THE INFLUENCE DIAGRAME!
TECH NRIGHT-PATTERSON AFB
E R DANSON DEC 86 AFIT/GOR/MA/86D-3

r -
v ’

EFEE
= EEE

m—m-mu,._m._.:.m

. .
e We

DTIC

ELECTE
APR 0 3 1987

b <7

AD-A178 549

THE INFLUENCE DIAGRAMER'S
TOOLBOX

THESIS

Edward R. Dawson
Captain, USAF

AFTT/GOR/MA/86D -3

Approved for public release; distribution unlimited

,. l‘)

NANSN

0

~3

»
N
o
¥
©

AL

AFTT/GOR/MA/86D -3

THE INFLUENCE DIAGRAMER'S
TOOLBOX

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the

Requirements for the Degree of
Master of Science in Operations Research

Edward R. Dawson
Captain, USAF

December 1986

Approved for public release; distribution unlimited

AN ANIN

o Ld

Accesion For

NTIS CRAZ) N
DIIC 1AB 0
U:.announced 1
Justificavon
P—-—-’-“—-m ------ s o ———
BY e
Dist-ib:tinn

}..._.._- . —— s e —
Avasilabitity Cndes
" T Prici 4 [or
Dist ScCial

- ——— e}

D IS IR TRV IR UL W Tl R C X R X S SR P oy
\'..'_n.. oy "

{
S—

“ L . .

e

e 4

LM | |

v

.

(| PR

L IR

L5%%N

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

O 0 N N bW N e

[IS oL oo ol o e~
gg?&ﬁﬁoomqam&uwwo

List of Figures
Initial DIAGIamML. ...cuuvuiurnininienrniinreniiitiiiceieceiicieeseseieneacssesesssnenst 7
Modified DIagramL........c.coivuiniiiieiiiaiiiiniesenioiaracenistecncosassorecssncenn. 7
Example Probability TTee.........cccuuirinieniarierenricecrereienciniacessercanns 8
Numerical Example — Tree........cccotuiuieiinrecirenroinrcrseninrcnressnesnens 9
Example Influence Diagram.........ccceueuiniiiinininiineninincniniiinineennnn.. 10
Initial Tree and Diagraml.........cevvuiuiuieneiinrioeiierreceirnrerasecassosncacaes 13
1611 o111 5 (TP 14
Interim Influence DIiagram.cvcvieieiiineincreiseeterencesescnceroanesascann 15
)31 B b PR 16
Final Influence Diagram......c.ccceveiiiiniiueieieierietinrnrcececnionencoscnnnes 16
Initial Influence DIiagramL.cciiuiiniiiniiiiieiiiiiiniiirentenaecasennsananes 18
Final Influence Diagram........c.coccvviieiuiiieniereroniercnensescssssocnsencssans 20
Node REMOVAL........coviiiruerieriineinrncnaniensessoesensnesssssnessnsasessenes 21
Initial Influence Diagram........cc.cciuimieruieneniieieneniinenceseruccsincesnsaens 32
Add ArCtONOAE G...o.ovveinniiinieiniiieriieniientieeeiieniassceennsnsnsesssenss 33
Add Arc to NOde HL....cuenininiiiiiiiiiiiiiiiciiiininiioniies e seraesenenes 35
ATCREVETSAL......viiiiiiiiiiiiiiiiiiiiiiiieneririeitieneeticaneesrnsnesonns 40
Initial Influence DIagram. cccouiiiuieieieinnrieiiiecrinrecasaserecnsncnssoncnns 42
Final Influence Diagram.......cccvuiiiuiniienincireeecececaenriencacnrernsersnnnss 43
Initial Influence DiagramLcccvviivveineieneiaenieecrcrnanecncerencnanessenens 46
Reverse Arc from A tOE......c.iuiuiiiinieiiiiiiicinieiinene e eienreeaneeaans 47
Reverse Arc from B toE.......c.oocoiiiiiiiiiiiiiiiiiiiiniin 48
Reverse Arc from CtoE......c.cuiuniiiiiiiiiiiiiiiiiiene e, 48
Reverse Arc fromD 0 S.......oiniiiiiiiiiiiiiiiiiiiiicrriir e 49
Reverse Arc fromEt0 S... oo 50
iii

{i.;i‘ﬁit{irc‘!‘f" 'f.:'!‘f‘ \‘i

UNCLASSIFIED

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

"Te. REPORT SECURITY GLASSIFICATION 1b. AEST

UNCLASSIFIED
78, SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT

Approved for public release;

35, DECLASSIFICATION / DOWNGRADING SCHEDULE distribution unlimited
4] IZATION REPORT NUMBER(S 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GOR/MA/86D-3
€a. NAME OF PERFORMING ORGANIZATION 'cb.'?':n'cs' 's—vm?u. [7a. NAME OF MONITORING ORGANIZATION

School of Engineering AFI‘T”/'E‘ uN‘C"

& ADORESS (ﬁ, State, and ZIP Code) . ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

I N EEEETEEE——————,
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL [9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (f applicabie)
8 ADORESS (City, State, and 2P Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM] PROJECT TASK WORK UNIT |
ELEMENT NO. | NO. NO. IACCESSION NO.

11. TITLE (Include Socumym' ation)
See box 19

12, PERSONAL AUTHOR(S) , ,
Dawson, Edward Rhodes, Captain, USAF

—— S S —
‘ 1= TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [15. PAGE COUNT

MS THESIS oM _____TO0 |_1986 December 89

16. SUPPLEMENTARY NOTATION

3
N

—————— Y —— -
COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by biock number)

FIELD GROUP SUB-GROUP Decision Analysis, Influence Diagrams
Q1 Probabilistic Inference

:

19. ABSTRACT (Continue on reverse if necessary and identify by block number) {1.,\“\1 w Cewee AL N AFR iS04,
Title: THE INFLUENCE DIAGRAMER'S TOOLBOX ﬁ!"“‘n it oA Chay @)

o tor he o o :ind Frolessionsl Developmead
: ‘ . Alr Foice Inst:iute ot Techoology (@Y
Thesis Chairman: Joseph A. Tatman, Captain, USAF Wngat-Paterscn AFB OH 4543

Assistant Professor of Mathematics and Computer Science

The influence diagram is a graphical modeling lanquage for the formulation
and analysis of decision analysis and orobabilistic inference oroblems.
This research developed a foundation for a complete set of influence
diagram tools as an extension to the Lisp programming language. These
tools can be used in an interactive manner to solve problems modeled as
influence diagrams. This research demonstrated that multidimensional
arrays and frames can be used as data structures for the storage of
probabilistic and nodal information.

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
& uNCLASSIFIEDUNUMITED [J SAME AS RPT. (3 oTIC USERS UNCLASSIFIED

22a. ?me OF RESPONSIBLE INDIVIDUAL , 22b. TELEPHONE (include Area Code) | 22c. OFFICE SYMBOL
oserh A. Tatman, Captain, USAF 513-255~5533 AFIT/ENC

ST T S R S R R N 0T A WA AT R A AN SRS L AN S L

00 form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF "HIS 2A4GE
UNCLASSIFIED

AN ST

Table of Contents
3 12 ¢ T USRS N i
List Of FigUIS . .ociiiiiiiiiniiniiieiiiiterieteierorririentsecerseesesessscsersenceciacieasnes i
N - T iv
OO 12 17 11T s T PP 1
BaCKGTOUNAeuvuinineeninenieerreeuanretteieeratiernssaetsstasnsesasssenssssissces 1
Research Problem.......ccoovimiiiiiiiiiiiiiiiiiiiiicinri e 3
Research ObJECtiVES.cuvviuiiuiiniinniiiinieiiiiiieiirii e 3
e N 4
Summary of RESUILScuiiiiiiiniinrniieiiiiaiiieiriiitci et eaniennens! 4
0. Influence Diagramsccocovviniiiiniiniinniiiiiieiieiicieeireirieineiaeneaenees 6
510 ee i | SO 6
The Relationships Between Influence Diagrams and Treesc.cceveeeene 8
Manipulationsccooueieiiuiiiiiniinretiinie e e e, 17
TEMUNOIOZY . e.veennieeinreiiiinreeirttiriiirteieneienietsertesssasscaosasnensns. 17
REVETSING ATCScuviinniiiiiiniiiiiiiiieieiniieitieieitnreionieciisnsnnne. 18
Removing aNOAEouvviiiniuiiiiiiiiieiiiiiii it ieaeaeaeas 20
BNOES ..ottt e 22
Splitting A Node Into TWONOAES :....c.ocurvrininiinieiiiiniincenininninieneans 23
Software REQUITEMENIScoceiuiireirnienieiireitntintareiiteorsscsanensenss 23
III. IMplementationocoeveirieernininiirneirireruticesersseesesssesantersacasnssences 25
Data REPresentationc.cuvuiuiuenrrincnirerescterssisssesensersecasarsennes 25
Hierarchy of SOftWarecccooiuvuivieiurnrnrerienioctueeseenenrseeernenrenns 26
iption of Arc Reversal Codeccouviniinieiieinnenirerrinrenenenianenenn. 28
Arc Reversal AlgOrithim.ovvvniiiininiiiiiiniiiiiiiiiiii e, 32
le Application of ARCREVccoiiiiiiiiieniiiiiiinininiirnnenenenenns 41
I%:i!en%cmoval Algorithim.....cooviiiiiiiiiiiii 43
IV. Reliability AppliCatHONccvviuiriiiieiiiniiiieiiiiiii e iaeaes 45
V. Conclusions and Suggestions for Further Research 51
T PP 51
Extensions and Improvements............ccccoeviviiiiiniiiiiiiinii 51
Appendix A Documented Lispcodecocviiiiiiiiiiiiiiiniiiniii 53
Appendix B User Manualoooiiiiiiniiiiiiniiiiiaiiciia e eieieieeeeriaaeeeenns 74
BibHOIaPRY .o et ees 80
| - PPN 81

Preface

The purpose of this research was to develop and implement a set of tools designed to
be used for the manipulation of influence diagrams. The influence diagram is a powerful
decision analysis technique which can shed light on almost any decision problem.

