
HIRDRE4 DESCRIPTIVE L&L. (U) RIR FORCE INST OF TECH
UNCLRSS I XO RHT-PTTERSON RFD 0ON SCHOOL OF ENGS! N L LYNCH
WIASIFED DEC 86 RITCS/ENG/860-15 F/O 9/2 M.

7m EE97 HL(VS(EE ISEhENEONE hEEUIS) i

mhhmhhhhl

L~in'~M

I WROY~SI tAJTNQ TESt CWMT

IF 0
0 !

2$, -DTIC

APR 15 W

N D

I

I Pprved So, publi relase

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

[AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

L 87 4 15 05'
r -~ P9. P U X~.

REPORT DOCUMENTATION PAGE o. 070"oIN

II. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

s 1 T 3. DISTRIUTION /AVAILASIUTY OF REPORTam. CLASSIFICAOWNAUORAINY Approved for Public Felease;
W. DCLASSIiCATION I DOWN ING SCHEDULE Distribution tklimited

, PIRPORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFWT/XCS/W36D-15
" NAME Of PEORMING ORGANIZATiON 6b. OFFICE SYMBOL 74. NAME OF MONITORING ORGANIZATION

SchIool of EngiraseriNg j i *P'"'bk

GL ADOESS (Chy, St50, ad WCod!) 7b. ADDRESS (Ol, Stat. Wd ZP Code)

Air Force Iwtite Of echrwlogY
Wright-Patterson A B CHI 45433-6583

NAME OF FUNDING ISPONSORING $b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION jO pcbs

k. ADORESS (Kty, Stat. and Zi Cod) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK IWORK UNIT
ELEMENT NO. NO. No CCESSION NO.

b 11. TITLE 0'clude Security ClAsaifcaia)

VHDL Prototype Silator

12. PERSONAL AUTH)
William L. Lvnd M& ?-Or. USA

13. TYPE OF REPORT 13b TIME COVERED I. DATE OF REPORT (Vow, Motk. DO) IS. PAGE COUNT

16. SUPLEMENTARY 1RMTATIN___ TO 86 1 129

17. COSATI CODES lo. SUBJECT TERMS (Conine on rVeWeM if ecmair and W dmnt-* by block number)

FIELD GROUP SUB-GROUP VEIL

09 02 Simlator Simulation Model HAW1hW Description Languaqe

19. ABSTRACT (Cown on rever/ if necemry and identify by block number)

Thesis Advisor: Harold Carter 'v .. " b"- *

Air Force Ist i.t et lech olaLqCT %1

Wzightlwzos.n A.'s Qil 4

,pjl tEzet IRE l YJ ,

20. DISTRIBUTION IAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
gUNCLASSIFIEDIJNLIMITED r- SAME AS RPT.] OTIC USERS UNCLASSIFIED

22. NAME OF RESPONSIBLE INDIVIDUAL 122b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Professor Haold Carr. 11-255- C;T I AwTrT'

D Form 1473, JUN 6 Prevous edffto are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

Abstract

This research effort studied, modeled and
implemented a prototype simulator kernel for VHDL in a
UNIX environment. The prototype simulator was written
in the C programming language. The detailed design of
the prototype simulator includes an installation guide, I
users manual, and design description. The simulation
program, called "VSIM" for VHDL Simulator, does not
support the full capabilities of VHDL. It implements
the simple signal assignment statement and models
transport and inertial delay. Requirement
specifications are given for both the prototype and a
fully implemented VHDL simulator.

AFIT/GCS/ENG/86D-15

AR15 87)

D

VHDL PROTOTYPE SIMULATOR

THEISIS

William Leo Lynch Jr.

Major, USA

AFIT/GCS/ENG/86D-15

Approved for public release; distribution unlimited

AN r /GCS/ENG/86 D- 15

VNDL PROTOTYPIT SIMULATOR

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Systems

Accesiori For
NTIS -CRA&I
DTIC TAB {_

Uiia I o ' - d ced

William Leo Lynch Jr. By
Di t ib ti -.,

Major, USA --
Av,iluL.,y (r"e

-; or

December 1986 Di,,t j'CI

Approved for public release; distribution unlimited

-S

Preface

This thesis was primarily concerned with the

development of a prototype simulator kernel for VHDL that

operates in a UNIX environment. The program implements the

3major basic functions of VHDL using the C programming
language.

The prototype provides proof of design concept and

establishes a baseline for the continued development of a

simulator in the AFIT VHDL environment. It also provided a

unique opportunity to study hardware simulations, hardware

description languages (VHDL) and the UNIX Operating System.

It was a tremendous learning experience in both software

design and engineering.

I want to express my appreciation to those many people

- fellow VHDL group members, thesis committee members and

special friends - who contributed so much to making this

effort successful. My sincere thanks and gratitude to

Professor Hal Carter, my thesis advisor, who made it all

possible by suggesting this project and through the

guidance, support and encouragement he provided throughout

the project.

I want to especially thank my wife, Elia, and children,

Bernadette and Vicente, for their unrelenting support and

encouragement. Most importantly I am deeply indebted to

ONi

p
6'-

them for their understanding in once again enduring the

hardships of a prolonged separation.

I Finally, my words of praise would be incomplete without

mentioning, Linda Burnett, my typist, who spent many long

hours often on short notice typing this thesis and

deciphering my cryptic handwriting. Thank youl

iii

Table of Contents

Page

Preface .. ii

List of Figures viii
Abstract .. x

1. Introduction 1

1.1 General 1
1.2 Background 3
1.3 Summary of Current Knowledge 8
1.4 Problem Statement 9
1.5 Scope 10
1.6 Approach 10

1.7 Assumptions 11
1.8 Sequence of Presentation 11

II. Requirements Definition 13

2.1 General 13

2.2 Requirements for a Fully
Implemented Simulator 13

2.2.1 Scope 13
2.2.2 Compatibility 13
2.2.3 Flexibility 14
2.2.4 Input Test Vector File 14
2.2.5 Interactive Capability 15

2.2.5.1 Breakpoint 15
2.2.5.2 Time Selection 15
2.2.5.3 Content and Format of

Test Reports 16

2.2.6 Multiple Drivers 16
2.2.7 Delay 16
2.2.8 Networks 17
2.2.9 Abstraction Capability 17
2.2.10 Steady State 18

2.3 Requirements for the Prototype Simulator ..18

2.3.1 objective 18

2.3.2 Requirements Definition 19

iv

LNAS

7I
2.3.2.1 Program Description 19
2.3.2.2 Functional Requirements 20

32.3.2.2.1 Approach 2
2.3.2.2.2 VSIM Created Structures

and Functions........2
2.3.2.2.3 Simple Assignment

Statements 22
2.3.2.2.4 Blocks22
2.3.2.2.5 Processes * 22
2.3.2.2.6 Data Types 22
2.3.2.2.7 Single Drivers 23
2.3.2.2.8 Input Test Vector File 23
2.3.2.2.9 Interactive Capability 23
2.3.2.2.10 Timing 2
2.3.2.2.11 Error Checking 25
2.3.2.2.12 Initialization.........26

2.3.2.3 Implementation Requirements 26

2.3.2.3.1 The UNIX Environment 26
2.3.2.3.2 The C Programming Language .26
2.3.2.3.3 System 26

2.3.2.4 Performance Requirements 26

Ill. System Design 29

3.1 General 29
3.2 System Overview29
3.3 Main Program 32

3 .3 .1 Tr an sl1ate VI A 3 2
3.3.2 Sim Initialize 32
3 .3. 3 Simulate 34

3.4 Translate VIA 3

3.5 Sim Initialize 3

3.5.1 Create Signals 3
3.5.2 Get Input Signals 42
3.5.3 Get Input Vectors 4
3.5.4 Input Vector File 43
3.5.5 Open Out Report 45

3.6 Simulate 45

3.6.1 Sim Clock 45

3.6.2 Pop Trans 45

v

t.-N
L

3.6.3 Process Fanout.....................4
3.6.4 Get Input Vectors 47
3 .6 .5 Convert 4753.6.6 Close Out Report 47

IV. Detailed Design 48

4.1 General................48
4.2 Design Goals............................ 49
4.*3 Design Procedure50
4.4 Function Descriptions o..52

4.4.1 Main ooo 52
4.4.2 Sim Initializeo.....o..........54
4.4. 3 Create Signal...........o........55
4o4.4 Get Input Signals .. o .o...56

4.4.5 Get Input Vectors-- o57
4o4.6 New Signal o... .oo ...- 58
4.407 Create Driver....... -oooo oo...-60
4.4.8 New Driver........ o- -- 61
4.4.9 Create Fanout 61
4.4.10 New Fanout.............63
4.4.11 Simulate 6

4o4.12 Debug Control- o.....66
4.4.13 Pop Tran s-.......... 68
4.4.14 Updateq 69
4.4.15 Create Eventq W .7
4o4.16 Process Fanout...............71
4.4.17 Behavioral Functions o....o.....72

~4.4.1 Post Trans o................73

V. Analysis and Results....................76

5.1 General -76

5.2 VSIM Design 77
5.3 VSIM Function........ 7

5.3.1 operation .*t7

5.3.2 VHDL Implementation...........o....79
5.3o3 Interactive Capability..............79
5.3.4 Error Checking -- o.o...o... 79
5.3.5 Program Size- 80

5o4 Program Results o.... o.80

5.4.1 Designs Simulated.oo........o........80
5.4.2 Program Correctness........... 82
5.4.3 Transaction Queue Size...........-84
5.4.4 Simulation CPU Time.........8

vi

5.4.5 Events Processed 87
5.4.6 Transactions 89

5.5 Summary 92

VI. Conclusions and Recomntations 93

6.1 General 93
6.2 Conclusions
6.3 Recommendations 94

6.3.1 Parallel Development 95
6.3.2 Translator 95
6.3.3 Efficiency 95
6.3.4 Runtime Control 95
6.3.5 Report Capability 96
6.3.6 IEEE Standards 96

6.4 Summary 96

Bibliography .. 97

Appendix A Installation Guide 99

Appendix B Users Manual 103

Appendix C Sample Input Vector File 107

Appendix D Sample Signal Data File 108

Appendix E Sample Driver Data File 109

Appendix F Sample Fanout Data File 110

Appendix G Sample Output Trace File 111

Appendix H VSIM Validation 114

Appendix I Results 119

Vita ... 129

vii

I!

Figure List

Page

1-1 AFIT VHDL Environment 6

2-1 Engineering Analysis vs Design
Verification Systems 27

2-2 Precompilation Trade-off Graph 28

3-1 VHDL Simulator30

3-2 VSIM 33

3-3 Simulation Process 36

3-4 Translate VIA 38

3-5 Sim Initialize 40

3-6 Data Structures 41

3-7 Sample Input Vector File 44

3-8 Simulate ... 46

4-1 VSIM Hierarchy 51

4-2 Main .. 52

4-3 Sim Initialize 54

4-4 Create Signal 55

4-5 Get Input Signals 56

4-6 Get Input Vectors 57

4-7 New Signal 59

4-8 Create Driver 60

4-9 New Driver 61

4-10 Create Fanout 62

viii

4-11 New Fanout -63

4-12 Simulate 64

4-13 Debug Control o oo... 67

4-14 Pop Trans - -68

4-15 Updateq oano..69

4-16 Process Fanout o 71

4-17 Behavioral Functions 72

4-18 Post Trans 74

5-1 Test Circuits o....... 81

5-2 Transaction Queue Size 83

5-3 Simulation CPU Time 85

5-4 Events 88

5-5 Total Transactions Processed 90

5-6 Transactions Created91

ix

Abstract

This research effort studied, modeled and implemented a

prototype simulator kernel for VHDL in a UNIX environment.

The prototype simulator was written in the C programming

language. The detailed design of the prototype simulator

includes an installation guide, users manual, and design

description. The simulation program, called YSIM' for VRDL

Simulator, does not support the full capabilities of VRDL.

It implements the simple signal assignment statement and

models transport and inertial delay. Requirement

specifications are given for both the prototype and a fully

implemented VHDL simulator. i L.

II

II

-4-

VHDL PROTOTYPE S1MULATORIi
I. Introduction

1.1 General

The function, speed and performance that can be

achieved from a single integrated circuit has increased

greatly in recent years due to the rapid advancement in

silicon fabrication technology. The increasing functional

capabilities of integrated circuits have necessarily been

accompanied by increasingly complex circuit designs which

limit the individual designer's ability to fully understand

the circuit design. This trend toward ever more complex

designs, especially in very large scale integrated circuits,

has necessitated the use of design teams in the development

of very large scale integrated circuits. The design team

concept has created the problem of how to communicate design

information concisely, accurately, and efficiently.

