Y
a
Q
&

o
EEE
FEEE

FEEF

idd] 1

N
G
-~

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

| AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

L | 87 4 15 05!

t

‘.
o

l\.
a'e

&

RCLUWITY CLASFC) ION Ol L A

REPORT DOCUMENTATION PAGE

/1901

OMBS No. 0704-0188

—

16. RESTRICTIVE MARKINGS

. DISTRIBUTION / AVAILABILITY OF REPORT
Approved for Public Release;
Distribution Unlimited

o. REPORT SECURITY CLASSIFICATION
N L AN TR]
. SECURITY CLASSIFCATION AUTHORITY
DECLASSIP ON /00 DING SCHEDULE
ERFORMING ORC TION REPORT NUMBER(S)
AFIT/GCS/ENG/36D-15
NAME OF PERFORMING O TION
School of Engineering
DORESS (City, State, and Z¥ Code)

Air Force Institute of Technology
Wright-Patterson AFB OH 45433-6583

8b. OFFICE SYMBOL
(¥ applicable)

NAME OF FUNDING / SPONSORING
ORGANIZATION

[65. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
(¥ spplicable)

S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFTI/ENG —
(75, ADORESS (City, State, end ZiP Code)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ADORESS (City, State, and 2P Code)

0. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. | NO. NO ACCESSION NO.
11. TITLE (Indude Security Classification)
VHIL Prototype Simulator
12. PERSONAL AUTHOR(S
illiam mch, Major, USZ
13a. OF REPORT 13b. TIME COVERED 4. DATE OF REPORT (Year, Month, Day) |1S. PAGE COUNT
S Thesi FROM ToO_______ 86 Dec 129

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBIECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP VHIL,
09 02 Simulator Simulation Model HARDWARE Description Language

Thesis Advisor: Harold Carter

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

MNMsiThd Ve aad%. wmedh ‘v pve -

Uean for hese o r3d Frolesslonal Dovﬂm
Aur Force Insti.te ct lechaology (AIC)
Wright-Pattesson A7B OH ¢5438

CYNN O o L

m 2564

)’provou s wile nloﬂ!f ul)
(\i N E. V«OaM'rR ‘,___,‘ pevate.

Dffen ot Lo
A: b

Froaare

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT

21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

guucussmsomuumreo O same as ReT.] OTIC USERS
22s. € OF RESPONSIBLE INDIVIDUAL

Professor
DD Form 1473, JUN 86

22b, TELEPHONE (Include Area Code) | 22¢. OFFICE SYMBOL

Previous editions are obsolete.

RITY TION OF THIS PAGE

Abstract

This research effort studied, modeled and
implemented a prototype simulator kernel for VHDL in a
UNIX environment. The prototype simulator was written
in the C programming language. The detailed design of
the prototype simulator includes an installation guide,
users manual, and design description. The simulation
program, called "VSIM" for VHDL Simulator, does not
support the full capabilities of VHDL. It implements
the simple signal assignment statement and models
transport and inertial delay. Regquirement ’
specifications are given for both the prototype and a
fully implemented VHDL simulator.

Csy

[

t 2

kg

CO T P P P AT AT A R L AT SO

' AFIT/GCS/ENG/85D-15

=

VADL PROTOTYPE SIMULATOR

£

THESIS
William Leo Lynch Jr.

Major, USA

APIT/GCS/ENG/86D-15

Approved for public release; distribution unlimited

o

APIT/GCS/BNG/86D-15

VHEDL PROTOTYPE SIMULATOR

THESIS

Presented to the Paculty of the School of Engineering
of the Air Porce Institute of Technology
Air University
In Partial Pulfillment of the
Requirements for the Degree of

Master of Science in Computer Systems

Accesion For

- | i
NTIS CRA& N
ot OTIC TAB 8]
SyPeote® Una-: o ced C
1 Jesthig s e :4
William Leo Lynch Jr. By - SRR
LELQm.myJ
Major, USA TAvadabinty Crees ;
e ——— - - [PUNES——
) R PP L, Or
Di-t Spttal

December 1986

Approved for public release; distribution unlimited

R T e A RN LA L N SO QAN

L

L

-

R

Preface

This thesis was primarily concerned with the
development of a prototype simulator kernel for VHDL that
operates in a UNIX environment. The program implements the
major basic functions of VHDL using the C programming
language.

The prototype provides proof of design concept and
establishes a baseline for the continued development of a
simulator in the AFIT VHDL environment. It also provided a
unique opportunity to study hardware simulations, hardware
description languages (VHDL) and the UNIX Operating System.
It was a tremendous learning experience in both software
design and engineering.

I want to express my appreciation to those many people
- fellow VHDL group members, thesis committee members and
special friends - who contributed so much to making this
effort successful. My sincere thanks and gratitude to
Professor Hal Carter, my thesis advisor, who made it all
possible by suggesting this project and through the
guidance, support and encouragement he provided throughout
the project.

I want to especially thank my wife, Elia, and children,
Bernadette and Vicente, for their unrelenting support and

encouragement. Most importantly I am deeply indebted to

ii

LA e PLPME

LS

them for their understanding in once again enduring the
hardships of a prolonged separation.

' Finally, my words of praise would be incomplete without
mentioning, Linda Burnett, my typist, who spent many long
hours often on short notice typing this thesis and

B deciphering my cryptic handwriting. Thank you!

o5

&=

L

iii

g TR oy ” ‘ LTI Ty NPT P 1Y TR L R SRR O
’."l'?t‘ LA O NI O MO N (el (S ':\ MO W W ||. "" P o W M M W R W N (e W M Y W0 0 W g X' o X - Y, \ A “ o,

.
Table of Contents %

Page
Preface ® ® 6 & 8 ¢ © 0 O " P A O OO GO O OO O C OO PO OO P OO OO OO e OSSR ii f

List Of Figures0.'......0....o....o...o-...o..viii ,-
a Abstract ® & 5 0 @ 96000 OT OO S E OO OO0 SO L L0 00 G e 0SS0 sELESTSOEREOSS X
I. Inttoduction ® ® 8 0 0 ® 0000006000 O LSOO O S ESSSO BSOS 1

1

1 General ® 8 85 ® 0 P0G OE C 0SSP S80S0 e SE eSS SO ESTSE

. 1

1.2 Background ...ccceccceassssssssssssccssscns 3 X

1.3 Summary of Current Knowledgeccccccece.. 8 ‘

1.4 Problem Statement .c....ececcecccnsccccccccca 9 3
ﬂ 1.5 SCOPe ciccccerocssscccccncsascssccsnsssanssssll .

1.6 Approach .ccccecccencesccscsccnsssscscsasnsasslO b

1.7 Assumptionsccceeceeecccccccccscsccnasssll i

1.8

Sequence of Presentationcccececcccesall '\

b
Eg II. Requirements Definitionmccccc0c00...13 ;
)

i

2.2 Requirements for a Fully

!
|
\
|
J 2.1 GeneralI........................O'..13
| Implemented Simulatorccccccevecccces 13

-0

o 2.2.]1 SCOPE cceecccccccscsscnsssccnsscssssll 0
;; 2.2.2 Compatibility ...ccvieececccencscessal3 !
- 2.2.3 Flexibility .cicceeereceoccccccceessald J
2.2.4 Input Test Vector File ..cceceeeeess.ld .

2.2.5 1Interactive Capability ...ccceceeeesel5 o

iyt

2.2.5.1 Breakpointcccececcccccccessl B!

2.2.5.2 Time Selectionccccveee.0.15 9

3 2.2.5.3 Content and Format of v

Test Reports ..--000000000000.0016

Multiple Drivers ...ccceesecsccecsasslb
DElay cccceccrccccccssssssscancssaseasalb
NetworksS ...cscecceccccccccssccsccsssasal?
Abstraction Capability ...icceceecasl? s
O Steady State ...cececccsccccassscsaal8 ‘

-

NN N
® o o o o
NNMNNDNN
« o o o o

=0 030

2.3 Requirements for the Prototype Simulator ..18

203.1 ObjeCtive-........-.-.........-18]
F 2.302 ReQUirementS Definition o.oooooo--‘-lg -

iv .

P

mﬂ]:: WY TP ‘Lt 1"2'_};'1‘... ;5‘;1‘.-.

"8

III.

.

Program Descriptionc00...19
Functional Requirements20

[\S I ¥]
°* o
ww
o o
NN
*

Approach ..ccccccccecesccssecs20
VSIM Created Structures
and Functionscc00c0e..21
3 Simple Assignment

Statements ..cccccecncccecsad
4 BloCKS t.ccecacccsccnssncesna?
S ProcCeSSesS .ccceccesscscncscansal
6 Data TYPE8 .ccecescsccscsoencell
7 Single Drivers ...ccecveeceeceo23
8
9
1
1
1

NN
o o
ww
. o
[SIS
* .
N =

.
w
.

Input Test Vector File23
Interactive Capability23
O Timing cveceecenceccacccensea?5
1 Error Checking .cccvececace..25
2 Initializationcc0e0000..26

NNMNNNMNNDNDNON [\ [\S I V) N -

NN NMNNMNNNNDNON [\]
® o o o & o o o o
WWWWwWwwwww

2.3.2.3 Implementation Requirements26
2.3.2.3.1 The UNIX Environment26
2.3.2.3.2 The C Programming Language .26
2.3'2.3.3 system ...'.I....-..........zs

2.3.2.4 Performance Requirements26

systﬁ- DeSigﬂ ‘..'tl..uo......o--.0000.00000300029

W ww
s & &
wW N =

W W
P
(S, B -3

3.6

General .o...n.-.o..o.o....l...00........0.29
system overView -.00...-..-0.-.0....-.-000029
Main ProgramI....'..................32

3.3.1 TranSIate VIAo-.oc.o..o..--...-32
3-3.2 Sim Initialize ® ® 6 06000 000800900 0000000 .32
3.303 Simulate o.oo.o.........o.-.l......c34

Translate VIA ...-..l..-..0...............'37
Sim InitializeI.........l....‘.......39

Create Signalsccccesevcccscseasl9
Get Input Signals ...ccccecccescesssd?
Get Input Vectors ..c.cccececceccsssecidl
Input Vector Fileccccccveeceeasdl
Open Out RepOrt ...cceceescccccccessdb

WWwWwww
e * s o o
[V QS NV S S,]
e o o o o
b wWwN =

Simulate .D..l.......I........‘.I...l.....l45

3.6'1 Sim C1OCk .‘--..-ooo.o.---.-0000.00045
3.602 Pop Ttans o.o.l.-o.o.l.o.ooio--0000045

v, 3
M]

oy

[4

Process Fanoutccccesceosccacesadd
Get Input Vectorsc.cecveececcceseod?
CONVErt ..cecessccccccosnscscsccsccnaad’
Close OQut RepOrt .c.ccecscacescccsssad?

Detailed Design ..ooo....."..l..o..'oo......a..48

Generalcccceccccccssanscsccrsrssacscss4d8
Design Goals ...ccescccecccscccscnncanscsccssdd
Design Procedure ...ccccceccccssccccccsecssdd0
Function Descriptionscecvccececeeeead2

Main -...0.‘Oo...0..-.-..-.....00-..52

Sim Initialize ...ccccceccccccsncesstd
Create Signal ..ccceececccccccassssads
Get Input SignalsccccecscccccesB6
Get Input VeCtors ...cecesscescccceed?
New Signal .ccccecececccccscccscecesad8
Create Driverccceeccsccsccccacasasbdl
New Driver ...ccccececncsccesccccnaabl
Create FAanout ..cccececcccccsccacseedl
New FAnout eccececevececcccaceassnvsesab3
Simulate ...ccecceccccscssancsassssa.bqd
Debug Control .ccceeeccccsccscccssnssb66
POP TCANS8 .c.vevesscsvcssssascssncsessasbH8
UpJAteq ceeececcscncsasassssssasacsesab69
Create BVENtq ccceccacccscssssascenseall
Process Fanout ..cceeccceccccscccecall
Behavioral Functionsccccceveecea?2
POSt TrANS .ccccesoscscccscnssascscscell

B D DD DD DD DB DD D DD
e 6 o 6 & 6 8 5 6 86 ¢ & s & & o 8 o

[NN RN
PR OO HA WN -

OO NH WO

Analysis and ResultsccvovcevceccccscccscnseslB

(S RS Y,]
" o 0
W N -

5.4

General -...c..n...O...-o.o.o.oonuconc00.0076
VSIM DeSign ® ® 00 ¢ 9 6O O 00 GG S OSSOSO e RSO .77
VSIM FunCtion ® © 0 9 950 0 008058005060 G e PSS Ee 078

5.3.1 Operation ...ccccceccscccccsccassecess’B
5.3.2 VHDL Implementationcce0cceee.79
5.3.3 1Interactive Capabilitycceeeee..79
5.3.4 Error Checking ...cccecevccesccocesel9
5.3.5 Program Sizecccccecccccsccaccss80

Program RQSUItS ..-.-.....-.-..............80

1 Designs Simulated0c0000...80
2 Program Correctnessccceesee..82
3 Transaction Queue Size84
4 Simulation CPU Time¢cec0c00...86

vi

L
A LA

5.5

Events Processed ...cccecvvccccccccssd?

5.4‘5
5.4.6 Transactionsccccesvccvcccecsces89

Summaty ..0.......--...-.l....oo-n.o-.oo..ogz

VI. Conclusions and Recommentationscccec00ee00.93

W N -

6.
6.
6.

6.4

GeneralI...93
CoNClUSIONS ceveevreccecocnosonosscsscncsnssesdl
Recommendations ...c.cceeeccenccsccnccceceadd

Parallel Developmentcecocececese95
TranslatorcccscoccccccncscsssecsdD
Efficiency c.eiieececececcsccensensadb
Runtime Controlccceeeeececssaadb
Report Capability .cccceccccccsceeasad6
IEEE Standards ...cccceccsssccsccesadb

AN O
¢ o o o o
WWWwwww
¢ o s s o
UL b W -

Summary -.o..o.oo.....n.o.-.o.oo-.n-oo-.oo-gs

Bibliography0..I.....I....000000000000000100-097

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H

Appendix I

Installation Guideccecevennoncccsess99
Users Manual ...cciieevcccscesscecnsccssseal03
Sample Input Vector File ...ccccececeasessl0?
Sample Signal Data Filececeeeecece..108
Sample Driver Data File;.109
Sample Fanout Data Filecccccecoseeasell0
Sample Output Trace File ...ccceeeecsaeaaaalll
VSIM validationcccevecececcccccesacalld

ReSU].tS -...000....-oo-o...o.-.on-...oo..-llg

Vita oot..ootooo-t..oo.o....Oo...ooo..oo.o-no--o.o.000129

vii

78

-

3

A

(.:-.:...

. o -
.{..o‘:

o

1-1

4-4
4-5

4-6

4-9

4-10

12 A qy, _Sg 8 o’) S atp Eo Lipnatp bp i

Pigure List

Page

AFIT VHDL Environment ® © 6 & ® & & & & 0 % O & O S OGS OO O O e S e C a0 6
Engineering Analysis vs Design
Verification Systemscccccececcccecnnnnnsas 27

Precompilation Trade-off Graphccr0ceeeec.. 28

VHDL Simulatorceeececccccceacncccccnnsasssssl0
VSIM ..ceecccscseacconcsscsncscooosssscssocsssssssscccss33
Simulation Processcecvececsccccscscssncacncess3b
Translate VIAccceccsaccccsscoccccsccncssccsssiB
Sim Initializeccceeecoccccscasscccssnssanceesasdl
Data StructuUresc.cceeecsccvoscscccscscccscanessdl
Sample Input Vector Fileccccccceceacceccnncccssadd

simulate n.-ooooo-o‘ono.-...0-.00...--..-......-.-46

VSIM Hierarchy ...cveececceccccccecaccannnseasssaaadl
Main teeeeeeeeeececcesscsaosccccscscconccosscssscncnssad2
Sim Initialize ...ccccecvecceccccccececcccccsaccasadd
Create Signalcevecececccccccccnccccssssasessbdd
Get Input Signalsceeceecccccne . 1]
Get InNput VeCLOrS ..ceeececccsonsccccsocccsnocnssonsdl
New Signalceececccccssscnscscssssancsnassssessdd
Create Drivercceveveccccecccacncccccssaessb0
New Driverccececcevccccccns B 2 §

create Fanouto..........-..-........62

viii

W L] WY] W

LGS

h ..

oL oA T

i

.