Given the tools and the framework developed in this thesis, the software implementor
can incorporate influence diagrams into decision support systems and expert systems as
well as any other appropriate application.

In performing the work and the writing of this thesis I have had a great deal of
support and encouragement from others, both friends and family. I especially am thankful
to my advisor, Capt Joseph A. Tatman, for being so enthusiastic and motivating in times of
joy and need. I also wish to thank Maj Steve Cross for assisting and reviewing the
development of my Lisp code. This thesis could not have been accomplished without the
love and support of my wife, Marsha, as she strove constantly to isolate me from everyday
problems. Finally, I wish to thank God for being beside me every step of the way. Truly, I
have much to be thankful for as I complete this thesis.

Edward R. Dawson

2
’\
[

R A

e gy
AL

“

AFRAL |

P

c'.'l

—»

. o - '.,- t' /.".\"

-.-\;_;fs.{_‘f_ Q7 "V‘ L4

s,\‘.- -, _.4-5{_.-,_\:.(*4-« o0 KR,

..q“\d‘

"

The influence diagram is a graphical modeling language for the formulation and
analysis of decision analysis and probabilistic inference problems. This research developed
a foundation for a complete set of influence diagram tools as an extension to the Lisp
programming language. These tools can be used in an interactive manner to solve
problems modeled as influence diagrams.

This research demonstrated that multidimensional arrays and frames can be used as
data structures for the storage of probabilistic and nodal information, respectively. Since
the array held the probabilistic data, the use of a descriptor list was introduced to lend
meaning to each dimension of the multidimensional array.

The software that constitutes the toolbox, was prototyped using the APL language
before being implemented in the target language, Lisp. This was advantageous in that APL
was used to discover the correct array transformations that form the basis of the tools.

The results of the software development indicate that the multidimensional array is a
natural and effective fogndation upon which to build a complete set of influence diagram

tools. (ﬂ\ oz \)

!

SN VDK

™)
"‘»

THE INFLUENCE DIAGRAMER'S
TOOLBOX

L Introduction

Background

Many decision problems have a number of interrelated uncertain variables and
alternatives. Decision analysis was developed to handle problems of this type based on a
firm analytical basis. One of the major techniques used in decision analysis for structuring
the problem at hand is the influence diagram. An influence diagram is a graphical
representation used to model a problem in terms of probabilistic variables and decisions.

_ The diagram is a network with directed arcs and no cycles. Nodes in the diagram represent
chance information and decisions. Arcs into a chance node represent probabilistic
dependence upon the root node of the arc. Arcs into decision nodes represent the presence
of information at the time of the decision. The diagram explictly shows information flow
and probabilistic dependence. For a complete description of influence diagrams see
Shacter, "Evaluating Influence Diagrams,"” 1986.

Historically, the idea of an influence diagram was to describe the structure of decision
problems to computers for manipulation. They were first developed by researchers in the
Decision Analysis Group of SRI International who were working, under contract to the
Defense Advanced Research Projects Agency(DARPA), to develop computerized aids for
decision analysis. To date, however, influence diagrams have been used primarily as a
communication tool between the decision maker, the analyst, and functional area experts.
When a solution was desired, the influence diagram was translated into the corresponding

decision tree before analysis. It has been shown though that the influence diagram can be

1

A
R R R i G I SO R R TR

VORI SR LTS O AN SR AR)

ghin 1

N

| ™
| :
| e
‘ used as the data structure for analysis and decision trees are not necessary for solution
| (Olmstead, 1984:12). .
5 The influence diagram serves several purposes. It identifies and describes the i
interrelationships between the problem's variables. It is an important tool for 0
communicating between the decision maker, his experts and the analyst as well as between "i
the analyst and the computer. The influence diagram has proven to be an effective ‘
representation for both formulation and analysis of probabilistic inference and decision E ,
analysis problems. -
For example, the inﬂuchce diagram was used to model a toxic chemical problem. ‘ﬁ
Specifically, the decision involved the determination of the carcinogenicity of the chemical .::: .
and whether to ban, restrict or permit the use of the chemical. (Howard, 1984:747) 5
Another example is the selection of mission configurations in the Voyager Mars E
project conducted by NASA. The problem was to select the appropriate spacecraft i‘t
configuration that would meet cost and benefit goals. Tatman showed that the simple pilot -
model used in the NASA analysis can be modelled as an influence diagram. (Tatman, ;}:
1985:138-9) The diagram shows clearly that the configuration of the second mission must
be selected before the outcome of the first mission was known. This type of insight is a 3
valuable commodity to the decision maker and is an inherent benefit of the influence
diagram representation. E
Initial research has begun to explore the use of influence diagrams as an integral part R
of a decision system. In his dissertation, Samuel Holtzman proposes the use of an v
influence diagram to embody the formal decision model as a data structure in an intelligent E‘:
decision system. (Holtzman, 1985:139). He illustrated his ideas by implementing a :‘
intelligent decision system named RACHEL, a laboratory expert system designed to aid ?
infertile couples and their doctors in the selection of medical treatment (Holtzman, ﬁ
1985:155-6).
2
g

The focus of this research is the development of a sufficient set of tools for
building and analyzing influence diagrams. This set of tools can then be used as building
blocks in the development of software systems that use influence diagrams. Given these

tools, Air Force analysts will be able to apply them to model and analyze decision problems
of interest to the Air Force. Since the tools are highly portable, they are available to all Air
Force analysts. Instructions for obtaining the toolbox software is given in Appendix A.
Several efforts have resulted in influence diagram solvers. SUPERID written in Lisp
runs on the DEC-20. Leonard Bertrand is working on the IBM PC to build an influence
diagram solver in SMALLTALK. An influence diagram solver (DAVID) has been
programmed by Ross Schacter on the Apple Macintosh. All of these efforts are oriented
toward a packaged environment for influence diagram analysis. This effort differs in that it
provides a standard set of independent tools that may be incorporated into higher level
software systems that use influence diagrams, such as decision analysis aids, intelligent
decision systems, reliability analysers, and other software systems. These tools will be

portable, available, and well- documented to facilitate their use as building blocks.

B. Research Problem

The goal of this thesis is the development and implementation of a highly portable set
of influence diagram manipulation and analysis tools. The tools can be considered as an
extension of the Lisp programming language. They will incorporate influence diagram
operations into Lisp. This set of tools should facilitate the development of higher level
software systems that use influence diagrams to represent probability and decision

problems.

C. Research Objectives
To achieve the above goal, this thesis will develop and implement influence diagram

manipulation tools as an extension of Common Lisp that are: highly portable, robust and

modifiable. Portability will be insured by the use of a development language that is .

implemented on a wide range of computers: from micros to mainframes. The second

characteristic, robustness, is an inherent characteristic of the software itself. For a tool to '
be considered robust it should function in a uniform way on structures of varying degrees :
of complexity. The modifiability characteristic is incorporated by the use of a language that ol
is widely accepted and by well documented code.
The various data structure alternatives that can be used to represent an influence X]
diagram in a computer language must be explored. Also, the basic set of tools or building 2
blocks that should be included in the toolbox must be decided upon. 4
It will be necessary to determine the proper software development environment. -
Specifically, the implementation language chosen should be capable of handling recursion,
frame-based knowledge representations, and multidimensional array manipulations. Most N
importantly, the language chosen must allow the influence diagram tools to be broadly used :
in building software systems that utilize influence diagram concepts. The language, while L
developed on an IBM compatible, must be portable to minicomputers (such as the VAX :_‘
11/780), other microcomputers, and computers optimized for development of artificial S
intelligence systems. The use of the toolbox must be demonstrated by a simple application. LY
D. Scope N
This research will be limited to influence diagrams that contain only chance nodes. &

Given the data und programming structures developed in this process it will not be difficult

to incorporate deterministic and value nodes.

E. Summary of Results

RS EAARALNY

A

This thesis has shown the implementation of influence diagram tools to be a viable

7

and valuable effort. With the foundations of the software environment, simple influence

diagrams can be solved interactively by the analyst.

NS

“'.\"!_"\'.-s X p AARAA -

WY ST RN Laia o s R mcaad e el tgaieda a)

The use of multidimensional arrays was shown to be an effective and intuitive
structure for storage of the relevant probabilistic data. Further, the frame structure has been
used to represent an influence diagram in a straight forward and easily understood manner.

The development of these tools is significant for three reasons. First, the tools will
allow the resolution of an influence diagram down to some target diagram. For example,
an arc reversal corresponds to performing probabilistic inference via an application of
Bayes' rule. As the analyst uses the tools, he has full access to any intermediate results and
can gain insight as the problem is being solved. Secondly, the tools can be modified to
reflect some theoretically new influence procedure and then used to experiment on various
problems. Lastly, the tools may be incorporated into higher level systems such as expert
systems that model uncertainty.

