172

E
[&
¢
| 3
«
2
i} WV
8
g
g
g
m

DIVISION’S> CRAY CO.
UNCLASSIFIED DEC 86 AFIT/GCS/ENG/86D-18

D-A179 377

. CU> RIR FORCE INST OF TECH

T N TRSSEFF

v~ - : N

-
NN
L G) o [

43337 | e
= FEF -

Bhbhbssyl

433

v .
“u . Y . gl

1.6
oA
L
e
b,
N

’ﬂnd"v Rt cu 1N s
- - .
»

-,
P!

[2L N
\
)

L3

- o NN Fy WY W o v _ - AARKS, MLt werualanas

AD-A179 577

UTION STATEMENT A

Appmoved tor public release;
Distlbution Unlimited

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

1’
o
PRI WANITT N PR FGRF RGP J LWy I

List of Tables

AFIT-ASD Cray System Performance « « « « « V-6

z. i:-ﬁ & f: f: f! »ln ﬁ*“

MASCHLHLVAIA SR LAY

it"'-ui:"-: -n-‘.n-

Page

vi

A T P e P T P P e T T TR T e

AFIT/GCS/ENG/86D-10

DTIC

ELECT
FCRRA Y

VIRTUAL COMMUNICATIONS TO ASD"S
CRAY COMPUTER VIA AFIT
DATA COMMUNICATIONS RESOURCES
THESIS

Todd W. Tasseff
Captain, USAF

AFIT/GCS/ENG/86D-10

Approved for public release; distribution unlimited !

RGN e

. Laiad acd Sat o d o o e aod b et ol o and and o Ak bl ol aad o add o d e ok Al ald ad Ad Al Ad Al ad b Al b 4 d A ool ol el ol -—-—-1

AFIT/GCS/ENG/86D-10

VIRTUAL COMMUNICATIONS TO ASD"S CRAY COMPUTER

VIA AFIT DATA COMMUNICATIONS RESOURCES

THES1S

Presented to Faculty of the School of Engineering
of the Air Force Institute of Technology
Alr University
in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

Todd W. Tasseff

Captain, USAF

December 1986

Approved for public release; distribution unlimited

Preface

The task of this thesis project was to study, create, and evaluate a
virtual communications capability to ASD Computer Center s Cray supercomputer
from the AFIT School of Engineering using existing AFIT computer and data
communications resources. The system will be used to support research and
coursework for AFIT faculty and students.

The challenge of working with five separate computer systems, three
operating systems, and two different communications links all at the same time
grev more intense as 1 struggled to keep the system I created organized and
workable. But having done so, I learned a great deal about the importance of
good systems programming.

1 would like to offer my thanks to Hal Carter, my thesis advisor, for his
help and encouragement throughout the course of this thesis project. I would
like to thank Kirk Horton as I used his 1984 thesis as model for my own. I
would also like to thank AFIT/SI, especially Joe Hamlin, Bob Filer, and Jim
Ware, and ASD/SI, especially Ken Johnson, for their assistance and expertise
during the system programaing phase of the thesis. 1 would especially like te
thank my wife, Patsy, for her support and patience during this thesis project.
And, I would like to thank God for the strength He gave me throughout my

thesis project and my entire time at AFIT (Phil. 4:13).

ii

L

I D S A A A S A R I RN ERNR BRI

b A VRS

Table of Contents

Page

Preface & ¢ ¢ i e e e s e e e e e e e e e e e e e e e e e 11
List of Figures « « o v v o v v v e e e e e e e e e e e v
List of Tables« & © v ¢« 4 v v v e e e e e e e e e e e e vi
ADBETACE o o e e e e e e e e e e s e e e e e e e e e vid
I. Introduction . . ¢ + 4 « v v 4 e e e e e e e e e e e e e e 1-1

Background L 0 . 0 0 0 0 e e e e e e e e e e e e e e -1
Problem ¢ ¢ ¢ i bt e e e e e e e e e e e e e e e -2
SCOP@ . . . & ¢ ittt e -5 X
Summary of Current Knowledge « . .« .. -5
APPTOACh &+ ¢ . vt e -10
Sequence of Presentation ¢ e o v 0w e e e e e . e -11

II. System Requirements and Justificatiom « . . I1-1

Objectives . . . ¢ ¢« ¢ v v i it e b e e e e e e e e e e e e e -1
Requirements Definition « « ¢ ¢« ¢ ¢ ¢« ¢ ¢ ¢ 4 o« o o« =2
System Description ¢ ¢ ¢ ¢ ¢ 4 e e e e e e 4 e e e o -2
System Operation ¢ ¢ ¢ ¢ 4 e 4 bt e e e e e e e e e e -3
Implementation Requirements « . ¢« . ¢ ¢ ¢ ¢ ¢ o o 0 e -6
Performance Requirements. « ¢« + ¢« ¢ & ¢ ¢« ¢ v o o o o & -6
Functional Requirements +. ¢ « « « s & o o o o o s o s o o -9

IIIO Sy.tel De'ign e ® 8 & e & s s 8 s e 8 e e & s e s s a e e = v ° » III-I

OVerview . . . ¢ & ¢ o ¢« ¢ o o o o o 8 s o o s o s s 4 e e e v e -i
Infitiate Cray Job . . . ¢ & o 4o 4 o o o o o o o o o s o s o s o =5
Route Cray Job to Cray . . ¢ « « o o o o o o « o o o s o o o o o -7
Execute Cray Job . . . ¢ & ¢ ¢ o o o s o o o o o s o o o o o o o -11
Route Cray Job Output to Destinatiomn ¢« « ¢ o & o & o o & -13

IV- mtailed De‘isn e« e o s o 8 e e e © ® e e s & s s e+ e e e o » e » Iv-l

Design Goals « . . + ¢ ¢ ¢ ¢ ¢ 4 s ¢ s e e 8 s s e e e s e e o -1
Design Procedure & + & ¢ o ¢ o o o o ¢ o o o s s o0 e s -2
Design FOrmat .« . o« ¢ o« o o o o o s o o o o o o o » s o « o o o = -4
Detalled Design . « o« ¢ o ¢ ¢ o o o s o o o o o o o o s o o o o o -4
Program Descriptions . « . . . ¢ ¢ ¢ ¢ s ¢ ¢ ¢ s e 4 4 s e e e . -5
Send cray . o ¢ ¢ 0 0 . s s e e e e e e s e e s e e s e s -6 .
Send cyber cray o e e e 0 b e e e e s e s e s -10
Send destination « . . ¢ ¢ ¢ . 0 e 4 e b e e e e e b e s e -14
Send USET . ¢ ¢ & 4 ¢ . 4 4 et e e e e e e e e e e e e -17

iii

AN

e '-,\'.\ \ '.\]

¢ N I N I B O T IO AN AL oo

V. Analysis « ¢ o o« o

AF1T-ASD Cray System Design

Functional Requirements
System Performance « ¢« + + o &
System Statud « + . . .

Vl. Conclusions and Recommendations

Conclusions . . . ¢ ¢ ¢ ¢ & o ¢ o e o s o o s o o s o o o o o o -1
Recommendations . . « « + ¢ & o o o &+ o o o o o o o o o o o o s o -1

Bibliography ¢ ¢ v & ¢« 4 & ¢« o + e 4 ¢ 4 s s s s o s s e« » BIB-1

hdndotednbebadhdl bbbl

Appendix A: System Program Listing - sendcray ¢« « « « ¢ + & A-1
Appendix B: System Program Listing - send cyber cray B-1
Appendix C: System Program Listing - send destination Cc-1
Appendix D: System Program Listing - send user , D-1
Appendix E: User Documentation . . .« . ¢ « o ¢ o o o o s o o s o o o o E-1
Appendix F: Administrative Documentatfon . « ¢ ¢ &+ & & & ¢ o o « » o « F-1

" n"a" S N O F DL I L LW

Figure

1-2
2-1
3-1

3-2

5-1

5~-2

List of Figures

Overall System Model . . .

ISO OSI Network Architecture .
AFIT-ASD Cray System Diagram .
AFIT-ASD Cray System SADT-1 .
AFIT-ASD Cray Systeam SADT-2
Initiate Cray Job SADT-3 . . .
Route Cray Job to Cray SADT-4 .
Route to SSC SADT-5
Route to Cyber/Cray SADT-6 . .

Execute Cray Job SADT-7

Route Cray Job Output to Destination

Route to Destination SADT-9
Jobtypes and Hosts Support Files
Sample Sendcray Session
sendcray.log File
.netrc File Examples
crontab File Example
Users Support File
Sample Cray Job Deck
Sample Done Message via Mail .

Sample Cray Job Log File

Sample Cray SPICE Job Deck Commands

FORTRAN Test Program

I1-4

II1-2

I11-4

I111-6

ITI-8

II1-9

III-10

III-12

ITI-14

III-15

1v-7

Iv-8

1v-8

1v-9

Iv-10

Iv-12

Iv-13

IV-16

Iv-19

Pin s W 0%

T

AFIT/GCS/ENG/86D-10

Abstract

The AFIT-ASD Cray System, a virtual communications capability from the
AFIT School of Engineering to ASD"s Cray computer, was studied, created, and
evaluated. The SADT design, detailed design, and System program code are
included in the study. A user enters the System’s user command sendcray which
initiates a Cray job from a remote or central AFIT host computer, and
transfers the user”s input file to the central AFIT host coamputer. The i{nput
file {8 then sent first to the Cyber, which 18 a front-end to the Cray, and
then to the Cray itself where the input is processed. Output from the Cray is
sent to the Cyber and then back to the AFIT central computer. Finally, the
output, with an accompanying job log flle, 1s transferred to the user at the
originating AFIT host computer.

The System uses a combination of 4.2 BSD UNIX, Cyber NOS, and Cray
operating system commands, and makes use of an AFIT Ethernet network and a
YAX-UNIZ/Cybter ZACP.modex liuk. The System operates cvar a serie3d :f UNIX
C-shell programs, most of which are executed automatically. The System
provides the user with simple, error-free, and automatic access to the Cray,
with the potential of improved turnaround time for compute-intensive jobs at

AFIT.

vii

2 RElR o

VIRTUAL COMMUNICATIONS TO ASD”S CRAY COMPUTER

VIA AFIT DATA COMMUNICATIONS RESOURCES

I. Introduction

Back;round

In recent years, the Department of Electrical and Computer Engineering
(ENG) at the Air Force Institute of Technology (AFIT) School of Engineering
has become a center for Very Large Scale Integration fVLSI) circuit research
within the Alr Force and the VLSI research community (5). {n order to conduct
VLSI architecture research, AFIT/ENG performs logic deesign and circulit
simulation, and checks integrated circuits and systems with {integrated
circuits (95).

The VLSI simulatfon and checking {s computationally intense, and requires
a relatively large amount of processiag time. For instance, a typical circuit
scaulat.ou uslng tae LP.CE Lillwace packuge usesd up to Ie wours u. CPL
(central processing unit) time on one of AFIT s DEC VAX-11/785 computers (5).
Such a long turnaround time makes the VAX unwieldy for use in the timely

development of VLSI circuit chips.

As a partial solution to the above problem, AFIT/ENG has recently
acquired an ELXS1 6400 multiprocessor computer to be used for VLSI research.

The ELXSI can execute 7 MIPS (millions of 1instructions per second) versus the

VAX“s 1.5 MIPS (S5), and is therefore about 5 times as fast. The previous

!
SPICE circuit simulation job would run for a minimum of five hours of CPU time

I-1

on the ELXSI versus 24 hours on the VAX. Although the CPU time is a large
part of the overall job turnaround time, another time factor is that the job
must share CPU time with other ELXSI wuser jobs. Thus, a job on the ELXSI
could consume most of an average workday, still unacceptably slow. A much
faster computer is still needed to speed up the development of complex VLSI
designs.

One nearby facility with more advanced computer support than AFIT is the
Aeronautical Systems Divisions (ASD) Computer Center, which has recently
{nstalled a Cray .MP-12 supercomputer. The Cray can execute at over 200 MIPS
(5) which 18 about 30 times as fast as the ELXSI. A 24-hour VAX SPICE job
would take a minimum of !i sinutes of CPU time on the Cray. For this reason,
the “ray would be the more desirable compute. for AFIT s large VLSI design
simulations. [f AFIT <could gain easy access to the Cray, the Cray would

remedy AFIT s problesm of long turnaround times for simulating large VLSI

des i ans.
Problem

However, Liic Qdii. PpiCLivl wloh gaswsdl acotds Lo e Tay lul aril !
research {8 how to do 80 in a simple, error-free wmanner. At present there {s

no easy way to run VLSI simulations on the Cray. One alternative {s to make a
tape with both a copy of the SPICE software package and a VLSI design data
f{ile on {t, hand-carry the rape to ASD Computer Center, and load it on the
Cray. But this procedure would have to be repeated for every SPICE job. Any
errors created in the data due to the loading of the tape at AFIT and its
subsequent unloading on ASD°s Crav may go undetected. This alternative {s

also time-consuming. Besides creating the tape, tramsporting {t to the Cray,

I-2

if *\ \ \ -. f \(\{\J- ‘o e h : : : h“‘* 4“‘_‘ ‘o '-. . ..-.... oyt -,"-_".-_"._‘..-._-

and loading it on the Cray, the total turnaround time would have to include

running the SPICE program with the input, loading the output back on to tape,
and transporting the tape back to AFIT. In addition, AFIT"s tape format might
be incompatible with ASD”s tape drives.

Fortunately, a data communications link currently exists between an AFIT
DEC VAX-11/785 computer and ASD"s CDC Cyber 750 (a dual-system) computer (.),
which is in turn connected to the Cray (15) (see Figure 1-1). But this link
only services users on the VAX, meaning that any VLS] designs developed on
AFIT/ENG s ELXSI would have to be transported to the VAX, sent tc the .0t

Cyber, then transmitted to, and run on, the Cray, with output returning * :he

Cyber. To get output from the Cray back toc the ELXS!, the user wou.< tave
transpor! the output from the Tvber o the LAX and 'her %Saik ' e CLA.
Most 0! these¢ steps requlre some user .ntervention, and “he .velfa.. .I.,.ens _»

8tlill time-consuming and .umbersome {57 ne user.

1-3

GENERAL

T

AFIT Source |
Host(s) |

D
8t

o &

Destination

T
|
!
I

SPECIFIC

| T
| AFIT/ENG | Bldg 640,
| Sun Workstations | 2nd Floor

|

[T
| AFIT/ENG ELXSI | Bldg 640,
| | 2nd Floor
|
I
B [
| AFIT SSC | Bldg 640,
| | 1st Floor
I |
_____ o _____
I
I T
| ASD cDC | Bldg 676,
{ Cyber | 2nd Floor
I
[
I
I T
| ASD Cray | Bldg 676,
= | 2nd Floor

Figure 1-1 Overall System Model

In sum, any attempt to make use of ASD”“s Cray supercomputer for AFIT VLSI
research would be extremely cumbersome and prone to error. The process
requires that the AFIT user know something about each of the computer systems
involved. The intermediate steps are not all automatic and require some user
intervention. And the steps require a great amount of time (i.e., hours),

which negates the advantage of using such a fast computer as the Cray.

Scoge

The scope of this project is to choose, implement, and analyze the best
available method for allowing an AFIT host computer to access a faster
non—-AFIT host computer. Specifically, such a data communication facility
should be a flexible remote job entry (RJE) system capable of sending AFIT/EN
programs (in particular, VLSI jobs) from an AFIT host computer to ASD Computer
Center s Cray computer. Once at the Cray, the jobs would be run and the
results sent back to a specified AFIT host computer. The specific AFIT host
computers to be used, as test cases, would be the AFIT SSC (UNIX-VAX 11/785),
and AFIT/ENG”s ELXSI computer and associated Sun computer workstations (see
Figuce 1-1). The method chosen would then provide “virtual' ccamunicatioas to
ASD“s Cray. In other words, the system would provide access to the Cray even

though there is no direct link from an AFIT computer to the Cray.

Summary of Curreant Knowledge

The ISO OSI Reference Model. Most data communications systems, whether

consisting of a single link between two similar computers or a network of many
different computers, adhere to some kind of coaputer network architecture.

The architecture describes the specific data communications functions that are

I->

20 AW 2220 RN IIODONEG

P AATERANER A ETL.E Ve ar Fae.

required and hov the system should perfora them. In an attempt to standardize
network architecture, the International Standards Organization (ISO) has
created the Open Systems Interconnection (0SI) reference model (16:15).

The 0SI reference model (see Figure 1-2) contains a set of "protocols”

Name of unit
Layer ueﬁmwd“
i tocol
71 | Application [——-—— - = - - Aﬂ il s oSSR —={ Applicstion Message
Interface ' ' r
Presentation protocol
8 | Presentstion - -~~~ — - mccc e e —— =] Presntstion | Message
1
interface ’ ’
Semion protocol
L Semion |[F - -~ e s s e = +{ Semion Message ‘
’ Transport protocol .
4 | Tranport o= ———mc e e e - | Transport | Mesage
Communication subnet boundary
§ " N {
3 | Nework fe--r Network y Network [e-+—— —+| Network | Packet
’ Internal subnet protacol }
2 Ostalink (e~ —r =+ Ostalink rJ o Oatalink o = ——o1 Dotslink Frame
1 Physical Physicel Physical Physicsl Bit
Host A _ e mp) Host 8
— Network layer host - IMP protocol
—— Deta fink layer host - IMP protocol
Physicst lsyer host - IMP protocol

Figure 1-2. 1ISO OSI Network Architecture
Reference Model (16:16)
vhich correspond to certain function “layers.” Each protocol layer uses the
layer below it to form a coordinated, cohesive data communications system
(i.e., network). The basic layer is the physical layer, Layer l. This layer
transaits only "raw bits”™ of data over scme trensmission medium (Qire. radio,

etc.); it 1is concerned with the mechanical, electrical, and procedural

1-6

interfacing of data communications equipment (16:16).

The next highest layer is the data link layer, Layer 2; it is responsible
for sending "frames” (predetermined number and order of data and control bits)
sequentially to a destination node (data communication device). It then waits
for acknowledgement ("transmission O0.K.") frames to return from the
destination node. This layer ensures error-free transmission over the
transmission link (16:17).

The layer above the data link, the network layer, Layer 3, handles the
node-to-computer interface and the routing of “packets™ (frames with more
control bits) within the "subnet” (16:17). The subnet comprises the physical,
data link, and network layers. The network layer takes data messages from the
source host computer, splits them up into packets, ensuring "that the packets
get directed toward the destination” computer, and controls the traffic (and
congestion) of packets in the subnet (16:18).

The next layer, Layer 4, the transport layer, makes sure that the data
arrives at the destination computer correctly, making it a “true
source-to-destination or end-to-end layer.” This layer creates a unique
network connection for each transport 1layer connection needed by the next
highest layer (16:18). At the next highest layer, Layer 5, the session layer,
the user (human user or application computer program) interacts with the
computer network (16:19). At this level, the wuser establishes a connection
with a program on a remote computer, providing the user knows the remote
computer”s network address (16:19). The layer above the session layer, the
presentation layer, provides a “transformation service” to the user in the
form of text compression, encryption, character-code conversion, file format

conversion, etc. (16:20-21).

-r. J{.._‘vw.’

i A A AN e e Wt W N I A U -
RS S R G S L U G R S A TR VR B b R SRR L YL LD AR LR WS OO,

The uppermost layer, Layer 7, is the application layer. The messages

sent at the application layer are determined by a human user or some
application program at the source and destination host computers (16:21),
depending on the individual requirement.

Remote Job Entry Protocols. According to Day (7:107,114), many of the

data communications requirements of a “production-oriented data-processing”
office are for terminal-to-computer access, or remote job entry (RJE)
capability. Day points out that remote job entry protocols (RJEP) allow a
human user or applications program "to execute a job on one of several
computers”™ from a remote location, using a single RJE software package that
runs on different computer systems. In relation to the ISO OSI reference
model, RJEP corresponds with the protocol layers from session layer on up. An
RJEP supports the same types of functions found in batch (non-interactive)
computer systems: submitting jobs (programs to be run), determining job
status, retrieving output, coantrolling the routing of jobs and output to the
desired locations, for example (7:107).

Day defines the function of RJE in a network of computers by stating that
RJE permits loadsharing (sharing computer resources) across mncre thaa one
computer system (7:114). Day gives three reasons for RJE: lower cost or
faster turnaround time; need to access special software that exists on a
remote computer; or having too large a program to be run locally. Each RJE
requirement, though, should be carefully researched before committing
resources to develop a loadsharing operation (7:115). Day also mentions that

1f "a small transfer of data generated a large amount of computation,” then

remote job entry (to a more powerful host computer) can be feasible.

L o o o

A Resource-Sharing Network Link. In his 1980 AFIT thesis, Design of a

Resource-Sharing Network Link, Capt Thomas McLeod describes an example of RJEP

(13). The project was an 1initial step 1in developing the ASD Automated
Management System (AMS) resource-sharing (R-S) computer network. McLeod
provided the design of one R-S link between two Texas Instruments model 990
computers (13:2,11). Some of the R-S functions that were required were:
transferring sequential (data) and program files; transferring intersite
messages; and executing remote programs (programs on remote computers)
(13:14~15).

McLeod“s thesis 1is similar in functionality to the type of system
proposed in this thesis. Also, his thesis had the similar goals of developing
an R-S link that was simple to operate and would use existing hardware and
software (13:14).

AFIT SSC VAX to ASD Cyber RJE Link. Another more recent example of RJEP

is the RJE 1link now operating between AFIT"s SSC (UNIX-VAX 11/785) and ASD”s
CDC Cyber Computer. Currently, batch (non-interactive) jobs may be sent,
error-free, from the AFIT SSC to ASD“s Cyber via a hardware device called the
COMBOARD which is 1installed on the AFIT SSC (1l). The COMBOARD 1s then
connected to ASD“s Cyber computer via a standard synchronous modem (data
communications transmission device) link. The RJEP that the COMBOARD and the
Cyber use is the HASP (Houston Automatic Spooling Program) protocol.

A user on the AFIT SSC places the appropriate “control cards™ (Cyber
Job-control commands) into the desired batch file, and uses an SSC command to
send the batch file to the Cyber (1). Once at the Cyber, the batch job is

run. Depending on the SSC commands used, the output from the job is either

physically printed by the AFIT SSC, or it 18 stored in a file on the AFIT SSC

Bl SR

(l1). The AFIT SSC user can also store and recall files from ASD”s Cyber

(i.e., file transfers) using the same RJE link (18).