One method used to describe and model electronic

circuits is the formal language approach, commonly known as

Hardware Description Languages (HDL). Most HDLs in use

today were developed when integrated circuit function was

limited to small and medium scale circuits. Unfortunately,

these languages are not adequate for the designer's needs in

the development of today's state-of-the-art very large scale

and very high speed integrated circuits (VLSI, VHSIC). To

keep pace with the development of increasingly more complex

integrated circuit designs, new software tools need to be

developed that can model and simulate complex integrated

circuit designs in a concise and timely manner.

Computer aided design is an important tool in the

engineering design process. Sophisticated computer programs

are now widely used to accomplish the menial and time

consuming tasks associated with hardware developments. The

design of digital logic circuits has been aided and improved

by the use of modern computer simulation techniques.

Hardware simulators are used today in government, industry

and education to build and exercise models of a digital

5circuit on a computer. These programs range from simple

simulation routines to highly sophisticated and complex

program systems.

* A hardware simulator* allows the designer to take a

high level design and exercise its operations. Through the

As used throughout this thesis, a hardware simulator is
one that simulates, usually before construction, hardware
designs.

2

use of a simulator, the designer can create a software model

for a network, exercise the model with a set of inputs and

observe the output of the network at various test points.

The response of the simulator in terms of predicted signal

* values versus time should closely correspond with the

response of the actual circuit modelled to be of practical

value (1:63).

Most design projects use only one type of hardware

simulation: gate-level logic simulators. Logic simulation

is an especially invaluable tool for VHSIC class circuits

since design errors are very costly and breadboarding is

impractical (1:63).

1.2 Background

State-of-the-art developments in the electronics

industry of the 1960's were driven by the needs of the

military. Industry was encouraged to pursue Department of

Defense (DOD) business since integrated circuits being

developed for the military were also of sufficient general

purpose to be applicable to commercially marketable

5 products. In this environment, private industry benefitted

from DOD's research and development expenditures. This is

no longer the situation since the DOD share of the total

integrated circuit market has decreased to approximately

twenty percent. The military is no longer the major user of

3

advances in semiconductor technology. It has become one

user among many, and its impact upon the semiconductor

industry has decreased. Additionally, DOD has increasingly

sought more complex and special-purpose integrated circuits

which has moved DOD into an increasingly specialized sector

of the marketplace (2).

The divergence of military and civilian applications -

the military's desire for high speed signal processors

*versus the more general purpose processors required for

commercial use - caused DOD planners to believe that

industry could not be expected to develop integrated

circuits for military use in a timely manner (3). As a

result, the DOD established the Very High Speed Integrated

Circuit (VHSIC) technology development program in 1980 to

encourage the development of integrated circuit technology

for military uses. DOD's hope was that once the technology

became available, civilian applications would be found that

would complement future military needs, thereby further

stimulating research and development. The major goals of

the VHSIC program are: 1) to develop the technology

necessary to produce submicron devices; 2) to increase

processing throughput; and 3) to formulate the new circuit

design methodologies and computer aided design (CAD) tools

required to make maximum use of the new technology

(4:94-102).

4

The advantages gained in the reduction of system size,

weight, and power requirements through VHSIC class

integrated circuits over current technology is expected to

both reduce the cost and increase the reliability and

maintainability of new electronic systems. Current plans

also call for the use of VHSIC technology in upgrading

existing weapon systems (4:94). It is envisioned that one

VHSIC chip could have 250,000 or more logic gates. The

complexity of design and associated high cost require the

design validation of VHSIC chips prior 6-n manufacture.

Because the available simulation languages did not have

the capabilities to adequately model VHSIC class chips, the

VHSIC Program Office at Wright-Patterson AFB funded the

development of a VHSIC Hardware Description Language (VHDL)

to meet current and projected VHSIC application needs and to

facilitate the transfer of VHSIC technology. Based on Ada,

VHDL incorporates such VHSIC specific requirements as

portability, maintainability, timing and the ability to

hierarchically model and simulate designs.

The VHSIC Program Office is sponsoring research at the

Air Force Institute of Technology (AlIT) to develop a

3 UNIX-based VHDL system called the AFIT VHDL Environment

(AVE). A simulation tool driven by VIA, the AFIT

intermediate format, which is the central data base for AVE,

is a part of the APIT VHDL effort. The purposes of the

simulator are to assist the VHSIC Program Office's

I
I
f4

evaluation of VHDL for clarity of syntax, and to verify ease

of use for the designer in describing VHSIC class chips.

INPUT RUNTIME

HARDWARE UTPUT
31IMULATOR'

VHL VHDL VIA COPL

SOURC EXECUT

COMPILER INTERMEDIATE GENERATE

FORM SIMULATOR PARALLEL

CODE IUAO1

EXECUTE

Figure 1-1 AFIT VHDL Environment

Figure 1-1 shows the relationship of this thesis, the

development of a hardware simulator (highlighted), to the

AFIT VHDL research effort. Research at AFIT is directed at

developing a system using as input the VHDL language. The

6

• " , " " ",', " " " " " "' h

gU

system is being designed to assist engineers in academia in

I the specification, design and validation of hardware

components and systems. Although nonportable to other than

the UNIX operating system, the goal of the system is to

operate fast and provide the full capabilities of the

language as envisioned by the U.S. Air Force and the

Institute of Electrical and Electronics Engineers (IEEE)*.

The system will ultimately contain the tools for simulation,

timing analysis, microcode retargeting and both silicon

formulation and other forms of hardware synthesis.

Several research efforts were conducted concurrently

with the one reported here. They are: 1) a "VHDL Language

Analyzer," by Captain Deborah J. Frauenfelder whose purpose

was to design and produce a prototype VHDL Language Analyzer

which will provide the capability required to function as a

front end processor for a hardware simulator in the design

and development of VHSIC class chips (5) (See Block 1 in

Figure 1.1), and 2) a "VHDL Hardware Simulator Using

Parallel Processors," by Captain Michael S. Kamrowski whose

purpose was to design and implement a simulator which runs

on a parallel hardware simulator (6). It is shown as Block

5 in Figure 1-1.

At this writing, IEEE is attempting to standardize VHDL.

7

V.|

1.3 Summary of Current Knowledge

The technological development of Hardware Description

Languages began as early as 1939, when Shannon used a form

of what is now considered hardware description language

while working on switching circuits (7). The use of HDL's

is not uncommon, as Lipovski noted in a special IEEE issue

on HDL's. He observed that whenever someone developed a

circuit simulator they felt apparently compelled to also

develop a HDL to drive it rather than learn and adapt an

existing HDL to their application need (8). Many prominent

researchers have called for the development of a general

purpose HDL (7). The problem has been that although many

HDL's were adequate for specific purposes, none were

entirely satisfactory over the range required for a large

hardware design project.

In the early 1970's, the DOD directed the development

of the Ada programming language in an effort to incorporate

the features of modern high level programming languages and

software engineering concepts such as structured

programming, information hiding, data abstraction and

handling, and real time control. This effort resulted in

the designation of Ada as the standard DOD high order

language (9). Similarly, while analyzing the problem of how

to concisely communicate design infomation on integrated

circuits containing upwards of 250,000 logic gates, the

8

1.

VHSIC program office decided that the basic concepts and

3 constructs implemented in Ada could also support a new HDL.

Now in its final development, VHDL uses Ada as a guide, and

incorporates the VHSIC specific requirements of portability,

maintainability, timing, and the ability to hierarchically

model and simulate integrated circuits. Generally, VHDL

constructs supported by Ada are required to use Ada syntax.

A detailed discussion of the interrelationships between VHDL

and Ada can be found in the VHDL Design Analysis and

Justification Report (10).

1.4 Problem Statement

A need exists for a VHDL Simulator to be an integral

component of the AFIT VHDL Environment. As an important

first step in creating a full simulation capability for the

AVE, a prototype simulator kernel will be designed and

implemented. The function of the kernel simulator will be

to initially assist in the development and analysis of the

VHSIC Hardware Description Language's suitability and

effectiveness in modeling integrated circuits of the VHSIC

class. Upon completion of the development phase of VHDL,

the fully implemented simulator would permit the designer to

check the validity of a VHDL description for a circuit

design.

1.5 Scope

The purpose of this research effort is to study, model

and create a prototype simulator kernel for VHDL in a UNIX

environment. The interface required between the

intermediate form VIA FILE and the simulator will be

specified but not designed or implemented. The prototype

simulator will not support the full capabilities of VHDL:

however, a follow-on research effort is expected to develop

the translator (preprocessor) which will set up the

simulator from a VIA FILE and complete the development of

the simulator itself. The detailed design of the prototype

simulator presented here includes an installation guide,

users manual, design description, and source code for that

part of the design which has been implemented.

1.6 Approach

This research effort was conducted in three phases.

Phase One consisted of a literature review of available

material on hardware description languages and simulators.

Phase Two required learning the syntax of VHDL and its

constructs and capabilities. A thorough understanding of

VHDL was essential for the design and implementation of the

VHDL Simulator. Phase Three, comprising the majority of the

effort, consisted of defining the requirements for the

10

simulator and designing and implementing the prototype

simulator.

1.7 Assumptions

The VHDL Simulator is designed to run on a computer

with a UNIX Operating System. For this reason, the C

programming language was chosen to implement the simulator.

A UNIX-based VHDL system may assist in overcoming some of

the inefficiencies inherent in an Ada-based implementation.

1.8 Sequence of Presentation

Chapter Two gives specific requirements for the

UNIX-based VHDL simulator. The general simulator

requirements are presented, the operating environment is

established, alternative approaches of implementing the

simulator are discussed, and the tradeoffs inherent in each

of the approaches are examined.

Chapter Three presents the general system desig,, and

explains the basic algorithm of simulation.

Chapter Four describes the detailed design of the

simulator. A detailed description of the simulator

structures, program modules, input parameters and output

report is presented.

W7

Chapter Five presents the results produced from

N exercising the simulator with test stimuli and provides an

analysis of the results.

In Chapter Six the conclusions gained from this

research are presented and recommendations for further

research and development are offered.

12

S

II. Requirements Definition

2.1 General

The purpose of this chapter is to present the project

objectives and the functional, implementation and

performance requirements for a prototype VHDL simulator.

The general requirements for a fully implemented simulator

are presented first followed by the specific requirements

for the prototype simulator developed which is the objective

of this thesis.

2.2 Requirements for a Fully Implemented Simulator

2.2.1 Scope. The complete simulator must be able to

simulate the entire scope of VHDL. The simulator must read

a file of test data, and record some or all of the signal

values generated during the simulation. The simulator will

obtain the simulation control information, design

description, test data and test setup from the VHDL

Intermediate Access (VIA) format.

2.2.2 Compatibility. The Simulator must be compatible

with VIA, the intermediate format currently being designed

13

for use with the AFIT UNIX VHDL system. Since the simulator

5is being designed and developed to operate in the UNIX

Environment, the C language is the language of choice.

There should be no difficulty in converting from VIA to C

since the mapping is largely one to one. The translation

from VIA to C is more easily achieved than with a strongly-

typed programming language due to C's flexibility. C

routines are created from VIA constructs and combined with a

simulator run-time library. After compilation by the C

compiler, the resulting simulator is executed.

2.2.3 Flexibility. The simulation program will

require the flexibility to adapt to the differing designs of

individual users and to adapt to changing technologies. The

flexibility required cannot be satisfied by reprogramming.

For this reason the hardware logic primitive constructs are

provided through behavioral functions and architectures from

VIA (11:2-5).

2.2.4 Input Test Vector File. The simulator must

provide the user with the ability to describe the test data

streams necessary to stimulate the design under simulation

and verify that the outputs produced are correct. The test

vector file should allow the user to specify the time, input

data stream and variables that are to be associated with the

14

signals during the simulation. The user should also be

allowed to define test data initialization values.

2.2.5 Interactive Capability. The user should be

provided the capability to provide interactive input to the

simulation. This should include the ability to describe

test data, establish breakpoints, select the simulation time

period, and specify the content and format of test reports.

This interactive capability should be both by input file and

from the command line.

2.2.5.1 Breakpoint. The breakpoint function

allows the user to specify the events or the frequency when

a breakpoint is to occur. When a breakpoint is specified,

the simulator must output to a file the required data and

then restart under user control the simulator operation, at

the point of interruption, as if no stoppage had occurred.