The algorithms developed in this thesis, because of the use of multidimensional
arrays, are a straight-forward translation of mathematical theory into computer code for
manipulating discrete probabilistic data. Because of this fact, the code for the tools is
succinct and simple.

The following chapter will introduce influence diagrams and the permitted
transformations of the influence diagram before discussing the characteristics required of
the software used to implement the influence diagram tools. The third chapter then presents
the software implementation developed for this thesis including the data structure and the
applicable functions defined in Lisp. The fourth chapter, will illustrate the influence
diagram tools developed in this thesis by the solution of a reliability problem. Lastly,

conclusions and further research guidance is given in the final chapter.

TRAE AR Y vy

i
R}
2%a’2a’a'a

R

1 R

. w
PRI

.....
B

’y

Ly
-

hﬂm{;ﬂlﬂlﬁﬁtm:ﬁ{i:ﬁ:?.ﬁﬁﬁﬂﬂﬂﬁ:ﬁﬁt&”

IL Influence Diagrams

The chapter will introduce the decision analysis probability inference environment as
it relates to this research. After describing the types of problems, the mathematical
manipulations allowed on influence diagrams will be covered. The final section of this
chapter will detail the requirements that the software must satisfy.

A. Environment

Many decision problems are characterized by a set of uncertain events known as state
variables. A state variable's uncertainty is defined by the use of probabilities to describe
the likelihood of possible outcomes. It is often necessary to know the cumulative effect of
all state variables to the possible outcomes. The cumulative effect can be found by forming
the joint density of the desired state variables.

For example, if a, b, and ¢ are the state variables and S represents the current state of
information, then the joint density is described by {a,b,c | S}. The joint density of n state

variables can be expanded as n! different products of conditional densities. For example,

{a,bc|S}={c|ab,S} {b}aS}{a|S} oy
If it is known that

{bla,S}=1{b|S} ()
then the joint density can be written as:

{abc |8} ={clab,S} {b]|S}{a]|S} €)

This expansion reduces the level of effort needed to solve the decision problem
containing these state variables because it allows the conditional independence between the

random variables to be exploited.

3

X v e
LSS
o 0

PRl
[A

PR A E -
S, A Y 2,
2te¥s e

. T
A

.

IXRAAARN SIPNNNN | IAR

N
Lo
F N
'S
N

hat o B b T b B B B2 dor 8o b Ao a2 At Re Ao ol 2o

An influence diagram is a graphical representation of the decision problem in which it
is modelled the relevant conditioning probabilities. In the influence diagram, circles
represent state variables and arcs represent pairs of conditioning and conditioned variables.
For example, (1) can be modelled as shown in Fig. 1.

(A (B)
©

Fig. 1 Initial Diagram

This is an identity influence diagram because it corresponds in a one-to-one manner to
the expansion identity and it is always a correct representation of the joint density of the
state variables. Using the fact (2) gives the modified joint density (3) which is described in
the following influence diagram (Fig. 2).

@

©

Fig. 2 Modified Diagram

The influence diagram, then, shows in a readily understandable graph the conditional
dependence and, more importantly, the conditional independence among the varniables.

Since each term of an expansion or identity equation represents the associated
probabilistic data and each node in the influence diagram represents only one term in the
expansion, the node can hold the probabilistic data associated with the term of the

k_{

e

Where A; represents the
outcome 1 of node A. and
{Xil Ay, S} is the probability
of o;ﬁcome 1 of node X given
the I** outcome of node A and
the state of information, S.

Fig.3 Example Probability Tree

expansion. As will be shown later, this data can be stored as a multidimensional array with

‘?

each dimension representing the influence from a conditioning variable and the last

7

dimension represents the possible outcomes of the node.

o

AR

Sub BB

The Relationship Between Influence Diagrams and Trees.

The standard technique of decision analysis is the decision tree. The structure of this

Ay

v v

tree is a representation of the decision problem and is arranged to reflect the modelling of

the problem. The decision tree is composed of a decision, various alternatives, chance

11 |

nodes, outcomes of the chance nodes and values. Since this thesis is concerned only with

.‘,
Y'Y

modelling the chance events of a decision problem, the preceeding Fig. 3 shows the basic

5

e

elements of a probability tree.

() A

. »
At

Y

o
NI

N

‘e
IS
YeInh Y

''''''''''''''''''''

* Fig. 4 Numerical Example — Tree

Notice that there are three levels of the tree corresponding to chance nodes A, X, and
Y. To solve the tree, a procedure known as ;'rollback" is used. This procedure will give
the composite effect of the probabilities along each sub-branch of the tree. This composite
effect is the joint density of a sub-branch and is formed by multiplying the probabilities
along the branch.

Using the structure in Fig. 3, the solution of a numerical example of the tree is

shown in Fig. 4.

LR WAV, JUVWERERA! (S ANALIY

L

..............
......................
.....................

Notice the set of numbers on the right hand side of the tree. These numbers are the
joint density of the tree and they describe the probability of each possible outcome. For
instance, the top-most number is found in this way.

{AL, X1, Y1 | S} ={A; ISHX; | A],SHY; | X;,A,S}
0.162 = (.9)(.6)(.3)

That is, the joint probability that the outcome of node A is one, the outcome of node
X is one and the outcome of node Y is one equals 0.162.

There are two important points about the above example problem that need to be
stated. First, notice that there are three levels of the tree. These levels correspond to the
chance events A, X, and Y. Secondly, the probabilities of the outcomes of node X vary
according to the probabilities of the outcomes of node A. Most importantly, also notice that
while the probabilities of the outcomes of Y vary with the outcome of X, they do ngt vary
according to the outcome of node A. Notice the numbers that are the probabilites of the
outcomes of node Y in the top four sub-branches are the same in the bottom four sub-
branches.

The corresponding influence diagram for the example is shown in Fig. 5.

@A———0

Fig. 5 Example Influence Diagram

This diagram denotes the three chance events, A, X, and Y and the "influence” on

each node. The circles represent the event and the arc denotes the influence. The root node

10

of the arc is known as the conditioning variable and the head of the arc is the conditioned
variable. Thus, the influence diagram is a compact representation of the set of variables
that condition the expansion of a joint probability density. In essence the previous
influence diagram describes the following equation:

{A, X, Y|S}={A|SHX|ASHY|X,S}

The three terms on the right relate to the three nodes of the influence diagram. Since
the nodes are the repository of the probabilistic information, any automated manipulation
algorithm will need to relate the storage of probabilistic data to the chance nodes. For
example, the data of the above example can be described by the following arrays:

| X Y

T Outcomes 1 % All 2 Xj1 2

3 9 .

‘ 1.6 4 113 .7
21.83 2 2]1.6 4

where the possible outcomes are used to index the array. For example, the
probability the outcome of Y is 1 given the outcome of X to be 1 is 0.3.
In fact, {X | S} can be found by performing the following array multiplication:
Prob of X given S = AX

[62 .38] =[9 .1] [g g

So the probability of X, is 0.62. Notice, the left hand side is not conditioned by the

outcomes of node A. In fact, the probabilistic data reflect the influence from node A.

Also, since arrays are used to represent the data, the array multiplication operation can be

used to find the needed information.

11

Y L3 U L e aan g add aa o adh o oA oth ot Fatoa- Sa. le fac ol it ab bat i Aete ter o he e diiedaid

Comparison of the Manipulation of a Decision Tree and the Corresponding Influence
Diagram

Since an influence diagram can be considered as the equivalent of the decision tree,
the influence diagram can be used to solve probabilistic problems without using a decision
tree. '

For example, a common operation in the decision tree domain is to switch two
adjacent levels of the decision tree. Since the two levels are adjacent, a probabilistic
influence exists between the two levels. In the probability calculus, the above operation is
an application of Bayes' rule, i.e. if Y conditions X then,

{X]Y,S8}= iX,YlSt

where {Y | S} can be found by

{Y 1S} =Z, {X,Y|S}.

In the related influence diagram, this operation is shown by reversing an influence arc
between two nodes.

Using our example, the operation is demonstrated below in terms of the decision tree
and the influence diagram. For the reader’s convenience, the initial state is redisplayed here
in (Fig. 6).

N

4
Ry

Ky

;

o

Decision Tree u
.18={XI’Y]'Ale} ‘-|'
~
42 = {Xl. Y2 l Al ’ S} M
24 = (X4, Y| A, S} Tf
b
:

16 ={X2 Y2| Ay, S} \

g
24={X,,Y,|Aq, S} -

X
56 = {X,, Y, | Az, S} R

L]

L
! 08 = {Xz, Yz‘ AZ) S}

%
Influence Diagram E"
g

A——R—Q &
Fig 6 Initial Tree and Diagram =

L
o~

-

| Since the X and Y levels of the decision tree are to be reversed, the joint density of X
and Y is shown as the right-hand side of the tree. The next step is to find
{Y|A,S}. Wewant:

2 LN S
“S""- K

{Y11A1,S} = {X;.,Y1 | A1.,S} + {X2,Y; |A; S}
= ,18+.24 = 42

ERAXRAAL 3

N Yy
AR

13

v,
(AR

AARRIIT |

Notice that we have summed over X. Likewise, the following terms are found:

{Y3|A,,S} = .58
{Y;|A,,S} = 36
{Y2]Ap.S} = 64

The decision tree is now updated to Fig. 7

Fig. 7 Interim Tree

14

.
o

| RPN

. ‘fl’{ffff

Since Y is now influenced by A, the interim influence diagram is Fig. 8.

