
I A179 5?7 VIRTUAL. CONHUNCATIO$IS TO ASO'S (AEROUWTICRL SYSTEMS 1/2
DIVISION'S) CRAY CO.. (U) AIR FORCE INST OF TECH
IdRIGNT-PATTERSON AFD OH SCHOOL OF ENGI.. T N TASSEFF

UNCLASSIFIEV DEC 86 AFIT/GCS/ENO/86D-10 F/0 9/2 HL

mhmhhhmmhhml



OIL

Lin,

1 ,. .l aw

.. .4, .

/: ' '.'. . , " . ,? TD. ",'.I .I I'"_.% ..%-.. * 1:- -, € , ? ?. .". , .: ¢ .: -' ."..,".'-.: .: ."- .. i: -":2 -
' } 

I
_ i i Il ! !ii i I I i - Ii " I i I i -- , •I i •*. I iIJ



FILE oy

nDTIC AN

~D n,

J ,M,,ON s-rA".., A,-

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY
I

Wright-Patterson Air Force Base, Ohio

87 4 16 044



List of Tables

Table Page

5-1 AFIT-ASD Cray System Performance ..... ............... .. V-6

vi



a
AFIT/GCS/ENG/86D-I0

DTIC
A9k LEC iD

JD

VIRTUAL CONIUNICATIONS TO ASD'S
CRAY COMPUTER VIA AFIT

DATA CONKUNICATIONS RESOURCES

THESIS

Todd W. Tasseff

Captain, USAF

AFIT/GCS/EWIG/86D-10

Approved for public release; distribution unlimited

[~VV ~ V ~ . P.. ',



AFIT/GCS/ENG/86D-10

VIRTUAL COMIOUNICATIONS TO ASD'S CRAY COMPUTER

VIA AFIT DATA CONOUNICATIONS RESOURCES

TEESIS

Presented to Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirement@ for the Degree of

Master of Science

~Ti
..... ~~~ 

)Tf"*['

Todd W. Tauseff ... i j
Captain, USAF 

oy

December 1986

Approved for public release; distribution unlimited



Preface

The task of this thesis project was to study, create, and evaluate a

virtual communications capability to ASD Computer Center's Cray supercomputer

from the AFIT School of Engineering using existing AFIT computer and data

communications resources. The system will be used to support research and

coursework for AFIT faculty and students.

The challenge of working with five separate computer systems, three

operating systems, and two different communications links all at the same time

grew more intense as I struggled to keep the system I created organized and

workable. But having done so, I learned a great deal about the importance of

good systems programing.

I would like to offer my thanks to Hal Carter, my thesis advisor, for his

help and encouragement throughout the course of this thesis project. I would

like to thank Kirk Horton as I used his 1984 thesis as model for my own. I

would also like to thank AFIT/SI, especially Joe Hamlin, Bob Filer, and Jim

Ware, and ASD/SI, especially Ken Johnson, for their assistance and expertise

during the system pr~gramaing phase of the thesis. I wuuld especially like to

thank my wife, Patsy, for her support and patience during this thesis project.

And, I would like to thank God for the strength He gave me throughout my

thesis project and my entire time at AFIT (Phil. 4:13).

ii



Table of Contents

Page

Preface .. ................ ................. it

List of Figures. ..... .......................... V

List of Tables. .............................. v

Abstract.................... ............... vii

I. Introduction............................ .. . .I I

Background ..... ..........................- 1
Problem .. .............. ................- 2
Scope .. ................ ...............- 5
Sunary of Current Knowledge ..... ................- 5
Approach ..... ..........................- 10
Sequence of Presentation. ................ .....- 11

II. System Requirements and Justification. . .... ............-

Objectives. ................ .............- 1
Requirements Definition. .... ...................- 2
System Description ..... .....................- 2
System Operation .... ........................- 3
Implementation Requirements. .... .................- 6
Performance Requirements .. .... ..................- 6
Functional Requirements. .... ...................- 9

III. System Design .. .............. ........ . . . . Il-

Overview..................... . .. ..... . . ... .. .. . . ....
Initiate Cray Job. ... .......................- 5
Route Cray Job to Cray ..................... -
Execute Cray Job. ............... ..........- 11
Route Cray Job Output to Destination. ................-13

IV. Detailed Design. ... ........................ IV-1

Design Goals ..... .........................- 1
Design Procedure ..... ......................- 2
Design Format. .... .........................- 4
Detailed Design. .... ........................- 4
Program Descriptions ..... ....................- 5

Send cray. ............... ............- 6
Send -cyber cray. ............... ........- 10
Send destination .. .............. ........- 14
Send-user . .. .. .. .. .. .. .. .. .. .. .. ....- 17



V. Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . V-1

AFIT-ASD Cray System Design .......... ................... -1
Functional Requirements ........ ..................... . -2
System Performance ......... ....................... -3
System Status ........... .......................... -7

VI. Conclusions and Recommendations ...... ................. .. VI-l

Conclusions .............. ........................... -1
Recommendations ............. ......................... -1

Bibliography ............ ............................. BIB-i

Appendix A: System Program Listing - sendcray ...... ............ A-I

Appendix B: System Program Listing - send cyber cray .......... .. B-i

Appendix C: System Program Listing - send-destination . ........ C-i

Appendix D: System Program Listing - send-user ... ............ . D-1

Appendix E: User Documentation .......... .................... E-1

Appendix F: Administrative Documentation ........ ............... F-i

iv

5I
Iz

'tI



List of Figures

Figure Page

1-1 Overall System Model ...... .................... .... 1-4

1-2 ISO OSI Network Architecture .... ............... .I... 1-6

2-1 AFIT-ASD Cray System Diagram ..... ... ................ 11-4

3-1 AFIT-ASD Cray System SADT-1 ....... .............. . I. 111-2

3-2 AFIT-ASD Cray System SADT-2 ...... ................ .... 111-4

3-3 Initiate Cray Job SADT-3 .................. 111-6

3-4 Route Cray Job to Cray SADT-4 .... ............... . .111-8

3-5 Route to SSC SADT-5 ..... ... .................... . I.111-9

3-6 Route to Cyber/Cray SADT-6 ...... ................... III-10

3-7 Execute Cray Job SADT-7 ....... .. .................. 111-12

3-8 Route Cray Job Output to Destination SADT-8 .. ........ .. 111-14

3-9 Route to Destination SADT-9 ..... ... ................ 111-15

4-1 Jobtypes and Hosts Support Files .... .............. ... IV-7

4-2 Sample Sendcray Session ..... ............. IV-8

4-3 sendcray.log File ..... .. ..................... ... IV-8 S

4-4 .netrc File Examples ....... .................... ... IV-9 hI

4-5 crontab File Example . . . . . ................ IV-10

4-6 Users Support File ...... .. ..................... ... IV-12

4-7 Sample Cray Job Deck ..... .. .................... ... IV-13

4-8 Sample Done Message via Mail ...... ............... ... IV-16

4-9 Sample Cray Job Log File ...... .................. ... IV-19

5-1 Sample Cray SPICE Job Deck Commands .. ............ ... V-3
S

5-2 FORTRAN Test Progzam ..... .. ................... . . . V-5 h

V

S9



AFIT/GCS/ENG/86D-10

Abstract

The AFIT-ASD Cray System, a virtual communications capability from the

AFIT School of Engineering to ASD's Cray computer, was studied, created, and

evaluated. The SADT design, detailed design, and System program code are

included in the study. A user enters the System's user command sendcray which

initiates a Cray job from a remote or central AFIT host computer, and

transfers the user's input file to the central AFIT host computer. The input

file is then sent first to the Cyber, which is a front-end to the Cray, and

then to the Cray itself where the input is processed. Output from the Cray is

sent to the Cyber and then back to the AFIT central computer. Finally, the

output, with an accompanying job log file, is transferred to the user at the

originating AFIT host computer.

The System uses a combination of 4.2 BSD UNIX, Cyber NOS, and Cray

operating system commands, and makes use of an AFIT Ethernet network and a

. :-UNIX/Cyber FiAJP,'mo em liuk. Thu System oaerti cv? a 611e3 --

C-shell programs, most of which are executed automatically. The System

provides the user with simple, error-free, and automatic access to the Cray,

with the potential of improved turnaround time for compute-intensive jobs at

AFIT.

vii



I -.F -W .F '*w p - w '-lrw%

VIRTUAL COMMUNICATIONS TO ASD'S CRAY COMPUTER

VIA AFIT DATA COMMUNICATIONS RESOURCES

I. Introduction

Background

In recent years, the Department of Electrical and Computer Engineering

(ENG) at the Air Force Institute of Technology (AFIT) School of Engineering

has become a center for Very Large Scale Integration (VLSI) circuit research

within the Air Force and the VLSI research community (5). In order to conduct

VLSI architecture research, AFIT/ENG performs log . design and circuit

simulation, and checks integrated circuits and systems with integrated

circuits (5).

The VLSI simulation and checking is computationally intense, and requires

a relatively large amount of processiag time. For instance, a typical circuit

4 A.al L~ju usiG S  La=e ) P -E ....L-fd e ,AL~ge -bea u La 2 .,,Our, v. '-PL

(central processing unit) time on one of AFIT's DEC VAX-11/785 computers (5).

Such a long turnaround time makes the VAX unwieldy for use in the timely

development of VLSI circuit chips.

As a partial solution to the above problem, AFIT/ENG has recently

acquired an ELXSI 6400 multiprocessor computer to be used for VLSI research.

The ELXSI can execute 7 MIPS (millions of instructions per second) versus the

VAX's 1.5 MIPS (5), and is therefore about 5 times as fast. The previous

SPICE circuit simulation job would run for a minimum of five hours of CPU time

I-I



on the ELXSI versus 24 hours on the VAX. Although the CPU time is a large

part of the overall job turnaround time, another time factor is that the job

must share CPU time with other ELXSI user jobs. Thus, a job on the ELXSI

could consume most of an average workday, still unacceptably slow. A much

faster computer is still needed to speed up the development of complex VLSI

designs.

One nearby facility with more advanced computer support than AFIT is the

Aeronautical Systems Division-s (ASD) Computer Center, which has recently

installed a Cray ,2P-12 sapercomputer. The Cray can execute at over 200 MIPS

(5) which is about 30 times as fast as the ELXSI. A 24-hour VAX SPICE job

would take a minimum of !I minutes of CPU time on the Cray. For this reason,

the Cray would be the more desirable compute. for AFIT's large VLSI design

simulations. It AFIT could gain easy access to the Cray, the Cray would

remedy AFIT-s problem of long turnaround times for simulating large .LSI

des' ns.

Problem

research is how to do so in a simple, error-free manner. At present there Is

no easy way to run VLSI simulations on the Cray. One alternative is to make a

tape with both a copy of the SPICE software package and a VLSI design data

file on it, hand-carry the rape to ASD Computer Center, and load it on the

Cray. But this procedure would have to be repeated for every SPICE job. Any

errors created in the data due to the loading of the tape at AFIT and its

subsequent unloading on ASD's Crav may go undetected. This alternative is

also time-consuming. Besides creating the tape, transporting it to the Cray,

1-2



and loading it on the Cray, the total turnaround time would have to include

running the SPICE program with the input, loading the output back on to tape,

and transporting the tape back to AFIT. In addition, AFIT's tape format might

be incompatible with ASD's tape drives.

Fortunately, a data communications link currently exists between an AFIT

DEC VAX-I1/785 computer and ASD-s CDC Cyber 750 (a dual-system) computer (1),

which is in turn connected to the Cray (15) (see Figure 1-1). But this link

only services users on the VAX, meaning that any VLSI designs developed on

AFIT/ENG's ELXSI would have to be transported to the VAX, sent tG the 7D

Cyber, then transmitted to, and run on, the '-ray, with iutput returnng : :

Cyber. To get output from the Cray back tc the FLXS', tne user Wo U .

transport the output from the 7Yber the ,AX ad ' er. i. ....... A:.

MOSt ot these steps require bome user interventirjr,, dn ". .r 0 .. :rr, , .

t i1 t nime-( onsumlng and umbersome tr;r Tle A.er.

1-3 p



GENERAL SPECIFIC

I AFIT/ENG I Bldg 640,
I Sun Workstations [ 2nd Floor

I I I
AFIT Source I [ I

I Host(s) I I AFIT/ENG ELXSI I Bldg 640,
I I I 2nd Floor

T-VT
I AFIT Comm I I AFIT SSC I Bldg 640,
IHost o Ist Floor

AFIT I I I I

ASD TT IT
I ASD Comm I IASD CDC I Bldg 676,
I Host I I Cyber I 2nd FloorII I

I i
I Ii
I ASD Destination I I ASD Cray I Bldg 676,
IHost I I I 2nd FloorI I I

Figure 1-1 Overall System Model

1-4



In sum, any attempt to make use of ASD's Cray supercomputer for AFIT VLSI I
research would be extremely cumbersome and prone to error. The process

requires that the AFIT user know something about each of the computer systems

involved. The intermediate steps are not all automatic and require some user

intervention. And the steps require a great amount of time (i.e., hours),

which negates the advantage of using such a fast computer as the Cray.

Scope

The scope of this project is to choose, implement, and analyze the best

available method for allowing an AFIT host computer to access a faster

non-AFIT host computer. Specifically, such a data communication facility

should be a flexible remote job entry (RJE) system capable of sending AFIT/EN

programs (in particular, VLSI jobs) from an AFIT host computer to ASD Computer

Center's Cray computer. Once at the Cray, the jobs would be run and the

results sent back to a specified AFIT host computer. The specific AFIT host

computers to be used, as test cases, would be the AFIT SSC (UNIX-VAX 11/785),

and AFIT/ENG's ELXSI computer and associated Sun computer workstations (see

Figuze 1-I). The method chosen would then provide "virtual' comunicatioas to

ASD's Cray. In other words, the system would provide access to the Cray even

though there is no direct link from an AFIT computer to the Cray.

Summary of Current Knowledge

The ISO OSI Reference Model. Most data communications systems, whether

consisting of a single link between two similar computers or a network of many

different computers, adhere to some kind of computer network architecture.

The architecture describes the specific data communications functions that are

'-3



required and how the system should perform them. In an attempt to standardize

network architecture, the International Standards Organization (ISO) has

created the Open Systems Interconnection (OSI) reference model (16:15).

The OSI reference model (see Figure 1-2) contains a set of "protocols"

Narn of unit
Lawexchw~gd

Application protocol
7 Aplication- --- ------ -------- ------ ------- AppiScaon Mossap

interface
Presentation protocol

6 W cmnation- -- --- ---- --- ---- ---- --- ---- tion~~ MInm

Inerac $@"'A I RRo

6 o A Mellow

Oats link anp on M protoco

Fiur 1-2.or IS 'SI Newr Architecturee

which corrspond to crtain funcitna "laero.t acorooollyeoselh

lae belo ik to form ain coriae, chsve dtronctonssse

(ie. network). ThPaiclyrisepysical layer, ae s.ist ae

e t c .) ;~ ~~ ~ ~ iw o i sy c o n c r n e w i t t h e m e c h a n c l , e c t i a , n d p o d u l

-Dt i* lae hoo - IM P ntoo



interfacing of data communications equipment (16:16).

The next highest layer is the data link layer, Layer 2; it is responsible

for sending "frames" (predetermined number and order of data and control bits)

sequentially to a destination node (data communication device). It then waits

for acknowledgement ("transmission O.K.") frames to return from the

destination node. This layer ensures error-free transmission over the

transmission link (16:17).

The layer above the data link, the network layer, Layer 3, handles the

node-to-computer interface and the routing of "packets" (frames with more

control bits) within the "subnet" (16:17). The subnet comprises the physical,

data link, and network layers. The network layer takes data messages from the

source host computer, splits them up into packets, ensuring "that the packets

get directed toward the destination" computer, and controls the traffic (and

congestion) of packets in the subnet (16:18).

The next layer, Layer 4, the transport layer, makes sure that the data

arrives at the destination computer correctly, making it a "true

source-to-destination or end-to-end layer." This layer creates a unique

network connection for each transport layer connection needed by the next

highest layer (16:18). At the next highest layer, Layer 5, the session layer,

the user (human user or application computer program) interacts with the

computer network (16:19). At this level, the user establishes a connection

with a program on a remote computer, providing the user knows the remote

computer's network address (16:19). The layer above the session layer, the

presentation layer, provides a "transformation service" to the user in the

form of text compression, encryption, character-code conversion, file format

conversion, etc. (16:20-21).

1-7

~ ' ' V 7



The uppermost layer, Layer 7, is the application layer. The messages

sent at the application layer are determined by a human user or some

application program at the source and destination host computers (16:21),

depending on the individual requirement.

Remote Job Entry Protocols. According to Day (7:107,114), many of the

data communications requirements of a "production-oriented data-processing"

office are for terminal-to-computer access, or remote job entry (RJE)

capability. Day points out that remote job entry protocols (RJEP) allow a

human user or applications program "to execute a job on one of several

computers" from a remote location, using a single RJE software package that

runs on different computer systems. In relation to the ISO OSI reference

model, RJEP corresponds with the protocol layers from session layer on up. An

RJEP supports the same types of functions found in batch (non-interactive)

computer systems: submitting jobs (programs to be run), determining job

status, retrieving output, controlling the routing of jobs and output to the

desired locations, for example (7:107).

Day defines the function of LJE in a network of computers by stating that

RJE permits loadsharing (sharing computer resources) across more Lhaa one

computer system (7:114). Day gives three reasons for RJE: lower cost or

faster turnaround time; need to access special software that exists on a

remote computer; or having too large a program to be run locally. Each LIE

requirement, though, should be carefully researched before committing

resources to develop a loadsharing operation (7:115). Day also mentions that

if "a small transfer of data generated a large amount of computation," then

remote job entry (to a more powerful host computer) can be feasible.

1-8

% N



A Resource-Sharing Network Link. In his 1980 AFIT thesis, Design of a

Resource-Sharing Network Link, Capt Thomas McLeod describes an example of RJEP

(13). The project was an initial step in developing the ASD Automated

Management System (AMS) resource-sharing (R-S) computer network. McLeod

provided the design of one R-S link between two Texas Instruments model 990

computers (13:2,11). Some of the R-S functions that were required were:

transferring sequential (data) and program files; transferring intersite

messages; and executing remote programs (programs on remote computers)

(13:14-15).

McLeod's thesis is similar in functionality to the type of system

proposed in this thesis. Also, his thesis had the similar goals of developing

an R-S link that was simple to operate and would use existing hardware and

software (13:14).

AFIT SSC VAX to ASD Cyber RJE Link. Another more recent example of RJEP

is the RJE link now operating between AFIT's SSC (UNIX-VAX 11/785) and ASD's

CDC Cyber Computer. Currently, batch (non-interactive) jobs may be sent,

error-free, from the AFIT SSC to ASD's Cyber via a hardware device called the

COMBOARD which is installed on the AFIT SSC (1). The COMBOARD is Lhen

connected to ASD's Cyber computer via a standard synchronous modem (data

communications transmission device) link. The RJEP that the COMBOARD and the

Cyber use is the HASP (Houston Automatic Spooling Program) protocol.

A user on the AFIT SSC places the appropriate "control cards" (Cyber

job-control commands) into the desired batch file, and uses an SSC command to

send the batch file to the Cyber (1). Once at the Cyber, the batch job is

run. Depending on the SSC commands used, the output from the job is either

physically printed by the AFIT SSC, or it is stored in a file on the AFIT SSC

1-9

U



(1). The AFIT SSC user can also store and recall files from ASD's Cyber

(i.e., file transfers) using the same RJE link (18).