2.2.5.2 Time Selection. The user should be able

to define the time period over which the simulation is to be

run relative to the start of the simulation. If the user

does not designate the beginning and/or ending time period,

then the default values will be used. The user should also

be able to specify the actual time units used, e.g.,

nanoseconds, microseconds, etc.

15

'I

2.2.5.3 Content and Format of Test Reports. The

user should be allowed to identify by name the signals

wanted in the output report. Additionally, the user should

be able to define the type of signal trace desired.

Examples of types of signal trace which may be desired are:

1. A sampling of all selected signals at predefined

time intervals.

2. A trace that displays ony events.

3. A trace that displays all transactions.

2.2.6 Multiple Drivers. The simulator must be capable

of processing signals that have multiple drivers. In VHDL a

hardware network is modeled with a signal that has an

associated bus resolution function. This type of signal is

called a bus. The bus resolution function, which is user

defined, provides a procedure for resolving the values of

the signal's multiple drivers into a single value. The bus

resolution function takes an unconstrained array as its

input and returns a single value of the same type as its

output (12:6-5).

2.2.7 Delay. VHDL allows the designer to model either

inertial or transport delay. The simulator, therefore, must

be capable of processing either inertial or transport delay.

The specific delay is executed when a set of transactions is

being used to update the projected output waveform of the

16-I!

.p.....

current and future values for a driver. For transport

delay, the reserved word transport will appear on the right

U hand side of the signal assignment statement, otherwise

inertial delay is the default (13:8-5).

2.2.8 Networks. Signals that are associated with each

other by a port association list form a network. Because of

these association lists on block statements (and through

component instantiation statements), the value of a signal

cannot be determined independently of the values of the

signals associated with it. The simulator needs to

recompute the value of the network associated with a driver,

whenever the future value of a driver in the network becomes

the. current value of the driver (12:9-1).

2.2.9 Abstraction Capability. The simulator must be

capable of allowing the processing of packages. This will

enable the simulator to handle hardware devices described at

higher levels of abstraction. The packages are used to

group together related declarations which may include

user-defined types and subprograms. The user-defined types

allow the designer to add to the predefined language types

and then use subprograms to permit operations on these data

types (12:16-1). Packages also permit designers to share

the data stored within the packages.

17

-]

2.2.10 Steady State. The simulator must monitor its

3 operation to detect the following three possible conditions:

1. No transactions remain to be processed and

no transformers are active.

2. The number of transactions are at a static levelN and are not decreasing.

3. s transactions in process have exceeded an
)ected upper limit for the signals being

:ocessed.

Simulator oscillation control is required to detect and

correct this simulator oscillation. Oscillation control

consists of identifying the oscillation, eliminating the

oscillation and finally continuing the simulation process

(14:242).

2.3 Requirements for the Prototype Simulator

2.3.1 Objective. Although an entire VHDL simulator is

the ideal goal of this research, time only permits a small

subset to be created. Thus, the primary goal of the

research reported here is to create a prototype simulator

kernel for VHDL that will operate in a UNIX environment.

The program will implement the major basic functions of VHDL

using the C programming language. The prototype simulator

will provide proof of the design concept.

To satisfy this goal, the program will be designed to

meet the following objectives:

18

18 ,

67

.... *. *.*...%~ E

1. Minimize the memory required for the

executable simulation program.

2. Maximize simulator execution speed.

3. Provide the user with flexibility in the
choice of naming the input and output files
and the ability to specify the simulation
start and termination times.

4. Provide detailed error checking and clear
and concise error warnings and messages.

The requirements for these objectives are specified in the

following section.

2.3.2 Requirements Definition. This section defines

the requirements for the prototype simulator. First a

description of the program and how it is to be used is

provided. This is followed by the three categories of

program requirements - functional, implementation, and

performance requirements.

2.3.2.1 Program Description. The prototype

simulator program, referred to as VSIM (VHDL Simulator),

reads an input file of test vectors and evaluates the

transformers to determine if an event has occurred. If an

event has occurred on a signal, then the fanout list for the

signal is evaluated and the related behavioral functions are

executed to produce new transactions. kn output trace file

of all events that occur during the simulation is produced.

19

Im
'p°

VSIM performs the following major actions:

1. It interprets the command line and establishes
the runtime environment necessary to execute
the requested user options.

2. The internal data structures are created and
initialized from the designated input data
files. In the fully implemented simulator,
these data files are automatically created
from the full VIA descriptions.

3. The input vector file is read, and time is
incremented on the simulator clock.

4. Events are evaluated and new transactions
created.

5. An output file is created.

6. Error checking occurs continuously throughout
the other major processes. The command line
and the input vector file are also checked for
errors and all errors are displayed on either
the user's terminal or written to an output
file.

2.3.2.2 Functional Requirements

2.3.2.2.1 Approach. The two basic

classes of simulator are compiler-driven and table-driven

event-directed. Most of the modern simulators are

table-driven event-directed since this type is more

versatile in handling delays and also reduces the required

simulation time (14:203).

VSIM will use an approach similar to the one being

implemented by Intermetrics in the VHDL Build 2 Simulator

(11:4-40). This approach involves implementation of a

precompiled simulator instead of an interpretive simulator

20

S

program. The VSIM program will be a compiler-driven

event-directed simulation. It differs from the Intermetrics

approach in the data structures used and the programming

language (C versus Ada).

2.3.2.2.2 VSIM Created Structures and

Functions. For the prototype, the data structures and the

behavioral functions that drive the prototype simulator

kernel will be created internal to the program since the

present state of VIA is not developed sufficiently to

provide these functions for the prototype simulator. The

assumption was made that the structures and functions

created for VSIM would be directly related to the structures

and functions that VIA will provide when completely defined.

The structures and functions also must appear as if they are

directly traceable to VIA.

The VSIM prototype must read the data necessary to

establish the structures and access the behavioral functions

from the following three files: signal data, driver data,

and fanout data in order to prove the design concept. VSIM

must access the functions as if they were traceable to VIA.

To accomplish this, the addresses of the behavioral

functions must be stored, and the functions called at

execution time by reference to these addresses.

21

2.3.2.2.3 Simple Signal Assignment

3 Statements. VSIM must be capable of executing the

operations required by a simple signal assignment statement.

This requires that the program 1) determine the name of the

signal that will receive the output of the assignment, 2)

post the new future value of the signal, and 3) schedule the

value to occur on the signal after the specified time delay.

In posting the new value, VSIM will need to determine the

appropriate delay (transport or inertial) and schedule the

value to occur by correctly placing it in an ordered list

and deleting old transactions depending upon the delay type.

2.3.2.2.4 Blocks. VSIM will handle

single block statements. Guard lists as part of networks

will not be implemented in the prototype.

2.3.2.2.5 Processes. VSIM implements the

process statement as a simple signal assignment statement.

VSIM does not model the sensitivity list or declarative

parts of the process statement. VSIM does implement

independent processes that can execute a sequence of

statements and schedule new events to occur.

2.3.2.2.6 Data Types. The VSIM data

structure, to be implemented as a union, will support only

integer and floating point data types. VSIM allows for four

22

input values: '0,' '1,' 'z' (high impedance), and 'u'

(unknown state). VSIM will not implement packages,

subprograms and user-defined types.

2.3.2.2.7 Single Drivers. VSIM assumes

that each signal has at most one driver. The driver data

structure will support multiple drivers per signal; however,

the program controller will not support operations on

multiple drivers such as the bus resolution function.

2.3.2.2.8 Input Test Vector File. VSIM

will read and interpret the input vector file. The user

specifies the input filename on the command line. Failure

to specify the input file will result in a fatal error and

termination of program execution. VSIM will only read the

time and associated signal input vectors; it will not accept

the assignment of simulator variable values. The $ will be

used as a delimiter between the designation of the input

ports (signals) and the associated input vectors.

2.3.2.2.9 Interactive Capability. VSIM

will allow the user the selection of several options through

the command line. At a minimum, the command line must

contain the program name VSIM and the name of the input

vector file. The following format must be used for the

command line:
p

23

j1k
I!

VSIM [options] input file name

The command line options may be specified in any order

and the program is insensitive to the number of allowable

arguments which are present. The command line options are

summarized below:

-d n Selects the debug option which causes the

contents of selected structures to be printed to the

output file. Debug prints the selected data the first

time that simulate is entered and each time a tran-

saction is processed. n can be one of four integer

values (1, 2, 3, 4) where:

n = 1 prints all signal structures

n = 2 prints the event queue

n = 3 prints all transaction queues

n = 4 prints all data structures

-o filename Allows the user to select the output file where

the output trace file will be written. The default is

sin output.

-S n Allows the user to select the simulation start

time. The time units specified must be the same as the

units of time used for the input vector file and the

circuit description. n must be an integer value. The

default start time is 0.

-t n Allows the user to select the simulation

termination time. The time units specified must be the

same as the units of time used for the input vector

24

I

file and the circuit description. n must be an integer

value. The default termination time is 10000.

-b n Allows the user to select a breakpoint time

when data will be dumped to the output file.

Simulation continues after the breakpoint is processed.

n must be an integer value.

2.3.2.2.10 Timing. VSIM will allow the

user to select the simulation start or termination time as

indicated above. Either one or both may be selected:

however, a fatal error occurs if the termination time

specified is less than the start time. Simulation time is

not discrete but is event-directed, i.e., it is incremented

according to the scheduled occurrence of events. 0

2.3.2.2.11 Error Checking. VSIM will

provide extensive error checking. If errors occur, they are

displayed on either the standard output or written to the

specified output file. An error on the command line or a

failure to open the user specified input vector file will

result in a fatal error message displayed on the standard

output. All other error messages are written to the

specified output file. Errors can affect program execution

in one of two ways: 1) After warnings program execution

resumes, or 2) after fatal errors program execution is

aborted and no output file is written.

25

% 4- ZZ

2.3.2.2.12 Initialization. Prior to the

start of simulation, all the signal and driver values will

be initialized to 'u', the unknown state.

2.3.2.3 Implementation Requirements

2.3.2.3.1 The UNIX Environment. The

prototype simulator will be designed to operate in the UNIX

BSD 4.2 Environment.

2.3.2.3.2 The C Programming Language.

The program will be written in the C programming language.

The C language was chosen because:

1. It is the primary language of choice for applications in
the UNIX environment.

2. The flexibility of C provides an advantage over a more
strongly typed language.

3. There is no difficulty in translating from VIA to C: in
fact, there may be a close to one-to-one mapping.

2.3.2.3.3 System. At a minimum, the

simulator will execute on a DEC VAX.

2.3.2.4 Performance Requirements. Since the

primary objective of VSIM is to simulate VHSIC class

designs, the simulator must be very efficient in its use of

memory and in execution speed. Figure 2-1 shows the

26

difference between the VHSIC class of problem and the less

complex problems solved by Engineering Analysis Simulation

Systems (11:4-39). The larger number of gates being

simulated in VHSIC class problems (50K to 100K gates or more

compared to 10K to 50K gates) usually consume vast amounts

of memory on large minicomputers or mainframe computers and

have very long execution times. The prolonged execution

time and needs for a vast amount of memory program space can

be unacceptable in a multiuser environment, particularly if

the simulator program is not both memory and execution time

efficient.

number of
patterns

20k _S

number

~of50k 100k gates

Figure 2-1 Engineering Analysis vs. Design Verification

Systems (11)

27

The compiler-driven event-directed simulation approach

used in VSIM is intended to improve the simulator's

S efficiency. Figure 2-2 shows the difference in efficiency

between the interpretive and precompiled simulators. The

interpretive simulator is usually more efficient to set up

but less efficient as the number of test patterns increases.

In VHSIC class designs the number of test patterns required

for simulation is beyond the point where the interpretive

simulator is more efficient than the precompiled simulator

(11:4-40/41).

CPU Time

Interpretative

Simulators

Precompiled- Simulators

Precompiled

Setup

Interpretive

Setup Number of

Test Patterns

VHSlC1ass Designs

Figure 2-2 Precompilation Trade-Off Graph (11)

28

%

.~. A-.L .d~~ *

111. System Design

3.1 General

The system design is the overall plan which describes

the general approach used to implement the program

requirements. Since this thesis involves the development of

a software program, existing software engineering tools have

been used for the program's design and implementation.

