and preferences for action. For instance a depth-limited lookahead has one production that deals with the

evaluation preferences and one that deals with enforcing the depth constraint. Soar would produce ap-

propriate (though different) behavior with any combination of these productions. Another important deter-

miner of a method may be specialized task struclure, rather than any deliberate responses encoded in search ,

control. As a simple instance, if a problem space has only one operator, which generates new states that are

candidatcs for attaining the task, then generate-and-test behavior is produced, without any search control in

addition to that defining the task.

hie methods listed i Figure 3-4 constitute the aggregate that have heen realized in the various versions of

So,.r, mostly in Soar 1 1311 and Soar 2 [29]. where deliberate explorations of the universal weak iiethod were ..

conrduictCd. [he pur pose of thes e explorations was to demonstrate that each of the weak methods could be

reah/ed in Soar. Most of the weAk methods were realized in a general form so that it was clear that the

mcth ,,d could be used for any tisk for which the appropriate knowledge was available. For a few weak

- a ", , .,.P , -,. . . ' , . , v '~p,, * ,,-. %j" -. ,. ),
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methods, such as analogy b implicit generalization and simple abstraction planning, the method wvas realized

for a single task, and more general forms are currenly under investigation.

The descriptions of the weak methods in Figure 3-4 are extremely abbreviated, dispensing with the operat-

ing environment, initial and terminating conditions. side constraints, and degenerate cases. All these things

are part of a full specification and sometimes require additional (independent) control productions. Figure

3-5 shows graphically the structural relationships among the weak methods unplemented in Soar 2 [291. The

common task structure and knowledge forms the trunk of a tree, with branches occurring when there is

different task structure or knowledge available, making each leaf in the tree a different weak method. Each of

the additions as one goes down the tree are independent control productions.

These simple schemes are more than just a neat way to specify some methods. The weak methods play a

central role in attaining intelligence, being used whenever the situation becomes knowledge lean. This occurs

in all situations of last resort, where the prior knowledge, however great, has finally been used tip without

attaining the task. This also occurs in all new problem spaces, which are necessarily knowledge lean. The

weak methods are also the essential drivers of knowledge acquisition. Chunking necessarily implies that there

exists some way to attain goals before the knowledge has been successfully assimilated (i.e., before it has been

chunked). The weak methods provide this way. Finally, there is no need to learn the weak methods

themselves as packaged specifications of behavior. The task descriptions involved must be acquired and the

linkage of the task descriptions to actions. But these linkages are single isolated productions. Once this

happens, behavior follows automatically. Thus, this is a particularly simple acquisition framework that avoids

any independent stage of program synthesis.

3.3. Learning
The operation of the chunking mechanism was described in detail in the previous section. We present here

a picture of the sort of learning that chunking provides, as it has emerged in the explorations to date. We

have no indication yet about where the limits of chunking lie in terms of its being a general learning

mechanism [361.

3.3.1. Caching, within-trial transfer and across-trial transfer

Figure 3-6 provides a demonstration of the basic effects of chunking, using the eight puzzle [331. The

left-hand column (no learning) show the moves made in solving the eight pu/ile without learning, using the

representation and hcuristics described in the prior section (the evaluation function was used rather than the

mea-opciitor-selcction heuristic). As d scribcd in Figures 2-14 and 2-15, Soar repeatedly gcts a tic impasse

between the aailhble mocs, goes into the selcetion prohlcrn ,pace. evaluates each move in an incarnation of

te task space, chooses the be,;t ltcrn~timkc, iond moves forword. Figure 3-6 shows only the moves made in the

U60
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Ifeuristic search Selct and/or rcjcct candidate operators and/or states.

Avoid Duplication Produe only one version of a state. (Extend: an cssentially identical state.)

Operator Subgoaling. If an operator does not apply to tie current state. find a state where it does.

Match Put two patterns containing vanables into correspondence and bind sanables to their correspondents.

Iflpothiesie and Mlatch Generate possible hypothesis forms and match them to the exemplars.

.And-Or heuristic search. Makes all moses at and-states and selects moves at or-states until goal is attained. -

%Aalti Constraint Propvagation. Repeatedly propagate the restrictions in range produced by applying constraints in variables with finite
ranges.

Means-FiEnds Analysis. Mtake a move that reduces the difference between the current state and the desired state. :z,
Generate and [est Generate candidate solutions and test each for success; terminate when found.

Breadih-I-irst Search- Make a move from a state with untried operators at the least depth.

Depth- First Search Make a mose from a state with untried operators at the greatest depth.

Lookahead Consider all terminal states to max -depth.

Simple llliClinibing Mtake a move that increases a given value.

Steepest Ascent I till Climbing. Make a move that increases a given value most from the state. ',-

Progressive Deepening Repeatedly move depth-first until new information is obtained, then return to initial state for repeat.

Mocdified P~rogrcssive lDccpeniiir Progrcssise DXepening with cuiisideration of all moves at each state before extension.

B* (Progressive D~eepcning) Progressise Deepening with optimistic and pessimistic values at each state (not a proof procedure).