Approach

The first step in solving the problem was to analyze the system

requirements in order to identify what functions the system should perform and

how well it should perform them. This analysis included the system

specifications and justified, as necessary, those specifications. The second

step in solving the problem was to translate the system requirements into an

overall system design which incorporated the functions specified under the

system requirements. The overall design was described using the Structured

Analysis and Design Technique (SADT). The system functions were outlined

using SADT charts and accompanying documentation.

The third step in solving the problem was to create a detailed design of

the system from the overall design. This step involved translating the

individual system functions into the proper set of programming commands.

These programming commands formed program modules which became the basis for

implementing the system.

In general, the proposed RJE system operates over the currently available

AFIT data communications facility as described in previous sections, which in

turn is connected to ASD's data communications facility. Specifically, the

RJE system uses the existing RJE link between the AFIT SSC and ASD's CDC Cyber

computer (I), which is in turn connected to the Cray (15).

Since the AFIT hosts and workstations involved operate under the UNIX

operating system, the RJE system was implemented using UNIX C-shell commands

to create the appropriate system programs (9). Computer-to-computer

I-10

~ -~KcK-c~c. - ~:~s~.>:.



communications among these UNIX machines required the use of standard TCP/IP

data communications protocol commands over the existing Ethernet local

computer network link (5).

The system required that Cyber job-control language commands be used

within the job files sent from the SSC to the Cyber. In addition to the Cyber

commands, Cray job-control commands were also embedded in the SSC's job files

since the job files were ultimately interpreted and processed at the Cray.

Sequence of Presentation

Chapter II contains an analysis of the system requirements including

identification of system function and performance specifications.

Chapter III describes the overall system design using the functions

specified in Chapter II, while Chapter IV contains the detailed design of the

system.

Chapter V gives the results of the implemented system which consists of

an analysis of the system's functions and performance as compared to the

system requirements.

Finally, Chapter VI presents :he summary, conclusioLs, aad future

recommendations.

%'%q

I-2l



II. System Requirements and Justification

This chapter describes and analyzes the requirements of the AFIT-ASD Cray

system. The chapter describes the objectives, description, operation, and

specifications of the system so that there is a clear explanation of the

system itself and how the system is to perform. Any necessary Justification

accompanies the stated requirements.

Objectives

The overall objective of the system design is to provide a flexible,

automatic, and virtual communications system capable of sending AFIT/EN

programs (jobs) from any of several AFIT host computers to the ASD Computer

Center's Cray computer, and receiving the results sent back.

Specifically, the system must meet the following objectives:

1) It must be simple to use: The system must be simple for the
human user to use, in terms of understanding: (a) how to operate
the AFIT-ASD Cray system, and (b) what results to expect. This
will allow users to quickly learn how to operate the system and to
reduce user-induced errors.

2) It must be error-free: The system must be able to transfer data
to and from ASD's Cray computer without error. This will ensure
that no unprocessed or erroneous data returns to the user, thus
reducing the number of repeat jobs needed and maintaining a
consistent turnaround time.

3) It must allow fast turnaround: The system, as it transmits jobs to
and returns output from ASD's Cray, must be faster than the current
processing capability of AFIT's host computer resources (especially
for large, compute-intensive jobs). This objective is the driving
force behind the need for the system itself.

II-I



4) The system must use existing computer software and hardware to 1
minimize development time and system complexity, and to simplify
maintenance and future upgrades. This objective includes existing
data communications software and hardware.

The above objectives are reflected in the requirements definition that

follows. First, an overall system description is given followed by an outline

of the system's operation. Next, the implementation requirements are listed

and the performance requirements are expanded. Finally, an overview of the

functional requirements for the system is presented.

Requirements Definition

System Description. The AFIT-ASD Cray system takes a user's input file,

containing program data, from either the AFIT SSC, AFIT/ENG's ELXSI computer,

or one of AFIT/ENG's Sun workstations, and automatically transmits that input

file to ASD's Cray computer for processing. Once at the Cray, the input file

is processed and the output file is automatically transmitted back to a

previously designated AFIT host computer. For example, the input file could

contain AFIT/ENG VLSI design data and the output file would then consist of

VLSI design analysis data (5) that may be output on a printer. The program

that would process the input data on the Cray would be a FORTRAN version of

SPICE, a VLSI circuit simulation program.

The AFIT-ASD Cray system should be flexible enough to allow jobs to be

entered from any of the above AFIT hosts or workstations and the output sent

to any of the above AFIT hosts or workstations. The system will notify the

user via an online screen message or off-line electronic mail message when

output from the Cray has returned. The entire process, from Cray job

initiation at an AFIT source computer to the Cray job output's return at an

11-2



AFIT destination computer, will require no user intervention.

System Operation. In general, the AFIT-ASD Cray system operates over the

currently available AFIT data communications facility, which is connected to

ASD's data communications facility. Specifically, the system makes use of the

existing RJE link between the AFIT SSC and ASD's CDC Cyber computer (1), which

is currently connected to the Cray (15). The system also communicates with

AFIT/ENG's ELXSI computer and Sun workstations and the AFIT SSC via a

dedicated, local computer network link (5).

Input data files created on the ELISI or the Sun workstations and

destined for ASD's Cray computer are transmitted over an Ethernet (coaxial

cable) network link to the SSC (see Figure 2-1). While at the SSC, the ELXSI,

Sun or SSC input data files destined for the Cray have the appropriate Cyber

and Cray job-control commands placed into the input data files (15).

11-3

, ., . . -.c- .. ...



w ww l I

-C

L ) I
400

Cc)

11-44



The SSC then takes the Cray job file and transmits it to the Cyber via the

existing SSC-Cyber RJE link. Once at the Cyber, the job file is transferred

to the Cray, the job processed, and the output returned to the Cyber, which in

turn returns the output to the AFIT SSC.

Once the SSC receives the Cray output from the Cyber, the SSC stores it

or passes it on to the ELXSI or Sun workstations, using the local computer

network link, depending on where the user specified the output should be sent.

The system will notify the user that the output file has returned via an

on-screen message at the source computer. If the user has logged off the

source computer, the system will place a message in the user's "mailbox" on

the source computer using the UNIX mail command (12:114).

The system also has an audit capability which keeps track of the progress

of a job as it passes from one computer to the next. A log file accompanies

both the input file and corresponding output file through the system. The

rystem sends to the user the log file along with the output file. The log

file contains date/time stamps of important events (e.g., file transfer from

one computer to the next) and any pertinent system messages and error messages

beut by the AFIT and iSD1 host LompuLLrs involve..

The user has the responsibility to first create an input file for the

AFIT-ASD Cray system. This is accomplished by using the file editor of choice

on any one of the AFIT host computers or workstations involved. Once the

input file is created, the user may enter the command sendcray, a set of

options, and the input filename, in that order. If no options are given, then

the default options are assumed. After the input file has been sent to the

Cray and processed, an output file will return to the designated AFIT host and

user directory (file space).

H1-5

S

*" " " " .. ' % -"" " " " " ." " ." "" "" "" " "."." " " "" * * " "* *"" ' -. • "-

A.. A. ~ - ~ ~t



In addition to the output file, a companion log file containing the

history of events that transpired from the time the Cray job left the AFIT

source computer or workstation and returned to its AFIT destination will be

sent.

Implementation Requirements. The system must use existing computer

software and hardware in order to minimize development time and system

complexity, and to enhance maintainability. The system must also use existing

data communications software and hardware to link together the computer

systems involved.

Since each of the AFIT hosts and workstations involved can operate under

the UNIX operating system, the system will require the use of UNIX C-shell

commands in order to create the appropriate RJE commands (9).

Computer-to-computer communications among these UNIX machines will require the

use of standard TCP/IP data communications protocol commands over the Ethernet

local area ne-worK ').

The kF:T SSQ to ASP Cyber hardware link is already established. However,

the system wil1 require that Cyber and Cray job-control commands be embedded

The speck fi AF:T EN lob to be used for an initial prototype system is a

FORTRAN vers:lu -f AF:T ENC's SPILE VLS: circuit simulation program. The

spec1i! A :T ros, Jmputers t we used :n the prototype are the AFIT SSC

N:Y-;AX.. f ,kT . Omputer, and tne Sun workstations.

Per:rmrxan - T-he per:-.rman..e criteria for the system are at

the heart t thr system s ,'7::.es. The need for the system grew out of a

requirement *-, pr-v*de a slma-e, -rror-free way to access a faster non-AFIT

host omputer, i.e, !he ray superomputer at ASD Computer Center.

:: -b"

[ '"



The system must be simple to use. The user must be able to understand

quickly how to operate the system and to remember how to operate it after only

a brief introduction. The system will accomplish this through the use of

obligatory error and usage messages (onscreen) and the use of hardcopy and

online user's guides.

Accompanying the system will be a hardcopy user's guide explaining the

operation of the AFIT-ASD Cray system. In addition to the hardcopy guide, an

online user's manual entry will be available on each of the AFIT hosts and

workstations involved. Under the UNIX operating system, the user will use the

"man" manual command (12:31) to review the online user's manual entry.

Besides explanation in the user's guide of the function and options for the

system, the guide will also explain what outputs are produced and what they

contain.

One other requirement for simplicity of use is that the transmission and

running of a Cray job should be transparent to the user, i.e., should not

require any user intervention.

The system must be able to transfer data to and from ASD's Cray computer

wi.hout error-no missing oc garoled data. This will be done by counecting

each AFIT host computer or workstation involved to a local communications

network. The local network is the Ethernet baseband (single-channel), coaxial

cable network. The network will ensure simple, coordinated data transfers

among the AFIT host computers. The Ethernet's established error-handling

features will also ensure error-free transmission among the AFIT hosts. In

addition, the existing features of the AFIT SSC-ASD Cyber link will ensure

that the transfer of data files between AFIT and ASD will be simple and,

again, error-free.

11-7



The system must have a relatively fast turnaround time. The system, as

it transmits jobs to and retrieves output from ASD-s Cray, must be faster than

the current processing capability of AFIT's host computer resources,

especially for large, compute-intensive Jobs. Output from the Cray must

return to a designated AFIT destination computer within a maximum of one hour.

The turnaround time will start from the time a Cray job leaves an &FIT

host computer or workstation until the Cray output returns to its final AFIT

destination. The turnaround time includes not only the program run-time

(execution-time) at the Cray, but also the time taken to transmit input data

to and output data from the Cray.

One major constraint of the system is the speed at which data is

transmitted between the AFIT SSC and ASD's Cyber. The

synchronous modem link between the SSC and the Cyber transmits data at 9600

bits/second. This is relatively slow compared to the maximum 10 Mbits/second|

transmission rate of AFIT/ENG's Ethernet local computer network. The 9600

bits/second rate is a maximum rate--with the HASP communications protocol

executing between the SSC and the Cyber, the actual rate is somewhat lower.

1he eapected large (one-half to one mlillon characters) file transfers between

the SSC and the Cyber, whether input or output files, could become a major

bottleneck for the system. A careful analysis of the system turnaround time

must follow system implementation to determine the effects of this constraint.

The system will be validated by demonstrating that any of the AFIT hosts

or workstations involved will be able, without error, to transmit a job to

ASD's Cray computer, run the job at the Cray, and return the output to any one

of the involved AFIT computers or workstations. The system should operate

properly under normal conditions, and recover from any abnormal conditions

11-8

...



such as a computer going down or a communication link being disconnected. I
An attempt to install the before-mentioned SPICE circuit simulation

program on ASD-s Cray computer was made as a test case. The program would

execute VLSI circuit design simulations on the Cray using realistic circuit

design input data.

Functional Requirements. This section describes the AFIT-ASD Cray

system's user command and the functions of each of the user command options,

including default options.

Besides entering the system's command name and the name of the input data

file, the user may enter other optional information: (1) the Cray job type;

(2) the estimated Cray job run time (time to run while on the Cray, in

minutes); and (3) the output filename. If no option information is entered,

the default options are exercised.

The system is initiated when the user enters the following command:

sendcray [ options ] inputfilename

The system provides the user with the following options:

(1) Cray job type. The job type can be either FORTRAN or SPICE. A
FORTRAN job indicates that the input data file is a FORTRAN program,
while a SPICiL job indicAta.f t..At the input data fie Is inpUL Jata
for a VLSI circuit simulation. The default Cray job type is
FORTRAN.

(2) Cray job time. The job time is the estimated time in minutes
that the user expects the Cray job to run while at the Cray. The
system uses this time value to place an upper limit on how long
ASD's Cyber should wait for output to return from the Cray, the
maximum time being 15 minutes. The default Cray job time is 5
minutes.

(3) Output Destination. The user should be able to specify which
AFIT host computer or workstation will be the final destination of a
Cray job's output. The choices are the AFIT SSC, AFIT/ENG's ELXSI,
or any one of AFIT/ENG's Sun workstations. The default output
destination is the source computer or workstation (the machine tnat
originated the Cray job).

H1-9

. .. . . . . . . . . . . . . . . . . . .. . .. ,.



(4) Output filename. The user can also specify the exact name of
the Cray job's output filename. However, if no output filename is
given, the default output filename will be the same as the input
filename followed by a ".crayout" suffix. Accompanying the output
file will be the log file for the Cray job. The name of the log
file will be the same as the specified output filename followed by a
".craylog" suffix, with the default being the input filename
followed by that same suffix.

After the user has entered the above information, the system performs

automatically without giving the user any additional information until the

output file returns. Once the output file arrives at the destination host,

the system notifies the user via an online screen message (if the user is

still logged-on to the source computer) or an electronic mail message (if the

user has logged-off).

These functional requirements along with the other requirements set forth

in this chapter are the foundation for the AFIT-ASD Cray system. These

requirements also form the basis for the detailed system design, which is

described in the next chapter.

II-10

I



III. System Design.I

This chapter on system design translates the requirements presented in

the previous chapter into a master diagram of the system. This overall design

will incorporate the functions specified under the system requirements and

will show how they and their sub-functions interrelate to produce a working

system.

The system design is described using the Structured Analysis and Design

Technique (SADT). System functions are described using SADT charts with

accompanying text.

Overview

The SADT charts In the following figures describe the functions, inputs,

outputs, and controls of the AFIT-ASD Cray system. The system, though

depicted as operating from a single machine (see Figure 3-1), is actually

implemented on several AFIT computers: AFIT/ENG's ELXSI computer and Sun

w',rks ,tions, and the AFIT S C (rFr VCX-Il/785). Each of the AFIT :o-ip ters

uses the UNIX operating system which executes UNIX C-shell programs to

implement the system described here. Some of these programs are similar for

each machine while some are unique to a particular computer or set of

computers.

Ill-!

]

. ~ ~ v]



I-I

, i -

w..q

4wq

II-m"



The task of initiating a Cray job is virtually identical in all the AFIT

computers involved. Required user-inputs are the same no matter which

computer is used, and the system tasks of creating a Cray job file and the

associated log file are primarily the same.

Differences occur in the way the job and log files are submitted to the

Cray and in the way those same Cray log files and associated output return to

their final destinations. If the Cray job originates from or is destined to

return to the AFIT SSC, the task is relatively simple since the SSC is

connected directly to ASD's Cyber (and, in turn, the Cray). However, if the

job originates from or is destined for any other of the involved AFIT

computers, the task becomes more complex, since the job and log files must

travel through the SSC enroute to the Cray.

Another important difference among the system's programs is that since

only the SSC can comunicate with the Cyber and Cray computers, there are

specific programs resident on the SSC for sending files to and receiving files

from the Cyber and Cray. The differences outlined above will be described in

more detail in the next chapter which contains the detailed design.

The AFIT-ASn Cray sy~tre ie si~ tt up into four main sectiins, Initiate

Cray Job, Route Cray Job to Cray, Execute Cray Job, and Route Cray Job Output

to Destination (see Figure 3-2).

111-3



lk t7

iK

4 24

iN

dc I
--..

B.

111-4

Ui



The function, inputs, outputs, and controls of each section or module as well

as any submodules are described below.

Initiate Cray Job

The Initiate Cray Job module (Figure 3-3) takes the user's keyboard input

and the user's input job file and creates a Cray job file and an accompanying

Cray job log file. The input filename is identified by the user's input. The

Cray job file is the same as the input file except that it has a new filename

which uniquely identifies it.

Besides the input filename, the user may choose the Cray job type, the

job time, an alternate output destination, and a unique output filename. The

system software then places these four items into the Gray job log file.

The Cray job and log files are used by the next system module, Route Cray

Job to Cray.

'1

III-5

.. 9.9

. . . . . . . . . . . . . .



NW--

49 w4

111-



Route Cray Job to Cray

The Route Cray Job to Cray module (Figure 3-4) is really two modules in

one. The first submodule is responsible for updating the Cray job log file

and routing the Cray job and log files to the SSC (Figure 3-5). Once at the

SSC, the second submodule (Figure 3-6) converts the Cray job file into a job

deck file and sends the job deck to the Cyber and Cray for processing. The

job deck contains the original input file data from the AFIT computer that

initiated the Cray job plus special Cyber and Cray job control language (JCL)

commands that control the flow and execution of the input file data at the

Cyber and Cray. The type of JCL commands that are created will vary depending

on the Cray job type that was specified by the user and stored in the job log

file. The log file remains at the SSC and is updated when any transfer (or

&rrival) of job files occurs.

111-7



2 2

49 w 0

CKC
La ~

uim

SM



10.

do-.

t6 w L

go W
4c wU

2C 3. -J-C

i

-C4

100

111-9



ata

-C

_ t

A Z

I It
- .

~ U 0
VcCd Is II

111-1



Execute Cray Job

This module (see Figure 3-7) is self-explanatory because the Cyber in

concert with the Cray executes the JCL commands found in the job deck sent

from the AFIT SSC. The Cyber JCL commands submit Cray JCL commands plus the

AFIT input file to the Cray, and wait for output from the Cray to return. The

Cray JCL commands then process the input file data that originated from an

AFIT source computer, and return the output to the Cyber. Output from the

Cray along with the Cyber output (which contains Cyber job history

information) return to the SSC automatically.

Lie[



"a

U

14

UU

gog

hi..

I i

I

I-'-I

* 4
[-.

[4

! i I hi,% ... ,%.'. ,. , -+ , ,' ,.%,,...' ,, ,,,.-, .. , ,,:" .,. .... . . . ...> .. ... -.,. ,-,... .... ...



Route Cray Job Output to Destination

The Route Cray Job Output to Destination is made up of three separate

submodules (see Figure 3-8). The first submodule (Figure 3-9) updates the

Cray job log file when the Cray job output arrives. Then, the output

destination is extracted from the log file and the output file is transferred

to the output destination. Finally, the Cray job log file is updated once

more and then transferred to the output destination.

Once at the output destination, the Cray log file is updated and the Cray

output and log files are delivered to the user's output filename which was

designated by the user initially and stored in the log file. After the Cray

output and log files are delivered to the user, a "done message" is generated.

The "done message" will take the form of an onscreen message if the user is

logged on to the AFIT source computer, or will take the form of a computer

mail message if the user is not logged on to the AFIT source computer.

111-13

%~ %



c -K

w dc

2cn

SOj 0

12

9K 0

111-14



Ali
- -

-C zzz

ww 0 .

.