An approach similar to the Structured Analysis and

Design Technique (SADT) was used for the system design due

to the author's familiarity with it and its effectiveness as

a system level design tool. This chapter presents the

system level design of VSIM using SADT-like diagrams.

3.2 System Overview

Figure 3-1 presents the top level system view of the

inputs, outputs and controls of VSIM. VSIM reads and

processes the user commands from the command line. This

controls the optional program features and is used to tailor

the output file as desired. VSIM reads the user specified

input vector file and produces an output trace file. The

data structures which VSIM uses during program execution are

created based upon input received from VIA. Since the

29

eo

30

0)

present state of development of VIA is not sufficient to

enable VSIM program execution, three input data files are

used to drive the simulator. VSIM processes the input data

files, establishes the internal simulation structures and

then reads the input vector file. VSIM checks the input

file for syntax and runtime errors. Incorrect syntax or

runtime errors will result in the second type of program

output: error messages to either the standard output or the

specified output file. Errors made on the command line

entry cause error messages to be written to the standard

output. All other error messages are written to the

specified output file. The type of error - warning or fatal

- determines whether an output trace file will be produced.

A fatal error terminates production of the output trace

file.

VSIM is designed to also read user input from a command

file; however, this feature will not be implemented in the

first prototype version.

The method used in the remainder of the chapter will be

to first provide a general description of the design of the

major upper level program modules. This is then followed by

a more detailed description of each of the upper level

modules by decomposing them into their major subordinate

functions.

31

A2 , S 4.O S %$.. / %

S C.,

~OOO

~

U,

'NJ
p.J

- f0~b *0

- - El
0

0z
I

33

o

program uses three data files within the Sim lnitialis.

module - Signal Data, Driver Data and Fanout Data - to

perform the tranalate VIA module functions.

3.3.3 Simlate. The Simulate module schedules and

executes the simulation. User commands from the command

line are read and interpreted to control the simulation.

Initially, all signal values are set to "u* (Unknown) and

time is initialized to the largest integer possible on the

machine. When operating in the steady state, a simulation

cycle begins when time is incremented to the time of the

earliest scheduled transaction. This transaction is then

Cevaluated to determine if an event has occurred, that is, if

the value in the scheduled transaction is different from the

current value in the parent signal. If there is an event

then the new value is posted to the signal and the driver

structures and propagated to all the outputs on the fanout

list of the affected signals. The behavior functions

associated with each affected driver are then executed
"'

producing new transactions which are posted to all

applicable drivers in the network. The next scheduled

transaction is then taken from the event list. If its time

i is different from current time, then the time is incremented

The contents of these files are described in Appendices D,
E, and F.

34

a°

'"P--1

and the process is repeated. Each time a transaction is

3 scheduled to become an event (i.e. it is now being processed

to determine if there is aa event) it is removed from the

transaction queue. If the transaction was an input vector,

then a flag is set and at the next time increment another

input vector is read and posted. Figure 3-3 shows the

simulation process.

The simulate module logically operates on two nested

simulation cycles. The micro or inner cycle operates in
*

delta time within the current simulation cycle. All events

scheduled for delta time are processed and all new

transactions with a delta time are posted to the drivers of

signals and executed in delta time. A delta cycle

terminates when there are no more delta transactions to

process. The concept of delta time in VHDL is used to

insure the proper order of execution rather than as a

meaningful time increment. The second cycle, the macro or

outer cycle, consists of all transactions scheduled for

other than current simulation time, i.e. some future time.

Execution continues until all events have been processed or

*

0Current simulator time should be thought of as being
divided into two different times - zero time and delta time.
During zero time nothing progresses. Zero time is used for
the simulator to do its own housekeeping. Delta time is an
infinitesimally small increment of tangible time that is
smaller than the time required to activate the lowest
sensitivity. The summation of all the delta times within a
current time cycle is less than one unit of time.

35

z

3,
0

z
00

P-

Z)I
.1/p4
>0

cc~

00

36

N "N ~' , ~ ' *'~\' ~ ' ~*'p . . v,,:~

a preset termination time is reached. Throughout the

simulation cycle, specified data is written to the output

file. Non-fatal error messages are printed to the specified

output file. Fatal errors cause program termination.

These three modules and their function are further

decomposed and described in greater detail in the following

sections. The diagram associated with each module is

included immediately following the description of the module

and may be referred to while reading.

3.4 Translate VIA (Figure 3-4)

When implemented the Translate VIA module will create

the data structures required to execute the simulation by

traversing the Directed Acyclic Graphs (DAGs) which compose

VIA. This module will translate the data in the DAGs into

structures (block 1.2) that can be executed by the

simulator. A precedence matrix which contains the fanout

data for each signal will be created. The fanout data

associates all signals in a given network and provides a

pointer to the address for the corresponding behavioral

function. Finally, the behavioral functions are translated

from VIA into executable C code. The C language is used for

the reasons discussed previously in Chapter 2.

37

II

-- T

oo o

0 c.

iY~

i

L~

t-

0%

38

3.5 Sim Initialize (Figure 3-5)

3.5.1 Create Signals. The Create Signal module

controls the creation of the signal, driver and fanout

structures. The three data files (Signal Data, Driver Data

and Fanout Data) are opened and read until all the

structures have been created initialized and linked. The

data files are closed when all the structures have been

created and the end-of-file is reached.

Figure 3-6 presents the data structures which are

created. The transaction structure is created in the Get

Input Vectors module but the structure is presented here for

clarity and ease of understanding. Efficiency in both

storage space and execution time was the primary

consideration in determining the design of the data

structures. This consideration for efficiency resulted in

the decision to almost exclusively use dynamic data

structures (linked lists) as opposed to static structures

(arrays). The event queue linked list in the driver

structure is designed as a doubly-linked list since it needs

to be maintained as an ordered list which is constantly

being updated and reordered as transactions are posted and

deleted. The sort key field, which contains the time value

of the first transaction in the driver's transaction queue

in the driver structure, is used as the key to sort the

event queue. All other linked lists are singly-linked

39

t AIU

IRMnr ln n a oan. Rpf. WWI w.---W~jw wsmm -u -t M

A4<

rrZO

04 ~ ~0

Uw

w
N

V5 E

~3 U,

40

ci)

a)

II(
Fg-

L~cn

E-4 Z

41

1~SZ

lists. This conserves storage space while providing

adequate efficiency. The signal and driver name fields are

implemeted as unconstrained arrays to support the VHDL

convention of placing no limit on name length.

The structures are connected as follows:

1. Each signal structure is linked to the first fanout
structure in the fanout list. Each succeeding fanout
structure is linked to the preceding one.

2. Each signal structure is linked to its subordinate
driver. In the case of multiple drivers, the signal
structure is linked to the first driver and each
succeeding driver is linked to the preceding one.

3. Each driver is linked to its parent signal structure.
All drivers are linked together in the doubly linked
list which functions as the event queue.

4. Each driver is linked to the first transaction structure
in the transaction queue. Each succeeding transaction
structure is linked to the preceding one.

3.5.2 Get Input Signals. The Get Input Signals module

opens the user specified input vector file and reads the

input signal names from the file. A failure to open the

specified input vector file results in a fatal error and

program termination. Get Input Signals reads the input file

creating an array of pointers (sig array ptr) which stores

the addresses of the input signal structures. These

addresses are subsequently used throughout program execution

for the posting of input vectors. A control variable,

Vector Count, is initialized to specify the format for

42

S

.ps ~ S

reading the input vectors from the file. Get Input Signals

reads until it encounters the $ delimiter.

3.5.3 Get Input Vectors. Get Input Vectors reads the

input vectors from the input file using the control variable

Vector Control, parsing the input and converting the string

characters to integers. When a valid input vector and its

associated time has been processed a transaction structure

is created, posted to the appropriate driver, and the event

queue updated. All transaction structures created by Get

Input Vectors are assigned an input vector flag of 1 to

distinguish them from transactions created during the

simulation cycle. An invalid input vector character is

ignored and results in a warning error message.

3.5.4 Input Vector File. Figure 3-7 presents the

format for the Input Vector File and Appendix C contains an

example of an Input Vector File. The V delimiter separates

the input signals from the input vectors. There is no limit

on the number of signals that the file may contain.

However, for each input signal there must be a column in the

input vector section. The time of type integer is the first

value in each input vector cow. The input vectors must be

monotonically increasing, and no two rows of input vectors

can have the same time value. Following the time are the

-input vector values corresponding to each signal. The only

43

::,,,,,,'./o &X2 :,,,' .' '. *. ..* \ % . .

FORMAT

INPUT SIGNALS:

Signal A

Signal B

Signal_C

$ /*VSIM uses $ as delimiter*/

/*VSIM does not allow variables*/
VARIABLES:

/* complete simulator must handle*/

Var X
Var*.' indicates no change*/~Var-Y

VECTORS:

0 001 1

tieSig A Sig B Sig C7. time

42 0

VarX Var_Y

1I input vectors for next time begin

Figure 3-7 Sample Input Vector File

44

valid characters are '0', '1', 1z', 'u' and '.'. The '.'

indicates that the previous vector value for the signal has

3 not changed. Each value on the input vector line must be

separated by a white space character.

3.5.5 Open Out Report. The Open Out Report module

opens the output report to the user specified file or the

default and prints the output report header.

3.6 Simulate (Figure 3-8)

3.6.1 Si. Clock. The Sim Clock module increments the

simulation clock when the next scheduled event has a time

value greater than current time. Sim Clock sets a control

variable to cause program termination when the maximum

simulation time is reached.

3.6.2 Pop Trans. The Pop Trans module deletes a

transaction and frees the memory space. The event queue is

updated after each deletion.

3.6.3 Process Fanout. The Process Fanout module

accepts a signal which has had an event and evaluates the

signal fanout for the event. The value of the event is

propagated to all the outputs on the fanout list and the

behavior functions are evaluated. 4ew transactions are

45

ALI

0

94 t o

00

4 4

r 46

posted in either delta or future time to the target signal's

5 driver and the event queue is updated. Evaluation of the

fanout list continues until all behaviors on the fanout list

have been executed.

13.6.4 Get Input Vectors. The Got Input Vectors

process is executed after an input vector (a transaction

with an in vector flag of 1) has been processed in current

time, prior to incrementing simulation time. The next input

vector line is read, transaction structure created, posted

to the appropriate driver and the event queue updated.

3.6.5 Convert. The Convert module parses the output

values and converts the integer values to characters for

output. An error message is output if an invalid character

is encountered.

3.6.6 Close Out Report. The Close Out Report module

formats and outputs the summary for the output report when

the simulation is terminated. The total simulation time is

calculated and the output report file closed.

47

IV. Detailed Design

4.1 General

The purpose of this chapter is to present the detailed

design of VSIM. A brief discussion of the design goals and

design procedures is presented first. This is followed by a

presentation of the detailed design, which is the major

focus of the chapter. The detailed design of the major

program modules is presented using hierarchical charts and

structured English. Structured English was chosen as the
q p

design specification tool because of its understaidability,

simplicity and conciseness. Additional information is

provided in those specific instances where a more detailed

explanation is required for a complete understanding of a

module's function.

The detailed design of translating the general

specifications documented in the previous chapter (System

Design) into a comprehensive plan for implementing VSIM was

specified sufficiently to minimize problems during the

program implementation phase. A significant amount of the

implementation time expended on VSIM occurred during the

detailed design period. This methodology proved to be very

beneficial during the coding and implementation phase as

48

there were no major design errors encountered and the

debugging effort required was less than expected.

4.2 Design Goals

In addition to the major design goals stated in the

requirements section of Chapter II, the following are the

specific goals for the translation of the requirements into

code. The first goal was to use the generally accepted good

software engineering practice of having loosely coupled

modules with good cohesion. The code must be easy to

understand and avoid workable but confusing program

constructs. Separate procedures should be used to implement

a single and specific, possibly repetitive function, i.e.

the program should be modular. Variable and function names

should be chosen which are descriptive of the data they

contain or the function that they perform.

The above goals were satisfied in the implementation of

the detailed design of VSIM. The program is highly

modularized, and, as much as possible each function was

designed to perform single or highly related functions.

Variable and function names were carefully chosen to be

representative of the data represented or the function

performed.

49

* C ~ * 4 * * ~ ~ i n ... W . r

As discussed previously, since memory space and

* execution time are very limited relative to the requirements

of a VHDL simulation, the efficiency of the program is

critical. Program space for storing data must be minimized

whenever possible. Proper implementation of these goals

should produce a program which is easy to understand,

maintain and revise.