Mfini-Mfax. Make movres of each plaser Until can select the best move for each player.

Dept h-Boundcd Mini-Maix M*ini-.*iax with max-depth bound. _

Alpha-Beta. Depth-Bounded Mini-Max. without lines of play that cannot be better than already examined moves.

Ordered Alpha- Beta. Alpha- Beta with the moves ined in a heuristic order.-

Iterative Deepening Repeat ordered Alpha-Beta with increasing depth bound (from 1Ito mnax-dlepth), with each ordering improvedl.

11 (Mini-Max4 Analogous to Alpha-Beta, with each state has ing optimistic and pes;simistic values [5].

Branch anid Bound. Ilcurstic search. without lines of seaieh that cannot be better than already examined moves. .,

Best-First Search. Mose from the state produced so far that has the highest value.

Modified Best-F-irst Search. Best-First Search with one-step lookahead for each move.

AO Best- First Search on the mninmum depth (or weighted depth).

Exhiustite NIax iniat ion Generate all candidate solutions and pick the best one.

l'sausi~e~1sini~~iia'~tti(,iot~. xhaustive Maxiinization without going down paths to candidate solutions that cannot be better
than the current be~t caindidate.

Nlacro-Operators for Scriatly-tDccomposable Goals [28). l earn and use macro-operators that span regions where satisfied goals are
violated and reinstated.

Analogy by Implicit Gcncrati,ation Find a related problem. solxe the related problem, and transfer the generalized solution path to the > '

01 g;nal pruhlcm

S -imple Abstracetionu Planning AIialm'z) b) Iiiplicit Gecraliiation in which the related problem is an abstract version of the original
problem .'

F-igure 3-4: Weaik tttcthods, as patterns of behavior.

%~ %l
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Soar

Macro-operators Hypothesize
and Match

Means-Ends Analysis Constraint
Satisfaction

Operator Subgoaling Depth-First Generate Breadth-First
and Test

Unification

Progressive Steepes tAscent Simple Hill Climbing
Deepening Hill Climbing

B" (Progressive Deeperin.g Mini-Max

Depth-Bounded
Mini-Max

Alpha Beta

V Iterative Deepening

B" (Mini-Max)

Figure 3-5: Structure of weak methods realized in Soar [29].

task space, coalescing the various incarnations of it. Each state, except for the initial and desired states, is

shown as a black square. The move made to reach the state is shown as a single letter (either Left, Right, .Lp,

or 12own). Soar explores 20 states in all to solve this problem.

The second column (with learning) has chunking turned on. Although Soar starts out examining the same

states as in the run without learning (L, U and R in each of the first two levels), it soon deviates. The

chunking that occurs in the early part of the task already bccomes effective in the later part. This is

within-trial transfer. It answers one basic question about chunking - whether it will provide any transfer at

all to new situations, or only simple practice effects. Not only is there transfer, but it occurs on the initial

performance - a total of 15 states is examined, compared to 20 without learning. Thus, with Soar, no rigid

behavioral separation is possible between performance and learning - learning becomes integral to every

performance.

-
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163 _163 16131

274 2 74 27 4

8 58 5 a 5

R D L R D L D

R D L R: D L D

R L R R

U U U

U L U L U

ID IM

D L D D

R D L D D "

R L R R

231213 2 3
814184 814

76 765 76 5

No Learning With Learning After Learning

Figure 3-6: Learning in the eight puzzle [331.

If Soar is run again after it has completed its with-learning trial, column 3 (after learning) results. All of the

chunks to be learned in this task have been learned during the one with-learning trial, so Soar always knows % % %

which move to make. This is the direct effect of practice - the use of results cached during earlier trials. The

number of states examined (10) now reflects the demands of the task, not the demands of finding the solution.

This improvement depends on the original evaluation function being an accurate measure of progress to the k, _

goal. Chunking eliminates the necessity for the look-ahead search, but the path Soar takes to the goal will still

be determined by the evaluation function cached in the chunks. "

Figure 3-7 shows across-iask transfer in the Eight Puzzle. The first column (task 1, no learning) is the same
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trace as the first column in Figure 3-6. In the second column (task 2, during learning) Soar has been started

over from scratch and run on an cntircly different cight-puzzlc task - the initial and final positions are

different from those of task 1, as arc all the intermediate positions. 1'his is preparation for the third column

(task 1. after learning about task 2 but without any learning during task 1), where Soar shows across-task

transfer. If the learning on task 2 had no effect, then this column would have been identical to the original

one on task I (first column), whereas it takes only 16 states rather than 20.

131 2 83 163
2 74 1 64 27 4

8 5 7 . 5 8 5

R D L R 0 L R D

R D L R D L R D L

.*0
R L R L R

Ur

U U U

U L U L U L

L 1 2131

D L [760

R D L. , R o

R L R

2 3 2 3
8 14 8 1 4
7 6 5 7 6 5

No Learning With Learning After Learning
Task 1 Task 2 Task 1

ftv Figure 3-7: Across-task transfer in the eight puttle 1331.

