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The Scale-space Formulation of Pyramid Data Structures

Robert Huammel

Courant Institute of Mathematical Sciences
New York University

251 Mercer Street, New York, NY 10012 USA

<4' Abtact
Pyramid data structures for image processing are usually defined using discrete
grids and discrete levels. It has proven useful to formulate pyramids in terms of
continuous variables. When the level of the pyramid is changed to be a continuous
variable, we talk of the resulting domain as '"scale-space."f' When both the image
domain and level are treated as continuous, the resulting pyramid structures are
most naturally viewed in terms of partial differential equations governing their
formation. This viewpoint allows one to generalize to new kinds of pyramid data
structures, analyze their information content, and develop rational methods for
treating borders and other problems in the discrete construction of pyramids.

1. Scale-space
Pyramid data structures for signal and image processing usually are

implemented as a stack of discretely sampled data. In this chapter, we formulate
pyramid structures in terms of a collection, indexed by a continuous variable, of
functions of continuous-domain variables. Thus the pixels and levels in a pyramid
are replaced by position and scale attributes. The continuous variable replacing the
notion of the level of the pyramid will be called the scale parameter, and will be
denoted by t~ in this chapter. The domain of the resulting continuous pyramid, given
by the variables (x,y,t), is called scale-space. We will study the scale-space%
representation of functions of two variables, and discuss methods for implementing
the decomposition and representations in scale-space.

Why should one want to build a continuous formulation of pyramid data
structures? Since implementations will almost always be discrete, and since there
exist well-studied methods for building useful pyramid structures, a continuous V
theory might seem superfluous. However, as we will see, the discrete constructions
can be seen to be discrete approximations to a continuous formulation, and
therefore can be understood in greater generality from the standpoint of a
continuous theory. Further, we can sometimes answer questions about details and
difficulties in the construction of pyramids by appealing to the continuous theory -

here we will especially consider the problem of handling borders. Finally, by
connecting to theories of partial differential equations and other continuous
formulations, we can often make use of a large body of results to facilitate
observations and propositions about pyramids, to formulate variants and to know

how to extract information from them. A program of exploiting these relationships



The Scale-space Formulation of Pyramid Data Structures

for pyramid data structures is far from complete.
In the simplest pyramid data structure, the Gaussian pyramid, each level

represents a coarser resolution version of the original data. The base of the
pyramid contains the original data at full resolution, and higher levels typically
contain blurred and subsampled versions of the immediately lower level. The
subsampling that is most commonly applied is to select every other pixel on every
other row, for a reduction factor of two in each dimension. Thus if the base level
is, say, 512 by 512 pixels in extent, the next level will be 256 by 256, the next will
be 128 by 128, etc. Other sampling methodologies are possible, but it is always true
that each level contains fewer points than the preceding level.

In a continuous formulation, a level is represented by a function of continuous
variables, and so each level is qualitatively the same. However, the essential
information content can vary between levels, so that a discrete representation might
require fewer data points when the information content is low. Specifically, let us
focus on image data, and suppose that f(x,y) represents the image data given as a
real-valued function of two continuous variables. The continuous analog of the
pyramid data will be a function

u(x,y,t) ,(xy) (R 2 , t p- 0.

The domain of the function will be called scale space, and the parameter t, which is
the continuous analog to the pyramid level, is the scale. The value t - 0 represents
the base of the pyramid, and for the Gaussian pyramid yields the condition

u(x,y,O) - f(x,y) .

The number of levels in a discrete pyramid is always finite, whereas for the
continuous version we may have an unbounded scale 0 ! t < c, or a bounded scale
0 !tsT.

Scale-space can also be defined for bounded image domains. In this case, the
image is defined on a domain DQR 2 , so that f(x,y) is given for (x,y)ED. Then the
pyramid data u(x,y,t) will similarly be defined for (x,y)ED, t 2t 0, and so scale-
space in this case can be regarded as a cylinder.

The notion of scale-space as applied to multiresolution signal and image
analysis is due to Witkin [1]. Pyramid data structures were common before then, so
the essential new idea was the conversion of discrete levels into a continuum of
scales. Analyses of pyramids using scale-space notions have been reported in
[2,3,4,5,6,7]. Especially relevant to analysis in scale-space are zero-crossing and
level-crossing features, inspired partly by the Marr-Hildreth edge operator [8].