—® ¢

Fig. 8 Interim Influence Diagram

Now Bayes' Rule is applied to find {X | Y,A,S}.

For example, we want.

{xlrlYl ,Alr S}={x1,YllA1, S}
Y, | A, S

= .18/.42 =0429

15

Continuing in this manner, the resulting decision tree is:

Fig. 9 Final Tree

e

k

The corresponding influence diagram is:

Q—*+—0

Fig. 10 Final Influence Diagram

16

(NN SN SN S AR S S AR

L

¢e s
s

where the node arrays for Fig. 10 are:

™

X Y

A A Y |1 2 Al 1 2 b

42 1 1 [429 571 1 | 42 58

.9 .1 1 2 l724 276 2| .36 .64 2

2 1 |.66 37 '

2 2 |.825 125 pe
The operation is now complete. The probabilistic arrays for the influence diagram are =
found by manipulating the initial arrays in a precise manner. This process will be presented X
in the section describing the arc reversal implementation in Chapter 3. 2

4
To summarize, this section has shown the close relationship between decision trees =

and influence diagrams. It was also demonstrated that the influence diagram can be a

reposititory of probabilistic data and that data can be stored in an array. Indeed, the final .
array for node X in the example, is a multidimensional array of rank 3 and the list (A Y X)
describes the dimensions of the array. For instance. the probability that X is one when A is -
two and Y is one is 0.66. Notice that this probability is the (2 1 1) element of the node
X's probability array. .
B. Manipulations E
One of the primary objectives of this research is to show that the operations of X

probability theory as applied to influence diagrams can be effectively implemented using
multidimensional arrays. By applying or transforming the influence diagram, insight is

R TRy

gained in terms of probabilistic information.

1. Terminology

Before proceeding to describe the relevant transformations of the influence diagram

ot LArANPe |

AP P 4

and its associated data, it is necessary to define the relevant terminology. An influence

17

AT

L 3
A

-

YV |

.
’
[d
[
(s
['g

............

-,

B2 am i 2 i 2 A% Aan Lo Saa i aly adobdde il osio Al Cah St aafc ik Bolh Biisad ol ek S Bl g A i A At Ak LR AR A R AR A AN A R A A
rwvvu'm " ¥ e 3 2 el g
|

diagram is a directed network characterized by a set of elements and a subset of the possible
ordered pairs of the elements. Each node is an element and each arc represents an ordered

pair of elements. Given a node, x, the following terms are defined:

PX = the predecessors of x are those nodes that have a directed path to x.

DPX = the direct predecessors of x are the nodes that have an arc directly to x.
SX = the successors of x are those nodes that have a directed path from x.
DSX = the direct successors of x are the nodes that have an arc directly from x.

Other combinations have similar meanings, i.e., PSX is the set of predecessors of the
successors of the node x.

There are four basic operations allowed on chance nodes: reversing the arc between
two nodes, removal of a node, merging two nodes, and splitting one node into two nodes.
These operations will be discussed in the following sections.

2. Reversing Arcs

The reversal of an influence arc corresponds to the application of Bayes' rule in
probability theory. The situation prior to the reversal is shown in the example diagram

below:

Fig. 11 Initial Influence Diagram

where PX = (a b)

PY=(xbc)

18

VAR AL N RN, L AR O N O

‘v 2%

BN N

The arc to be reversed in this example is between node x and node y. Notice that no

successor of x may be a predecessor of y. If this were the case, a cycle would be created

by the reversal of the arc between x and y. This means the reversal can be performed only
if SXNPY =¢.

Corresponding to the above diagram is the following joint density:

{a,bcx,y | S} ={a|S}{b]|S}{c|S}{x|ab,S} {ylxb,c,S} (4)

Using the above defined terminology, (4) is rewritten as:
{a,bex,y | S} ={a| S} {b|S} {c|S} {x|PX,S} {y | PY,S}.

={a| S} {b| S} {c|S} {x| PX,S} {y | x,PY~x,S}.)
where " ~ " denotes set difference.
To do the actual reversal requires three steps. First, the joint density of x and y is

formed by the product of the two associated terms:

{x,y | PXY,S} = {x | PX,S} {y | x,PY~x,S}. (6)
where PXY is the set of direct predecessors of either x or y.
The second step is accomplished to get
{y I PXY,S} = 2, {x,y | PXY,S} M
The third step is the application of Bayes' Rule:
{x|y,PXY,S} = {x,y | PXY,S}/{y | PXY,S}. (8)
Now equation (5) becomes:
{a,bcx,y | S} ={a|S} {b|S}{c|S}{y|PXY,S}{x|y,PXY,S} (9)
where PXY =(abec).

19

.
L)
L)
The influence diagram for equation (9) is in Fig. 12. N
.'
(A
L d
>
lJ'
Fig. 12 Final Influence Diagram 3
Comparing this diagram with the previous influence diagram, the result of the arc :
| reversal is two-fold: B
| 1. Influences (arcs) have been added from all direct predecessors of x to y. -
.
2. Arcs have been added from all direct predecessors of y to x. K
Notice that if the arc reversal is again applied on the arc between y and x, no arcs will -3
be added since PX~y = PY. .
R}
K
3. Removing a Node e
The removal of a node represents summing out the relevant state variable from the N,
N
joint density array of each of the node's successors. Let x represent the node to be :
4
removed. A necessary precondition of this operation is the intersection of the set of o

predecessors of the successors of x and the set of the successors of the successors of x
must be the empty set. This rule must be met so that no cycles will be created as a result of

the removal operation. After this condition has been met, the first step is to form the

AR RBSE SR

relevant joint density by the following equation:

-'w

3

{x,SX | PX U PSX~x,S} = {SX | PSX,S} {x | PX.S}. <)
g

:'-:1

20 0

g
N
-
-:‘

e 4 YW T TOeTY NPT T T T e - TP TWW VST W W

Once the joint density has been formed, the next step is to sum out the influence from
node x. The following equation describes this step:

T, {x,SX | PX U PSX~x,S} = T, {x,5X | PXyx,S} = {SX | PXys5.S}

The final step is to expand the previous expression into terms representing each of the
successors of node x. If node x had only one successor, this step is not necessary.

Notice that an arc is added from every direct predecessor to every direct successor of
x. Also, an arc will be added from every direct predecessor of every direct successor of x
to every other direct successor of x. An influence arc must also be added between every
pair of direct successor nodes of x while maintaining the previous order of conditioning
variables.

The removal operation will be described below in terms of removing node g into node
h of the example diagram shown below.

Fig. 13 Node Removal

21

ehmdandiede ittt dchedidedl

Since there is no successors of node h, the precondition has been satisified. The
three basic steps are outlined below.
! 1. Form the joint density:
{g,h] a,b,c,S} = {h | bc,S} {g]a,b,S}.
Since node g and node h do not have the same set of conditioning variables, arcs
must be added. The following expression shows that arcs have been added from
node a to node h and from node ¢ to node g:
{g.h!ab,c,S} = {h]|ab,cS} {g]|ab,c,S}
2. Form the new array for node h by summing out g from the joint density:

AH =3, {gh|ab,cS} ={h|abcS}

3. Since there is only one successor to node g, no expansion is necessary.

The operations of node removal and arc reversal are the only manipulations necessary
to reduce an influence diagram to a single node. This is a consequence of the fact that
every influence diagram has at least one conditionally independent node (i.e., no direct
predecessors) and at least one node with no direct successors.

However, in many decision problems, it is desired to reduce the influence diagram to
some specified subset of nodes and influences. To facilitate this goal, two more operations
are needed. These operations are: merging two nodes and splitting a node into two nodes.
These operations will be summarized in the next two sections. The reader is encouraged to

refer to Olmstead, p18-21 for further information.

4, Merging Nodes

When two nodes are merged, say node g and node h, an influence to g or h will now
be an influence to the combined node, g-h. Also an influence from either g or h will be an
influence from the merge node, g-h. A precondition of this operation is that the resulting

graph must have no loops, i.c., the intersection of PGH and SGH equals the empty set.

22

WO, VNI EY U R T W v e d i R hacd o el o B o an® oaf -l RE Cop st anp b ol Sof) Al iad o tal et tal Sk el ilaaiesal

-y

~

' B

-
1Y
L)
.
LS

AP

AN

IR! |/

o

Vi FE= R

L8l

A

=

ARRRE! IPAXAAXAR 5

‘J"'.';f AT

LIS I I I D S]

S. Splitting A Node Into Two Nodes

This operation can be considered the inverse of merging two nodes. Each influence
to or from the candidate node will require an influence to or from each of the two resulting
nodes.

For example, if the node g is to be split, then everywhere g appears it must be
replaced by (g;,82) and the term {g | PG,...} must be split into the product of two terms,
one for each of the resulting nodes. Also, an inference will be needed between the two
resulting nodes.

It is not clear what the two terms are that must be formed from the above product.
This idea will be discussed in the section on suggestions for further research.

No preconditions need to be met for the splitting operation.