0 0

4c w

0 u L4

4C L

C111.15



IV. Detailed Design

This chapter on detailed design develops the initial, overall system

design of the AFIT-ASD Cray System into a more complete system design. The

detailed design describes the overall structure of the System's implementation

so that the design may be translated into appropriate computer

system-programming instructions.

Design Goals

The design objectives of the System have already been described in

Chapter 2: (1) must be simple to use, (2) must be error-free, (3) must allow

fast job turnaround, and (4) must use existing computer software and hardware.

Each objective has an impact on the design goals.

The System must be simple to use and operate. Given that the System runs

on AFIT computers that use the UNIX operating system, the System's user

command format must conform to the UNIX style of user command-lines, i.e., a

user co-mand followed by "dash-optioris" (single-character options prefixed by

a single dash) and ending with some kind of input (e.g., a filename). In this

way, a user already familiar with UNIX command formats will be able to

understand how to use the AFIT-ASD Cray System command.

The System must be able to detect invalid options, invalid option inputs,

and invalid input filenames and reporting these errors back to the user in an

orderly and graceful manner, i.e., without causing some abnormal or undetected

System program termination. The System must also be able to detect, recover

from, and report back to the user any errors in the internal operation of the

IV-I



System itself (host computers unavailable, data communication links down,

etc.) and do so in an orderly and graceful manner.

There is nothing inherent in the system design that will notably improve

job turnaround time. ASD's Cray computer is the component that executed

actual job. The System is merely a user of the Cray's exceptionally fast

computational facilities. Since the System's programs are UNIX C-shell

command programs, internal documentation (comments) in the production version

of the System software must be kept to a minimum. Commands in UNIX C-shell

programs are interpreted one at a time including the comments, although the

comments are not processed in any way. Reducing the number of comments, and

extraneous commands, in each of the System's programs would then decrease the

execution time of the System, though not significantly. The only notable

"software" improvement that could be made would be to increase the speed in

which the System detects and processes data files. This improvement is done

by increasing the frequency in which some of the System programs are scheduled

to run by AFIT's UNIX host computers. Also, since the JCL (job-control

language) commands of ASD's Cyber and Cray computers are interpreted by their

respective operating systems, these commands should aleo be kept to a Minimum.

The only other components that might be improved in order to provide

faster job turnaround time are the AFIT host computers themselves and the data

communications lines involved. However, this would violate the objective of

using existing software and hardware to develop the System.

Design Procedure

The detailed design of the System began by expanding the information

imbedded in the SADT charts of the previous chapter which described the

IV-2



overall system design. The process modules in the SADT charts were converted

to actual UNIX C-shell programs by implementing module functions using a

series of C-shell commands. Each module was preceded by a module header, a

set of comment lines describing a module-s function and contents. Since

several files were created to implement the modules, headers began each file.

Also, comments throughout the modules explained their inner workings (though

most or all of the comments, including the headers, are not used in the

production version of the System).

In general, prototypes of each module, including prototypes of parts of

the modules, were created first as tests to insure that the modules would

function as intended. Both the syntax of the C-shell commands and the logic

used within the modules were tested before the modules were allowed to process

any sample Cray jobs files.

The prototyping of System modules, in terms of what functions were

successfully tested and added, proceeded in this fashion: (1) FORTRAN job

sent to the Cray from the AFIT SSC; (2) Cray job output received at SSC; (3)

user command line created; (4) output delivered to a SSC user directory; (5)

mcdules run automatically using ESC's cron (job scheduler) facility (explained

in greater detail in the Program Descriptions section); (6) modules (with

minor modifications) automatically run on AFIT/ENG's ELXSI computer and Sun

workstations under each system's cron facility; and (7) attempted to send a

SPICE job, as a test, to the Cray with output returning to AFIT.

IV-3

.P .-P -



Design Format

Given the relative simplicity of the resultant C-shell programs, the only

format necessary was the use of the module headers as described above. An

example of a module header, with an explanation of each line-item, follows:

* DATE: date of latest version *
* VERSION: current version number *

* MODULE NUMBER: module number (from SADT charts) *
* NAME: name of module (corresponds to SADT charts) *
* FUNCTION: description of module's basic function *
* INPUTS: user-supplied inputs *
* OUTPUTS: user-directed outputs *
* GLOBALS READ: global (common) variables read *
* GLOBALS WRITTEN: global (common) variables written *
* FILES READ: files read by the module *
* FILES WRITTEN: files written by the module *
* HARDWARE INPUT: hardware devices read by module *
* HARDWARE OUTPUT: hardware devices written to by *
* module *
* CALLING MODULES: modules that call this module *
* CALLED MODULES: modules that this module calls *

* AUTHOR(S): person(s) who wrote the module *
* HISTORY: history of the development of this module *

The above module header, though a part of the documentation of this System,

will not be included in the production version.

Detailed Design

The detailed design follows the same order and flow of logic as did the

overall system design. Each module corresponds to an SADT module as described

in the previous chapter. Though all the modules in the SADT charts appear to

be operating on one AFIT host computer, the System modules do not all execute

on the same computer. The following descriptions of the system modules wi,.

IV-4



indicate the computer or computers in which each module resides.

The one common element of all the modules, no matter in which computer

the module resides, is that there is a unique job identifier name that serves

as prefix for all the files created by the System, e.g., input file, log file,

output file, etc. This job identifier is created when the System is initiated

for each job. The job identifier has the format:

xx99999 where xx represents the source host from which
the job originated (sc=SSC, el=ELXSI,
mc-Sun-Mercury, etc.)

99999 represents a 1-5 digit process (job)
identifier number, furnished by the
source host computer, and is assigned
when the job is initiated

The purpose of the job identifier is to distinguish one set of System files

from the next. This distinction prevents the System modules from using,

overwriting, or otherwise destroying files belonging to another job. The size

of the job identifier is restricted to seven alphanumeric characters because

the identifier is also used by the System as a filename on the Cyber and the

Cray, both of which restrict filename lengths to seven characters (2:p.6-5).

Program Descriptions

The AFIT-ASD Cray System consists of several 4.2 BSD UNIX C-shell

programs, distributed among the above-mentioned AFIT hosts. The same program

may run on different hosts and may operate basically the same, except for

minor modifications based on the AFIT host in which the program resides. Each

program is contained in a file with a name identical to that of the program.

A program contains one or more System modules as found in the SADT charts of

.he previous chapter. Also, both Cyber-NOS and Cray job control langua&g

IV-5

7:



(JCL) commands are placed in the Cray job deck before the deck is sent to the

Cyber and Cray. A variety of publications were used to create the programs

and job decks (1) (2) (3) (4) (6) (12) (17) as well as the expertise of both

AFIT and ASD computer center personnel (8) (9) (11).

Sendcray. The sendcray program (see Appendix A) is both the System's

command-line program and System initiator. Its main function is to interpret

the user's command inputs and create a Cray job input file and a Cray job log

file. It also has the task of routing the input and log files to the AFIT

SSC. sendcray incorporates SADT module Al, "Initiate Cray Job," and submodule

A21, "Route to SSC." A21 is part of module A2, "Route Cray Job to Cray." A

version of sendcray runs on all the AFIT host computers involved.

Sendcray begins with a list of variables, preset to some numeric or text

values. Most notable among these variables are the default values for the

System's command options. Another set of important variables are the

source-host variables. In order to make sendcray portable to the other AFIT

hosts, the source-host variable SOURCEHOST is set to the host computer's name

(e.g., ssc) while the variable SOURCEID is set to the host's two-letter

identifler (e.g., sc). Also, the varilhle PROCESSID is set to the vnlce of

the program's 1-5 digit process (job) identifier number as furnished by the

host computer.

The first items that the sendcray program processes are the command-line

options and the Cray job input filename. After these input items are read,

the program determines whether or not the items are usable, valid, or in

range. Most importantly, the input file, the file given as input for the job,

must exist. Concerning the job type and job destination options, sendcray

checks these option inputs against a jobtypes.sendcray file and a

IV-6

I

~~%~*%* . % i . . / .' V % ..~ ~....................... - - . *J...**.*



hosts.sendcray file which contain the valid job types and destination hosts,

respectively (see Figure 4-1). Concerning the job time option, the amount of

jobtypes.sendcray

## list of valid Cray job types for the sendcray command
## the format is: jobtype followed by list of aliases (all on same line)
fortran FORTRAN Fortran
spice SPICE Spice

hosts.sendcray

## list of valid AFIT hosts for the sendcray command; the format is:
## primary hostname followed by list of aliases (all on same line)
zssc ssc SSC
zelxb bad afitbsd
dsun2-l dsun2 apollo
vsun2-1 vsun2 mercury
psun2-1 psun2 venus
isun2-1 isun2 zeus

Figure 4-1 Jobtypes and Hosts Support Files

time that the user expects the job to run while at the Cray must be less than

15 minutes. If any error occurs, an online error message is written to the

user together with a "usage" message showing the proper command-line format.

Note that a potential administrative problem with the assignment of usernames

among the AFIT SSC, AFIT/ENG ELXSI and Sun computers (i.e., same person with

two different usernames or same username for two different people), prevents

implementation of the job destination option; however, initial attempts to

program-in that option will be left in some of the programs for future use,

but will be "commented-out" to prevent their accidental use.

Next, sendcray creates the Cray job identifier by combining the SOURCEID

and the current PROCESSID together to form one unique identifier; it thcr

Iv-7



echoes" the job identifier to the user as an online message (see Figure 4-2).

1 sendcray craytestjob
sendcray: jobfile ID, sc16349, created: 19:04:23 EST
sendcray: log file created
sendcray: input and log files transferred to SSC

Figure 4-2 Sample Sendcray Session

The System will use this identifier for the duration of the Cray job.

Sendcray then updates the file sendcray.log (see Figure 4-3) with information

## this is the local sendcray log file
## the format is: date unique_jobfileID source destination jobtype jobtime
## inputfile outputfile user inputfile directory processID
Thu Nov 6 19:04:27 EST 1986 sc16349 ssc ssc fortran 5 craytestJob
craytestjob.crayout ttasseff /enO/gcs86d/ttasseff/cray 16349

Figure 4-3 sendcray.log File

about the current Cray job: date, time, job identifier, source and

destination host, job type and job time, input and output filenames, the

user's name and current file directory, and the PROCESSID.

Sendcray then begins to form the Cray job log file. Using the job

identifier as a prefix and .craylog as the suffix for the log filename,

sendcray enters Cray job information into the log file (same as for

sendcray.log), then "echoes" to the user that the log file has been created

(see Figure 4-2).

The next task that sendcray performs is to route the Cray job input and

log files to the SSC. If the sendcray program is running on the SSC, then the

inpit and log files are simply moved '-o ,' special "inbound" subdirectory %hrrc

IV-8

S



they wait for the next System program to pick them up. If the sendcray

program is running on the ELXSI or one of the Suns, then the input and log

files must be transferred to the "inbound" subdirectory on the SSC via the

AFIT/ENG Ethernet. The transfer command used in this case is called ftp (file

transfer program). Any errors during the ftR transfer are noted in the log

file and -echoed" to the user. Also, if there are any such transfer errors,

the program will exit (terminate). Note that the ftp command works within the

program only because a .netrc file was used (see Figure 4-4). The .netrc file

On the SSC...
machine zelxb, login ttasseff, password xxxxxxx
machine vsun2-1, login ttasseff, password xxxxxxx

On the Sun-Mercury...
machine ssc, login ttasseff, password xxxxxxx

Figure 4-4 .netrc File Examples

contains the name(s) of the AFIT host computer(s) to which files are to be

transferred, along with the username and password for the AFIT-ASD Cray System

account on that particular host. f uses the .netrc file to login

automatically to a remote host from within a C-shell program. Every System

program that uses ftp must use the .netrc file.

While being moved or transferred, the Cray job input file will take on a

new filename, one with a Cray job identifier prefix and a .crayin suffix.

Also, once the move or transfer is complete, a final message is "echoed" to

the user indicating that the input and log files have been successfully

transferred to the SSC (see Figure 4-2).

IV-9

,I



Send cyber cray. The sendcybercray program (see Appendix B) is the

most important of the System programs. Its main function is to create a Cray

job deck from the Cray job input file and to send it to ASD's Cyber, and in

turn to the Cray. Sendcyber-cray incorporates SADT submodule A22, "Route to

Cyber/Cray." A22 is part of module A2, "Route Cray Job to Cray."

Sendcyber cray runs solely on the AFIT SSC. Also, this program runs via the

UNIX cron facility. The cron facility can execute a program of choice at a

particular time or set of times throughout a regular 24-hour day within a

regular 7-day week (12:536-537). By placing execution time options and the

program name into a UNIX crontab file, UNIX will execute the program as

indicated (see Figure 4-5). For this System implementation, sendcybercray

0,15,30,45 8-23 * * 1-6 /enO/gcs86d/ttasseff/cray/sendcybercray

0,15,30,45 8-23 * * 1-6 /enO/gcs86d/ttasseff/cray/send destination

Figure 4-5 crontab File Example

will execute on the SSC Monday through Saturday, from 0800 to 2345 hours

(which matches the availability of ASD's Cyber and Cray computers), and do so

every 15 minutes. One important feature of cron is that any program run from

the crontab file actually runs at the "root" level of UNIX, which has the

authority to manipulate files in any user's directory, but needs full path

(directory) names in order to reach a file or to execute a given command.

First, sendcyber-cray updates its sendcybercray.log file with a

date/time stamp and a message indicating that the program has been initiated.

Then the program checks to ensure that no other sendcyber-cray program is

.uanirg (if, for some reason, the previous sendcyber-cray prograL WEs ldI

IV-10

0-



up). If another send_cybercray program is running, the program updates the

send cybercray.log with an appropriate message, and exits (terminates) in

order to maintain System integrity and to avoid two programs processing the

same files.

Next, the program moves into the "inbound" subdirectory to check for t.'e

existence of Cray job log files. If they exist, the program continues by

determining the unique Cray job identifier from the prefix of the job log

filename. If they do not exist, the program will exit.

Send cybercray then checks for the existence of the Cray job input file

(i.e., has a .crayin suffix) with a filename prefix matching the job

identifier. If there is no matching input file, then the program places an

error message in the log file, creates a dummy Cray job output file (with

filename prefixed by job identifier and suffixed by .crayout), moves both the

log and output files to an "outbound' subdirectory, and continues to check for

the existence of other Cray job log files.

If the above check is succeasful, send_cybercray will continue by

checking to see if the user who originated the Cray job is a valid user. The

)og-:: extracts the uqer's nave from the Cray job log f'.le ar.d coilpares it

against a table of authorized users stored in a file called users.sendcray

(see Figure 4-6). If the user is not authorized, the same error-recovery

routine described for failing to find a matching input file is executed,

except that different error messages are used.

IV-1I

" P. .1 % %P %



users . sendc ray

ID this is the sendcray valid user list; the format is username followed by

## cyberuser cyberbatchpasswd crayacct crayacctpasswd crayuser
crayuserpasswd
## (all on same line)
ttasseff T888888 XXXXXX T999999 ZZZZZZZ T999999 ZZZZZZZ

Figure 4-6 Users Support File

If the above check is successful, then send_cyber cray will extract the

user's Cyber and Cray account and user numbers, with their accompanying

passwords, from the users.sendcray file. The Cyber and Cray accounts

information is used to form the job deck that is sent to the Cyber and, in

turn, the Cray (see Figure 4-5). The program also extracts the Cray job type

(FORTRAN or SPICE) and the job time (in minutes; time that job is expected to

execute in while at the Cray) from the Cray job log file. Sendcybercray

then edits a template file called crayjobtop and replaces dummy variable names

with the Cyber and Cray account numbers, user numbers, and passwords, and the

job type and job time. The program also replaces any dummy filename variables

with the Cray job identifier to prevent any confusion with other Cray job

files on the Cyber and Cray that the System is still using. Finally, the

program places the new, updated copy of the crayjobtop file on top of the Cray

job input file and places an existing crayjobbot file on the bottom of the

input file to complete the Cray job deck (see Figure 4-7). Sendcyber cray

IV-12

-A

" '. J'. " "'. " ' ,_ , ,,_ " "' ' -' '-". ' .. . . .'..'." " ... ' . " -- .,..*... :



This is the crayjobtop file:

CRAYJOBPI,STCSB.
USER,T888888,XXXXXX.
CHARGE,*.
COPYEI, ,scl6349.
REWIND,scl6349.
CSUB,scl6349 ,MF-CRX,US-T888888, PW-XXXXX.
SET ,Rl-0.
SET,R2-0.
SET,R3-5.
WHILE,Rl-0.AND.R2.LT.R3,LOOP.
ATTACH, ucl6349-sc16349/NA.
IF,FILE(scl6349,AS) ,CHECK.
REWIND,scl6349.
COPYEI ,sc16349.
PURGE, ccl 6349.
SETRi-I.
ELSE ,CHECK.
ROLLOUT, 60.
SET,R2-R2+1.
EKDIF ,CHECK.
ENDW, LOOP.
/*EOR
JOB ,JN-sc 16349, US-T999999.
ACCOUNT, AC-T999999 ,APW-ZZZZZZZ ,US-T999999, UPW-ZZZZZZZ.
CFT,L-O.
LDR.
DISPOSE ,DN-$OUT ,SDN-scl6349 ,MF-CB ,DC-ST ,DF-CB ,DEFER,
T!XT-'DEFINE,cl6349.CTAK,AI.L. -.
/ KOF

This is the Cray job input file (FORTRAN):

PRINT 1000
1000 FORMAT(///,51,-THE CRAY TEST MADE IT.-)

STOP
END

This is the crayjobbot file:

/ EO F

/*EOI

Figure 4-- 3-itp'e Cray Job Deck

IV-1 3



then removes the new copy of the crayjobtop file (the old one is retained) as

well as the Cray job input file.

Send_cybercray is now ready to send the Cray job deck to the Cyber and

the Cray. The program then executes the send command to send the job deck to

the Cyber from the SSC as if it were a normal job, and to designate that the

output file (with a filename prefixed by the Cray job identifier and suffixed

by .crayout) be placed in the "outbound" subdirectory. Sendcybercray will

then check for any errors from sending the job deck to the Cyber. If there

are any errors, the program will run the same error-recovery routine described

for failing to find a matching input file, except that different error

messages are used. If there are no errors, then the Cray job deck file is

removed, and the log file is moved to the "outbound" directory.

Once the job deck arrives at the Cyber, the particular Cyber commands in

the job deck (from the crayjobtop file) instruct the Cyber to submit the Cray

job input data, along with the necessary Cray commands, to the Cray as a

normal job, wait for output to return from the Cray, then return the output to

the SSC.

Send destination. The send_destination program (see Appendix C) is one

of the last of the System programs. It's main function is to determine the

Cray job files' destination, transfer the Job files there, and move them to

the user's file directory. Senddestination incorporates SADT module A4,

'Route Cray Job Output to Destination," and runs soley on the AFIT SSC. Also,

send-destination is one of the programs that runs via the UNIX cron facility

(according to the same schedule as sendcybercray).

First, sand destination updates its send destination.log file with a

date/time stamp and a message indicating that the program has been initiated.

IV-14

I



fLu-R S WW WI .. n WV WWWWWU . _

Then the program checks to ensure that no other send destination program is

running (if, for some reason, the previous send destination program was held

up). If another send destination program is running, then the program updates

the senddestination.log with an appropriate message, and exits (terminates).