X AR

5

S

42

4-11

4-12
4-13
4-14
4-15
4-16
4-17

4-18

New PAnout .cceccccccccccvcscccscsccoscscccsncscsccccssb8l
Simulate ..cccccescccccenscccscccccccccsnccccccsssb64
Debug CONLrol ..c.ccceeccvocccccscsccscccsccssccccccsbd?
POP TrANS .ccesccscscsssscssscscccsssssscscssccsssssscsb8
UPAAteq ceecevscscccccncsassssccsccscssssccccccscscsssbd9
Process Panout ..ccececccccscccccsscsscccsscscscccsssell
Behavioral Punctionscceccccccccccccceccnccesal

Post Transoo.o......00.0.00.0..0.0.0.ooo....¢74

Test citcuits0.....‘.......O.............al
Transaction Queue Size ...cccicectercccncccenscnceaBl
simulation CPU Time ® ® ¢ 6 & ® & O & & 6 O O & " OO S e SO E e S N 0085

Eventsl..............'.....'O.l'..l.......'..88

Total Transactions Processedcccicv0s0s0e00s.90

Transactions Createdccceccscsccscsssccssssesscedl

\\‘ Abstract

\.
' -
;>rh1- research effort studied, wmodeled and implemented a
prototype simulator kernel for VHADL in a UNIX environment.
The prototype simulator was written in the C programming
! language. The detailed design of the prototype simulator
includes an installation guide, users manual, and design
description. The simulation program, called ?;SIH:ygor VHDL
g Simulator, does not support the full capabilities of VHDL.
It implements the simple signal assignment statement and

models transport and inertial delay. Requirement

ﬁ specifications are given for both the prototype and a fully

_ o o i ‘[;:
implemented VHDL simulator. '6 ,,y,jo vy o L/'d f

/ . -
;. 7 ,‘1"{&) ‘f/,(dj/)/ A\ ?/J/I\)ynlmud ,

SN :] . :

. (- ‘ ; y
& |

LPERE ST L A D BTSN Y *p "
R T e T T URDE N E el ¥ ‘-- s

Gk

VHEDL PROTOTYPE SIMULATOR

I. Introduction

1.1 General

The function, speed and performance that can be
achieved from a single integrated circuit has increased
greatly in recent years due to the rapid advancement in
silicon fabrication technology. The increasing functional
capabilities of integrated circuits have necessarily been
accompanied by increasingly complex circuit designs which
limit the individual designer's ability to fully understand
the circuit design. This trend toward ever more complex
designs, especially in very large scale integrated circuits,
has necessitated the use of design teams in the development
of very large scale integrated circuits. The design team
concept has created the problem of how to communicate design
information concisely, accurately, and efficiently.

One me-hod used to describe and model electronic

circuits is the formal language approach, commonly known as

\

V‘\J &:‘ &: u: !\ !\ !\ t: E\ n'\. d !\ a u\ E\& t\ [\'!\ E\ 'E\ E"\ :\‘E\‘E\'r‘.'

o

14

]

|

I l~"Ln»".|“.."’

Hardware Description Languages (HDL). Most HDLs in use
today wvere developed when integrated circuit function was
limited to small and medium scale circuits. Unfortunately,
these languages are not adequate for the designer's needs in
the development of today's state-of-the-art very large scale

and very high speed integrated circuits (VLSI, VHSIC). To

keep pace with the
integrated circuit
developed that can

circuit designs in

development of increasingly more complex
designs, new software tools need to be
model and simulate complex integrated

a concise and timely manner.

Computer aided design is an important tool in the
engineering design process. Sophisticated computer programs
are now widely used to accomplish the menial and time
consuming tasks associated with hardware developments. The
design of digital logic circuits has been aided and improved
by the use of modern computer simulation techniques.
Hardware simulators are used today in government, industry
and education to build and exercise models of a digital
circuit on a computer. These programs range from simple
simulation routines to highly sophisticated and complex
program systems.

A hardware simulator' allows the designer to take a

high level design and exercise its operations. Through the

* As used throughout this thesis, a hardware simulator is
one that simulates, usually before construction, hardware
designs.

NG 3,10 1 . \ IR
AR AU R RN ROMSMILE VAl XN AIRAR ol F ot . Y

L. &4
. -lel.‘

use of a simulator, the designer can create a software model
. for a network, exercise the model with a set of inputs and
observe the output of the network at various test points.
The response of the simulator in terms of predicted signal
! values versus time should closely correspond with the
response of the actual circuit modelled to be of practical
value (1:63).
Most design projects use only one type of hardware
g simulation: gate-level logic simulators. Logic simulation
is an especially invaluable tool for VHSIC class circuits
since design errors are very costly and breadboarding is

impractical (1:63).

=0

1.2 Background

xSy

State-of-the-art developments in the electronics
industry of the 1960's were driven by the needs of the
military. Industry was encouraged to pursue Department of

Defense (DOD) business since integrated circuits being

P

developed for the military were also of sufficient general
purpose to be applicable to commercially marketable
products. In this environment, private industry benefitted
ﬁ from DOD's research and development expenditures. This is
no longer the situation since the DOD share of the total
integrated circuit market has decreased to approximately

twenty percent. The military is no longer the major user of

r

o ¢ §F K & A" T T TR N A TR T T LT A" e " T " AT AT AT AT A" L T e " a® a® a """ " «Ta® W Wg* g e’ a”a’ -
,‘1...;_‘“,.“,“‘&, W ,h.h?. eyl ,,.\ ', W ".‘ ..-. % \.\'\ \\ .,‘- \ v .\ \‘- ~ \‘. ~ gt -. ., _'\ " \\

=

L

advances in semiconductor technology. It has become one
user among many, and its impact upon the semiconductor
industry has decreased. Additionally, DOD has increasingly
sought more complex and special-purpose integrated circuits
which has moved DOD into an increasingly specialized sector
of the marketplace (2).

The divergence of military and civilian applications -
the military's desire for high speed signal processors
versus the more general purpose processors required for
commercial use - caused DOD planners to believe that
industry could not be expected to develop integrated
circuits for military use in a timely manner (3). As a
result, the DOD established the Very High Speed Integrated
Circuit (VHSIC) technology development program in 1980 to
encourage the development of integrated circuit technology
for military uses. DOD's hope was that once the technology
became available, civilian applications would be found that
would complement future military needs, thereby further
stimulating research and development. The major goals of
the VHSIC program are: 1) to develop the technology
necessary to produce submicron devices: 2) to increase
processing throughput:; and 3) to formulate the new circuit
design methodologies and computer aided design (CAD) tools
required to make maximum use of the new technology

(4:94-102).

™ e~ e

(O G- —o

i MW LTINS PR 7Y) . » % TN \$" V.30
AN AN AKX RA R RN AN AT RN b U U DR U O R U TN MK TR NN O N I O N P DA LU M R)

=%

x5

%5

The advantages gained in the reduction of system size,
weight, and power requirements through VHSIC class
integrated circuits over current technology is expected to
both reduce the cost and increase the reliability and
maintainability of new electronic systems. Current plans
also call for the use of VHSIC technology in upgrading
existing weapon systems (4:94). 1t is envisioned that one
VHSIC chip could have 250,000 or more logic gates. The
complexity of design and associated high cost require the
design validation of VHSIC chips prior “~ manufacture.

Because the available simulation languages did not have
the capabilities to adequately model VHSIC class chips, the
VHSIC Program Office at Wright-Patterson AFB funded the
development of a VHSIC Hardware Description Language (VHDL)
to meet current and projected VHSIC application needs and to
facilitate the transfer of VHSIC technology. Based on Ada,
VHDL incorporates such VHSIC specific requirements as
portability, maintainability, timing and the ability to
hierarchically model and simulate designs.

The VHSIC Program Office is sponsoring research at the
Air Porce Institute of Technology (AFPIT) to develop a
UNIX-based VHDL system called the AFIT VHDL Bnvironment
(AVE). A simulation tool Ariven by VIA, the APIT
intermediate format, which is the central data base for AVE,
is a part of the APIT VHDL effort. The purposes of the

simulator are to assist the VHSIC Program Office's

»'..Isff Lo o (4 "‘.-’~{J LT N Y A ‘;f"! (P h'-'q'.'t' AR RN AT N

evaluation of VHDL for clarity of syntax, and to verify ease

' of use for the designer in describing VHSIC class chips.

INPUT RUNTIME
g DATA conTROL

HARDWAREROUTPUT

% SIMULATOR
COMPILE
woL | VoL VIA |)
B RANSLATOM |
1 2 3
| % COMPILER INTERMEDIATE GENERATE
FORM SIMULATOR PARALLEL
CODE | outPur
| SIMULATOF >
| 5
\
" EXECUTE

Pigure 1-1 AFIT VHDL Environment

Figure 1-1 shows the relationship of this thesis, the

development of a hardware simulator (highlighted), to the
AFPIT VHDL research effort. Research at AFIT is directed at
p! developing a system using as input the VHDL language. The
6
w

AR, AT 28 LORCN, CHON N RGN, St 005 116 87, L T T

XX

system is being designed to assist engineers in academia in
the specification, design and validation of hardware
components and systems. Although nonportable to other than
the UNIX operating system, the goal of the system is to
operate fast and provide the full capabilities of the
language as envisioned by the U.S. Air Force and the
Institute of Electrical and Electronics Engineers (IEEE)*.
The system will ultimately contain the tools for simulation,
timing analysis, microcode retargeting and both silicon
formulation and other forms of hardware synthesis.

Several research efforts were conducted concurrently
with the one reported here. They are: 1) a "VHDL Language
Analyzer," by Captain Deborah J. Frauenfelder whose purpose
was to design and produce a prototype VHDL Language Analyzer
which will provide the capability required to function as a
front end processor for a hardware simulator in the design
and development of VHSIC class chips (5) (See Block 1 in
Pigure 1.1), and 2) a "VHDL Hardware Simulator Using
Parallel Processors," by Captain Michael S. Kamrowski whose
purpose was to design and implement a simulator which runs
on a parallel hardware simulator (6). It is shown as Block

5 in Pigure 1-1.

* At this writing, IEEE is attempting to standardize VHDL.

- - - - N .
o ” n L] q‘.—\ I‘.t‘ W,))\\ W N Wi '\"\'P\\\

SN WSy

P AR

I e

-
&

1.3 Summary of Current Knowledge

BREP TR

. The technological development of Hardware Description '

Languages began as early as 1939, when Shannon used a form

" - - -
i M i H A

of what is now considered hardware description language

™

!g while working on switching circuits (7). The use of HDL's

oy

is not uncommon, as Lipovski noted in a special IEEE issue

K- Sy

on HDL's. He observed that whenever someone developed a

-

& circuit simulator they felt apparently compelled to also

develop a HDL to drive it rather than learn and adapt an

DI Lo

existing HDL to their application need (8). Many prominent

researchers have called for the development of a general ~S

oa

purpose HDL (7). The problem has been that although many

HDL's were adequate for specific purposes,; none were

entirely satisfactory over the range required for a large

.-’o

;5 hardware design project. g
In the early 1970's, the DOD directed the development X

of the Ada programming language in an effort to incorporate :

ﬁ} the features of modern high level programming languages and by
™ software engineering concepts such as structured o
programming, information hiding, data abstraction and f

)

-

handling, and real time control. This effort resulted in

gg the designation of Ada as the standard DOD high order :
language (9). Similarly, while analyzing the problem of how
to concisely communicate design infomation on integrated

iﬁ circuits containing upwards of 250,000 logic gates, the

- e - TR ES SRR RS LA PR LT RS I FUL I N I RV ST R DRKH AT "
e N gt VR L R L S, Ly E S SRR AT LRV SRR i, e YO St Syl e SRR Ry g, A i At

e

A

VHSIC program office decided that the basic concepts and

constructs implemented in Ada could also support a new HDL.
Now in its final development, VHDL uses Ada as a guide, and
incorporates the VHSIC specific requirements of portability,
maintainability, timing, and the ability to hierarchically
model and simulate integrated circuits. Generally, VHDL
constructs supported by Ada are required to use Ada syntax.
A detailed discussion of the interrelationships between VHDL
and Ada can be found in the VHDL Design Analysis and

Justification Report (10).

1.4 Problem Statement

A need exists for a VHDL Simulator to be an integral
component of the AFIT VHDL Environment. As an important
first step in creating a full simulation capability for the
AVE, a prototype simulator kernel will be designed and
implemented. The function of the kernel simulator will be
to initially assist in the development and analysis of the
VHSIC Hardware Description Language's suitability and
effectiveness in modeling integrated circuits of the VHSIC
class. Upon completion of the development phase of VHDL,
the fully implemented simulator would permit the designer to
check the validity of a VHDL description for a circuit

design.

oy g S ~ . PL Ui L A L ot e et

ROSCAY. “ '.,‘.' ’ " .." I X L J.‘,t o > $-\ T o -(‘v’.\-\.-_‘. . ¢ \q.d' -\-...

NSRS

el

'.l;;l

-
%

o

1.5 Scope

The purpose of this research effort is to study, model
and create a prototype simulator kernel for VHDL in a UNIX
environment. The interface required between the
intermediate form VIA FILE and the simulator will be
specified but not designed or implemented. The prototype
simulator will not support the full capabilities of VHDL:
however, a follow-on research effort is expected to develop
the translator (preprocessor) which will set up the
simulator from a VIA FILE and complete the development of
the simulator itself. The detailed design of the prototype
simulator presented here includes an installation guide,
users manual, design description, and source code for that

part of the design which has been implemented.

1.6 Approach

This research effort was conducted in three phases.
Phase One consisted of a literature review of available
material on hardware description languages and simulators.
Phase Two required learning the syntax of VHDL and its
constructs and capabilities. A thorough understanding of
VHDL was essential for the design and implementation of the

[
VHDL Simulator. Phase Three, comprising the majority of the
effort, consisted of defining the requirements for the

d

.-

a3,

L 0

"

~d' ,d'~f Y

simulator and designing and implementing the prototype

simulator.

1.7 Assumptions

The VHDL Simulator is designed to run on a computer
with a UNIX Operating System. For this reason, the C
programming language was chosen to implement the simulator.
A UNIX-based VHDL system may assist in overcoming some of

the inefficiencies inherent in an Ada-based implementation.

1.8 Sequence of Presentation

Chapter Two gives specific requirements for the
UNIX-based VHDL simulator. The general simulator
requirements are presented, the operating environment is
established, alternative approaches of implementing the
simulator are discussed, and the tradeoffs inherent in each
of the approaches are examined.

Chapter Three presents the general system designs and
explains the basic algorithm of simulation.

Chapter Four describes the detailed design of the
simulator. A detailed description of the simulator
structures, program modules, input parameters and output

report is presented.

11

g

- ot sy p gt anpe e A A e e
M S G R A S S A S A N T S N L R R LS L2 G S AN

-

_..-V.l—lﬁ‘

LACIDR LS

[&Y ol oW S)

v
D

~

!
------ ~

LB Y

v

a'e’e

>

ANt

2

Chapter Five presents the results produced from
exercising the simulator with test stimuli and provides an
analysis of the results.