Aggroach

The first step in solving the problem was to analyze the system
requirements in order to identify what functions the system should perform and
how well it should perform them. This analysis 1included the system
specifications and justified, as necessary, those specifications. The second
step in solving the problem was to tramslate the system requirements into an
overall system design which incorporated the functions specified under the
system requirements. The overall design was described using the Structured
Analysis and Design Technique (SADT). The system functions were outlined
using SADT charts and accompanying documentation.

The third step in solving the problem was to create a detailed design of
the system from the overall design. This step 1involved translating the
individual system functions into the proper set of programming commands.
These programming commands formed program modules which became the basis for
impiementing the system.

In general, the proposed RJE system operates over the currently available
AFIT data communications facility as described in previous sections, which in
turn is8 connected to ASD“s data communications facility. Specifically, the
RJE system uses the existing RJE link between the AFIT SSC and ASD”s CDC Cyber
computer (1), which is in turn connected to the Cray (15).

Since the AFIT hosts and workstations involved operate under the UNIX
operating system, the RJE system was implemented using UNIX C-shell commands

to create the appropriate system programs (9). Computer-to-computer

I-10
A < TN T T o PR T R S S CA GO AT AR EAACA
.r.r -*1.1.¢.LAA.?.‘.r}4.';‘1)&‘.}*&4’.'134.':.-_’1_‘.&.-_ B A A SAYL L YU LS TR LA

communications among these UNIX machines required the use of standard TCP/IP
data communications protocol commands over the existing Ethernet local
computer network link (5).

The system required that Cyber job-control language commands be used
within the job files sent from the SSC to the Cyber. In addition to the Cyber
commands, Cray job-—control commands were also embedded in the SSC”s job files

since the job files were ultimately interpreted and processed at the Cray.

Sequence of Presentation

Chapter II contains an analysis of the system requirements including
identification of system function and performance specifications.

Chapter III describes the overall system design using the functioms
specified in Chapter II, while Chapter IV contains the detailed design of the
system.

Chapter V gives the results of the implemented system which consists of
an analysis of the system“s functions and performance as compared to the
system requirements.

Finally, Chapter V1 presents the summary, conclusious, and {uture

recommendations.

..........

0al {gt

PPN

Oy

¢

X Bal gol ol oo’ g4 Mot Sud g Bal p.. 8. . et ant g .t . g P P T TLR P T S P PUIY T PRI TR T T ¥ T

II. System Requirements and Justification

This chapter describes and analyzes the requirements of the AFIT-ASD Cray
system. The chapter describes the objectives, description, operation, and
specifications of the system so that there 18 a clear explanation of the
system itself and how the system is to perform. Any necessary justification

accompanies the stated requirements.

Objectives

The overall objective of the system design 1s to provide a flexible,
automatic, and virtual communications system capable of sending AFIT/EN
programs (jobs) from any of several AFIT host computers to the ASD Computer
Center”s Cray computer, and receiving the results sent back.

Specifically, the system must meet the following objectives:

1) It must be simple to use: The system must be simple for the
human user to use, in terms of understanding: (a) how to operate
the AFIT-ASD Cray system, and (b) what results to expect. This
will allow users to quickly learn how to operate the system and to
reduce user-induced errors.

2) It must be error-free: The system must be able to transfer data
to and from ASD"s Cray computer without error. This will ensure
that no unprocessed or erroneous data returns to the user, thus
reducing the number of repeat jobs needed and maintaining a
consistent turnaround time.

3) It must allow fast turnaround: The system, as it transmits jobs to
and returns output from ASD”s Cray, must be faster than the current
processing capability of AFIT s host computer resources (especially

for large, compute-intensive jobs). This objective {8 the driving
force behind the need for the system itself.

I1-1

R S

4) The system must use existing computer software and hardware to
minimize development time and system complexity, and to simplify
maintenance and future upgrades. This objective includes existing
data communications software and hardware.

The above objectives are reflected in the requirements definition that
follows. First, an overall system description is given followed by an outline
of the system”s operation. Next, the implementation requirements are listed
and the performance requirements are expanded. Finally, an overview of the

functional requirements for the system is presented.

Requirements Definition

System Description. The AFIT-ASD Cray system takes a user”s input file,

containing program data, from either the AFIT SSC, AFIT/ENG"s ELXSI computer,
or one of AFIT/ENG”s Sun workstations, and automatically transmits that input
file to ASD”s Cray computer for processing. Once at the Cray, the input file
is processed and the output file 1is automatically transmitted back to a
previously designated AFIT host computer. For example, the input file could
contain AFIT/ENG VLSI design data and the output file would then consist of
VLSI design analysis data (5) that may be output on a printer. The program
that would process the input data on the Cray would be a FORTRAN version of
SPICE, a VLSI circuit simulation program.

The AFIT-ASD Cray system should be flexible enough to allow jobs to be
entered from any of the above AFIT hosts or workstations and the output sent
to any of the above AFIT hosts or workstatlons. The system will notify the
uger via an online screen message or off-line electronic mail message when
output from the Cray has returned. The entire process, from Cray job

initiation at an AFIT source computer to the Cray job ocutput”s return at an

11-2

AFIT destination computer, will require no user intervention.

System Operation. In general, the AFIT-ASD Cray system operates over the

currently available AFIT data communications facility, which 18 connected to
ASD“s data communications facility. Specifically, the system makes use of the
existing RJE link between the AFIT SSC and ASD"s CDC Cyber computer (1), which
is currently connected to the Cray (15). The system also communicates with
AFIT/ENG”s ELXSI computer and Sun workstations and the AFIT SSC via a
dedicated, local computer network link (5).

Input data files created onm the ELXSI or the Sun workstations and
destined for ASD“s Cray computer are transmitted over an Ethernet (coaxial
cable) network link to the SSC (see Figure 2-1). While at the SSC, the ELXSI,
Sun or SSC input data files destined for the Cray have the appropriate Cyber

and Cray job-control commands placed into the input data files (15).

weiderq waiskg Leix) QSY-LIJV 1-z 2au8y4

'n
s

o d

ST

IS

133UU0%

A\AA.L.LJ_J_A_A Losladad

I11-4

. - .
[" .. ‘e . . .' - . . .
-’a'e’a

R
."..‘. v

."L.J..'

'J'.' .‘.,
Laleta

Py

el
ata

oy

.y
LSS
A% a% ol sas

N
LAY

IR

The SSC then takes the Cray job file and transmits it to the Cyber via the

existing SSC-Cyber RJE link. Once at the Cyber, the job file is transferred
to the Cray, the job processed, and the output returned to the Cyber, which in
turn returns the output to the AFIT SSC.

Once the SSC receives the Cray output from the Cyber, the SSC stores it
or passes it on to the ELXSI or Sun workstations, using the local computer
network link, depending on where the user specified the output should be sent.

The system will notify the user that the output file has returned via an
on-screen message at the source computer. If the user has logged off the
source computer, the system will place a message in the user”s "mailbox™ on
the source computer using the UNIX mail command (12:114).

The system also has an audit capability which keeps track of the progress
of a job as it passes from one computer to the next. A log file accompanies
both the input file and corresponding output file through the system. The
system sends to the user the log file along with the output file. The log
file contains date/time stamps of important events (e.g., file transfer from
one computer to the next) and any pertinent system messages and error messages
sceut by the AFIT and 4SD host coumputers involved.

The user has the responsibility to first create an input file for the
AFPIT-ASD Cray system. This is accomplished by using the file editor of choice
on any one of the AFIT host computers or workstations involved. Once the
input file i8 created, the user wmay enter the command sendcray, a set of
options, and the input filename, in that order. If no options are given, then
the default options are assuamed. After the 1input file has been sent to the
Cray and processed, an output file will return to the designated AFIT host and

user directory (file space).

1
W

11

AL O & AR S

r -

P’.".." LRt L URA ot o Lt Lt o Bie i's Bl By glo 44

In addition to the output file, a companion 1log file containing the

history of events that transpired from the time the Cray job left the AFIT
source computer or workstation and returned to 1its AFIT destination will be
sent.

Implementation Requirements. The system must use existing computer

software and hardware 1in order to minimize development time and system !
complexity, and to enhance maintainability. The system must also use existing :
data communications software and hardware to 1link together the computer
systeas involved.
Since each of the AFIT hosts and workstations involved can operate under
the UNIX operating system, the system will require the use of UNIX C-shell
commands in order to create the appropriate RJE commands (9).
Computer-to-computer communications among these UNIX machines will require the
use of standard TCP/IP data communications protocol commands over the Ethernet
local area nelwork 5.
The AFI7 S$SC to ASD Cvber hardware link {s already established. However,
the system wi.), require that Cyber and Crav job-control commands be embedded
cee tae AFIT user’s data fi.es.
The specifi. AFIT EN ‘ob to be used for an tnitial prototype system 1is a
FORTRAN version ~f AFIT ENC's SPICE VLS! circuit simulation program. The
epecit.. AF!T hos: .omputers 7> be uBed :in the prototype are the AFIT SSC
| NIXSVAX L Mt AFIT FNG s FIXS! omputer, and the Sun workstations.
Pertorman. e xeguiremernts. The pertormance criteria for the system are at
the heart ! the svelem s .hleitives. The need for the system grew out of a

requirement ::i provide a simp.e, wrror-free wav to access a faster non-AFIT

host (omputer, |.e, the ‘rav supercomputer at ASD Computer Center.

The system must be simple to use. The user must be able to understand

quickly how to operate the system and to remember how to operate it after only
a brief introduction. The system will accomplish this through the use of
obligatory error and usage messages (onscreen) and the use of hardcopy and
online user”s guides.

Accompanying the system will be a hardcopy user”s guide explaining the
operation of the AFIT-ASD Cray system. In addition to the hardcopy guide, an
online user”s manual entry will be available on each of the AFIT hosts and
workstations involved. Under the UNIX operating system, the user will use the
"man” manual command (12:31) to review the online user’s manual entry.
Besides explanation in the user”s guide of the function and options for the
system, the guide will also explain what outputs are produced and what they
contain.

One other requirement for simplicity of use is that the transmission and
running of a Cray job should be transparent to the user, i.e., should not
require any user intervention.

The system must be able to transfer data to and from ASD"s Cray computer
without error--no missing oc¢ garoied data. This will be dome by connecting
each AFIT host computer or workstation 1involved to a local communications
network. The local network is the Ethernet baseband (single-channel), coaxial
cable network. The network will ensure simple, coordinated data transfers
among the AFIT host computers. The Ethernet”s established error-handling
features will also ensure error-free transmission among the AFIT hosts. In
addition, the existing features of the AFIT SSC-ASD Cyber link will ensure
that the transfer of data files between AFIT and ASD will be simple and,

again, error-free.

11-7

s 2 2 A B A m e AN ANt WD A A oSl OR bk ot bon BENE ot & b ShER

- .. oo - . I - . _ R I I I L L A S L TR SR S .~
el e, I_.,’.\. R A ARt L OO N gy A ST NN .‘{' N -r\-\f RO O AN T A

The system must have a relatively fast turnaround time. The system, as A
it transmits jobs to and retrieves output from ASD's Cray, must be faster than

the current processing capability of AFIT s host computer resources,

.
L)
L)
»
-

especially for large, compute-intensive jobs. Output from the Cray must
return to a designated AFIT destination computer within a maximue of one hour.
The turnaround time will start from the time a Cray job leaves an AFIT
host computer or workstation until the Cray output returns to its final AFIT
destination. The turnaround time 1includes not only the program run-time
(execution-time) at the Cray, but also the time taken to transmit input data
to and output data from the Cray.
One major constraint of the system is the speed at which data is
transmitted between the AFIT SSC and ASD“s Cyber. The
syachrooous modem link between the SSC and the Cyber transaits data at 9600
bits/second. This is relatively slow compared to the maximum 10 Mbits/second
transmission rate of AFIT/ENG s Ethernet local computer network. The 9600

bits/second rate is a maximum rate--with the HASP communications protocol

executing between the SSC and the Cyber, the actual rate is somevhat lower.

The expected large (omne-half to one aiilion characters) fiie transfers between

UL AR

the SSC and the Cyber, whether 1input or output files, could become a major
bottleneck for the system. A careful analysis of the system turnaround time
aust follow system implementation to determine the effects of this comstraint.

The system will be validated by demonstrating that any of the AFIT hosts
or workstations involved will be able, without error, to transmit a job to
ASD”s Cray computer, run the job at the Cray, and return the output to any one
of the involved AFIT computers or workstations. The system should operate

properly under normal conditions, and recover from any abnormal conditions

I11-8

" e n" 2" 2P s " s "M 0 s " s R A" "> " b " a~a" g O e e e
o, f-l'\f I-r.f f L GO .Pq\'f\-'l,_l ."f -F- _.' vf a\.-\.g‘. N e L ..-_.- ARG COBON N 4

such as a computer going down or a communication link being disconnected.

An atteapt to install the before-mentioned SPICE circuit simulation
program on ASD“s Cray computer was made as a test case. The program would
execute VLSI circuit design simulations on the Cray using realistic circuit
design input data.

Functional Requireaments. This section describes the AFIT-ASD Cray

system”s user command and the functions of each of the user command options,
including default optiouns.

Besides entering the system”s command name and the name of the input data
file, the user may enter other optional informatiomn: (1) the Cray job type;
(2) the estimated Cray job run time (time to run while on the Cray, in
minutes); and (3) the output filename. If no option information is entered,
the default options are exercised.

The system is initiated when the user enters the following command:

sendcray [options] input_ filename
The systea provides the user with the following options:

(1) Cray job type. The job type can be either FORTRAN or SPICE. A
FORTRAN job indicates that the input data file is a FORTRAN program,
while a 3PICE job indicates tiuat the input data fi.e is inpucr Jda:a
for a VLSI circuit simulation. The default Cray job type is
FORTRAN.

(2) Cray job time. The job time is the estimated time in minutes
that the user expects the Cray job to run while at the Cray. The
systea uses this time value to place an upper limit on how long
ASD”s Cyber should wait for output to return from the Cray, the
maximua time being 15 ainutes. The default Cray job time {s 5
minutes.

(3) Output Destination. The user should be able to specify which
AFIT host computer or workstation will be the final destination of a
Cray job”s output. The choices are the AFIT SSC, AFIT/ENG"s ELXSI,
or any one of AFIT/ENG”s Sun workstations. The default output
destination is the source computer or workstation (the machioe tnat
originated the Cray job).

I1-9

(4) Output filename. The user can also specily the exact name of

the Cray job“s output filename. However, if no output filename is

given, the default output filename will be the same as the input

filename followed by a ".crayout™ suffix. Accompanying the osutput

file will be the log file for the Cray job. The name of the log

file will be the same as the specified output filename followed by a

".craylog” suffix, with the default being the input filename

followed by that same suffix.

After the user has entered the above ({nformation, the system perforams
automatically without giving the user any additional information until the
output file returns. Once the output file arrives at the destination host,
the system notifies the user via an online screen wmessage (if the user is
still logged-on to the source computer) or an electronic mail message (if the
user has logged-off).

These functional requirements along with the other requirements set forth
in this chapter are the foundation for the AFIT-ASD Cray system. These

requirements also form the basis for the detailed system design, which is

described in the next chapter.

11-10

III. sttel Design

This chapter on system design translates the requirements presented in
the previous chapter into a master diagram of the system. This overall design
will {ncorporate the functions specified under the system requirements and
will show how they and their sub-functions interrelate to produce a working
system.

The system design is described using the Structured Analysis and Design
Technique (SADT). Systea functions are described wusing SADT charts with

accompanying text.

Overview

The SADT charts in the following figures describe the functions, inputs,
outputs, and controls of the AFIT-ASD Cray systesm. The systeam, though
depicted as operating from a single wmachine (see Figure 3-1), is actually
implemented on several AFIT computers: AFIT/ENG"s ELXSI computer and Sun
v.rks* .tions, and the AFIT SEC (LF~ VAX-11/78%5). Each of thke AFIT :oaputers
uses the UNIX operating system which executes UNIX C-shell programs to
implement the system described here. Some of these programs are similar for
each machine while some are unique to a particular computer or set of

computers.

IT1I-1

L4 “ .‘I ,.J‘._ «

EaNN AT

N % T %

1-¢ 21n814

WALSAS AVED QSY Ll4v LA
:NIGNON 31 300N
< FOVSSIN INOG
WILSALS AVED]ﬂ:ocn:&z_
<
N 314 900 AVED
asv-114V fﬂ ELLY
o~ 3114 LdIN0 aNvY0D ¥3SN
™~ 201 AVED
31iva ‘AN M2LSAS AVED ASY-114Y :1D31MO¥d
¥IOVYIN] 98 030 :31vQ 443SSVL 'L :OMLNY

111-2

B

“w

. e

(\' ~

e o
o ¢

-
a

NN LN NS,
WA

.'t\ !\ '\'r'o' ALY :‘

..... -

The task of initiating a Cray job 1s virtually identical in all the AFIT
computers involved. Required user-inputs are the same no matter which
computer is used, and the system tasks of creating a Cray job file and the
associated log file are primarily the same.

Differences occur in the way the job and log files are submitted to the
Cray and in the way those same Cray log files and associated output return to
their final destinations. If the Cray Jjob originates from or is destined to
return to the AFIT SSC, the task 1s relatively simple since the SSC is
connected directly to ASD“s Cyber (and, 1in turn, the Cray). However, if the
job originates from or 1is destined for any other of the involved AFIT
computers, the task becomes more complex, since the job and log files must
travel through the SSC enroute to the Cray.

Another important difference among the system”s programs is that since
only the SSC can communicate with the Cyber and Cray computers, there are
specific programs resident on the SSC for sending files to and receiving files
from the Cyber and Cray. The differences outlined above will be described in
more detail in the next chapter which contains the detailed design.

The AFIT-ASD fray systen ie gplit vp into four wmair sections, Initiate
Cray Job, Route Cray Job to Cray, Execute Cray Job, and Route Cray Job Output

to Destination (see Figure 3-2).

III-3

LI}

PO)

AR RN NN NN IR N S NN NGRE XK RN RN R NNN BN NN NN RN

- e e 2 e an A ot g haan an s g andh = go o o e o ol L o el an g B o b i g ab adlF <7

2-¢ 2an8yy
. MILSAS AVED OS¢ L14¥ o
g E] N 300N
1w
in
Ny
M
1114 NOILYNILSHQ ﬂﬂ. .._w_“-u
¢ ML o
o L0 %
ivdy AvED 10N -
€Ty q aor
LudLw
Bl
v {7)
T4 Lo non - <
[}
00 Ava) B AVED QL -
(]
900 AVED =
N Lnos N4
1236 900 AVED mudmm«
200 IV
LUVILINI
dNL
T4 @07 AVED anvw
]
Tasn
31vQo :AIY WALSAS AVED QSY-L14Y :1JIMON
¥IAVIM| 98 30 :3AvQ 4438SV4 "1 MOMWANY

e Aol S B A B AP, ot St o i i i o b alh bl aeh il adet S Ak o i R el

The function, inputs, outputs, and controls of each section or module as well

as any submodules are described below.

{nltxate Cray Job

The I[nitiate Cray Job module (Figure 3-3) takes the user’s keyboard input
and the user’s {nput job file and creates a Cray job file and an accompanying
Cray job log file. The input filename i8 {dentified by the user”s input. The
Cray job file {s the same as the input file except that it has a new filename
vhich uniquely identifies {it.

Besides the input filename, the user wmay choose the Cray job type, the
job time, an alternate output destination, and a unique output filename. The
system software then places these four items into the Cray job log file.

The Cray job and log files are used by the next system module, Route Cray

Job to Cray.

II11-5

PR R

s-¢ ain8yy

L 401 AvE) TLVILINI 1y
‘HIGWMNN 3N :300N

1114 9 INYN 1114 900 LNdNI _
K— -
01 AVYED N
T4 01 Uvan)
§0r AVED X
{AWvn] 3114
401 AVED ©
WYN] 114 90 AvED B 11vag - - 3
—|l 114 907 LNdNI =
TRVNTIT] DR] -
NOLLYNI1530 Ld1n0 "
DLL 900 AVED K
3dAL 607 AVED “
~
R
>
4
Jiva AN WALSAS AVED aSv-L14v :4D31MO¥d K
¥Iaviy] 98 a :33yq 433sSv1 "1 (MOM ANY L
.-~
.Qk
4
-.L
-5
N

YW

->

Lan g an o

Route Cray Job to Cray

The Route Cray Job to Cray module (Figure 3-4) is really two modules in
one. The first submodule is responsible for updating the Cray job log file
and routing the Cray job and log files to the SSC (Figure 3-5). Once at the
SSC, the second submodule (Figure 3-6) converts the Cray job file into a job
deck file and sends the job deck to the Cyber and Cray for processing. The
job deck contains the original 1input file data from the AFIT computer that
init{iated the Cray job plus special Cyber and Cray job control language (JCL)
commands that control the flow and execution of the ioput file data at the
Cyber and Cray. The type of JCL commands tﬁat are created will vary depending
on the Cray job type that was specified by the user and stored in the job log
file. The log file remains at the SSC and 1is updated when any transfer (or

arrival) of job files occurs.

I111-7

BrFrFYIFIFFrsrsar - T T T T T avsr’ss

y-¢ a1in8yy

7 AVY¥D 01 40f Avi¥) 3LNO¥ Y
‘NIGWNN 13111 ' 300N K

’
; e
< 1104 71 801 AVR) AVHD K~ 7 .,
/43940 .
——

< Y0 g0t AVED 0L 31N0¥ A‘J :

P
T e S

111-8

N —

F114 207 90r AVED 314 W1 900 AVED

e

.