C. Software Requirements

This thesis effort has been directed to implement the Influence Diagrammer's Toolbox
for Air Force analyst's use in addressing decision problems. Since decision analysts have
access to a variety of computer resources, it is necessary that the software developed be
implementable or portable between a diverse set computer operating systems and hardware.
This requirement also means that the language chosen for implementation should be a
standard language that is widely avaliable. The toolbox can also be considered standard in
that the influence diagram transformations are recognized as mathematically precise and
sufficient for the solution of the influence diagram. These transformations are value-
preserving reductions becasuse no information is lost in the transition to the resulting
influence diagram. '

A specific tool should also be robust. By "robust", it is meant that the tool should be

able to handle diverse variations of the given nodes. For example, the arc reversal tool

23

f‘i\ 3 ." Y . v “e SN et a ey

Lalst "

Y

“u ¥

A NR RN A

v
o T

-)
va

v

APEEl BRARRIPV!)

Pl N A A A AA TN A A R W W -

2o QIR eI AR SIANAN S SN IS QL SN RS A AN DE AR A U oA XYY

should be able to handle nodes that have different number of outcomes, predecessor lists
that are not equal, and arrays of different rank.

The tools developed should be modifiable since they may be applied to influence
diagrams which model a specific decision problem. If the modelled probelm should require
some specific structure or consideration, the tool should be amenable to modification to
reflect the new characteristic of the problem. The tools may also be used to explore new
types of nodes and influence diagram formulations that have been hypothesized to improve
methods of solution for decison problems.

Because the software tools must be portable, robust and modifiable, certain
characteristics of the development and/or the implementation language are necessary. Since
the influence diagram contains all relevant data, the software environment should to able to
support a frame or frame-like data structure that is easily accessible and understandable.
Furthermore, the language c_:hoscn will feature multidimensional arcays as a primitive data
structure for the storage of probabilistic data.

Because of the portability requirement, the language should be a language commonly
available and implemented on a variety of computers. Modifiability dictates the selection of
a language that is easily understood (i.e., not cryptic) and will allow a structured
programming hierarchy. Both the robustness and modifiability requirements are primarily
the responsibility of the programmer, but the language selection has been guided by the
ease of which the requirements are met.

The language chosen for this effort was Common Lisp. Although no commercially
available version of Lisp adheres fully to the Common Lisp standard (Steele), it was
determined that a version that formed a sufficient subset of Common Lisp would be
satisfactory. The specification of Common Lisp prescribes the use of frames and
multidimensional arrays as basic to the language. The specific software used in the

development of the thesis software was IQCLISP, by Integral Quality, Inc.

24

R T TRV R I TR RIS I TN S L S TR A TS TR A A A A AT A TR s ‘-.-‘i.‘-i

2 AR

O

N J

o)

g
;
2
¥
%

III. MPLEMENTATION — PROCESS OF DISCOVERY

This chapter introduces the influence diagram software tools. To do this, the data
representation is discussed as it relates to the influence diagram, the organization of the
software is presented, and the algorithm for the arc reversal is related through the

application to a specific example.

A. Data Representation

Since the influence diagram has been proposed to hold all of the necessary
information to represent the decision problem, the data structure chosen should mirror an
influence diagram as closely as possible. The data structure should allow the grouping of
data elements as the characteristics of a single node. One of the most important data
clements is the probability array of the node. It is desired that multidimensional arrays be
used because each dimension can be designated to a specific conditioning state variable and
thus gives meaning to each element of the array. By using the multidimensional array,
well- defined array accessing functions and mathematical characteristics can be exploited in
the software implementation. For the above reasons, the "frame” data structure was

chosen. The general frame is represented as shown below:

(frame
(slot

(facet (value))))

An example of a simple influence diagram in frames is:

(id
(nodea
(type (probability))
(predecessors ())

25

|t o B e cade o g

(descriptors (a))
(name a)
(data (0.7 0.3))))

(id
(nodeb

(type (probability))
(predecessors (a))
(descriptors (a b))
(name b)

(data ((0.70.3)
(0.50.5)))

Two points need to be made at this point. First, since the descriptor list and the data
arrays are closely related, (i.c., the descriptor list "describes” the dimensions of the array),
it is desired that the descriptor list be in some defined order. Since, in this implementation,
the nodes have alphabetical names, alphabetical order will be imposed on the firstn -1
clements of the descriptor list. Since the first n -1 elements of the descriptor list constitutes
the predecessor list, the predecessor will also be maintained in alphabetical order.
Secondly, the last element of the descriptor list is always the node's name. So alphabetic
order is enforced on only the first n -1 elements of the descriptor list.

The next section of this thesis will describe how the toolbox software is organized.

B. Hierarchy of Software

The software is organized into three areas: Construction tools, ID tools, and
Supporting functions. The Construction tools are designed to allow the user to build
influence diagrams and edit or delete information stored in the nodes or relationships
between nodes. ID tools are those functions that are mathematically correct transformations
of the influence diagram. The ID tools include all four of the operations described in
Chapter 2. The Construction tools and the ID tools are considered to be "Top-Level" tools
because both sets of tools are available to the user at execution time. That is, the user is
free to use the Top-Level tools to analyse a decision problem. Top- Level commands are

different than the Supporting functions which are introduced next.

26

2 TR

v v
PR SRLE PP L .

R |

S

e N

The Supporting functions are the software needed to implement the Top-Level §
Commands. Although these commands are available at runtime, they support the Top-
Level commands. The software was organized in this manner so that changes to the code
would be localized to the appropriate function and, therefore, the code is easily modifiable.
The next section will describe the Top-Level commands.

Top-Level (User) Commands
Construction Tools
The list of tools given below represents a minimal set of operations that are needed to
construct valid and representative influence diagrams. Currently, only the PRINT-NODE
function has been built and tested. For developmental purposes, the influence diagram
representation in a frame was loaded at runtime. An example of these test frames is given
in Appendix A. A brief description of the Constructor functions are given below.
BUILD-NODE - allows the user to build a node and integrate it into the current
diagram.
EDIT-NODE - allows the user to change the name, predecessor list, descriptor list,
type, and data associated with a given node.
DELETE-NODE - allows the user to erase a node from the current diagram. Also

prompts to move or remove current arcs (dependencies).

PRPEALSS

-

SHOW-ID-GRAPH - presents the current influence diagram graph.
PRINT-NODE - presents the information associated with a specified node.

ID Tools
Of the influence diagram manipulations described in Chapter 2, at present the
ARCREY tool is the only tool that has been built and tested. A continuation of this thesis

would center upon completion of the remainder of the influence diagram manipulation

tools.

" ARAARAN | § rLAAe]

27

s . e - e
NENER ‘-'&"4 DA

ARCREY - reverses the probabilistic inference between any pair of chance nodes.

REMOVE-NODE - removes the designated node by forming the associated joint
density array.

MERGE-NODES - joins two nodes into one node.

SPLIT-NODE - divides one node into two new nodes.

Supporting Functions

All supporting functions have been written so that they bear no direct relationship to
influence diagrams but are an extension of the Lisp language. The supporting functions are
presented in detail in Appendix A.

C. Description of Arc Reversal Code
To implement the arc reversal as computer code, the following description illustrates

the algorithm with a specific example. Before proceeding, the following characteristics are
defined for the node X:

PX = A list of the direct predecessors of node X.

DX = A list of the "descriptors”. The first n-1 elements correspond to PX. The
nth element is the outcome of node X. The descriptor list is important
because it gives meaning to each dimension of the probability array.

AX = The probability array associated with node X.

28

An example is shown by illustrating Node B:

Node B:
PB = (A)
DB = (A B)
AB = I

- O
oo w

1
4
5

Notice that the descriptor list (A B) maps in a one-to-one manner to the dimensions of
the probability array. The last dimension of the array and last element of the descriptor list
represent the possible outcomes of node b. Notice also that the descriptor list can always be
read backwards. The list (A B C F G), then, means that the probability array of the node g
represents the probability of g, given a,b,c and f. Or in mathematical notation:

{G | A,B,C/F,S}.

For example in node b, {B=1| A=0,S} is the (0 1) element of AB, which equals 0.4.

The combination of the descriptor list and the probability array, then, forms a concise
representation which uses the conditioning variable's and the requested conditioned
variable outcome as indices to the probability array. The use of outcomes as indices is an
intuitive way to reference the desired data.

Because the array contains all of the relevant data, it is an effective structure in that it
describes all possible outcomes as conditioned by other state variables. It is effective also
because well defined array manipulations can be used to implement the four influence
diagram transformations. Olmstead states, "Influence diagrams whose nodes are structured
as conditioning trees (as arrays do) constitute an efficient and general form for representing
decision problems." (Olmstead, 1984:96) The following discussion will cover a sample
arc reversal problem with specific highlights on array manipulations and operations.

For an arc reversal to be effected, there must be two nodes, say Node G and Node H.

29

-
Cyslip

t

o« S &L
R -

Y g

2 o §
e Ase s €8

R Xl

CXRARAIL

N
s .
gy
-
.‘

Node G: PG Node H: PH

DG DH 3
| AG AH

The following section will describe how arcs are added to the influence diagram prior

L]

to the arc reversal. by

»

Add-Arcs J
The arc-reversal will require that DG = PH. Thatis, if DG =(AB G)and PH= (B C :

G), then DG' = PH' = (A B C G). In other words, the direct predecessors to Node H 2

must include all of the descriptors of Node G.
Once PX, DX, and AX are updated for both Node G and Node H, the arc-reversal 3

can take place. b
3

ReverseX Z
There are five basic steps to ReverseX. Using Node G and Node H as examples, the ;

steps are: ’_
1. Format AG into FORMG. This action will result in the descriptors of FORMG in 2

the same order as the descriptors of Node H.]

