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EXTREME VALUE THEORY FOR SUPREMA OF RANDOM VARIABLES
WITH REGULARLY VARYING TAIL PROBABILITIES

' BY TAILEN HSING

University of Texas at Arlington

Consider a stationary sequence X, = sup ¢.Z; ., j € I, where {c.}
3 i i7j-i i

is a sequence of constants, and {Zi} a sequence of i.i.d. random

variables with regularly varying tail probabilities. For suitable

- normalizing functions Vir Vor ees the limit form of the two dimensional
point process with points (j/n, v;l(xj)), j€ I, is derived. The
implications of the convergence are briefly discussed, while the
distribution of the joint exceedances of high levels by {Xj} is

explicitly obtained as a corollary.

. Short title: The extremes of suprema of random variables.
AMS 1980 subject classification: Primary 60F05, Secondary: 60F17, 60G5S.
Key words: extreme values, point processes, regular variation, weak limits.
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1. Introduction '

Extreme value theory concerns the joint tail behavior and related
problems of random variables (r.v.'s). Recent emphasis has been the extension
of the classical theory, which considers independent and identically distributed .
(i.i.d.) r.v.'s to the more general setting of stationarity. Progress has
- been made on topics such as notions of asymptotic independence, general
extremal types theorems, studies of related point processes, etc. See [13]
for a comprehensive account of the subject.
. Qe are interested in the extremal properties of stationary sequences
i whose members are certain functions of i.i.d. r.v.'s. In this direction,
{1, 4, 13] investigated moving average sequences under various assumptions.
Through the particular structure of the sequences, these studies provided
invaluable insights into the theory in general. In this paper, we consider
a stationary sequence (Xj} consisting of the weighted suprema -- instead of
- sums as in the case of moving averages —— of certain i.i.d. r.v.'s whose
‘ tail probabilities are regularly varying. A sequence with this structure
may be used to model random exchanges (cf. [7, 8]), and is a useful tool in
studying multivariate extreme value theory (cf. [5]).
In Section 2 we introduce some general results concerning the asymptotic
tail behavior of the supremum of independent r.v.'s, and consider the marginal

of {Xj} as a special case. Section 3 contains a main result Theorem 3.2,

which is a limit theorem of certain point processes defined for {XJ.}. N .
. Section 4 discusses the application of Theorem 3.2, and its connection with 5}
some related results. The distribution of the joint exceedances of high S B
levels by {Xj} is also derived. ©ee 4y
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2. Framework

- -

We first summarize some relevant facts concerning the tail behavior of
the supremum of independent r.v.'s. Unless otherwise stated, sssume that
each sequence mentioned, random or nonrandom, is indexed by the set of

integers I,

Theorem 2.1. Let (Yi} be a sequence of independent r.v.'s. Then sup Y, < -
© a.s., or =« ga,s, Furthermore, sup Yi <® ga,8, if and orly if '

ZiP[Yi > x] <® for some x < =,

Proof. As is shown in {3], Theorem 1, the claims follow readily from the

zero-one law, and the Borel-Cantelli Lemma. O

Lemma 2.2. Let {Yi} be a sequence of independent r.v.'s. Suppose that

sup Yi converges to X a.s., and that P[X < xo] = 1 where x, = suplu: _—
P[X s u) <1}, Then P[X > u] ~ ZiP[Yi >u] as u ¢ Xy 9
.

\

Proof. Write f(y) = -log(l-y)-y, y € [0,1). It is simply seen that N

f(y) 2 0, and f(y) ~ y2/2 as y + 0. The assumption P[X < xO] = ] implies

that there exists an x such that O < P[X > u] <1, u€ [x.xo), and therefore i
that P[Yi >u) <1, ue [x,xo). i € I. Hence i
I,PLY, > u) 5 -[,log P[Y, 5 u] = -log P[X 5 u] '

»

= P[X > u] + £(P[X > u)]), vue€ [x.xo). i

By this and Boole's inequality, ;
0s IiP[Yi > u] - P[X > u] 5 £(P[X > u]), ue [x.x5). .

Since X0 is not an atom, P[X > u}] +0 as u ¢ Xge This concludes the E
proof. O 3

Let {(Z,] be a sequence of i.i.d. r.v.'s whose tail probabilities are

2 N
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regularly verying st ® with index -a, a > 0; i.e. P[Zl >2] = 27%L(2),
z > 0, where L is slowly varying (cf. [6])). To avoid trivialities, assume
that the Z1 are positive and unbounded above. The following result is

similar to [2), Lesma 2.2 (ii).

Theorem 2.3. Let (ci) be a sequence of nonnegative constants with sup c, >

0. Then sup Cizi <o jif and only if Zic:L(c;l) < @, where caL(c-l)
denotes zero if ¢ = O, Moreover,

P(sup ¢ ;2. > x] ~ x%L(x) [.c%, as x + =, (2.1)

i1’
if there exist a constant & > 0, and a sequence of constants {ai) such
that Zai < ® and c?L(c;Ix)/L(x) 4 a, for all x> 6, i € I, 1In particular,
(2.1) holds if either of the following holds:
(a) Zici <o for some € € (0,a); ;
(b) Zic? <o and L(tx)/L(x) is uniformly bounded for all t > p, x > §, g

where p and 6 are positive constants.