What Soar has !earned in these runs i. search connol to choosc movcs. ind rules which implement the

esahiatc-objcct opciators. Ihe conpii'.uon basled on the c\,iihn flunctlon is cwhed into pr(ltictions that

* create preferences hased on direct comnl.al sunS bc( ccii the Currcnt ind desired ;atxs. In this example.

....

INN: .
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chunking does not improve the evaluation function. If the evaluation function is imperfect, as it is in this

case, the imperfections are included in the chunks. Also in this example, no eight-puzzle operators have been

learned because the operator was already realized directly by productions in the task space. But if the

operator had required subspaces for implementation (as the cvaluate-object operator in the selection problem .- ,

space did), it would have been learned as well.

3.3.2. Learning in an expert-system task

A striking feature of chunking is that it applies automatically to every task Soar performs, without modifica-

tion of Soar or any special additions. For example, the investigations that used Ri-Soar to show that general

problem-soling capability can be combined with domain expertise (by adding domain-dependent search

control to a basic task representation) became immediately a demonstration that the domain expertise can be

acquired automatically. Figure 3-8 shows that on the task mentioned above that took 1731 decision cycles

with no domain-dependent search control, a pattern of results emerged that followed exactly the pattern on

the eight puZZle [651.

R -Soar Decisions with Decisions Decisions
Vcrsion no learning with learning after learning .-

Base 1731 485 72% i+ 591 7 :"

Partial [+21 243 111 54% [+141 7

Full 1+81 150 90 40% [+121 7

Figure 3-8: Learning in RI-Soar. In
The first column of Figure 3-8 shows the effects of the manual addition of search control from none for the, V

basic %ersion. to 2 productions for the partial version, to 8 more productions (for a total of 10 search control
productions) for the full .er;ion. Vhis was the basic investigation, and no learning was involved. The second ..
column shows the effect on performance of running with chunking turned on - the number of decision

cycles, the percent improvcment over the trial without learning, and the number of chunks learned. There is

xitlim-tak transfer, just as in the eight puz/lc. As the system starts with more initial knowledge, the effect

diminishes Ifrom 72% to 54% to 40%) but the effect is appreciable in all cases. Finally, the result of rerunning I
the Lsk after learning is complete is to reduce the task to its necessary processing steps (namely, 7). The

attornati. acquiston oif kno%%lcdgc does involve the addition of many more productions than was involved in i.

the manmal acquisition (shown in brackets in the second column), because the chunks are more specific than %

the mmual, cnco'ded rules.

I he Qxtcn sic tcst ,n the exitcided Icrsion of RI-Soar yielded additional data on learning, as shown in the
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four right-hand columns of Figure 3-9. In these runs, chunking occurrcd from the bottom up, that is, chunks

were built for a goal only if no subgoals occurred. Enough runs with bottom-up chunking will yield the same

results as all-at-once chunking (which was used in both the eight puzzle and initial R1-Srar cases). Bottom-up

chunking has the advantage of tending to create only the chunks that have a greater chance of being .

repeatedly used. The higher up in the subgoal hierarchy (measured from the bottom, not the top), the more

specific a chunk becomes - it performs a larger proportion of the task - and the less chance it has to be

used [501. Thus, in Ri-Soar all-at-once chunking will create many productions that will never be evoked

again in any but identical reruns of the same task. Figure 3-9 shows two passes of bottom-up chunking (Pass

2 and Pass 4), embedded in three passes with chunking turned off to assess the effects (Pass 1, Pass 3, and PassI

5), giving a total of 30 trials with chunking. The test mimics what would be expected in the real situation with

an expert system, namely that the chunk-productions accumulate throughout the entire series of 30 chunking "'2

runs (and remain fixed during the learning-off passes). 16

Pass I Pass 2 Pass 3 Pass 4 Pass 5

Before During After During After

TASK (learn off) (learn on) (learn off) (learn on) (learn off)

TI 88 88 6 8] 44 44 ( 3] 9
T2 78 68 4] 40 40 3] 9 "
T3 78 78 6] 38 38 3] 9
T4 196 174 (14] 113 113 ( 6] 58
T5 94 84 C 6] 48 48 C 3] 9
T6 100 85 3] 48 48 3] 9
T7 70 48 ( 3] 38 38 ( 3] 9
TC 74 59 3] 40 40 ( 3] 9
T9 88 73 3] 4Z 42 3] 9
rio 90 75 " 3] 48 48 ( 3] 9
Tit 173 158 (10] 86 86 ( 2] 48
TZ 78 52 ( 3] 38 38 [ 3] 9
T13 124 102 ( 7] 58 58 ( 3] 9
T14 123 108 ( 7] 67 67 ( 4] 28 4,

TI 129 109 ( 5] 64 64 ( 2] 28 %

Productions ----

Total: 314 397 [83] 397 444 [47] 444

Figure 3-9: Performance of the extended version of RI-Soar (with bottom-up learning) [75].