2. The Gaussian Pyramid

As indicated in the previous section, the Gaussian pyramid consists of levels
that contain blurred and subsampled versions of the original, base level. That is,
each pixel in an upper level of the pyramid has a value given by a weighted sum of
values in the base level. Gaussian pyramid data structures are discussed in
[9, 10, 11]. In nearly all Gaussian pyramid structures, and the basis for the name is
that, the weights have the form of a Gaussian distribution. A precise formulation is
easier and more natural using the scale-space variables.
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For the scale-space Gaussian pyramid, we define

a(x,y,t) - f fG (x',y')f(x-x -y')dx'dy' (2.1)

where

G(x,y t) - (Le-4+"Y (2.2)4vt

For any fixed value of t>0, G(x,yJ) is a Gaussian distribution centered at (0,0)
with standard deviation a - \&. For t-0, G(x,y,t) is (in a sense that can be made
rigorous) a delta-function centered at (0,0). As a result, we have

u(x,y,0) - f(xy) , (2.3)

and for t>0, u(-,.,t) - G(.,.,t) * f, where by * we denote convolution.
Suppose that we have a uniformly conducting infinite plane, and that at time

ti-0 a unit impulse of heat is placed at position (x,y) - (0,0). Then, as time
progresses, the impulse will diffuse to a symmetrical heat distribution centered at
(0,0). If heat diffuses according to the Heat Equation

a L~(2.4)

where the Laplacian of u is
82u * 2u

A~U . 2+ B 2 '

then after t units of time, the initial impulse will have diffused to the Gaussian
distribution G(xy,t). In general, if the initial distribution of heat over the flat plate
is given by f(xy) instead of having an impulse, then we can apply a superposition
principle to deduce that after t units of time, the heat distribution will be u(x,y,t),
with u given by Equation (2. 1).

Accordingly, the natural framework with which to study Gaussian pyramids on
a continuous domain is by means of the Heat Equation. The Heat Equation is an
example of a parabolic partial differential equation, and is a classical topic of study
in mathematical analysis. Any standard text on partial differential equations will
contain a treatment of this problem; examples are [12,13,14]. Questions such as
existence, uniqueness, and dependence of the solution on the initial data are
common topics in these treatments. These questions are not necessarily so clear-cut
- for example, without certain growth conditions and regularity assumptions.
uniqueness of a solution to (2.3) and (2.4) is not guaranteed.

Equations (2.3) and (2.4) constitute the initial value Heat Equation problem on
the unbounded and unrestricted domain R 2. Typically, the initial data f(z,y) will be
zero outside of a bounded domain (i.e., f(x,y) will have compact support), or
satisfy

22
fr E L'(IR2), some pa l. (2.5)

In these cases, with the unrestricted domain R2 . the initial data will spread by the
diffusion process over the entire domain, so that u(x,ya) - 0 as t - . On a
bounded domain DQR 2 , we can pose a boundary-value version of the Heat
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AD 8(z,y,s)

D

Y

Figure 1. Scale-space for a bounded domain D.

Equation (see Figure 1). One such formulation is given by
8 .. Au in D x (0,=) (2.6)
at

u(x,y,0) - f(xy) , (xy)( D

u(xy,t) - f(xy) , (x,y) E aD , t r 0.

Another formulation is applicable only if

A(x,y) - 0, (x,y) E aD ,

where a/av denotes the normal derivative to the domain D. This formulation is
given by

e- Au in D X(0M), (2.7)

u(xy,O) - f(x,y) , (x,y)ED

av(x,y,t) - 0 , xy)CaD , t O.

Other formulations are possible. Each alternative boundary value formulation has
to be studied separately in terms of existence, uniqueness, and dependence of the
solutions on the boundary data. However, a well-posed boundary value problem
can generally be transformed into a discrete pyramid construction procedure. We
convert the three formulations above into discrete constructive methods in Section
5.1
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The boundary formulation (2.6) given above, where the data is specified on the
sides of the cylinder, is an example of a Dirichlet-type boundary value problem.
The next formulation (Equations (2.7)), is closer to a Neumann-type problem, since
the normal derivative data is specified on the sides. Accordingly, we have three
boundary formulations: Equation (2.5), corresponding to the lack of boundaries
and embedding in an infinite plane, (2.6) corresponding to fixed boundaries and
physically equivalent to diffusion of heat on a plate in contact with heat reservoirs
on the boundary clamping the temperature, and (2.7) corresponding to adiabatic
diffusion of heat in an insulated plate.