4.3 Design Procedure

The first action in the detailed design process was to

begin converting the SADT-like diagram specifications into

actual descriptions of functions which could be implemented

in the C language. Generally, the SADT diagram

specifications were directly translated into the

corresponding high-level C function description. This

high-level function description usually required several

actual C functions to implement the specific requirements of

the high level specifications. Of course, not all of the

SADT descriptions were mapped one-to-one to code. Some had

to be modified during the coding process. In other cases, a

better method of implementing a particular process or

function was developed and the previous design details were

changed to reflect the improvement.

50

II
451

4.4 Function Descriptions

The detailed design presented here follows the basic

structure presented in Chapter III, System Design. The

important major modules are presented along with

corresponding hierarchical charts and structured English

descriptions. Figure 4-1 shows the hierarchical structure

of VSIM to provide a system level description of the

program.

4.4.1 Main. The Main routine conducts the simulation

process and consists of the subordinate modules shown in

Figure 4-2.

MAIN
0

SIM INITIALIZE SIMULATE

2

Figure 4-2 Main

52

The structured English description of the Main

procedure is:

1. Check command line validity.

2. Set option flags from command line options.

2.1 They are:

-d n turn on debug option "n"

-s n start simulation at time "n"

-t n terminate simulation at time "n"

-o f output simulation results to file "f"

-b set breakpoint
/* not implemented this version */

2.2 None of the above

print error message

3. Get input filename from command line.

4. Create and initialize head and tail pointers to
driver queue.

5. Set sort marker (quarker) to driver queue head
pointer.

6. Create and initialize simulation structures
/* signals, drivers, transactions */
/* behavior function pointers */
/*See Figure 4.4 */

7. Execute simulation until done
/* See Figure 4.12 */

8. At end print message

Throughout the remainder of this chapter, the number(s) in
parenthesis in the structured English description refer(s)
to the related module in the accompanying hierarchical
chart.

53

%.

It should be noted that driverhead and drivertail are

if structures of type drive which are used as the head and tail

of the event queue. For control purposes, the sort key

field of driverhead is set to the VAX system's minimum

integer value and the sort key field of drivertail is set to

the system's maximum integer value.

Also note that qmarker is a pointer which marks the

present position in the event queue. When the event queue

is updated the sort is to the left (<=) or right (>) of

qmarker.

4.4.2 Sim Initialize. Si. Initialize creates and

initializes the simulation data structures, opens and reads

the input vector file, and opens the output report. Sim

Initialize consists of the subordinate modules shown in

Figure 4-3.

I INITIALIZE[

CREATE GET INPUT GET INPUT OPEN OUT
SIGNAL SIGNAL VECTORS REPORT

1.11 .2 1.3 1.4

Figure 4-3 Sim Initialize

54

(1.0) Si. Initialize

1. Set simulation start time.

2. Set simulation termination time.

3. Create and initialize simulation
structures.
/* signals, drivers, transactions */
/* behavior function pointers */
/*see Figure 4.4 */

4. Read input signals.

5. Read input vectors.

6. Open the output file.

7. Return.

4.4.3 Create Signal. Create Signal opens and closes

the data files and creates and initializes the signal,

driver and fanout structures. Create Signal consists of the

subordinate modules shown in Figure 4-4.

V

SIGNAI
DRIVER FANOUT SGA

1.1.1 1.1.2.3

Figure 4-4 Create Signal

55

T€

b

The structured English description of Create Signal is:

(1.1) Create Signal

1. Open the data files. These files contain
the signal, driver and fanout data.

2. While there is more signal data do the
following:
2.1 Create signal structures
2.2 Create driver structures
2.3 Create fanout structures

3. Close the data files.

4. Return.

4.4.4 Get Input Signals. Get Input Signals opens the

input vector file and reads the input signals from it,

storing the signal address in an array. Get Input Signals

consists of the subordinate module Strcmp shown in Figure

4-5.

GET INPUT

SIGNALS
1.2

STRCMP

1.2.1

Figure 4-5 Get Input Signals

The structured English description of the strcmp procedure

shown in Figures 4-5 and 4-6 is not presented here due to
its simplicity. A full description can be found in
Kernighan and Ritchie (15:101).

56

(1.2) Get Input Signals

1. Open the input vector file.

3 2. If unable to open input file
Print error message and terminate program.

3. While there are signal names to read do

the following:

3.1 Get the address of the signal and
store it /* block 1.1.1 */

3.2 If unable to get signal address
print error message.

4. Return.

4.4.5 Get Input Vectors. Get Input Vectors reads the

input vectors from the input file, performs a character to

integer conversion and posts the input vector to the

*o transaction queue of the parent driver. Get Input Vectors

consists of the subordinate modules shown in Figure 4-6.

GET INPUT

VECTORS

Figure 4-6 Get Input Vectors

57

,vr ' . , : .V.". f~~.'. MA,;e . ,V ,# .vi"v.%er q , V r

The structured English description of Get Input Vectors

I i(1.3) Get Input Vectors

1. Read the new input vector time.

2. While there are more vectors of the input
vector time read do the following:

2.1 Check the validity of the input vectors
/* Block 1.2.1 */
There are five:

lgU'

z'got
'1'

/* .' means no change to previous
input vector value */

2.2 None of the above:

Print error message.

3. Get input signal address.

4. If the input vector value has changed
create a transaction and post it.
/* see Figure 4-18 /

5. Return.

4.5.6 Nov Sigmal. Nev Signal creates and initializes

the signal structures. new Signal consists of the

subordinate module Streave shown in Figure 4-7.

The structured English description of the atoi procedure

shown in Figure 4-6 is not presented here due to its
simplicity. A full description can be found in Kernighan
and Rltchie (15:58). The structured English description of
Poet Trans in rigure 4-5 is presented in section 4.4.18.

58

I

NEW
SIGNAL

1.3.1

I

1.3.1.1

Figure 4-7 new Signal

The structured English description of New Signal is:*

(1.3.1) New Signal

Create and initialize new signal
structure.

Return.

The structured English description of the Strsave
procedure shown in Figures 4-7 and 4-9 is not presented here
due to its simplicity. A full description can be found in
Kernighan and Ritchie (15:103).

59

11 1 11 6 l

CREATE

DRIVER

1.3.1

CREATE
NEW DRIVER EVENTQ

Figure 4-8 Create Driver

The structured English description for Create Driver is

given below. The structured English description of Create

event queue is given in section 4.4.15.

(1.3.1) Create Driver

1. While there is more driver data
do the following:

1.1 For each signal do the following:

1.1.1 Read the driver name

1.1.2 Create a new driver
structure

1.1.3 Create the event queue
/* See section 4.4.15 */

Return.

60

4.4.8 New Driver. New Driver creates and initializes

the driver structures. lew Driver consists of the

subordinate module Stroave (15:103) shown in Figure 4-9.

NEW

DRIVER
1.3.1.1

STRSAVE

1.3.1.1.1

Figure 4-9 Now Driver

The structured English description for New Driver is:

(1.3.1.1) New Driver

Create and initialize a
driver structure.

Return.

4.4.9 Create Panout. Create Fanout reads the fanout

data file and creates the fanout structure, storing the

address of the behavioral function. Create Fanout consists

of the subordinate module new fanout shown in Figure 4-10.

61I

00

CREATE

FANOUT
1.3.2

N EW

FA'-4OI1T
1.3.2.1

Figure 4-10 Create ranont

The structured English description for Create ranout

is:

(1.3.2) Create Fanout

while there is more fanout data in the
fanout file do the following:

For each signal with fanout do the
following:

Get the behavioral function name.

Get the address of the behavioral
function and store it.

Return.

62

VS

., ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ % %*Wt r6S S*.S S -*********.V

4.4.10 Now Panout. Now Fanout creates the fanout

structure and stores the behavioral function address. Now

Fanout consists of the subordinate module get func shown in

Figure 4-11.

NEW
FANOUT

1.3.2.1

GET FUNC

1.3.2.1.1

Figure 4-11 New ranout

(1.3.2.1) New Fanout

Create new fanout structure

Get and store the address of the
behavioral function.

Return.

Due to its simplicity, no further description of get

tunc (block 1.3.2.1.1) is given. The interested reader

should refer to the source code, which is published under

separate cover as a technical report.

63

Q, .1a

4.4.11 Simulate. Simulate schedules and executes the

3 simulation. Simulate consists of the subordinate modules

shown in Figure 4-12.

Iq

2.0

SINI POP POSS INPUT
COTOCLC TRANS FAOTVECTORS REPR

Figure 4-12 Simulate

The structured English description for Simulate is

given below. All block references are to Figure 4-12.

64

' .I

(2.0) Simulate

3 1. Set first drive to point to the
first event.

2. Set first trans to point to the

first transaction of first drive.

3. If DEBUG is TRUE:

3.1 Set the debug option.

3.2 Print debug message.

4. While the simulation time is not finished
and there are more events do the following:

4.1 If the event time is less than the
current simulation time:

4.1.1 Print Warning Message

4.1.2 Delete the transaction

4.2 If the event time equals the current

simulation time:

4.2.1 If event

4.2.1.1 Post new signal and driver
value

4.2.2.2 Print event data.
/* time, old value, new,
value, transaction type */

4.2.1.3 Delete the transaction.
/* block 2.3 */

4.2.1.4 Propagate the new signal
value to all outputs on the
fanout list. /* block 2.4 */

4.2.2 If no event:

Delete the transaction.

65

4.3 If the event time does not equal
current time:

Increment the simulation clock.
/* block 2.2 */

4.4 If the transaction processed was an
input vector:

read next input vector.

4.5 Update first drive and first
trans.

5. If Done:

5.1 Print report summary.

5.2 Return.

Due to the simplicity of the aim clock (block 2.2) and

convert procedures (block 2.6), no further description is

given. The interested reader should refer to the source

code.

4.4.12 Debug Control. Debug Control is only used for

checking the correctness of all or part of the program

during development or after program modification. VSIM does

not require Deag Control for execution. Debug Control

consists of the subordinate modules shown in Figure 4-13.

66

- '. .

2.1.

Figure 4-13 Debug Control

The structured English description for Debug Control

(2.1) Debug Control -V

1. Set the debug option from the

command line.

There are four cases:

Signals (1) dump the signal structures.

ventq (2) dump the eventqueue.a

Trans (3) dump the transaction queues.

All (4) dump all the queues.

/* signal, event, transaction, fanout/

None of the above .Z

Print error message

Return.

67

Since they are not required for program execution, no

further description of the debug functions (blocks 2.1.1 -

2.1.4) is given. The interested reader should refer to the

source code.

4.4.13 Pop Trans. Pop Trans delete,'a transaction and

frees the memory space. Pop Trans consists of the

subordinate module Updateq shown in Figure 4-14.

POP TRANS

2.3

UPDATEQ

2.3.1

Fiqure 4-14 Pop Trans

RI

l*f~*~.*. * . * 6*
d~*~ % ~ % A ~ .~A ~ .. ~. A . ~ ~ .% % .1

The structured English description for Pop Trans is:

(2.3) Pop Trans

1. Set first drive to point to the
first event.

2. Set first trans to point to the first
transaction of first drive.

3. If first trans equals the null trans

Print a Warning Message.

4. Remove the transaction from the

queue.

5. Resort the event queue.

/* block 2.3.1 */

6. Free the memory space.

7. Return.

4.4.14 Updateg. Updateq resorts the eventq. Updateq

consists of the subordinate module Create eventq shown in

Figure 4-15.

UPDATEQ
p~. 2.3.1

~CREATE

EVENTrQ

Figure 4-15 Updateq

69

.

" " +" "" ' - ' " ' +"?**; % * |.. I

(2.3.1) Updateq

1. Remove the event from the
event queue.

2. Put event back in event queue based
on its sort key.
/* Create Hventq. See

section 4.4.15 */

3. Return.

4.4.15 Create Eventq. The structured English

description for Create Eventq is:

(2.3.1) Create Eventq

1. Set the sort key of event to the
new sort key value.

2. If the sort key of event is less
than or equal to the quarker
sort key do the following:

2.1 Search the event queue in the
direction of drivertail until
the sort key of event is greater

Nthan the quarker sort key.

2.2 Put the event back in the
queue.

2.3 Set quarker to point to the
event.

/* sets a new sort
marker for the queue */

2.4 Return.

3. Else

3.1 Search the event queue in the
direction of drivmrhoad until the
sort key of event is less than or
equal to the quarker sort key

3.2 Set qparker to point to the event

3.3 *eturn.