Send destination then initializes several variables which are preset to

some numeric or text values. Most notable among these variables is the

SYSTEMHOST variable, which contains the host computer's name (e.g., ssc). The

other variables will be explained below.

Next, the program moves into the "outbound' subdirectory to check for the

existence of Cray job log files. If they exist, the program continues by

determining the unique Cray job identifier from the prefix ot the job log

filename. If they do not exist, the program will exit.

Send-destination then checks for the existence of the Cray job output

file (i.e., has a .crayout suffix) with a filename prefix matching the job

identifier. If there is no matching .crayout file, then the program begins

keeping a count of how many times it has checked for the output to return

(i.e., every 15 minutes the program advances the count by one).

When the count becomes equal to the value of the preset v.iriille

SEND CHK, then send-destination checks to see if the Cray job deck is still in

the send queue (i.e., checking to see if the job deck has not left the SSC).

If the job deck is in the send queue, then the program places an error message

in the log file, creates a dummy Cray job output file (with filename prefixed

by job identifier and suffixed by .crayout) in the "outbound" subdirectory,

and continues to check for the existence of other Cray job log files. If the

job deck is not in the send queue, then the program will also continue to

check for the existence of other Cray job log files.

IV-15

J

!- " '"-" ". .
' '"

"." ' ". - .' '. .''i . ' "" "-- -" "" "- " "" " ."



When the count becomes equal to the value of the preset variable

OUTPUT_.CHK, then senddestination executes the same error-recovery routine

described when finding that the Cray job deck is still in the send queue,

except that the error messages indicate that the timeout for Cyber/Cray output

is exceeded.

Once the existence of the Cray job output file is detected,

send destination extracts the user name and destination host name from the

Cray job log file. If the destination host is the SSC, the program also

extracts the user's file directory and the final name for the Cray output file

from the log file, then moves the the Cray job log and output files into the

user's file directory. The output file will have the final output filename,

while the log file will have the final output filename as a prefix and

•craylog as a suffix. Send destination then checks to see if the user is

presently logged on to the SSC. If so, the program will write a "done

message" to the user as an online (on-screen) message. If the user is not

logged on, the program will mail the user the same message via computer mail

(see Figure 4-8). The "done message" has an important feature in that it

From root Tue Nov 11 20:12:08 1986
From: root (Charlie Root)
To: ttasseff
Status: RO
Message from sendcray: Cray output and log files for scl6349 have returned

Figure 4-8 Sample Done Message via Mail

contains the unique job identifier which signifies to the user which job's

output has arrived, which is helpful if the user had initiated more than one

job.

IV-16



If the destination host is not the SSC, send-destination uses virtually

the same ftp transfer routine as in the sendcray program in order to transfer

the Cray job log and output files to their destination host. One difference

is that if the transfer fails for any reason, no error message is "echoed" to

the user but is placed in the Cray job log file nevertheless, and the transfer

attempt must be repeated the next time that send destination executes. If the

transfer is successful, the Cray job log and output files are removed from the

SSC.

Note that in order for the ftp to work within a program it must use the

.netrc file of the System username or account. Since the send destination

program runs under the cron facility at the "root" level (or account), the

program must switch the user account, using the su command (9), from "root" to

the System account. This allows ftp within the program to access the System

.netrc file so that ftp can successfully communicate to a fellow System

account on another AFIT host computer. Any System program running under cron

or "root" must use the su command before using the ftp command.

One additional feature of send-destination is that it removes any stray

ourput filen that Selatedly return to the AFIT SSC from ASD's Cybcr and Cr.iy

(i.e., the System has already returned the accompanying job log file to the

user, reporting that the output file was lost). When a stray output file is

removed from the SSC, a message signifying that action is placed in the SSC's

sendcray.log file.

Send user. The send-user program (see Appendix D) is the final System

program. Its main function is to move Cray job log and output files to the

user's file directory on a non-SSC host computer. Send user incorporates SADT

module A4, "Route Cray Job Output to Destination," except for subaodule A4I,

IV-17

A



"Route to Destination," since.! the Cray job log and output files are already at

their destination, namely AFIT/ENG's ELXSI or one of the Sun workstations.

Send user runs only on the ELXSI and the Suns. Also, send-user is one of the

programs that runs via the UNIX cron facility (according to an

every-five-minute schedule).

Send-user is basically the same program as send-destination. But, since

there is no other destination host to which to route the Cray job log and

output files, send-user needs only to deliver the log and output files to the

user's file directory and generate the appropriate "done message" (using write

or mail).

To conclude this chapter, two additional important items require further

comment. One important thing to note is that the Cray job log file is being

updated with a date/time stamp and a message for every significant event that

occurs in each of the above programs (see Figure 4-9), including any System

error messages. Also, any Cray job files that are processed, or other files

that are created in these programs to help process the job files, are

protected from being read or altered in any way in order to maintain System

litegrity and to prevent rossitle errors or faults.

IV-18



*** **** Cray job sc23925 log file *
Wed Dec 3 11:58:17 EST 1986 : actual sendcray start time
source: ssc destination: ssc
jobtype: fortran jobtime: 5
inputfile: fpbench.f
outputfile: fpbench.f.crayout
user: ttasseff
directory: /en0/gcs86d/ttasseff/cray
processid: 23925
Wed Dec 3 11:58:42 EST 1986 Cray log file creation completed at ssc

Wed Dec 3 11:58:46 EST 1986 Cray job input and log files
being transferred to SSC

Wed Dec 3 12:00:28 EST 1986 :Cray job input and log files received at SSC
Wed Dec 3 12:00:35 EST 1986 : Cray job deck being formed at SSC
618
551
Wed Dec 3 12:00:49 EST 1986 :Cray job deck send-to-cyber/cray started at SSC
Job number #1533 entered in queue "asdcyber'
Wed Dec 3 12:01:37 EST 1986 Cray job deck send-to-cyber/cray completed at
SSC
Wed Dec 3 12:15:20 EST 1986 : Cray job output received at ssc
Wed rec 3 12:15:33 EST 1986 : Cray job output and log files sent to diric:o-y

/enO/gcs86d/ttasseff/cray and user notified at ssc

Figure 4-9 Sample Cray Job Log File

IV-19



V. Analysis

This chapter analyzes the AFIT-ASD Cray System in order to report on the

success of the System in meeting the prescribed specificat~ons and its

performance. This chapter covers the System's good points as well as the bad,

and makes suggestions where applicable.

The analysis covers the following areas of the System design and

operation: system design, functional requirements, system performance, and

the current System status.

AFIT-ASD Cray System Design

The System's design, from the initial, overall design to the detailed

design, covered all areas of the System's operations and functions. The use

of SADT charts to document the flow of data and control provided the input

needed to create the various System programs. Each program contains

appropriate header information and internal documentation so that each program

fMle qne module is well-documentee and oxplained.

The programs themselves are highly structured so that the flow of control

is evident by inspection. Proper indentation of the program commands reveals

the structure within the programs. Also, the use of "go-to" commands are used

sparingly to prevent confusion. Despite these guidelines, however, some parts

of the programs prove to be hard to read, primarily because the UNIX commands

did not accept indentation properly. In general, the programs are written as

clearly and efficiently as possible.

V-1

4 ... ~ .



The use of consistent variable names is enforced from program to program

to promote naming integrity among the programs. The names of the variables

and the programs, as much as possible, are meaningful and descriptive.

Functional Requirements

The System implements the functional requirements found in Chapter II.

The System takes a user's input file from the AFIT SSC and automatically

transfers it to ASD's Cray computer for processing. Once at the Cray, the

input file is processed, and the output file is automatically transferred back

to the user at the AFIT computer from where the input file came. A log file

is also implemented to keep a history of significant events over the life of a

job, and accompanies the output file back to the user. After the output is

sent back to the user, an onscreen message is sent to the user if the user is

still logged on to the computer, or a mail message is sent instead if the user

has logged off. The options of providing job type (FORTRAN or SPICE), job

[execution] time [on the Cray], and output filename have been implemented.

The [alternate] job destination option was not implemented because of a

potential administrative problem in assigning usernames among the involved

AFIT host computers. No SPICE programs were run at the Cray because AFIT

lacked a complete set of SPICE FORTRAN modules. Some of the SPICE modules

were written in the C programming language, but the Cray as of yet has no C

compiler. Due to a fatal system error when running ftp within a C-shell

program, the AFIT/ENG ELXSI could not be used to test the System. Also, due

to repeated breakdowns of the Ethernet connection to the SSC, neither

AFIT/ENG's ELXSI or Sun workstations could be used in the System. Thus, only

FORTRAN jobs originating at the AFIT SSC can be run on the Cray using the

V-2

LeI



present System.

Once the SPICE program is loaded on the Cray, a different set of Cray JCL

commands are needed in the Cray job deck (see Figure 5-1). These commands

ACCESS,DN-SPICE,PDN-SPICE,ID-systemcrayacct,UQ.
ASSIGN,DN-$IN,A-FT5.
LDR,DN-SPICE.

Figure 5-1 Sample Cray SPICE Job Deck Commands

would replace the CFT (Cray FORTRAN compiler) and LDR command lines in the

FORTRAN job deck. Note that the executable SPICE code must have open (public)

access so that all users will have permission to use it.

The System is simple to use in that the user uses a familiar-looking

UNIX-like command to start a job through the System. Also, onscreen usage and

error messages were created to guide the user if there were any problems. In

addition, hardcopy and online users guides are available to aid the user.

The System was tested to ensure that it could operate on the AFIT host

computers involved, and could accommodate the options specified at job

initiation. The System was alsi eqt2d for various sirwilatpd error cnrditons

(e.g., files missing in transit, output not returning from ASD Cyber/Cray,

etc.) with the System consistently being able to recover from the errors, and

the error messages correctly recorded in the job log file.

System Performance

The System performance was evaluated by compiling and running the same

sample FORTRAN test program (see Figure 5-2) using the AFIT SSC and using the

AFIT-ASD Cray System. The compile-and-run of the test program was initiated

v- 3



almost at the same instant in time on both the SSC and the System via a UNIX

C-shell program. This same C-shell program placed both the SSC and System

test runs individually into "background" (non-interactive) mode so they could

run on their own until completion. The compile-and-run on the SSC was timed

by using the /bin/time command (12:473-474) while the System time was

calculated by subtracting the final time stamp in the Cray job log file from

the first time stamp (actual sendcray start time). The timed runs were made

at various times of day over a consecutive three-day period.

V-4

. . . . . . ... n



C FLOATING POINT BENCHMARK TEST
C G. SCOTT OWEN 1/83
C* MODIFIED BY CAPT TODD TASSEFF, AFIT/GCS-86D, DEC. 1986

DIMENSION X(9)
PI - 3.14159

C* WRITE(*,100)
C*100 FORMAT(- ENTER THE NUMBER OF ITERATIONS -FORMAT 14)
C* READ(*,200) N

N - 500000
200 FORMAT(I4)

DO 20 I - 1,N
Y - PI/2.1
X(l) - SIN(Y)
X(2) - COS(Y)
X(3) - Y**2
X(4) - SQRT(Y)
X(5) - EXP(Y)
X(6) - ALOG(Y)
X(7) - Y
X(8) - Y*PI
X(9) - SIN(Y) *2
DO 10 J - 1,9

10 A - X(J) * X(J) PIF

20 CONTINUE
WRITE(* ,300)

300 FORMAT(lX,- ** FPBENCH EXECUTION FINISHED)
END

Figure 5-2 FORTRAN Test Program (14)