3. The LAplEadc Pyramid
The Laplacian pyramid data structure has proven, in many respects, to be more

useful than the Gaussian pyramid. In discrete settings, the Laplacian pyramid is
obtained by taking a difference between adjacent layers in the Gaussian pyramid.
Of course, since the levels have different sizes, they must first be made
commensurate. In the Burt version of the Laplacian pyramid, this is done by
expanding the smaller level by an interpolation procedure (see Figure 2). The result
is a pyramid structure in which each level contains something approximating a
difference-of-Gaussian filter of the original data. Accordingly, each level can be
regarded as a band-pass filter on the data; further, the original data can be
reconstructed by essentially adding together all levels, from small levels to larger,
expanding the result at each stage.

Expand

............... -.

Gaussian Pyramid Laplacian Pyramid

FIgure 2. The Bun construction of the Laplacian pyramid.
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The Scale-space Formulation of Pyramid Data Structures

The key to the continuous analog is the substitution of a difference quotient for
a difference of levels. Thus if u(x,y,t) represents a Gaussian pyramid, and
u(x,y,tl) - u(xy,t2) is therefore a difference of levels, the Laplacian pyramid will
be formed from

V(Xyt) - u(x,y,t 2) - u(x,y,tl)
2-ti t2- tl

Thus each level of the Laplacian pyramid is a scaled infinitesimal difference of
levels of the continuous Gaussian pyramid. More precisely,
v(x,y,t) = au(x,y,t)/Bt.

Recall, however, that the Gaussian pyramid function u(x.y,t) is a solution to
the Heat Equation. Thus

v(xyt) -- (xyt) - Au(x,y,t).

So the Laplacian pyramid contains data that is simply the Laplacian of values in the
Gaussian pyramid. Moreover, u is obtained by convolution of the original data f
with the Heat kernel K: u=K*f. We may use properties of convolutions to write
v(x,y,t) in three forms:

v(x,y,t) = Au(xy,t) - * f - K * Af.

Thus the Laplacian pyramid data can be formed from the Laplacian of the Gaussian
pyramid, or by filtering the original data f with the Laplacian-of-Gaussian kernel
AK, or by filtering the Laplacian of the original data by a Gaussian.

The last equation shows that v itself is a solution to the Heat Equation:
av
Bt

with initial data 4f. This implies a rapid method of constructing v, by blurring 4f
data. However, in practice, blurring 4f can lead to numerical precision difficulties,
and so one of the other forms is generally used for construction of v. Use of the
Laplacian of the Gaussian (the "Mexican Hat" or "Sombrero" operator), AK, is
possible (see Figure 3), and made much less expensive by methods of Huertas and
Medioni [15]. However, much simpler is to simply evaluate the Laplacian of the
data in the Gaussian pyramid, or, equivalently, difference adjacent levels. Note,
however, that high numerical precision (floating point or large integer
representation) is needed for construction of the Gaussian data in order to
accurately compute v.

We can also see, from the definition of v, the reconstructibility of f. We have

f(x,y) = - v(x,y,t)dt + u(x,yT) ,

where either T=ro, or T is the height of the finite scale-space cylinder. The
equation follows from the fact that v-Bau/at, and the fundamental theorem of
calculus. In the case T-0 o, the function u(x,y,t) means lim u(x,y,t), and is

generally known. For the case fELP and domain R 2 (formulation 2.5), we obtain
u(x,y,T)mO. Dirichlet boundary conditions (formulation 2.6) lead to u(x,y,T) a
solution to the boundary value Laplacian equation:
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-0.4y

Figure 3. The Laplacian (second derivative) of a Gaussian in one dimension.

Au(x,y,T) - 0, (xy) ED,

u(x,y,T) - f(x,y), (x,y) E 6D

Finally, Neumann boundary conditions (formulation 2.7) lead to u(x,y,T) c,
where c is the mean value of f(xy). In all cases, we see that f(x,y) can be
reconstructed from v by adding together all levels, and then adding in a simple
function. Thus as long as the Gaussian pyramid data v(x,y,t) is supplemented with
the data u(xy,T), (which may be zero, harmonic, or a constant), the information
supplies a complete representation of the original data f(xy).

4. Zero-crossings
The Marr-Hildreth edge operator is defined as the zero-crossings of the filtered

image data, where the filter used is the Laplacian of a Gaussian [8]. On a pyramid
data structure, the zero-crossings at each level of the Laplacian pyramid reveal
structure characteristic of the image at a specific scale of resolution. Strong, clear
edges in the image data will frequently show zero-crossings at many levels near the
relevant locations, but there will also be zero-crossings at other locations.