In Chapter Six the conclusions gained from this
research are presented and recommendations for further

research and development are offered.

12

'l,‘/,;f,;.',;f_;.r‘f.‘.-,'a P e A AT

e M 0

IR P N

LU,

SV

.

&

o W L 2" & TN N o
T A O G Ryt

II. Requirements Definition

2.1 General

The purpose of this chapter is to present the project
objectives and the functional, implementation and
performance requirements for a prototype VHDL simulator.
The general requirements for a fully implemented simulator

are presented first followed by the specific requirements

for the prototype simulator developed which is the objective

of this thesis.

2.2 Requirements for a Fully Implemented Simulator

2.2.1 Scope. The complete simulator must be able to
simulate the entire scope of VHDL. The simulator must read
a file of test data, and record some or all of the signal
values generated during the simulation. The simulator will
obtain the simulation control information, design
description, test data and test setup from the VHDL

Intermediate Access (VIA) format.

2.2.2 Compatibility. The Simulator must be compatible

with VIA, the intermediate format currently being designed

13

e

>

for use with the APIT UNIX VHDL system. Since the simulator
is being designed and developed to operate in the UNIX
Environment, the C language is the language of choice.

There should be no difficulty in converting from VIA to C
since the mapping is largely one to one. The translation
from VIA to C is more easily achieved than with a strongly-
typed programming language due to C's flexibility. ¢
routines are created from VIA constructs and combined with a
simulator run-time library. After compilation by the C

compiler, the resulting simulator is executed.

2.2.3 Plexibility. The simulation program will

require the flexibility to adapt to the differing designs of
individual users and to adapt to changing technologies. The
flexibility required cannot be satisfied by reprogramming.
For this reason the hardware logic primitive constructs are
provided through behavioral functions and architectures from

2.2.4 Input Test Vector Pile. The simulator must

provide the user with the ability to describe the test data
streams necessary to stimulate the design under simulation
and verify that the outputs produced are correct. The test
vector file should allow the user to specify the time, input

data stream and variables that are to be associated with the

14

.
-
)\\s\'\\\%\\\'\ TS) N P TR R

OO LRGN AN KW 2 G 2N I W AN)

signals during the simulation. The user should also be :

. allowed to define test data initialization values.

2.2.5 1Interactive Capability. The user should be !

provided the capability to provide interactive input to the
! simulation. This should include the ability to describe

test data, establish breakpoints, select the simulation time

period, and specify the content and format of test reports.
3 This interactive capability should be both by input file and !

from the command line.

2.2.5.1 Breakpoint. The breakpoint function

oA

allows the user to specify the events or the frequency when X
a breakpoint is to occur. When a breakpoint is specified,
the simulator must output to a file the required data and

X then restart under user control the simulator operation, at

Lo - &

the point of interruption, as if no stoppage had occurred.

a 2.2.5.2 Time Selection. The user should be able :.
to define the time period over which the simulation is to be
run relative to the start of the simulation. If the user

! does not designate the beginning and/or ending time period, X

then the default values will be used. The user should also
be able to specify the actual time units used, e.g.,

nanoseconds, microseconds, etc. (

15

14

+
- - .t ‘- - ~> e Y
v » “5" v'\ "* Al \'\’ hJ I‘u \- \‘\'\ . \' 'v '
(% A Y) St , . oy Tl (Rt [(! AN,

2.2.5.3 Content and Pormat of Test Reports. The

user should be allowed to identify by name the signals
wanted in the output report. Additionally, the user should
be able to define the type of signal trace desired.
Examples of types of signal trace which may be desired are:
1. A sampling of all selected signals at predefined
time intervals.
2. A trace that displays ony events.

3. A trace that displays all transactions.

2.2.6 Multiple Drivers. The simulator must be capable

of processing signals that have multiple drivers. 1In VHDL a
hardware network is modeled with a signal that has an
associated bus resolution function. This type of signal is
called a bus. The bus resolution function, which is user
defined, provides a procedure for resolving the values of
the signal's multiple drivers into a single value. The bus
resolution function takes an unconstrained array as its
input and returns a single value of the same type as its

output (12:6-5).

2.2.7 Delay. VHDL allows the designer to model either
inertial or transport delay. The simulator, therefore, must
be capable of processing either inertial or transport delay.
The specific delay is executed when a set of transactions is

being used to update the projected output waveform of the

D A AT SN
AV LA S S SR AN

@ - -

current and future values for a driver. FPor transport
delay, the reserved word transport will appear on the right
' hand side of the signal assignment statement, otherwise

inertial delay is the default (13:8-5).

!! 2.2.8 Networks. Signals that are associated with each
other by a port association list form a network. Because of
these association lists on block statements (and through

gs component instantiation statements), the value of a signal

cannot be determined independently of the values of the

signals associated with it. The simulator needs to
recompute the value of the network associated with a driver,

4 whenever the future value of a driver in the network becomes

the. current value of the driver (12:9-1).

g 2.2.9 Abstraction Capability. The simulator must be
capable of allowing the processing of packages. This will
enable the simulator to handle hardware devices described at

g higher levels of abstraction. The packages are used to

) group together related declarations which may include
user-defined types and subprograms. The user-defined types
allow the designer to add to the predefined language types

g and then use subprograms to permit operations on these data
types (12:16-1). Packages also permit designers to share

the data stored within the packages.

S v SO A U R o —

5%

U a’a® - DRI IR TN I IR I R L I S I I L e
hhﬁhﬁ'&ﬂh.fn’:&' RS A A PR N P AT AT Y S N

2.2.10 Steady State. The simulator must monitor its

operation to detect the following three possible conditions:
1. No transactions remain to be processed and
no transformers are active.

2. The number of transactions are at a static level
and are not decreasing.

3. 2 transactions in process have exceeded an
)ected upper limit for the signals being
socessed.

Simulator oscillation control is required to detect and
correct this simulator oscillation. Oscillation control
consists of identifying the oscillation, eliminating the

oscillation and finally continuing the simulation process

(14:242).

2.3 Requirements for the Prototype Simulator

2.3.1 Objective. Although an entire VHDL simulator is
the ideal goal of this research, time only permits a small
subset to be created. Thus, the primary goal of the
research reported here is to create a prototype simulator
kernel for VHDL that will operate in a UNIX environment.

The program will implement the major basic functions of VHDL
using the C programming language. The prototype simulator
will provide proof of the design concept.

To satisfy this goal, the program will be designed to

meet the following objectives:

18

Minimize the memory required for the
executable simulation program.

Maximize simulator execution speed.

Provide the user with flexibility in the
choice of naming the input and output files
and the ability to specify the simulation
start and termination times.

4. Provide detajiled error checking and clear
and concise error warnings and messages.

The requirements for these objectives are specified in the

following section.

2.3.2 Requirements Definition. This section defines

the requirements for the prototype simulator. PFirst a
description of the program and how it is to be used is
provided. This is followed by the three categories of
program requirements - functional, implementation, and

performance requirements.

2.3.2.1 Program Description. The prototype

simulator program, referred to as VSIM (VHDL Simulator),
reads an input file of test vectors and evaluates the
transformers to determine if an event has occurred. 1If an
event has occurred on a signal, then the fanout list for the
signal is evaluated and the related behavioral functions are
executed to produce new transactions. An output trace file

of all events that occur during the simulation is produced.

TN PRy | YR PR R TR T)
LIS I ARNAF AN SRR XN o N B AN)

2

VSIM performs the following major actions:

l. It interprets the command line and establishes
the runtime environment necessary to execute
the requested user options.

2. The internal data structures are created and
initialized from the designated input data
files. In the fully implemented simulator,
these data files are automatically created
from the full VIA descriptions.

3. The input vector file is read, and time is
incremented on the simulator clock.

4. EBvents are evaluated and new transactions
created.

S. An output file is created.

6. Error checking occurs continuously throughout
the other major processes. The command line
and the input vector file are also checked for
errors and all errors are displayed on either
the user's terminal or written to an output
file.

2.3.2.2 PFunctional Requirements

2.3.2.2.1 Approach. The two basic

classes of simulator are compiler-driven and table-driven
event-directed. Most of the modern simulators are
table-driven event-directed since this type is more
versatile in handling delays and also reduces the required
simulation time (14:203).

VSIM will use an approach similar to the one being
implemented by Intermetrics in the VHDL Build 2 Simulator
(11:4-40). This approach involves implementation of a

precompiled simulator instead of an interpretive simulator

20

program. The VSIM program will be a compiler-driven
' event-directed simulation. It differs from the Intermetrics
approach in the data structures used and the programming

language (C versus Ada).

x 2.3.2.2.2 VSIM Created Structures and

Functions. PFor the prototype, the data structures and the

behavioral functions that drive the prototype simulator

=

kernel will be created internal to the program since the
present state of VIA is not developed sufficiently to

provide these functions for the prototype simulator. The

o assumption was made that the structures and functions

= created for VSIM would be directly related to the structures
and functions that VIA will provide when completely defined.
The structures and functions also must appear as if they are

§ directly traceable to VIA.

The VSIM prototype must read the data necessary to

establish the structures and access the behavioral functions

=5

from the following three files: signal data, driver data,
and fanout data in order to prove the design concept. VSIM
must access the functions as if they were traceable to VIA.
a To accomplish this, the addresses of the behavioral
functions must be stored, and the functions called at

execution time by reference to these addresses.

21

R

LY ¥ A - .y W - LT A BT h L T N TR] [TS TR AN LA A BT I L LT Y AL L LT I R B RT B
BTGty G A L A W X DO ™ A o Yoo T s Mo <) "" b " ‘.".'. ..‘1. '(f‘-' Y ""‘. ¥

Aa ks N

P R R N N O O I O N Y e T Y Y W N LU L O W TR T T Y B WL i T (e s onr s e y

2.3.2.2.3 Simple Signal Assignment

}' Statements. VSIM must be capable of executing the
operations required by a simple signal assignment statement.

t This réquires that the program 1) determine the name of the

| signal that will receive the output of the assignment, 2)

g post the new' future value of the signal, and 3) schedule the
value to occur on the signal after the specified time delay.
In posting the new value, VSIM will need to determine the

g appropriate delay (transport or inertial) and schedule the \

value to occur by correctly placing it in an ordered list

and deleting old transactions depending upon the delay type.

2.3.2.2.4 Blocks. VSIM will handle
single block statements. Guard lists as part of networks

will not be implemented in the prototype.

2.3.2.2.5 Processes. VSIM implements the
process statement as a simple signal assignment statement.
E; VSIM does not model the sensitivity list or declarative
parts of the process statement. VSIM does implement
independent processes that can execute a sequence of "

g statements and schedule new events to occur. \

2.3.2.2.6 Data Types. The VSIM data

structure, to be implemented as a union, will support only 5

integer and floating point data types. VSIM allows for four !

22 2

G R T T T 8 G N L P P A R P O S S AN N O A A AT AN AT NI AR

w4

EXY

a

[}

-
Barainss

input values: '0,' '1l,*' 'z' (high impedance), and 'u'
(unknown state). VSIM will not implement packages,

subprograms and user-defined types.

2.3.2.2.7 Single Drivers. VSIM assumes

that each signal has at most one driver. The driver data
structure will support multiple drivers per signal:; however,
the program controller will not support operations on

multiple drivers such as the bus resolution function.

2.3.2.2.8 1Input Test Vector File. VSIM

will read and interpret the input vector file. The user
specifies the input filename on the command line. Failure
to specify the input file will result in a fatal error and
termination of program execution. VSIM will only read the
time and associated signal input vectors; it will not accept
the assignment of simulator variable values. The $ will be
used as a delimiter between the designation of the input

ports (signals) and the associated input vectors.

2.3.2.2.9 Interactive Capability. VSIM

will allow the user the selection of several options through
the command line. At a minimum, the command line must
contain the program name VSIM and the name of the input
vector file. The following format must be used for the

command line:

Y, o A\l 0 7n " To a0 .
MRS N N g e A Y A

o W

»

P AN

W W W

-t

e

3

VSIM [options] input file name

The command line options may be specified in any order

and the program is insensitive to the number of allowable

arguments which are present. The command line options are

summarized below:

-d

Selects the debug option which causes the
contents of selected structures to be printed to the
output file. Debug prints the selected data the first
time that simulate is entered and each time a tran-
saction is processed. n can be one of four integer
values (1, 2, 3, 4) where:

n = 1 prints all signal structures
n = 2 prints the event queue

n = 3 prints all transaction queues

n 4 prints all data structures

-0 filename Allows the user to select the output file where

the output trace file will be written. The default is
sim output.

n Allows the user to select the simulation start
time. The time units specified must be the same as the
units of time used for the input vector file and the
circuit description. n must be an integer value. The
default start time is O.

n Allows the user to select the simulation
termination time. The time units specified must be the

same as the units of time used for the input vector

24

ALY LAY

t

A

o,
v

N,
L3

g

file and the circuit description. n must be an integer
value. The default termination time is 10000.

-b n Allows the user to select a breakpoint time
when data will be dumped to the output file.
Simulation continues after the breakpoint is processed.

n must be an integer value.

2.3.2.2.10 Timing. VSIM will allow the
user to select the simulation start or termination time as
indicated above. Either one or both may be selected:
however, a fatal error occurs if the termination time
specified is less than the start time. Simulation time is
not discrete but is event-directed, i.e., it is incremented

according to the scheduled occurrence of events.

2.3.2.2.11 Error Checking. VSIM will

provide extensive error checking. 1If errors occur, they are
displayed on either the standard output or written to the
specified output file. An error on the command line or a
failure to open the user specified input vector file will
result in a fatal error message displayed on the standard
output. All other error messages are written to the
specified output file. Errors can affect program execution
in one of two ways: 1) After warnings program execution
resumes, or 2) after fatal errors program execution is

aborted and no output file is written.

25

PEALE

S e

-

¥

Y X AN

.?‘Jllf,{f R T VRN

-/

a
-~

Yy

2.3.2.2.12 1Initialization. Prior to the

start of simulation, all the signal and driver values will

be initialized to 'u', the unknown state.

2.3.2.3 Implementation Requirements

2.3.2.3.1 The UNIX Environment. The

prototype simulator will be designed to operate in the UNIX

BSD

The

The

4.2 Environment.

2.3.2.3.2 The C Programming Language.

program will be written in the C programming language.

C language was chosen because:

It is the primary language of choice for applications in
the UNIX environment.

The flexibility of C provides an advantage over a more
strongly typed language,

There is no difficulty in translating from VIA to C: in
fact, there may be a close to one-to-one mapping.

2.3.2.3.3 System. At a minimum, the

simulator will execute on a DEC VAX.

2.3.2.4 Performance Requirements. Since the

primary objective of VSIM is to simulate VHSIC class

designs, the simulator must be very efficient in its use of

memory and in execution speed. Figure 2-1 shows the

26

Pl s

PR AR AR AL

ay A

(AR

N gl o BN SN BN

@
~
~
~
-~
K
N

WaLhgh Y

7

®

7"

4
L
L

difference between the VHSIC class of problem and the less
Q complex problems solved by Engineering Analysis Simulation
A Systems (11:4-39). The larger number of gates being
simulated in VHSIC class problems (50K to 100K gates or more
"compared to 10K to 50K gates) usually consume vast amounts
% of memory on large minicomputers or mainframe computers and
have very long execution times. The prolonged execution
time and needs for a vast amount of memory program space can
EE be unacceptable in a multiuser environment, particularly if

the simulator program is not both memory and execution time

efficient.

b5

number of
patterns

20k —%

e - -

VHSIC

Design Verification

Simulation

Systems

I 10k —

Engineering Analysis
Simulation Systems

number 3
l > of .
S50k 100k gates

Figure 2-1 Engineering Analysis vs. Design Verification

Systems (11))

27

-

x5
mi ﬂﬁ m m 3 & E’E S*Sﬁ .\g .-: :L'Z‘(U Sﬂ oo sq :\v',ift .-: DR CESC N X 'f\¢\#,’.'\;¢ RSSO .'\.-,‘ G RO RGLS o,

The compiler-driven event-directed simulation approach
used in VSIM is intended to improve the simulator's
' efficiency. Pigure 2-2 shows the difference in efficiency
| between the interpretive and precompiled simulators. The

interpretive simulator is usually more efficient to set up

g but less efficient as the number of test patterns increases.
In VHSIC class designs the number of test patterns required
for simulation is beyond the point where the interpretive

u» simulator is more efficient than the precompiled simulator

o}'

(11:4-40/41).