V- 5



Table 5-1 below shows the comparison between test run times on the AFIT

SSC vs. the AFIT-ASD Cray System. The SSC run times ranged from approximately

TABLE 5-1

AFIT-ASD Cray System Performance

f Time taken to run FORTRAN test
_ (hrs:min) at various times of day I

IComputer System 1 1000 1 1200 1 1500 1 1800 1 2300 1

IAFIT SSC I 04:14 1 04:36 I 02:05 I 06:51 1 04:00 1

AFIT-ASD Cray Systeal 00:31 I 00:17 1 00:19 1 00:16 I 00:19 i
~~~~~I I* _ _ _ _ _ , _ _ _ _ _ I. __ _ __ _ __ _ _ _ _ _ _ _ _ _ _

two to seven hours per run, while the AFIT-ASD Cray System maintained a

consistent run time close to 15 minutes. Except for the 1000 run, each run

was initiated within five minutes before the hour. The 1000 run was initiated

almost right on the hour and incurred a longer run time (see explanation

below).

The variations in time for the SSC test runs were most likely due to the

c> puting lord thit the SSC was experiencing during the run timt-s. The

AFIT-ASD Cray System test run timea were fairly consistent due to the timed

nature of the System programs and the effeciency of the compile-and-run time

on the Cray itself (approximately one-half minute of total Cray time per run).

Since the sendcyber_cray and send destination programs of the AFIT-ASD

Cray System execute every 15 minutes (on the quarter hour), a System run would

be expected to complete in approximately 15 to 30 minutes. In this scenario

the sendcybercray program begins running at the quarter hour, receives the

input file (in this case the FORTRAN test program) at the SSC, packages it as

V-6

s .-# . _ .-'Z .-,- ..' ' ' ' '.-' ' '-'.- '-- - -..,-'.-.' - -,- ' ,.... .,. . , -'.. ,-.



a job deck and sends it to ASD's Cyber and Cray. Within a few minutes the

output returns to the SSC. At the next quarter hour, the send destination

program begins running, receives the Cyber/Cray output, and transfers the

output to the user.

Therefore, since all of the test runs were made within five minutes

before the hour (hence, before the quarter hour), the AFIT-ASD Cray System

test runs completed in 15 minutes plus a few extra minutes (the extra minutes

being the amount of time before the hour when the test runs were initiated).

Since the 1000 test run was made too close to the hour, the send_cybercray

program missed receiving the input file. The 1000 test run then had to wait

an additional 15 minutes before the sendcybercray program finally received

it, making for a longer overall run time.

System Status

The AFIT/SI computer center staff are ready to assume the responsibility

for the System. They will be able to operate the System well into the

future. In addition to the user's guide shown in Appendix E, an

admiaiscrator's guide is included in Appendix F to instruct the staff un

various items which include how to set up the System, add users to the System,

interpret error messages, and to be aware of possible problems.

V-7

'. - -.r P W-.



VI. Conclusions and Recommendations

Conclusions

The AFIT-ASD Cray System as a whole successfully accomplished its task of

providing a virtual communications capability to ASD's Cray given the existing

computer hardware and software at AFIT. It proved to be simple to use and was

robust enough to tolerate and recover from various errors and fault

conditions. And as an alternative to running time-consuming,

compute-intensive jobs, such as the SPICE VLSI circuit simulation package, on

AFIT computers, it has the potential of providing a faster turnaround time

than what is possible with AFIT computer resources.

The System proved that such a system was feasible to implement, despite

the three different operating systems and two different types of

communications links. And the System operated automatically -- without user

intervention. This made the inner workings of the System transparent to the

user, hiding such details from the user so that the user was left with the

simplest interface tc tl~e System postble.

Recommendations

Some improvements to the hardware support are required in order to

improve the System's capabilities. First, the 9600 bit/sec link between the

AFIT SSC and ASD's Cyber needs to be upgraded to a higher speed, at least

somewhat approaching the Ethernet's 1OMbits/sec capability, so as not to

remain the communications bottleneck in the System. One possibility is to

upgrade the SSC-to-Cyber link with a fiber-optic cable in order to approach

Vl-I



speeds in the Hbit range. Second, the more often System programs running

under UNIX's cron can be initiated the faster the System can turn around Cray

jobs. Third, once the administrative problem of assigning usernames to users

on the involved AFIT host computers is solved and becomes more streamlined,

then the option to choose an alternate job destination for a Cray job's output

could be implemented.

The problems that occurred during the implementation of the System

demonstrate that AFIT must obtain a complete FORTRAN version of SPICE in order

to run SPICE on the Cray as was origiaally intended. Also, care should be

taken when implementing the System over a wide range of supposedly compatible

UNIX computers. As was the case with the ELXSI, there was some error in the

ELXSI's version of 4.2 BSD UNIX that prevented ftp from being executed within

a C-shell program, even though it worked on the AFIT SSC and the AFIT/ENG Sun.

The System was designed with the latent goal that the System needed to be

fully implemented on the various AFIT hosts involved, and be done at a

privilege (authority and priority within the computer) higher than the user,

that is, at the UNIX "root" level. This means some program commands were

wrt!ton in such a wa is not to Tomnletely preclude the prlgrams frcm being

loaded into their own system file directories on the involved AFIT hosts, and

run at the higher privilege level. By following the comments within the

programs, and by following the Administrator's Manual for the System, a

computer system's administrator should be able to implement the System on any

of the involved AFIT computers.

The System itself serves as a model for other such remote job entry

requirements at AFIT. Other software packages could be loaded on the Cray,

and with a few minor changes to one of the System programs, those packages

VI-2

S



could also be run automatically on the Cray using the System. If AFIT

develops requirements to initiate jobs on physically separate computers, the

System could be used as an example for system programers. Specifically, the

System could be used by those looking for a solution to implement and control

the execution of programs on a different computer than what the users normally

use.

VI-3 I
I
Sq

. ' - ' " .e. . *3 lW %--, *rl~~. .r.,% \r.r.4--%q-. P .,.P .. *. * .. -. , - . . . -. . . . #. . ,



Bibliography

1. Air Force Institute of Technology Information Systems Directorate.
"Remote Job Entry Is Back." AFIT SSC News (computer message). 7
January 1986.

2. ASD Information Systems Center. ASD Computer Center CD( NOS ser's
Guide. Revision B. September 1983.

3. ASD Information Systems Center. On-Line Information System, Section
12, Cray Information. 6 June 1986.

4. ASD Information Systems Center. NOS Procedure User Guide. May 1983.

5. Carter, Lt Col Harold, Professor, Department of Electrical and Computer
Engineering. Briefing and personal interviews. AFIT/ENG, Wright-
Patterson AFB, OH, January through July 1986.

6. Cray X-MP and Cray-1 Computer Systems. Cray-OS Version 1 Ready Reference
Manual, SQ-0023. Revision E. Cray Research, Inc., 1984.

7. Day, John D. "Terminal, File Transfer, and Remote Job Protocols for
Heterogeneous Computer Networks," Protocols and Techniques for Data
Communications Networks, edited by Franklin F. Kuo. Englewood Cliffs,
NJ: Prentice-Hall, Inc., 1981.

8. Filer, 1Lt Robert, Systems Analyst. Personal Interviews. AFIT/SIO,
Wright-Patterson AFB, OH, June through September 1986.

9. Hamlin, Joseph, Systems Analyst. Personal Interviews. AFIT/SIO,
Wright-Patterson AFB, OH, April through November 1986.

10. Horton, Capt Kirk S. A Microcomputer-based Program for Printing Check
Plots of Integrated Circuits Specified in Caltech IntermediaLe Form.
MS thesis, AFIT/GE/ENG/84D-35. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB, OH, December 1984.

11. Johnson, Kenneth, Systems Analyst. Personal Interviews. ASD
Information Systems Resource Center, Wright-Patterson AFB, OH, July
through November 1986.

12. McGilton, Henry, and Rachel Morgan. Introducing the UNIX System. New
York: McGraw-Hill Book Co., 1983.

13. McLeod, Capt Thomas M. Design of Resource-Sharing Network Link. MS
thesis, AFIT/GE/EE/80D-30. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB, OH, December 1980, (AD-Al00793).

14. Owen, G. Scott. "Benchmarking the 8087 Numeric Coprocessor," Personal
Computer Age, March 1983, p. 58.

BIB-l



15. Reinhard, Ray, Systems Analyst. Personal Interview. ASD Information
Systems Resource Center, Wright-Patterson AFB, OH, 14 April 1986.

16. Tanenbaum, Andrew S. Computer Networks. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1981.

17. University of California, Berkeley. UNIX Programmer's Manual: The C
Shell, Seventh Edition, Virtual VAX-II Version. Computer Science
Division, Department of Electrical Engineering and Computer Science,
Berkeley CA, November 1980.

18. Ware, Jim, Systems Analyst (on contract from SRL, Inc.). Personal
Interviews. AFIT/SIO, Wright-Patterson AFB, OH, April 1986.

BIB-2



flflW~~~W .nr-- - -- - - - -

System Program Listing - sendcray

#I/bin/csh -f

0* *

#* DATE: December 5, 1986 *
#* VERSION: 1.0 *
0* *

#* TITLE: AFIT - ASD Cray System *
#* FILENAME: sendcray *
0* OWNER: ttasseff (Capt Todd Tasseff, GCS-86D) *
0* SOFTWARE SYSTEM: AFIT SSC - 4.2 BSD Unix Operating *

0* System *
0* USE: for Lt Col Carter, EENG Thesis Project *
0* CONTENTS: Modules Al, Initiate Cray Job, and A21, *

0* Route to SSC *
0* *

0

0* *

0* DATE: December 5, 1986 *
0* VERSION: 1.0 *
0* *

#* MODULE NUMBER: Al *
0* NAME: Initiate Cray Job *
0* FUNCTION: Interprets the user command inputs, creates *
0* a Cray job input file and log file. *
0* INPUTS: From keyboard *
0* OUTPUTS: Status messages (on-screen) *
0* GLOBALS READ: None. *
#* GLOBALS WRITTEN: job file identifier *
#* FILES READ: user-produced input file *
1" FILES WRITTEN: jabfLle.crayin, J,.bfile.craylog *
0* HARDWARE INPUT: None. *

0* HARDWARE OUTPUT: None. *
0* CALLING MODULES: None. *
0* CALLED MODULES: None *
0* *

0* AUTHOR: Capt Todd Tasseff *
0* HISTORY: 1.0 original version (Capt Todd Tasseff) *
#* Note: lines beginning with ## refer to *
0* items necessary for implementing *
0* the program at root level *
0* Note: lines beginning with ### refer to *
#* features not yet implemented *
0* *

## $SYSTEMDIR/ to be placed in front of sendcray.log, $jobfile.craylog, aad
## the inbound subdirectory

A-1



System Program Listing - sendcray

#fset SYSTENDIR - ~ttasseff/cray
set startime - 'date'
set SOURCEHOST - sac
set SOURCEID - sc
set PROCESSID - $$
@ JOBFLAG - 0
@ TIMEFLAG - 0
@ OUTFLAG - 0
###@ DESTFLAG - 0
set destination - $SOURCEHOST
set DEFJOBTYPE - fortran
@ MAXJOBTIME - 15
@ DEFJOBTIME - 5
set inputfile - "not_givenand so'
# Get command-line options and-inputfilename
while ($#argv)

switch ($argv[l])
case -J:

@ JOBFLAG++
shift
set jobtype - $argv[l]
shift
breaksw

case -t:
@ TIMEFLAG++
shift
set jobtime - $argv[l]
shift
breakaw

case -o:
@ OUTFLAG++
shift
set outputfile - $argv[l]
shift
breaksw

### case -d:
### @ DESTFLAG++
### shift
### set destination - $argv[l]
### shift
### breaksw

case -:

echo 'sendcray: - must be followed by a valid
option'

goto usagemsg
breaksw

default:
set inputfile - $argv[l]

A-2

I



System Program Listing sendcray

shift
if ('expr $inputfile -. )then

echo 'sendcray:' $inputfile 'invalid option'
goto usagemag

else if ($fargv !- 0) then
echo 'sendcray: filename' $inputfile -must'\

follow options'
goto usagemeg

end if
breaksw

endsw
end
# Check for non-existence of inputfile
if (I -e Sinputfile) then

echo 'sendcray: filename' Sinputfile 'does not exist'
goto usagemag

endif

II

DIIIf DESTFLAG is set, use $destination; else set $destination to default
MIif ($DESTFLAG 1- 0) then
### # Check for existence of destination host
### set destchk - 'grep $destination hosts.sendcray I avk '(print $1)"

### if ($destchk -- ") then
### echo 'sendcray: host' $destination 'invalid; see hosts.sendcray'
### goto usagemag
### else
### set destination -$destchk
### endif
Mlendif

II

I If JOBFLAG is set, use $Jobtype; else set $Jobtype to default
If ($.TOBFLAG 1- 0) then
# Check for existence of job type

set job - grep $Jobtype jobtypes.sendcray I awk '(print sll,

if ($Job - ") then
echo sendcray: jobtype $Jobtype invalid; see jobtypes.sendcray
goto usagemsg

else
set jobtype - $Job

endif
else

set jobtype - $DEFJOBTYPE
endif

# If TIMEFLAG is set, use $Jobtime; else set $Jobtime to default
if ($TIMEFLAG i- 0) then
# Check to make sure max job time is nul. exceeded

if ($Jobtime > $MAXJOBTIME) then

A-3

I%

## % # _he6 Io xsec fdsiainhs



*u~---rxJ3F r.vw~r-3Lwlr UJUNTZ WWWrUf~ww rm wwkww ~ v w

System Program Listing -sendcray

echo 'sendcray: jobtime' $jobtime 'exceeds max jobtime of' $MAXJOBTIME\
Iminutes'-

goto usagemsg
end if

else
set jobtime - $DEFJOBTIME

end if

IIf OUTFLAG is not set, set $outputfile to default (else, continue)
if ($OUTFLAG -- 0) then

set outputfile - $inputfile.crayout
endif

# usagemag prints a Usage message then exits
goto endusagemsg
usagemsg:
echo 'Usage: sendcray [ -j job-type ][-t number-of-mmn.
echo - -o output filename ] input filename'
Mlecho - -o output-filename I[-d APIT destination-host ]input-filename'
exit ()
endusagemsg:

#
# Create unique Cray job file identifier, using the source ID as a prefix and
* the current sendcray process ID as the suffix, and echo it as an online
#message

set jobfile - $SOURCEID$PROCESSID
echo 'sendcray: jobfile ID,' $Jobfile', created:'\

'date I awk 'Iprint $4 " " -

*Check to see if local source sendcray log file exists; if it does not,
.;create it and protLct it

if (I -e sendcray.log) then
cp /dev/null sendcray.log ; chmod 0600 sendcray.log
echo I1this is the local sendcray log file' > sendcray-log
echo IIthe format is: date unique_jobfileID source destination jobtype,

,jobtime >> sendcray.log
echo '## inputfile outputfile user inputfile directory process 1D'

>> sendcray.log
end if
# Update sendcray.log with Cray job information
echo 'date' $Jobfile $SOURCEHOST $destination $Jobtype $jobtime $inputfile\

$outputfile 'whoami' pwd' $PRQCESSID >> sendcray.log

# Create Cray job log file (using job file name and .craylog suffix),
# give it protection, then enter Crdy job information into job log file
cp /dev/null $Jobfile.craylog ;chmod 0644 $Jobfile.craylog

A-4



System Program Listing - sendcray

echo * Cray job' $Jobfile 'log file ************

> $Jobfile.craylog
echo Satartime actual sendcray start time- >> $Jobfile.craylog

echo 'source: $SOURCEHOST destination: $destination >>

$Jobfile.craylog
echo "Jobtype: ' SJobtype jobtime: - SJobtime >> SJobfile.craylog
echo "inputfile: $inputfile >> $Jobfile.craylog
echo "outputfile: " $outputfile >> $Jobfile.craylog
echo 'user: ' "whoami" >> $Jobfile.craylog
echo 'directory: - pwd" >> $Jobfile.craylog
echo 'processid: - SPROCESSID >> $Jobfile.craylog

echo 'date' ': Cray log file creation completed at- $SOURCEHOST \
>> $Jobfile.craylog

echo "*****************************************************\
>> $Jobfile.craylog

# Echo Cray job log file creation message as an online message to the user
echo "sendcray: log file created'
#

0* *

0* DATE: December 5, 1986
0* VERSION: 1.0

0* MODULE NUMBER: A21
0* NAME: Route to SSC a

0* FUNCTION: Transfers Cray job file to the SSC inbound a

0* directory, updates Cray job log file,
#* and transfers the log file to the SSC a

0* inbound directory. a

0* INPUTS: None. a

0* OUTPUTS: Status messages (on-screen) a
0' CLOBALS READ: JAL i !. ddLifIL. a

GLOBALS WRITTEN: None.

FILES READ: Cray job input file a
0* FILES WRITTEN: jobfile.crayin, jobfile.craylog *

p o* jARDWARE INPUT: None. a
0* HARDWARE OUTPUT: AFIT/ENG Ethernet (if ftp used) a

0* CALLING MODULES: None.
0* CALLED MODULES: None. a

0* AUTHOR: Capt Todd Tasseff a

0* HISTORY: 1.0 original version (Capt Todd Tassetf, *

# Create Cray job file-space in inbound directory, prite~t t. ,hern ,,pv
# Lray inputfile into it

cp /dev/null inbound/$Jobfile.crayin ; chmod ObO0 inbound Sobflle .,ravr1r

A-5

%**% *~*~***~*, %*% *~ -. ~..-...-...



System Program Listing - sendcray

cp $±nputfile inbound/$Jobfile.crayin
# Update Cray job log file
echo 'date' -: Cray job input and log files' >> $jobfile.craylog
echo ' being transferred to SSC" >> $Jobfile.craylog
# Move Cray job log file to inbound directory
my $jobfile.craylog inbound/.
# Echo Cray job input and log file transfer message as online message to user
echo "sendcray: input and log files transferred to SSC'
I

# * END OF FILE sendcray *

A-6

Ne Q



System Program Listing - sendcray

#!/bin/csh -f

1* *

1* DATE: December 5, 1986 *
VERSION: 1.0 *

TITLE: AFIT - ASD Cray System *
1* FILENAME: sendcray *
0' OWNER: ttasseff (Capt Todd Tasseff, GCS-86D) *
0' SOFTWARE SYSTEM: AFIT/ENG Sun - 4.2 BSD Unix Operating *
I* System *
I' USE: for Lt Col Carter, EENG Thesis Project *
t* CONTENTS: Modules Al, Initiate Cray Job, and A21, *

I' Route to SSC *
t, *
,**.******* *******************************************************

* *** ************************************************************

DATE: December 5, 1986 *
0* VERSION: 1.0 *

I' MODULE NUMBER: Al *
1' NAME: Initiate Cray Job *
0' FUNCTION: Interprets the user command inputs, creates *

a Cray job input file and log file. *
0* INPUTS: From keyboard *

OUTPUTS: Status messages (on-screen) *
GLOBALS READ: None. *
GLOBALS WRITTEN: job file identifier *

DO FILES READ: user-produced input file *
, HILES WRiTTEN: jobfila.crayin, jobfile.craylog *

HARDWARE INPUT: None. *
" HARDWARE OUTPUT: None. *

06 CALLING MODULES: None. *
,° ALLED MODULES: None *

*° *

A ;.'THOR: Cap Todd Tasseff*
• WC T' Y: 1.0 original version (Capt Todd Tasseff) *

Note: lines beginning with ## refer to *
items necessary for implementing *
the program at root level *

* Note: lines beginning with ### refer to *

features not yet implemented *

pal placed in front of sendcray.log, $Jobfile.craylog, and
.: ibdirectory

A-7



System Program Listing - sendcray

#set SYSTEMDIR - -ttasseff/cray
set startime - 'date'
set SOURCEHOST - mercury
set SOURCEID - mc
set PROCESSID - $$
@ JOBFLAG - 0
@ TIMEFLAG - 0
@ OUTFLAG - 0
###@ DESTFLAG - 0
set destination - $SOURCEHOST
set DEFJOBTYPE - fortran
@ HAXJOBTIME - 15
@ DEFJOBTIME - 5
set inputfile - -notgiven__and so'
# Get command-line options and-inputfilename
while ($#argv)

switch ($argv[l])
case -J:

@ JOBFLAG++
shift
set jobtype - $argv[l]
shift
breaksw

case -t:
@ TINEFLAG++
shift
set jobtime - $argv[l]
shift
breaksw

case -o:
@ OUTFLAG++
shift
set outputfile - $argv[l]
shift

breaksw
### case -d:
### @ DESTFLAG++
### shift
### set destination - $argv(l]
### shift
### breaksw

case-:
echo 'sendcray: - must be followed by a valid

option'
goto usagemsg

default: raw

set Inputfile - $argv[l]

A-8

:-.: o



- ,c r -I

System Program Listing - sendcray

shift
if ('expr $inputfile "-.") then

echo 'sendcray:' $inputfile 'invalid option'
goto usagemsg

else if ($#argv 1- 0) then
echo 'sendcray: filename' $inputfile must'

'follow options'
goto usagemsg

endif
breaksw

endsw
end
# Check for non-existence of inputfile
if (I -e $inputfile) then

echo 'sendcray: filename' $inputfile 'does not exist'
goto usagemsg

endif
I

#### If DESTFLAG is set, use $destination; else set $destination to default
###if ($DESTFLAG !- 0) then
### # Check for existence of destination host
### set destchk - "grep $destination hosts.sendcray I awk '{print $1}"
### if ($destchk -- ") then
### echo 'sendcray: host' $destination 'invalid; see hosts.sendcray,
### goto usagemsg
#M1 else
### set destination - $destchk
#M1 endif
###endifI
# If JOBFLAG is set, use SJobtype; else set SJobtype to default
if ($JOBFLAG I- 0) then
f Check for existence of job type
set job - "grep $Jobtype jobtypes.sendcray I awk 'Iprint $1}-"
if ($Job -- ") then

echo 'sendcray: jobtype' $Jobtype 'invalid; see jobtypes.sendcray'
goto usagemag

else

set jobtype - SJob
endif

else

set jobtype - $DEFJOBTYPE
endif
#

O If TIMEFLAG is set, use $Jobtime; else set SJobtime to default
if ($TIMEFLAG !- 0) then
* Check to make sure max job time is noL exceeded
if ($Jobtiae > $MAXJOBTIME) then

A-9

3i

:w*.~ -. .