P ABA

,m.:.._ 900 AvdD e 114 801 AvHD

e p e
AP VS VI TR

Al

PSSR,)

31vQ AIY WALSAS AV¥D QSY-LI4Y :1D310Md
¥3Qv3iy| 9 N :3;yqg 443SSVL "L ¥OM LNV

. * -' - LT
A L

.
- ¥
‘-

‘. * [} ..
e

e W v LN
:':s'_q.i\':. i

[2 diegn e anam e endll g Lo

¢~¢ 21n81g
: JSS 0L 1Lno¥ 12y
NIANNN 3Nn 300N
£
T114 901 Js5 oL
gor ived 31l4
800 AVED
SASNVAL
4
3114 901
114 901 0r Avdd K o
90r AVED T4 901 900 AvVdD L
31vadn -
-
1
{anoa)
55
oL 314
40f AVYD
< WIASNVALL ‘
ST T4 900 AviD 200 AVED
31v0 ‘A3Y WALSAS AVED QSV-LIJY :1D31OMd
¥3aviu| 98 Jaa :3ivQ 443SSvl "L YoM LNV

e T W W TR R

L ol ek Bk it d dad

[ait 2’ 2 2 ode’ o oo Radednded

g9-¢ 21n81y
9 .
. AV§D/¥3€L3 OL 3100y
‘NIANAN 3y re 300N
Y
—_ 114 901
Arhmmr q0r AvVaD
0 113 201 ROC AVA)
AV 11vadn
(i ’
(ol AVED/¥30AD
" ;
&« -— oL 103
2730 01 AvMD qor Ava) v
¥IASNVAL ,
’ |
- 103
3330 900 AvdD
807 AvA) T4 906 Avd)
KR X)) .
(
N3 201
T4
200 AV BN
©oaor
34vadn e
3IivO AIY W3LSAS AVED QSY-114Y :123r0O¥8d
¥IQYIY) 9B O :3;vyq 43355V "1 NOM LNV

I111-10

AL A AL
<N _A‘..‘\‘_A\.Ah-

KR SO
‘.._A_‘\ AT N

e
o Oy

O O)

K
el A

-
2
ol nh

.

-
~

FRT NI

~

~ . -'.
RN

-
.

PR
BV I ™ X

A3

Ta"a

Execute Cray Job

This module (see Figure 3-7) 1is self-explanatory because the Cyber in
concert with the Cray executes the JCL commands found in the job deck sent
from the AFIT SSC. The Cyber JCL commands submit Cray JCL commands plus the
AFIT input file to the Cray, and wait for output from the Cray to return. The
Cray JCL commands then process the input file data that originated from an
AFIT source computer, and return the output to the Cyber. Output from the

Cray along with the Cyber output (which contains Cyber job history

information) return to the SSC automatically.

N o o L amr o e e L e - U DY
L—€ 2an814
L 40r AvVY¥D 31n23x3 (4]
YIGNNN 3N :3QON
JSsS oL
3714 1ndiLno
AIHHSJI 1nd1no AVYD J
4901 AV¥D NAMLIA AVYD
4
1ndino ~
1NdLno —
— WD .ﬂg AVYD hs
304 L1V -
! AVED QL
q0f AVY®D ¢ 1234
] 01 VD
1l1Wans
31v0 AN KILSAS AVED QSV-114Y :1D31O¥d
¥3qv3iy] 98 030 :33vQ 4435Sv1 "L :MOMW LNV

Route Cray Job Output to Destination

The Route Cray Job Output to Destination is made up of three separate
submodules (see Figure 3-8). The first submodule (Figure 3-9) updates the
Cray job log file when the Cray job output arrives. Then, the output
destination is extracted from the log file and the output file is transferred
to the output destination. Finally, the Cray job log file is updated once
more and then transferred to the output destination.

Once at the output destination, the Cray log file is updated and the Cray
output and log files are delivered to the user”s output filename which was
designated by the user initially and stored 1in the log file. After the Cray
output and log files are delivered to the user, a “"done message” 1s generated.
The "done message”™ will take the form of an onscreen message 1f the user is
logged on to the AFIT source computer, or will take the form of a computer

maill message if the user is not logged on to the AFIT source computer.

I1I-13

P M X oY LN ¢

T LR AT AT o

N ey A A N ot S O A o A R N A A SR R RN S G S S S by
L) K > o) o » .

g-¢ aandyy

8 NOILYNILS3IA OL LN4INO 80r AVED ALNOY o
‘HIANNN 3L 300N
T
FIVSSaN
FOVSSIN
2 aNoa
ALVNINID
[4 T4
Tanoa] 201
L ¥3sn oL dor
€ 314 901
311d 901 90 AVED NV L0100 AVED
P ¥3A113Q
N304 1410 80F AVEDD _M
1 3114 901
NOILYN1LS3q o0 TV
a
114 104100 3114 10d1n0
201 AVYD ilnoy q0r AVED
31vQ :A3Y KALSAS AVED GSV-114v :193rO¥d

Y3av3ay| 98 x@a :33vyq

443SSVL "1 MOM ANV

I11-14

u,

,~'\' \'J'u

6-¢ 21n81yg .

6 NOLLYNILS3G Q4 2L00d 112
‘¥38NON 31 :3GON
<
NOLLYNILS3d
.l aL 3114 901
eor ivay HOf »«5
’ 114 901
T4 01 114 4Ol
4 S0r Avo Ko — -
801 AVY) aLvadn 90 AvdD
& wy
—N§— O11YNI1S540 QL -t
T TR wr 13 Lo !
AV 40r AVHD T3 1IN0 €0F AV N
_TJ =
¥AISNYAL -
z
NOILYNI1S3Q
3HYN LSOH NOLLYNILS3Q LWL
INIWYEALAQ
1
114 201 114 901 114 201
gor avey] 90¢ v Kgor vey
alvadn
31va ‘A WALSAS AVED QSY-LL4Y :3)3rOyd
¥y3aQv3iy| 983 :3;yg 443SSVL "L :NMOM ANV
Ay
X
4
(4
&1
e
S
>
[\

K

IV. Detailed Design

This chapter on detailed design develops the 1initial, overall system
design of the AFIT-ASD Cray System into a more complete system design. The
detailed design describes the overall structure of the System”s implementation
so that the design may be translated into appropriate computer

system—-programming instructions.

Design Goals

The design objectives of the System have already been described in
Chapter 2: (1) must be simple to use, (2) must be error-free, (3) must allow
fast job turnaround, and (4) must use existing computer software and hardware.
Each objective has an impact on the design goals.

The System must be simple to use and operate. Given that the System runs
on AFIT computers that use the UNIX operating system, the System”s user
command format must conform to the UNIX style of user command-lines, i.e., a
uscr commsnd followed by "dash-cptinns™ (single-character optious prefixed by
a single dash) and ending with some kind of input (e.g., a filename). In this
way, a user already familiar with UNIX command formats will be able to
understand how to use the AFIT-ASD Cray System command.

The System must be able to detect invalid options, invalid option inputs,
and invalid input filenames and reporting these errors back to the user in an
orderly and graceful manner, i.e., without causing some abnormal or undetected
System program termination. The System must also be able to detect, recover

from, and report back to the user any errors in the internal operation of the

Iv-1

AIPE TR TSR Y S TP IS IS P) \\\
Tl "\.'-L‘:LAAMJ.A:LL'LA SN IOIRR

(n~ﬂ-'-"'-""""""""""""""""""""""""""""""""""""""'"""""""""7"'”*

System itself (host computers unavailable, data communication 1links down,
etc.) and do 8o in an orderly and graceful manner.

There {s nothing inherent in the system design that will notably improve
job turnaround time. ASD°s Cray computer 1is the component that executes
actual job. The System is merely a wuser of the Cray’s exceptionally fast
computational facilities. Since the System”s programs are UNIX C-shell

command programs, internal documentation (comments) in the production version

of the System software must be kept to a minimum. Commands in UNIX C-shell
programs are interpreted one at a time including the comments, although the
comments are not processed in any way. Reducing the number of comments, and
extraneous coumands, in each of the System”s programs would then decrease the
execution time of the System, though not significantly. The only notable
"goftware” improvement that could be made would be to increase the speed in
which the System detects and processes data files. This improvement is done
, by increasing the frequency in which some of the System programs are scheduled !
to run by AFIT"s UNIX host computers. Also, since the JCL (job-control i

language) commands of ASD“s Cyber and Cray computers are interpreted by their |
respective operating systems, these commands should alco be kept to & miulmum. E
The only other components that might be improved in order to provide i

, faster job turnaround time are the AFIT host computers themselves and the data
communications lines involved. However, this would violate the objective of

using existing software and hardware to develop the System.

Des 1§n Procedure

The detailed design of the System began by expanding the information

imbedded in the SADT charts of the previous chapter which described the

Y
9
[
[
[
K
) Iv-2 i

F‘WW"T‘"' Ll gd AL ad B4 Aol Ael de s ke shanis o 2b oAb albababtiiniacabd At dacodad dok lal dof Aok 4 L S S8 4 d & R'a b o b 4 A o 4 o Ao Sla 4} vw""mﬂ'

overall system design. The process modules in the SADT charts were converted
to actual UNIX C-shell programs by implementing module functions wusing a
series of C-shell commands. Each wmodule was preceded by a module header, a

set of comment lines describing a module”s function and contents. Since

several files were created to implement the modules, headers began each file.
Also, comments throughout the modules explained their inner workings (though
most or all of the comments, including the headers, are not used in the
production version of the System).

In general, prototypes of each module, including prototypes of parts of
the modules, were created first as tests to insure that the modules would
function as intended. Both the syntax of the C-shell commands and the logic
used within the modules were tested before the modules were allowed to process
any sample Cray jobs files.

The prototyping of System modules, in terms of what functions wvere
successfully tested and added, proceeded in this fashion: (1) FORTRAN job
sent to the Cray from the AFIT SSC; (2) Cray job output received at SSC; (3)
user command line created; (4) output delivered to a SSC user directory; (5)
ncdules run automatically using £SC”s crom (job scheduler) facilitv (explained
in greater detail in the Program Descriptions section); (6) modules (with
winor modifications) automatically run on AFIT/ENG”s ELXSI computer and Sun
workstations under each system”s cron facility; and (7) attempted to send a

SPICE job, as a test, to the Cray with output returning to AFIT.

Iv-3

[
.
[
|
1
|

.” -’-,-’-'-{ -,..,ﬂ - -..- i '. -.- . . - . h---.hh
- nolad AL OO NC AR

W) AR LA I S YRV S P,

- . [T S S S S S STy e e e L N et
Ly LS . 3 o L) \f"f-' WO

Denigp Format

Given the relative simplicity of the resultant C-shell programs, the only
format necessary was the use of the module headers as described above. An

example of a module header, with an explanation of each line-item, follows:

ARRARRARRRRARRRRARARRARRRRRARRARRRRARRARARARRARRAARAR AR ARN A AL AR

DATE: date of latest version
VERSION: current version number

MODULE NUMBER: module number (from SADT charts)

NAME: name of module (corresponds to SADT charts)

FUNCTION: description of module”s basic function

INPUTS: user-supplied inputs

OUTPUTS: user-directed outputs

GLOBALS READ: global (common) variables read

GLOBALS WRITTEN: global (common) variables written

FILES READ: files read by the module

FILES WRITTEN: files written by the module

HARDWARE INPUT: hardware devices read by module

HARDWARE OUTPUT: hardware devices written to by
module

CALLING MODULES: modules that call this module

CALLED MODULES: modules that this module calls

AUTHOR(S): person(s) who wrote the module
HISTORY: history of the development of this module

L 2 B NS N R B N AR BF AR 2 O N h BE B NE NE BN B J
L N NG B N NN N NE NE N NS N N N N I N N N N R

RRRRERRRARRRRARRRRERRRARRARARRRARARARRARARARRARRARR AR R AA R hdkd

The above module header, though a part of the documentation of this System,

will not be included in the production version.

)
Detailed Design
The detailed design follows the same order and flow of logic as did the
) overall system design. Each module corresponds to an SADT module as described
in the previous chapter. Though all the modules in the SADT charts appear to
be operating on ome AFIT host computer, the System modules do not all execute
| on the same computer. The following descriptions of the system modulies wii.
1V-4
]

ol O TR T T GG N A L A R T T U U DRGNP LI S S I R S SRR Y o
mm&ﬁ.t\{kﬁ::h'.:-t.&(x{\f&f‘.'_k'.A._A,u L u-_',,\.’_-.'_\':‘:";'.‘. O N S R A A IR A P A A) AR IIACR I AN

indicate the computer or computers in which each module resides.

The one common element of all the modules, no matter in which computer
the module resides, is that there is a unique job identifier name that serves
as prefix for all the files created by the System, e.g., input file, log file,
output file, etc. This job identifier is created when the System is initiated
for each job. The job identifier has the format:

xx99999 where xx represents the source host from which

the job originated (sc=SSC, el=ELXSI,

mc=Sun-Mercury, etc.)

99999 represents a 1-5 digit process (job)

identifier number, furnished by the

gource host computer, and is assigned

when the job 1s initiated
The purpose of the job identifier is to distinguish one set of System files
from the next. This distinction prevents the System modules from using,
overwriting, or otherwise destroying files belonging to another job. The size
of the job identifier is restricted to seven alphanumeric characters because

the identifier is also used by the System as a filename on the Cyber and the

Cray, both of which restrict filename lengths to seven characters (2:p.6-5).

Program Descriptions

The AFIT-ASD Cray System consists of several 4.2 BSD UNIX C-shell
programs, distributed among the above-mentioned AFIT hosts. The same program
may run on different hosts and may operate basically the same, except for
minor modifications based on the AFIT host in which the program resides. Each
program 1s contained in a file with a name 1dentical to that of the program.
A program contains one or more System modules as found in the SADT charts of

the previous chapter. Also, both Cyber-NOS and Cray job control language

IvV-5

. . e, >

AL

r—-““rmr—:r

Ao d alh ofd ofhs ol adlh i dhtl il Jhie Sanl A h Bak Aol Sel A Aol Aol 4 Y Aol ok At dbe Ste Shadubibe e Mibo dadhe 2l Aol candh Rnb. bl MERSEAA cn Al il Aalh Jualh Aol Aafl Lol

(JCL) commands are placed in the Cray job deck before the deck is sent to the
Cyber and Cray. A variety of publications were used to create the programs
and job decks (1) (2) (3) (4) (6) (12) (17) as well as the expertise of both
AFIT and ASD computer center personnel (8) (9) (1l1).

Sendcray. The sendcray program (see Appendix A) {s both the System”s
command-line program and System initiator. Its main function is to interpret
the user”s command inputs and create a Cray job input file and a Cray job log
file. It also has the task of routing the 1input and log files to the AFIT
SSC. sendcray incorporates SADT module Al, "Initiate Cray Job,” and submodule
A21, "Route to SSC." A2l is part of module A2, "Route Cray Job to Cray.” A
version of sendcray runs on all the AFIT host computers involved.

Sendcray begins with a list of variables, preset to some numeric or text
values. Most notable among these variables are the default values for the
System”s command options. Another set of important variables are the
source-host variables. 1In order to make sendcray portable to the other AFIT
hosts, the source-host variable SOURCEHOST 1s set to the host computer”s name
(e.g., ssc) while the variable SOURCEID is set to the host“s two-letter
identifier (e.g., sc). Alsn, the variahle PROCESSID 1is set to the valve of
the program“s 1-5 digit process (job) identifier number as furnished by the
host computer.

The first items that the sendcray program processes are the command-line
options and the Cray job input filename. After these input items are read,
the program determines whether or not the i{items are usable, valid, or in
range. Most importantly, the input file, the file given as input for the job,
must exist. Concerning the job type and job destination options, sendcray

checks these option inputs against a jobtypes.sendcray file and a

1v-6

R NwywT

hosts.sendcray file which contain the valid job types and destination hosts,

respectively (see Figure 4-1). Concerning the job time option, the amount of

1list of valid Cray job types for the sendcray command

the format is: jobtype followed by list of aliases (all on same line)
fortran FORTRAN Fortran

spice SPICE Spice

o6 se 0 0. 00000
® 000000 s 00 0

hosts.sendcray

"5 ss 00000000
O R E R X

1list of valid AFIT hosts for the sendcray command; the format is:
primary hostname followed by list of aliases (all on same line)
zgsc ssc SSC

zelxb bsd afitbsd

dsun2-1 dsun2 apollo

vsun2-1 vsun2 mercury

psun2-1 psun2 venus

isun2-1 isun2 zeus

Figure 4-1 Jobtypes and Hosts Support Files

time that the user expects the job to run while at the Cray must be less than
15 minutes. If any error occurs, an online error message 18 written to the
user together with a "usage™ message showing the proper command-line format.
Note that a potential administrative problem with the assignment of usernames
among the AFIT SSC, AFIT/ENG ELXSI and Sun computers (i.e., same person with
two different usernames or same username for two different people), prevents
implementation of the job destination option; however, 1initial attempts to
program—-in that option will be left in some of the programs for future use,
but will be "commented-out” to prevent their accidental use.

Next, sendcray creates the Cray job identifier by combining the SOURCEID

and the current PROCESSID together t» form one unique identifier; it ther

1v-7

“echoes™ the job identifier to the user as an online message (see Figure 4-2).

X sendcray craytest job

sendcray: jobfile ID, scl6349, created: 19:04:23 EST
sendcray: log file created

sendcray: input and log files transferred to SSC

Figure 4-2 Sample Sendcray Session

The System will wuse this identifier for the duration of the Cray job.

Sendcray then updates the file sendcray.log (see Figure 4-3) with information

this is the local sendcray log file

the format is: date unique_jobfile ID source destination jobtype jobtime
ioputfile outputfile user inputfile directory process_ID

Thu Nov 6 19:04:27 EST 1986 scl6349 ssc ssc fortran 5 craytest job
craytest job.crayout ttasseff /en0/gcs86d/ttasseff/cray 16349

Figure 4-3 sendcray.log File

about the current Cray job: date, time, job 1identifier, source and
destination host, job type and job time, input and output filenames, the
user”s name and current file directory, and the PROCESSID.

Sendcray then begins to form the Cray job 1log file. Using the job
identifier as a prefix and .craylog as the suffix for the log filename,
sendcray enters Cray Jjob information into the 1log file (same as for
sendcray.log), then "echoes™ to the user that the log file has been created
(see Figure 4-2).

The next task that sendcray performs 1is to route the Cray job input and
log files to the SSC. If the sendcray program is running on the SSC, then the

inpit and log files are simply moved "o -~ special "inbound”™ subdirectorr shere

Iv-8

b ath ol oS o i gl JBR otk JAe ahh aRA i ofiet et fafb Rat ol Sad bl Sob Sol Bod A B L ad Bk'e R'a AL fAte Sa gt

they wait for the next System program to pick them wup. If the sendcray
program is running on the ELXSI or one of the Suns, then the input and log

files must be transferred to the “inbound™ subdirectory on the SSC via the

AFIT/ENG Ethernet. The transfer command used in this case is called ftp (file
transfer program). Any errors during the ftp transfer are noted in the log
file and "echoed”™ to the user. Also, 1f there are any such transfer errors,
the program will exit (terminate). Note that the gﬁg_command works within the

program only because a .netrc file was used (see Figure 4-4). The .netrc file

On the SSC...
machine zelxb, login ttasseff, password xxxxxxX
machine vsun2-1l, login ttasseff, password xxxxxxXx

On the Sun-Mercury...
machine ssc, login ttasseff, password xxxxxxx

Figure 4-4 .netrc File Examples

contains the name(s) of the AFIT host computer(s) to which files are to be
transferred, along with the username and password for the AFIT-ASD Cray System
account on that particular host. ftp uses the .netrc file to login
automatically to a remote host from within a C-shell program. Every System .
program that uses ftp must use the .netrc file.

While being moved or transferred, the Cray job input file will take on a

new filename, one with a Cray Jjob identifier prefix and a .crayin suffix.

LA L

Also, once the move or transfer is complete, a final message is "echoed” to
the user indicating that the 1input and 1log files have been successfully .

transferred to the SSC (see Figure 4-2).

1V-9)

T T T T T Te N L H L S R TRNG N
\fd‘ PPN TR P P P P L A N R NN N R I AV AT TR G CA AT AT W

'.". o

Send cyber cray. The send cyber_cray program (see Appendix B) is the

moet lmportant of the System programs. Its main function 18 to create a Cray
job deck from the Cray job input file and to send it to ASD"s Cyber, and in
turn to the Cray. Send_cyber cray incorporates SADT submodule A22, "Route to
Cyber/Cray.” A22 1s part of module A2, “Route Cray Job to Cray.~
Sead cyber_ cray runs solely on the AFIT SSC. Also, this program runs via the
UNIX cron facility. The cron facility can execute a program of choice at a
particular time or set of times throughout a regular 24-hour day within a
regular 7-day week (12:536-537). By placing execution time optioms and the
program name into a UNIX crontab file, UNIX will execute the program as

indicated (see Figure 4-5). For this System implementation, send_cyber cray

0,15,30,45 8-23 * * 1-6 /en0/gcs86d/ttasseff/cray/send cyber cray
0,15,30,45 8-23 * * 1-6 /en0/gcs86d/ttasseff/cray/send destination

Figure 4-5 crontab File Example

will execute on the SSC Monday through Saturday, from 0800 to 2345 hours
(which matches the availability of ASD"s Cyber and Cray computers), and do so
every 15 minutes. One important feature of cron is that any program run from
the crontab file actually runs at the “root™ level of UNIX, which has the
authority to manipulate files in any wuscr“s directory, but needs full path
(directory) names in order to reach a file or to execute a given command.
First, send cyber_cray updates 1its send cyber cray.log file with a
date/time stamp and a message indicating that the program has been initiated.
Then the program checks to ensure that no other send cyber_ cray program is

cuarlrg (1f, for some reason, the previous send cyber cray prograt wes heid

Iv-10 .

v e 9 B B ¥

up). If another send_cyber_cray program is running, the program updates the ;
send cyber cray.log with an appropriate message, and exits (terminates) in i
order to maintain System integrity and to avoid two programs processing the
same files.

Next, the program moves into the “inbound” subdirectory to check for L:e
existence of Cray job log files. If they exist, the program continues by
determining the unique Cray job 1identifier from the prefix of the job log
filename. If they do not exist, the program will exit.

Send cyber cray then checks for the existence of the Cray job {input file
(1.e., has a .crayin suffix) with a filename prefix wmatching the job
identifier. 1If there {s no matching {nput file, then the program places an

error message in the log file, creates a dummy Cray job output file (with

filename prefixed by job identifier and suffixed by .crayout), moves both the
log and output files to an “outbound”™ subdirectory, and continues to check for
the existence of other Cray job log files.

If the above check 1is successful, send cyber cray will continue by
checking to see if the user who originated the Cray job is a valid user. The
nTngran extracts the user”s nare from the Cray job log f'le and :sapares it
against a table of authorized users stored 1in a file called users.sendcray y
(see Figure 4-6). If the user 1is not authorized, the same error-recovery
routine described for failing to find a wmatching input file is executed,

except that different error messages are used.