3

v CPU Time

™

K Interpretative

i Simulators

" Precompiled

o Simulators

Precompiled
Setup
i Interpretive
B Setup > Number of
AN J/ Test Patterns
VHSI! Class Designs
vl
] Pigqure 2-2 Precompilation Trade-Off Graph (11)
28
: ;
= 1

G G L L Ve ATV R DI P 1T A NS ML N I S LN

‘ III. System Design

3.1 General

The system design is the overall plan which describes
the general approach used to implement the program

requirements. Since this thesis involves the development of

PR

a software program, existing software engineering tools have
been used for the program's design and implementation.

An approach similar to the Structured Analysis and

5,

o Design Technique (SADT) was used for the system design due
to the author's familiarity with it and its effectiveness as
a system level design tool. This chapter presents the

E system level design of VSIM using SADT-like diagrams,

3.2 System Overview

»

ﬁ, Figure 3-1 presents the top level system view of the
inputs, outputs and controls of VSIM. VSIM reads and
processes the user commands from the command line. This

% controls the optional program features and is used to tailor

the output file as desired. VSIM reads the user specified
input vector file and produces an output trace file. The
data structures which VSIM uses during program execution are

created based upon input received from VIA. Since the

29

.

.'IQ'-'~"'.'.""~ SR SRR I LU PU YL P P Y 2 W v wh oy W+
A T A N A I R T A A e T iy S ey A R A A e A A e i v i v WA, A S At AN

*a"a’a AW

JolejnwiS TIAHA L - € eunbig

WISA ‘d'1LLL 0-V ‘ddON

< rmd,._ A0LDIA

osswyaodua| JOLVININIS
1€ VIA
€ Indino wis "TAHA <

T4 D

ANIT Mz«ﬁ:oo
F\h XN v N AR

30

.
’\
)
\Q
N
&
¥

!
p
)

present state of development of VIA is nof sufficient to

enable VSIM program execution, three input data files are
used to drive the simulator. VSIM processes the input data
files, establishes the internal simulation structures and
then reads the input vector file. VSIM checks the input
file for syntax and runtime errors. Incorrect syntax or
runtime errors will result in the second type of program
output: error messages to either the standard output or the
specified output file. Errors made on the command line
entry cause error messages to be written to the standard
output. All other error messages are written to the
specified output file. The type of error - warning or fatal
~ determines whether an output trace file will be produced.
A fatal error terminates production of the output trace
file.

VSIM is designed to also read user input from a command
file; however, this feature will not be implemented in the
first prototype version.

The method used in the remainder of the chapter will be
to first provide a general description of the design of the
ma jor upper level program modules. This is then followed by
a more detailed description of each of the upper level
modules by decomposing them into their major subordinate

functions.

£

O N A G R R S S S L ARG SN

WISA 2 - € 8nbiy

WISA ‘T11IL 0 V:AdON
70 €
%o 14 d 3A fI
10 ALVINNIS 0
113 a
LNdLNO0 3 0
ANIT ANVIAWOD z
STANIONUILS SZITVLLINT TI
WIS
1
VIA a
STUNLONUIS A#
VIA ALVISNVHEL

33

AL .(.(-' " "--.- K

i

y]

™

Er ¥

e

FXH

- '?J

program uses three data files within the Sim Initialisze
module - Signal Data, Driver Data and Panout pata’ - to

perform the Translate VIA module functions.

3.3.3 Sisulate. The Simsulate module schedules and
executes the simulation. User commands from the command
line are read and interpreted to control the simulation.
Initially, all signal values are set to "u" (Unknown) and
time is initialized to the largest integer ossible on the
machine. When operating in the steady state, a simulation
cycle begins when time is incremented to the time of the
earliest scheduled transaction. This transaction is then
evaluated to determine if an event has occurred, that is, if
the value in the scheduled transaction is different from the
current value in the parent signal. If there is an event
then the new value is posted to the signal and the driver
structures and propagated to all the ocutputs on the fanout
list of the affected signals. The behavior functions
associated with each affected driver are then executed
producing new transactions which are posted to all
applicable drivers in the network. The next scheduled
transaction is then taken from the event list. If its time

is different from current time, then the time is incremented

The contents of these files are described in Appendices D,
2, and P.

34

and the process is repeated. Rach time a transaction is
scheduled to become an event (i.e. it is now being processed
to determine if there is au event) it is removed from the
transaction queue. If the transaction was an input vector,
then a flag is set and at the next time increment another
input vector is read and posted. PFigure 3-3 shows the
simulation process.

The simulate module logically operates on two nested

simulation cycles. The micro or inner cycle operates in

delta time within the current simulation cycle.' All events

scheduled for delta time are processed and all new
transactions with a delta time are posted to the drivers of
signals and executed in delta time. A delta cycle
terminates when there are no more delta transactions to
process. The concept of delta time in VHDL is used to
insure the proper order of execution rather than as a
meaningful time increment. The second cycle, the macro or
outer cycle, consists of all transactions scheduled for
other than current simulation time, i.e. some future time.

Execution continues until all events have been processed or

Current simulator time should be thought of as being
divided into two different times - zero time and delta time.
During zero time nothing progresses. Zero time is used for
the simulator to do its own housekeeping. Delta time is an
infinitesimally small increment of tangible time that is
smaller than the time required to activate the lowest
sensitivity. The summation of all the delta times within a
current time cycle is less than one unit of time.

TN EWS VY YWES

$5800.d uonenwis € ~ ¢ eJnbid

— e e : . N B -

N
T

l\.
”
%
7
9t anoa ;
All 41 A n
N3l sommd x
SNOLLOVSNWVYL (V1T3d) FWIL LNIHAUND A
>
e
st 1SO0d \h 3
ANV 1NONVd .1.“
TYNDIS 304 "
—1 SNOLLVSNVHL o
] MIAN ALVYNTVAI &
LNIAAR ’ 4
o
v .
0 LNAAZ ;
sdouy ,
10 ALVNIVAZ o :
Lnding © :
NOLLOVSNVYL (Mt e Dharans <€ P’
ZO_hv(nnZ(l._. A mf
HLUM TVNDIS AT dOLOAA vt.
HOVA $SAD0Ud 1!.
A , WIL
f 3
Tt ~
IN3YUND ~
1 Ol aNIL =
TVYNOIS AWIL INFYUND LXAN LNE WTHONT va 3
7
i,
1 4
r,
AWIL LXAN 7
ANIT ANVIAIWOD .um
1d »
b
’ -
s poe L XA o e S <3 ool LR y

¢t

-

yr

T AT AN S
[) 'dm{;

cavg

a preset termination time is reached. Throughout the
simulation cycle, specified data is written to the output
file. Non-fatal error messages are printed to the specified
output file. Fatal errors cause program termination.

These three modules and their function are further
decomposed and described in greater detail in the following
sections. The diagram associated with each module is
included immediately following the description of the module

and may be referred to while reading.

3.4 Translate VIA (FPigure 3-4)

When implemented the Translate VIA module will create
the data structures required to execute the simulation by
traversing the Directed Acyclic Graphs (DAGs) which compose
VIA. This module will translate the data in the DAGs into
structures (block 1.2) that can be executed by the
simulator. A precedence matrix which contains the fanout
data for each signal will be created. The fanout data
associates all signals in a given network and provides a
pointer to the address for the corresponding behavioral
function. Finally, the behavioral functions are translated
from VIA into executable C code. The C language is used for

the reasons discussed previously in Chapter 2.

37

Y k.’.f-' .E‘I.E‘P"r'ﬂll'r’! Z-l" .

<Aty -

Cy=y——

-

Y]

VIA 9®[suel] ¢ — ¢ 2Ingig

VIA ALVISNVIL ‘Hd1LIL IV ddON
1720
70 | Iaod o NI
<——— sNotoNna €
mB_E.u:zi IVIHOIAVHAL
ALVIUD
XRLLVIN €T ynarvin
/ STAALONAWIS | layngaaiTad €—
ALVIID
o
STUNLONUIS
viA | [T'T
L] SINIOMILS
viva |
TVNYLINY
10 <rgmo | dn 135
TANIONYLS
I't
VIA 11
VIA e
: VIA
avid

- e RS x52 AR R b 24 (- i

NN

-

-

3.5 Sim Initialize (Pigure 3-5)

3.5.1 Create Signals. The Create Signal module

controls the creation of the signal, driver and fanout
structures. The three data files (Signal Data, Driver Data
and Panout Data) are opened and read until all the
structures have been created initialized and linked. The
data files are closed when all the structures have been
created and the end-of-file is reached.

Figure 3-6 presents the data structures which are
created. The transaction structure is created in the Get
Input Vectors module but the structure is presented here for
clarity and ease of understanding. Efficiency in both
storage space and execution time was the primary
consideration in determining the design of the data
structures. This consideration for efficiency resulted in
the decision to almost exclusively use dynamic data
structures (linked lists) as opposed to static structures
(arrays). The event queue linked list in the driver
structure is designed as a doubly-linked list since it needs
to be maintained as an ordered list which is constantly
being updated and reordered as transactions are posted and
deleted. The sort key field, which contains the time value
of the first transaction in the driver's transaction queue
in the driver structure, is used as the key to sort the

event queue. All other linked lists are singly-linked

39

™Y)'-‘- T I I R R d R el _. ;_.-.- - -’\1‘.‘__-'\(..-". .','.r,\ ,‘*.'.__5\“_{ Xty

-
Cate)

N

-,

»
-

reoery

ezjjeliu] wis G - € ainbiy

JZINMVILINI WIS *HTLLL ¢ — V ‘ddON
<
STANLONAULS NOILODVSNVIL
— ' <
LI0dTd
dAavaH
Luoaxy (10 NAJO
STOVSSANW
youyd 1 £7C 114
SYOLOHA AOLDIA
LOdNI 13 LNdNI
INNOD TYNOIS| a4
< SADVSSIW ¥Od¥d LNOALS STYNDIS uwmww\'
< LNdNI L3 e
YILNIOd SSTIAAV TVNDIS
STANLINYLS ﬂ@zoum
ALVAYD | 3114 viva
= [P %3 RN W s o3

40

L TS "
"o

‘U.J‘f ..

ol

A A

e

-

AR N

:’v

-.f"'

~

" !\f-"' - -¢

o

-

A LN T S

&,

e

A

A

N L)

....................

s s

sainonns ejeg 9 - ¢ aunbig

s e s s a a

JNTVA

AU LIOS

JATVA INTHIND

HAVN YIAIIA

V14 LNOdANI [INLL =
<«——}@ YLINOILOVSNVYL LXAN

JANLONYLS NOLLOVSNVYL

A

ULd NOILDVSNVIL

YId YIATIA LXIN

A

Uld INIAT | ¥ld INGAZ g~
LXAN _SnoIAgud
ALd TYVNDIIS

t—

JANLONYLS JIAIIA

JWVN TVNDIS

dNTVA INTHAND

<—1@® 4l1d ONNJ AVHId

ddAL | HAON

<10 YId LNONVA LXAN

_@ 100 NV 9IS

dld 4IANA @

HANLONYLS
TVNDIS

h L

41

e

<

-~

-
"

=52

lists. This conserves storage space while providing

adequate efficiency. The signal and driver name fields are

implemeted as unconstrained arrays to support the VHDL
convention of placing no limit on name length.
The structures are connected as follows:

1. Each signal structure is linked to the first fanout
structure in the fanout list. Each succeeding fanout
structure is linked to the preceding one.

2. Each signal structure is linked to its subordinate
driver. In the case of multiple drivers, the signal
structure is linked to the first driver and each
succeeding driver is linked to the preceding one.

3. Bach driver is linked to its parent signal structure.
All drivers are linked together in the doubly linked
list which functions as the event queue.

4. Each driver is linked to the first transaction structure

in the transaction gqueue. Each succeeding transaction
structure is linked to the preceding one.

3.5.2 Get Input Signals. The Get Input Signals module

opens the user specified input vector file and reads the
input signal names from the file. A failure to open the
specified input vector file results in a fatal error and
program termination. Get Input Signals reads the input file
creating an array of pointers (sig array ptr) which stores
the addresses of the input signal structures. These
addresses are subsequently used throughout program execution

for the posting of input vectors. A control variable,

Vector Count, is initialized to specify the format for

Ve e el e Y

R R

- -

Ladatl - 4N

=3

[

[

ral

fig « o @

LIS S
U]

reading the input vectors from the file. Get Input Signals

reads until it encounters the § delimiter.

3.5.3 Get Input Vectors. Get Input Vectors reads the

input vectors from the input file using the control variable
Vector Control, parsing the input and converting the string
characters to integers. When a valid input vector and its
associated time has been processed a transaction structure
is created, posted to the appropriate driver, and the event
queue updated. All transaction structures created by Get
Input Vectors are assigned an input vector flag of 1 to
distinguish them from transactions created during the
simulation cycle. An invalid input vector character is

ignored and results in a warning error message.

3.5.4 Input Vector Pile. Figure 3-7 presents the

format for the Input Vector File and Appendix C contains an
example of an Input Vector Pile. The $ delimiter separates
the input signals from the input vectors. There is no limit
on the number of signals that the file may contain.

However, for each input signal there must be a column in the
input vector section. The time of type integer is the first
value in each input vector row. The input vectors must be
monotonically increasing, and no two rows of input vectors
can have the same time value. Following the time are the

input vector values corresponding to each signal. The only

43

S SR . .':’. .' 'I > s ula” ,.','\f .’sf. .‘_.r..r~. AR KRN ~¢\o\' . q..- c '-". "8 8"

250

IS
.

AR

==

Vs

INPUT SIGNALS :

Signal_A
Signal_B
Signal_C
$ /*VSIM uses $ as delimiter*/
VARIABLES: /*VSIM does not allow variables*/
/* complete simulator must handle*/
Var_X
Var Y /*'." indicates no change*/
ar_
VECTORS: l
| 0 | 1 001I | 015| L
time Sig A Sig B Sig C
42 0
J v
Var_X Var Y
| 15 | /* input vectors for next time begin */

Figure 3-7 Sample Input Vector File

RA

-,
Y

X8

&z

A&

valid characters are '0', '1l', 'z', 'u' and '.,'. The '.'
indicates that the previous vector value for the signal has
not changed. Each value on the input vector line must be

separated by a white space character.

3.5.5 Open Out Report. The Open Out Report module

opens the output report to the user specified file or the

default and prints the output report header.

3.6 Simulate (Pigure 3-8)

3.6.1 Sim Clock. The Sim Clock module increments the
simulation clock when the next scheduled event has a time
value greater than current time. 8im Clock sets a control
variable to cause program termination when the maximum

simulation time is reached.
3.6.2 Pop Trans. The Pop Trans module deletes a
transaction and frees the memory space. The event gueue is

updated after each deletion.

