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Consider a stationary sequence X. sup c.ZI

is a sequence of constants, and {Z.} a sequence of i.i.d. random

variables with regularly varying tail probabilities. For suitable

normalizing functions vI, v2, .. , the limit form of the two dimensional
-9 1

point process with points (j/n, vnl(X.)), j E I, is derived. The
n

implications of the convergence are briefly discussed, while the

distribution of the joint exceedances of high levels by {X.} is

explicitly obtained as a corollary.
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1. Introduction

Extreme value theory concerns the joint tail behavior and related

problems of random variables (r.v.'s). Recent emphasis has been the extension

of the classical theory, which considers independent and identically distributed

(i.i.d.) r.v.'s to the more general setting of stationarity. Progress has

been made on topics such as notions of asymptotic independence, general

extremal types theorems, studies of related point processes, etc. See [131

for a comprehensive account of the subject.

We are interested in the extremal properties of stationary sequences

whose members are certain functions of i.i.d. r.v.'s. In this direction,

[1, 4, 151 investigated moving average sequences under various assumptions.

Through the particular structure of the sequences, these studies provided

invaluable insights into the theory in general. In this paper, we consider

a stationary sequence [X.) consisting of the weighted suprema -- instead of

sums as in the case of moving averages -- of certain i.i.d. r.v.'s whose

tail probabilities are regularly varying. A sequence with this structure

may be used to model random exchanges (cf. [7, 81), and is a useful tool in

studying multivariate extreme value theory (cf. [5]).

In Section 2 we introduce some general results concerning the asymptotic

tail behavior of the supremum of independent r.v.'s, and consider the marginal

of [X.} as a special case. Section 3 contains a main result Theorem 3.2,

which is a limit theorem of certain point processes defined for {X.

Section 4 discusses the application of Theorem 3.2, and its connection with

some related results. The distribution of the joint exceedances of high

levels by [X.1 is also derived.
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2. Framework

We first summarize some relevant facts concerning the tail behavior of

the supremum of independent r.v.'s. Unless otherwise stated, assume that

each sequence mentioned, random or nonrandom, is indexed by the set of

integers I.

Theorem 2.1. Let (Y be a sequence of independent r.v.'s. Then sup Y.

Go a.s., or - O a.s. Furthermore, sup Yi < - a.s. if and only if

1i P[Yi > x] < - for some x < -.

Proof. As is shown in 131, Theorem 1, the claims follow readily from the

zero-one law, and the Borel-Cantelli Lemma. 0

Lemma 2.2. Let (Y.) be a sequence of independent r.v.'s. Suppose that1

sup Y converges to X a.s.. and that 1[X < x I where x0 - sup(u:

PIX I u) < 1}. Then PIX > u] ~ [iP[Yi > u] as u + x.

Proof. Write f(y) = -log(1-y)-y, Y E [0,1). It is simply seen that

f(y) Z 0, and f(y) y2 /2 as y 0 0. The assumption PIX < xo] - 1 implies

that there exists an x such that 0 < P[X > u] < 1, u E [xX 0 ), and therefore

that P[Yi > u] < 1, u E [x,x 0 ), i E I. Hence

JiP[Yi > u] 5 -ilog P[Yi A u) - -log P[X auJ
P

P[X > u] + f(P[X > u]), u e [XX 0 ).

By this and Boole's inequality,

0 1 XiP[Y i > u] - PlX > u] 5 f(P[X > uJ), u E [XXo).

Since x0  is not an atom, P[X > u] * 0 as u + xO. This concludes the

proof. 0

Let (Z1) be a sequence of i.i.d. r.v.'s whose tail probabilities are

2
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regularly varying at as with index -a. a > 0; i.e. P[Z 1 > z] z-4L(z).

z > 0, where L is slowly varying (cf. [6)). To avoid trivialities, assume

that the Zi are positive and unbounded above. The following result is

similar to 12], Lamm 2.2 (ii).

Theorem 2.3. Let (ci be a sequence of nonnegative constants with sup ci >

0. Then sup ciZ i <- if and only if 1 ic-L(cl) < -, where c-%(c - 1)

denotes zero if c w 0. Moreover.

P~sup ciZ1 > x) - x L(x) Licu, as x 4 O, (2.1)

if there exist a constant 6 > 0, and a sequence of constants (a.) such

that Ia < -, and coIL(c lx)/L(x) S a for all x > 6, 1 e I. In particular,
1 i i

(2.1) holds if either of the following holds:

(a) ci < c for some C E (Oa);

(b) Xic' < - and L(tx)/L(x) is uniformly bounded for all t > P. x > 6,

where p and 6 are positive constants.