2. Form the joint probability array of Node G and Node H by multiplying element by .
element the arrays FORMG and AH. ‘Sj

3. Define the new AH by summing down the columns of the joint probability array. ﬁ

4. Format the new AH into FORMH. The descriptors of FORMH will now be the '.'

same as those for AG.

5. Define the new AG by dividiné, element by element, the joint probability array by
FORMH.

30

Yl RV W ED AR

e, N QN N
F@ﬁf \f-.'t-*"""\..‘-iﬂ& *v.‘m AN AN

The following is an example described step by step using a written description,
corresponding pseudo-code, current status of the related data elements, and the resulting
influence diagrams.

The initial state is:

Node G: PG, DG, AG

PG =(AB)

DG=(ABG)

AG=
AG is indexed by (plane,
row, column) = (A, B, C)

For example, element
(0 00)is 0.6.

© o
-

AR ST T

AT e

R A S
(Y

-&

L)

A A
.O‘{.{.'-l .

RIS |

Node H: PH, DH, AH
PH=(BCG)
DH=(B CGH)
AH =

g o

W -
oW
> N

o
ISR
0

h

AH is indexed by (hyperplane, plane, row, column)
=(BCGH)

Nodes A, B, and C have two outcomes and have no predecessors.

31

AR B B o s e N N T et ST T s e e

MY [EXAXRAN [0 LS (AR i

5'..'1

LSO L ARARN

E———— R

- > L4 Tk ALYV T AT
Ll B Al S ok Bl Al d s Ba'ad A A e -8 dRd Bh Ak Ad Bl B Sk St Ak Aute iee St ol Ant in= daldia. Ja’ ot T R FTUCTIE T WOTU L (el l._

|

The initial diagram is shown in Figure 14.

(G) (H)
(A (8)

Fig. 14 Initial Influence Diagram
Arc Reversal Algorithm
1. Add arcs if necessary

Part]
a. Check to see if arcs need to be added to Node G.

Since DG does not equal PH, arcs do need to be added.
b. Pick a predecessor of H that is not a predecessor of G.

The only predecessor of H that is not a predecessor of G is node C.
c. Add the predecessor to G.

NEWARRAY = Reshape AG according to the number of outcomes

associated with the incoming arc.

S

= 2 .8 2 ;t':
K

73 7 .3 2

6 4 6 4 i
9 .1 9 .1 -

Notice that NEWARRAY is now four-dimensional. The descriptor list that
corresponds to NEWARRAY is (C A B G). It is desired that the elements
of this list appear in the same order as the elements of (PG U PH). This is
accomplished in the next step by transposing NEWARRAY by ANSX =

(3 12 4). After the transposition, the descriptors of ADDX will be
(ABCQ).

SO A

32

Nt [P ALY

......... AT NS

Catp e .t
i w T

Lital Sad Sak dhdh Aa i Sl bt i Sl kit) gl At i b drdat § 0 i a4 st i ath abih ati sl She A

ADDX = transpose NEWARRAY by ANSX

99
w W

oo
(SR NY
00 00

NN

The current influence diagram showing the addition of the arc from Node C
to Node G is shown in Figure 15.

© (H)
Q@ (&) G

Fig. 15 Add Arc to Node G

d. Return to step 1b. and pick a new arc to be added to Node G.
No more arcs need to be added to Node G.

e. Continue until all arcs that need to be added to Node G have been added.
All necessary arcs have been added to Node G.

f. Update Node G.

AG = ADDX
PG = LX UPG)
=(ABC)
DG = (X UDG)

=(ABCQG)

33

E
;

3
e
:

e
& 5.8

PartII >
Part IT will add arcs to the current successor node. N
g. Check to see if arcs need to be added to Node H. g
&
Since DG does not equal PH, arcs do need to be added. ;_’
h. Pick a predecessor of G that is not a predecessor of H. &
An arc from node A needs to be added to node H. Zj
i. Add the predecessor to H. 3
N
NEWARRAY = Reshape AH according to the number of outcomes %
associated with the incoming arc. "-
N
N
- .
= 1.9 3.7 3
3.7 4 .6 |
6 .4 9 .1)
5.5 2 .8 :
J
]
1.9 3 7 g
3.7 4 6 ‘

6 .4 9 .1 '

5.5 2 8 :

A

4

Notice that NEWARRAY is now five-dimensional. The descriptor list y

4

that corresponds to NEWARRAY is (A B C G H). It is desired that the
elements of this list appear in the same order as the elements of

(DG U DH). This is accomplished in the next step by transposing
NEWARRAY by ANSY = (123 4 5). After the transposition, the
descriptors of ADDX will be (A B C G H). Even though this
transposition was not necessary for this example, in general the

transposition is required.

34

ADDY = transpose NEWARRAY by ANSY

= 1.9 3.7
3.7 4 6
6 .4 9 .1
5.5 2 .8
1.9 3 7
3.7 4 6
6 .4 91
5.5 2 .8

The current influence diagram showing the addition of the arc from Node
A to Node H is shown in Figure 16.

Fig. 16 Add Arc to Node H

j. Return to step 2h. and pick a new arc to be added to Node H.
No more arcs need to be added to Node H.
k. Continue until all arcs that need to be added to Node H have been added.
All necessary arcs have been added to Node H.
1. Update Node H.
AH = ADDY
PH = (LY UPH)
=(ABCQ)
DH = (LY U DH)
=(ABCGH)
35

oy

! |

b Pu 1

..$
-

P A BRI LI v L4
. ‘.s:.:-.‘-.'-;-,-, Y

o N T - AP RS R A ST
f.'l}‘l"‘i_‘..‘)l‘ > "I-‘-P- 1" I\ > \I\I\i.l_l.' "1' VST AP AT RS) .!.}.A\.l._ avata AT PRI P B PSS VAT UL PG -\..\ .\ \

ew vor e aan o s Bl Sea R g Bl e A g ALY

2. Reverse the Arc
a. Create FORMG by reshaping and transposing AG into the likeness of AH.
FORMG = reshape AG by the shape of AH and transpose the result
so that the descriptors of FORMG will match the descriptors

of AH.
= 6 .6 99
4 .4 1.1
. 6.6 9.9
4.4 1.1
7.7
8 .8 3.3
2 .2 a7
8 .8 3.3

Note: The above step accomplished two operations at once. First, the
reshape of AG by NEWSHAPE resulted in an array that has the correct

number of dimensions, but the descriptor list of the reshape operation result Z'ff
is (H A B C G). Before the joint density array can be computed, the ::.‘
N4

elements of the above descriptor list must be in the same order as the
elements of the descriptor list of Node H. The second operation will
transpose the array resulting from the reshape operation into the same

- orientation as AH. The descriptor list of FORMG is (A B C G H).

¢

DTH EXEA 3 s A

I

b. Form the Joint probability array. Notice that the descriptor lists of FORMG and

AH are the same.

36

Kt LG R Pos -lfk‘.(‘(‘

s r.

N

..............

"
a
N
"
N

JOINT = FORMG x AH

= 06 54 27 .63
12 .28 .04 .06
36 .24 81 .09
20 .20 02 .08
02 .18 21 49
24 .56 12 .18
; 12 .08 63 .07
| 40 .40 06 .24

The descriptor list of JOINT is (A B C G H).

¢c. Create the new AH by summing down the columns of the joint probability array.
NEWAH = sum down all columns of the joint probability array.
For this example, this operation will sum out the
inference from Node G. The descriptor list of the

array shown below is (A B C H).

| = 83 .17 69 .31 N

| 31 .69 33 .67 N

| 56 .44 52 .48 :ﬁ

| .18 .82 26 .74 N
~

‘ N
N

| d. Create FORMH by reshaping and transposing new’ AH into the likeness of the ::f

|

| joint probability array. ﬁ

AN

.
A

37

- 1
[}

[|
=
A
-

FORMH = reshape NEWAH by NEWSHAPE and transpose the result so K

that the descriptors of FORMH will correspond to the descriptors

of the Joint probability array.

= .18 .82 31 .69
.18 .82 31 .69

.56 44 .83 .17

56 .44 .83 .17
26 .74 33 .67
26 .74 33 .67

.52 .48 .69 .31

52 .48 .69 .31

Note: The above step accomplished two operations at once. First, the
reshape of NEWAH results in an array that has the correct number of
dimensions, but the descriptor list of the reshape operation result is

(G A B C H). Before the new array for Node G can be computed, the

elements of the above descriptor list must be in the same order as the
! clements of the descriptor list of JOINT. The second operation will
‘ transpose the array resulting from the reshape operation into the same
orientation as the array JOINT. This is accomplished by transposing the
result-array. The descriptor list of FORMH is (A B C G H).

wovs s 1l Y T 3

.
5~

.
-
-

38 ;

W W WA T - Lo arA e a da L do inside

e. Create the new AG by dividing the joint probability array by FORMH.
NEWAG = transpose (JOINT / FORMH) to place the derived outcomes of

| the array AG in the last dimension.
= 33 .67 .87 .13
.66 .34 91 .09
| 64 .36 .98 .02
54 46 53 47
08 .92 .64 .36
24 .76 73 .27
23 .77 91 .09
.16 .84 23 .77

f. Update Node G and Node H.