Iv-11

.‘\I\J‘

CAL AL NEI A AU R PORGLGS
LSRG S AN S S

e LA RIS

I R EEEE R EEEEREE]
R o e 2

users.sendcray

R EE R EEE] IR
R I I I o« o0

this is the sendcray valid user list; the format is username followed by
cyberuser cyberbatchpasswd crayacct crayacctpasswd crayuser
crayuserpasswd

(all on same line)

ttasseff T888888 XXXXXX T999999 2zzzzzZ T999999 2227722

Figure 4-6 Users Support File

I1f the above check is successful, then send cyber cray will extract the
user’s Cyber and Cray account and user numbers, with their accompanying
passvords, from the users.sendcray file. The Cyber and Cray accounts
information i{s used to form the job deck that 1is sent to the Cyber and, in
turn, the Cray (see Figure 4-5). The program also extracts the Cray job type
(FORTRAN or SPICE) and the job time (in wminutes; time that job 1is expected to
execute in while at the Cray) from the Cray Jjob log file. Send cyber_cray
then edits a template file called crayjobtop and replaces dummy variable names
with the Cyber and Cray account anumbers, user numbers, and passvords, and the
job type snd job time. The program also replaces any dummy filename variables
with the Cray job identifier to prevent any confusion with other Cray job
files on the Cyber and Cray that the System is still using. Finally, the
program places the new, updated copy of the crayjobtop file on top of the Cray
job input file and places an existing crayjobbot file on the bottom of the

fnput file to complete the Cray job deck (see Figure 4-7). Send cyber cray

1v-12

»

L

This 18 the crayjobtop file:

CRAYJOB,P1,STCSB.

USER,T888888 , XXXXXX.

CHARGE , *.

COPYEI, ,scl6349.

REWIND,scl6349.

CSUB,8c16349 ,MF=CRX,US=T888888 , PW=XXXXXX.
SET,R1=0,

SET,R2=0.

SET,R3=5.

WHILE,R1=0.AND.R2.LT.R3,LOOP.
ATTACH,8¢c16349=8c16349/NA.
IF,FILE(8c16349,AS),CHECK.
REWIND,sc16349.

COPYEI,scl6349.

PURGE,scl6349.

SET,R1=1.

ELSE,CHECK.

ROLLOUT, 60.

SET,R2=R2+1.

ENDIP,CHECK.

ENDW, LOOP.

/*EOR

JOB,IN=gc16349,U5=T999999.

ACCOUNT ,AC=T999999 ,APW=ZZ222ZZ ,US=T999999,UPW=2222222Z.
CFT,L=0.

LDR.

DISPOSE ,DN=$0UT,SDN=8c16349 ,MF=CB,DC=ST, DF=CB,DEFER, *
TEXT="DEFINE,scl6349.CTASK AIL. .

/EOF

This is the Cray job input file (FORTRAN):
PRINT 1000
1000 FORMAT(///,5X, THE CRAY TEST MADE IT.")
STOP
END
This is the crayjobbot file:

/EOF
/%EO1

Figure 4-" ucple Cray Job Deck

Iv-13

then removes the new copy of the crayjobtop file (the o0ld one is retained) as
well as the Cray job input file.

Send_cyber_cray is now ready to send the Cray job deck to the Cyber and
the Cray. The program then executes the send command to send the job deck to
the Cyber from the SSC as if it were a normal job, and to designate that the
output file (with a filename prefixed by the Cray job identifier and suffixed
by .crayout) be placed in the “outbound™ subdirectory. Send_cyber_cray will
then check for any errors from sending the job deck to the Cyber. If there
are any errors, the program will run the same error-recovery routine described
for failing to find a matching 1inoput file, except that different error
messages are used. If there are no errors, then the Cray job deck file is
removed, and the log file is moved to the "outbound”™ directory.

Once the job deck arrives at the Cyber, the particular Cyber commands in
the job deck (from the crayjobtop file) 1instruct the Cyber to submit the Cray
job input data, along with the unecessary Cray commands, to the Cray as a
normal job, wait for output to return from the Cray, then return the output to
the SSC.

Send destination. The send destination program (see Appendix C) 1is one

of the last of the System programs. It°s wmain function {s to determine the
Cray job files” destination, transfer the job files there, and move thea to
the user”s file directory. Send_destination incorporates SADT module A4,
“"Route Cray Job Output to Destination,” and runs soley on the AFIT SSC. Also,
send destination is one of the programs that runs via the UNIX crom facility
(according to the same schedule as send cyber cray).

First, send _destination updates {its send destination.log file with a

date/time stamp and a message indicating that the program has been initiated.

1v-14

—— - —

- -

- =

v

Then the program checks to ensure that no other send destination program is

running (if, for some reason, the previous send destination program was held
up). If another send destination program is running, then the program updates
the send destination.log with an appropriate message, and exits (terminates).

Send destination then initializes several variables which are preset to
some numeric or text values. Most notable among these variables 18 the
SYSTEMHOST variable, which contains the host computer”s name (e.g., ssc). The
other variables will be explained below.

Next, the program moves into the “outbound™ subdirectory to check for the
existence of Cray job log files. If they exist, the program continues by
determining the unique Cray job 1identifier from the prefix ot the job log
filename. If they do not exist, the program will exit.

Send_destination then checks for the existence of the Cray job output
file (i{.e., has a .crayout suffix) with a fflename prefix matching the job
identifier. 1If there is no matching .crayout file, then the program begins
keeping a count of how many times it has checked for the output to return
(i.e., every 15 minutes the program advances the count by one).

When the count becomes equal *o the value of the preset variakle
SEND_CHK, then send_destination checks to see {f the Cray job deck is still in
the send queue (i.e., checking to see if the job deck has not left the SSC).
If the job deck is in the send queue, then the program places an error message
in the log file, creates a dummy Cray job output file (with filename prefixed
by Jjob identifier and suffixed by .crayout) {in the "outbound™ subdirectory,
and continues to check for the existence of other Cray job log filea. If the
Job deck is not in the send queue, thean the program will also continue to

check for the existence of other Cray job log files.

V=15

I f!.!I f:. A .!. - T CRL

When the count becomes equal to the value of the preset varlable

OUTPUT_CHK, then send_destination executes the same error-recovery routine
described when finding that the Cray Jjob deck 1is still in the send queue,
except that the error messages indicate that the timeout for Cyber/Cray output
is exceeded.

Once the existence of the Cray job output file 1is detected,
send destination extracts the user name and destination host name from the
Cray job log file. If the destination host {s the SSC, the program also
extracts the user”s file directory and the final name for the Cray output file
from the log file, then moves the the Cray job log and output files into the
user’s file directory. The output file will have the final output filenaame,
vhile the log file will have the final output filename as a prefix and
.craylog as a suffix. Send destination then checks to see {f the user is
presently logged on to the SSC. If so, the program will write a "done
message” to the user as an online (on-screen) message. If the user is not
logged on, the program will mail the user the same message via computer mail

(see Figure 4-8). The "done message™ has an important feature in that {t

Prom root Tue Nov 11 20:12:08 1986

From: root (Charlie Root)

To: ttaseeff

Status: RO

Message from sendcray: Cray output and log files for 8cl6349 have returned

Figure 4-8 Sample Done Message via Mail

contsins the unique job I{dentifier which signifies to the user which job’s

output has arrived, which {s helpful 1f the user had initiated msore than one

job.

Iv-16

IOKION | PV YPYYY |

If the destination host is not the SSC, send_destination uses virtually

the same ftp transfer routine as in the sendcray program in order to transfer
the Cray job log and output files to their destination host. One difference
is that if the transfer fails for any reason, no error message is "echoed”™ to
the user but is placed in the Cray job log file nevertheless, and the transfer
attempt must be repeated the next time that send destination executes. If the
transfer is successful, the Cray job log and output files are removed from the
SscC.

Note that in order for the ftp to work within a program it must use the
.netrc file of the System username or account. Since the send destination
program runs under the cron facility at the "root”™ level (or account), the
program must switch the user account, using the su command (9), from "root” to
the System account. This allows ftp within the program to access the System
-netrc file so that ftp caan successfully communicate to a fellow System
account on another AFIT host computer. Any System program running under crom
or “root” must use the su command before using the ftp command.

One additional feature of send_destination 1is that it removes any stray
curput files that “elatedly return to the AFIT SSC from ASD”s Cyber and Cray
({.e., the System has already returned the accompanying job log file to the
user, reporting that the output file was 1lost). When a stray output file 1is
removed from the SSC, a message signifying that action is placed in the SSC’s
sendcray.log file.

Send user. The send user program (see Appendix D) is the final System
program. Its main function is to wmove Cray job log and output files to the
user’s file directory on a non-SSC host computer. Send user incorporates SADT

module A4, "Route Cray Job Output to Destination,”™ except for submodule A4l,

Iv-17

“"Route to Destination,” since the Cray job log and output files are already at
their destination, namely AFIT/ENG’s ELXSI or one of the Sun workstations.
Send user runs only on the ELXSI and the Suns. Also, send user is onme of the
programs that runs via the UNIX crom facility (according to an
every-five-minute schedule).

Send_user is basically the same program as send_destination. But, since
there is no other destination host to which to route the Cray job log and
output files, send user needs only to deliver the log and output files to the
user”s file directory and generate the appropriate "done message” (using write
or mail).

To conclude this chapter, two additional {mportant items require further
comment. One important thing to note 1is that the Cray job log file is being
updated with a date/time stamp and a message for every significant event that
occurs in each of the above programs (see Figure 4-9), including any System
error messages. Also, any Cray job files that are processed, or other files
that are created in these programs to help process the job files, are
protected from being read or altered im any way in order to maintain System

{ntegrity and to prevent fpossitle errors or faults.

Iv-18

AkARARRRARRAR Cray Job 8c23925 log file FAANAA#mkkaNR
Wed Dec 3 11:58:17 EST 1986 : actual sendcray start time
source: 8sc destination: ssc

jobtype: fortran jobtime: 5

inputfile: fpbench.f

outputfile: fpbench.f.crayout

user: ttasseff

directory: /enO/gcs86d/ttasseff/cray

processid: 23925

RRRRRRARARRRRAARRRARARARRRARARRARRRAARRARRARANAAAAAARR AN

Wed Dec 3 11:58:46 EST 1986 : Cray job input and log files
being transferred to SSC

Wed Dec 3 12:00:35 EST 1986 : Cray job deck being formed at SSC
618
551

Job number #1533 eantered in queue “asdcyber”

SSC
Wed Dec 3 12:15:20 EST 1986 : Cray job output received at ssc

/en0/gcsB86d/ttasseff/cray and user notified at ssc

Figure 4-9 Saaple Cray Job Log File

1v-19

Wed Dec 3 11:58:42 EST 1986 : Cray log file creation completed at ssc

Wed Dec 3 12:00:28 EST 1986 : Cray job input and log files received at SSC

Wed Dec 3 12:00:49 EST 1986 : Cray job deck send-to-cyber/cray started at SSC

Wed Dec 3 12:01:37 EST 1986 : Cray Jjob deck send-to-cyber/cray completed at

Wed Cec 2 12:15:33 EST 1986 : Cray job output and log files s=2at :o dir:ctovy

This chapter analyzes the AFIT-ASD Cray System in order to report on the

success of the System in meeting the prescribed specificat.ons and 1its
performance. This chapter covers the System”s good points as well as the bad,
and makes suggestions where applicable.

The analysis covers the following areas of the System design and
operation: system design, functional requirements, system performance, and

the current System status.

AFIT-ASD Cray System Design

The System”s design, from the 1initial, overall design to the detailed
design, covered all areas of the System”s operations and functions. The use
of SADT charts to document the flow of data and control provided the input
needed to create the various System programs. Each program contains
appropriate header information and internal documentation so that each program
file and module is well-dncumentec and explained.

The programs themselves are highly structured so that the flow of control
is evident by inspection. Proper indentation of the program commands reveals
the structure within the programs. Also, the use of "go-to” commands are used
sparingly to prevent confusion. Despite these guidelines, however, some parts
of the programs prove to be hard to read, primarily because the UNIX commands

did not accept indentation properly. 1In general, the programs are written as

clearly and efficiently as possible.

v

The use of consistent variable names 1s enforced from program to program
to promote naming integrity among the programs. The names of the variables

and the programs, as much as possible, are meaningful and descriptive.

Functional Requirements

The System implements the functional requirements found in Chapter II.
The System takes a user”s input file from the AFIT SSC and automatically
transfers it to ASD“s Cray computer for processing. Once at the Cray, the
input file is processed, and the output file is automatically transferred back
to the user at the AFIT computer from where the input file came. A log file
is8 also implemented to keep a history of significant events over the life of a
job, and accompanies the output file back to the user. After the output is
sent back to the user, an onscreen message 1is sent to the user if the user is
still logged on to the computer, or a mail message 1s sent instead if the user
has logged off. The options of providing job type (FORTRAN or SPICE), job
[execution] time [on the Cray], and output filename have been implemented.

The [alternate] job destination option was not implemented because of a
pectential administrative prohlem 1in assigning usernames among the involved
AFIT host computers. No SPICE programs were run at the Cray because AFIT
lacked a complete set of SPICE FORTRAN modules. Some of the SPICE modules
were written in the C programming language, but the Cray as of yet has no C
compiler. Due to a fatal system error when running ftp within a C-shell
program, the AFIT/ENG ELXSI could not be used to test the System. Also, due
to repeated breakdowns of the Ethernet connection to the SSC, neither
AFIT/ENG"s ELXSI or Sun workstations could be used in the System. Thus, only

FORTRAN jobs originating at the AFIT SSC can be run on the Cray using the

V-2

- ek s a o

present System.
i Once the SPICE program is loaded on the Cray, a different set of Cray JCL

commands are needed in the Cray job deck (see Figure 5-1). These commands

i ACCESS ,DN=SPICE, PDN=SPICE, ID=systemcrayacct,UQ.
ASSIGN,DN=SIN,A=FT5.
LDR,DN=SPICE.

Figure 5-1 Sample Cray SPICE Job Deck Commands

would replace the CFT (Cray FORTRAN compiler) and LDR command lines in the
FORTRAN job deck. Note that the executable SPICE code must have open (public)
access so that all users will have permission to use it.

The System is simple to use in that the wuser uses a familiar-looking
UNIX-like command to start a job through the System. Also, onscreen usage and
‘ error messages were created to guide the user if there were any problems. In

addition, hardcopy and online users guides are available to aid the user.

PPy

The System was tested to ensure that it could operate on the AFIT host

computers ianvolved, and could accommodate the options specified at job
inftiation. The Sys-em was also tezatod for various sinulated errcr corditions
(e.g., files missing {n tramsit, output not returning from ASD Cyber/Cray,
etc.) with the System consistently being able to recover from the errors, and

the error messages correctly recorded io the job log file.

System Performance

The System performance was evaluated by compiling and running the same
sample FORTRAN test program (see Figure 5-2) using the AFIT SSC and using the

AFIT-ASD Cray System. The compile-and-run of the test program was i{nitiated

v-3

.

. o L SRR A A AR IR A X Ly

» O S S N g R R I SR N '\'.\"'."\\':

T

\ o e e Aa o o o

almost at the same instant in time on both the SSC and the System via a UNIX

C-shell program. This same C-shell program placed both the SSC and System
test runs individually into "background” (non-interactive) mode so they could
run on their own until completion. The compile-and-run on the SSC was timed
by using the /bin/time command (12:473-474) while the System time was
calculated by subtracting the final time stamp in the Cray job log file from
the first time stamp (actual sendcray start time). The timed runs were made

at various times of day over a consecutive three-day period.

R AN A I A AL AT A NN AR TR T IS R I S R S RN T

AN o B S

(03]
Ce
C®

100

200

10
20

300

FLOATING POINT BENCHMARK TEST

G. SCOTT OWEN 1/83

MODIFIED BY CAPT TODD TASSEFF, AFIT/GCS-86D, DEC. 1986
DIMENSION X(9)

PI = 3.14159

WRITE(*,100)

FORMAT(” ENTER THE NUMBER OF ITERATIONS - FORMAT I4)
READ(*,200) N

N = 500000

FORMAT(I14)

DO 20 I = 1,N

Y = PI/2.1

X(1) = SIN(Y)

X(2) = COS(Y)

X(3) = Y#2

X(4) = SQRT(Y)

X(5) = EXP(Y)

X(6) = ALOG(Y)

X(7) = ¥

X(8) = Y*PI

X(9) = SIN(Y) * 2

DO 10 J = 1,9

A= X(J) * 3(J) / PI

CONTINUE
WRITE(*,300)

FORMAT(1X,” #* FPBENCH EXECUTION FINISHED °)
END

Figure 5-2 FORTRAN Test Program (14)

Table 5-1 below shows the comparison between test run times on the AFIT

SSC vs. the AFIT-ASD Cray System. The SSC run times ranged from approximately

TABLE 5-1

AFIT-ASD Cray System Performance

| Time taken to run FORTRAN test |
| (hrs:min) at various times of day |
|
|

|Computer System | 1000 | 1200 | 1500 T 1800 T 2300

I | | | | |

AFIT SsC	04:14	04:36	02:05	06:51	04:00
I					
AFIT-ASD Cray System	00:31	00:17	00:19	00:16	00:19
I		I I			

two to seven hours per run, while the AFIT-ASD Cray System maintained a
consistent run time close to 15 minutes. Except for the 1000 run, each rum
was initfated within five minutes before the hour. The 1000 run was initiated
almost right on the hour and incurred a longer run time (see explanation
below).

The variations in time for the SSC test runs were most likely due to the
¢ormputing load that the SSC was experiencing during the run times. The
AFIT-ASD Cray System test run times were fairly consistent due to the timed
nature of the System programs and the effeciency of the compile-and-run time
on the Cray itself (approximately one-half minute of total Cray time per rum).

Since the send_cyber cray and send destination programs of the AFIT-ASD
Cray System execute every 15 minutes (on the quarter hour), a System run would
be expected to complete in approximstely 15 to 30 minutes. In this scenario
the send cyber cray program begins running at the quarter hour, receives the

faput file (in this case the FORTRAN test program) at the SSC, packages it as

v-6

a job deck and sends it to ASD°s Cyber and Cray. Within a few minutes the

output returns to the SSC. At the next quarter hour, the send destination
program begins running, receives the Cyber/Cray output, and transfers the
output to the user.

Therefore, since all of the test runs were made within five minutes
before the hour (hence, before the quarter hour), the AFIT-ASD Cray System
test runs completed in 15 minutes plus a few extra minutes (the extra minutes
being the amount of time before the hour when the test runs were initiated).
Since the 1000 test run was made too close to the hour, the send_cyber_cray
program missed receiving the input file. The 1000 test run then had to wait
an additional 15 minutes before the send cyber cray program finally received

it, making for a longer overall run time.

System Status

The AFIT/SI computer center staff are ready to assume the responsibility
for the System. They will be able to operate the System well into the
future. In addition to the user”’s guide shown in Appendix E, an
aaministrator”s guide is included 1ia Appendix F to 4instruct the staff un
various items which include how to set up the System, add users to the System,

interpret error messages, and to be aware of possible problems.

e s .
T e

“) "»

AR AL R R 0 N N

P

VIi. Conclusions and Recommendations

Conclusions

The AFIT-ASD Cray System as a whole successfully accomplished its task of
providing a virtual commsunications capability to ASD"s Cray given the existing
computer hardware and sofiware at AFIT. It proved to be simple to use and vas
robust enough to tolerate and recover from various errors and fault
conditions. And as an alternative to running timse~-consuaing,
compute~intensive jobs, such as the SPICE VLSI circuit simulation package, on
AFIT computers, it has the potential of providing a faster turnaround time
than what is possible with AFIT computer resources.

The System proved that such a system was feasible to implement, despite
the three different operating systems and two different types of
communications links. And the System operated automatically -— without user
intervention. This made the inner workings of the System transparent to the
user, hiding such details from the user so that the user was left with the

simplest interface tc tte System possitle.

Recommendations

Some improvements to the hardware support are required in order to
improve the System”s capabilities. First, the 9600 bit/sec link between the
AFIT SSC and ASD“s Cyber needs to be upgraded to a higher speed, at least
somewvhat approaching the Ethernet”s 10Mbits/sec capability, 8o as not to
remain the communications bottleneck in the System. One possibility is to

upgrade the SSC-to-Cyber link with a fiber-optic cable 1in order to approach

VI-I ’

» - ™

. 3% ¥ DR Fo I VLML VR T O e e Pl -~ - .
| AT N NN OB CR AT M N AT N AN SO SR SN R)

bada A bag ael A b aod Badh Sad B and A b e d ol e hesdhbee daian 8 TR bkt dafle e stde aboanke hal et aadl hadl o

speeds in the Mbit range. Second, the more often System programs running
under UNIX“s cron can be initisted the faster the System can turn around Cray
jobs. Third, once the administrative problem of assigning usernames to users
on the involved AFIT host computers is solved and becomes more streamlined,
then the option to choose an alternate job destination for a Cray job”s output
could be implemented.

The problems that occurred during the implementation of the System
demonstrate that AFIT must obtain a complete FORTRAN version of SPICE in order
to run SPICE on the Cray as was originally intended. Also, care should be
taken vhen implementing the System over a wide range of supposedly compatible
UNIX computers. As was the case with the ELXSI, there was some error in the
ELXSI“s version of 4.2 BSD UNIX that prevented ftp from being executed within
s C-shell program, even though it worked on the AFIT SSC and the AFIT/ENG Sum.

The System was designed with the latent goal that the System needed to be
fully implemented on the various AFIT hosts involved, and be done at a
privilege (authority and priority within the computer) higher than the user,
that {s, at the UNIX “root™ level. This means some program commands were
written in such a way i 1ot to comnletely preclude the praograms frecm being
loaded into their own system file directories on the involved AFIT hosts, and
run at the higher privilege 1level. By following the comments within the
programs, and by following the Administrator”s Manual for the System, a
computer system s administrator should be able to implement the System on any
of the involved AFIT computers.