1apLF3 W~WW-1VFV rVUOM OP ON" FUTK~ VIOL .I 14k7~rwr. ' ~s .

System Program Listing - sendcray

echo 'sendcray: jobtime' $Jobtime 'exceeds max jobtime of' $MAXJOBTIME \
Iminutes'

goto usagemsg
endif

else
set jobtime - $DEFJOBTIME

endif

# If OUTFLAG is not set, set $outputfile to default (else, continue)
if ($OUTFLAG - 0) then

set outputfile - $inputfile.crayout
endif

# usagemsg prints a Usage message then exits
goto endusagemsg
usagemsg:
echo 'Usage: sendcray [ -j jobtype ] [ -t number ofmln ]
echo ' [ -o outputfilename ] inputfilename'
###echo - [ -o outputfilename ] [ -d AFITdestinationhost ] inputfilename'
exit ()
endusagemag:

# Create unique Cray job file identifier, using the source ID as a prefix and
# the current sendcray process ID as the suffix, and echo it as an online
# message
set jobfile - $SOURCEID$PROCESSID
echo 'sendcray: jobfile ID,' $Jobfile', created: \

'date I awk '(print $4 " $5}

# Check to see if local source sendcray log file exists; if it does not,
# create it and protect it
if (! -e sendcray.log) then

cp /dev/null sendcray.log ; chmod 0600 sendcray.log
echo '## this is the local sendcray log file' > sendcray.log
echo 'fI the format is: date unique jobfileID source destination jobtype'

jobtime' >> sendcray.log
echo '## inputfile outputfile user inputfiledirectory processID I

>> sendcray.log
endif

# Update sendcray.log with Cray job information
echo 'date' $Jobfile $SOURCEHOST $destination SJobtype SJobtime $inputfile \

$outputfile "whoami" "pwd" $PROCESSID >> sendcray.log
f
# Create Cray job log file (using job file name and .craylog suffix),
f give it protection, then enter Cruy job information into job log fil
cp /dev/null $Jobfile.craylog ; chmod 0644 $Jobfile.craylog

A-10



System Program Listing - sendcray

echo ************* Cray job' $Jobfile 'log file *************
> $Jobfile.craylog

echo $startime : actual sendcray start time' >> $Jobfile.craylog
echo 'source: - $SOURCEHOST - destination: - $destination >>
$Jobfile.craylog
echo ojobtype: ' $Jobtype - jobtime: o $Jobtime >> $Jobfile.craylog
echo 'inputfile: - $inputfile >> $Jobfile.craylog
echo outputfile: - $outputfile >> $Jobfile.craylog
echo 'user: ' "whoami" >> $Jobfile.craylog
echo 'directory: o "pwd" >> $Jobfile.craylog
echo 'processid: ' $PROCESSID >> $Jobfile.craylog
echo 'date' ': Cray log file creation completed at' $SOURCEHOST \

>> $Jobfile.craylog
echo *****************************************************. \

>> $Jobfile.craylog
# Echo Cray job log file creation message as an online message to the user
echo osendcray: log file created'

#*
1. *

#* DATE: December 5, 1986 *
#* VERSION: 1.0 *#* *

#* MODULE NUMBER: A21 *
#* NAME: Route to SSC ,
#* FUNCTION: Transfers Cray job file to the SSC inbound *
#* directory, updates Cray job log file, *
#* and transfers the log file to the SSC *
#* inbound directory. *

#* INPUTS: None. *
#* OUTPUTS: Status messages (on-screen) *

GLOBALS READ: job file identifier *
#* GLOBALS WRITTEN: None. *
#* FILES READ: Cray job input file *
#* FILES WRITTEN: jobfile.crayin, jobfile.craylog *
#* HARDWARE INPUT: None. *
#* HARDWARE OUTPUT: AFIT/ENG Ethernet (if ftp used) *
#* CALLING MODULES: None.
1* CALLED MODULES: None. *#, *

AUTHOR: Capt Todd Tasseff *
HISTORY: 1.0 original version (Capt Todd Tasseff) *

#* * ]

# Transfer Cray job input and log files to outbound subdirectory
cp $inputfile outbound/$Jobfile.crayin
mv $Jobfile.craylog outbound/.
* Change directory to outbound subdirectory

A-1i

I***€ ;€ ' : .. , , ** e ', .. . ' '.' ' -" , ,' - ,? ' ,' ',* ,- * ' , ..-.. "- 1"



System Program Listing - sendcray

cd outbound

## Change the ownership of the input and log files to the username that
## owns the outbound subdirectory, then switch user to that username
##chown $SYSTEMUSER outbound/$Jobfile.crayin outbound/$Jobfile.craylog
##exec su $SYSTEHUSER -f -c << SUENDI
ftpsend:
# Update Cray job log file
echo 'date' ': Cray job output and log files being sent to SSC\

>> $Jobfile.craylog
echo ' from' $SOURCEHOST >> $Jobfile.craylog
cp /dev/null $Jobfile.ftpchk; chmod 0600 $Jobfile.ftpchk
ftp ssc << ENDFTP >& $Jobfile.ftpchk
cd cray/inbound
send $Jobfile.crayin
send $Jobfile.craylog
quit
ENDFTP
set ftp test - "wc -w $Jobfile.ftpchk I awk '{print $11"
if ($ftp _test) then # ftp-send did not work out

cat $Jobfile.ftpchk >> $Jobfile.craylog
echo 'date : sendcray: ftp send failed at' $SOURCEHOST: >>

$Jobfile.craylog
cat $Jobfile.ftpchk >> $jobfile.craylog
# Echo Cray job files transfer-failure message as online message to user
echo 'sendcray: ftp send failed to transfer input and log files to SSC,
echo 'sendcray: try again later'

else # ftp-send did work out
# Echo Cray job files transfer-success message as online message to user
echo 'sendcray: input and log files transferred to SSC'
# Remove both input and log files
rm $Jobfile.crayin
rm $Jobfile.craylog

endif
rm $Jobfile.ftpchk # ftp-check file no longer needed
I#SUENDI
# * END OF FILE sendcray *

A-12

I
_' - , : . '', ,. -, ' . -,-,- -: ?. -, %, d - . : - .- .. , .. ,.,,: . : ;



System Program Listing - sendcybercray

#I/bin/csh -f

0* DATE: December 5, 1986 *

0* VERSION: 1.0 *
#* *

0* TITLE: AFIT - ASD Cray System *
0* FILENAME: send cyber cray *
0* OWNER: ttasseff (Capt Todd Tasseff, GCS-86D) *
#* SOFTWARE SYSTEM: AFIT SSC - 4.2 BSD Unix Operating *
#* System *
1* USE: for Lt Col Carter, EENG Thesis Project *
#* CONTENTS: Module A22, Route to Cyber/Cray *
#* •

0* *

0* DATE: December 5, 1986 *
0* VERSION: 1.0 *
0* •

#* MODULE NUMBER: A22 *
#* NAME: Route to Cyber/Cray *
0* FUNCTION: Updates Cray job log file, creates a Cray *

job job-deck, (using Cyber and Cray job- *
0* control commands), sends job-deck to *

0* Cyber/Cray, and updates log file *
#* INPUTS: None. *
#* OUTPUTS: None. *
0* GLOBALS READ: job file identifier *

#* GLOBALS WRITTEN: None. *
0* FILES READ: jobfile.crayin, jobfile.craylog, A
0* crayjobtop, crayjobbot *

#* FILES WRITTEN: jobfile.crayin.deck, jobfile.craylog *
#* HARDWARE INPUT: AFIT/ENG Ethernet (if ftp used) *
0" HARDWARE OUTPUT: RJE link to ASD Cyber *
0* CALLING MODULES: None. *
0* CALLED MODULES: None. *
#* •

0* AUTHOR: Capt Todd Tasseff *
0* HISTORY: 1.0 original version (Capt Todd Tasseff) *
#* *

set SYSTE4DIR - "ttasseff/cray
0
cd $SYSTEMDIR
0 Check to see if the sendcybercray.log file exists; if not, create it
if (I -e send cyber cray.log) then

B-I



System Program Listing - sendcybercray

cp /dev/null sendcybercray.log; chmod 0600 send cybercray.log
endif
# Update sendcybercray.log file
echo 'date' ': sendcybercray initiated- >> sendcyber cray.log
# Check to make sure that no other send cyber cray shells are running...
if ('ps grep send cybercray I wc -l' > 2) then

echo - send_cyber_cray already running' >> sendcybercray.log
exit() # ...if so, update sendcybercray.log file and exit

endif
I
# Move to inbound subdirectory
cd inbound
# Check for existence of Cray job log files; if none, then exit foreach loop
foreach logfile ('1s I grep '\.craylog$")

# Protect Cray job log file
chmod 0644 $logfile
# Get jobfile name (prefix-before-the-dot) of Cray job log file
set jobfile - 'echo $logfile I awk -f. '{print $}
# Check for existence of Cray job input file; if none, then place an
# error message in the Cray job log file, create a dummy Cray job output
# file, move both output and log files to outbound subdirectory, and
# go to end of the foreach loop; else, if it exists, give it protection
if (I -e $Jobfile.crayin) then

echo 'date' ': send cybercray: Cray job log file ONLY received at SSC;'

>> $Jobfile.craylog
echo - input file lost; job aborted' >> $Jobfile.craylog
cp /dev/null $Jobfile.crayout; chmod 0600 $Jobfile.crayout
echo 'send cyber cray: input file lost; job aborted -- see log file \
> $Jobfile.crayout

my $Jobfile.crayout ../outbound/.; mv $Jobfile.craylog ../outbound/.
goto endforeacn

else
chmod 0600 $Jobfile.crayin

endif
# Update Cray job log file
echo 'date' ': Cray job input and log files received at SSC\

>> $Jobfile.craylog

# Check to see if user is on the sendcray valid user list; if not, place an
# error message in the Cray job log file, create a dummy Cray job output

# file, move both output and log files to outbound subdirectory, and
# go to end of the foreach loop; else, get Cyber and Cray account info
set user - 'head -10 $Jobfile.craylog I awk '/user:/ {print $2}"
set user info - "grep -$user" " ../users.sendcray"
if (Sluser Info) then

set cyberuser - $userinfo[2J
set cyberpass - $userinfo[3]

B-2

. . . ... . ... ... .. . . . . . . .. . . , , , , ,. , . .*.,* , .. . .



System Program Listing - send-cyber cray

set crayacct - $user info(4J
set crayacpass - $user info 15]
set crayuser - $user in fo[6]
set crayuspass - $user-info[7]

else
echo 'date' ': send -cyber-cray: user NOT on valid user list at SSCV \

>> $Jobfile.craylog
echo ' job aborted' >> $jobfile.craylog
cp /dev/null $Jobfile.crayout; chmod 0600 $jobfile.crayout
echo 'send-cyber cray: user NOT on valid user list; job aborted'

'-see log file' > $jobfile.crayout
my $jobfile.crayout . ./outbound/.; my $Jobfile.craylog . ./outbound/.
goto endforeach

endi f
# Begin forming Cray job deck -- update Cray job log file
echo 'date' ': Cray job deck being formed at SC' >> $Jobfile-craylog
# Get Cray job type and job time from the log file
set jobtype - 'head -10 $Jobfile.craylog Iawk '/Jobtype:/ {print $2}-
set jobtime - 'head -10 $Jobfile.craylog Iawk '/Jobtime:/ {print $4}"
switch ($jobtype)

case fortran:
set jobtype - CFT,L-0

case spice:
set jobtype - SPICE

default:
set jobtype - CFT,L-O

endsw
# Create and protect a temporary file; edit top portion of Cray job deck
# and replace dummy variable names with the given variable names,
# then store it in a temporary file; also, update Cray job log file
# with any editing info
ep /dev/null ../$Jobfile.crayjobtop; chniod 0600 ../$Jobfile.crayjobL0P

ed ../crayjobtop << ENDEDIT >>& $Jobfile.craylog
1 ,\$s/JOBFILEXX.X/$Jobfile/g
1 ,\$s/CYBERUSER/$cyberuser/g
1 ,\$s/CYBERPASS/$cyberpass/g
I ,\$s/JOBTIMEXXX/$Jobtime/g
1, \$s/CRAYACCT/$crayacct/g
1 ,\$s/CRAYACPASS/$crayacpass/g
1, \$s/CRAYUSER/$crayuser/g
1 ,\$s/CRAYUSPASS/$crayuspass/g
1 ,\$s/JOBTYPEXXX/$Jobtype/g
w . ./$Jobfile.crayjobtop
q
ENDEDIT

# Create and protect the new Cray job deck; complete new Cray job deck by
# concatenating the top portion of the job deck, the Cray input file,
# and the bottom portion of the job deck together; remove old job files

B-3



System Program Listing - send_cybercray

cp /dev/null $Jobfile.crayin.deck; chmod 0600 $Jobfile.crayin.deck
cat ../$Jobfile.crayjobtop $Jobfile.crayin ../crayjobbot > \

$Jobfile.crayin.deck
rm ../$Jobfile.crayjobtop
rm $Jobfile.crayin

# Send Cray job deck to the Cyber/Cray; update the log file as usual, and
# also include any system message or error message; any Cray job output
# will go to the outbound subdirectory; also, remove the job deck after
# it is sent
echo 'date' ': Cray job deck send-to-cyber/cray started at SSC \

>> $Jobfile.craylog
cp /dev/null $Jobfile.sendchk; chmod 0600 $jobfile.sendchk
/usr/afit/send -output-../outbound/$Jobfile.crayout $Jobfile.crayin.deck \
>& $jobfile.sendchk

# Check for problems with sending to Cyber/Cray; if O.K., update Cray job
# log file and continue; if not O.K., update and place an error message
# into the log file, create a dummy Cray job output file, move both

output
# and log files to outbound subdirectory, and go to end of the foreach
# loop
set send test -

Icat $7jobfile.sendchk I awk '$0 - /Job number/ && $0 - /entered in
queue/'-

if ($#send test) then
cat $jobfile.sendchk >> $jobfile.craylog # send to Cyber O.K.

else
cat $jobfile.sendchk >> $Jobfile.craylog # send to Cyber not O.K.
echo %date' ': sendcyber cray: send to Cyber/Cray failed at SSC; \

>> $Jobfile.craylog
echo ' job aborted' >> $jobfile.craylog
cp /dev/null $Jobfile.crayout; chmod 0600 $Jobfiie.crayout
echo 'send cyber cray: send to Cyber/Cray failed; job aborted -- see'

'log file' > $jobfile.crayout
mv $jobfile.crayout ../outbound/.; mv $jobfile.craylog ../outbound/.
goto endforeach

endif
rm $Jobfile.crayin.deck
rm $jobfile.sendchk

# Update Cray job log file and move it to the outbound subdirectory
echo 'date' ': Cray job deck send-to-cyber/cray completed at SSC \

>> $jobfile.craylog
my $Jobfile.craylog ../outbound/.

endforeach:
end
I
# *** END OF FILE send-cybercray *

B-4

- ,- . .-, .., ,-.-. & , . - .-.-, .. . .- .. -... - - ... . .. ,..



System Program Listing - send destination

#1/bin/csh -f

#* *

#* DATE: December 5, 1986 *
#* VERSION: 1.0 *

#* *

#* TITLE: AFIT - ASD Cray System *
#* FILENAME: send destination *
#* OWNER: ttasseff (Capt Todd Tasseff, GCS-86D) *
#* SOFTWARE SYSTEM: AFIT SSC - 4.2 BSD Unix Operating *
#* System *
#* USE: for Lt Col Carter, EENG Thesis Project *
#* CONTENTS: Module A4, Route Cray Job Output to *
#* Destination *1* •

#* *

#* DATE: December 5, 1986 *
#* VERSION: 1.0 *

#* *

#* MODULE NUMBER: A4 *
#* NAME: Route Cray Job Output to Destination *
#* FUNCTION: Checks for Cray job output, updates Cray job *
#* log file, determines output destination, *
#, and transfers output and log files to the *
#* destination host. *
#* INPUTS: None. *
#* OUTPUTS: Onscreen or mail done-message *
#* GLOBALS READ: job file identifier *
#* GLOBALS WRITTEN: None. *
#* FILES READ: jobfile.craylog, jobfile.crayout *

FILES WRITTEN: jobfile.craylog, outputfile *
HARDWARE INPUT: RJE link from ASD Cyber *
HARDWARE OUTPUT: AFIT/ENG Ethernet (if ftp used) *
CALLING MODULES: None. *
CALLED MODULES: None. *

#* •

#* AUTHOR: Capt Todd Tasseff *
#* HISTORY: 1.0 original version (Capt Todd Tasseff) *

Note: lines beginning with ## refer to *
#* items necessary for implementing *

the program at root level *
#* Note: lines beginning with ### refer to *
#* features not yet implemented *

C-I



System Program Listing - send destination

set SYSTEMUSER - ttasseff
set SYSTEMDIR -ttasseff/cray

cd $SYSTEMDIR
I

# Check to see if the send destination.log file exists; if not, create it
if (! -e send destination.fog) then

cp /dev/nu-l send destination.log; chmod 0600 send destination.log
endif
# Update send destination.log file
echo 'date' ': send destination initiated' >> send destination.log
# Check to make sure that no other send destination shells are running...
if ('ps grep send destination I wc -1'-> 2) then

echo - send destination already running' >> send destination.log
exit() # ...if so, update send destination.log fTle and exit

endif
I

set SYSTEMHOST - ssc
Il#set PASSWDFILE - /etc/passwd
# the following are based on an every-15-min. cron execution of this program
@ SEND CHK - 4 # equal to one hour
@ OUTPUTCHK - 8 # equal to two hours
#

# Go to outbound subdirectory
cd outbound
# Check for existence of Cray job log files prefixed by sc (for ssc); if
# none, then exit foreach loop
foreach sc logfile ('1s I grep 'sc.*\.craylog$")
# Get Jobfile name (prefix-before-the-dot) of Cray job log file
set Jobfile - 'echo $sc logfile I awk -f. '{print $1}"
I

# Check for existence of Cray job output file; if not, increment Cray job
# counter and check for error limits based on the counter's value
if (I -e $Jobfile.crayout) then

if (I -e $Jobfile.craycounter) then # Create counter file if not present
cp /dev/null $Jobfile.craycounter; chmod 0600 $Jobfile.craycounter
echo '0' > $Jobfile.craycounter # Set counter to zero

endif

# Get counter value from craycounter file and increment it by I
set counter - "awk '{print $1} $Jobfile.craycounter"
@ counter++ 9
if ($counter -- $SEND CHK) then # Check for send limit

set send-test - "/usr/afit/send I grep $Jobfile.crayin.deck"
if ($#send test) then # Cray job input file/deck still in send queue

echo "date" ': send destination: send to Cyber/Cray timeout, \
>> $Jobfile.craylog # Update Cray job log file

echo ' exceeded; SSC not sending to Cyb-r; job aborted \
>> $Jobfile.craylog

C-2



System Program Listing - send destination

ICreate dummy output file
cp /dev/null Sjobfile.crayour; chmod 0600 $Jobtile.crdVOUt
echc 'send destination: file not sent to Cyber Cray, ob iborted'

-see log file' > SJobfile.crayout
rm $jobfile.craycounter 0 Remove counter tile
goto endcrayoutchk # Go to end of Cray job output tile :heck

end if
else if ($counter >- $OUTPUT CHK) then # Check for output limit

echo 'date' ': send destination: Cray job output timeout exceeded;'
>> $jobfile.craylog # Update Cray job log tile

echo ' output file lost at Cyber/Cray; job aborted'"
$Jobfile.craylog

# Create dummy output file
cp /dev/null $Jobfile.crayout; chuod 0600 Sjobfile.crayout
echo 'send destination: output file lost at Cyber/Cray; job aborted'N

'-- see log fileo > Sjobfile.crayout
rm $jobfile.craycounter # Remove counter file
goto endcrayoutchk # Go to end of Cray job output file check

else
echo $counter > $jobfile.craycounter
goto sc endforeach # Go to end of foreach loop

end if
else

# If Cray job output file exists, protect it and update log file
chmod 0600 $jobfile.crayout
echo 'date' : Cray job output received at' $SYSTEMHOST >>

$Jobfile .craylog
if (-e $jobfile.craycounter) then

rm $Jobfile.craycounter # If counter file exists, remove it
endif

endi f
endcrayoutchk:

# Get user name, source, and destination for Cray job output
set user - head -10 $jobfile.craylog I awk '/user:/ (print $2}"
set source -\

'head -10 $jobfile.craylog Iawk '/source:/ {print $21"
set destination -\

'head -10 $Jobfile.craylog Iawk '/destination:/ {print $41"
# Transfer Cray job output and log files to the user .
Mlif (I grep -s "-"$user":" $PASSWDFILE ) -- 0) then

### # If user does not have an account on this system host...
### echo 'date' 'send destination: user' $user 'not valid on'
### $SYSTEMHOST-; $jobfile.craylog
### echo ' sending output to source host' >> $jobfile.craylog I
### set destination - $source
### # go to some ftp-send routine within this foreach loop ...
Mlelse #Ilf user does have an account on this system host...

C-3



PIN~~~WW WWWWUW FVV~rwW WTYV

System Program Listing - send-destination

## Get directory and output file names from Cray job log file
set directory - \

'head -10 $Jobfile.craylog I awk '/directory:/ {print $2}"
set outputfile - \

"head -10 $Jobfile.craylog m awk '/outputfile:/ {print $2}"
* Transfer the output file to the user's directory
my $Jobfile.crayout $directory/$outputfile
# Update Cray job log file
echo 'date' ': Cray job output and log files sent to directory'

>> $Jobfile.craylog
echo ' ' $directory ' and user notified at' $SYSTEMHOST \

>> $Jobfile.craylog
# Protect the log file then transfer it to the user's directory
chnod 0600 $jobfile.craylog
mv $Jobfile.craylog $directory/$outputfile.craylog
## Change ownership of Cray job log and output files to user
/etc/chown $user $directory/$outputfile $directory/$outputfile.craylog
# Check to see if user is logged on...
set onlinetest - 'who I grep --$user "
if ($#onlinetest > 1) then # ...if so, write message

write $user << WRITEND
Message from sendcray: Cray output and log files for $Jobfile have returned
WRITEND

else # ...if not, mail message
mail $user << MAILEND
Message from sendcray: Cray output and log files for $Jobfile have returned
MAILEND

endif
# If any extraneous out files leftover from mail exist, remove them
if (-e out) then

rm out
endif

### # If source is not this system host, send mail to user at source
### if ($source I- $SYSTEMHOST) then
II#mail $user << MAILEND
###Message from sendcray: Cray output and log files for $Jobfile have

returned
###MAILEND

### endif
Illendif

sc endforeach:
end

# Check for existence of stray Cray job output files; if none, then exit
# the foreach loop
foreach outfile (Mis I grep -\.crayout$--)
# Get jobfile name (prefix-before-the-dot) of Cray job output file

C-4

P' "' , ,' " "- " . . . .



*-R179 57? VIRTUAL COMMUNICATIONS TO ASO'S (AERONAUJTICAL SYSTEMS 21'2
DIVISION'S) CRAY CO.. (U) AIR FORCE INST OF TECH
MIHT-PRTTERSON RFD OH SCHOOL OF ENMO! T W TRSSEFF

UNCLASSIFIED DEC "6 RFIT/GCS/ENG/OED-10 F/O 9/2 .L



.* ~ I

mliii *1a :1 .in_

L4. LS

SARtCOPY RESOLUTION TEST CHART

I9-

iP I9 . , .l %*l .. ... I Q• , . l



System Program Listing - senddestination

set jobfile - 'echo $outfile I awk -f. {1print $I}"
#

# Check for existence of the companion Cray job log file; if not, then
# update the sendcray.log and remove the stray output file
if (I -e $Jobfile.craylog) then

echo 'date' ': send destination: stray Cray job output file \
>> ../sendcray.log

echo ' ' $outfile 'removed from outbound subdirectory' >> ../sendcray.log
rm $outfile

endif
end
I
I

## Switch user to the username who owns this outbound subdirectory
exec su $SYSTEMUSER -f -c << SUEND
I