70

O-.I

The search mechanism used is intended to decrease the

3 sort time of a sequential search. Although not a true

binary search, it does decrease the search time.

4.4.16 Process Fanout. Process Fanout propagates the

value of an event to all the outputs on the fanout list.

Process Fanout consists of the behavioral function modules

shown in Figure 4-16.

PROCESS
FANOUT

2.4

BEHAVIORAL BEHAVIORAL BEHAVIORAL I

FUNCTION1 FUNCTION2 FUNCTION3
2.4.1 2.4.2

Figure 4-16 Process Fanout

71

W

The structured English description for Process Fanout

5 is:

(2.4) Process Vanout

1. While there are more outputs on the
signal fanout to propagate do:

Execute the behavioral function

2. Return.

4.4.17 Behavioral Functions. The behavioral functions

calculate the future values and times for target signals on

the event fanout list. The behavioral function modules

consist of the subordinate modules shown in Figure 4-17.

BEHAVIORAL3
FUNCTIONS 1 2 -.

• 2.4.1

POST FAN POST GATE hGET

SIG TRANS FUNCTIONS- SIG ADDR

2.4. L 1 2.4.1.2 AND 2.4.1.3 2.4.1.4

SNnT

Figure 4-17 Behavioral Functions

72

p

Since the behavioral functions are the same except for

variable values and execution of different generic gate

functions, only one representative structured English

description of a behavioral function is presented.

(2.4.0) Behavioral Functions

1. Get current value of drivers.

2. Calculate the future value and
time for the target output signal.
/* the generic functions and, */
/*or, not calculate the future value*/
/*of the specified gate type*/

3. Post the future time and value to
the appropriate driver of the target
output signal.

4. Return.

Due to their simplicity, no further description of post

fan sig (block 2.4.1.1) and the generic gate functions

(block 2.4.1.3) is given. The interested reader should

refer to the source code. Post Trans is described in

section 4.4.18.

4.4.18 Post Trans. Post Trans creates a new

transaction structure, inserts it in the appropirate

transaction queue and deletes old transactions depending on

the type delay as required. Post Trans consists of the

subordinate module Updateq shown in Figure 4-18.

73

POST TRANS
2.4.021

UPDATEQ
2.4.0.2.1

Figure 4-18 Post Trans

The structured English description for Post Trans is:

(2.4.0.2) Post Trans

1. Create and initialize a transaction.

2. Insert the new transaction in

the transaction queue.

3. If the new transaction is not an

input vector do the following:

Update the projected output
waveform
/* See note below */

4. If the new transaction is the first

transaction in the queue:

Resort the event queue

/* See Figure 4-15 */

74

Updating the projected output waveform consists of

deleting zero or more previously computed transactions

depending on the type of delay. VHDL supports transport and

initial delay and VSIM fully implements this function. A

detailed explanation can be found in (13:85).

I

I

75

V. Analysis and Results

5.1 General

The results of this thesis effort and an analysis of

those results is the objective of this chapter. This

provides the author the opportunity to not only critique his

research effort but to highlight the strengths and

weaknesses of the design and the program itself.

The method used to perform this analysis was to analyze

several areas of the program's design and function, and then

present and evaluate the results produced by the program.

The following specific program areas were analyzed:

1. The quality of the program design was compared with
the initial design goals.

2. The program's function was compared to the
functional requirements.

3. Program performance was compared to the performance
requirements.

The reader is reminded that this thesis was concerned

with the Sim Initialize module and the Simulate module

(Blocks 2 and 3 of Figure 3-2). A detailed evaluation of

YSIM for different circuit structures, gate delays and

fan-in and fan-out was not done due to the desire to

evaluate the program's function in the limited thesis time

76

W I

available. Two different circuit structures were evaluated,

however, as were the program's execution speed versus the

number of input test vectors and the modeling of different

gate delays.

35.2 VSIK Design

The program design is specific and detailed concerning

all aspects of VSIM. The design hierarchy is well-

Bdocumented in a complete set of hierarchical charts (Chapter
4) and the C code itself includes detailed headers which

provide important information and a description of each

program module.

The code is understandable and well-designed. However,

due to the time constraints under which the program was

designed and developed, it is quite possible that some of

the program modules could be revised to gain increased

efficiency in execution speed and use of memory space. An

example is the event queue which is implemented as a

doubly-linked list and is designed to function as a modified

binary search. This search algorithm could be replaced by a

more efficient one.

3 Names for the functions and variables were selected to

be appropriate and descriptive of the required function and

data represented; however, there are instances where the

function or variable name is misleading or was poorly

77

chosen. Functions which are poorly named are generally ones

Swhose purpose was modified during program development. An

example is the Create Signals module which would be more

appropriately named Create Structures.

3 Since the program was designed to minimize the size of

the executable file, several functions are used more than

once rather than duplicating a similar function among

several slightly different program modules. Examples of

this modularity and efficiency are the Post Trans and Create

Rventq functions.

5.3 VSIN Function

VSIM implements each of the functional requirements

specified in Chapter II. The following functions are

performed by VSIM:

5.3.1 Operation. VSIM reads and interprets the

command line, the data files and the input vector file to

create the program data structures and establish the runtime

environment. The hardware design is then simulated until

all transactions are processed or a preset termination time

is reached; events are evaluated, new transactions created,

and results reported in the output trace file that is

generated.

78

5.3.2 VHDL Implementation. VSIM implements a subset

of VHDL. VSIM supports single drivers, simple signal

assignment statements, and single block statements. VSIM

supports integer and floating point data types, although the

only input values coded in the behavioral functions are:

'0,' '1,' 'z' (high impedance), and 'u' (unknown). The VHDL

functions of inertial and transport delay are fully

* implemented.

5.3.3 Interactive Capability. The user designates the

input vector file. VSIM also accepts and implements the

following command line options:

-d selects debug.

-o designates the output trace file.

-s selects the simulation start time.

-t sets the simulation termination time.

These functions have been verified through extensive

testing. Each option was used alone and in conjunction with

other options.

5.3.4 Error Checking. Error messages are generated

U for syntax and semantic errors. Error messages are also

generated for errors in the command line. All error

messages were exercised and checked.

79

op.

5.3.5 Program Size. The VSIM program consists of 1250

lines of C source code. The compiled object code is 24K

bytes in length.

3 5.4 Program Results

VSIM was exercised many times to verify program

correctness and to detect any program "bugs.* Although

considerable testing was accomplished considering the time

available and the requirement to manually code the design

data needed to drive the simulator, additional testing could

be performed to further insure program correctness. The

tests conducted on VSIM and the results achieved are

presented and analyzed in the following sections.

5.4.1 Designs Simulated. Figure 5-1 shows the two

circuits that were used to drive VSIM. These circuits were

used primarily to check the VSIM program operation. The

delay for each gate is shown above the gate and if transport

delay a T label is indicated below the gate. In the absence

of transport delay, all gates have inertial delay (the

default case).

The three-gate circuit (Figure 5-1a) implements the

basic gate functions And, Or, and Not, while the six-gate

circuit (Figure 5-1b) models a simple combination of two

copies of the three-gate circuit. Both circuits were driven

80
0 U

145
AD

C 2 F

Figure S-la Test Circuit I

145
AD3

B

T 10T

Figur 5-b TsFici

Fiur --4 Te0Crut

]f81

by identical input vector files to provide a common base for

analyzing simulation results. The input vector files

contained the five permissible input test vector characters

('0,' '1,' 'z,' 'u,' '.') where '.' means use previous

vector value. The input test vectors were randomly

selected. The number of input test vectors was varied from

a minimum input of 10 to a maximum of 960. Appendix C

contains an example of one of the input vector files used.

The different delay types and times were used to check

VSIM's capability to handle the full set of delay types and

times.

5.4.2 Program Correctness. The output trace file

produced by VSIM, when driven by the different input test

files for the two circuits simulated, was carefully analyzed

to validate that the program was producing the desired

results. The output produced by VSIM for each circuit

design and known input was checked using the boolean

expression for the circuit simulated. In each test case for

the different input vector test files and the two circuit

designs under simulation, VSIM produced the correct results.

Appendix H contains the representative results of one of the

validation test runs done for the 3-gate circuit design.

The results also validated that VSIM correctly models

both inertial and transport delay and correctly updates the

82

0

Cr
100 B

00

CD%

00

W C.) C

Z 0

N-?q o73 VHOL CYNSIC (VERY HIGH SPEED INTEORRTED CIRCUITS) 212
1.OmWE DESCRIPTIVE IL. (U) AIR FORCE INST OF TECH
IUIT-ftTTERSON RFD ON SCHOOL OF ENGI. W L LYNCH

L9CRSFE E FTOSEG15 FO /2 N

IMMEEhEMhEEI

EmonEsoonhE

4M
Llw t.loLOjw

Output wve form wben posting new transactiona. As shown in

Figure S-lb, a delay tim of sero was simulated on gate 5,

to verity that YSIN was correctly processing new

transactions scheduled for delta time.

5.4.3 Transaction Queue Sit.. Figure 5-2 shows the

maimum transaction queue sine for six different input

vector tot file* simulated on the 3-gate circuit design and

is representative for both test circuits simulated. The

significance of the data presented in Figure S-2 is that it:

1. D eonstrates the efficiency of the VSIR design in
processing the input vector test files. VSYr conserves
memory space by reading in the input test vectors one
line at a time as they are required by program
execution. Reading in all the input test vector file
would consume vest amounts of maory and create an
inefficient data structure. besides the efficiency
question of not reading the entire input vector test
file ts the question of practicality when processing
input vector test fles for VLSI class designs which
could contain tens of thousands of input test vectors.

2) Demonstrates that VSIN's dynamic data structures can
support the changing data requirements of simulated
designs during simulation execution.

3) Shows data structures are efficient in the use of scarce
memory space - expanding to handle the required data and
contracting to conserve space when the data requirements
lessen.

3r

84

NO~

___q

i85

5.4.4 Simulation CPU Time. Figure 5-3 presents the

simulation execution time for the two designs simulated.*

As demonstrated by this data, YSIM appears to be functioning

efficiently for the algorithm used and the two designs

3 simulated. Based on this data the simulation execution time

seems to be increasing in a linear manner as expected. This

efficiency in execution time is required when simulating

VLSI class chips, and demonstrates that VSIM is functioning

consistent with its intended design.

Based on the data presented in Figure 5-3, it can be

concluded that VSIM functions with generally the same

efficiency regardless of the size of the input vector file

or the number of gates in the design simulated. It must be

cautioned, however, that these conclusions are based upon

the limited number of tests conducted on VSIM. More testing

is needed to verify these test results and validate VSIM.

If additional testing verifies these results, then the data

obtained in Figure 5-3 can be used by the designer to

estimate the VSIM execution time of a design with a known

number of input test vectors. An even more important

result, however, if these data hold is that the fully

implemented VHDL simulator using the same algorithm as

* During the testing a variance was discovered in the CPU

time recorded by the system; therefore, the CPU times should
be considered approximate and not exact.

86

a

VSIN should have the same efficiency. This is important

since it provides the designer of the fully implemented

simulator with a baseline from which to work.

Implementation by the designer of a different algorithm to

improve the efficiency of either VSIM or the fully

implemented simulator can be measured in terms of this

established baseline.

5.4.5 Events Processed. Figure 5-4 shows the number

of events processed per CPU time measured against the number

of input test vectors. For both circuits the number of

events/second expands to a maximum rate and then gradually

declines to a steady state range for the remainder of the

simulation runtime. It is suspected that this rapid

increase in events processed per second at the low end of

the range of input vectors is caused by 1) the uncertainty

of the system time routine to accurately calculate small

time values, and 2) the time required to initialize the

simulation as opposed to the actual execution of the

simulation is the predominate contributor to execution time

at the low end of the range.

The number events processed per second is not only

directly related to the efficiency of the simulator, but is

also highly dependent upon the design simulated and input

vector test file used. As stated in section 5.4.4 above,

the number of events processed per second can also be used

as a measure of the efficiency of the simulator.

87

1&6 10'11 II IQZoZ

I _ _ _ _ _ _ _ _ -

C -

881
ab_

5.4.6 Transactions. Figures 5-5 and 5-6 show the

total number of transactions processed and the number of now

transactions created per second during the simulation test

runs. The explanation provided in section 5.4.5 concerning

the rapid increase in events processed per second at the low

end of the range is also applicable for the two cases

discussed here. The significance of the number of

transactions created can be compared to the number of events

processed to obtain an indication of how many created

transactions actually become events. This data is presented

not only to provide other measures of the efficiency of the

VSIM but to demonstrate that VSIM provides useful data in

its output trace file.* Using this information in

combination with the data presented in sections 5.3 and 5.4

above, the designer can adapt his approach to modeling to

improve the simulation runtime and make the simulator more

efficient.