3.6.3 Process Panout. The Process PFanout module

accepts a signal which has had an event and evaluates the
signal fanout for the event. The value of the event is
propagated to all the outputs on the fanout list and the

behavior functions are evaluated. New transactions are

45

.......

e N N A T AT A A AT A LR AT A

E
P WYYy) Py

aleinuis 8 - € eunbiy

JIVINNIS F1LLL €V:3AON
> >
r STUMLDNYLS NOLLDVSNVIL
pe
SNVIL
$SI00Ud SSNNLONALS
714 MOLO3A ﬁm
€'t

0 ov1d ¥oLdaA | SNVUL

€——oswEowET
10 < dod 1—

Li0d3d 1LNd.LNO 7€
STANLONWILS TTOWLINO
ongaa
STANIONULS
It 1€
LIOdTA
AAVINNOS | 95070 TWLL WIS
LIOdTI ﬁ SHUNLONULS
ANIT WD

e) 2 axe < i}
»,

46

A A AR Ak ATk T 1 M AT AL W% DTN S v L

-

AN

posted in either delta or future time to the target signal's
driver and the event queue is updated. Evaluation of the
fanout list continues until all behaviors on the fanout list

have been executed.

3.6.4 Get Input Vectors. The Get Input Vectors

process is executed after an input vector (a transaction
with an in wvector flag of 1) has been processed in current
time, prior to incrementing simulation time. The next input
vector line is read, transaction structure created, posted

to the appropriate driver and the event queue updated.

3.6.5 Convert. The Convert module parses the output
values and converts the integer values to characters for
output. An error message is output if an invalid character

is encountered.

3.6.6 Close Out Report. The Close Out Report module

formats and outputs the summary for the output report when

the simulation is terminated. ' "he total simulation time is

calculated and the output report file closed.

r v

' IV. Detaliled Design

4.1 General

B The purpose of this chapter is to present the detailed
design of VSIM. A brief discuassion of the design goals and

design procedures is presented first. This is followed by a

2%

presentation of the detailed design, which is the major
focus of the chapter. The detailed design of the major

program modules is presented using hierarchical charts and

; structured English. Structured English was chosen as the

v design specification tool because of its understandability,
simplicity and conciseness. Additional information is

Q provided in those specific instances where a more detailed

» explanation is required for a complete understanding of a
module's function.

The detailed design of translating the general

§: specifications documented in the previous chapter (System
Design) into a comprehensive plan for implementing VSIM was
specified sufficiently to minimize problems during the

8 program implementation phase. A significant amount of the

implementation time expended on VSIM occurred during the
detailed design period. This methodology proved to be very

W beneficial during the coding and implementation phase as

there were no major design errors encountered and the

debugging effort required was less than expected.

4.2 Design Goals

In addition to the major design goals stated in the
requirements section of Chapter II, the following are the
specific goals for the translation of the requirements into
code. The first goal was to use the generally accepted good
software engineering practice of having loosely coupled
modules with good cohesion. The code must be easy to
understand and avoid workable but confusing program
constructs. Separate procedures should be used to implement
a single and specific, possibly repetitive function, i.e.
the program should be modular. Variable and function names
should be chosen which are descriptive of the data they
contain or the function that they perform.

The above goals were satisfied in the implementation of
the detailed design of VSIM. The program is highly
modularized, and, as much as possible each function was
designed to perform single or highly related functions.
Variable and function names were carefully chosen to be
representative of the data represented or the function

performed.

LIS PN P R SR R R I LIPS Y v o "y w et *
\\‘- '-\q \$‘7 \"\\ Yy (% » ‘ "y \ -

v

L -

[

3

Y]

As discussed previously, since memory space and

execution time are very limited relative to the requirements
of a VHDL simulation, the efficiency of the program is
critical. Program space for storing data must be minimized
whenever possible. Proper implementation of these goals
should produce a program which is easy to understand,

maintain and revise.

4.3 Design Procedure

The first action in the detailed design process was to
begin converting the SADT-like diagram specifications into
actual descriptions of functions which could be implemented
in the C language. Generally, the SADT diagram
specifications were directly translated into the
corresponding high-level C function description. This
high-level function description usually required several
actual C functions to implement the specific requirements of
the high level specifications. Of course, not all of the
SADT descriptions were mapped one-to-one to code. Some had
to be modified during the coding process. 1In other cases, a
better method of implementing a particular process or
function was developed and the previous design details were

changed to reflect the improvement.

S0

uey) Aydsesdig WISA 1 - ¢ 9undig

biuaas
Neald
1
barepdn wouv; || suen JT3A3 f1s
I Snqop Snqap Snqap nqap
8is
sunj bigaas
108 oARSIS g
sury biuaas _ _ _
Avysq AvI> aawsng PrOUt | | 19aup biuaas | | bayepdn
T mau || mau | |arwaro
. 1 1 1= _
barepd reusys | pnousj } | aaup || dwons n“”h dwans
mau | 1area1d | Jarwass
uodas
jonuos speulis $10329A sjeuldys
inous} 120> wns Snqap o uado LA induy 198 | | indmt 108

dLVINNIS

<

i
dZI'TVILINI
NIS

51

NIV
K& = Kidus -~ x !

»

LAAULU RS 0

'y

AN

..“\

b]

2o o

4.4 Punction Descriptions

The detailed design presented here follows the basic

structure presented in Chapter III, System Design. The

.important major modules are presented along with

corresponding hierarchical charts and structured English
descriptions. Figure 4-1 shows the hierarchical structure

of VSIM to provide a system level description of the

program.

4.4.1 Main. The Main routine conducts the simulation
process and consists of the subordinate modules shown in

Figure 4-2.

MAIN

SIM INITIALIZE SIMULATE

1 2

Figure 4-2 Main

e

.}\

The structured English description of the Main
procedure is:
(O)* Main
1. Check command line validity.
2. Set option flags from command line options.
2.1 They are:
-d n turn on debug option "n"
-s n start simulation at time "n"

-t n terminate simulation at time "n"

-0 £ output simulation results to file

-b set breakpoint

/* not implemented this version */

2.2 None of the above
print error message

3. Get input filename from command line.

”fﬂ

4. Create and initialize head and tail pointers to

driver queue.

5. Set sort marker (gmarker) to driver queue head

pointer.

6. Create and initialize simulation structures
/* signals, drivers, transactions */
/* behavior function pointers */
/*See Figure 4.4 */

7. Execute simulation until done
/* See Pigure 4.12 */

8. At end print message

* Throughout the remainder of this chapter, the number(s) in

Cm =}

parenthesis in the structured English description refer(s)
to the related module in the accompanying hierarchical
chart.

53

A AT L T e 5 A ST T Y A O A S A S R A G A S A S (R MR S B, S R R G AR S

.

.
L
'l
'l
*
It should be noted that driverhead and drivertail are :;
' structures of type drive which are used as the head and tail g
.l
of the event queue. For control purposes, the sort key "
field of driverhead is set to the VAX system's minimum
g integer value and the sort key field of drivertail is set to X
the system's maximum integer value. .
Also note that gmarker is a pointer which marks the .

present position in the event queue. When the event queue 5

s

is updated the sort is to the left (<=) or right (»>) of

qmarker. N

)

:ﬁ 4.4.2 Sim Initialize. Sim Initialize creates and !
initializes the simulation data structures, opens and reads ;

the input vector file, and opens the output report. Sim

ﬁ Initialize consists of the subordinate modules shown in |':
' Figure 4-3, ,:
»
SIM >
ﬁ INITIALIZE e,
1.0 4
¢
.l
’1
J

g CREATE GET INPUT GET INPUT OPEN OUT
SIGNAL SIGNAL VECTORS REPORT X)
1.1 1.2 1.3 1.4 :
“
« Figure 4-3 Sim Initialize)
l P
54 \

~

A \‘f\" “»

q‘.. \'.._ .

y " A e ey O S C T R
T T o T S T A S A R T R S P T R O I N W W AT A WAl N

WL N e

LAY

wmmm““"m“““w"“u“—-u-----__--.._.

(1.0) Sim Initialize
‘ 1. Set simulation start time.
2. Set simulation termination time.
3. Create and initialize simulation
structures.
/* signals, drivers, transactions */
) /* behavior function pointers */
/*see Figure 4.4 */
4. Read input signals.
5. Read input vectors.
&f 6. Open the output file.

7. Return.

4.4.3 Create Signal. Create Signal opens and closes

o the data files and creates and initializes the signal,

» driver and fanout structures. Create Signal consists of the

subordinate modules shown in Figure 4-4.

¥
CREATE
SIGNAL
1.1
>,
¢
CREATE CREATE NEW
DRIVER FANOUT SIGNAL
% 1.1.1 1.1.2 1.1.3

Figure 4-4 Create Signal

55

®
i
%
A
PI
ﬁ
"
g
L]
~l
.
N

S A P o C o A B AT s,

=

The structured English description of Create Signal is:

(1.1) Create Signal

l. Open the data files. These files contain
the signal, driver and fanout data.

2. While there is more signal data do the
following:
2.1 Create signal structures
2.2 Create driver structures
2.3 Create fanout structures
3. Close the data files.

4. Return.

4.4.4 Get Input Signals. Get Input Signals opens the

input vector file and reads the input signals from it,
storing the signal address in an array. Get Input Signals
consists of the subordinate module Strcmp shown in Figure

4-5."

GET INPUT

SIGNALS
1.2

STRCMP
1.2.1

Figure 4-5 Get Input Signals

* fThe structured English description of the strcmp procedure
shown in Figures 4-5 and 4-6 is not presented here due to
its simplicity. A full description can be found in
Kernighan and Ritchie (15:101).

4.

LW N

3.1

3.2

Get Input Vectors.

(1.2) Get Input Signals
Open the input vector file.

If unable to open input file
Print error message and terminate program.

store it /*

Return,

input vectors from the input file,

transaction queue of the parent driver.

While there are signal names to read do
the following:

Get the address of the signal and
block 1.1.1 */

If unable to get signal address
print error message.

Get Input Yectors reads the
performs a character to
integer conversion and posts the input vector to the

Get Input Vectors

consists of the subordinate modules shown in Pigure 4-6.

GET INPUT
VECTORS

STRCMP

1.3.

POST TRANS

ATOIL

Pigure 4-6 Get Input Vectors

i

S

The structured BEnglish description of Get Input Vectors

(1.3) Get Input Vectors
l. Read the nev input vector time.

2. While there are more vectors of the input
vector time read do the following:

2.1 Check the validity of the input vectors
/* Block 1.2.1 */
There are five:
Iul
lzl
Ool
'll
O.I
/* '.' means no change to previous
input vector value */

2.2 None of the above:
Print error message.
3. Get input signal address.
4. If the input vector value has changed
create a transaction and post {t.

/* see Pigure 4-18 */

S. Return.

4.5.6 Nev Signal. WNWew Signal creates and initializes

the signal structures. Wew Signal consists of the

subordinate module Strsave shown in Pigure 4-7.

The structured English description of the atoi procedure
shown in Pigure 4-6 is not presented here due to its
simplicity. A full description can be found in Kernighan
and Ritchie (15:58). The structured English description of
Post Trans in Pigure 4-5 is presented in section 4.4.18.

S8

...... ‘-$.~.~' ’ ". .~. ' 's

y

>

Y

e

e

(

NEW
SIGNAL

1.3.1

STRSAVE
1.3.1.1

Pigure 4-7 Wew Signal

The structured English description of New Signal is:"
(1.3.1) New Signal

Create and initialize new signal
structure.

Return.

* The structured English description of the Strsave
procedure shown in Figures 4-7 and 4-9 is not presented here

due to its simplicity. A full description can be found in
Kernighan and Ritchie (15:103).

59

CREATE

DRIVER
1.3.1
CREATE
NEW DRIVER EVENTQ
: 1.3.1.1 1.3.1.2
¥

Figure 4-8 Create Driver

The structured English description for Create Driver is

given below. The structured English description of Create

event queue is given in section 4.4.15.

(1.3.1) Create Driver

1. While there is more driver data
do the following:

1.1 Por each signal do the following:
l1.1.1 Read the driver name

1.1.2 Create a new driver
structure

1.1.3 Create the event queue
/* See section 4.4.15 */

Return,

60

=

=4

T &

4.4.8 HNevw Driver. MWew Driver creates and initializes

the driver structures. HNew Driver consists of the

subordinate module Strsave (15:103) shown in Figure 4-9.

NEW

DRIVER
1.3.1.1

STRSAVE
1.3.1.1.1

Figure 4-9 Wew Driver
The structured English description for New Driver is:
(1.3.1.1) New Driver
Create and initialize a
driver structure.

Return.

4.4.9 Create Fanout. Create PFanout reads the fanout

data file and creates the fanout structure, storing the
address of the behavioral function. Create Fanout consists

of the subordinate module new fanout shown in Figure 4-10.

61

EXRPOURSCT JE=EXE ==

CRLATE
FANOUT
1.3.2
NEW
g FANOUT
4 1.3.2.1

e

Pigure 4-10 Create PFanout

The structured English description for Create Fanout

is:
(1.3.2) Create Panout
% While there is more fanout data in the
fanout file do the following:
For each signal with fanout do the
following:
g Get the behavioral function name.

Get the address of the behavioral
function and store it.

Return.

:., .n.:.:q~.“.:.~(:._' . A

~8

P

]

4.4.10 New Panout. WNWew PFanout creates the fanout

structure and stores the behavioral function address. New
Fanout consists of the subordinate module get func shown in

Frigure 4-11.

NEwW

FANOUT
1.3.2.1

GET FUNC

1.3.2.1.1

Figure 4-11 Wew Panout

(1.3.2.1) New Panout

Create new fanout structure

Get and store the address of the
behavioral function.

Return.

Due to its simplicity, no further description of get
func (block 1.3.2.1.1) is given. The interested reader
should refer to the source code, which is published under

separate cover as a technical report.

63

-

4.4.11

simulation.

Simsulate.

Simulate schedules and executes the

Simulate consists of the subordinate modules

shown in PFigure 4-12.

SIMULATE
2.0
GET CLOSE
DEBUG SIM PoP process|| ineur) oo ouT
conTrol]| cLock TRANS | | FANOUT || VECTORS REPORT
2.1 2.3 2.3 2.4 2.8 2.6 2.7
Figure 4-12 Simulate

The structured English description for Simulate is

given below.

64

All block references are to Figure 4-12.

C N
- N

(2.0) Simulate

' 1. Set first drive to point to the
first event.

2. Set first trans to point to the
first transaction of first drive.

g 3. If DEBUG is TRUE:
3.1 Set the debug option.
3.2 Print debug message.

4. While the simulation time is not finished
ﬁ and there are more events do the following:

4.1 If the event time is less than the
current simulation time:

4.1.1 Print Warning Message

4.1.2 Delete the transaction

>

4.2 1If the event time eguals the current
simulation time:

4.2.1 If event

y 4.2.1.1 Post new signal and driver
value

4.2.2.2 Print event data.
/* time, old value, new,
& value, transaction type */

4.2.1.3 Delete the transaction.
/* block 2.3 */

4.2.1.4 Propagate the new signal
value to all outputs on the
5 fanout list. /* block 2.4 */

4.2.2 1If no event:

Delete the transaction.

[= "\

[§
-

4.3 If the event time does not equal
current time:

Increment the simulation clock.
/* block 2.2 */

4.4 If the transaction processed was an
input vector:

read next input vector.

4.5 Update first drive and first
trans.

5. If Done:
5.1 Print report summary.

5.2 Return.

Due to the simplicity of the sim clock (block 2.2) and
convert procedures (block 2.6), no further description is
given. The interested reader should refer to the source

code.

4.4.12 Debugq Control. Debug Control is only used for

checking the correctness of all or parc. of the program
during development or after program modification. VSIM does
not require Detug Control for execution. Debug Control

consists of the subordinate modules shown in Figure 4-13.