AG = NEWAG
i = 33 67 .87 .13
| 66 .34 91 .09
| 64 36 98 02
54 .46 53 .47
08 .92 64 .36
24 .76 73 27
23 .77 91 .09
16 .84 23 .77
39

¢ "

l“

SA aig il ot ouh ol aid ol

AH = NEWAH

= 83 .17 69 .31
31 .69 33 .67
56 .44 52 .48
.18 .82 26 .74

PH =PG
=(ABC)
PG = (PG U (DH - PH))
=(ABCH)
DG = switch last two of DH
=(ABCHG)
DH = PG
=(ABCH)

The final influence diagram showing the reversal of the arc from Node G to
Node H is shown in Figure 17.

Fig. 17 Arc Reversal

40

-

vy 1 e

L4 S v

* o PRy

P YRR AP

vy ¥ v
.
»

»

LIRS

hege diadh & od g

Example Application of ARCREV

2 Bl o el Aok Sat Bo _Bo- leob Hat Rei lat S

To show how ARCREV may be used in practice, the following example run has been

provided:

After loading the Influence Diagrammer's Toolbox and performing the following

command:

(setq current-id ‘'id1),

the following information is provided via the print-node command (and is the initial state):

(print-node 'nodeg)
"Node name is: "

(G)

"Node predecessors are: "
(A B)

"Node descriptors are: "
(ABGQG)

"Node probability array is: "

(3#A (((0.6 0.9)
(09 0.1))
((0.2 0.8)
(0.7 03)))

(print-node 'nodeh)
“"Node name is: "

“Node essors are: "
BC

"Node descriptors are: "
BCGH)

"Node probability array is:
(4#A ((((0.6

~

~—~~
~~
Ve e W W W NV N

_
ON~200— ~J O i

CO0O00O!
H WO W=
cooco0000

41

Rl Al e Rtk Rl Bl [/

So the initial state is the following influence diagram:

© (H)

s %

Fig. 18 Initial Influence Diagram

Now the ARCREV command is applied to the arc between node G and node H.

(arcrev 'nodeg 'nodeh)
(ARC REVERSAL IS COMPLETE)

The resulting information is presented by print-node:
(print-node ‘'nodeg)

"Node name is: "
G
"Node predecessors are: "
(ABCH)
"Node descriptors are: "
(ABCHG)
"Node probability array is: "
(#5A (((((0.64 0.36)
(0.54 046))
((0.33 0.67) ~
(0.66 0.34))) RN
((C 098 0.02) Y
(053 047)) :
((0.87 0.13) be
(091 0.09)) |
(€ 0.23 0.77) <
(0.16 0.84)) N
((0.08 0.92) "
(0.24 0.76))) ;{j
(€ 0.91 0.09) o
(023 0.77) -
((0.64 036) B
(073 0.27)))) I_ljl
‘ot
L
N

“

42

L o PUTTWE YOS PRI TRV P IO R PN VR TR R TR T R IR N RN TRTwWET R YL VB YNV R TV wears
_— T EIWL L X TN YY o

(print-node 'nodeh)

“Node name is: "
H)
“Node predecessors are: "
(A BO
"Node descriptors are: "
(ABCH)
"Node probability array is: "
(#4A ((((0.56 0.44)
(0.18 0.82))
(C 0.83 0.17)
(0.31 0.69)))
(((0.52 048)
(026 0.74))
((0.69 0.31)
(033 0.67))))

So the final resulting influence diagram is:

Fig. 19 Final Influence Diagram

Node Removal Algorithm
The arc reversal and node removal operations are closely related. The arc reversal is

effected by forming the joint density between two adjacent nodes, summing the old

predecessor out of the joint density array to get the new predecesssor, and finally getting
the new successor by applying Bayes' rule. As described before, node removal entails
forming the joint density array and summing out of the joint density array the variable
represented by the node to be removed. Notice that node removal is the same as arc

reversal through the creation of the new predecessor. In the case of node removal, this is

u
;

)
s
-':
v
K
v
e

43

A [o

ht~’ {"L(A‘:{L"_’Lﬂ‘,‘!A LA IR RPN S S e S PPN . RSP Saad PSS SR

”
,
’l
the updated successor. Since these two operations are so similar, the algorithms for add ':
arcs and reversex can be used to build REMOVE-NODE. 4
Specifically, REMOVE-NODE could use all steps of the arc reversal algorithm N
N
through step 2b. All that remains to be done is to update the influence diagram's fraine to N
reflect the deletion of the specified node.
The node removal tool can then be developed using the same supporting commands N
as ARCREV.
The remaining commands, merge-nodes and splitting a node, as shown in Chapter 2, "
are valid transformations of the influence diagram. The algorithms for these commands can \
be derived from the previously given theoretical base and should be implementable via the :
supporting commands in Appendix A. An obvious extension of this thesis, then, is the s
implementation of node removal, merge nodes, and splitting of a node operations. '\
8
l\.
-
N
A
5
.n"
KL
=
N
X
o
[
‘...
N
[
)
s
hGA
I\:
b
N
3
44 "
o
0
N
7~T“‘

IV. RELIABILITY APPLICATICN

Application

This chapter will explain the application of arc reversal to a simple reliability problem.

Given the following diagram which describes a subfunction, S of a electronic circuit
card. The subfunction, S, consists of two parts: a nested subfunction, E, and component

D. Subfunction E, in turn is composed of components A, B, and C.

Fig. 20 Electronic Circuit Card

Each subfunction or component has two states: working or not working. The

following data presents the assessed probabilities for each subfunction or component.

A B C D ABCE

Q1 0 1 Q__1 0_1

37 6 4 S5 9 00071 0
00119 .1

0108 .2

011]4 6

1007 3

101{4 6

110{4 6

L1 1fo 1

45

The tables may be interpreted in this way: the probability that E is not working (0)
given that components A, B, C are all not working is one. The given state of a subfunction
or component is used to index the probability data.

Based on the above information the following influence diagram represents the initial

state:

Fig. 21 Initial Influence Diagram

A possible question that could be posed is: "What is the probability that the
subfunction, S, works?' To answer this question it is necessary to manipulate the
influence diagram so that the node S has no predecessors. By judicious application of arc
reversals, this information can be found.

Using the diagram as a guide, it can be seen that the arcs fromE to S and from D to S
need to be reversed. First, the arc between E and S is examined as a possible candidate for
arc reversal. Notice that arcs would be added to S from A, B, and C and from D to E.
Since this action will result in nodes A, B, and C becoming predecessors of S; arcs which
would also need to be reversed.

Instead of reversing the arc from E to S, arc reversals will be done to remove all of

the current predecessors of E. Once this is done, the only arc that will be need to be added

46

- .a.u .

.
.

T | A

-
-~
will be from node D to E. At that point, the arc E to S can be reversed. Notice also that the N
arc from D to S can be reversed without adding arcs. :
So the procedure that will be followed is: b,
“
1. Reverse Ato E Ny
2. Reverse Bto E N
3. Reverse Cto E >
4. Reverse Dto S e
5. ReverseEto S %
1. Reverse A to E. Since the predecessors of E are not all predecessors of A, arcs will be _,
added from B and C to A. Then the arc between A and E is reversed. These actions result ;
in the following influence diagram and updated data for A and E. :l.:
@ s
"
K4
A
Fig. 22 Reverse Arc from A to E .
A E .\
BCElO 1 BC|O 1 ,
000 [.38 .62 0 0179 21 N
001 |.49 51 0 1|55 45 Y
010 |46 .54 1 0|52 48 :::
011 1 0 1 1].12 .88 R
100 {0 1 o
101 .07 93 |
110 |.125 875 ~3
111 121 .79 e
o
P\
P
\ 3
o4

47

...............................
..
................

230 PO

p.

ol g e atr o' aid o'f atl gt il gCh SR B hn A

2. Reverse B to E. Since C is a predecessor of E but not of B, it is required that an arc be
added from B to C. At this point the arc from B to E can be reversed and results in the
influence diagram and updated tables below:

B E
clo 1
. . . 3l
873 .127 378 .622
396 .604

434 566

3. Reverse C to E. Since the only predecessor of E is now C itself, no arcs need to be
added. Reversing the arc between C and E gives:

3
3
"
3
N
7
v
‘q
.
a
[|
T
»
4
A
{

Fig. 24 Reverse Arc fromCto E

48

DRORERR | TNCARNLNE S

..............
{, o Al SRR T] - o e e . &
L\ﬂ_ -.) -“") .P~ ~.A‘\-l .h:'J .A".‘}_n_.k S .A~. \:A\.L_J\.&}A 4\‘!\.! .l“l\.g“ i A 4\.4\;\ \A .1_4‘4 A\ Py _AL‘- "1.\ \ \-3‘\

The probability arrays for nodes C and E are shown below:

C

E 0 1 0 1
. . 33 47
1 | .338 .662

Notice that the probabilty of subfunction E working is 0.47. All conditioning
variables have removed and E is conditionally independent at this point in the analysis.