The System itself serves as a model for other such remote job entry
requirements at AFIT. Other software packages could be loaded on the Cray,

and vith a few ainor changes to one of the System programs, those packages

vVi-2

P I A I R T A AN A AT

~r~l“f-'f\f~l‘.l“.’\f.'f~f~-‘ .'-$v.\r$l.".\l.. “f!-' L .-;,Ai).-;:. ~ n

O o™ .

could also be run automatically on the Cray using the System. If AFIT

develops requirements to initiate jobs on physically separate computers, the
System could be used as an example for system programmers. Specifically, the
System could be used by those looking for a solution to implement and conmtrol
the execution of programs on a different computer than what the users normally

use.

Vi-3

.
\
W A A A ST A R o 1 LA et BRIIE

Bibliograph

1. Air Force Institute of Technology Information Systems Directorate.
“"Remote Job Entry Is Back.”™ AFIT SSC News (computer message). /
January 1986.

2. ASD Information Systems Center. ASD Computer Center CD(NOS ser’s
Guide. Revision B. September 1983.

3. ASD Information Systems Center. On-Line Information System, Section
12, Cray Information. 6 June 1986.

4. ASD Information Systems Center. NOS Procedure User Guide. May 1983.

5. Carter, Lt Col Harold, Professor, Department of Electrical and Computer
Engineering. Briefing and personal interviews. AFIT/ENG, Wright-
Patterson AFB, OH, January through July 1986.

6. Cray X-MP and Cray-1 Computer Systems. Cray-0S Version 1 Ready Reference
Manual, SQ-0023. Revision E. Cray Research, Inc., 1984.

7. Day, John D. "Terminal, File Transfer, and Remote Job Protocols for
Heterogeneous Computer Networks,” Protocols and Techniques for Data
Communications Networks, edited by Franklian F. Kuo. Englewood Cliffs,
NJ: Prentice-Hall, Inc., 1981.

8. Filer, 1Lt Robert, Systems Analyst. Personal Interviews. AFIT/SIO,
Wright-Patterson AFB, OH, June through September 1986.

9. Hamlin, Joseph, Systems Analyst. Personal Interviews. AFIT/SIO,
Wright-Patterson AFB, OH, April through November 1986.

10. Hortom, Capt Kirk S. A Microcomputer—based Program for Printing Check
Plots of Integrated Circuits Specified in Caltech Intermediace Form.
MS thesis, AFIT/GE/ENG/84D-35. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB, OH, December 1984.

11. Johnson, Kenneth, Systems Analyst. Personal Interviews. ASD
Information Systems Resource Center, Wright-Patterson AFB, OH, July
through November 1986.

12. McGilton, Henry, and Rachel Morgan. Introducing the UNIX System. New
York: McGraw-Hill Book Co., 1983.

13. McLeod, Capt Thomas M. Design of Resource-Sharing Network Link. MS
thesis, AFIT/GE/EE/80D-30. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB, OH, December 1980, (AD-A100793).

l4. Owen, G. Scott. "Benchmarking the 8087 Numeric Coprocessor,” Personal
Computer Age, March 1983, p. 58.

BIB-1

;u;-.',-.'{-.:_\.' AR '. I T R A 1 N L SR

S L L e e o 1 Ll

Reinhard, Ray, Systems Analyst. Personal Interview. ASD Information
Systems Resource Center, Wright-Patterson AFB, OH, 14 April 1986.

16. Tanenbaum, Andrew S. Computer Networks. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1981.

17. University of California, Berkeley. UNIX Programmer s Manual: The C
Shell, Seventh Edition, Virtual VAX-1l1 Version. Computer Science
Division, Department of Electrical Engineering and Computer Science,
Berkeley CA, November 1980.

18. Ware, Jim, Systems Analyst (on contract from SRL, Inc.). Perscaal
Interviews. AFIT/SIO, Wright-Patterson AFB, OH, April 1986.

LA e e e e e ol

System Program Listing - sendcray

#!/bin/ceh -f
FRRRRRRRRRARARRARRARARRRRRRRAARRRARRAARRAARRRARANRARNRRRARR AN RARRR

#n
i
#n
#*
#
#n
#*
#n
#*
#*
F A
#%
#x

DATE: December 5, 1986
VERSION: 1.0

TITLE: AFIT - ASD Cray System

FILENAME: sendcray

OWNER: ttasseff (Capt Todd Tasseff, GCS-86D)

SOFTWARE SYSTEM: AFIT SSC - 4.2 BSD Unix Operating

System

USE: for Lt Col Carter, EENG Thesis Project

CONTENTS: Modules Al, Initiate Cray Job, and A21,
Route to SSC

* % B % % % % % N N B %

FRRRRRRARAARRRRRARARARRRAARRAAARRRARARRRAARARAARRRAAARARRAAARARRAAA

#

FRARRARARRRARARARARRRRRARARRAARRRRRRARARRRRRARAREARRAAAAR AR RRRRRR

#%
#%
2]
#x
#*
'3
#*
#*
#*
F 1.
#x
F 1]
#n
i*
¥ 1
F 1
el
#
#%
#*
#n
#*%
#*
#5
%
#5
#%

DATE: December 5, 1986
VERSION: 1.0

MODULE NUMBER: Al
NAME: Initiate Cray Job

FUNCTION: Interprets the user command inputs, creates

a Cray job input file and log file.
INPUTS: From keyboard
OUTPUTS: Status messages (on-screen)
GLOBALS READ: None.
GLOBALS WRITTEN: job file identifier
FILES READ: wuser-produced input file
FILES WRITTEN: jobfile.crayin, j;bfile.craylog
HARDWARE INPUT: None.
HARDWARE OUTPUT: None.
CALLING MODULES: None.
CALLED MODULES: None

AUTHOR: Capt Todd Tasseff
HISTORY: 1.0 original version (Capt Todd Tasseff)
Note: 1lines beginning with ## refer to
items necessary for implementing
the program at root level
Note: 1lines beginning with ### refer to
features not yet implemented

L I B B N B EE A N 2R IR Ok BE B R B BE R N B N R I

FRERRARRRRARRARARARRARRAARARARRARARRRRAANARARARRARA AR R RARRRRAR AR AR

SSYSTEMDIR/ to be placed in front of sendcray.log, $jobfile.craylog, and
the inbound subdirectory

1

System Program Listing - sendcray 4

##set SYSTEMDIR = “ttasseff/cray a
set startime = “date”

set SOURCEHOST = ssc

set SOURCEID = sc

set PROCESSID = §§$

@ JOBFLAG = 0

@ TIMEFLAG = O

@ OUTFLAG = 0

##4@ DESTFLAG = O

gset destination = $SOURCEHOST

set DEFJOBTYPE = fortran ',

@ MAXJOBTIME = 15

@ DEFJOBTIME = 5

set inputfile = “not given and so”
%
‘
o
q
:l
)
i
1

SB Setes

Get command-line options and inputfilename
while ($fargv)
switch ($argv[l])
case -j:
@ JOBFLAGH
shift
set jobtype = S$Sargv[l]
shift
breaksw
case -t:
@ TIMEFLAGH
shift
set jobtime = $argv(l]
shift
breaksw
case -0:
@ OUTFLAGH
shift
set outputfile = $argv{l]
shift
breaksw
¢ case —-d:
@ DESTFLAGH
H# shift
r# set destination = Sargv([l]
#ie shift
i breaksw
case -:
echo “sendcray: - must be followed by a valid
option”
goto usagemsg
breaksw
default:
set inputfile = Sargv(l]

A-2

W T R AT AT T TOL TR T TO o I T T SO TR T WL N, L L S DS L S
Ai\{\iﬁ$¢\h£\'.\fh':\: ‘:\".'.ﬂ."i\fs \".{\.':\‘C\)_\.':\.':\‘:\"_L{s'f\'fy..":;.fg"' P

7“77- oY YT WYY T YV I VT www

System Program Listing - sendcray

shift
if (Cexpr Sinputfile -."7) then
echo “sendcray:” Sinputfile “{nvalid option~
goto usagemsg
elge {f (S#argv != 0) then
echo “sendcray: filename” S$inputfile "must” \
“follow optiomns”
goto usagemsg
endif
breaksw

o

endsw

end
Check for non-existence of inputfile
1f (! -e $inputfile) then

echo “sendcray: filename” $inputfile “does not exist”

goto usagemsg
endif
t
###4 1f DESTFLAG is set, use Sdestination; else set S$destination to default
###1if (SDESTFLAG != 0) then
###¢ # Check for existence of destination host
set destchk = “grep $destination hosts.sendcray | awk “{prinmt $1}°°
##¢4 1f (Sdestchk == ““) then

144 echo “gendcray: host” $destination “ifnvalid; see hosts.sendcray”
s goto usagemsg

#t else

e set destination = $destchk

endif

f#tendif

1f JOBFLAG is set, use $jobtype; else set $jobtype to default
if (S7OBFLAG != 0) then
Check for existence of job type
set job = “grep $jobtype jobtypes.sendcray | awk “{print $1}°"
1f ($job == “°) then
echo “sendcray: jobtype” $jobtype “invalid; see jobtypes.sendcray”
goto usagemsg

else
set jobtype = $job
endif
else
set jobtype = SDEFJOBTYPE
endif

#
If TIMEFLAG is set, use $jobtime; else set $jobtime to default
1f ($TIMEFLAG != 0) then
Check to make sure max job time 18 noi exceeded
if ($jobtime > $MAXJOBTIME) then

AN NN TN N 4

System Program Listing ~ sendcray

echo “sendcray: jobtime” $jobtime “exceeds max jobtime of~ $MAXJOBTIME \
“minutes”
goto usagemsg
endif
else
set jobtime = S$DEFJOBTIME
endif
#
1f OUTFLAG is not set, set Soutputfile to default (else, continue)
1f (SOUTFLAG == 0) then
set outputfile = $inputfile.crayout

endif
FRudeddedo sk kkkok ok
usagemsg prints a Usage message then exits
goto endusagemsg
usagemsg:
echo “Usage: sendcray [-j job_type] [-t number of min.]}~
echo ° [-o output_filename] input_filename~
###echo ° [-o output filename] [-d AFIT destination host] input filename”
exit ()

endusagemsg:
FRuRbded kil ik kkk

#
Create unique Cray job file identifier, using the source ID as a prefix and
¢ the current sendcray process ID as the suffix, and echo it as an online
message
set jobfile = $SOURCEIDSPROCESSID
echo “sendcray: jobfile ID,” $jobfile”, created:” \
“date | awk “{print $4 " " $5}°°
#
Check to see if local source sendcray log file exists; if it does not,
(reate it and protect it
if (! -e sendcray.log) then
cp /dev/null sendcray.log ; chmod 0600 sendcray.log
echo “## this i1s the local sendcray log file” > sendcray.log
echo “## the format is: date unique jobfile ID source destination jobtype”

“jobtime” >> sendcray.log
echo “## 1inputfile outputfile user inputfile directory process ID” \
>> sendcray.log - -
endif
Update sendcray.log with Cray job information
echo “date™ $jobfile $SOURCEHOST $destinmation $jobtype $jobtime S$inputfile \
Soutputfile “whoami™ “pwd™ $PROCESSID >> sendcray.log

Create Cray job log file (using job file name and .craylog suffix),
give it protection, then enter Cray job information into job log file
cp /dev/null $jobfile.craylog ; chmod 0644 §$jobfile.craylog

A-4

RE L T ST e e . R T T S S
L e et e B P A P P A R N A A L A RO AL AR AN
Y S . S A Y LY T T T T T N " YUY Sty Yl W T A VA V. VA T Y AN Yl WA YO SR Y TR LA A

(o0 St Al al Al el SRt Bl e e BUR A o d S i Al AL B A Al fal ta'ohs b ddenil ol dh i hiathd sl i obEtad gl ek dnl lol Bak Aol et A A d Al bt e A dh e S

System Program Listing - sendcray

echo “AAAARAXRRARA% Cray job” Sjobfile “log flle Armsssmdmddsn” \
> $jobfile.craylog
echo $startime “: actual sendcray start time” >> $jobtile.craylog
echo “source: - SSOURCEHOST - destination: ~ Sdestination >>
$jobfile.craylog
echo “jobtype: ~ $jobtype ~ jobtime: ~ Sjobtime >> Sjobfile.craylog
echo “inputfile: ~ S$inputfile >> Sjobfile.craylog
echo “outputfile: ~ Soutputfile >> $jobfile.craylog
echo “user: ° “whoami™ >> §jobfile.craylog
echo “directory: ~ “pwd™ >> $jobfile.craylog
echo “processid: ~ $PROCESSID >> Sjobfile.craylog
echo “date™ “: Cray log file creation completed at” S$SSOURCEHOST \
>> $jobfile.craylog
echOo “HARRARRARARARRRANRARARRAARRAAARRARAAARARRARRRRARARARR " |\
>> $jobfile.craylog
Echo Cray job log file creation message as an online message to the user
echo “sendcray: log file created”

$
FRRRRRRARRRRRAARARRAARRRARRRARARRAARARRARARARRRSARRARRNARRRAR AR
#* *
DATE: December 5, 1986 *
A VERSION: 1.0 b
#» *
#* MODULE NUMBER: A2l *
#* NAME: Route to SSC *
#* FUNCTION: Transfers Cray job file to the SSC {nLound *
#* directory, updates Cray job log file, *
ol and transfers the log file to the SSC *
#* inbound directory. *
| #* INPUTS: Noune. *
! Al OUTPUTS: Status messages (on-screen) *
} ' A GLOBALS READ: job ‘..e ‘daatif:ic: »
' #* GLOBALS WRITTEN: None. *
\ #* FILES READ: Cray job input file *
! ol FILES WRITTEN: jobfile.crayin, jobfile.craylog *
? #* HARDWARE INPUT: None. *
#* HARDWARE OUTPUT: AFIT/ENG Ethernet (if ftp used) *
#» CALLING MODULES: None. *
#* CALLED MODULES: None. *
F A *
‘ #* AUTHOR: Capt Todd Tasseff *
| #* HISTORY: 1.0 original version (Capt Todd Tassetff .
#* ~
'***i.ﬁﬁiﬁiﬁi*i**ﬂﬁiﬁﬂt*iitiiﬁﬁ‘ﬁﬁiiiﬁitiﬁiiiﬁtiﬁitﬁﬁiﬁﬁ.it"ﬁﬁtt
!
Create Cray job file-space in 1{nbound directory, protect i{t, then copv

Cray ioputfile into {t
cp /dev/null inbound/$jobfile.crayin ; chmod 0600 fnbound $‘obfile..ravin

A=5

System Program Listing - sendcray

cp Sinputfile inbound/$jobfile.crayin

Update Cray job log file

echo “date™ “: Cray job input and log files” >> $jobfile.craylog

echo ~ being transferred to SSC” >> $jobfile.craylog

Move Cray job log file to inbound directory

mv $jobfile.craylog inbound/.

Echo Cray job input and log file transfer message as online message to user
echo “sendcray: input and log files transferred to SSC~

¢

¢ *%% END OF FILE sendcray ***

A-6

Co AW Blanlea'a AV N2l W S e XA &

. - a NLte e e - St e te ta hue . R AL N I P I et T RIS] ORI RV
T T R N A e e N e Y e T e ot e e L e L T A T

System Program Listing - sendcray

#i1/bin/csh -f
PRRARRRRARRARRRARRRRRARARARRARRARRRARRRRRKRRRRRRRIARRRAR KAk IR kAhk

ol *
p* DATE: December 5, 1986 *
" VERSION: 1.0 *
e *
e TITLE: AFIT - ASD Cray System *
A FILENAME: sendcray *
" OWNER: ttasseff (Capt Todd Tasseff, GCS-86D) *
A SOFTWARE SYSTEM: AFIT/ENG Sun - 4.2 BSD Unix Operating *
¢ System *
i USE: for Lt Col Carter, EENG Thesis Project *
A CONTENTS: Modules Al, Initiate Cray Job, and A2l, *
s Route to SSC *
Al *
POSRRARNRARRARRRRARRRRRRRRKRARAK AR R KR KRR AR KRk ded ko dedddkkkdk ok kkkk

!/
PRENBARRRRARRRARRRARRAARRARRRRRARRRRRXRAARARAR ARk A AT kR A hhhkhkhk
& *
A DATE: December 5, 1986 *
" VERSION: 1.0 *
e *
(A MODULE NUMBER: Al *
¢ NAME: 1Initiate Cray Job *
A FUNCTION: Interprets the user command inputs, creates *
" a Cray job input file and log file. *
’e INPUTS: From keyboard *
e OQUTPUTS: Status messages (on-screen) *
’e GLOBALS READ: None. *
re GLOBALS WRITTEN: job file identifier *
’e FILES READ: wuser-produced input file *
' FILES WRiTTEN: Jjobfila.crayin, jobfile.craylog *
’e HARDWARE INPUT: None. *
’e HARDWARE OUTPUT: None. *
’e CALLING MODULES: Nonme. *
re “ALLED MODULES: None *
re *
Pe AUTHOR: Cap Todd Tasseff *
. 4’ TORY: 1.0 original version (Capt Todd Tasseff) *
. Note: lines beginning with ## refer to *
g items necessary for implementing *
. the program at root level *
. Note: lines beginning with ### refer to *
.. features not yet implemented *
*

£ 2 000NNt ARRRNRNARNRANRARRRRARNRRARARRARRRRARRAARRRA KA R AR kR kkR

M 4 . he placed {n front of sendcray.log, $jobfile.craylog, and
. v e q-ubdlrectory

System Program Listing - sendcray

##set SYSTEMDIR = ~ttasseff/cray
set startime = “date’
set SOURCEHOST = mercury
set SOURCEID = mc
set PROCESSID = §$
@ JOBFLAG = O
@ TIMEFLAG = 0
@ OUTFLAG = 0
###@ DESTFLAG = 0
set destination = $SOURCEHOST
set DEFJOBTYPE = fortran
@ MAXJOBTIME = 15
@ DEFJOBTIME = 5
set inputfile = “not_given and _so”
Get command-line options and inputfilename
while ($#argv)
switch ($argv[l])
case -j:
@ JOBFLAGH
shift
set jobtype = Sargv|l]
shift
breaksw
case -t:
@ TIMEFLAG+H++
shift
set jobtime = Sargv(l]
shift
breaksw
case -0:
@ OUTFLAGH+ !
shift .
set outputfile = Sargv{l]
shift
breaksw
case —-d:
1§44 @ DESTFLAG++
shift
#ite set destination = $argv(l] .
234 shift .
234 breaksw :
case -: ’
echo “sendcray: - must be followed by a valid
option”

goto usagemsg
breaksw
default:
set inputfile = Sargv([l]

A-8

System Program Listing - sendcray

shift
if (Cexpr $inputfile : "-."") then
echo “sendcray:” $inputfile “invalid option”
goto usagemsg
elge if ($fargv != 0) then
echo “sendcray: filename” $inputfile “must” \
“follow options”
goto usagemsg
endif
breaksw
endsw
end
Check for non-existence of inputfile
if (! -e $inputfile) then
echo “sendcray: filename” $inputfile “does not exist”
goto usagemsg
endif
#

1f DESTFLAG is set, use $destination; else set $destination to default

###1f (SDESTFLAG != 0) then
#4 # Check for existence of destination host

set destchk = “grep $destination hosts.sendcray | awk “{print $1}°°

1if ($destchk == ““) then

¥ echo “sendcray: host” S$destination “invalid; see hosts.sendcray”
1## goto usagemsg

t## else

set destination = $destchk

endif

###endif

#

1f JOBFLAG is set, use $jobtype; else set $jobtype to default
1f ($£JOBFLAG != 0) then
Check for existence of job type
set job = “grep $jobtype jobtypes.sendcray | awk “{primt $1}-°
if ($job == ““) then
echo “sendcray: jobtype” $jobtype “invalid; see jobtypes.sendcray”
goto usagemsg

else
set jobtype = $job
endif
else
set jobtype = $SDEFJOBTYPE
endif

#
If TIMEFLAG is set, use $jobtime; else set $jobtime to default
if (STIMEFLAG != 0) then
Check to make sure max job time {s not exceeded
1f ($jobtime > SMAXJOBTIME) then

A-9

it e i ot

System Program Listing - sendcray

echo “sendcray: jobtime” $jobtime “exceeds max jobtime of” $MAXJOBTIME \
“minutes”
goto usagemsg
endif
else
gset jobtime = S$DEFJOBTIME
endif
¢
1f OUTFLAG 1s not set, set $outputfile to default (else, continue)
if (SOUTFLAG == Q) then
set outputfile = $inputfile.crayout

endif
Flohkhdodedode itk kR
usagemsg prints a Usage message then exits
goto endusagemsg
usagemsg:
echo “Usage: sendcray [-] job) _type] [~t number of min.]~
echo © [-o output_filename] 1nput filename~
###echo ° [-o output_filename] [=d AFIT ' destination host] input filename~”
exit ()

endusagemsg:
Fhuhhhkhhddihihk

#
Create unique Cray job file identifier, using the source ID as a prefix and
the current sendcray process ID as the suffix, and echo it as an online
message
set Jobfile = $SOURCEIDS$PROCESSID
echo “sendcray: jobfile ID,” §$jobfile”, created:” \
“date | awk “{primt $4 " " $5}°°
#
Check to see if local source sendcray log file exists; 1f it does not,
create it and protect it
if (! -e sendcray.log) then
cp /dev/null gsendcray.log ; chmod 0600 sendcray.log
echo “## this is the local sendcray log file” > sendcray.log
echo “## the format is: date unique_jobfile ID source destination jobtype”

“jobtime” >> sendcray.log
echo “## inputfile outputfile user inputfile directory process ID" \
>> sendcray.log
endif
Update sendcray.log with Cray job information
echo “date” $jobfile $SOURCEHOST $destination §$jobtype $jobtime S$inputfile \
$outputfile “whoami™ “pwd™ $PROCESSID >> sgendcray.log

f Create Cray job log file (using job file name and .craylog suffix),

! give it protection, then enter Cruy job {nformation into job log [ile
cp /dev/aull $jobfile.craylog ; chmod 0644 $jobfile.craylog

A-10

System Program Listing - sendcray

echo “AAARRARAXXXXX Cray job~ $jobfile “log file AkhhAkAAkAkk~ \
> $jobfile.craylog !
echo $startime “: actual sendcray start time” >> §$jobfile.craylog
echo “source: < $SOURCEHOST - destination: “~ $destination >>
$jobfile.craylog
echo “jobtype: ~ $jobtype ° jobtime: ~ $jobtime >> $jobfile.craylog
echo “inputfile: “ $inputfile >> $jobfile.craylog
echo “outputfile: “ $outputfile >> $jobfile.craylog
echo “user: “ “whoami® >> $jobfile.craylog
echo “directory: ~ “pwd™ >> $jobfile.craylog
echo “processid: ~ $PROCESSID >> $jobfile.craylog
echo “date™ “: Cray log file creation completed at” $SOURCEHOST \
>> $jobfile.craylog
echo “ARARKRRARKARARRRARRARRARRRAARRARRARARRAARARARRRAARARE |\
>> $jobfile.craylog
Echo Cray job log file creation message as an online message to the user
echo “sendcray: log file created”

FRARAARAARAAAARAARAAARARARAAARARARRARRARRARRARRRAARRARARARRARAARR
Transfer Cray job input and log files to outbound subdirectory
cp $inputfile outbound/$jobfile.crayin

av $jobfile.craylog outbound/.