'The figure reveals several interesting features. First, there is a 14% average improvement during the first

learning pass. 'This is primarily due to within-trial transfer in each of the 15 tasks. There is only a small effect - I ....

due to across-task transfer, both positive and negative. Negative transfer comes about from overly-general

ccrch-control ChUnks that guide the problem solving down the incorrect path. Recovery from the misguided

16Tbus. the table is not to be read as if it were 15 independent little learning expcrinents.

ih.,.
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search occurs, but it takes time. On Pass 3, the assessment pass after the first le, rning pass, there is a III
substantial improvement, reflecting the fill force of the cached chunks: an additional drop of 35% from the

original times, for a total savings of 49% of the original times. The second learning pass (Pass 4) leads to no

further within-task or across-task transfer - the times on this pass are identical to the times on the prior

assessment pass. But after this second learning pass is completed, the final assessment pass (Pass 5) shows

another large drop of 35% from the original times, yielding a total drop of 84% from the original times. All

but four large tasks have reached their minimum (all at 9 steps). Thus the contribution of this second pass has

been entirely to cache results that then do not have to be performed on a rerun.

The details of this version of Ri-Soar and the test must be taken with caution, yet it confirms some

expectations. This extended version has substantial domain-dependent knowledge, so we would not expect as

much improvement as in the earlier version, even beyond the effect of using bottom-up chunking. Inves-

Ligation of the given productions in the light of the transfer results reveals that many of them test numerical

constants where they could have tested for inequality of two values, and the constant tests restricted their g

cross-situational applicability. But even so, we see clearly that the transfer action comes from the lowest level

chunks (the first pass), which confirms theoretical expectations that they have the most generality. And, more

globally, learning and performance always go together in Soar in accomplishing any task.

3.3.3. Chunking, generality, and representation

Chunking is a learning scheme that integrates learning and performance. Fundamentally, it simply records

problem-solving experience. Viewed as knowledge acquisition, it combines the existing knowledge available

for problem solving with knowledge of results in a given problem space, and converts it into new knowledge

available for future problem solving. Thus it is strongly shaped by the knowledge available. This integration .3

is especially significant with respect to generalization - to the transfer of chunks to new situations (e.g., as

documented above). Generalization occurs in two ways in Soar chunking. One is variablization (replacing

identifiers with variables), which makes Soar respond identically to any objects with the same description

(attribute-value augmentations). This generalization mechanism is the minimum necessary to get learning at

all from chunking, for most identifiers will never occur again outside of the particular context in which they

were created (e.g., goals, states, operator instantiations). %
"r1

The second way in which generalization occurs is implicil generalizalion. The conditions that enter into a

new chunk-production are based only on those working-memory elements that both existed prior to the

creation of the goal and affected the goal's results. [his is simple abstraction - ignoring everything about-a'K

situation except what has been determined at chunk-creation time to be relevant. It is enabled by the natural

abstraction of productions - that the conditions only respond to selected aspects of the objects available in

the working memory. It' the conditions of a chunk do not test for a given aspect of a situation, then the chunk

will ignore %hatccr that aspect might be in some new situation. r,
(.,

_ . . . , -
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A good example is provided by the implementation in Soar of Kort's technique for learning and using

macro-operators[28]. Korf showed that any problem that is serially decomposable - that is. when some

ordering of the subgoals exists in which each .¢ibgoal is dependent only on the preceding subgoals, and not on

the succeeding ones - can have a macro table defined for it. Each entry in the table is a macro-operator - a

sequence of operators that can be treated as a single operator 1191. For the eight puzzle, a macro table can be

created if the goals are, in order: (1) place the space in its correct position: (2) place the space and the first tile

in their correct positions: (3) place the space, the first tile, and the second tile in their correct positions; etc.

Each goal depends only on the locations of the tiles already in position and on the location of the one new tile.

The macro table is a simple two dimensional structure in which each row represents a goal, and each column

represents the position of the new tile. Each macro-operator specifies a sequence of moves that can be made

to satisfy the goal. given the current position of the new tile (the positions of the previously placed tiles are

fixed). The macro table enables efficient solutions from any initial state of the problem to a particular goal

state.

Implementing this in Soar requires two problem spaces, one containing the normal eight-puzzle operators

.. (up. down, left, right), and one containing operators corresponding to the serially-decomposable goals, such as

place the space and the first tile in their correct positions [36]. Problem solving starts in this latter problem

%, space with the attempt to apply a series of the high-level operators. However, because these operators are too

complex to encode directly in productions, they are implemented by problem solving in the normal eight-

puzzle problem space.I,

fBased on this problem solving, macro-operators are learned. Fach of these macro-operators specifies the

sequence of eight-pun7le operators that need to be applied to solve a particular higher-level goal for a

particular position of he new tile. These macro-operators then lead to efficient solutions for a large class of

eight-puzzle problems, demonstrating how choosing the right problem solving decomposition can allow a
simple caching scheme to achieve a large degree of generality. The generality, which comes from using a

single goal in many different situations, is possible only because of the implicit generalization that allows the

macro-operators to ignore the positions of all tiles not yet in place. If the identities of the not-yet-placed tiles

are not examined during problem solving, as they need not be, then the chunks will also not examine them.