In scale-space, the zero-crossings are the common borders between regions
where the data is positive and regions where the data is negative. This definition
differs only slightly from the zero set, since the zero set might contain isolated zeros
and other kinds of pathologies. If we restrict scale-space to one level by fixing a
value for t, the portions of the zero-crossings within that level give the Marr-
Hildreth edges at that scale, using a Laplacian-of-Gaussian filter. When
implemented discretely, the levels are more typically a difference-of-Gaussian
representation of the data. But in continuous variables, we can define the zero-
crossings mathematically as

Page 7
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The Scale-space Formulation of Pyramid Data Structures

Z - a( (xy,t) I v(xy,t) > 0} n {(x,y,t) I v(xy,t) < 0}

The interest in zero-crossings is heightened by an analysis of their evolution as
the scale varies. Because v(x,yt) is a continuous function for t>0, the zero-
crossings form sheets in scale-space that cut through the scales. If a zero-crossing
sheet persists for a large range in scale, then there is very likely an associated
prominent feature in the image data, such as a strong edge. Even though the zero-
crossings are part of the zero set of a smooth function, they can have cusps,
irregularities, and all kinds of pathological properties. However, since v(x,y,t) is
an analytic function, these pathologies will be isolated.

Zero-crossing sheets enjoy a property that we will call the "evolution
property." This property says, informally, that zero-crossing sheets are never
created at intermediate values of scale t, but rather evolve and can only disappear as
t increases. Thus zero-crossing contours at t-0 lead to sheets that evolve as t
increases, but no new sheets appear for t>0 (see Figure 4). In particular, sheets are
nested one within another. Thus the entire collection of zero-crossing surfaces form
a structure that can be extracted and used as a structural description of the original
image. This property, which holds for level-crossings as well as zero-crossings, was
noticed by Witkin in numerical experiments, and proven by various authors under

500-

400-

Scale
Space-

Number of 200
Blurrings

100-

I I I N

0 100 200 300
Pixel number

Figure 4. An example of zero-crossings in scale space. The initial data is a
scan line of a real image, and the zero-crossings are formed from the Laplacian
of the Gaussian. Above 20 blurring steps, zero-crossings are shown only on
every tenth row. Note that zero-crossings are never created at intermediate
values of t.
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assumptions of regularity of the zero-crossing surfaces.

Haralick suggested [16] that the ability of zero-crossinSs to localize edges could
be improved by using a second directional derivative in the direction of the gradient,
instead of using the Laplacian operator. That is, instead of using v -U, we set( auO o2U + 2 r-u)[L )5 r. -L" + Oag2 U

ax J x I OX By J xay ay y)
VvuP

It is not hard to show that the right hand side represents a second directional
2bderivative DOu of u, taken in the direction B that is the same as the direction Vu.

Haralick uses the "facet model" to obtain u, instead of Gaussian convolution.
Preliminary experiments with zero-crossings of this operator and related operators
suggest that edges are in fact more accurately found by this method.

However, introducing an operator other than the Laplacian opens up a host of
new issues. Recall that in the unrestricted domain R', u(x,yt) is obtained by
Gaussian convolution against the image data f(x,y), and that Gaussian convolution
arises due to the presence of the Heat Equation. We can replace the Heat Equation
with the following nonlinear partial differential equation for u to form a new kind of
pyramid:

~u O uI0u0fU +2- -- +-O l2 Ox Ia2 Oxa ay 8y2

at IVUF
If u is constructed in this manner, using some appropriate version of the boundary
conditions, then we would set ,.

au

to obtain v(x,y,t) as a scaled second directional derivative function. In this case, as
well as when u is the Gaussian pyramid data and v is the second directional
derivative of u, the evolution property is no longer guaranteed to hold.

5. Some results using scale-space
We can use scale-space notions to analyze properties of pyramid data

structures, and to suggest new construction methods. We focus on three areas here.
First, we discuss methods for implementing the Dirichlet and Neumann boundary
formulations for construction of the Gaussian pyramid on a bounded domain. Next,
we discuss theorems involving zero-crossings. Finally, we mention possible
alternative features in scale space that might be used for image representation.

5.1. Boundaries %.4

We will discuss methods for discretizing the boundary formulations (2.6) and
(2.7). The discussion will be mostly confined to one space dimension, although the
results extend easily. More details can be found in [17]. In a discrete form, we are
given data f(i), i-N .... N, and we wish to construct
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The Scale-space Formulation of Pyramid Data Structures

u~i,k), i- -N,... N, ktO,

with

u(i,O) - f(i)

and u a solution to the "discretized Heat Equation:"

u(i,k+1) - u(i.k) - u(i-lk) - j-u(ik) + -Lu(i+1,k)
424

Disregarding borders, the construction is clear. First we set u(i,O)-f(i), as
required, and then recursively for k- 1,2, • • • , define

u(i,k+1) = lu(i-,k) + -Lu(ik) + lu(i-l,k)

for i= -N+1 . . . N-1.