* Appendix G contains an example of an output trace file
generated by VSIM.

89

S

A

-10

I0

iI

iI

I . t90 d

II

CC

Cl

o% 00t

ujC

91A

S. 5 Suary

The results and analysis presented demonstrate that

VSIM meets the goals and functional requirements specified.

An analysis of the program results, obtained from the

various tests conducted and described within this chapter,

provides proof of program correctness and validates the VSIM

design concept.

I

92 ;14

VT. Conclusions and Recoiendations

6.1 General

The purpose of this thesis was the development of a

prototype VHDL simulator in support of the AFIT VHDL

Environment (AVE). The prototype simulator implemented a

simple signal structure and manually coded behavioral

functions representative of VHDL processes. The prototype

kernel simulator which was developed illustrates the basic

simulation capabilities required for VHDL. The prototype

simulator is the first step in the development of a complete

simulator for the AVE. The added enhancements needed to

upgrade the prototype are presented in Section 6.3,

Recommendations. Evaluation of the prototype simulator

kernel demonstrates that the anticipated runtime for the

fully implemented simulator, to be designed and implemented

on the UNIX system, should have excellent performance

characteristics.

6.2 Conclusions

The VSIM program successfully implements a prototype

VHDL simulator and provides excellent proof of design

concept for implementing a complete simulator in the UNIX

93

. , Sp.q

environment. In general, VSIM meets all the established

functional requirements for the prototype simulator and

meets or exceeds initial performance expectations. The

final VSIM program is highly modularized and is efficient

both in memory usage and execution speed. The executable C

file (object code) for VSIM is a compact and efficient 24K.

VSIM executed the test circuit designs and input test vector

files well within acceptable execution times. The outputI II
trace file produced by VSIM provides the designer with

useful and required information which can be used to improve

simulation modeling and efficiency.

Most importantly, the prototype simulator, VSIM, has

provided: 1) a proof of design concept for development of a

complete VHDL simulator for the UNIX Environment, and 2) an

established baseline upon which future research and

development efforts can build.

6.3 Recommendations

The primary recommendation of this thesis is that the

research and development of a complete simulator for the

AFIT VHDL Environment continue. The following

recommendations focus on what remains to be done in the

development of the simulator.

94 p

.w.
p.

6.3.1 Parallel Development. VIA is now developed

sufficiently that it is capable of driving the prototype

simulator kernel. This is a significant milestone in the

AVE effort and the development of VIA and the simulator

should oe one of parallel development. As VIA is expanded

to incorporate new capabilities, the simulator should be

concurrently expanded to incorporate the added features.

6.3.2 Translator. The translator (preprocessor) or

automatic behavioral function generator for converting VIA

structures into C functions which are integral tc: the

simulator needs to be developed. A brief discussion of the

translator was provided in Section 3.4, Chapter 3, System

Design.

6.3.3 Efficiency. The efficiency of the simulator

runtime capability needs to be improved to allow it to

efficiently simulate VLSI class designs. This can be

accomplished by exploring the use of alternate algorithms

(such as the use of a balanced tree algorithm for the event

and transaction queues) and alternate data structures within

the simulator kernel.

6.3.4 Runtime Control. The simulator runtime control

should be enhanced to incorporate additional features such

as a multiple breakpoint capability.

95

6.3.5 Report Capability. The output report capability

should be expanded to provide the user with the capability

to select optional output trace reports. The prototype

simulator only allows output of an event trace report.

6.3.6 IEEE Standards. The fully implemented simulator

should be designed to conform to IEEE VHDL standards and

syntax.

6.4 Sumary

VSIM was an important first step in the design and

implementation of a complete VHDL simulator for the APIT

VHDL environment. VSIM provides proof of design concept for

a VHDL simulator written in C and operating in a UNIX

environment. It establishes a benchmark against which

future development efforts can be evaluated.

96

|

sibli towraby

1. d'Abreu, Michael. NGate-Level Simulation," IEEE Design
and Test, 2 (6): 63-71 (December 198S).

2. Moore, David H., and Wiliam, Toule I. "VHSIC's Industry
lmpace." 1981 University, Industry, Government
Microelectronics Symposium. T-10-r-25. Mississippi
M I.

3. Sumney, Larry V. vYNSIC, University, and Industry -
Some Issues." 1981 Universitz, Industry, Government

Microelectronics SlyposlueT-1 - T-9. MinoOSippi,
1961.

4. Shahad, Moe, et al. Computer, 18(2): 9-102 (February
1985).

5. frauenfelder, Capt Deborah 3. VHDL Language Anal zer.
MS Thesis. School of Engineering, Air Force Institute
of Technology (AU), Wright-Patterson APB, OH, December
1986.

6. Kamrowski, Capt Michael S. VUDL Hardware Simulator
Using Parallel Processors. MS Thesis. School of
Engineering, Air Force 'nstitute of Technology (AU),
Wright-Patterson APB OH, December 1986.

7. Chu, Yaohan, "Why Do We Need Hardware Description
Lanquages?," IEEE, (December 1974).

9. Lipovski, J. H. Computer, 6(10), 14-17 (June 1977).

9. Booch, Grady. Software Engineering with Ada. Menlo

Park, Ca. Benjamin Cummins Publishing Company, 1982.

10. Intermetrics, Inc. VHDL Design Analysis and

Justification Report. Technical Report TR-MD-01-1,
Bethesda, Md., 30 uy 1984.

11. Intermetrics, Inc. Simulator Program Specification.
U.S. Air Force Contract ?33615-83-C-1003. Bethesda,
Md., 30 July 1984.

97

. % ~ * .•• *' o" ,* , ? ,* l?/ * -° e" o . S. *

12. Intermetrics, Inc. VHDL User's Manual: Volume
1-Tutorial. U.S. Air Force Contract P33615-SJ-C-l003.p Bthesda, Nd., 1 August 1985.

13. Intermetrics, Inc. VHDL Language Reference Manual:
Version 7.2. U.S. Air Force Contract P33615-83-C-1003.
Bethesda, Md., 1 August 1985.

14. Breuer, N. A. and A. Friedman. Diagnosis and Reliable
Desisn of Digital Systems, Computer Science Press, Inc.,
Woodland Hills, Ca. 1976.

15. Kernighan, B. W. and Ritchie, D. M. The C Programming
Lanquage. Englewood Cliffs, New Jersey: Prentice-Hall,
inc., 1978.

V,

98

..

Appendix A:

Installation Guide

A.1 The UNIX Umviromment

The prototype simulator is designed to operate in the

UNIX BSD 4.2 environment.

A.2 System

The simulator will execute on a DEC VAX.

A.3 Program Compilation

VSIM can be compiled and executed on the UNIX operating

system using the system command 'make' and the VSIM makefile

included in this appendix. Once the VSIM files are

installed on a system, the 'make' command must b*executed

to create the executable file VSIM. VSIm can then be

executed as explained in Appendix B without further use of

the 'make' command. Use of the 'make' command is neccessary

only after program modification.

U I
99

WI U

7mi

FILES= vaim-c sim initialize.c create -signai-c create-driver.c create-fanout.c\
new signai~c new-drlver-c new fanout-c debugcontroi-c create eventq.c\
slmulate-c save-c debugaic \
debu~eventq.c debuttrans-c updateq.c post..trans-c getjfunc-c\S behavel-c behave2.c behave3.c or func-c not func-c and func-c\
getjinputsignals.c getjinputyectors.c pop transact.c sigaddr.c\
processjanout.c debugfanout-c postjfan -sig-c open-out-report.c\
close out report-c convert.c sim-structure-h

OBJECTS= vsim-o sin,_lnidalize.o create aignal-o create-driver-o\
create-fanout-o new signal-o new-driver.o new-fanout-o debugcontrol.o\
create-eventq.o simulate-o save-o debugsig.o\
debugeventq.o debugtrans-o updateq.o post trans-o get func .o\
behave 1.o behave2.o behave3.o or func-o not func-o and func.o\
getjinputsignals.o get -nput vectors.o pop transact.o si~addr.o\
procesjanout. o debuLfanouto postjfan-sig.o open-out-report.o\
close-outjeport.o convert-o

vsim: $(OBJECTS)
Id -o valm /lib/crtO.o $(OBJECTS) -Ic -Ig

vsim.o: vsim.c aim-structureli
cc -cg vsam.c

create drivero: create driver-c aim structure .h
cc -cg create-driver.c

create-signal.o: create..signal-c sim-structure.b
cc -cg create a ignai-c

create fanout-o: create fanout .c aim structure. h
cc -cg create fanout-c

new-driver .o: new-driver-c sim structure-h
cc -cg new-driver.c

new signalo: new_signai-c aim-structure.h
cc -cg newjignal-c

new fanouto: new-fanout-c sim-structure.h
cc -cg new fanout.c

aim initialize. o: aim-initialize. c aim-structure.hI
cc -cg simjinitialize-c

create eventq.o: createeventq.c smastructure .h
cc -cg create..eventq.c

debugcontrol .0: debugcontroic aim structure. h
cc -cg debuLcontroic

simulate .0: simulate .c aim-structure. h
cc -cg simulate-c

100

save.o: savo~c
cc -cg save-c

debuLhig.o: debu~sig-c sim-structure.h3 cc -cg debugsig-c

debu~eventq.o: debu~eventq.c sim-structure.h
cc -cg debugeventq.c

debuLtranso: debugtransac sim-structure.h
cc -cg debugjrans.c

updateq.o: updateq.c simsrctr-
cc -cg updateq.c

postjrans.o: post_trans-c sljtructure-h
cc -cg posttrans.c

getjunc.o: getjunc.c sirn-structure.h
cc -cg getjfunc.c

behavelI o: behaveic sim-structurebh
cc -cg behave 1.c

behave2.o: behave2.c aim -structure-h
cc -cg behave2.c

behave3.o: behave3.c sim-utructure-h
cc -c% behave3x.

or-tunc.o: orlfunc.c
cc -cg orjfunc.c

not-funco: not-func.c
cc -cl noc..func .c

and func.o: and func-c
cc -cg andjfunc.c

getinput signals. 0: getjinput signals. c sim_structure. h
cc -cg get input signals-c

get input vectorso: get input vectors.c sim-structure .h

cc -cg get. ifputvectors.c
pop transact .0: pop tasc c im structure. c c o tasch

sigaddr.o: sLaddr-c sim-structurebh
cc -cg sigaddr-

process_fanouto: process-fanout.c sim-structure h
cc -cg process-Nanout .c

101

debugfanouto: debu&_fanout-c aim -structure .h
cc -cg debugfanout-c

postjfan-sig.o: post fan -sig-c aim -structure.h
cc -cg postjfansig-c3 open out report.o: open~out,_report-c sim-structure-h
cc -cg openpout reportxc

close-out-report-o: close -out -report-c sim-structure-h
cc -cg close-out-report-c

convert-o: convert.c sim-structure-h
cc -cg convert.c

102a

m Appendix B:

Users Manual

5.1 Program Execution

VSIM allows the user the selection of several options

through the command line. At a minimum, the command line

must contain the program name VSIM and the name of the input

vector file. The following format must be used for the

command line:

VSIM [options] input file name

The command line options may be specified in any order

and the program is insensitive to the number of allowable

arguments which are present. The command line options are

summarized below:

-d n Selects the debug option which causes the

contents of selected structures to be printed to the

output file. Debug prints the selected data the first

time that simulate is entered and each time a tran-

saction is processed. n can be one of four integer

values (1, 2, 3, 4) where:

n - 1 prints all signal structures

n - 2 prints the event queue

n - 3 prints all transaction queues

n - 4 prints all data structures

103

)PI

-o filenae Allows the user to select the output file where

the output trace file will be written. The default is

*im output.

-2 n Allows the user to select the simulation start

time. The time units specified must be the same as the

units of time used for the input vector file and the

circuit description. n must be an integer value. The

default start time is 0.

-t n Allows the user to select the simulation

termination time. The time units specified must be the

same as the units of time used for the input vector

file and the circuit description. n must be an integer

value. The default termination time is 10000.

-b n Allows the user to select a breakpoint time

when data will be dumped to the output file.