66

1
W SO AL AN AR R WA AN W AT AT BT AT WIS AT ldkbtﬁhﬁdj

AL S P

DEBUG
CONTROL

R~

DEBUG
DEBUG SIG DEBUG DEBUG
EVENTQ TRANS FANOUT
2.1.1 2.1.2 2.1.3 2.1.4

Pigure 4-13 Debuqg Control

The structured English description for Debug Control

is:

(2.1) Debug Control

1. Set the debug option from the
command line.

There are four cases:

Signals (1) dump the signal structures.

Eventg (2) dump the eventqueue.

Trans (3) dump the transaction queues.

All (4) dump all! the queues.

/* signal, event, transaction,

None of the above
Print error message

Return,

67

fanout */

P
“~
l:'\"

%

~I
L]

4

)

[}
XL

&
P4
¥

’29;

%
%

)
o

%
[

~©
4

) .
PN AN
e
ote
S e

RYEVETVI VR W CRENEPE YL Y YL IR T A R S FE P PC WONeEs

' Since they are not required for program execution, no
further description of the debug functions (blocks 2.1.1 -
2.1.4) is given. The interested reader should refer to the

% source code.

4.4.13 Pop Trans. Pop Trans deletes’'a transaction and

frees the memory space. Pop Trans consists of the

It'
§: subordinate module Updateq shown in Figure 4-14,
¢
POP TRANS
2.3
2
&
“ UPDATEQ
> 231

A

|
Fiqure 4-14 Pop Trans
68
i
q

-. - - ' - ..- - - - ' '.. ‘t o ‘! N . >.- - ..t ... '.. - - '.. .'. -' M - ‘.l
T QUG R CC U A A L L S G O L O G S G SO S R G L L Gr O GRS A R oy o

P T T S T S O T R R T e P e e e

The structured English description for Pop Trans is:
. (2.3) Pop Trans

1. Set first drive to point to the
first event.

2. Set first trans to point to the first
transaction of first drive.

L.

3. If first trans equals the null trans
Print a Warning Message.

4. Remove the transaction from the
queue.

5. Resort the event queue.
/* block 2.3.1 */

6. Free the memory space.

»

" 7. Return.

4.4.14 Updateq. Updateq resorts the eventq. Updateq

consists of the subordinate module Create eventq shown in

‘s .
ﬁ Figure 4-15.
UPDATEQ
;_:' 2.3.1
e CREATE
EVENTQ
2.3.1.1

Figure 4-15 Updateq

69

e
%
'.
"y
%
q
A
’4
.
pe
,
!
“
>
~
“~
“
-
X
L

P
-
h]
)

Al

-

(2.3.1) Updateg

1. Remove the event from the
' event queue.

2. Put event back in event queue based
on its sort key.
/* Create Eventq. See
section 4.4.15 */

! 3. Return.

4.4.15 Create Eventg. The structured English

description for Create Eventq is:
ﬁ (2.3.1) Create Eventqg

1. Set the sort key of event to the
new sort key value.

2. If the sort key of event is less
g than or equal to the gmarker
sort key do the following:
2.1 Search the event queue in the
direction of drivertail until
the sort key of event is greater

Q than the gmarker sort key.
‘a
2.2 Put the event back in the
queue.
2.3 Set gmarker to point to the
event.
i /* sets a new sort
marker for the gqueue */
2.4 Return.
3. Else
' 3.1 Search the event queue in the
direction of driverhead until the
sort key of event is less than or
equal to the gmarker sort key
3.2 Set gmarker to point to the event
»

3.3 Return.

70

13 . [y J S L "R L A R Py L . v _ WYy » B N
- . 4, . &,

=]

S

=%

B

The search mechanism used is intended to decrease the
sort time of a sequential search. Although not a true

binary search, it does decrease the search time.

4.4.16 Process Fanout. Process Panout propagates the

value of an event to all the outputs on the fanout list.
Process PFanout consists of the behavioral function modules

shown in Figure 4-16.

PROCESS
FANOUT
2.4
BEHAVIORAL BEHAVIORAL BEHAVIORAL
FUNCTION 1 FUNCTION 2 FUNCTION 3
24.1 242 2.4.3

Pigure 4-16 Process Fanout

71

wﬁﬂ-& R O R N N R N L G S G

Y

=

The structured English description for Process PFanout
is:
(2.4) Process Panout

1. While there are more outputs on the
signal fanout to propagate do:

Execute the behavioral function

2. Return.

4.4.17 Behavioral Punctions. The behavioral functions

calculate the future values and times for target signals on
the event fanout list. The behavioral function modules

consist of the subordinate modules shown in Figure 4-17.

T
|
BEHAVIORAL 3
FUNCTIONS 1| 2
2.4.1
POST FAN ‘POST GET
SIG TRANS FTHqCTTCHQS SIG ADDR
2.4.11 2.4.1.2 ANQ 2.4.1.3 2.4.1.4
TOR
[noT

Figure 4-17 Behavioral Functions

=5

=g

s

Py

)

e o B a W o P P o pg® o, By W 0 g v "
h"‘mhLﬂ:M}I"l}ﬂ?IMRl:'f:'n':'l:'m:'izl:f

Since the behavioral functions are the same except for

variable values and execution of different generic gate
functions, only one representative structured English

description of a behavioral function is presented.
(2.4.0) Behavioral Punctions

l. Get current value of drivers.

2. Calculate the future value and
time for the target output signal.
/* the generic functions and, */
/*or, not calculate the future value*/
/*of the specified gate type*/

3. Post the future time and value to
the appropriate driver of the target
output signal.

4. Return.

Due to their simplicity, no further description of post
fan sig (block 2.4.1.1) and the generic gate functions
(block 2.4.1.3) is given. The interested reader should
refer to the source code. Post Trans is described in

section 4.4.18.

4.4.18 Post Trans. Post Trans creates a new

transaction structure, inserts it in the appropirate
transaction queue and deletes old transactions depending on
the type delay as required. Post Trans consists of the

subordinate module Updateq shown in FPigure 4-18.

73

N~

.

POST TRANS
2.4.0.2
UPDATEQ
g 2.4.0.2.1

Figure 4-18 Post Trans

The structured English description for Post Trans is:
g (2.4.0.2) Post Trans
1. Create and initialize a transaction.

2. Insert the new transaction in
the transaction queue.

-

3. 1If the new transaction is not an
input vector do the following:

Update the projected output
waveform
ﬂ /* See note below */

4. If the new transaction is the first
transaction in the queue:

Resort the event queue
/* See Figure 4-15 */

Updating the projected output waveform consists of
deleting zero or more previously computed transactions
l depending on the type of delay. VHDL supports transport and
initial delay and VSIM fully implements this function. A

detailed explanation can be found in (13:85).

L]

75

g)

AL \ ' ' 4 ("W (NG XY, B Wy v, (e
LR "‘9‘»'“. Wb I".‘a'{‘ﬂfﬂ,',l\l i) o \"l'. XA OL N l"‘l' e Y ’l"'i"‘l“‘l"" -".0‘ L ﬂ.“' IO n'\.'.‘u'l‘n‘ MUK Wi Nl

e

22

5%

V. Analysis and Results

S.1 General

The results of this thesis effort and an analysis of
those results is the objective of this chapter. This
provides the author the opportunity to not only critique his
research effort but to highlight the strengths and
weaknesses of the design and the program itself.

The method used to perform this analysis was to analyze
several areas of the program's design and function, and then
present and evaluate the results produced by the program.

The following specific program areas were analyzed:

1. The quality of the program design was compared with
the initial design goals.

2. The program's function was compared to the
functional requirements.

3. Program performance was compared to the performance
requirements.

The reader is reminded that this thesis was concerned
with the Sim Initialize module and the Simulate module
(Blocks 2 and 3 of Pigure 3-2). A detailed evaluation of
VSIM for different circuit structures, gate delays and

fan-in and fan-out was not done due to the desire to

evaluate the program's function in the limited thesis time

=5

&

2=

available. Two different circuit structures were evaluated,
however, as were the program's execution speed versus the

number of input test vectors and the modeling of different

gate delays.

5.2 VSIM Design

The program design is specific and detailed concerning
all aspects of VSIM. The design hierarchy is well-
documented in a complete set of hierarchical charts (Chapter
4) and the C code itself includes detailed headers which
provide important information and a description of each
program module.

The code is understandable and well-designed. However,
due to the time constraints under which the program was
designed and developed, it is quite possible that some of
the program modules could be revised to gain increased
efficiency in execution speed and use of memory space. An
example is the event queue which is implemented as a
doubly~-linked list and is designed to function as a modified
binary search. This search algorithm could be replaced by a
more efficient one.

Names for the functions and variables were selected to
be appropriate and descriptive of the required function and
data represented; however, there are instances where the

function or variable name is misleading or was poorly

77

p

=

chosen. Punctions which are poorly named are generally ones
whose purpose wvas modified during program development. An
example is the Create Signals module which would be more
appropriately named Create Structures.

Since the program was designed to minimize the size of
the executable file, several functions are used more than
once rather than duplicating a similar function among
several slightly different program modules. Examples of
this modularity and efficiency are the Post Trans and Create

Bventq functions.

5.3 VSIN Punction

VSIM implements each of the functional requirements
specified in Chapter II. The following functions are

performed by VSIM:

5.3.1 Operation. VSIM reads and interprets the
command line, the data files and the input vector file to
create the program data structures and establish the runtime
environment. The hardware design is then simulated until
all transactions are processed or a preset termination time
is reached; events are evaluated, new transactions created,
and results reported in the output trace file that is

generated.

s

5.3.2 VHDL Implementation. VSIM implements a subset

of VADL. VSIM supports single drivers, simple signal
assignment statements, and single block statements. VSIM
supports integer and floating point data types, although the
only input values coded in the behavioral functions are:
'0,' '1l,' 'z' (high impedance), and 'u' (unknown). The VHDL
functions of inertial and transport delay are fully

implemented.

5.3.3 Interactive Capability. The user designates the

input vector file. VSIM also accepts and implements the
following command line options:

-d selects debug.

-0 designates the output trace file.

-8 selects the simulation start time.

-t sets the simulation termination time.

These functions have been verified through extensive
testing. Each option was used alone and in conjunction with

other options.

5.3.4 Error Checking. Error messages are generated

for syntax and semantic errors. Error messages are also

generated for errors in the command line. All error

messades vere exercised and checked.

2

5%

5.3.5 Program Size. The VSIM program consists of 1250

lines of C source code. The compiled object code is 24K

bytes in length.

5.4 Program Results

VSIM was exercised many times to verify program
correctness and to detect any program "bugs.™ Although
considerable testing was accomplished considering the time
available and the requirement to manually code the design
data needed to drive the simulator, additional testing could
be performed to further insure program correctness. The
tests conducted on VSIM and the results achieved are

presented and analyzed in the following sections.

5.4.1 Designs Simulated. Figure 5-1 shows the two

circuits that were used to drive VSIM. These circuits were
used primarily to check the VSIM program operation. The
delay for each gate is shown above the gate and if transport
delay a T label is indicated below the gate. 1In the absence
of transport delay, all gates have inertial delay (the
default case).

The three-gate circuit (Figure 5-la) implements the
basic gate functions And, Or, and Not, while the six-gate
circuit (Figure 5-1b) models a simple combination of two

copies of the three-gate circuit. Both circuits were driven

m

BE

L=

4

14 s
A D
E
T
T 10
D—_‘ F

Figure S-1a Test Circuit 1

Figure 5-1b Test Circuit 2

Figure 5-1 Test Circuits

81

P e NS AT TR AT AT

by identical input vector filea to provide a common base for

' analyzing simsulation results. The input vector files
contained the five permissible input test vector characters
('0,' "1, 'z,' 'u,' '.') where '.' means use previous

vector value. The input test vectors were randomly

778

selected. The number of input test vectors was varied from
a minimum input of 10 to a maximum of 960. Appendix C
contains an example of one of the input vector files used.
B The different delay types and times were used to check
VSIM's capability to handle the full set of delay types and

times.

5.4.2 Program Correctness. The output trace file

produced by VSIM, when driven by the different input test

. files for the two circuits simulated, was carefully analyzed
to validate that the program was producing the desired
results. The output produced by VSIM for each circuit

design and known input was checked using the boolean

o
t; expression for the circuit simulated. 1In each test case for
the different input vector test files and the two circuit
designs under simulation, VSIM produced the correct results.
3 Appendix H contains the representative results of one of the
validation test runs done for the 3-gate circuit design.
The results also validated that VSIM correctly models
F both inertial and transport delay and correctly updates the
82
o

T 1 & B N SR)

1 ‘ -)
AR IS AU A WY R AV,

R R

anenp) uoyoesuel] jo yideqg 2 - S einbig

SYOLOIA LNdNI
00s osy 0oy 0s¢ 00¢ 0s? 007 0s1 001 0s 0
0
S
= ” e e |
sored ¢ o1 3aN3ano
uy -
SNOILLOVSNYHL
st 10
H3IGWNN
0z WNNIXVIN
174
0t
- = o LA s ES =) & K

- AD-RL79 073 WDL (YHSIC (VERV HIM SPEED INTEBRHTED CIRCUITS)
lPTlVE LA ENGI INST OF ECH

. AIR
HRIGHT-PATTERSON AF| SCNOOL OF
UNCLASSIFIED DEC 86 AF1T/GCS. /Em

- . . *1 -~ P
-,

202 13

h..bh.s-.m -

23A3_-

p 2

P!

KAy
e N

-

'y

r-

output vave form when posting nev transactions. As shown in
Pigure S-1b, & delay time of zero vas simulated on gate 5,
to verify that VSIN wvas correctly processing new

transactions scheduled for delta time.

S.4.3 Transaction Queue Sise. Figure 5-2 shows the

mazisus transaction queue sisze for six different {nput
vector test files simulated on the 3-gate circuit design and
{s representative for both test circuits simulated. The

significance of the data presented in Pigure 5-2 {s that {t:

l. Dewonstrates the efficiency of the VSIN design in
processing the input vector test files. VSIN conserves
sesory space by reading in the input test vectors one
line at 2 time as they are required by program
ezecution. Reading in all the input test vector file
would consume vast amounts of msemory and create an
inetficient data structure. Besides the efficiency
question of not reading the entire input vector test
file is the question of practicality when processing
input vector test files for VLSI class designs which
could contain tens of thousands of input test vectors.

2) Demonstrates that VSIN's dynamjc data structures can
support the changing data requirements of simulated
designs during simulation execution.

3V Shows data structures are efficient in the use of scarce
semory space - expanding to handle the required data and
contracting to conserve space vhen the data requirements
lessen.

84

AT RV TR G T T T I N YR

‘»

i 3

RIS

5.4.4 Simulation CPU Time. Pigure 5-3 presents the

' simulation execution time for the two designs simulated.”
As demonstrated by this data, VSIM appears to be functioning
efficiently for the algorithm used and the two designs

' simulated. Based on this data the simulation execution time
seems to be increasing in a linear manner as expected. This
efficiency in execution time is required when simulating

Q VLSI class chips, and demonstrates that VSIM is functioning

) consistent with its intended design.

Based on the data presented in Figure 5-3, it can be
concluded that VSIM functions with generally the sawme

§ efficiency regardless of the size of the input vector file
or the number of gates in the design simulated. It must be
cautioned, however, that these conclusions are based upon

&' the limited number of tests conducted on VSIM. More testing
is needed to verify these test results and validate VSINM.

If additional testing verifies these results, then the data

ﬁ obtained in Pigure 5-3 can be used by the designer to
estimate the VSIM execution time of a design with a known
number of input test vectors. An even more important
result, however, if these data hold is that the fully

ﬂ implemented VHDL simulator using the same algorithm as

* During the testing a variance was discovered in the CPU
a time recorded by the system; therefore, the CPU times should
be considered approximate and not exact.