Change directory to outbound subdirectory

#
Ly R T T T T
#* *
#* DATE: December 5, 1986 *
#* VERSION: 1.0 *
#% * [
% MODULE NUMBER: A2l * f
#* NAME: Route to SSC *
#* FUNCTION: Transfers Cray job file to the SSC inbound *
#* directory, updates Cray job log file, *
#* and transfers the log file to the SSC *
#* inbound directory. *
#* INPUTS: None. *
! #* OUTPUTS: Status messages (on-screen) *
| £ GLOBALS READ: job file ident:fier *
#* GLOBALS WRITTEN: None. *
#* FILES READ: Cray job input file *
#* FILES WRITTEN: Jjobfile.crayin, jobfile.craylog *
i #* HARDWARE INPUT: None. *
i #* BARDWARE OUTPUT: AFIT/ENG Ethernet (if ftp used) *
) #* CALLING MODULES: None. * i
, " CALLED MODULES: None. * !
I #* * 1
l #* AUTHOR: Capt Todd Tasseff *
; * HISTORY: 1.0 original version (Capt Todd Tasseff) * !
*
l j
)
i
: l

A-11

i
{
]
i

System Program Listing - sendcray

cd outbound

#

Change the ownership of the input and log files to the username that
owns the outbound subdirectory, then switch user to that username
##chown $SYSTEMUSER outbound/$jobfile.crayin outbound/$jobfile.craylog
##exec su $SYSTEMUSER -f -c << SUEND

* |
ftpsend:
Update Cray job log file
echo “date™ “: Cray job output and log files being sent to SSC” \
>> $jobfile.craylog
echo © from” $SOURCEHOST >> $jobfile.craylog
cp /dev/null $jobfile.ftpchk; chmod 0600 $jobfile.ftpchk F
ftp ssc << ENDFTP >& $jobfile.ftpchk
cd cray/inbound
send $jobfile.crayin
send $jobfile.craylog
quit
ENDFTP ?
set ftp test = “wc -w $jobfile.ftpchk | awk “{print $1}°°
if ($ftp_test) then # ftp-send did not work out
cat $jobfile.ftpchk >> $jobfile.craylog
echo “date™ ‘3 sendcray: ftp send failed at” $SOURCEHOST: >>
$jobfile.craylog
cat $jobfile.ftpchk >> $jobfile.craylog
Echo Cray job files transfer-failure message as online message to user
echo “sendcray: ftp send failed to transfer input and log files to SSC”
echo “sendcray: try again later”
else # ftp-send did work out
Echo Cray job files transfer-success message as online message to user
echo “sendcray: input and log files transferred to SSC~
Remove both input and log files
rm $jobfile.crayin)
rm $jobfile.craylog

endif

rm $jobfile.ftpchk # ftp—check file no longer needed
##SUEND

#

#%*% END OF FILE sendcray ***

A-12

.
FOrYWYY I W W IR WW W " aerararw ey v

P I AN [R I AN ART N N N 0 0 A T R R S I A
m"‘!L‘ASA,‘"‘_‘:QL"A}AA"‘\J.'A *a .A'f‘ DA YA A VRRATY oy y

[RREXN

RS SR PRI, GGG LA, WA, S/, TR ATV, T

System Program Listing - send cyber cray

#!/bin/csh -f
FRARRERRARARRRRRARRARARARRARRRRRARARARRAAARRRRRAAARARAR AR RARRA AR

#* *
#* DATE: December 5, 1986 *
#* VERSION: 1.0 *
> *
#* TITLE: AFIT - ASD Cray System *
#* FILENAME: send_cyber cray *
#* OWNER: ttasseff (Capt Todd Tasseff, GCS-86D) *
#* SOFTWARE SYSTEM: AFIT SSC -~ 4.2 BSD Unix Operating *
#* System *
#* USE: for Lt Col Carter, EENG Thesis Project *
#* CONTENTS: Module A22, Route to Cyber/Cray *
* *
FRRRRKRARARRRRRRRRRARKRRR R KK RERRARRRARRAR AR AR AR AR RRAAR AR AR RN AR &
#

FRARRRRRRRARRRRRAAAIARRRAARRRARRARARARARRRARRARARRRARAARRARAARRAR
* *
#* DATE: December 5, 1986 *
#* VERSION: 1.0 *
#* *
#* MODULE NUMBER: A22 *
#» NAME: Route to Cyber/Cray *
#* FUNCTION: Updates Cray job log file, creates a Cray *
i job job-deck, (using Cyber and Cray job- *
#* control commands), sends job~deck to *
#* Cyber/Cray, and updates log file *
#* INPUTS: None. *
#* OUTPUTS: None. *
#* GLOBALS READ: job file identifier *
#* GLOBALS WRITTEN: None. *
#* FILES READ: jobfile.crayin, jobfile.craylog, *
#» cray jobtop, crayjobbot *
#* FILES WRITTEN: jobfile.crayin.deck, jobfile.craylog *
Al HARDWARE INPUT: AFIT/ENG Ethernet (if ftp used) *
#n HARDWARE OUTPUT: RJE link to ASD Cyber *
#* CALLING MODULES: None. *
CALLED MODULES: None. *
' *
#* AUTHOR: Capt Todd Tasseff *
#* HISTORY: 1.0 original version (Capt Todd Tasseff) »
N *

PRRARAARRARRRARAARARARRRARARRRARAARRARAAANRRAANARANARNRARAARAARNEAAR

set SYSTEMDIR = “ttasseff/cray
!

cd S$SYSTEMDIR

Check to see {f the send _cyber cray.log file exists; Lf not, create {t
1f (! -e send cyber cray. log) then

‘P e AR

System Program Listing - send_cyber_cray

‘ cp /dev/null send_cyber_cray.log; chmod 0600 send cyber cray.log
! endif -
‘ # Update send cyber_cray.log file
echo “date °: send _cyber_cray initiated” >> send_cyber_cray.log
Check to make sure that no other send _cyber _cray shells are running...
if ("ps | grep send _cyber_cray | we =1° > 2) then
echo ~ send_;yber_;tay already running” >> send_cyber cray.log
exit() # ...if so, update send_cyber cray.log file and exit
| endif
' #
Move to inbound subdirectory
cd inbound
Check for existence of Cray job log files; if none, then exit foreach loop
foreach logfile (“1s | grep “\.craylog$~ ")
Protect Cray job log file
chmod 0644 $logfile
Get jobfile name (prefix-before-the-dot) of Cray job log file
set jobfile = “echo $logfile | awk -f. “{print $1}°°
Check for existence of Cray job input file; if none, then place an
error message in the Cray job log file, create a dummy Cray job output
file, move both output and log files to outbound subdirectory, and
go to end of the foreach loop; else, 1f it exists, give it protection
if (! -e $jobfile.crayin) then
echo “date™ “: send cyber cray: Cray job log file ONLY received at SSC;~

R .

>> $jobfile.craylog

echo ° 1input file lost; job aborted” >> $jobfile.craylog

cp /dev/null $jobfile.crayout; chmod 0600 $jobfile.crayout

echo “send cyber_cray: input file lost; job aborted -- see log file” \

> $jobfile.crayout

nv $jobfile.crayout ../outbound/.; mv $jobfile.craylog ../outbound/. !

goto endforeach 1
else

chmod 0600 $jobfile.crayin
endif
Update Cray job log file
echo “date™ “: Cray job input and log files received at SSC~ \

>> $jobfile.craylog
¢
Check to gsee if user is on the sendcray valid user list; if not, place an
error message in the Cray job log file, create a dummy Cray job output
f file, move both output and log files to outbound subdirectory, and
) ! go to end of the foreach loop; else, get Cyber and Cray account info
set user = “head -10 $jobfile.craylog | awk “/user:/ {print $2}°°
set user_info = “grep “Suser” " ../users.sendcray"
{f (SPuser _info) then

set cyberuser = Suser info[2]

set cyberpass = Suser_info[3]

e B e e AR T e Bt 8 MR M.

B-2

. e e m a

-

- T

————————

-

System Program Listing - send cyber_ cray

set crayacct = $user_info[4]
set crayacpass = $user_info{3]
set crayuser = $user_info[6]
set crayuspass = $user_info(7]
else
echo “date™ “: send cyber_cray: user NOT on valid user list at SSC;~ \
>> $jobfile.craylog
echo ©~ job aborted” >> $jobfile.craylog
cp /dev/null $jobfile.crayout; chmod 0600 $jobfile.crayout
echo “send cyber cray: user NOT on valid user list; job aborted” \
“—— gsee log file” > $jobfile.crayout
mv $jobfile.crayout ../outbound/.; mv $jobfile.craylog ../outbound/.
goto endforeach
endif
Begin forming Cray job deck -- update Cray job log file
echo “date”™ “: Cray job deck being formed at SSC” >> $jobfile.craylog
Get Cray job type and job time from the log file
set jobtype = “head -10 $jobfile.craylog | awk ~/jobtype:/ {primt $2}°~
set jobtime = “head -10 $jobfile.craylog | awk “/jobtime:/ {print $4}°"
switch ($jobtype)
case fortran:
set jobtype = CFT,L=0

-

case spice:
set jobtype = SPICE
default:
set jobtype = CFT,L=0
endsw
Create and protect a temporary file; edit top portion of Cray job deck
and replace dummy variable names with the given variable names,
then store it in a temporary file; also, update Cray job log file
with any editing info
cp /dev/null ../$jubfile.crayjobtop; clmod 0600 ../$jobfile.crayjobtop

ed ../crayjobtop << ENDEDIT >>& $jobfile.craylog
1,\$8/JOBFILEXXX/$ jobfile/g
1,\$8/CYBERUSER/$cyberuser/g
1,\$8/CYBERPASS/$cyberpass/g
1,\$8/JOBTIMEXXX/$ jobtime/g
1,\$8/CRAYACCT/Scrayacct/g
1,\$8/CRAYACPASS/S$crayacpass/g
1,\$8/CRAYUSER/Scrayuser/g
1,\$8/CRAYUSPASS/$crayuspass/g
1,\$8/JOBTYPEXXX/$ jobtype/g

w ../$jobfile.crayjobtop

q

ENDEDIT

Create and protect the new Cray job deck; complete new Cray job deck by
14 concatenating the top portion of the jJob deck, the Cray input file,
¢ and the bottom portion of the job deck together; remove old job files

B-3

AL R e dendh B don A S A

System Program Listing - send_cyber_cray

cp /dev/null $jobfile.crayin.deck; chmod 0600 $jobfile.crayin.deck

cat ../$jobfile.crayjobtop $jobfile.crayin ../crayjobbot > \
$jobfile.crayin.deck

m ../$jobfile.crayjobtop

rm $jobfile.crayin

#

Send Cray job deck to the Cyber/Cray; update the log file as usual, and

also include any system message or error message; any Cray job output

will go to the outbound subdirectory; also, remove the job deck after

it is sent

echo “date™ “: Cray job deck send-to-cyber/cray started at SSC” \
>> $jobfile.craylog

cp /dev/null $jobfile.sendchk; chmod 0600 $jobfile.sendchk

/usr/afit/send -output=../outbound/$jobfile.crayout $jobfile.crayin.deck \
>& $jobfile.sendchk

Check for problems with sending to Cyber/Cray; if 0.K., update Cray job

log file and continue; if not 0.K., update and place an error message

1into the log file, create a dummy Cray job output file, move both

output
and log files to outbound subdirectory, and go to end of the foreach
loop

set send test = \
“cat $jobfile.sendchk | awk “$0 ~ /Job number/ & $0 =~ /entered in
queue/” "
if ($#send test) then
cat $jobfile.sendchk >> $jobfile.craylog # send to Cyber O.K.
else
cat $jobfile.sendchk >> $jobfile.craylog # send to Cyber not 0.K.
echo “date™ “: send cyber cray: send to Cyber/Cray failed at SSC;” \
>> $jobfile.craylog
echo © job aborted” >> $jobfile.craylog
cp /dev/null $jobfile.crayout; chmod 0600 $jobfiie.crayout
echo ‘send_pybet cray: send to Cyber/Cray failed; job aborted -- see” \
“log file” > $jobfile.crayout
mv $jobfile.crayout ../outbound/.; mv $jobfile.craylog ../outbound/.
goto endforeach
endif
rm $jobfile.crayin.deck
re $jobfile.sendchk
¥
Update Cray job log file and move {t to the outbound subdirectory
echo “date™ “: Cray job deck send-to-cyber/cray completed at SSC” \
>> $jobfile.craylog
mv $jobfile.craylog ../outbound/.

endforeach:

end

¢

¢/ #%% END OF FILE send cyber cray #*#

B-4

System Program Listing - send destination

#!/bin/csh -f
PRERRRRRKKRRRKKKARRRRRARARRRRRRRKAXRRRRKAXRRARRAXRARARRRRRRARARNK

f#*
§#%
{H*
i %
%
#*
%
%
#*
#%
#%
5
#*

DATE: December 5, 1986
VERSION: 1.0

TITLE: AFIT - ASD Cray System

FILENAME: send_destination

OWNER: ttasseff (Capt Todd Tasseff, GCS-86D)

SOFTWARE SYSTEM: AFIT SSC - 4.2 BSD Unix Operating

System

USE: for Lt Col Carter, EENG Thesis Project

CONTENTS: Module A4, Route Cray Job Output to
Degstination

* % ¥ ¥ N N X F X X * XN

Je e ddudu g de de e de e de e de e Je de e Jo e dede o o de e de e do e o o e de e de de de ¢ Je 3k de ke e ek de e e dededede e Aok ook e e e e e S

¢

FRARRARARRRRRARARRARKAKRKXRARRARARARARAAARRRARARARARAhAAAhkhhhhhhikAhk

%
%
i#*
%
%
#%
%
%
fi*
f*
#*
#*x
F A
F'1
#*
#*
#*%
#*%
#*
fix
{*
#%
i*
#*
#*
#%
2
#%
§r

DATE: December 5, 1986
VERSION: 1.0

MODULE NUMBER: A4
NAME: Route Cray Job Output to Destination

FUNCTION: Checks for Cray job output, updates Cray job
log file, determines output destination,
and transfers output and log files to the

destination host.
INPUTS: None.
OUTPUTS: Onscreen or mall done-message
GLOBALS READ: job file identifier
GLOBALS WRITTEN: None.
FILES READ: Jjobfile.craylog, jobfile.crayout
FILES WRITTEN: jobfile.craylog, outputfile
HARDWARE INPUT: RJE link from ASD Cyber
HARDWARE OUTPUT: AFIT/ENG Ethernet (if ftp used)
CALLING MODULES: None.
CALLED MODULES: None.

AUTHOR: Capt Todd Tasseff
HISTORY: 1.0 original version (Capt Todd Tasseff)
Note: 1lines beginning with ## refer to
items necessary for implementing
the program at root level
Note: 1lines beginning with ### refer to
features not yet implemented

FRRRRRARARRRRARRRRRRRNARARRARRAAARRRRARRAARRAANAARARARRARARA AR RARK

c-1

LI I B N B N SR SR N I R B BN N R N B N I N O NN IO N N

. e AR e M o ATt B B Bl D W A3

~ v S R
iﬁf’g\ﬁq{agw’qﬁ\, Call P P el PO L L L L P ALO P P LR YRR

System Program Listing - send _destination

gset SYSTEMUSER = ttasseff
set SYSTEMDIR = ~ttasseff/cray
#
cd $SYSTEMDIR
¢
Check to see if the send destination.log file exists; 1if not, create it
if (! -e send_ﬁestination.fbg) then
cp /dev/null send destination.log; chmod 0600 send destination.log
endif - -
Update send destination.log file
echo “date™ “: send destination initiated” >> send destination.log
Check to make sure that no other send destination shells are ruaning...
1f (“ps | grep send_destination | wc =1 > 2) then
echo ~ send destination already running” >> send _destination.log
exit() # ...if so, update send destination.log file and exit
endif -
#
set SYSTEMHOST = ssc
f##set PASSWDFILE = /etc/passwd
the following are based on an every-15-min. cron execution of this program
@ SEND_CHK = 4 # equal to one hour
@ OUTPUT_CHK = 8 # equal to two hours
#
Go to outbound subdirectory
cd outbound
Check for existence of Cray job log files prefixed by sc (for ssc); if
oone, then exit foreach loop
foreach sc logfile (“1ls | grep “sc.*\.craylog$ ™)
Get jobfile name (prefix-before-the-dot) of Cray job log file
set jobfile = “echo $sc_logfile | awk -f. “{print $1}°°
#
Check for existence of Cray job output file; if not, increment Cray job
counter and check for error limits based on the counter”s value
if (! -e $jobfile.crayout) then
1f (! -e $jobfile.craycounter) then # Create counter file if not present
cp /dev/null $jobfile.craycounter; chmod 0600 $jobfile.craycounter
echo “0° > $jobfile.craycounter # Set counter to zero
endif
Get counter value from craycounter file and increment it by 1
set counter = “awk “{print $1}° $jobfile.craycounter"
@ counter++
if ($counter == $SEND CHK) then # Check for send limit
set send test = ~/usr/afit/send | grep $jobfile.crayin.deck"
if ($#send_test) then # Cray job input file/deck still in send queue
echo “date”™ “: send destination: send to Cyber/Cray timeout” \
>> $jobfile.craylog # Update Cray job log file
echo ° exceeded; SSC not sending to Cyb~r; job aborted” \
>> $jobfile.craylog

c-2

......

4
J
‘.

System Program Listing - send destination

Create dummy output file
cp /dev/null $jobfile.crayout; chmod 0600 $jobtile.cravout
echc “send destination: fi{le not sent to Cvber Crav, ‘ob aborted’
“-- see log file” > $Sjobfile.crayout
rm $jobfile.craycounter # Remove counter ftfle
goto endcrayoutchk # Go to end of Cray job output tile check
endif
elge If ($counter >= SOUTPUT CHK) then # Check for output limit
echo “date™ “: send_@estiﬁhtion: Cray job output timeout exceeded.’
>> $jobfile.craylog # Update Cray job log file
echo - output file lost at Cyber/Cray; job aborted” O
Sjobfile.craylog
Create dummy output file
cp /dev/null $jobfile.crayout; chmod 0600 $jobfile.crayout
echo “send destination: output file lost at Cyber/Cray; job aborted \
“~~ gee log file” > Sjobfile.crayout
rm $jobfile.craycounter # Remove counter file
goto endcrayoutchk # Go to end of Cray job output file check
else
echo $counter > $jobfile.craycounter
goto sc_endforeach # Go to end of foreach loop
endif -
else
If Cray job output file exists, protect it and update log file
chmod 0600 $jobfile.crayout
echo “date™ ° Cray job output received at” SSYSTEMHOST >>
$jobfile.craylog
1f (-e $jobfile.craycounter) then
rm $jobfile.craycounter # If counter file exists, remove it
endif
endif
endcrayoutchk:
¢
Get user name, source, and destination for Cray job output
set user = “head -10 $jobfile.craylog | awk “/user:/ {print $2}°°
set source = \
“head -10 $jobfile.craylog | awk “/source:/ {print $2}°°
set destination = \
“head -10 $jobfile.craylog | awk “/destination:/ {print $4}°°
Transfer Cray job output and log files to the user
#i##if ({ grep -s "“"Suser”:" $PASSWDFILE } == Q) then
If user does not have an account on this system host...
#4 echo “date™ “send_destination: user” $user “not valid on” \
#14 $SYSTEMHOST ;” >> $jobfile.craylog
echo ~ sending output to source host” >> $jobfile.craylog
get destination = $source
go to some ftp-send routine within this foreach loop...
##felse # 1f user does have an account on this system host...

Cc-3

gy
-

B et Aot Aat Bt a A Aol 8.4 A4 A BRAR AN AR A Rt Aa b St b s Sland a‘din Bte hie Sle Sks ata ALl al Al af hi il o Saf fag fog fog Sog Sop G p Log Sl o 0 48 o

System Program Listing - send_destination

Get directory and output file names from Cray job log file
set directory = \
“head -10 $jobfile.craylog | awk “/directory:/ {prinmt $2}°°
set outputfile = \
“head -10 Sjobfile.craylog | awk “/outputfile:/ {print §$2}°°
Transfer the output file to the user”s directory
mv $jobfile.crayout $directory/Soutputfile
Update Cray job log file
echo “date™ “: Cray job output and log files sent to directory” \
>> Sjobfile.craylog
echo ° 7 Sdirectory °~ and user notified at” $SYSTEMHOST \
>> §jobfile.craylog
Protect the log file then transfer it to the user”s directory
chmod 0600 $jobfile.craylog
av $jobflle.craylog $directory/$outputfile.craylog
#¢# Change ownership of Cray job log and output files to user
/etc/chown Suser $directory/Soutputfile S$directory/Soutputfile.craylog
Check to see if user is logged on...
set onlinetest = “who | grep "“$user "°
if (Sfonlinetest > 1) then # ...if so, write message
write Suser << WRITEND
Message from sendcray: Cray output and log files for $jobfile have returned
WRITEND
else # ...if not, mail message
mail Suser << MAILEND
Message from sendcray: Cray output and log files for $jobfile have returned
MAILEND
endif
f# I1f any extraneous out files leftover from mail exist, remove them
if (-e out) then
ra out
endif
444 # If source 1is not this system host, send mail to user at source
144 i1f ($source 1= $SYSTEMHOST) then
###mail Suser << MAILEND
##fMessage from sendcray: Cray output and log files for $jobfile have
returned
###MAILEND
ted end{f
##dendif
sc_endforeach:
end
#
t
Check for existence of stray Cray job output files; i1f none, then exit
the foreach loop
foreach outfile (“1s | grep “\.crayout$” ™)
Get jobfile name (prefix-before-the-dot) of Cray job output file

c-4

'J' AT RN A A '1' P At x"-' Y .-’ AN N .'.‘ SR UL LI I B SR T W W, o " -“- e e TN
MAM&M‘&ﬂnn mm;mmm&t&'A'A'Ammhmmm

“NO-AL79 577 V!RTUGL COHHUNICRTIONS TO ASD’ S (REROWTICM. SVSTEIIS /2
lVlSl) CRAY CO.. <U> AIR FORCE INST OF TEC
T-PﬂTTERSON AFB OH SCHOOL OF ENGI.. T H TRSSEFF
UNCLASSIFIED DEC 86 AFIT/GCS/ENG/86D-10

N '4"'.'}'.“‘.' Vorit,g G 0 00 ¢ 4>«

Loty

e

"

o -

e

.