However, special treatment is needed on the borders. To implement Dirichlet
boundary conditions, we set

u(N,k+1) - u(N,k)

u(-N,k+1) - u(-N,k)

The result is that the boundary data at i-N and if=fN remains fixed at f(-N) and
f(N) respectively.

For Neumann-like boundary conditions, we set

u(N,k+1) = lu(N-l,k) + -3u(Nk)

3 1
and u(-N,k+1) - Tu(-N,k) + 4 u(-N+ 1,k)

These formulas arise if we imagine u(-N-1,k)fu(-N,k) and u(N+ 1,k)=u(N,k).
The advantage of the Neumann-type conditions is that the mean value

N N
2N +1 I u(i,k)

will remain constant in k. Thus as k-.', u(i,k) will converge to a constant value,
which is the average value of f(i).

In higher dimensions, Neumann-type boundary conditions are slightly tricky for
non-convex domains. The best bet for image data is to apply the one-dimensional
procedure first on the rows, and then on the columns of the result.

Having constructed the discrete Gaussian pyramid data, Laplacian pyramid data
can be obtained from v(i,k)=u(i,k+l)-u(i,k). Note that if Dirichlet-type
boundary conditions are used with fixed boundary data then the Laplacian data will
be zero on the borders.

5.2. Results about zero-crossings
It turns out that the evolution property for level-crossings of the Gaussian

pyramid data in scale-space, stated in Section 4, is completely equivalent to the
maximum principle for parabolic partial differential equations [7]. The maximum

Page 10
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principle applies for solutions to the Heat Equation, and states that inside any
bounded cylinder generated by a finite subdomain and finite interval in t, the
maximum will occur either on the bottom or the sides of the cylinder.
Consequently, we know that the evolution property holds for each of the boundary
formulations stated in Section 2, namely (2.5), (2.6), and (2.7).

It is easy to observe that the edges in an image carry a lot of information about
the image. An accurate edge image will generally allow identification of the
objects, and an artist can reconstruct an approximation to the original image by
coloring in regions surrounded by edges in the edge image. Accordingly, there is
some reason to hope that the edge data, especially given edge data at a variety of
scales, completely represents the original data. The scale-space formulation of this
hypothesis would assume that the given data is the location of all zero-crossings in
all of scale-space. We can then ask whether the original data, f(x,y), is completely
characterized, or characterized to within a class of transformations, by that data. If
the original data is completely characterized, we can further ask whether
reconstruction is in practice possible.

The answer to these questions are not known. There are some hints, although
it is entirely possible that the hints are misleading. For example, if the original data
f(x,y) is a polynomial in x and y, then the Laplacian pyramid data v(x,y,t) will be a
polynomial in x, y, and t, and the zero-crossings are part of the real analytic
varieties of v as studied in algebraic geometry. It can be shown that under certain
assumptions, the real analytic varieties determine the polynomial, and thus can
determine the initial data [18,3]. However, the result for polynomial data implies
nothing for nonpolynomial data. Even though a general function can be closely
approximated on a bounded domain by a polynomial, the fact that the
representation is unstable means that approximations to the representation can lead
to arbitrarily large inaccuracies in the reconstruction.

As an example of another result, suppose that the information about the
locations of the zero-crossings in scale space are supplemented with information
about the magnitude of the gradient of the Laplacian pyramid data at the zero-
crossings. That is, we are given the zero-crossing set Z, and the information
lVv(x,y,t) 1, for (x,y,t) EZ. Then theoretically reconstruction of f(x,y) is possible, at
least in regions enclosed by bounded zero-crossing surfaces in scale space (see
Figure 5). The reconstruction method requires that data at a level t = T above the
top of the zero-crossing contour be computed, and deblurred to give data on the
initial surface t-O. Details of this method are given in [7), although it should be
noted that the deblurring process is necessarily ill-conditioned ( [19] ).

We can also attempt to reconstruct the data f(xy) given only the zero-crossings
(and just a little bit more) of v(x,y,t) by making use of the sgn-function, defined by

- I x<O
sgn(x) 0 xO.

x>O

Page 11
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The Scale-space Formulation of Pyramid Data Structures

rr

Figure S. Reconstruction of data on segment A is theoretically possible given the
gradient data on the zero-crossing curve r. The reconstruction requires deblurring
data that is computed along the dashed line.