The subgoal stnicture by itself does not tap all of the possible sources of generality in the eight puzzle. One

additional source of generality comes from transfer between macro-operators. Rather than a macro-operator

being encoded as a monolithic data structure that specifics each of the moves, it is represented in Soar as a set

of search-control rules that select the appropriate eight-puzzle operator at each state. These rules arc general

enough to transfer across different macro-operators. Ilecause of this transfer, only 112 productions are

required to encode all 35 of the macro-operators, rather than the 170 that would otherwise be required.

4
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One of the most important sources of generality is the representation used fior the task states. Stated

generally, if the rcpresentation is organized so chat aspects that are relevant arc factored clcanly from the parts

that are not (i.e.. are noise) then chunking can learn highly general concepts. Factoring implies both that the

aspects are encoded as distinct attributes and that the operators are sensitive only to the relevant attributes

and not to the irrelevant attributes. One representational possibility for the eight-puzzle state is a two- .V

dimensional array, %here each array cell would contain the number of the tile that is located at the position on

the board specified by the array indices. Though this representation is logically adequate, it provides poor

support for learning general niles in Soar. For example, it is impossible to find out which tiles are next to the

blank cell without looking at the numbers on the tiles and the absolute positions of the tiles. It is thus

impossible, using just implicit generalization, to abstract away these irrelevant details. Though this is not a

good representation for the eight puzzle. the results presented in the previous paragraphs, which were based

on this representation, show that even it provides significant transfer.

By adopting a better representation that explicitly represents the relative orientation of the tiles and the

relationship between where the tile is and where it should be - the representation presented in Section 2.2 -

and adding an incremental goal test, the amount of sharing is increased to the point where only 61 produc- ","'- --

tions are required to reprcsent the entire macro table. Because the important relationships are represented

directly, and the absolute tile position and name are represented independently of this information, the d ,,

chunks are invariant over tile identity as well as translation, rotation, and reflection of groups of tiles. The

chunks also transfer to different desired states and between macro-operators for different starting positions,

ncithcr of which wcre possible in Korrs original implementation.

Figure 3- 10 shows the most complex case of transfer. "'e top two boards are intermediate subgoals to be

achieved on the path to getting all eight tiles in place. Below them are possible initial states that the relevant

tiles might be in (all others are X's). A series of moves must be made to transform the initial state to the

corrcsponding desired inteimediate subgoal. The arrow shows the path that the blank takes to move the next

file into position. Ihe p.iths for both problems are the same, except for a rotation. In Soar, the chunks ,_.

learned for die first subgoal transfer to the second subgoal, allowing it to be solved directly, without any .- ,4

additiotal search.

S3*II

5.
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Different Intermediate Subgoals
Place Tile 3 Place Tile 5

1 2 3 1 2 3

X X E X 4

Symmetric Initial States

1 =1 1 2 3

x ~ E~x

Figure 3-10: Transfer possible with macro-operators in the eight puzzle.
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4. Conclusion
Soar embodies eleven basic hypotheses about the structure of an architecture for general intelligence:

1. Physical symbol-system hypothesis: A g.neral intelligence must be realized with a symbolic system

[521.

2. Goal-structure hypothesis: Control in a general intelligence is maintained by a symbolic goal
system.

3. Uniform elementary-representation hypothesis: There is a single elementary representation for
declarative knowledge.

4. Problem-space hypothesis: Problem spaces are the fundamental organizational unit of all goal-
directed behavior [49].

S. Production-system hypothesis: Production systems are the appropriate organization for encoding
all long-term knowledge.

6. Universal-subgoaling hypothesis: Any decision can be an object of goal-oriented attention.

7. Automatic-suhgoaling hypothesis: All goals arise dynmically in response to impasses and are
generated automatically by the architecture.

8. Control-knowledge hypothesis: Any decision can be controlled by indefinite amounts of
knowledge, both domain dependent and independent.

9. Weak-method hypothesis: The weak methods form the basic methods of intelligence [471.

10. Weak-method emergence hypothesis: The weak methods arise directly from the system respond-
ing based on its knowledge of the task.

11. Uniform-learning hypothesis: Goal-based chunking is the general learning mechanism.

These hypotheses have varying standing in current research in artificial intelligence. The first two, about

symbols and goals, are almost universally accepted for current Al systems of any scope. At the opposite end,

the weak-method emergence hypothesis is unique to Soar. 'Ibe remaining hypotheses are familiar in Al, or at

least components of them are, but are rarely, if ever, taken to the limit as they are in Soar. Soar uses a

problem-space representation for all tasks, a goal-based chunking mechanism for all learning, and a produc-

tion system for all long-term memory. Many systems use production systems exclusively, but they are all pure

performance systems without learning, which does not test the use of productions for declarative memory. .- -

Many aspects of the Soar architecture are not reflected in these eleven hypotheses. Some examples are: z
automatic goal termination anywhere in the goal hierarchy: the structure of the decision cycle, with its parallel

elaboration phase; the language of preferences- the limitation of production actions to addition of working-

memory elements: the removal of working-memory elements by the architecture, the restriction of produc- ,
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tion conditions to test only memory elements accessible through the context stack. There are also details of

the mechanisms mentioned in the hypotheses - attribute-value triples, the form of conditions of productions.

etc. Some of these are quite important, but we do not yet know in Al how to describe architectures com-

pletely in functional terms or which features should be stipulated independently.