Simulation continues after the breakpoint is processed.

n must be an integer value. Not implemented on this

prototype version.

3.2 Input Test Vector File

VSIM reads and interprets the input vector file. The

user specifies the input filename on the command line.

Failure to specify the input file will result in a fatal

error and termination of program execution. VSIM accepts

five valid input values: '0,' '1,' 'z' (high impedance),

104

.",

'u' (unknown state) and '.' (means no change in previous

3 value). A sample input vector file for VSIM is contained in

Appendix C. The $ will be used as a delimiter between the

designation of the input ports (signals) and the associated

input vectors.

8.3 Timing

VSIM allows the user to select the simulation start or

termination time as indicated above. Either one or both may

be selected; however, a fatal error occurs if the

termination time specified is less than the start time.

Simulation time is not discrete but is event-directed, i.e.,

it is incremented according to the scheduled occurrence of

events.

B.4 Initialization

Prior to the start of simulation, all the signal and

driver values will be initialized to 'u,' the unknown state.

B.5 Error Checking

VSIM provides extensive error checking. If errors

occur, they are displayed on either the standard output or

written to the specified output file. An error on the

command line or a failure to open the user specified input

105

vector file will result in a fatal error message displayed

3 on the standard output. All other error messages are

written to the specified output file. Errors can affect

program execution in one of two ways: 1) after warnings

program execution resumes, or 2) after fatal errors program

execution is aborted and no output file is written.

BA6 Design Circuit Changes

Since the circuit design in VSIM is manually coded, the

following modifications must be made to VSIM to simulate a

different circuit design:

1) The input vector file must be modified to include new
input signals and their values.

2) The three data files (signal, driver, and fanout) must
be modified to include the new data for the circuits,
signals, drivers and the signal's fanout.

3) The behavior functions need to be changed to accurately
model the new circuit design. A behavior function is
required for each logic gate in the circuit design.
These changes can include:

a) Changing the circuit delay type. Since inertial is
the default in VHDL, transport delay must be set by
declaring the global variable TRANSPORT to be TRUE.

b) The circuit delay time can be set by the assignment
of a value to the global variable nov time.

c) The input and output signals must be defined (#
define) in the behavioral function.

d) The generic function must be specified in the
behavioral function. VSIM models the generic
functions and, or, not. The user will have to
create a new function to model other than one of
these three gate functions.

106

a A J

Appendix C:

5 Sample Input Vector File

The following is a sample of an input vector file. A

detailed explanation of the file can be found in section

3.5.4, Chapter 3.

alpha
b
C
$

10 1 .0
13 u 0 1
15 1 z 0
17.01
200 1.
301 u 0
400 . I
45 1 1 0
65 0 . u

75 1 z 0

107

Appendix D:

I Sample Signal Data File

The signal data file contains the signal name, mode and

type for each signal in the circuit design.

alpha 1 2

"" c12

delta 0 2
echo 2 2

foxtrot 2 2

108
-' S

Appendix R:

Sample Driver Data File

The driver data file contains the drivers for each

signal in the circuit design. The first entry on each line

is a number which tells the VSIM program how many drivers to

read for a given signal.

1 alpha I
I bI

1 dl
I eI
1 fl

~~109 "

II

Appendix F:

Sample Fanout Data File

The fanout data file contains the fanout (behavioral

functions) for each signal in the circuit design. The first

entry on each line is a number which tells the VSIM program

the fanout for a given signal.

I behave I
I behave I
I behave2

2 behave2 behave3

I,

110

Appendix G:

Sample Output ?ra-e File

VSIM produces an Output Event Trace Pile. The report

provides the user with the following information:

1) Column 1 gives the time of the event.

2) Column 2 gives the signal which had the event.

3) Column 3 gives the value the signal had before the
event.

4) Column 4 gives the new value of the signal.

5) Column 5 gives the source of the event; 1 indicatinq an
input vector and 0 indicating a transaction created
during the simulation.

6) A report summary providing simulation start and
termination times, and total simulation runtime,
transactions processed, events processed and
transactions created.

111

U

AFIT VHDL Prototype Simulator Otxut Repon

Evenu Procmed

Time Signal Present V"lue New Value Transaction Type

alpha u 0

I b u 0

I C u 0

is delta u 0 0

20 echo u I 0

25 foxtrot u 0 0

26 c 0 i 1

26 b 0 1 1

40 dekla 0 I 0

41 b I 0 1

45 echo 1 0 0
50 foxtrot 0 1 0

55 deks 1 0 0

60 echo 0 I 0

65 foxtrot I 0 0

66 b 0 I

so delta 0 I 0

85 echo I 0 n

90 foxtrot 0 1 0

91 c I 0

91 h 0

101 foxtro(I 0 0

105 delta I 0 0

110 echo 0 1 0

116 alpha 0 I 1

112

V%

a

Time Signal Present Value New Value Transaction Type

116 b 0 1 1

116 c 0 1 1

130 delta 0 1 0

135 echo 1 0 0

140 foxtrot 0 1 0

Simulation Summary

Simulation start time : 0

4Simulation termination time :140

Total Simulation Run Time :140

Total Transactions Processed :40

Total Events Processed :30

Number of New Transactions Created :24

113

" 1

Appendiz 5:

U 1$I Validation

This appendix contains the state table, boolean

3 expressions, input vector file and output results used to

validate the VSIM program.

114
w0I 6

II --I

S STATE TABLE

A B C E F H !

0 0 0 1 0 1 0

0 0 1 0 1 1
0 1 0 0 0 1 0

O 1 1 0 0 0 0

1 0 0 0 1 0 0

1 0 1 0 0 0 0

1 1 0 0 1 0 0

1 0 0 0 0

Expressions

/

(A + B) C - F
, ,.,,-(A + B) C H.

(A BC) -H

ABC-I

115

E Q~4.

I

apha

b

S

26 0 1 1
4100 1
66011
1 91000

116 1 1 1

116

" !M

AFIT VHDL Prototype Simulator Output Report

Events Processed

Time Signal Present Value New Value Transaction Type

I alpha U 01

1 b u 0

1 c U 0

15 delta u 0 0

20 echo u 1 0

25 foxtrot U 0 0

26 c 0 1 1

26 b 0 1

40 delta 0 1 0

41 b 1 01

45 echo 1 0 0

50 foxtrot 0 1 0

55 delta 1 0 0

60 echo 0 1 0

65 foxtrot 1 0 0

66 b 0 1 1

80 delta 0 1 0

85 echo 1 0 0

90 foxtrot 0 1 0

91 c 1 0 1

91 b 1 0 1

101 foxtrot 1 0 0

105 delta 1 0 0

110 echo 0 1 0

116 alpha 0 1 1

117

V

TIMIS Signal Presnt Value New Value Transaction Type

16 b 0 1 1

116 c 0 11

130 deka 0 1 0

135 echo 1 0 0

140 foxtrot 0 1 0

Simulation Summary

Simulation start time :0

Simulation termination time :140

Total Simulation Run Time :140

Total Transactions Processed :40

Total Events Processed :30

Number of New Transactions Created :2d

118I

Appendiz I:

Results

This appendix contains the results used for the

3analysis of VSIM presented in Chapter 5. These results were

compiled from the summaries of VSIM Output Event Trace

Files. NI

119

IRB

Results 10 Input Vectors

Ue

. sum 10 3g
Simulation Summary

Simulation start time : 0

Simulation termination time :89

Total Simulation Run Time :89

Total Transactions Processed :50

Total Events Processed :32

Number of New Transactions Created :31

sum 10 6t

Simulation Summary

Simulation start time : 0

Simulation termination time :107

Total Simulation Run Time :107

Total Transactions Processed :75

Total Events Processed :41

Number of New Transactions Created :56

120

,,

Results 20 Input Vectors

sum 20 3&

Simulation Summary

Simulation Kart time : 0

Simulation termination time :109

Total Simulation Run Time :109

Total Transactions Processed :65

Total Events Processed :41

V Number of New Transactions Created :40

sum 20 6S
4; Simulation Summary

Simulation start time 0

Simulation termination time :177

Total Simulation Run Time :177

Total Transactions Processed :140

Total Events Processed t76

Number of New Transactions Created :105

121

5-.

Results 30 Input Vectors

sum 30 g3

Simulation Summary

Simulation start time : 0

Simulation termination time :239

Total Simulation Run Time :239

Total Transactions Processed :139

Total Events Processed :89

Number of New Transactions Created :85

sum 30 6g
Simulation Summary

Simulation start time : 0

Simulation termination time :245

Total Simulation Run Time :245

Total Transactions Processed :198

Total Events Processed :108

Number of New Transactions Created :151

..122"

."v, ,,', ' ',, % ,,,, ; 1 9 , ,,1,,,% -, .,,,,.r ,,, .¢...,.. .-...I. ; ,.. .. % .:. .;,.- .:..... , ,. .. ,... ...

Results 60 Input VectorsI1
sum 60g3

Simulation Summary

Simulation start time : 0

Simulation termination time :439

Total Simulation Run Time :439

Total Transactions Processed :280

Total Events Processed :182

Number of New Transactions Created :172

sum 60 6&
Simulation Summary

Simulation start time: 0

Simulation termination time :445

Total Simulation Run Time :445

Total Transactions Processed :395

Total Events Processed :219

Number of New Transactions Created :306

123

hI~~EVN . r. inI*II/ "

Results 120 Input Vectors

sum 120 &3

Simulation Summary

Simulation start time : 0

Simulation termination time :939

Total Simulation Run Time :939

Total Transactions Processed :559

Total Events Processed :366

Number of New Transactions Created :345

sum 120 6g

Simulation Summary

Simulation start time : 0

Simulation termination time :945

Total Simulation Run Time :945

Total Transactions Processed :786

Total Events Processed :441

Number of New Transactions Created :613

124

.. ults 240 Imut Voctors

3 sum 240 S3

SimMAlsOdM sar dine: 0

Siwubeaios tsmuriao Ume :1939

Total Siobado Run Time -19 39

Total Tramnctio. Pooeme A117

Totad Evesa Pioee -734

Number of New Trwoasdons Created 691I

su 240 Gg

S~Wiadon sari die 0

Simdms termkwna time :1945

Total Skaulation *in Time 1945

3 ~Total Ttaswo P.oese .156

Tota BEw Poesd 583

Number of New Tratuscdons Crested 1227

125

..... * * &A
9 9. u'. * *9 % *. .

Eeults 460 Input Vectors

Skoulation Sunmar

Sinulation starttdons: 0

Shnuladan wtehation time :3945

Total Skoulation Run Time :394S

Total Transactions Processed :3 135

Total Rvents Processed :1774

Number of New Transactions Created :24S7

sum 460 S
Simulation Summary

Simnulation Ktan time: 0

Simulation termination time :3939

Total Simulation Run Time :39 39

Total Transactions Processed :2233

Total Events Processed :1470

Number of Now Transactions Created :1364

126

5'JM1,0

Mesults 720 Input Vectors

3sum 720 &3 Sition Summary

Simulation start dum.: 0

Simulation termination time :5939

Total Simulation Run Time :5939

Total Transactions Processed :3348

Total Events Processed :2206

Number of Now Transactions Created :2076

sm720 G
Simulation Summary

Simulation start time : 0

Simulation termination time :5945

Total Simulation Run Time :5945

Total Transactions Processed :4699

Total Events Processed :2662

Number of New Transactions Created :3685

127

Result.; 960 Input Vectors

sm 960 Gg

Simulatlin Summary

Simulation start time : 0

Simulation termination time :7945

Total Simulation Run Time :7945

Total Transactions Processed :6265

Total Events Processed :3551

Number of Now Transactions Created :49 15

sum 960 S3
Simulation Summary

Simulation start time : 0

Simulation termination time :7939

Total Simulation Run Time :7939

Total Transactions Processed :4464

Total Events Processed :2942

Number of Now Transactions Created :2769

128

Svita

William Leo Lynch, Jr. was born on May 18, 1947 in

Somerville, Massachusetts. He graduated from Burlington

High School in 1965 and received a Bachelor's degree from

Northeastern University, Boston, Mass. in June 1969. Upon

graduation, he was commissioned a second lieutenant in the

U.S. Army through the ROTC program. He also received a

Master's of Business Administration degree from the

University of Utah in June 1982. His most recent

assignment, from May 1985 to June 1986, was as the Executive

Officer, 509th Signal Battalion, Camp Darby, Italy.

Permanent Address: 7 Olean Road

Burlington, Mass 01803

129

= . w