Proof. We first show that sup ciZ i < - a.s. if and only if I c L(ci 1 ) < C.

It is obvious that in either case ci -. 0 as lii - -. Thus for each x > 0, "

P[ciZ i > x]- ccici) < if and only if I cIL(ci 1 ) < by the limit

comparison test for series. The claim now follows from Theorem 2.1. Next
-"

assume the existence of 6 and (ai  as described. Then by Lemma 2.2 and

dominated convergence,

P[sup CZ i > cL(c x)
ca llim a  1,

-1 :I
proving (2.1). Suppose now (a) holds. Then it is obvious that c. is

bounded away from zero, and thus there exist positive constants 6 and k

such that L(Clx)/L(x) s kc Q for each x a 6 and i E I. The conclusion
i.

3
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follows since one can take ai  to be kcC. (b) can be shown similarly,

concluding the theorem. 0

For (Zi) and a sequence of nonnegative constants {ci satisfying

either (a) or (b) in Theorem 2.3, define a ststionary sequence {X.} by

Xj = supiciZ j_, j E I. (X) is similar in appearance to a moving average

-. sequence, and we shall see that the parallels in extremal properties between

the two are also interesting. It is worth noting that in some cases it may

be profitable to represent {X.) in an "autoregressive form" (much as in the

case of regular moving average). For example, if c. - P i & 1, where P E1

(0,I) is a constant, then {X.) can be defined recursively: X -J j

max(ZjPXj-.

3. Point Process Convergence

In this and the following section, some theory of point processes is

required. The reader is referred to [12] for details.

It follows from [13], Theorem 1.6.2 that there exist constants a > 0* n

such that pn[Z I  a- I x exp(-x) x > 0. Write v (T) - a- T > ,
I n - n n

n 9 1, and denote by vn the inverse of v n. It is simply seen that for

each T > 0, P[Z > vn(T)l ~ T/n as n - -.

For each n & 1, define a point process Nn  on R x '= (-R,1) x (0,-)

by Nn = 6 -(j/n,v1(x where 6(xy) is the measure with a single unit

mass at (x,y). For simplicity of presentation, the normalization v is

used instead of the more traditional linear normalization so that (as we shall

see) Nn converges weakly to a homogeneous limit. (k )

Closely related to Nn are the point processes N, N k 9 1, defined

by N - j 6 -T N(k). i l6 -a where the (Si,T.) arebyN [ 6(Si,cj Ti)' Ijt~k(Si,c Ti)

| 4



the points of a homogeneous Poisson process on ]x R ' with mean one, and,
+

as a convention, the inner summations extend over the set of j for which

c 0. It is clear that N(k) converges to N a.s., and hence inJ
distribution.

Lemma 3.1. For n, k a 1, denote by N(k) the point process with points
n

(j/n, vn1 (max c.Z )) j e I. Then for each fixed k, N(k ) converges inn [ilik i j-i n

(k)
distribution to N as n tends to infinity.

Proof. Let k be fixed. Write h for the mapping hU = I lljl&6(x -a

if 11 = i6(is a locally finite counting measure on P x R.

h is a continuous mapping on the space of iocally finite counting measures

on x F' to itself. For n Z 1, denote by qn the point process
+zn

,6 (j/n,v -  
. It is well known (cf. [13), Theorem 5.7.1) that rn

n (
converges in distribution to a homogeneous Poisson process on P x F'

with mean one. By the continuous mapping theorem (cf. [12], 15.4.2),

h n I N(k). Therefore it suffices to show that N(k) and h n  have the

nn n

same limit, or, by Theorem 4.2 of [12), to show that

lim {P[N(k)Bm = im, 1 1 m S X] - P[(hn )BE - im , 1 9 m 9 X]1 = 0

for each choice of £ a 1, i & 0, B E P where P denotes the semiring
m m

of sets of the form [a,b) x [c,d) in I x I. Since

I~(k)k)

)PN~)B =i m  1 5 m S t] - P[(hqn)Bm = im 1 5 m S 1)

E P[N 1 )B 0 (hn)B]
i=1 n m n V.

it suffices to show that lira P[ (k)B 0 (hn )B 0 for each B in P
n- n n

Let B - [a,b) x [c,d) be a set in P. Since v1 (cx) c-v (x)for
n n

c,x > 0, the event [N~k)B $ (hBln)B] occurs only if at least one of the

n5n

5 .
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following events En,u, En,29 En,3 occurs:

En, 1 = [c(1)Z. > V n(d) for some j in ([na]-k, [na]-k+l, ... , [na]+k)],

En,2 = [c(1)Z. > V n(d) for some j in ([nb]-k, [nb]-k+l, ... , [nb]+k)],

En, 3 = [c(1)Z i > V n(d) and c(1)Z. > V n(d) for some pair i,j in

([na], ... , [nb]) such that li-jl i 2k],
where c(1) - max cj, and [xl denotes the integer part of x. By Boole's

inequality and the fact that P[c(1)Z I > V n(d)] - (c(1))ad/n, we have

lim {P(En) + P(E 2(2k+1) lim P[c(1)Z I > Vn(d)] = 0,
ii- n,l n,2 nm

lim P(En) I nm [nb] P[c(1)Z. > vn (d), c(1)Z. > Vn(d) for some pair
n,3 n" m-[na] 1 n

i , j in (m, m+l, ... , m+2k-l)]

1 lim ([nb]-[na]+l) k(2k-1) P2[c(1)Z > v (d)] = O.
1 n

The conclusion follows. o

The main result of this section is the following.

Theorem 3.2. Nn  converges in distribution to N as n tends to infinity.

Proof. Let N(k) and P be as in Lemma 3.1. We have shown earlier thatn

N(k) I N(k) as n for k - 1,2,..., and that N(k) I N as k .n

By [12), Theorem 4.2, it suffices to show that

lim lim (P[N B = i, 1 9 m I L] - P[N(k)B i , 1 S m £]} - 0
k-Mm nm m n m m

for each choice of 1 1 , i a 0, B E P , or as in Lemma 3.1, thatmm

lim im P[N B N(k)B] - 0 for each B in P. (3.1)
k-n-o n n

Suppose B = [a,b) x [c,d) is a set in P . The event [NnB 4 N(k)B] occurs

only if the event [c . > v (d) for some i,j such that jil > k, andonl iftheevet[i j-i n

[na] s j s [nb]] occurs, the probability of the latter event being bounded

6 S
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by (nb] - [na] + 1) Z Pc Z > v (d)J. As n , the expression

tends to (b-a)d jij>kci, which tends to zero as k tends to infinity by

the choice of {c,). This proves (3.1). 0

4. Applications and Remarks

In general settings, the problems concerning weak convergence of point

processes similar to Nn  have been studied extensively. See, for example,

[10,13,14].

Applying the continuous mapping theorem, a number of conclusions regarding

the extremes of {X.1 follow readily from Theorem 3.2. [4] demonstrates in .

detail the manner in which this is done. Since no new ideas are involved,

the reader is referred there for details. However, the following is of some

special interest to us.

It can be shown easily that the Laplace transform functional (cf. [12])

of N is L N(f) exp{-f R, [1 - exp(- f(s,cTt))]dsdt} where f is a

nonnegative and compactly supported function on I x P'. This is consistent .S
+ "

with the representation in [10], Theorem 4.7. For T > 0, the exceedance

point process A(T) on P studied in [11,15] consists of the set of points
n

{j/n: j E I, X. > Un(T)). Note that An ) Nn(B x (0,T)) for each Borel

set B in P. Using arguments similar to those in Section 3 of [4], it is

straightforward to show that for any choice of 1 > 2 > ... > k

(A Tl) A(Tk)) converges in distribution to (N(.X(oT 1)) , N(-x(O,k))),n n k ILI

where the vectors are regarded as random elements in the product space of

spaces of locally finite counting measures on R. The distribution of

(N(x(O,i) .. N('x(0,Tk))) may be conveniently described (cf. [91) by the

functional

l' " fk E exp[-ft JjfifdN(*x[O,) M

7 "



- E expl-fXx , .1fj(s)l(t< T)dN]

where fl, ... fk are nonnegative compactly supported functions on F.

Using the Laplace transform of N obtained earlier, it is seen that

L(f , -.., f )  a exp--f _ jk f (s)i- ) i"( ,-., )ds

where the first summation extends over the set {(i....ik):il?1 2>.. k O,1l I,

Ti,.. )-max[O0, min T.c a(i )- max T.c a(i.+ I)]. and {c(i)) is a
l1j"k 1 3 J

rearrangement of {c ) with c(1) a c(2) a ... If k - 1, t simply

reduces to the Laplace transform of a compound Poisson process on ]R.

The following comparison is interesting. Consider the moving average

Y. ic i Z.., j E I, where the Z. are as before, and the c. are nowJ i i ' i 1

constrained by L.c E < - for some c < min (1,a) so that Y is a.s.

finite (cf. [41). Then, as shown by [4], the point process N def
n

(J/n, v(y.))converges in distribution to the same limit as N does.
j n Vn Yi) n

It would be interesting to see whether this parallel extends to more general

situations, for example, where the Z. have subexponential distributions

(cf. [161).
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