# Check for existence of other Cray job log files; if none, then exit this
# foreach loop
foreach logfile ('is I grep '\.craylog$-)
# Just in case an sc logfile sneaked in, go to end of this foreach loop
set sc logtest - 'echo $logfile I grep -sc"
if ($#sc__log_test) then
goto endforeach

endif
# Get jobfile name (prefix-before-the-dot) of Cray job log file
set jobfile - 'echo $logfile I awk -f. '{print $1}"
#

# Check for existence of Cray job output file; if not, increment Cray job
# counter and check for error limits based on the counter's value
if (! -e $Jobfile.crayout) then

if (I -e $Jobfile.craycounter) then # Create counter file if not present
cp /dev/null $Jobfile.craycounter; chmod 0600 $Jobfile.craycounter
echo '0' > $Jobfile.craycounter # Set counter to zero

endif
# Get counter value from craycounter file and increment it by 1
set counter - "awk '{print $1}' $Jobfile.craycounter"
@ counter++
if ($counter - $SEND CHK) then # Check for send limit

set send test - 'usr/afit/send I grep $Jobfile.crayin.deck"
if ($#send test) then # Cray job input file/deck still in send queue

echo 'date' ': send destination: send to Cyber/Cray timeout \
>> $Jobfile.crayiog # Update Cray job log file

echo ' exceeded; SSC not sending to Cyber; job aborted \
>> $Jobfile.craylog

# Create dummy output file
cp /dev/null $Jobfile.crayout; chmod 0600 $Jobfile.crayout
echo 'send destination: file not sent to Cyber/Cray; job aborted'

-- see log file' > $Jobfile.crayout

C-5



System Program Listing -send destination

rm $Jobfile.craycounter # Remove counter file
goto endcrayoutchk # Go to end of Cray job output file check

endif
else if ($counter >- $OUTPUTCHK) then # Check for output limit

echo 'date' ': send destination: Cray job output timeout exceeded;'\
>> $Jobfile.craylog # Update Cray job log file

echo ' output file lost at Cyber/Cray; Job aborted' >>
$ jobf ile. craylog

# Create dumy output file
cp /dev/null $Jobfile.crayout; chmod 0600 $jobfile.crayout
echo 'send -destination: output file lost at Cyber/Cray; job aborted'\

'-see log file' > $Jobfile.crayout
rm $jobfile.craycounter I Remove counter file
goto endcrayoutchk # Go to end of Cray job output file check

else
echo $counter > $Jobfile.craycounter
goto endforeach # Go to end of foreach loop

endif
else

# If Cray job output file exists, protect it and update log file
chuod 0600 $Jobfile.crayout
echo 'date' : Cray job output received at' $SYSTEMHOST >>

$Jobfile.craylog
if (-e $Jobfile.craycounter) then

rm $Jobfile.craycounter # If counter file exists, remove it
endif

end if
endcrayoutchk:

# Get user name, source, and destination for Cray job output
set user - 'ed-10 $jobfile.craylog I awk '/user:/ {print $2}-
set source -\

'head -10 $Jobfile.craylog Iawk '/source:/ {print $2}"
set destination -\

'head -10 $Jobfile-craylog Iavk '/destination:/ {print $4)"
# Transfer Cray job output and log files to destination host

ftpsend:
# Update Cray job log file
echo 'date' ': Cray job output and log files being ' >> $Jobfile.craylog
echo ' sent to' $destination 'from' $SYSTEMHOST >> $Jobfile.craylog
cp /dev/null $Jobfile-ftpchk; chmod 0666 $Jobfile.ftpchk

ftp $destination << ENDFTP >& $jobfile-ftpchk
cd cray/inbound
send $jobfile.crayout
send $Jobfile .craylog
quit
ENDFTP

set ftp _test - vwc -w $jobfile.ftpchk Iawk '{print $1}-

C-6



System Program Listing - senddestination

if ($ftp_test) then # ftp-send did not work out
echo 'date' ': send destination: ftp send failed at' $SYSTEMHOST': \

>> $Jobfile.craylog
cat $Jobfile.ftpchk >> $Jobfile.craylog
echo 'send destination:' $SYSTEMHOST 'will retry ftp later \

>> $Jobfile.craylog
else # ftp-send did work out

rm $Jobfile.crayout
rm $Jobfile.craylog

endif
##rm $Jobfile.ftpchk # ftp-check file no longer needed

endforeach:
end
# End of switch user
SUENDI
#*** END OF FILE send destination *

C-7



System Program Listing - send user

#!/bin/csh -f

#* DATE: December 5, 1986 *

1* VERSION: 1.0 *
#, *

#* TITLE: AFIT - ASD Cray System *
FILENAME: send user *

#* OWNER: ttasseff (Capt Todd Tasseff, GCS-86D) *
#* SOFTWARE SYSTEM: AFIT/ENG Sun - 4.2 BSD Unix *

Operating System *
USE: for Lt Col Carter, EENG Thesis Project *

1* CONTENTS: Module A4, Route Cray Job Output to *
1* Destination *
1* •

#* •

DATE: December 5, 1986 *
1* VERSION: 1.0 *
#* *

MODULE NUMBER: A4 *
1* NAME: Route Cray Job Output to Destination *
1* FUNCTION: Checks for Cray job output, updates Cray job *
1* log file, determines user directory, *
1* and transfers output and log files to the *

user directory. *
1* INPUTS: None. *

OUTPUTS: Onscreen or mail done-message *
GLOBALS READ: job file identifier *

#* GLOBALS WRITTEN: None.
FILES READ: jobfile.craylog, jobfile.crayout *

1* FILES WRITTEN: jobfile.craylog, outputfile *
#* HARDWARE INPUT: AFIT/ENG Ethernet (using ftp) *
1* HARDWARE OUTPUT: None. *
1* CALLING MODULES: None. *
1* CALLED MODULES: None. *1* *

#* AUTHOR: Capt Todd Tasseff *
1* HISTORY: 1.0 original version (Capt Todd Tasseff) *
1* Note: lines beginning with ## refer to *
#* items necessary for implementing *

1* the program at root level *
#* •

set SYSTEMDIR - ttassef f/cray

D-1



System Program Listing - send user

cd $SYSTEMDIR
#

# Check to see if the send user.log file exists; if not, create it
if (! -e send user.log) then

cp /dev/nul send user.log; chmod 0600 send user.log
endif
# Update send user.log file
echo 'date : send user initiated' >> send user.log
# Check to make sure that no other send user shells are running...
if ('ps grep send user I wc -1" > 2) then

echo - send user already running' >> send user.log
exit() ...if so, update send user.log file and exit

endif
#

set SYSTEMHOST - mercuryI
# Go to outbound subdirectory
cd inbound
# Check for existence of Cray job log files; if none, then exit foreach loop
foreach logfile ('is I grep '\.craylog$-)
# Protect Cray job log file
chmod 0644 $logfile
# Get jobfile name (prefix-before-the-dot) of Cray job log file
set jobfile - 'echo $logfile I awk -f. '{print $1)"#
# Check for existence of Cray job output file; if none, then place an error
# message in the Cray job log file, and create a dummy Cray job output
# file; else, if it exists, give it protection
if (! -e $Jobfile.crayout) then

echo 'date' ': send user: Cray job log file ONLY received \
>> $Jobfile.craylog

echo - at' $SYSTEHOST-; output file lost; job aborted \
>> $Jobfile.craylog

# Create dummy output file
cp /dev/null $Jobfile.crayout; chmod 0600 $Jobfile.crayout
echo 'send user: output file lost; job aborted -- see log file \
> $Jobfile.crayout

else
# If Cray job output file exists, protect it and update log file
chmod 0600 $Jobfile.crayout
echo 'date' ': Cray job output and log files received at' $SYSTEMHOST \

>> $Jobfile.craylog
endif
I
ft Get directory and outputfile name from the Cray job log file
set directory - \

'head -10 $Jobfile.craylog I awk '/directory:/ {print $2}"
set outputfile -

D-2



System Program Listing - send-user

'head -10 $Jobfile.craylog I awk '/outputfile:/ (print $2}"
* Transfer the output file to the user's directory
mv $Jobfile. rayout $directory/$outputfile
0 Update Cray job log file
echo 'date' ': Cray job output and log files sent to directory \

>> $Jobfile.craylog
echo ' ' $directory ' and user notified at' $SYSTEMHOST >> $Jobfile.craylog
# Protect the log file then transfer it to the user's directory
chmod 0600 $Jobfile.craylog
mv $Jobfile.craylog $directory/$outputfile.craylog
## Change ownership of Cray job log and output files to user
/etc/chown $user $directorl/$outputfile $directory/$outputfile.craylog
# Check to see if user is logged on...
set onlinetest - 'who I grep "$user
if ($#onlinetest > 1) then # ...if so, write message

write $user << WRITEND
Message from sendcray: Cray output and log files for $Jobfile have returned
WRITEND

else # ...if not, mail message
mail $user << MAILEND
Message from sendcray: Cray output and log files for $Jobfile have returned
MAILEND

endif
endforeach:
end

# * END OF FILE send user *

4

%

D-3 I
A

Sq



SENDCRAY(1) User Documentation SENDCRAY(1)

NAME
sendcray - send a job to ASD's Cray Computer via AFIT data

communications resources

SYNOPSIS
sendcray [ -j jobtype ] [ -t number of min.

-o outputfilename] input-filename

DESCRIPTION

Sendcray is the initiating command of the AFIT-ASD Cray System. In
general, the AFIT-ASD Cray System operates over the currently available AIT
data communications facility, which is connected to ASD's data communications
facility. Specifically, the System makes use of the existing RJE link between
the AFIT SSC and ASD's CDC Cyber computer, which is in turn connected to the
Cray. The System also communicates with AFIT/ENG's ELXSI computer and Sun
workstations and the AFIT SSC via a dedicated, coaxial cable, local computer
network link called Ethernet.

Input data files created on the ELXSI or the Sun workstations and
destined for ASD's Cray computer will be automatically transmitted over the
Ethernet link to a special System account on the SSC. Input data files
created on the SSC are transferred internally to the System's account.

Once at the SSC, the ELXSI, Sun or SSC input data file destined for the
Cray will have the appropriate Cyber and Cray job-control commands placed into
the input data file, forming a job deck. The SSC will then take the Cray job
deck and transmit it to the Cyber via the SSC-Cyber RJE link. Once at the
Cyber, the job file will be transferred to the Cray, the job processed, and
the output returned to the Cyber, which in turn returns the output to the AFIT
SSC.

Once the SSC receives the Cray output from the Cyber, the SSC stores it
or passes it on to the ELXSI or Sun workstations (using the Ethernet),
depending on where the job originated. The output will then be placed into
the user directory where the job originated.

The System will notify the user that the output has returned via an
on-screen message at the computer where the job originated. If the user has
logged-off the computer, the System will place a message in the user's
computer "mailbox."

The System also has an audit capability which keeps tvack of the progress
of a job as it passes from one computer to the next. A log file accompanies
both the input file and corresponding output file through the System. The
System then sends to the user the log file along with the output file. The
log file contains date/time stamps of important events (e.g., tile transfer
from one computer to the next) and any pertinent System messages and error

E-1

'VV



SENDCRAY(1) User Documentation SENDCRAY(1)

messages sent by the AFIT and ASD host computers involved.

The user has the responsibility to first create an input file for the
AFIT-ASD Cray System. This is accomplished by using the file editor of choice
on any one of the AFIT host computers or workstations involved. Once the
input file is created, the user may enter the sendcray command followed by a
set of options, and ending with the input filename. If no options are given,
then the default options are assumed.

Sendcray provides the user with the following options:

-J Cray job type. The job type can be either FORTRAN or SPICE. A
FORTRAN job indicates that the input data file is a FORTRAN program,
while a SPICE job indicates that the input data file is input data
for a VLSI circuit simulation. The default Cray job type is
FORTRAN.

-t Cray job time. The job time is the estimated time in minutes that
the user expects the Cray job to run while at the Cray. The System
uses this time value to place an upper limit on how long ASD's Cyber
should wait for output to return from the Cray, the maximum time
being 15 minutes. The default Cray job time is 5 minutes. Caution
should be taken when using this option (see Bugs section below).

-o Output filename. The user can also specify the exact name of the
Cray job's output filename. However, if no output filename is
given, the default output filename will be the same as the input
filename followed by a ".crayout" suffix. Accompanying the output
file will be the log file for the Cray job. The name of the log
file will be the same as the specified output filename followed by a
..craylog" suffix, with the default being the input filename
followed by that eame suffix.

INSTRUCTIONS

(1) Getting User Accounts and Passwords. The user must first obtain user
accounts on the AFIT SSC and on ASD's Cyber and Cray computers by asking for
and submitting an AFIT Form 35 to AFIT/SIOO personnel in Bldg 640, Room 133.
The user will then be assigned an SSC username and password, a Cyber account
(user) number with an initial interactive (login) password, and a Cray account
number with an initial password. Along with the Cray account number and
password are assigned an identical Cray user number and password. Once the
user has these accounts and passwords, the user should change the passwords to
protect these user accounts. The user must then create a batch password on
the Cyber by logging-in to the Cyber and using the PASSWOR command to create a
separate batch password.

The user must then submit the AFIT SSC username, Cyber user number and

E-2



I

SENDCRAY(1) User Documentation SENDCRAY(1)

batch password, Cray account number and password, and Cray user number and
password to the AFIT-ASD Cray System administrator in AFIT/SIO in Bldg 125.
The System administrator will load the SSC username and Cyber and Cray account
numbers and passwords into the proper control file on the AFIT SSC so that the
user will have access to the System. Note: a username on the AFIT SSC is not
necessarily required for the System to operate, but is helpful in establishing
a unique username among the AFIT host computers involved in the System (the
AFIT SSC and AFIT/ENG's ELXSI and Suns). If the user wishes to obtain a
username on AFIT/ENG's ELXSI and Suns, the username should be identical to the
username assigned for the SSC.

(2) Creating an Input File. Next, the user must create an input file on
the AFIT host computer of choice using the text editor of choice. Caution
should be taken not to include any blank lines in any of the input files (see
Bugs section below).

(a) If the input file is to be FORTRAN, the user should create an
input file containing the FORTRAN source code. If any input data is used, it
must follow the source code; however, each input data section must be preceded
by a single line containing "/EOF" (no quotation marks used) which must begin
in the first column of that line. A "/EOF" line must separate the source code
and each input data section from each other (no "/EOF" lines required at the
beginning or end of entire input file).

(b) If the input file is for use with SPICE, the user should create
an input file containing VLSI circuit simulation data as specified and
required by the SPICE program.

(3) Using sendcray. While logged-in to the AFIT host where the input
file resides, enter the command sendcray followed by the desired options
followed by the input filename, all on one line. After entering the command
line, sendcray will send on-screen messages to the user, iacicating what
action is currently being done. One important item to note is the jobfile ID
number that sendcray issues and displays in one of these messages. This
jobfile ID is unique for each job and can be used to track the progress of
each job throughout the System. By checking the contents of the System
subdirectories, inbound and outbound, the user can find out how far along the
job has progressed. All job files used by the System are prefixed by the
jobfile ID number. The user can tell, by inspection, the status of the job by
seeing if files prefixed by the jobfile ID exist, and can also get more
detailed status information by reading the contents of the job log file. The
job log filename is prefixed by the jobfile ID number and suffixed by
".craylog". When the job output returns to the user, the output file and log
file are placed in the same AFIT host and directory (file-space) where the
user originated the job, and an appropriate "done" message (with jobfile ID
number included) is issued (on-screen if user is logged-in, to the "mailbox"
if not).

E-3

I

% . ;. .**



SENDCRAY(1) User Documentation SENDCRAY(1)

DIRECTORIES

-cray # main System account directory on each AFIT host
-cray/inbound
~cray/outbound

SEE ALSO

ftp # file transfer (over a network) program
/usr/afit/send # send jobs to ASD's Cyber

BUGS

At present, SPICE is not implemented on the Cray. The System will notify
the user that this is the case if SPICE is chosen as a job type (using the -j
option).

Caution should be taken in setting the job time (-t) option. If the job
runs on the Cray longer than the job time specified, the Cray output will be
lost to the System. However, the output will be left at the Cyber, so the
user may retrieve it from there if desired.

Caution should also be taken not to include any blank lines when creating
any of the input files. Blank lines within the input files may cause ASD's
Cyber or Cray to abort the job, returning only an error listing as output.

Also, the alternate output destination option (-d) is not implemented
yet. The user would have been able to specify which AFIT host computer or
workstation would be the final destination of a Cray job's output. The
choices would be the AFIT SSC, AFIT/ENG's ELXSI, or any one of AFIT/ENG's Sun
workstations. The default output destination would still be the source
computer or workstation (the machine that originated the Cray job).

AUTHOR

Todd W. Tasseff (Dec. 1986)

E-4

'%-66

-w?2 ze



PWTP%'1PW P.M VW M M WJ U?! X fI RI' ~rf~ E Mr~ W r A71 K:

SENDCRAY(IA) Administrative Documentation SENDCRAY(1A)

1.0 INTRODUCTION
(Note: see also Sendcray User Documentation for additional

information)

1.1 Command Name

sendcray - send a job to ASD's Cray Computer via AFIT data
communications resources

1.2 Command Line and Options

sendcray [ -J jobtype ] [ -t number of min.
[ -o outputfilename] inputfilename

1.3 Functional Description

1.3.1 System Operation. sendcray is the initiating command of the
AFIT-ASD Cray System. In general, the AFIT-ASD Cray System operates over the
currently available AFIT data communications facility, which is connected to
ASD's data communications facility. Specifically, the System makes use of the
existing RJE link between the AFIT SSC and ASD's CDC Cyber computer, which is
in turn connected to the Cray. The System also communicates with AFIT/ENG's
ELXSI computer and Sun workstations and the AFIT SSC via a dedicated, coaxial
cable, local computer network link called Ethernet. All of the AFIT-ASD Cray
System programs are written in 4.2 BSD UNIX C-shell commands.

Input data files created on the ELXSI or the Sun workstations and
destined for ASD's Cray computer will be automatically transmitted over the
Ethernet link to a special System account on the SSC. Input data files
created on the SSC are transferred internally to the System's account.

Once at the S3C, the 3LXSI, Sua cr SSC input data file destined for the
Cray will have the appropriate Cyber and Cray job-control commands placed into
the input data file, forming a job deck. The SSC will then take the Cray job
deck and transmit it to the Cyber via the SSC-Cyber RJE link. Once at the
Cyber, the job file will be transferred to the Cray, the job processed, and
the output returned to the Cyber, which in turn returns the output to the AFIT
SSC.

Once the SSC receives the Cray output from the Cyber, the SSC stores it
or passes it on to the ELXSI or Sun workstations (using the Ethernet),
depending on where the job originated. The output will then be placed into
the user directory where the Job originated.

The System will notify the user that the output has returned via an
on-screen message at the computer where the job originated. If the user has
logged-oft the computer, the System will place a message in the user's
computer "mailbox."

F-I

AI



SENDCRAY(IA) Administrative Documentation SENDCRAY(IA)

The System also has an audit capability which keeps track of the progress

of a job as it passes from one computer to the next. A log file accompanies
both the input file and corresponding output file through the System. The

System then sends to the user the log file along with the output file. The

log file contains date/time stamps of important events (e.g., file transfer
from one computer to the next) and any pertinent System messages and error
messages sent by the AFIT and ASD host computers involved.

The user has the responsibility to first create an input file for the
AFIT-ASD Cray System. This is accomplished by using the file editor of choice
on any one of the AFIT host computers or workstations involved. Once the