86

-
'
b

. b g5 LSS - Y ; y Ny . e
' 'A". 4! '-',"\. - ','" ot '~..'5‘,‘Q..‘0‘..".“ AN v l‘.‘l) R .,. [i_.‘! Ve ...-. N W >, .,‘ NaXal \|~.| ,a AN -, ‘? AT Ny) ."‘I (0

Eaav:

v

.

=2

VSIM should have the same efficiency. This is important
since it provides the designer of the fully implemented
simulator with a baseline from which to work.
Implementation by the designer of a different algorithm to
improve the efficiency of either VSIM or the fully
implemented simulator can be measured in terms of this

established baseline.

5.4.5 Events Processed. PFigure 5-4 shows the number

of events processed per CPU time measured against the number
of input test vectors. For both circuits the number of
events/second expands to a maximum rate and then gradually
declines to a steady state range for the remainder of the
simulation runtime. It is suspected that this rapid
increase in events processed per second at the low end of
the range of input vectors is caused by 1) the uncertainty
of the system time routine to accurately calculate small
time values, and 2) the time required to initialize the
simulation as opposed to the actual execution of the
simulation is the predominate contributor to execution time
at the low end of the range.

The number events processed per second is not only
directly related to the efficiency of the simulator, but is
also highly dependent upon the design simulated and input
vector test file used. As stated in section 5.4.4 above,

the number of events processed per second can also be used

as a measure of the efficiency of the simulator.

SIUeA3 ¢ - S eunbi4

SYOLOIA LNdNI

0001 006 008 0oL 009 00s 00y 00t 007 001 0

0s

001
0s1
007

0s?

/ saes €
P

saes 9

00¢

0st
00y
osy

00s

RS P

[T DENIFEREN OIS AR X OF 7.7 AT @R,

88

23s NdD
/ SINJIAYT

e,

5.4.6 Transactions. Pigures 5-5 and 5-6 showv the

total number of transactions processed and the number of new
transactions created per second during the simulation test
runs. The explanation provided in section 5.4.5 concerning
the rapid increase in events processed per second at the low
end of the range is also applicable for the two cases
discussed here. The significance of the number of
transactions created can be compared to the number of events
processed to obtain an indication of how many created
transactions actually become events. This data is presented
not only to provide other measures of the efficiency of the
VSIM but to demonstrate that VSIM provides useful data in
its output trace file." Using this information in
combination with the data presented in sections 5.3 and 5.4
above, the designer can adapt his approach to modeling to
improve the simulation runtime and make the simulator more

efficient.

* Appendix G contains an example of an output trace file
generated by VSIM,

pessed0id suopoesues] (104 S - G anbiy

SYOLOFA LNdNI
S.cl— cwa 008 .x.z. 009 00s 14 00¢ 007 001 0
. - . — ' 0

001
007
-00¢

sajel ¢
oor 3

]’” — 1/\ o

009

s3e8 9
F00L
-008
006 s NdO

/ SNVYL

0001

pejees) suonoesuell 9 - § anbi4

SHOLOFA LNdNI
0001 006 008 00L 009 00s 00y 00t 007 001 0

0L
ori

017
) sojel ¢

087

/ . 0S¢

—— ozy

91

se1e6 9 o6v

09¢ 293s ndD

0¢9 'S

00L

5.5 Sumsmary

The results and analysis presented demonstrate that
VSIM meets the goals and functional requirements specified.
An analysis of the program results, obtained from the
E various tests conducted and described within this chapter,
provides proof of program correctness and validates the VSIM

design concept.

A

"l

W

-

—-
R

viI. Conclusions and Recossendations

6.1 General

The purpose of this thesis was the development of a
prototype VHDL simulator in support of the AFIT VHDL
Environment (AVE). The prototype simulator implemented a
simple signal structure and manually coded behavioral
functions representative of VHDL processes. The prototype
kernel simulator which was developed illustrates the basic
simulation capabilities required for VHDL. The prototype
simulator is the first step in the development of a complete
simulator for the AVE. The added enhancements needed to
upgrade the prototype are presented in Section 6.3,
Recommendations. Evaluation of the prototyéé simulator
kernel demonstrates that the anticipated runtime for the
fully implemented simulator, to be designed and implemented
on the UNIX system, should have excellent performance

characteristics.

6.2 Conclusions

The VSIM program successfully implements a prototype
VHADL simulator and provides excellent proof of design

concept for implementing a complete simulator in the UNIX

93

o,

X X

K 4

PRES

-

environment. In general, VSIM meets all the established
functional requirements for the prototype simulator and
meets or exceeds initial performance expectations. The
final VSIM program is highly modularized and is efficient
both in memory usage and execution speed. The executable C
file (object code) for VSIM is a compact and efficient 24K.
VSIM executed the test circuit designs and input test vector
files well within acceptable execution times. The output
trace file produced by VSIM provides the designer with
useful and required information which can be used to improve
simulation modeling and efficiency.

Most importantly, the prototype simulator, VSIM, has
provided: 1) a proof of design concept for development of a
complete VHDL simulator for the UNIX Environment, and 2) an
established baseline upon which future research and

development efforts can build.

6.3 Recomsmendations

The primary recommendation of this thesis is that the
research and development of a complete simulator for the
AFIT VHDL Environment continue. The following
recommendations focus on what remains to be done in the

development of the simulator.

94

%

<,
R

RN LN, ST N A A Ny

LA P
L .

A

'

.

<=X

g

6.3.1 Parallel Development. VIA is now developed

sufficiently that it is capable of driving the prototype
simulator kernel. This is a significant milestone in the
AVE effort and the development of VIA and the simulator
should pe one of parallel development. As VIA is expanded
to incorporate new capabilities, the simulator should be

concurrently expanded to incorporate the added features.

6.3.2 Translator. The translator (preprocessor) or
automatic behavioral function generator for converting VIA
structures into C functions which are integral tc¢ the
simulator needs to be developed. A brief discussion of the
translator was provided in Section 3.4, Chapter 3, System

Design.

6.3.3 Efficiency. The efficiency of the simulator

runtime capability needs to be improved to allow it to
efficiently simulate VLSI class designs. This can be
accomplished by exploring the use of alternate algorithms
(such as the use of a balanced tree algorithm for the event
and transaction queues) and alternate data structures within

the simulator kernel.

6.3.4 Runtime Control. The simulator runtime control

should be enhanced to incorporate additional features such

as a multiple breakpoint capability.

95

> LI TN e T e O e N U T Y
BCAC AT O SO N AT NN AN I A0 A0 N AT IR A N AT AL 20 A AL AN S AT R N O AU AL RCAC N N)

WLl A

IR IR

e v, o3

XX, s 7,

haille s

‘v v

i','-.‘.-.-. p

oA

e

6.3.5 Report Capability. The output report capability

should be expanded to provide the user with the capability
to select optional output trace reports. The prototype

simulator only allows output of an event trace report.

6.3.6 IEEE Standards. The fully implewmented simulator

should be designed to conform to IEEE VHDL standards and

syntax.

6.4 Summary

VSIM was an important first step in the design and
implementation of a complete VHDL simulator for the APIT
VHDL environment. VSIM provides proof of design concept for
a VHDL simulator written in C and operating in a OUNIX
environment. It establishes a benchmark against which

future development efforts can be evaluated.

-

5 2

N

10.

11.

8ibliography

d'Abreu, Michael. “Gate-Level Simulation,” [REE Design
and Test, 2 (6): 63-7]1 (December 198S).

Moore, David H., and Wiliam, Toule J. °“VHSIC's Industry

Ispace . " 1981 University, Industry., Government

?éirooloctronicaAiy!poiIul. T-10-1-2%. Wlsslssippi,
1.

Susney, Larry M. °“VHSIC, University, and Industry -
Some Issues.” 19§% University, Industry, Government
Microelectronics Sysposiue, I-1 - 1-9. WMlsslssippl.
38T

Shahad, 4“o0e, et al. Computer, 18(2): 9-102 (Pebruary
1985).

Prauenfelder, Capt Deborah J. VHDL Lanquage Analyzer.
MS Thesis. School of Engineering, Alr Porce Institute
of Technology (AU), Wright-Patterson APB, OH, December
1986.

Kamrowski. Capt Michael S. VHDL Hardware Simulator
Using Parallel Processors. MS Thesis. School o
fngineering, Alr Porce Institute of Technology (AU),
Wright-Patterson AFPB OH, December 1986.

Chu, Yaohan, “Why Do We Need Hardware Description
Languages?.,” I[EBEE, (December 1974).

Lipovski, J. H. Computer, 6(10), 14-17 (June 1977).

Booch, Grady. Software Engineering with Ada. Menlo
Park, Ca. Benjamin Cummins Publishing Company, 1982.

Intermetrics, Inc. VHDL Design Analysis and
Justification Report. Technical Report IR-MD-018-1,
Bethesda, Md., 30 July 1984.

Intermetrics, Inc. Simulator Program Specification.
U.S. Air Porce Contract -83-C- . Bethesda,
Md., 30 July 1984,

97

-

Wy]

vy

el

e

12.

13.

14.

15.

Y AN ISR N RN NN NI R R RN K N NN R AN A AR AN AR N
~ . . Al LY . Y . . - b] i A), . 3 » A

n.

Intermetrics, Inc. VHDL User's Manual: Volume
l1-Tutorial. U.S. Air Porce Contract P33615-83-C-1003.
Sethesda, Md., 1 August 198S.

Intermetrics, Inc. VHDL Language Reference Manual:
Version 7.2. U.S. Alr Porce Contract F33615-83-C-1003.
Bethesda, Md., 1 August 198S5.

Breuer, M. A. and A. Priedman. Diggnosis and Reliable
Design of Digital Systems, Computer Science Press, Inc.,
wooaiana H{Iis, Ca. 1976.

Kernighan, B. W. and Ritchie, D. M. The C Programming
Langua;o. Englewood Cliffs, New Jersey: Prentice-Hall,
IﬂC.: 78.

P)

98

&

%

Appendix A:
Installation Guide

A.l The UNIX Environment

The prototype simulator is designed to operate in the

URIX BSD 4.2 environment.

A.2 Systea

The simulator will execute on a DEC VAX.

A.3 Prograa Compilation

VSIM can be compiled and executed on the UNIX operating
system using the system command 'make' and the VSIM makefile
included in this appendix. Once the VSIM files are
installed on a system, the 'make' command must be executed
to create the executable file VSIM. VSIM can then be
executed as explained in Appendix B without further use of

the 'make' command. Use of the 'make' command {s neccessary

only after program modification.

f

FILES= vsim.c sim_initialize.c create_signal.c create_driver.c create_fanout.c \
new_signal.c new_driver.c new_fanout.c debug_control.c create_eventq.c \
simulate.c save.c debug_sig.c \
debug_eventq.c debug_trans.c updateq.c post_trans.c get_func.c \

' behavel.c behave2.c behavel.c or_func.c not_func.c and_func.c\
get_input_signals.c get_input_vectors.c pop_transact.c sig_addr.c\
process_fanout.c debug_fanout.c post_fan_sig.c open_out_report.c\
close_out_report.c convert.c sim_structure.h

OBJECTS= vsim.o sim_linitialize.o create_signal.o create_driver.o \
? create_fanout.o new_signal.o new_driver.o new_fanout.o debug_control.c\
create_eventq.o simulate.o save.o debug_sig.o\
debug_eventq.o debug_trans.o updateq.o post_trans.o get_func.o\
behavel.0 behave2.0 behave3.o or_func.o not_func.o and_func.o\
get_input_signals.o get_input_vectors.o pop_transact.o sig_addr.o\

process_fanout.o debug_fanout.o post_fan_sig.o open_out_report.o\
;g close_out_report.o convert.o

vsim: ${OBJECTS)
Id -0 vsim ANib/crt0.0 ${OBJECTS) -lc -Ig

vsim.o: vsim.c sim_structure.h
cc -cg vsim.c

&
X
™ create_driver.o: create_driver.c sim_structure.h
cc -cg create_driver.c
create_signal.o: create_signal.c sim_structure.h
cc -cg create_signal.c
) .
Y] create_fanout.o: create_fanout.c sim_structure.h
' cc —cg create_fanout.c
new_driver.o: new_driver.c sim_structure.h
cc -cg new_driver.c
~ new_signal.o: new_signal.c sim_structure.h
_,Q' cc -cg new_signal.c
new_fanout.o: new_fanout.c sim_structure.h
cc -cg new_fanout.c
sim_initialize.o: sim_initialize.c sim_structure.h
W
g cc -cg sim_initialize.c
create_eventq.o: create_eventq.c sim_structure.h
cc ~-cg create_eventq.c
debug_control.o: debug_control.c sim_structure.h
o cc -cg debug_control.c
“a
simulate.o: simulate.c sim_structure.h
cc ~-cg simulate.c
100

T R AN OO 28 NIT IE ST IS ITIPNE N ST I NP I NN TGPEL SETEIN N PN A)

&5

save.o: save.c
cc —cg save.C

debug_sig.o: debug_sig.c sim_structure.h
cc ~cg debug_sig.c

debug_eventq.o: debug_eventq.c sim_structure.h
cc —cg debug_eventq.c

debug_trans.o: debug_trans.c sim_structure.h
cc ~-cg debug_trans.c

updateq.o: updateq.c sim_structure.h
cc —cg updateq.c

post_trans.o: post_trans.c sim_structure.h
cc ~cg post_trans.c

get_func.o: get_func.c sim_structure.h
cc —cg get_func.c

behavel.o: behavel.c sim_structure.h
cc —cg behavel.c

behave2.o: behave2.c sim_structure.h
cc —cg behave2.c

behave3.o: behavel.c sim_structure.h
cc ~cg behavel.c

or_func.o: or_func.c
cc -cg or_func.c

not_func.o: not_func.c
cc —-cg not_func.c

and_func.o: and_func.c
cc -cg and_func.c

get_input_signals.o: get_input_signals.c sim_structure.h
cc -cg get_input_signals.c

get_input_vectors.o: get_input_vectors.c sim_structure.h
cc -cg get_input_vectors.c

pop_transact.o: pop_transact.c sim_structure.h
cc -cg pop_transact.c

sig_addr.o: sig_addr.c sim_structure.h
cc -cg sig_addr.c

process_fanout.o: process_fanout.c sim_structure h
’ cc -cg process_fanout.c

101

s

s

debug_fanout.o: debug_fanout.c sim_structure.h
cc ~cg debug_fanout.c

post_fan_sig.o: post_fan_sig.c sim_structure.h
cc ~cg post_fan_sig.c

open_out_report.o: open_out_report.c sim_structure.h
CC ~cg open_out_report.c

close_out_report.o: close_out_report.c sim_structure.h
cc ~cg close_out_report.c

convert.o: convert.c sim_structure.h
cc -cg convert.c

102

. Appendix B:

Users Manual

& B.1 Program Execution

VSIM allows the user the selection of several options !

through the command line. At a minimum, the command line

5 must contain the program name VSIM and the name of the input
vector file. The following format must be used for the 3
command line: '
ﬁ VSIM [options] input file name :
The command line options may be specified in any order :
and the program is insensitive to the number of allowable '
ﬂ arguments which are present. The command line options are a
th

summarized below: \
-d n Selects the debug option which causes the

contents of selected structures to be printed to the

= 24

output file. Debug prints the selected data the first
time that simulate is entered and each time a tran-

saction is processed. n can be one of four integer

«
1 prints all signal structures
2 prints the event queue
e
<

g values (1, 2, 3, 4) where:
n =
n =
L n = 3 prints all transaction queues

n = 4 prints all data structures

103

e

»

-0 filename Allows the user to select the output file where
the output trace file will be written. The default is
sim output.