LY

AT

ETEEE
S EEE

EE EFRTTTY

EE

S
NlR - —
="

- - -
-

ROCOPY RESOLUTION TEST CHART

“'\ Yo

s

» L

5

)\f \.f
L%

.
'

L J
A
¢t
SIS

~
.Y
~
Y

B
o
S

R J
<
&
N
&%

SAS
’

-
-,

System Program Listing - send destination

set jobfile = “echo $outfile | awk -f. “{print $1}°°
#
Check for existence of the companion Cray job log file; if not, then
update the sendcray.log and remove the stray output file
if (! -e $jobfile.craylog) then
echo “date™ “: send_destination: stray Cray job output file” \
>> ../sendcray.log
echo ~ ~ Soutfile “removed from outbound subdirectory” >> ../sendcray.log
ra $outfile
endif
end
Switch user to the username who owns this outbound subdirectory
exec su $SYSTEMUSER -f -c << SUEND
¢
Check for existence of other Cray job log files; if none, then exit this
foreach loop
foreach logfile (“1s | grep “\.craylog$~ ")
Just in case an sc logfile sneaked in, go to end of this foreach loop
set sc log test = “echo $logfile | grep ““sc”*
1f ($#sc_log_test) then
goto endforeach
endif
Get jobfile name (prefix-before-the-dot) of Cray job log file
set jobfile = “echo $logfile | awk -f. “{primnt $1}°°
¢#
Check for existence of Cray job output file; if not, increment Cray job
counter and check for error limits based on the counter”s value
if (! -e $jobfile.crayout) then
L 1f (! -e $jobfile.craycounter) then # Create counter file if not present
cp /dev/null $jobfile.craycounter; chmod 0600 $jobfile.craycounter
echo “0° > $jobfile.craycounter # Set counter to zero
endif
Get counter value from craycounter file and increment it by 1
set counter = “awk “{print $§1}° §$jobfile.craycounter"
@ counter++
1f ($counter == $SEND CHK) then # Check for send limit
set send_test = ~/usr/afit/send | grep $jobfile.crayin.deck”
if ($#send test) then # Cray job input file/deck still in send queue
echo “date™ “: send_destination: send to Cyber/Cray timeout” \
>> $jobfile.craylog # Update Cray job log file
echo ~ exceeded; SSC not sending to Cyber; job aborted” \
>> $jobfile.craylog
Create dummy output file _
cp /dev/null $jobfile.crayout; chmod 0600 $jobfile.crayout
echo “send destination: file not sent to Cyber/Cray; job aborted” \
== gee log file” > $jobfile.crayout

C-5

A A A AT ‘(~l’\f~.f (~f$(\.'\{.‘(~(‘f s ,-\(5‘. \'.’ N I et .-‘.q’ n'\.'.-(:‘.' W et ‘-\‘-;..

System Program Listing - send destination

rm $jobfile.craycounter # Remove counter file
goto endcrayoutchk # Go to end of Cray job output file check
endif
else if ($counter >= SOUTPUT CHK) then # Check for output limit
echo “date™ “: send destination: Cray job output timeout exceeded;” \
>> $jobfile.craylog # Update Cray job log file
echo “ output file lost at Cyber/Cray; job aborted” >>
$jobfile.craylog
Create dummy output file
cp /dev/null $jobfile.crayout; chmod 0600 $jobfile.crayout
echo “send destination: output file lost at Cyber/Cray; job aborted” \
‘==~ gee log file” > $jobfile.crayout
rm $jobfile.craycounter # Remove counter file
goto endcrayoutchk # Go to end of Cray job output file check
else
echo $counter > $jobfile.craycounter
goto endforeach # Go to end of foreach loop
endif
else
1f Cray job output file exists, protect it and update log file
chmod 0600 $jobfile.crayout
echo “date™ ~: Cray job output received at” $SYSTEMHOST >>
$jobfile.craylog
if (~e $jobfile.craycounter) then
ran $jobfile.craycounter # If counter file exists, remove it
endif
endif
endcrayoutchk:
Get user name, source, and destination for Cray job output
set user = “head -10 $jobfile.craylog | awk “/user:/ {print $2}°°
get source = \
“head -10 $jobfile.craylog | awk “/source:/ {print $2}°°
set destination = \
“head -10 $jobfile.craylog | awk “/destination:/ {print $4}°°
Transfer Cray job output and log files to destination host
ftpsend:
Update Cray job log file
echo “date™ “: Cray job output and log files being ~ >> $jobfile.craylog
echo © sent to” $destination “from” $SYSTEMHOST >> $jobfile.craylog
cp /dev/null $jobfile.ftpchk; chmod 0666 $jobfile.ftpchk
ftp $destination << ENDFTP >& $jobfile.ftpchk
c¢d cray/inbound
send $jobfile.crayout
send $jobfile.craylog
quit
ENDFTP
set ftp_test = “wc -w $jobfile.ftpchk | awk “{print $1}~°

- ""

%(N..'."..

| System Program Listing - send destination

if ($ftp_test) then # ftp-send did not work out
echo “date”™ “: send_destination: ftp send failed at” $SYSTEMHOST :~ \
>> $jobfile.craylog
cat $jobfile.ftpchk >> $jobfile.craylog
echo “send destination:” $SYSTEMHOST “will retry ftp later” \
>> $jobfile.craylog
else # ftp-send did work out
rm $jobfile.crayout
rm $jobfile.craylog
endif
##rm $jobfile.ftpchk # ftp-check file no longer needed
endforeach:
end
End of switch user
SUEND
#
Fhhn END OF FILE send_destination k%

ey

c-7

I WYYV Y ¥ EREE TV VTV YT WY TR, VCTTYTTTTYTT™T

L
!
L
i
!

System Program Listing - send user

#1/bin/csh ~-f
FRARRRAARRRARRAARARRRAARRRRRRRRARRARRRAARRARARAARRARIRREARRRI AR

Fn *
#* DATE: December 5, 1986 *
#* VERSION: 1.0 *
#* *
#* TITLE: AFIT - ASD Cray System *
#* FILENAME: send user *
#* OWNER: ttasseff (Capt Todd Tasseff, GCS—86D) *
A SOFTWARE SYSTEM: AFIT/ENG Sun - 4.2 BSD Unix *
#* Operating System *
#* USE: for Lt Col Carter, EENG Thesis Project *
#* CONTENTS: Module A4, Route Cray Job Output to *
#* Destination *
#* *
FRRRRARRRRRRARRRARRARREARRRRARAARRRRARRRARRRAR KRR RRARRRRA R AR R kR A
#

FRRRRAARRARRARRRIRARE KA RRARREARRARRRAAR Rk AR KRR R kKR AR R KRR R AR
#* *
#* DATE: December 5, 1986 *
ol VERSION: 1.0 *
#% *
#* MODULE NUMBER: A4 *
#* NAME: Route Cray Job Output to Destination *
#* FUNCTION: Checks for Cray job output, updates Cray job *
#* log file, determines user directory, *
#* and transfers output and log files to the *
#* user directory. *
#* INPUTS: None. ®
#* OUTPUTS: Onscreen or mail done-message *
#* GLOBALS READ: job file identifier *
#* GLOBALS WRITTEN: None. *
#* FILES READ: Jjobfile.craylog, jobfile.crayout *
#* FILES WRITTEN: jobfile.craylog, outputfile *
#* HARDWARE INPUT: AFIT/ENG Ethernmet (using ftp) *
#* HARDWARE OUTPUT: None. *
#* CALLING MODULES: None. *
#* CALLED MODULES: None. *
#* *
#* AUTHOR: Capt Todd Tasseff *
{#* HISTORY: 1.0 original version (Capt Todd Tasseff) *
#* Note: 1lines beginning with ## refer to *
#* items necessary for implementing *
#* the program at root level *
#* *

BRRAKRRRRRRRRARARARNARKARARRRRRARRARRRNARRRARARRARAARNRRAARARARARR

set SYSTEMDIR = ~“ttasseff/cray
#

3 W I L N S N S S A T A S S O A ST R S S A ML A AT VAT)
W, ‘.o‘.t"so.o.n".a"?- L ...o o 2a AT W ,‘o ! o O v ny

adak At

;l"'- T TS Y

System Program Listing - send user ‘

cd $SYSTEMDIR !

¢ Z

Check to see if the send user.log file exists; if not, create it

if (! -e send user.log) then ’
cp /dev/null send_user.log; chmod 0600 send_user.log ‘

endif !
Update send user.log file
echo “date™ % send_user initiated” >> send user.log Y

Check to make sure that no other send user shells are running...
if ("ps | grep send_user | we -1 > 2) then

echo ° send_user already running” >> send user.log

exit() # ...1if so, update send user.log file and exit

endif)
¢
set SYSTEMHOST = mercury '
#

f# Go to outbound subdirectory

cd inbound

Check for existence of Cray job log files; if none, then exit foreach loop
foreach logfile (“1s | grep “\.craylog$~")
Protect Cray job log file
chmod 0644 $logfile
Get jobfile name (prefix-before-the-dot) of Cray job log file
set jobfile = “echo $logfile | awk -f. “{primnt $1}°°
#
Check for existence of Cray job output file; if none, then place an error
message in the Cray job log file, and create a dummy Cray job output
file; else, if it exists, give it protection
if (! -e $jobfile.crayout) then
echo “date™ “: send_user: Cray job log file ONLY received” \
> $jobf11e.craylog K
echo ~ $SYSTEMHOST "; output file lost; job aborted” \
> $jobf11e.craylog
Create dummy output file l
cp /dev/null $jobfile.crayout; chmod 0600 $jobfile.crayout

echo “send_user: output file lost; job aborted -- see log file” \ \
> $jobfile.crayout '

elge
If Cray job output file exists, protect it and update log file !
chmod 0600 $jobfile.crayout ’

echo “date™ “: Cray job output and log files received at” $SYSTEMHOST \
>> $jobfile.craylog

endif)
#
Get directory and outputfile name from the Cray job log file
set directory = \

“head ~10 $jobfile.craylog | awk “/directory:/ {primt $2}°° .
set outputfile = \

Rt R I -
' s iVl e inda g

W WOV W W UwWU W

System Program Listing - send user

“head -10 $jobfile.craylog | awk “/outputfile:/ {print $2}°°
Transfer the output file to the user”s directory
mv $jobfile.crayout $directory/Soutputfile
Update Cray job log file
echo “date™ “: Cray job output and log files sent to directory” \
>> $jobfile.craylog
echo ° ° $directory ~ and user notified at” $SYSTEMHOST >> $jobfile.craylog
Protect the log file then transfer it to the user”s directory
chmod 0600 $jobfile.craylog
av $jobfile.craylog $directory/$outputfile.craylog
Change ownership of Crav job log and output files to user
/etc/chown $user $director:/$outputfile $directory/Soutputfile.craylog
Check to see 1f user is logged om...
set onlinetest = “who | grep "“$user "
if ($#onlinetest > 1) then # ...1f 80, write message
write Suser << WRITEND
Message from sendcray: Cray output and log files for $jobfile have returned
WRITEND
else # ...if not, mail message
mail $user << MAILEND
Message from sendcray: Cray output and log files for $jobfile have returned
MAILEND
endif
endforeach:
end
#
% END OF FILE send user *

LAY VSV AT IR OARTIY PR o syl TN

SENDCRAY(1) User Documentation SENDCRAY(1)

NAME
sendcray - send a job to ASD“s Cray Computer via AFIT data
communications resources

SYNOPSIS
sendcray [~j job_type] [-t number of min.]
[~o output filename] input_filename

DESCRIPTION

Sendcray is the initiating command of the AFIT-ASD C(Cray System. In
general, the AFIT-ASD Cray System operates over the currently available AFIT
data communications facility, which is connected to ASD“s data communications
facility. Specifically, the System makes use of the existing RJE link between
the AFIT SSC and ASD“s CDC Cyber computer, which is in turn connected to the
Cray. The System also communicates with AFIT/ENG°s ELXSI computer and Sun
workstations and the AFIT SSC via a dedicated, coaxial cable, local computer
network link called Ethernet.

Input data files created on the ELXSI or the Sun workstations and
destined for ASD“s Cray computer will be automatically transmitted over the
Ethernet link to a special System account on the SSC. Input data files
created on the SSC are transferred internally to the System”s account.

Once at the SSC, the ELXSI, Sun or SSC input data file destined for the
Cray will have the appropriate Cyber and Cray job-~control commands placed into
the input data file, forming a job deck. The SSC will then take the Cray job
deck and transmit it to the Cyber via the SSC-Cyber RJE link. Once at the
Cyber, the job file will be transferred to the Cray, the job processed, and
the output returned to the Cyber, which in turn returns the output to the AFIT
SscC.

Once the SSC receives the Cray output from the Cyber, the SSC stores {t
or passes it on to the ELXSI or Sun workstations (using the Ethernet),
depending on where the job originated. The output will then be placed into
the user directory where the job originated.

The System will notify the wuser that the output has returned via an
on-screen message at the computer where the job originated. If the user has
logged-off the computer, the System will place a message 1n the user”’s
computer "mailbox.”

The System also has an audit capability which keeps track of the progress
of a job as it passes from one computer to the next. A log file accompanies
both the input file and corresponding output file through the System. The
System then sends to the user the log file along with the output file. The
log file contains date/time stamps of important events (e.g., tile transfer
from one computer to the next) and any pertinent System messages and error

T A S LR A A T R
RO

SENDCRAY(1) User Documentation SENDCRAY(1)

messages sent by the AFIT and ASD host computers involved.

~t

~0

INSTRUCTIONS

accounts on the AFIT SSC and on ASD“s Cyber and Cray computers by asking for
and submitting an AFIT Form 35 to AFIT/SIO0O personnel in Bldg 640, Room 133.
The user will then be assigned an SSC username and password, a Cyber account
(user) number with an initial interactive (login) password, and a Cray account
number with an initial password. Along with the Cray account number and
password are assigned an identical Cray user number and password. Once the
user has these accounts and passwords, the user should change the passwords to
protect these user accounts. The user must then create a batch password on
the Cyber by logging-in to the Cyber and using the PASSWOR command to create a
separate batch password.

The user has the responsibility to first create an input file for the
AFIT-ASD Cray System. This is accomplished by using the file editor of choice
on any one of the AFIT host computers or workstations involved. Once the
input file is created, the user may enter the sendcray command followed by a
set of options, and ending with the input filename. If no options are given,
then the default options are assumed. :

uses this time value to place an upper limit on how long ASD”s Cyber

Sendcray provides the user with the following options:

Cray job type. The job type can be either FORTRAN or SPICE. A
FORTRAN job indicates that the input data file is a FORTRAN program,
while a SPICE job indicates that the input data file is input data
for a VLSI circuit simulation. The default Cray job type 1is
FORTRAN.

Cray job time. The job time is the estimated time in minutes that
the user expects the Cray job to run while at the Cray. The System

should wait for output to return from the Cray, the maximum time
being 15 minutes. The default Cray job time is 5 minutes. Caution
should be taken when using this option (see Bugs section below).

Output filename. The user can also specify the exact name of the
Cray job”“s output filename. However, if no output filename is
given, the default output filename will be the same as the input
filename followed by a ".crayout™ suffix. Accompanying the output
file will be the log file for the Cray job. The name of the log
file will be the same as the specified output filename followed by a
".craylog” suffix, with the default being the input filename
followed by that saue suffix.

(1) Getting User Accounts and Passwords. The user must first obtain user

The user must then submit the AFIT SSC username, Cyber user number and

E-2

mewmmv»mmmmwru b d At St R A f R A g A 2 B A A R A B A T 0 Rob Radl Aok ol N % £ J]

SENDCRAY(1) User Documentation SENDCRAY(1) !

batch password, Cray account number and password, and Cray user number and

passvword to the AFIT-ASD Cray System administrator im AFIT/SIO in Bldg 125.

The System administrator will load the SSC username and Cyber and Cray account

numbers and passwords into the proper control file on the AFIT SSC so that the

user will have access to the System. Note: a username on the AFIT SSC is not 4
necessarily required for the System to operate, but 1s helpful in establishing

a unique username among the AFIT host computers involved 1in the System (the

AFIT SSC and AFIT/ENG“s ELXSI and Suns). If the wuser wishes to obtain a

username on AFIT/ENG”s ELXSI and Suns, the username should be identical to the

username assigned for the SSC.

(2) Creating an Input File. Next, the user wmust create an input file on
the AFIT host computer of choice using the text editor of choice. Caution .
should be taken not to include any blank 1lines in any of the input files (see :
Bugs section below). ,

(a) If the input file is to be FORTRAN, the user should create an
input file containing the FORTRAN source code. If any input data is used, it
must follow the source code; however, each input data section must be preceded
by a single line containing "/EQF" (no quotation marks used) which must begin
in the first column of that line. A "/EOF” line must separate the source code
and each input data section from each other (no "/EOF" lines required at the
beginning or end of entire input file).

(b) If the input file is for use with SPICE, the user should create J
an input file containing VLSI circuit simulation data as specified and :
required by the SPICE program. \

(3) Using sendcray. While 1logged-in to the AFIT host where the input
file resides, enter the command sendcray followed by the desired options 3
followed by the input filename, all on one 1line. After entering the command
line, sendcray will send on-screen messages to the wuser, inaicating what
action is currently being done. One important item to note is the jobfile ID

number that sendcray 1ssues and displays 1in one of these messages. This :
Jobfile ID is unique for each job and can be used to track the progress of i
each job throughout the System. By checking the contents of the System :
subdirectories, inbound and outbound, the user can find out how far along the K
job has progressed. All job files used by the System are prefixed by the y
jobfile ID number. The user can tell, by inspection, the status of the job by K
seeing if files prefixed by the jobfile ID exist, and can also get more]

detalled status information by reading the contents of the job log file. The
job log filename 1is prefixed by the jobfile ID number and suffixed by
".craylog”. When the job output returns to the user, the output file and log
file are placed in the same AFIT host and directory (file-space) where the !
user originated the job, and an appropriate "done” message (with jobfile ID
number included) is issued (on-screen 1if user is logged-in, to the "mailbox”
if not).

E-3 .

R A S A

N N A T T N T N LA N R AN N AT AT AT T T T T -
e . { K o 5 & N . . N ¥ A A

M)
L4

e

>

’

s

- e e a, -y e
AT

[4 . tad ‘e fat ") . B [PPSEY §og " . C a A g ¥ g% Y - * . . 3 ¥ 1 (]

SENDCRAY(1) User Documentation SENDCRAY(1)

DIRECTORIES

~cray # main System account directory on each AFIT host
~cray/inbound
~cray/outbound

SEE ALSO

ftp # file transfer (over a network) program
/usr/afit/send # send jobs to ASD°s Cyber

BUGS

At present, SPICE is not implemented on the Cray. The System will notify
the user that this is the case if SPICE 1is chosen as a job type (using the -j
option).

Caution should be taken in setting the job time (-t) option. If the job
runs on the Cray longer than the job time specified, the Cray output will be
lost to the System. However, the output will be left at the Cyber, so the
user may retrieve it from there if desired.

Caution should also be taken not to include any blank lines when creating
any of the input files. Blank lines within the input files may cause ASD’s
Cyber or Cray to abort the job, returning only an error listing as output.

Also, the alternate output destination option (-d) 1s not implemented
yet. The user would have been able to specify which AFIT host computer or
workstation would be the final destination of a Cray job“s output. The
choices would be the AFIT SSC, AFIT/ENG"s ELXSI, or any one of AFIT/ENG”s Sun
workstations. The default output destination would still be the source
computer or workstatlion (the machine that originated the Cray jobt).

AUTHOR

Todd W. Tasseff (Dec. 1986)

NN N

SENDCRAY(1A) Administrative Documentation SENDCRAY(1A)

1.0 INTRODUCTION
(Note: see also Sendcray User Documentation for additiomal
information)

1.1 Command Name

sendcray - send a job to ASD“s Cray Computer via AFIT data
communications resources

1.2 Command Line and Options

sendcray [-j job_type] [-t number of min.]
[-0 output_filename] input_filename

1.3 Functional Description

1.3.1 System Operation. sendcray 1is the 1nitiating command of the
AFIT-ASD Cray System. In general, the AFIT~-ASD Cray System operates over the
currently available AFIT data communications facility, which is connected to
ASD"s data communications facility. Specifically, the System makes use of the
existing RJE link between the AFIT SSC and ASD”s CDC Cyber computer, which is
in turn connected to the Cray. The System also communicates with AFIT/ENG s
ELXSI computer and Sun workstations and the AFIT SSC via a dedicated, coaxial
cable, local computer network link called Ethernet. All of the AFIT-ASD Cray
System programs are written in 4.2 BSD UNIX C-shell commands.

Input data files «created on the ELXSI or the Sun workstations and
destined for ASD“s Cray computer will be automatically transmitted over the
Ethernet link to a special System account on the SSC. Input data files
created on the SSC are transferred internally to the System”s account.

Cnce at the S3C, the ZLXSI, Suz cr SSC input data file destined for the
Cray will have the appropriate Cyber and Cray job-control commands placed into
the input data file, forming a job deck. The SSC will then take the Cray job
deck and transmit it to the Cyber via the SSC~Cyber RJE link. Once at the
Cyber, the job file will be transferred to the Cray, the job processed, and
the output returned to the Cyber, which in turn returns the output to the AFIT
sscC.

Once the SSC receives the Cray output from the Cyber, the SSC stores it
or passes it on to the ELXSI or Sun workstations (using the Ethernet),
depending on where the job originated. The output will then be placed into
the user directory where the job originated.