input file is created, the user may enter the sendcray command followed by a
set of options, and ending with the input filename. If no options are given,
then the default options are assumed.

1.3.2 System Options. sendcray provides the user with the following
options:

-j Cray job type. The job type can be either FORTRAN or SPICE. A
FORTRAN job indicates that the input data file is a FORTRAN program,
while a SPICE job indicates that the input data file is input data
for a VLSI circuit simulation. The default Cray job type is
FORTRAN.

-t Cray job time. The job time is the estimated time in minutes that
the user expects the Cray job to run while at the Cray. The System
uses this time value to place an upper limit on how long ASD's Cyber

should wait for output to return from the Cray, the maximum time
being 15 minutes. The default Cray job time is 5 minutes. Caution

should be taken when using this option (see Bugs section below).

-o Output filename. The user can also specify the exact name of the
Cray job's output filename. However, if no output filename is
given, the default output filename will be the same as the input
filename followed by a ".crayout" suffix. Accompanying the output
file will be the log file for the Cray job. The name of the log
file will be the same as the specified output filename followed by a
.craylog" suffix, with the default being the input filename

followed by that same suffix.

F-2

r .. e . " "



SENDCRAY(IA) Administrative Documentation SENDCRAY(IA)

2.0 DIRECTORIES USED

cray

This is the main System account directory on each AFIT host computer
involved (AFIT SSC, AFIT/ENG's ELXSI and Suns). It contains all the programs
and support files necessary to operate the System on each host. For the sake
of simplicity, -cray will represent the System account, or username,
throughout this document.

cray/inbound

The inbound subdirectory is used by the System to receive incoming job
files from each of the AFIT hosts involved. On the AFIT SSC, it is used by
the sendcybercray program; on non-SSC AFIT hosts, it is used by the
send user program.

cray/outbound

The outbound subdirectory is used by the System to dispatch outgoing job
files to each of the AFIT hosts involved. On the AFIT SSC, it is used by the
send destination program; on non-SSC AFIT hosts, it is used by the sendcray
program.

3.0 FILES USED

-cray/sendcray.log

The sendcray.log file appears on all AFIT hosts involved and is created
and used by the sendcray command to record the initiation of every sendcray
,ob. Pertinent job informatioa such as date/time, username, job tyle, and
other items are recorded on a single entry in the sendcray.log. The
sendcray.log file is also used to record any other System messages that the
System needs to record.

cray/.netrc

The .netrc file appears on all AFIT hosts involved and contains the
usernames and passwords of the System accounts on the other AFIT host
computers. Only those usernames and passwords of the other AFIT host that
will have files sent to it from the one AFIT host are included. On the AFIT
SSC, .netrc is used by the send destination program; on non-SSC AFIT hosts, it
is used by the sendcray program.

F-3

I



SENDCRAY(lA) Administrative Documentation SENDCRAY(IA)

cray/jobtypes.sendcray

The jobtypes.sendcray file appears on all AFIT hosts involved and
contains only the job types allowed by the System, including alternate
representations of the same job type (relevant combinations of upper and lower
case spellings). Presently, the only two job type options are FORTRAN and
SPICE. The jobtypes.sendcray file is used by the sendcray program on all
of the AFIT hosts involved.

cray/hosts.sendcray

The hosts.sendcray file appears on all AFIT hosts involved and contains
only the AFIT hosts that have access to the System, including aliases
(alternative names) for each host. The hosts.sendcray file has the potential
of being used by the sendcray program on all the AFIT hosts involved (see Bugs
section
below).

cray/users.sendcray

The users.sendcray file appears on the AFIT SSC only and contains only
those users that have access to the System. Each user has one entry in the
file which contains the user's SSC (or ELXSI or Sun) username, Cyber user
number and batch password, Cray account number and password, and Cray user
number and password. The users.sendcray file is used by the sendcybercray
program on the AFIT SSC.

~cray/crayjobtop
-cray/crayjobbot

The crayjobtop and crayjobbot files appear on the AFIT SSC only.
Together, these two file3 comprise a "dummy" job deck which ccntains a number
of "dummy" variable names which represent such items as job type, job time,
Cyber and Cray account numbers and passwords, and jobfile (job work file)
names. These "dummy" variable names are contained in crayjobtop and are
replaced by the real things in order to begin forming a working job deck. The
crayjobbot file contains only end-of-file trailer lines. The user's input
file is placed between the completed crayjobtop file and the crayjobbot file
in order to form a complete, working job deck that is sent to the Cyber and
Cray for processing. The crayjobtop and crayjobbot files are used by the
sendcybercray program on the AFIT SSC.

4.0 SYSTEM PROGRAMS - DESCRIPTION AND OPERATION

4.1 "cray/sendcray. The sendcray program resides on all AFIT hosts involved
and is the initial program for the System. Sendcray accepts the user's input
options and Cray input filename (see User Documentation), checks for input

F-4

% , % %"



SENDCRAY(lA) Administrative Documentation SENDCRAY(lA)

errors, creates a Cray job log file, and transfers the input and log files to
the AFIT SSC. If sendcray is initiated at the SSC, the transfer takes place
via a copy and a move command. If sendcray is initiated by any other AFIT
host, the transfer takes place via the fSp command across the AFIT/ENG
Ethernet to the SSC. Sendcray displays several messages to the user during
its execution to include providing a unique job identifier name which is used
as a prefix to the Cray input, log, and output files throughout the life of a
job.

4.2 ~cray/send cybercray. The send cybercray program resides on the AFIT
SSC only and picks up where sendcray leaves off. Sendcybercray receives the
Cray job input and log files, packages the input file into a job deck, using
information from the log file, then sends the job deck to ASD's Cyber where it
is forwarded to the Cray. Output from the Cray returns to the Cyber and in
turn returns to the AFIT SSC. Send cybercray runs automatically via the cron
facility on the SSC on a preset schedule (e.g., every 15 minutes on the
quarter hour).

4.3 ~cray/senddestination. The send destination program also resides on the
AFIT SSC only. Send destination recelves the Cray job output file from the
Cyber/Cray, determines the output destination from the Cray job log file, then
transfers the output and log files to the proper destination. If the
destination is the SSC, the transfer is accomplished via a move command
directly to the user's directory (file-space). Then the user is notified, via
onscreen message or mail, that the output has returned. If the destination is
not the SSC, the transfer is accomplished via the ftp command directly to
another System directory at the AFIT destination host. Send-destination also
runs automatically via the cron facility on the SSC on the same preset
schedule.

4.4 "cray/send user. The send user program resides on all non-SSC AFIT
hosts, and is sfmilar to send detination in that it also transfers the Cray
job output and log files to the user's directory but does so after receiving
the files from the SSC. Once the output and log files are at the user's
directory, the user is notified via onscreen message or mail. Send user also
runs automatically via the cron facility on whatever host it resides, usually
at a faster rate (e.g., every five minutes).

4.5 The Cray Job Log File. The Cray job log file accompanies both the Cray
job input and output files throughout the life of a job. The log file
contains important information about the Cray job: unique Cray job
identifier, source and destination host, job type and time, input and output
filenames, the user's name and current file directory, and the process ID
during when sendcray was executing. The Cray job log file is also updated
with a date/time stamp and a message for every significant event that occurs
in each of the above programs, including any error messages (see Section 6
below).

F-5

P~*. -., 41 J, e W t



SENDCRAY(1A) Administrative Documentation SENDCRAY(lA)

5.0 SYSTEM SETUP

5.1 BASIC SETUP

The first step in setting up the AFIT-ASD Cray System is to create
identical System usernames (accounts) and passwords on each AFIT host computer
or workstation involved. The second step is to create two subdirectories
named "inbound" and "outbound" which will be used for passing Cray job input,
log, and output files between hosts. Note that all System directories and
subdirectories must have read-permission so that the contents of the Cray job
log file (mentioned in Section 4.5) can be inspected by the user during any
stage in the life of a job (see Section 6).

The third step is to create a .netrc file containing the System usernames
and passwords of the other AFIT hosts (for the SSC: all other hosts'
usernames and passwords needed; for non-SSC hosts: username and password of
SSC needed). The .netrc file is used by the ftp command within the System
programs to automatically login to a remote host.

The fourth step is to place the System support files and programs
mentioned above in the System accounts of their respective hosts. The System
programs are suffixed by a ".src" (source) designator. Each ".src" file needs
to be copied into a file with the same name as the program (minus the ".src"
suffix) and edited to remove all comment lines (those that begin with a "#")
in order to speed up program execution. The commands to create and update a
".log" file in the sendcybercray, send-destination, and send-user programs
may also be removed.

Once the designated lines are removed from the programs, several variable
names, located toward the beginning of each module within the programs, need
to be set. Each of the System programs h3';e one or both of the SYSTEMUSER or
SYSTEMDIR variables and must be set to the the System username and directory
(full path) respectively. In the sendcray program, the SOURCEROST variable
needs to be set to the name of the host on which that particular sendcray
resides, based on the entries found in the hosts.sendcray file; and the
SOURCEID variable needs to be set to some unique two-letter host ID (sc for
SSC; el for ELXSI; mc for Sun-Mercury; etc.). In the send destination and
send user programs, the SYSTEMHOST variable needs to be set to the host on
which the program resides.

The fifth step is to establish an entry in the UNIX crontab file of every
host for each System program requiring automatic execution via cron
(sendcybercray and send-destination on the SSC; senduser on all non-SSC
hosts). The cron execution time for these programs is at the discretion of
the System administrator, but should be in the range of every 5 to 15 minutes.

Examples of the System support files mentioned above can be found at the

F-6

N"" -4 -



SENDCRAY(lA) Administrative Documentation SENDCRAY(lA)

end of this document.

5.2 ESTABLISHING USERS ON THE SYSTEM

Users desiring access to the AFIT-ASD Cray System must furnish the System
administrator with a [SSC] username, an ASD Cyber user number and password, an
ASD Cray account and password and Cray user number and password. These user
accounts and passwords must then be entered, in the order mentioned above, on
a single line in the users.sendcray file.

6.0 SYSTEM DIAGNOSTICS

The primary diagnostic feature or features of the AFIT-ASD Cray System
are the use of log files to record significant System events or error
messages. The sendcray.log file records information pertaining to a Cray job
each time a job is initiated via the sendcray program; the sendcray.log file
also records a message in the event a stray output file returns from the
Cyber/Cray (after a System timeout occurred and the Cray job log file was
returned to the user) and is removed. Each of the other System programs have
the option of creating and updating their own ".log" files containing a
date/time stamp and message for each time the program is initiated.

Probably the most effective diagnostic tool is the Cray job log file
which accompanies the job input and output files throughout the life of a job
in the System. Besides a date/time stamp and System message for significant
events (e.g., transfer of files from one host to the next), the Cray job log
file contains any error messages incurred during the life of the job. These
error messages indicate problems with: ftp transfers between hosts; the send
command while attempting to submit job decks to the Cyber/Cray; and delayed or
lost files within the system.

The user can track the progress of a job by matching the unique Cray job
identifier, provided in an onscreen message by the sendcray program, with the
prefix of a file ending with ".craylog" in any of the System's "inbound" and
"outbound" subdirectories. This ".craylog" file is the Cray job log file, and
has read-permission so that the user or System administrator can inspect its
contents and determine the status of the job.

7.0 BUGS

At present, SPICE is not implemented on the Cray. The System will notify
the user that this is the case if SPICE is chosen as a job type (using the -j
option).

Caution should be taken in setLing the job time (-t) option. If the job
runs on the Cray longer than the job time specified, the Cray output will be

F-7



SENDCRAY(1A) Administrative Documentation SENDCRAY(1A)

lost to the System. However, the output will be left at the Cyber, so the
user may retrieve it from there if desired.

Caution should also be taken not to include any blank lines when creating
any of the input files. Blank lines within the input files may cause ASD's
Cyber or Cray to abort the job, returning only an error listing as output.

Also, the alternate output destination option (-d) is not implemented
yet. The user would have been able to specify which AFIT host computer or
workstation would be the final destination of a Cray job's output. The
choices would be the AFIT SSC, AFIT/ENG's ELXSI, or any one of AFIT/ENG's Sun
workstations. The default output destination would still be the source
computer or workstation (the machine that originated the Cray job).

8.0 AUTHOR

Todd W. Tasseff (Dec. 1986)

p

4b

p

p

F-8

S



SENDCRAY(IA) Administrative Documentation SENDCRAY(lA)

EXAMPLES OF SYSTEM SUPPORT FILES

sendcray.log

## this is the local sendcray log file
## the format is: date unique_jobfile ID source destination jobtype jobtime
## inputfile outputfile user inputfile directory processID
Thu Nov 6 19:04:27 EST 1986 sc16349 sac sac fortran 5 craytestjob
craytestjob.crayout ttasseff /enO/gcs86d/ttasseff/cray 16349

example of .netrc file

On the SSC...
machine zelxb, login ttasseff, password xxxxxxx
machine vsun2-1, login ttasseff, password xxxxxxx

On the Sun-Mercury...
machine sac, login ttasseff, password xxxxxxx

jobtypes.sendcray

## list of valid Cray job types for the sendcray command
## the format is: jobtype followed by list of aliases (all on same line)
fortran FORTRAN Fortran

spice SPICE Spice

hosts.sendcray

Di list of valid AFIT hosts for the aendcray command; the format is:
f# primary hostname followed by list of aliases (all on same line)
zasc sac SSC
zelxb bad afitbsd
dsun2-1 dsun2 apollo
vsun2-1 vsun2 mercury
psun2-1 psun2 venus
isun2-1 isun2 zeus

F-9

%I



SENDCRAY(1A) Administrative Documentation SENDCRAY(1A)

EXAMPLES OF SYSTEK SUPPORT FILES (cont.)

example of users.sendcray file

## this is the sendcray valid user list; the format is username followed by
## cyberuser cyberbatchpasswd crayacct crayacctpasswd crayuser
crayuserpas svd
## (all on same line)
ttasseff T888888 XXXXXX T999999 ZZZZZZZ T999999 ZZZZZZZ

crayjobtop

CRAYJOB, P1,STCSB.
USER, CYBERUSERCYBERPASS.
CHARGE ,*
COPYEI, ,JOBFILEXXX.
REWIND, JOBFILEXXX.
CSUB ,JOBFILEmX, HF-CX, US-CYBERUSER, PW-CY2BERPASS.
SET,Rl-O.
SET ,R2-O.
SET ,R3-JOBTIMEXXX.
WHILE,Rl-O.AND.R2.LT.R3,LOOP.
ATTACH ,JOBFILEXXX-JOBFILEXXX/NA.
IF,FILE(JOBFILEXXX,AS) ,CHECK.
REWIND, JOBFILEXXX.
COPYEI ,JOBFILEXXX.
PURGE ,JOBFILEXXX.
SET,Rl-1.
ELSE ,CHECK.
ROLLOUT,60.
SET ,R2-R2+1.
ENDIF,CHECK.
ENDW,LOOP.
/*EOR
JOB, JN-JOBF ILEXXX ,US-CRAYACCT.
ACCOUNT, AC-CRAYACCT ,APW-CRAYACPASS ,US-CRAYUSER, UPW-CRAYUSPASS.
JOBTYPEXXX.
LDR.
DISPOSE,DNJ-$OUTSDN-JOBFILEXXX,MF-CB,DC-ST,DF-CB,DEFER,-
TEXT-'DEFINE,JOBFILEXXX.CTASK,ALL. -.
IEOF

F-10



... a.."VV"M r fW., TI.WF MW MW~- WWkM% Rn r, 'r.-. . ,.

SENDCRAY( lA) Administrative Documentation SENDCRAY( LA)

EXAMPLES OF SYSTEM SUPPORT FILES (cont.)

crayjobbot

/EOF
/*EOI

example of crontab entry

0,15,30,45 8-23 * * 1-6 /enO/gcs86d/ttassef f/cray/send -cyber -cray
0,15,30,45 8-23 * * 1-6 /enO/gcs86d/ttasseff/cray/send destination

F-11

'so

4' r 4' r %e % % .



VITA

Todd William Tasseff was born on November 4, 1959 in Orrville, Ohio. He

graduated from Fairless High School in 1977, and attended the United States

Air Force Academy where he received the Degree of Bachelor of Science,

majoring in Computer Science, in June 1981. Upon graduation, he received a

regular commission as a second lieutenant in the USAF. He was then assigned

to the Air Force Institute of Technology at Wright-Patterson AFB and served as

the data communications manager for the AFIT Information Systems Directorate

from July 1981 to May 1985. In June 1985, he entered AFIT as a Master of

Science Degree student, studying Computer Systems.

Permanent Address: 123 West Fourth Street

Navarre, Ohio 44662

S.



y- : - J - s -, y- wy - . - vy .* -- .* - * -. -' _ .x .:i , - , ,J J E , * -. . ' : • i ~ - ,

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved

REPORT DOCUMENTATION PAGE OMSNo. 0704-188

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS/ENG/86D-lO

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION(If applicable)
School of Engineering AFIT/ENG

6L ADDRESS City, State, and ZIP Code) 7b. ADDRESS (City, State. and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

8. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO.

11. TITLE (include Security ClaSsification)

See Box 19
12. PERSONAL AUTHOR(S)

Todd W. Tasseff, B.S., Captain, USAF
13.. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

MS Thesis I FROM _ TO - 1986 December 117
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Computer Communications, Computer Programs,

09 02 Executive Routines, Computer Applications

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Title: VIRTUAL COMMUNICATIONS TO ASD'S CRAY COMPUTER

VIA AFIT DATA COMMUNICATIONS RESOURCES

Thesis Chairman: Harold W. Carter, Lt Col, USAFlAW AF

? ;: 1 e 1 . . r !. , _ l : 1 evelopm ent

20. DISTRIBUTION I AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
U UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. C DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Irclude Area Code) 22c. OFFICE SYMBOL
Harold W. Carter, Lt Coll USAF 513-255-6913 AFIT/ENG

O Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED



UNCLASSIFIED

19.

The AFIT-ASD Cray System, a virtual communications capability from the

AFIT School of Engineering to ASD's Cray computer, was studied, created, and

evaluated. The SADT design, detailed design, and System program code are

included in the study. A user enters the System's user command sendcray which

initiates a Cray job from a remote or central AFIT host computer, and

transfers the user's input file to the central AFIT host computer. The input

file is then sent first to the Cyber, which is a front-end to the Cray, and

then to the Cray itself where the input is processed. Output from the Cray is

sent to the Cyber and then back to the AFIT central computer. Finally, the

output, with an accompanying job log file, is transferred to the user at the

originating AFIT host computer.

The System uses a combination of 4.2 BSD UNIX, Cyber NOS, and Cray

operating systeA comwands, and makes une of arn 4YIT Etherne? network and a

VAX-UNIX/Cyber HASP/modem link. The System operates over a series of UNIX

C-shell programs, most of which are executed automatically. The System

provides the user with simple, error-free, and automatic access to the Cray,

with the potential of improved turnaround time for compute-intensive jobs at

AFIT.

UNCLASSIFIED



- U~~U ~ ~ ~ ~

'%d\~%~~ V*~P ~ *./%% %e~ * ~ # ~%** .. : ~ *~ ~ ~ ~*