-8 n Allows the user to select the simulation start
time. The time units specified must be the same as the
units of time used for the input vector file and the
circuit description. n must be an integer value. The
default start time is O.

-t n Allows the user to select the simulation
termination time. The time units specified must be the
same as the units of time used for the input vector
file and the circuit description. n must be an integer
value. The default termination time is 10000.

-b n Allows the user to select a breakpoint time
when data will be dumped to the output file.

Simulation continues after the breakpoint is processed.
n must be an integer value. Not implemented on this

prototype version.

B.2 Input Test Vector Pile

VSIM reads and interprets the input vector file. The
user specifies the input filename on the command line.
Pailure to specify the input file will result in a fatal

error and termination of program execution. VSIM accepts

five valid input values: '0,' 'l,' 'z' (high impedance),
104
W P A N L A A R S S A A R O 20 N A O R A

'u' (unknown state) and '.' (means no change in previous
value). A sample input vector file for VSIM is contained in
Appendix C. The § will be used as a delimiter between the
designation of the input ports (signals) and the associated

input vectors.

B.3 Timing

VSIM allows the user to select the simulation start or
termination time as indicated above. Either one or both may
be selected: however, a fatal error occurs if the
termination time specified is less than the start time.
Simulation time is not discrete but is event-directed, i.e.,
it is incremented according to the scheduled occurrence of

events.

B.4 1Initialization

Prior to the start of simulation, all the signal and

driver values will be initialized to 'u,' the unknown state.

B.5 Error Checking

VSIM provides extensive error checking. 1If errors
occur, they are displayed on either the standard output or
written to the specified output file. An error on the

command line or a failure to open the user specified input

105

278

s =

R

P)

)

vector file will result in a fatal error message displayed
on the standard output. All other error messages are
written to the specified output file. Errors can affect
program execution in one of two ways: 1) after warnings
program execution resumes, or 2) after fatal errors program

execution is aborted and no output file is written.

B.6 Design Circuit Changes

Since the circuit design in VSIM is manually coded, the
following modifications must be made to VSIM to simulate a

different circuit design:

1) The input vector file must be modified to include new
input signals and their values.

2) The three data files (signal, driver, and fanout) must
be modified to include the new data for the circuits,
signals, drivers and the signal's fanout.

3) The behavior functions need to be changed to accurately
model the new circuit design. A behavior function is
required for each logic gate in the circuit design.
These changes can include:

a) Changing the circuit delay type. Since inertial is
the default in VHDL, transport delay must be set by
declaring the global variable TRANSPORT to be TRUE.

b) 1he circuit delay time can be set by the assignment
of a value to the global variable new time.

c) The input and output signals must be defined (#
define) in the behavioral function.

d) The generic function must be specified in the
behavioral function. VSIM models the generic
functions and, or, not. The user will have to
create a new function to model other than one of
these three gate functions.

106

.....

A T AT A A A AT A A A T e oy

a o W .

R S e S

PR)

R I A -

Pl

X

Appendix C:

i Sample Input Vector File

The following is a sample of an input vector file.
a detailed explanation of the file can be found in section

3.5.4' Chapter 3.

A

alpha

N
(4]

101.0
13u01t
15120
17 .01
& 2001 .
i 301uo
400 .1
45110
650 .u
75120

[= 24

107

A

v

(4
1

s

e

T

Appendix D:

Sample Signal Data Pile

The signal data file contains the signal name, mode and

type for each signal in the circuit design.

.........

N P A R O T A N AT,

alpha 12
b12
c12
delta 0 2
echo 2 2
foxtrot 2 2

108

e et AT R
'.'-. -':\\ {\

o

1o & OO

-y v v

P R T 4

‘g % s °r

)

N R RN S R LA R R O LA SR SRS

YOI L ge Rut $a% . Rat e B’ Fal Sa R T T R o Y ogac Sut oaa Ma ket 8t Uat AaN Rab 05l Set yad §at Qa' dac Vs ol A onai et et fa Rac G ta ba o8B V8 2% a%d &'F a'd 2'8 2°2 &' i

Y
4

f "
s
%
.

Appendix E: '
9;

. Sample Driver Data File

|]
\J
U

The driver data file contains the drivers for each :

. signal in the circuit design. The first entry on each line '

-

‘ is a number which tells the VSIM program how many drivers to \

read for a given signal. A

ol :

_\. '

NG 1 alphat X

o 1 b1 :

1cl

1dl

lel y
. 1f1 "

15 ;

o t
-
.
bY)

N N

l\'

. \
o
~
-
“
)

- .

u'l.‘ .

#l ‘
109

Appendix P:

i Sample Fanout Data Pile

The fanout data file contains the fanout (behavioral
functions) for each signal in the circuit design. The first
a entry on each line is a number which tells the VSIM program

the fanout for a given signal.

Bt

5%

1 behavel
1 behavel
1 behavel2
2 behave2 behave3

S

110

l”

R O A C i C At o o, € LA PO LA i P b SO

f~f‘l a

~

=

| %)

Appendizx G:

Sample Output Trace Pile

VSIM produces an Output Event Trace Pile. The report

provides the user with the following information:

1)
2)

3)

4)
5)

6)

Column 1 gives
Column 2 gives

Column 3 gives
event.

Column 4 gives

Column 5 gives

the

the

the

the

the

time of the event.
signal which had the event.

value the signal had before the

new value of the signal.

source of the event: 1 indicating an

input vector and 0 indicating a transaction created
during the simulation.

A report summary providing simulation start and
termination times,
transactions processed, events processed and
transactions created.

and total simulation runtime,

i]

AFIT VHDL Prototype Simulator Output Report

Events Processed
. Time Signal Present Value New Value Transacuon Type
1 alpha u 0 1
1 b u 0 1
’ l [u o 1
15 deha u 0 0
20 echo u | 0
25 foxtrot u 0 0
3 26 c 0 1 1
*
26 b 0 1 1
40 deka 0 | 0
. 41 b | 0 |
\
bl
* 45 echo 1 0 0
50 foxtrot 0 1 0
5s deka t 0 0
a 60 echo 0 1 0
65 foxtrot 1 0 0
66 b 0 1 §
- 80 dehta 0 | 0 1
ﬁ 8 echo 1 0 0 ,
90 foxtrot 0 | 0
91 [| 0 ! 1
a' [
8 91 b 1 0 1 q
101 foxtrot 1 0 0
10§ dehta 1 0 0
\ 110 echo 0 | 0
N
i16 sipha 0 1 i

112

r

‘L4

&

AR

116

116

130

135

140

Signal Presemt Value New Value
b 0 1
< 0 1
delta 0 1
echo 1 0
foxtrot 0 1

Simulation Summary

Simulation start time : 0
Simulation termination time :140
Total Simulation Run Time :140
Total Transactions Processed :40
Total Events Processed :30

Number of New Transactions Created :24

113

Transaction Type
1

1

Appendix H:

VSIN Validation

This appendix contains the state table, boolean
expressions, input vector file and output results used to

validate the VSIM program.

'
4

F vy

I

114

5

l STATE TABLE !

A B C E F H I

0 o o 1 0 1 0
E 0 L] 0] 1

0 1 0 0 0 1 0

0 1 1 0 0 0 0
g 1 0 0 0 1 0 0

1 0 1 0 0 0 0

1 1 0 0 } 0 0
)
RO 1 1] 0 0 0 0
¥

Expressions
/
(A+B)=E
P (A+B)C =F
/
(A+BC)=H
: ABC-1
o
¢
115

-
e

g

TR L A A AT AR AT . e, - . .
PFCOIAL GRS G AR S OO A N AT AP AT RN RF A

‘Cu's

$

alpha
b

. €

s

1000
26011
41001
66011
91000
116111

N e O € S e

)

'y

15

20

25

26

26

40

41

4s

50

$S

60

6S

66

80

85

90

91

91

101

10$

110

116

AFIT VHDL Prototype Simulator Output Report

Signal
alpha
b
c
deita
echo
foxtrot
c
b
delta
b
echo
foxtrot
delta
echo
foxtrot
b
deha
echo
foxtrot
c
b
foxtrot
delta
echo

alpha

Events Processed
Present Value
u

u

117

New Value

Transaction Type
1

1

[=]

—

Time Signai Present Value New Value Transaction Type
. 116 b 0 1 1
| 116 c 0 1 1
‘ 130 delta 0 1 0

, 135 echo 1 0 0
P e 140 foxtrot 0 1 0
Simulation Summary

Simulation start time : 0

Simulation termination time :140

X5

Total Simulation Run Time :140
Total Transactions Processed :40
Total Events Processed :30

DA Number of New Transactions Created :24

23

118

47

e

o,

Appendix I:

Results

This appendix contains the results used for the

analysis of VSIM presented in Chapter 5.

These results vere

compiled from the summaries of VSIM Output Event Trace

Flles.

119

T T L dte 2o 2t g Lo 4 pe o g g fo AT 4 LA W g L d

Results 10 Input Vectors

g sum 10 3g
. Simulation Summary
Simulation start time : 0
Simulation termination time :89
:'5 Total Simulation Run Time :89
: Total Transactions Processed :50
Total Events Processed :32

Number of New Transactions Created :31

sum 10 6g
Simulation Summary
Sﬁ Simulation start time : 0
Simulation termination time :107
Total Simulation Run Time :107
§ Total Transactions Processed :75

Total Events Processed :41

Number of New Transactions Created :56

-

120

L

NN AT 4 T A ML AR NORAS LIRS GBLOAGARALELARUEANLY

>>8

b

-l

sum 20 3g

sum 20 6g

W P WY WO IOV T N W N W NS W W e

Results 20 Input Vectors

Simulation Summary

Simulation start time : 0
Simulation termination time :109
Total Simulation Run Time :109
Total Transactions Processed :65
Total Events Processed :41

Number of New Transactions Created :40

Simulation Summary

Simulation start time : 0
Simulation termination time :177
Total Simulation Run Time :177
Total Transactions Processed :140
Total Events Processed :76

Number of New Transactions Created :10S

121

=

'all.""g"‘l.il ".h" f f .‘f g A

g sum 30 g3

sum 30 6g

v,
AT,

o

Results 30 Input Vectors

v
-

5'

0 T e T t..-__n.,.- AR

Simulation Summary

Simulation start time : 0
Simulation termination time :239
Total Simulation Run Time :239
Total Transactions Processed :139
Total Events Processed :89

Number of New Transactions Created :85

Simulation Summary

Simulation start time : 0
Simulation termination time :245
Total Simulation Run Time :245
Total Transactions Processed :198
Total Events Processed :108

Number of New Transactions Created :151

122

2% -
4

., .,

SN AN

o

-

.v-:. " f‘

RS

LY 2

l-ﬁ'%.l‘(‘_‘

-

]

;Y YAV T

. ateata

A SN

R ARPRAR . Y

"
.

> % 5

Results 60 Input Vectors

’ sum 60 g3
N Simulation Summary
Simulation start time : 0
Simulation termination time :439
;‘r_. Total Simulation Run Time :439
.".
: Total Transactions Processed :280
Total Events Processed :182
Number of New Transactions Created :172
2
-
-
5
surm 60 6g
Simulation Summary
": Simulation start time : 0

Simulation termination time :445
Total Simulation Run Time :445

Total Transactions Processed :395

o

Total Events Processed :219

Number of New Transactions Created :306

123

L

K ”°y .4 " o 1 oty oy " L v Y ' D P SN S AT A DN R S A I A e A A A AT TR L AL A AN
D T "‘n" -k‘- L W, '\ > o > N \ ‘. ‘ R \ l.\ ".'A'l\ " .'."f"d" \. "'-\ \R\‘.\ \I- pt ,\f v y \...¢ M » - 0

",
] L) N

-
-

AR AR

A &

v . . "'.'n'ﬁx

[R

- B

¢ v e -
.
l.l"

Results 120 Input Vectors

sum 120 g3
g Simulation Summary
Simulation start time : 0
Simulation termination time :939
o Total Simulation Run Time :939
§ Total Transactions Processed :559
Total Events Processed :366
Number of New Transactions Created :345
%
B
¥
sum 120 6g
o Simulation Summary
Qf Simulation start time : 0
Simulation termination time :945
Total Simulation Run Time :945
ﬁ Total Transactions Processed :786

Total Events Processed :441

Number of New Transactions Created :613

124

N T S R R T R o A N R AN N RN T AR Y M, N A N A N NN

fRegults 240 Imput Vectors

! sum 240 g3
Sismulation Summary
Simulstion start teme 0
Sismulstion termination time 1939

3 Total Simulstion Run Time 1939
Total Transactions Processed 1117
Total Events Processed <734

¥ Number of New Transsctions Created 691

2.

|

|

E

‘ oum 240 6g

§ Simulstion Summary

| Simulstion start time : 0

j Simuletion termination time (194

| Total Simuistion Run Time 1945

,a Total Transsctions Processed 1569

| Totw! Bverts Processed :88$

f Number of New Transsctions Crested 1227

.

2 125

|

N ST S AT

K

AN

sum 430 &g

sum 480 g}

Results 480 Input Vectors

Simulstion Summery

Simulation start time : 0
Simulation terminstion time :3945
Total Simulation Run Time :3945
Total Transactions Processed :3135
Total Everts Processed :1774

Number of New Transactions Crested :2457

Simulation Summary

Simulstion start Ume : 0
Simulation termination time :3939
Total Simulation Run Time :3939
Total Transactions Processed :223)
Total Everts Processed :1470

Number of New Transactions Crested :1384

126

PP LN L L Ly [P Y) A AT TN A
W I B e N

-
OB AN N o Bl D A o 00 i) W Wy € W I 1 i N

R, " N "‘

«
]
1

Results 720 Input YVectors

sum 720 g3
! Simulation Summary

Simulation start time : 0
Simulation terminadon time :5939
Total Simulation Run Time :5939

Lo

Total Transactions Processed :3348
Total Events Processed :2206

Number of New Transactions Created :2076

ey

sum 720 6g
Simulation Summary
LY
g Simulation start time : 0
Simulation termination time :5945
Total Simulation Run Time :5945
ﬁ Total Transactions Processed :4699
Total Events Processed :2662
Number of New Transactions Created :368$
o
'I
127 i
- 1
L .
o
F

Results 960 Input Vectors

sum 960 6g
g Simulation Summaz ry
Simulation start time : 0
Simulation termination time :7945
& Total Simulation Run Time :7945
‘s Total Transactions Processed :6265
Total Events Processed :3551 .
Number of New Transactions Created :4915
\I
N
o
p
sum 960 g3
Simulation Summary
o Simulation start time : 0

Simulation termination time :7939
Total Simulation Run Time :7939

Total Transactions Processed :4464

| =)

Total Events Processed :2942

Number of New Transactions Created :2769

128

l vita

William Leo Lynch, Jr. was born on May 18, 1947 in
! Somerville, Massachusetts. He graduated from Burlington
High School in 1965 and received a Bachelor's degree from
Northeastern University, Boston, Mass. in June 1969. Upon
gb graduation, he was commissioned a second lieutenant in the
U.S. Army through the ROTC program. He also received a

Master's of Business Administration degree from the

L]
N

University of Utah in June 1982, His most recent

<X

assignment, from May 1985 to June 1986, was as the Executive

Officer, 509th Signal Battalion, Camp Darby, Italy.

0
~J

pr

Permanent Address: 7 Olean Road

Burlington, Mass 01803

5%

129

A

CLaY W N W M

. 1}
Ui M W)

’ - v W ; » IS Y - -
Al ¥]
AENEATHER A ERTRRNT L 4 TR N W Mo € o Ve A WL L, u'\c .-".-",c [a X X .v’\- PV G SO0 T O N K u NN, ¥