Proof. We first show that sup ciZi <o a.s. if and only if | ch(c;I) < o,

It is obvious that in either case c, + 0 as |i] » . Thus for each x >0,
) Plc,2, > x] = )) c:L(c;lx) <o jif and only if [ ch(czl) < o by the limit
comparison test for series. The claim now follows from Theorem 2.1. Next

assume the existence of ¢ and (ai} as described. Then by Lemma 2.2 and

dominated convergence, ::
a, , -1 o
P(sup ¢,Z, > x] ! c.L(c;  x) '
il . i i '
lim o -llm——u-- 1,
X+ x.aL(x) )) N x+ L(x) } 4 j
proving (2.1). Suppose now (a) holds. Then it is obvious that c;l is
bounded away from zero, and thus there exist positive constants § and k N
“
b )

such that L(CIIX)/L(X) s kci-a for each x2 & and i € I. The conclusion
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follows since one can take a, to be kcg. (b) can be shown similarly,

concluding the theorem. O

For (Zi} and a sequence of nonnegative constants {ci} satisfying
either (a) or (b) in Theorem 2.3, define a ststionary sequence {Xj} by
Xj - suPiciZj-i’ j €1, (Xj} is similar in appearance to & moving average
sequence, and we shall see that the parallels in extremal properties between
the two are also interesting. It is worth noting that in some cases it may
be profitable to represent {Xj} in an "autoregressive form" (much as in the
case of regular moving average). For example, if c; = pi. i2 1, where pe€
(0,1) is a constant, then {Xj} can be defined recursively: X, =

J
max Z,Dx L)

3. Point Process Convergence

In this and the following section, some theory of point processes is
required. The reader is referred to [12] for details.

It follows from [13), Theorem 1.6.2 that there exist constants a >0
such that Pn[Zl s a;lx] + exp(-x-u), x > 0. Write vn(T) - a;l 1-1/0’ T>0,
n 21, and denote by v;l the inverse of Ve It is simply seen that for
each 1 >0, P[Z > vn(T)] ~1/n as n + =,

For each n 2 1, define a point process Nn on R X R;_- (—==,») x (0,®)
by Nn - Ija(j/n.v;l(xi))' wvhere 6(x,y) is the measure with a single unit
mass at (x,y). For simplicity of presentation, the normalization i is
used instead of the more traditional linear normalization so that (as we shall
see) Nn converges weakly to a homogeneous limit,

Closely related to N, ere the point processes N, N(k). k 2 1, defined

- 6 - (k) -
by N Ziij (Si'cjaTi)' N ziz|j|5k6(si-cjuTi) where the (Si’Ti) are

. ..
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[P
‘.‘
the points of a homogeneous Poisson process on R XR; with mean one, and, )
as a convention, the inner summations extend over the set of J for which :
<5 # 0. It is clear that N(k) converges to N a.s., and hence in c
L)
distribution. Xk
N
* Lemma 3.1. For n, k 2 1, denote by Nl(‘k) the point process with points !
(j/n, v'l( x ¢€.Z2..)), j€ 1. Then for each fixed k, N(k) converges in N
n Tifak 173 n ¥
distribution to N(k) as n tends to infinity. ¥
Proof. Let k be fixed. Write h for the mapping hu = Zizljlské(xi’cgayi) :.
if u=17p28 is a locally finite counting measure on R x R', -
i(xyy) + -j
h is a continuous mapping on the space of .ocally finite counting measures :_
on R X R; to itself. For n 2 1, denote by M the point process P
- - n
zié(j/n.vnl(zj))' It is well known (cf. [13), Theorem 5.7.1) that n, :
. converges in distribution to a homogeneous Poisson process on R X R_:_ .:'
with mean one. By the continuous mapping theorem (cf. [12], 15.4.2), .
) hnn 9. N(k). Therefore it suffices to show that Nr(lk) and hnn have the S
same limit, or, by Theorem 4.2 of [12], ta show that :
. (k) . .

m {P[Nn By=i, 1sms4]- P[(hn )B =i , 1 Sm 5 2]} =0 i
for each choice of £ 21, im 2 0, Bm € P where P denotes the semiring :f-
of sets of the form [a,b) X [c,d) in R X R;_. Since .
(k) . ®
lP[Nn By =iy 1 5mS28)-P[(hn)B =i ,1sms 2] >
. L (k) :-
s I PINSB 4 (hn)B), N

it suffices to show that 1lim P[N(k)B # (hn )B] = 0 for each B in P.
n-+o n n v
Let B = [a,b) X [c,d) be a set in P. Since v;l(cx) - c-av;l(x) for ;
-
¢,x > 0, the event [N'(‘k)B ¥ (hnn)B] occurs only if at least one of the .
.\




following events En,l' En.2' En,3 occurs:

En,l = [c(l)Zj > vn(d) for some j in ([na)-k, [na]-k+l, ..., [nal+k)],

En 2 = [c(l)Zj > vn(d) for some j in ([nb)-k, [nb]-k+1, ..., [nb]+k)],
En,3 = [c(l)Zi > vn(d) and c(l)Zj > vn(d) for some pair i,j in

(Ina], ..., [nb]) such that [i-j] s 2k],
where c¢(1) = max cj, and [x] denotes the integer part of x. By Boole's

inequality and the fact that P[c(l)Z1 > vn(d)] ~ (c(l))ad/n, we have

ﬁiﬂ {P(En’l) + P(En’z)} s 2(2k+1) ﬁiﬂ Plc(1)Z, > vn(d)] =0,

) , [nb] i
%12 P(En.3) s %ig ng[na] P[c(l)Zi > vn(d), c(l)Zj > vn(d) for some pair

i#3j in (m, m+l, ..., m2k-1)]

S Lin ([nb]-[nal+1) k(2k-1) P’[c(1)Z) > v,(&)] = O.

The conclusion follows. O
The main result of this section is the following.
Theorem 3.2. Nn converges in distribution to N as n tends to infinity.

Proof. Let Ngk) and P be as in Lemma 3.1. We have shown earlier that
Ngk) 4 N(k) as n+» for k=1,2,..., and that N(k) ] N as k + =,
By {12], Theorem 4.2, it suffices to show that
Lin lin (PINB =i , 1 Sm 58] - PINKIB =i, 15ms2]} =0
o g nm m n m m
for each choice of 2 2 1, im 2 0, Bme P, or as in Lemma 3.1, that
1im 1im P[N.B # N®¥)B] = 0 for each B in P. (3.1)
k4o Do n n

Suppose B = [a,b) x [c¢,d) is a set in P . The event [NnB ¥# Ngk)B] occurs
only if the event [Cizj—i > vn(d) for some i,j such that |i] > k, and

[na] s jJ s [nb]] occurs, the probability of the latter event being bounded

o e

at



» v

by ([nb] - [na] + 1) Z|i|>kP[cizl > vn(d)]. As n+ ®, the expression :'
tends to (b-a)d X|i|>kc:' which tends to zero as k tends to infinity by E
the choice of {Ci}' This proves (3.1). D f
4. Applications and Remarks E'
In general settings, the problems concerning weak convergence of point 5l
processes similar to Nn have been studied extensively. See, for example, .
[10,13,14].
Applying the continuous mapping theorem, a number of conclusions regarding
the extremes of (Xj} follow readily from Theorem 3.2. [4] demonstrates in EE‘
detail the manner in which this is done. Since no new ideas are involved, EE
the reader is referred there for details. However, the following is of some ::
special interest to us. .;
It can be shown easily that the Laplace transform functional (cf. [12]) E.
of N is LN(f) = exp{-foR;[l - exp(-%f(s,c}at))]dsdt} where f is a S
nonnegative and compactly supported function on R XIR;. This is consistent 3~
with the representation in [10], Theorem 4.7. For T > 0, the exceedance E
point process Aﬁr) on R studied in [11,15] consists of the set of points >
{j/n: je I, xj > un(r)}. Note that AﬁT)(B) -Nn(B x (0,1)) for each Borel ;
set B in R. VUsing arguments similar to those in Section 3 of [4], it is Ei
straightforward to show that for any choice of T > Ty > .o > Ty s
(Ang), ooy AﬁTk)) converges in distribution to (N(-X(O,Tl)), cesy N(-X(O,Tk))), E“
where the vectors are regarded as random elements in the‘product space of 33
spaces of locally finite counting measures on R. The distribution of 5
(N('X(O.Tl)). . N('X(O,Tk))) may be conveniently described (cf. {9]) by the E
functional Ei
L(Ey, oor £) = E expl=[g L;) € @NCX[0,7,))]
R
=
3
7 ‘e
o
e e U T S R e S S R



= E exp|- IR *R'{J lfJ(s)l(:«r)dN]

where fl' .o fk are nonnegative compactly supported functions on K.
Using the Laplace transform of N obtained earlier, it is seen that

L(f), ooy £,) = expl- ]R{u -exp(- 2 f (s)1 IM(i, ..y 4 )ds)

where the first summation extends over the set ((il,...ik):11z123..zlkzO.ll:I}.

(i, .., i) = max[0, min 1.c¢%(i.) - max 1%+ 1)]., and {c(i)} 1s a
1 k 1sjsk 3 1sjsk

rearrangement of {cj] with c(l) 2 c(2) 2 ... If k=1, L simply
reduces to the Laplace transform of a compound Poisson process on R.
The following comparison is interesting. Consider the moving average
= 21 %54 j € I, where the Zi are as before, and the ¢, are now

constrained by Iici <o for some € < min (l,a) so that Yl is a.s.

finite (cf. [4)). Then, as shown by [4], the point process in def

Ly (J/n, V (Y )) converges in distribution to the same limit as Nn does.

It would be interesting to see whether this parallel extends to more general

situations, for example, where the Zi have subexponential distributions

f. [16]). Y
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