Much is still missing in the current version of Soar. Figure 1 pointed out several aspects that are under

active investigation. But others are not recorded there - the acquisition of declarative knowledge from the

external environment and the use of complex analogies to name a couple. Until Soar has acquire. the

capabilities to do all of these aspects, there will be no assurance that the Soar architecture is complete or

stable.

M~jk0Q MIN 111if



4. CONCLUSION PAGE 59

References

1. Amarel, S. On the representation of problems of reasoning about actions. In Machine Intelligence 3,
Michie, D., Ed., American Elsevier, New York, 1968, ch. 10, pp. 131-171.

2. Anderson, J. R.. The Architecture of Cognition. Harvard University Press, Cambridge, MA, 1983.

3. Bachant, J. & McDermott, J. "R1 revisited: Four years in the trenches". Al Alagazine 5 (1984).

4. Balzer, R.. Erman, L. D., London, R. & Williams, C. HEARSAY-I1: A domain-independent framework
for expert systems. Proceedings of AAAI1, Los Altos, CA, 1980.

5. Berliner, H. J. "The B* tree search algorithm: A best-first proof procedure". Artificial Intelligence 12
(1979), 201-214.

6. Boggs, M. & Carbonell, J. A Tutorial Introduction to DYPAR-1. Computer Science Department,
Carnegie-Mellon University.

7. Bower. G. H. & Winzenz, D. "Group structrure, coding and memory for digit series". Journal of Ex-
perimenial Psychology Monograph 80 (1969), 1-17. (May, Pt. 2).

8. Brown, J. S. & VanLehn, K. "Repair theory: A generative theory of bugs in procedural skills". Cognitive
Science 4 (1980). 379-426.

9. Buchanan, B. G. & Shortliffe, E. H.. Rule-Based Expert Systems: The Mycin experiments of the Stanford
Heuristic Programming Project. Addison-Wesley, Reading, MA, 1984.

10. Carbonell, J. G. Learning by analogy: Formulating and generalizing plans from past experience. In
Machine Learning: An Artificial Intelligence Approach, R. S. Michalski, J. G. Carbonell, & T. M. Mitchell,
Eds., Tioga. Pas klto, CA, 1983.
11. Card, S. K., Moran, T. P. & Newell, A. "Computer text editing: An information-processing analysis of a

routine cognitive skill". Cognitive Psychology 12, 1 (1980), 32-74.

12. Chase, W. G. & Simon, H. A. "Perception in chess". Cognitive Psychology 4 (1973), 55-81.

13. Clancey, W. J. "The epistemology of a rule-based expert system: A framework for explanation".
Artificial Intelligence 20 (1983), 215-251.

14. Davis, R. "Meta-rules: Reasoning about control". Artificial Intelligence 15 (1980), 179-222.

15. DcJong. G., & Mooney, R. "Explanation-based learning: An alternative view". Machine Learning 1, 2
(1986), 145-176. In press.

16. Erman, L., layes-Roth, F., L.esser, V., & Reddy, D. R. "The Hearsay-l speech-understanding system:
Integrating knowledge to resolve uncertainty". Computing Surveys 12 (June 1980), 213-253.

17. Ernst, G. W. & Newell, A.. GPS: A Case Study in Generality and Problem Solving. Academic Press, New
York, 1969.

18. Feigenbaum, E. A. & Feldman, 1. (Eds.). Computers and Thought. McGraw-Hill. New York, 1963.

19. Fikes, R. E., Hart, P. F., & Nilsson, N. J. "Learning and executing generalized robot plans". Artificial
Intelligence 3 (1972), 251-288.



PAGE 60 SOAR: AN ARCIIITECTURE FOR GENERAL INTELLIGENCE

20. Forgy, C. L. OPS5 User's Manual. Computer Science Department, Carnegie-Mellon University, July,
1981.

21. Forgy, C. L. & McDermott, J. OPS, a domain-independent production system language. Proceedings
Fifth International Joint Computer Conference, MIT Al Laboratory, Cambridge MA, 1977.

22. Genesereth, M. An overview ofmeta-level architecture. Proceedings of the Third Annual National
Conference on Artificial Intelligence, Los Altos, CA, 1983.

23. Hayes, J. R. & Simon, H. A. Understanding written problem instructions. Knowledge and Cognition,
Potomac, MD, 1974.

24. Hayes-Roth, B. "A blackboard architecture for control". Artificial Intelligence 26 (1985), 251-321.

25. Hayes-Roth, F., Watennan, D. A. & Lenat, D. B. (Eds.). Building Expert Systems. Addison-Wesley,
Reading, MA, 1983.

26. Kant, E. & Newell, A. An automatic algorithm designer: An initial implementation. Proceedings of
AAA183, Menlo Park, CA, 1983. S.