Knowledge of the location of the zero-crossings is essentially equivalent to
knowledge of

s(x,y,t) - sgn(v(xy,t))

Then by defining a differentiable approximation to the sgn-function, say
+,(x) =arctan(x/c), we can seek to find a function ! minimizing

fff ~ s(xy,t)) drdydt

Use of a related method in one-dimension has been reported with good results, and
even applied to rows and columns to reconstruct image data [20]. However,
preliminary experiments by the author on full two-dimensional reconstructions seem
to imply that the zero-crossings contain much information about typical images, but
not enought for accurate, sharp reconstruction.

5.3. Alternative representation
The Laplacian pyramid data and the zero-crossings of the Laplacian data in

scale-space are two possible bases for representations of image data. The resulting
discretizations, when formed into pyramid data structures, have to be evaluated in
terms of their utility as well as their (mathematical) information content. There are
many other possible representations, and we briefly mention a couple of
possibilities.

As noted above (Section 5.2), the data s(x,y,t)-sgn(v(x,y,t)) may be more
useful than the zero-crossings alone. However, the data *,(v(x,y,t)), while much
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more complex and equivalent to the full Laplacian data v(xy,t), might have
favorable properties when quantized and sampled. Similarly, Zucker and Hummel
suggest [21] the data

(.,.,t)* *+( f(xy)) ,

(..t) (Af(xy))

where ++ and *- are approximate positive-part and negative-part functions with
saturation (Figure 6).

As an alternative to zero-crossings, Koenderink suggests level-crossings that
surround blobs [4], defined as follows. First, the Gaussian pyramid data u(x,y,t) is
constructed from initial data f(xy). It will be observed that relative maxima in
ftx,y) give rise to relative maxima (in x and y) of u(x,yjt) as t increases, forming
curves in (x,y,t) space. Similarly, relative minima track to relative minima as t
increases. These curves terminate at intermediate values of r, where the tracking of
a relative extremum terminates (the curve will coalesce with the curve for a saddle
point), and there are no corresponding extrema for larger values of t. Denote such
a terminal position by (x0 ,Y0 ,t0) and form the level-crossings in scale-space of points
having the value v(xoYoto), and consider the component containing the point
(x0 ,Y0,t0). The collection of all such level-crossing components will form tubes
surrounding blobs (both bright and dark) in the image, and forms the
representation. This representation is complete, may (in practice) depend

Figure 6. Approximate positive and negative part functions, with saturation for
large magnitude inputs. These curves are supposed to model simple kinds of neural
response functions, where the rest state of gives a low output response, one kind of
input causes inhibition of the normal rest response, and a different kind of input
causes excitation through a linear region, before a saturation level is reached.
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continuously on the image data (at least, better than do the zero-crossings), but is
not likely to permit stable reconstructions. Nonetheless, a representation based on
tracking blobs in scale-space makes good intuitive sense.

6. Summary
Pyramid data structures can be analyzed in an analytic formulation based on

notions of scale-space and partial differential operators. We've seen that the
Gaussian pyramid can be viewed as a method of solving the Heat Equation using
the image intensity values for the initial data. The Laplacian pyramid can be viewed
as a partial derivative, in the scale parameter, of the Gaussian pyramid data, from
the standpoint of this continuous formulation. We are also able to use the
continuous formulation to define and study zero-crossings in scale-space,
particularly of the Laplacian pyramid data.

We've given three examples of how the continuous formulation assists in our
understanding of pyramid data structures. The first example concerned border
affects, and we discussed three ways of handling borders when constructing
pyramids of images defined on a bounded domain. Each of these methods is
motivated by a different formulation of the Heat Equation problem: namely, (1)
embedding in the infinite domain; (2) fixing the border values in a Dirichlet
problem; and (3), setting boundary normals to zero on the cylinder sides, in a
Neumann-type boundary formulation.

In the second example of assistance yielded by the continuous treatment of
pyramids, we remarked on some of the theorems and representations possible based
on zero-crossings of the Laplacian pyramid data. In particular, we are concerned
with the information content in the zero-crossings, and the reconstructibility of the
initial data given zero-crossing information.

Finally, we looked at some of the alternate representations that have been
posed in continuous scale-space. These alternate forms might lead to useful discrete
pyramid structures with different construction procedures than commonly used.
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