The System will notify the wuser that the output has returned via an
on-screen message at the computer where the job originated. 1If the user has
logged-ofr the computer, the System will place a message in the user’s
computer "mailbox.”

R

L L S S Y L R I P L Y Te L Te Ta e gt Svopte AN I T T
A A Y A O R R CR A A I S A AR AN U N N TR S MR N

TR Y

'
%)

LY

f_:c'\'f

_'I

"

-'--J.‘-.n ..\{\.n

SENDCRAY(14A) Administrative Documentation SENDCRAY(1A)

The System also has an audit capability which keeps track of the progress
of a job as it passes from one computer to the next. A log file accompanies
both the input file and corresponding output file through the System. The
System then sends to the user the log file along with the output file. The
log file contains date/time stamps of important events (e.g., file transfer
from one computer to the next) and any pertinent System messages and error
messages sent by the AFIT and ASD host computers involved.

The user has the responsibility to first create an input file for the
AFIT-ASD Cray System. This is accomplished by using the file editor of choice
on any one of the AFIT host computers or workstations involved. Once the
input file is created, the user may enter the sendcray command followed by a
set of options, and ending with the input filename. If no options are given,
then the default options are assumed.

1.3.2 System Options. sendcray provides the wuser with the following
options:

-] Cray job type. The job type can be either FORTRAN or SPICE. A
FORTRAN job indicates that the input data file is a FORTRAN program,
while a SPICE job indicates that the input data file is input data
for a VLSI circuit simulation. The default Cray job type is
FORTRAN.

-t Cray job time. The job time is the estimated time in minutes that
the user expects the Cray job to run while at the Cray. The System
uses this time value to place an upper limit on how long ASD“s Cyber
should wait for output to return from the Cray, the maximum time
being 15 minutes. The default Cray job time is 5 minutes. Caution
should be taken when using this option (see Bugs section below).

-0 Output filename. The user can also specify the exact name of the
Cray job”s output filename. However, if no output filename is
given, the default output filename will be the same as the input
filename followed by a ".crayout” suffix. Accompanying the output
file will be the log file for the Cray job. The name of the log
file will be the same as the specified output filename followed by a
".craylog” suffix, with the default being the input filename
followed by that same suffix.

F-2

LI

.- as.
AR

SENDCRAY(1A) Administrative Documentation SENDCRAY(1A)

2.0 DIRECTORIES USED
“cray

This 1s the main System account directory on each AFIT host computer
involved (AFIT SSC, AFIT/ENG"s ELXSI and Suns). It contains all the programs
and support files necessary to operate the System on each host. For the sake
of simplicity, “cray will represent the System account, or username,
throughout this document.

~cray/inbound

The inbound subdirectory is used by the System to receive incoming job
files from each of the AFIT hosts involved. On the AFIT SSC, it is used by
the send cyber cray program; on non-SSC AFIT hosts, it 1is used by the
send user program.

~“cray/outbound

The outbound subdirectory is used by the System to dispatch outgoing job
files to each of the AFIT hosts involved. On the AFIT SSC, it 1is used by the
send destination program; on non-SSC AFIT hosts, it is used by the sendcray
program.

3.0 FILES USED
~cray/sendcray.log

The sendcray.log file appears on all AFIT hosts involved and is created
and used by the sendcray command to record the initiation of every sendcray
2ob. Pertinent jcb informatioa such as date/time, username, icb tvpe, and
other items are recorded on a single entry in the sendcray.log. The
sendcray.log file is also used to record any other System messages that the
System needs to record.

~cray/.netrc

The .netrc file appears on all AFIT hosts 1involved and contains the
ugernames and passwords of the System accounts on the other AFIT host
computers. Only those usernames and passwords of the other AFIT host that
will have files sent to it from the one AFIT host are included. On the AFIT
SSC, .netrc is used by the send destination program; on non-SSC AFIT hosts, it
1s used by the sendcray program.

SENDCRAY(1A) Administrative Documentation SENDCRAY(1A)

~cray/jobtypes.sendcray

The jobtypes.sendcray file appears on all AFIT hosts involved and
contains only the job types allowed by the System, 1including alternate
representations of the same job type (relevant combinations of upper and lower
case spellings). Presently, the only two job type options are FORTRAN and
SPICE. The jobtypes.sendcray file is used by the sendcray program oa all
of the AFIT hosts involved.

~cray/hosts.sendcray

The hosts.sendcray file appears on all AFIT hosts involved and contains
only the AFIT hosts that have access to the System, 1including aliases
(alternative names) for each host. The hosts.sendcray file has the potential
of being used by the sendcray program on all the AFIT hosts involved (see Bugs
section
below).

~cray/users.sendcray

The users.sendcray file appears on the AFIT SSC only and contains only
those users that have access to the System. Each user has one entry in the
file which contains the user“s SSC (or ELXSI or Sun) username, Cyber user
number and batch password, Cray account number and password, and Cray user
number and password. The users.sendcray file is used by the send cyber_cray
program on the AFIT SSC.

~cray/cray jobtop
~cray/cray jobbot

The crayjobtop and crayjobbot £files appear on the AFIT SSC only.
Together, these two files comprise a “"dummy” job deck whick ccntaias a number
of "dummy” variable names which represent such items as job type, job time,
Cyber and Cray account numbers and passwords, and Jjobfile (job work file)
names. These "dummy™ variable names are contained in crayjobtop and are
replaced by the real things in order to begin forming a working job deck. The
crayjobbot file contains only end-of-file trailer 1lines. The user”s inmput
file is placed between the completed crayjobtop file and the crayjobbot file
in order to form a complete, working Job deck that is sent to the Cyber and
Cray for processing. The crayjobtop and crayjobbot files are used by the
send_cyber cray program on the AFIT SSC.

4.0 SYSTEM PROGRAMS - DESCRIPTION AND OPERATION
4.1 “~cray/sendcray. The sendcray program resides on all AFIT hosts involved

and is the initial program for the System. Sendcray accepts the user”s inpuc
options and Cray input filename (see User Documentation), checks for input

P-4

o

s P LS

e N A L IO N RN LY X

e

o %]

0y

v
Iay

v

SENDCRAY(1A) Administrative Documentation SENDCRAY(1A)

errors, creates a Cray job log file, and transfers the input and log files to
the AFIT SSC. If sendcray is initiated at the SSC, the transfer takes place
via a copy &nd a move command. If sendcray 1is initiated by any other AFIT
host, the transfer takes place via the ftp command across the AFIT/ENG
Ethernet to the SSC. Sendcray displays several messages to the user during
its execution to include providing a unique job identifier name which is used
as a prefix to the Cray input, log, and output files throughout the life of a
job.

4.2 cray/send cyber cray. The send cyber_cray program resides on the AFIT
SSC only and picks up where sendcray leaves off. Send _cyber_cray receives the
Cray job input and log files, packages the input file into a job deck, using
information from the log file, then sends the jJob deck to ASD”s Cyber where it
is forwarded to the Cray. Output from the Cray returns to the Cyber and in

turn returns to the AFIT SSC. Send cyber_cray runs automatically via the crom

facility on the SSC on a preset schedule (e.g., every 15 minutes on the
quarter hour).

4.3 “cray/send_destination. The send destination program also resides on the
AFIT SSC only. Send destination receives the Cray job output file from the
Cyber/Cray, determines the output destination from the Cray job log file, then
transfers the output and log files to the proper destination. If the
destination is the SSC, the transfer 1s accomplished via a move command
directly to the user”s directory (file-space). Then the user is notified, via
onscreen message or mail, that the output has returned. If the destination 1is
not the SSC, the transfer is accomplished via the ftp command directly to
another System directory at the AFIT destination host. Send destination also
runs automatically via the cron facility on the SSC on the same preset
schedule.

4.4 “~cray/send user. The send user program resides on all non-SSC AFIT
hosts, and is similar to send destination in that it also transfers the Cray
job output and log files to the user’s directory but does so after receiving
the files from the SSC. Once the output and 1log files are at the user’s
directory, the user is notified via onscreen message or mail. Send user also
runs automatically via the cron facility on whatever host it resides, usually
at a faster rate (e.g., every five minutes).

4.5 The Cray Job Log File. The Cray job 1log file accompanies both the Cray
job input and output files throughout the 1life of a job. The log file
contains important {nformation about the Cray job: unique Cray job
identifier, source and destination host, job type and time, input and output
filenames, the user”“s name and current file directory, and the process ID
during when sendcray was executing. The Cray job log file is also updated
with a date/time stamp and a message for every significant event that occurs
in each of the above programs, including any error messages (see Section 6
below).

AP CA MR N TR "d‘ -‘f IC A AN A AN N AT ,r .r ASRENON AT AT RE LN S - Tt o e
» .. . " » - -

»

RARRAANT

(]

SENDCRAY(1A) Administrative Documentation SENDCRAY(1A)

5.0 SYSTEM SETUP
5.1 BASIC SETUP

The first step in setting up the AFIT-ASD Cray System is to create
identical System usernames (accounts) and passwords on each AFIT host computer
or workstation involved. The second step 1is to create two subdirectories
named "inbound” and "outbound” which will be used for passing Cray job input,
log, and output files between hosts. Note that all System directories and
subdirectories must have read-permission so that the contents of the Cray job
log file (mentioned in Sectiom 4.5) can be inspected by the user during any
stage in the life of a job (see Section 6).

The third step is to create a .netrc file containing the System usernames
and passwords of the other AFIT hosts (for the SSC: all other hosts”
ugernames and passwords needed; for non-SSC hogts: username and password of
SSC needed). The .netrc file is used by the ftp command within the System
programs to automatically login to a remote host.

The fourth step is to place the System support files and programs
mentioned above in the System accounts of their respective hosts. The System
programs are suffixed by a ".src” (source) designator. Each ".src" file needs
to be copied into a file with the same uname as the program (minus the ".src”
suffix) and edited to remove all comment 1lines (those that begin with a "#")
in order to speed up program execution. The commands to create and update a
".log” file in the send_cyber_cray, send destination, and send_user programs
may also be removed. -

Once the designated lines are removed from the programs, several variable
names, located toward the beginning of each module within the programs, need
to be set. Each of the System programs have one or both of the SYSTEMUSER or
SYSTEMDIR variables and must be set to the the System username and directory
(full path) respectively. In the sendcray program, the SOURCEHOST variable
needs to be set to the name of the host on which that particular sendcray
resides, based on the entries found 1in the hosts.sendcray file; and the
SOURCEID variable needs to be set to some unique two-letter host ID (sc for
SSC; el for ELXSI; mc for Sun-Mercury; etc.). In the send destination and
send user programs, the SYSTEMHOST variable needs to be set to the host on
which the program resides.

The fifth step is to establish an entry in the UNIX crontab file of every
host for each System program requiring automatic execution via cron
(send_cyber cray and send_destination on the SSC; send user on all non-SSC
hosts). The cron execution time for these programs is at the discretion of
the System administrator, but should be in the range of every 5 to 15 minutes.

Examples of the System support files mentioned above can be found at the

F-6

\'(.;.- -f‘;c';- S ".."‘- - - '.\-’ .*!:’i:' ot '.-‘;.. ‘_.-;..".- AL IR U S Tt S S = "- O -.. oA -'. s -()¢ ‘d“f-‘*\ \)\'.\'.\..“..\

SENDCRAY(1A) Administrative Documentation SENDCRAY(1A)

end of this document.
5.2 ESTABLISHING USERS ON THE SYSTEM

Users desiring access to the AFIT-ASD Cray System must furnish the System
administrator with a [SSC) username, an ASD Cyber user number and password, an
ASD Cray account and password and Cray user number and password. These user
accounts and passwords must then be entered, in the order mentioned above, on
a single line in the users.sendcray file.

6.0 SYSTEM DIAGNOSTICS

The primary diagnostic feature or features of the AFIT-ASD Cray System
are the use of log files to record significant System events or error
messages. The sendcray.log file records information pertaining to a Cray job
each time a job is initiated via the sendcray program; the sendcray.log file
also records a message in the event a stray output file returns from the
Cyber/Cray (after a System timeout occurred and the Cray job log file was
returned to the user) and is removed. Each of the other System programs have
the option of creating and wupdating their own ".log"” flles containing a
date/time stamp and message for each time the program is initiated.

Probably the most effective diagnostic tool 1s the Cray job log file
which accompanies the job input and output files throughout the life of a job
in the System. Besides a date/time stamp and System message for significant
events (e.g., transfer of files from omne host to the next), the Cray job log
file contains any error messages incurred during the life of the job. These
error messages indicate problems with: ftp transfers between hosts; the send
command while attempting to submit job decks to the Cyber/Cray; and delayed or
lost files within the systenm.

The user can track the progress of a job by matching the unique Cray job
identifier, provided in an onscreen message by the sendcray program, with the
prefix of a file ending with “.craylog™ in any of the System”s "inbound™ and
"outbound” subdirectories. This ".craylog” file is the Cray job log file, and
has read-permission so that the user or System administrator can inspect its
contents and determine the status of the job.

7.0 BUGS
At present, SPICE is not implemented on the Cray. The System will notify
the user that this is the case {f SPICE 1is chosen as a job type (using the -j

option).

Caution should be taken in setting the job time (-t) option. If the job
runs on the Cray longer than the job time specified, the Cray output will be

F-7

SENDCRAY(14A) Administrative Documentation SENDCRAY(1A)

lost to the System. However, the output will be left at the Cyber, so the
user may retrieve it from there if desired.

Caution should also be taken not to include any blank lines when creating
any of the input files. Blank lines within the input files may cause ASD"s
Cyber or Cray to abort the job, returning only an error listing as output.

Also, the alternate output destination option (-d) is not implemented
yet. The user would have been able to specify which AFIT host computer or
workstation would be the final destination of a Cray job”s output. The
choices would be the AFIT SSC, AFIT/ENG"s ELXSI, or any one of AFIT/ENG”s Sun
workstations. The default output destination would still be the source
computer or workstation (the machine that originated the Cray job).

8.0 AUTHOR

Todd W. Tasseff (Dec. 1986)

WY 9 e

w

4 R AT A

WL S

SENDCRAY(1A) Adainistrative Documentation SENDCRAY(1lA)

EXAMPLES OF SYSTEM SUPPORT FILES

oooooooooooooo
ooooooooo

this is the local sendcray log file

the format is: date unique_jobfile ID source destination jobtype jobtime
inputfile outputfile user inputfile _directory process_ID

Thu Nov 6 19:04:27 EST 1986 8cl6349 ssc ssc fortran 5 craytestjob
craytest job.crayout ttasseff /en0/gcs86d/ttasseff/cray 16349

On the §SC...
machine zelxb, login ttasseff, password xxxxxxx
machine vsun2-1, login ttasseff, password xxxxxxx

On the Sun-Mercury...
machine ssc, login ttasseff, password xxxxxxx

l# list of valid Cray job types for the sendcray command

the format is: Jjobtype followed by list of aliases (all on same line)
fortran FORTRAN Fortran

spice SPICE Spice

hosts.sendcray

liat of valid AFIT hosts for the sendcray command; the format is:
#H primary hostname followed by list of aliases (all on same line)
zssc 88c SSC

zelxb bsd afitbsd

dsun2-1 dsun2 apollo

vsun2-1 vsun2 mercury

psun2-1 psun2 venus

isun2-1 isun2 zeus

SENDCRAY(1A) Administrative Documentation SENDCRAY(1A)

EXAMPLES OF SYSTEM SUPPORT FILES (comnt.)

------ cs e s s e

#H this is the sendcray valid user list; the format is username followed by
cyberuser cyberbatchpasswd crayacct crayacctpasswd crayuser
crayuserpasswd

11 (all on same line)

ttasseff T888888 XXXXXX T999999 2z2zZzZZ T999999 2222222

crayjobtop

SRR T
. I EEEEEEE]

CRAYJOB Pl, srcsn.

USER, cvnsnusza CYBERPASS.

CHARGE,*.

COPYEI, ,JOBFILEXXX.

REWIND, JOBFILEXXX.

CSUB, JOBFILEXXX,MF=CRX,US=CYBERUSER , PW»CYBERPASS.
SET,R1=0.

SET,R2=0.

SET ,R3=JOBTIMEXXX.

WHILE,R1=0.AND.R2.LT.R3,LOOP.

ATTACH, JOBFILEXXX=JOBFILEXXX/NA.
IF,FILE(JOBFILEXXX,AS),CHECK.

REWIND,JOBFILEXXX.

COPYEI, JOBFILEXXX.

PURGE, JOBFILEXXX.

SET,R1l=1.

ELSE,CHECK.

ROLLOUT, 60.

SET,R2=R2+1.

ENDIF,CHECK.

ENDW, LOOP.

/*EOR

JOB, JN=JOBFILEXXX,US=CRAYACCT.

ACCOUNT, AC=CRAYACCT , APW=CRAYACPASS , US=CRAYUSER, UPW=CRAYUSPASS.
JOBTYPEXXX.

LDR.

DISPOSE, DN=$0UT, SDN=JOBFILEXXX ,MF=CB,DC=ST , DF=CB,DEFER, *
TEXT="DEFINE, JOBFILEXXX.CTASK,ALL. "

/EOF

F-10

rnmmmmmmm TEWE WY W

SENDCRAY(1A) Administrative Documentation SENDCRAY(1A)

EXAMPLES OF SYSTEM SUPPORT FILES (cont.)

ooooooooo

oooooooooooooo
oooooooooooooo

0,15,30,45 8-23 * * 1-6 /en0/gcs86d/ttasseff/cray/send_destination

F-11

PYSSE TOJE LA PLIE PO T T VLI PLY W) O VL PO RPP RO T : N ¥ ol . ah g e el b el a b ol ol

VITA

Todd William Tasseff was born on November 4, 1959 in Orrville, Ohio. He
graduated from Fairless High School 1in 1977, and attended the United States !
Air Force Academy where he received the Degree of Bachelor of Science,
ma joring in Computer Science, in June 1981. Upon graduation, he received a
regular commission as a second lieutenant 1in the USAF. He was then assigned
to the Air Force Institute of Technology at Wright-Patterson AFB and served as
the data communications manager for the AFIT Information Systems Directorate ’
from July 1981 to May 1985. In June 1985, he entered AFIT as a Master of r

Science Degree student, studying Computer Systems.

Permanent Address: 123 West Fourth Street

Navarre, Ohio 44662

.
.
N
.
-
.
-
1

. - -’ 3 - Ty "

| R it R i R el A Ml et e B d b b b it bl b pabofol aut pal fal Ryt op ot pod pdianl aud et Bd aof il Bt S Rt Bl aud d 2ot 'ad bl B kAt) 20 85

UNCLASSIFIED

ION OF THIS PA

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

1a. REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION / AVAILABILITY OF REPORT
Approved for public release;

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
AFIT/GCS/ENG/86D-10

S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION
School of Engineering

6b. OFFICE SYMBOL
(If applicable)

AFIT/ENG

7a. NAME OF MONITORING ORGANIZATION

6¢c. ADDRESS (City, State, and ZIP Code)
Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

7b. ADDRESS (City, State, and ZIP Code)

8a. NAME OF FUNDING /SPONSORING
ORGANIZATION

8b. OFFICE SYMBOL
(if applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8¢ ADDRESS (City, State, and ZIP Code)

10. SOURCE OF FUNDING NUMBERS

PROGRAM

ELEMENT NO.

PROJECT
NO.

TASK
NO

WORK UNIT
ACCESSION NO.

11. TITLE (Include Security Classification)

See Box 19
12. PERSONAL AUTHOR(S)
Todd W, Tasseff, B.S.
13a. TYPE OF REPORT

, Captain, USAF
13b. TIME COVERED

14. DATE OF REPORT (Year, Month, Day) [15. PAGE COUNT

MS Thesis FROM TO 1986 December 117
16. SUPPLEMENTARY NOTATION
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROuP SUB-GROUP Computer Communications, Computer Programs,
09 02 Executive Routines, Computer Applications

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

VIRTUAL COMMUNICATIONS TO ASD'S CRAY COMPUTER
VIA AFIT DATA COMMUNICATIONS RESOURCES

Title:

~»)tovecl fox pzhnc release: AW AFR 190

,' r V creyre 7W g?
Ta e
¥

""Opmonl

Thesis Chairman: Harold W. Carter, Lt Col, USAF

f‘: l(lre Ttar v o,

Weaighi Patrere. b Lxl LREE

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT
XB UNCLASSIFIEDAUNUMITED [SAME AS RPT.
22a. NAME OF RESPONSIBLE INDIVIDUAL

21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

22b. TELEPHONE (Include Area Code)

__[J o7ic users

22c. OFFICE SYMBOL

Harold W. Carter, Lt Col, USAF 513-255-6913 AFIT/ENG
DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

T Nt ‘-.. L e TN

- - '.» '. '{ o -‘-' '--'. K
2. I_A._- Sa e S A A" A,

E.‘u

PR -f ‘)

P

g . - P
P R N N S e N R ST SR S

—[-; D 5 A R A AR A SR S AR aRE afat ot it ol alhaft A het® el ol Saf el had Dot ot ot AR Rt Bof S0t Bab 40 aat ¥ ok ol ool et o] DA St at A Al B aef

-

UNCLASSIFIED

19.

The AFIT-ASD Cray System, a virtual communications capability from the
AFIT School of Engineering to ASD”s Cray computer, was studied, created, and
evaluated. The SADT design, detalled design, and System program code are
included in the study. A user enters the System”s user command sendcray which

initiates a Cray jJob from a remote or central AFIT host computer, and

transfers the user”s input file to the central AFIT host computer. The input
file 18 then sent first to the Cyber, which 18 a front-end to the Cray, and
then to the Cray itself where the input is processed. Output from the Cray is
sent to the Cyber and then back to the AFIT central computer. Finally, the
output, with an accompanying job log file, 1s transferred to the user at the

originating AFIT host computer.

The System uses a combination of 4.2 BSD UNIX, Cyber NOS, and Cray
operating systea commands, and makes use of ar AFIT Ethernet netwovk and a
VAX-UNIX/Cyber HASP/modem link. The System operates over a series of UNIX
C-shell programs, most of which are executed automatically. The System
provides the user with simple, error—-free, and automatic access to the Cray,
with the potential of improved turnaround time for compute-intensive jobs at

AFIT.

UNCLASSTFIED