27. Korf, R. E "Towards a model of representation changes". Artificial Intelligence 14 (1980), 41-78.

28. Korf, R. E. "Macro-operators: A weak method for learning". Artificial Intelligence 26 (1985), 35-77.

29. Laird, J. E. Universal Subgoaling. Ph.D. Th., Carnegie-Mellon University, 1984.

30. Laird, J. E. Soar User's Manual: Version 4.0. Xerox Palo Alto Research Center, 1986.

31. Laird, J. & Newell, A. A Universal Weak Method. Computer Science Department, Carnegie-Mellon
University, June, 1983.

32. Laird, J. & Newell, A. A universal weak method: Summary of results. Proceedings of IJCAI-83, Los
Altos, CA, 1983.

33. Laird, J. E., Rosenbloom, P. S. & Newell, A. Towards chunking as a general learning mechanism.
Proceedings of AAAI-84 National Conference on Artificial Intelligence, American Association for Artificial
Intelligence, 1984.

34. Laird, J. E., Rosenbloom, P. S. & Newell, A. Overgeneralization during knowledge compilation in Soar.
Proceedings of the Workshop on Knowledge Compilation, Otter Crest, OR, 1986.

35. Laird, J. E., Rosenbloom, P. S. & Newell, A.. Universal Subgoaling and Chunking: The Automatic
Generation and Learning of Goal Hierarchies. Kluwer Academic Publishers, Hingham, MA, 1986.

36. Laird, J. E., Rosenbloom, P. S. & Newell, A. "Chunking in Soar: The anatomy of a general learning
mechanism". Machine Learning 1 (1986), 11-46.

37. Langley, P. "Learning to Search: From weak methods to domain-specific
heuristics". Cognitive Science 9 (1985), 217-260.

38. Lenat, 1). B. "EURISKO: A program that learns new heuristics and domain concepts. The nature of
heuristics III: program design and results". Artificial Intelligence 20(1983), 61-98.

39. Lenat, D. B. & Brown, 3. S. "Why AM and Eurisko appear to work". Artificial hItelligence 23(1984),
269-294.



REFERENCES PAGE 61

40. McDermott, D. "Planning and acting". Cognitive Science 2 (1978), 71-109. '

41. McDermott, J. "RI: A rule based configurer of computer systems". Artificial Intelligence 19 (1982),
39-88.

42. McDermott, J. & Forgy, C. L. Production system conflict resolution strategies. In Pattern-directed",. .
Inference Systems, Waterman, D. A. & Hayes-Roth, F., Eds., Academic Press, New York, 1978.

43. Miller, G. A. "The magic number seven, plus or minus two: Some limits on our capacity for processing -

information". Psychological Review 63 (1956), 81-97.

44. Mitchell, T.M. Version Spaces: An approach to concept learning. Ph.D. Th., Stanford University, 1978.

45. Mitchell, T. M., Utgoff, P. E., & Banerji, R. Learning by experimentation: Acquiring and refining
problem-solving heuristics. In Machine Learning: An Artificial Intelligence Approach, R. S. Michalski, .

J. G. Carbonell, T. M. Mitchell, Eds., Tioga Publishing Co., Palo Alto, CA, 1983.

46. Mostow, D. J. Machine transformation of advice inta a heuristic search procedure. In Machine Learning:
An Artificial Intelligence Approach, R. S. Michalski, J. G. Carbonell, & T. M. Mitchell, Eds., Tioga Publishing
Company, Palo Alto, CA, 1983, ch. 12.

47. Newell, A. Heuristic programming: Ill-structured problems. In Progress in Operations Research, Il,
Aronofsky, J., Ed., Wiley, New York, 1969, pp. 360-414.

48. Newell, A. Production systems: Models of control structures. In Visual Information Processing, Chase,
W. C., Ed., Academic Press, New York, 1973, pp. 463-526.

49. Newell, A. Reasoning, problem solving and decision processes: The problem space as a fundamental
category. In Attention and Perfornance VIII, R. Nickerson, Ed., Erlbaum, Hillsdale, NJ, 1980.

50. Newell, A. & Rosenbloom, P. Mechanisms of skill acquisition and the law of practice. In Learning andW
Cognition, Anderson, J. A., Ed., Erlbaum, Hillsdale, NJ, 1981.

51. Newell, A. & Simon, H. A.. Human Problem Solving. Prentice-Hall, Englewood Cliffs, 1972.

52. Newell, A. & Simon, H. A. "Computer science as empirical inquiry: Symbols and search".
Communications of the ACM 19, 3 (1976), 113-126.

53. Newell, A., Shaw, J. C. & Simon, H. A. Empirical explorations of the Logic Theory Machine: A case
study in heuristics. Proceedings of the 1957 Western Joint Computer Conference, Western Joint Computer
Conference. 1957, pp. 218-230. (Reprinted in Feigenbaum, E. & Feldman, J. (Eds.) Computers and Thought,
New York: McGraw-Hill, 1963).

54. Newell, A., Shaw, J. C., & Simon, H. A. Report on a general problem-solving program for a computer.
In Information Processing: Proceedings of the International Conference on Infonnation Processing,
UNESCO, Paris, 1960, pp. 256-264.

55. Newell, A., Tonge, F. M., Feigenbaum, F. A., Green, B., & Mealy, G.. Infonnation Processing Language
V Manual. Drenticc-Iflall, Englcwood Cliffs, 1964. 2nd Edition.

56. Nii, H. P. & Aicllo. N. AGE(Attempt to Generalize): A knowledge-based program for building
know ledge-based programs. Proceedings of de Sixth International Joint Conference on Artificial Intel-
ligence, IJCAI, 1979.

NiN



PAGE 62 SOAR: AN ARCII I I EURE FOR GENERAL INTELLIGENCE

57. Nilsson. N.. Problem-solving Methods in Artificial Intelligence. McGraw-Hill, New York, 1971.

58. Nilsson, N.. Principles of Artificial Intelligence. Tioga. Palo Alto, CA. 1980.

59. Rich, E.. Artificial Intelligence. McGraw-Hill, New York, 1983.

60. Robinson, J. A. "A machine-oriented logic based on the resolution principle". Journal of the ACM 12
(1965), 23-41.

61. Rosenbloom, P. S. The Chunking of Goal Hierarchies: A model of practice and stimulus-response
compatibility. Ph.D. Th., Carnegie-Mellon University, 1983. (available as Tech Rep #83-148, Computer
Science Department).

62. Rosenbloom, P. S. & Laird, J. E. Mapping explanation-based generalization onto Soar. Proceedings of
AAAI-86, National Conference on Artificial Intelligence, American Association for Artificial Intelligence,
Philadelphia, 1986.

63. Rosenbloom, P. S., & Newell, A. The chunking of goal hierarchies: A generalized model of practice. In
Machine Learning: An Artificial Intelligence Approach. Volume II, R. S. Michalski, J. G. Carbonell, &
T. M. Mitchell. Eds., Morgan Kaufmann Publishers, Inc., Los Altos, CA, 1986.

64. Rosenbloom, P. S., Laird, J. E. & Newell, A. Meta-levels in Soar. Preprints of the Workshop on
Meta-level Architectures and Reflection, Sardinia, 1986.

65. Rosenbloom, P. S., Laird, J. E., McDermott, J., Newell, A., & Orciuch, E. "R 1-Soar: An experiment in
knowledge-intensive programming in a problem-solving architecture". IEEE Transactions on Pattern
Analysis and Machine Intelligence 7, 5 (1985), 561-569.

66. Rychener, M. D. Production systems as a programming langauge for artificial intelligence applications.
Computer Science Department, Carnegie-Mellon University, 1976.

67. Rychener, M. D. The instructable production system: A retrospective analysis. In Aachine Learning: An
artificial intelligence approach, Michalski, R. S., Carbonell, J. G. & Mitchell, T. M., Eds., Tioga, Palo Alto,
CA, 1983.

68. Rychener. M. D. & Newell, A. An itistructable production system: Basic design issues. In
Pattern- Directed Inference Systems, Waterman, D. A. & Hayes-Roth, F., Eds., Academic Press, New York,
1978. pp. 135-153.

69. Sacerdoti, F. D.. A Structure for Plans and Behavior. Elsevier. New York. 1977.

70. Scales, D. Effcicnt Matching Algorithms for the Soar/Ops5 Production System. Computer Science
Department, Stanford University, 1986.

71. Shortliffe, E. H.. Computer-based Medical Consultations: M YCIN. American Elsevier, New York, 1976.

72. Simon, H. A. "Search and reasoning in problem solving". Artificial Intelligence 21 (1983), 7-30.

73. Smith. B. C. Rcflcction and Semantics in a Procedural langauge. MIT/ICS/rIt-272, Laboratory for
Compurer Science, Ml '. 1982.

74. Smith. I). F. & Gencsereth. M. R. "Ordering Conjunctive Queries". Artificial Intelligence 26 (1985),
171-216.



REFERENCES PAGE 6J

75. van de Brug. A., Rosenbloom, P. S., & Newell, A. Some Experiments with Ri-Soar. Computer Science
Department. Carnegie-Mellon University, 1986. (in prcparation).

76. van de Brug, A., Bachant, J., & McDermott, J. "The taming of Ri". IEEE Expert /1(1986). 33-39.

77. VanLehn, K. Felicity Conditions for Human Skill Acquisition: Validating an Al-Based Theory. Xerox
Palo Alto Rcserch Center, November, 1983.

78. Waterman, D. A. & Hayes-Roth. F., (Eds.). Pattern Directed Inference System& Academic Press, New
York, 1978.

79. Wilensky, R.. Planning and Understanding: A computational approach to human reasoning. Addison-
Wesley, Reading. MA, 1983.

M&A A A.,



4

I