4. Reverse Dto S. Now E is a predecessor of S but not of D so it is required that an arc
be added from E to D. This action facilitates the arc reversal from D to S which caused the
influence diagram and data to be updated as shown below:

Fig. 25 Reverse Arc fromD to S

s <
E

5545 “
1 {.04 96 -

=10

s

49

.. o e - o . R
ot L S e e’ o A

PUPTITOTITP L T gagrwy

5. Reverse Eto S. No arcs need to be added since E has no predecessors and S has E as
its only predecessor. This final reversal gives:

Fig. 26 Reverse Arc fromE to S

and the final data is:
A C E
BCE 0 I
000 .38 62 0].644 .356 01.9394 .0606
001 .49 St 11.338 .662 113438 6542
010] 46 54)
011 1 0
1001 0 1
101).07 93
110 .125 875 S
1112179

S I -
3103 6897

Now that the procedure is complete, it can be seen that the probability that S works 1s
0.6897.
Other questions of a sumilar nature can be answered by similar transformations of the

influence diagram.

3
i

4

¢« ree
TALS

Ny

50

D% B

e
Metesy

S T NI G R I
PRI NIIER AN I NS A AT NP RPN AT WA

e & m Aha dan his aoa B g bhe aundis i Ll Con st e i

V. CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

This thesis demonstrated that the multidimensional array is a natural foundation for
the development of a toolbox of influence diagram manipulation and analysis tools. This
idea was used to develop and implement an algorithm to accomplish an arc reversal on two
nodes of an influence diagram. Furthermore, a sample reliability problem was solved
using the arc reversal tool. This chapter will present some of the issues or problems that

need to be addressed and will propose some extensions to this thesis.

A. Issues

There are two major concerns that need to be addressed in any follow-on research.
The first concern is the specification of the two new nodes to be created when splitting a
node. How should the probabilistic array of the original node be allocated to the two new
nodes? Is the probability array of each child node a duplication of the original probability
array?

The second concern is involved in the removal of a node operation. If the resulting
probability array has more than one conditioned state variable, the array needs to be
expanded into more nodes. The question is how is the expansion to be executed and in
what order are the nodes to be created. For more information on these problems see

Olmstead's dissertation, "On Representing and Solving Decision Problems."

B. Extensions and Improvements
There are several extensions to the software that are necessary to have a complete
environment and a robust set of tools. The extensions are:
The Constructor functions need to be completed and integrated into the environment.
It is desirable to have a one screen representation of the entire influence diagram.

If the proper graphics environment can be defined, it would be optimal to represent nodes

and arcs as graphics primitives. However, portability should not be sacrificed to meet this

goal.

The remaining ID tools need to be implemented: Remove Nodes, Merge Nodes,
and Split Nodes.

A fast and efficient adaptation of the branch and bound routine is needed for the
loop checking precondition of the arc reversal, merge nodes and node removal operations.

Add value, decision, and deterministic nodes and associated operations to the
current set of software.

Once the software is completely developed, it may be used in experimental
research on the optimal ordering of node removals.

The software should be ported to several computers by use of the XLISP version of
Common Lisp.

As is always true in software development, the software is never complete; however,
the more research done along these lines will give analysts and decision makers more
capability for developing systems, based on influence diagrams, for artificial intelligence,
reliability analysis and other computer-based systems.

52

..
........................

‘0
:
3
.
Y
APPENDIX A DOCUMENTED LISP CODE .
3
v
This Appendix gives a listing of the source code for the Influence Diagrammer's ‘:
A
Toolbox. A Lisp-loadable version of the code can be obtained by contacting: o
]
Capt. Joe Tatman »
AFTT/ENC i~
WRIGHT-PATTERSON AFB, OH 45433 \
[
~
To load and run the code, the target Lisp should be Common Lisp compatible and have o
-~
implemented multidimentional arrays according to the Common Lisp standard. o
The software contains sections describing the following in order: 2
1. ID tools %
N
2. ID access functions X
3. Test frames (influence diagrams). :
s 4
4. Frame Manipulation Functions .;:Z
5. Lisp Tools (supporting commands which are an extension to the Lisp language). :l'
}'-;:
'\
f.'
-
‘.\
BN
3
> M
-
~.q
. d
.J
K

..

FIPIIDNISIINININIINIRININIIININRINNNINIINIIINININININIVINEY
.

; ID tools

Arcrev will reverse the probabilistic inference between
; two adjacent nodes. First, the nodes have arcs added,
; if necessary. Secondly, the reversal is effected by

; use of Bayes rule.

(defun arcrev (nodea nodeb)
(addarcs nodea nodeb)
(reversex nodea nodeb)
'(arc reversal is complete))

..

FIPIIIINNINIIIRINININIIININIININIINIIIIIIIRINISIININIIIIINY
.

: Reversex will perform Bayes' Rule on two adjacent nodes
; that have the same set of common predecessors

(defun reversex (nodea nodeb)

; This first section will load local variables with

; information from the frame for the two nodes involved.
; Arraya, pa and na represents the data array, predecessor
; list, and the name(symbol) of the node a. Likewise,

; arrayb and nb are the array and name of the node b.

(let* ((arraya (get-prob-array nodea))
(arrayb (get-prob-array nodeb))
(pa (get-preds nodea))
(na (get-name nodea))
(nb (get-name nodeb))

This next section will reshape array a into the likeness
of array b. Newshapea represents the dimension list by
which to reshape arraya. Forma is the result of
transposing the reshape of arraya. The purpose of this
section is to make arraya conformable to arrayb and to
have corresponding elements aligned. Ra is simply the
rank of the predecessor’s array. Ira is a list of the
numbers 1 through the rank of the array (ra). (list-
rotate ra ira) provides the trans-index to transpose the
reshaped arraya.

@s s we W ws ws €S W we we

(newshapea (append (last (array-dimensions arrayb))
(array-dimensions arraya)))
(ra (length (array-dimensions arraya)))
(ira (iota (length (array-dimensions arrayb))))
(forma (array-transpose (array-reshape arraya
newshapea)
(list-rotate ra ira)))

54

.....

ot N

. e e e a Fa
RV I ST A N R A TN A 0T 0T P AT AT SIOT ISSS A2 W

A

PPN,

.t

PR A RX,

S ATRARRAAAL

s

PR
G AR At

“»

»

; The next line will give the joint density function
; between node a and node b.

(joint (array-mult-elt forma arrayb))

; The next two lines will define the new array to be stored

; in the old successor node (new predecessor node). This

; is done by summing down the columns of the joint density
; array.

(si (1- (length (array-dimensions arrayb))))
(newab (array-sum-reduce joint 2))

; This next section will reshape newab into the likeness

; of the joint array. Newshapeb represents the dimension
; list by which to reshape newab. Formb is the result of

; transposing the reshape of newab. The purpose of this

; section is to make newab conformable to the joint density
; array and to have corresponding elements aligned. Si

; (from the previous section), y and irb are used to

; contruct the appropriate trans-index to transpose the

; reshaped newab.

(y (list-difference (iota (length (array-dimensions
' arrayb)))
(list si)))

(irb (append (list si) y))
(newshapeb (append (last (array-dimensions arraya))
(array-dimensions newab)))
(formb (array-transpose (array-reshape newab
newshapeb)
irb))

; This section shows the creation of the new array of the
; successor (newaa). X is the index used to realign the

; result of dividing the joint array by formb. This

; operation will ensure that the dimension describing the
; outcomes of the array will come last in the descriptor

; list.

(x (switch-last-two (iota (length (array-dimensions

amayb)))))
(newaa (array-transpose (array-div-elt joint formb)
x)))
55
R A O I N N N N A R NS

. .
v oK

"_v
ro il
-'-."fl"

.
N »

SRR -

.

v

TN
W

! ".’....

,.-'.'.'s

,.’i'

.
-

A 2]
n”.l

a4
[)
-

X| [

% &
4

2

SN AN
PR

YR}
s
»

L R RO
g AL
{'-'_'-'.* R

E X4
SRp%y| |
P

NN PRI S S A Sy kY
L'L'-L’LILfL'Lf"A LI ST AL AL A A

; The remainder of this function is designed to update the
; influence diagram with the new information.

P A

(set-descr nodea (&s‘: tS‘)\;r)itch-last-two (get-descr
n
(set-descr nodeb (list (list-union (get-preds nodea)
(get-name nodeb))))
(set-prob-array nodea (list (list-union pa nb)) newaa)
) (set-prob-array nodeb (list (list pa)) newab)
't

A AR

v
o)

oV VYN Y

)

Va'e'se 229,

2

A s 3

FgerIell,

- AL
Y % % 'y
) \

56

LA PR
POk DAANAN

et ® T e a® I N R T R N I O I DRI AT R IR I B L Y S I 2™t st LR W I e ',‘\'\‘\;.\ .
R I B N N R G G R A A TS AL LIRBANL, LIS LV LG ER LL SRR ARV M R NN

IIPIIININNINIINININININNIININITININIIINININITINININNINNIIYY
.

; The function addarcs will add arcs to either or both of
; two adjacent nodes. Nodea is assumed to be the

; predecessor of nodeb. When addarcs is finished, both
; nodes will have the same set of direct predecessors

; (except, of course, nodea will not have nodeb as a

; predecessor.

(defun addarcs (nodea nodeb)

; This first section will load into local variables the
. relevant information about the two nodes from the
; influence diagram.

(let* ((pa (get-preds nodea))
(da (get-descr nodea))
(aa (get-prob-array nodea))
(pb (get-preds nodeb))
(db (get-descr nodeb))
(ab (get-prob-array nodeb)))

; This is the stopping condition,... when the predecessor
; list of the successor is the same as the dcscnptor list
; of the predecessor.

(cond ((list-equal da pb)
'("arcs finished"))

; Lx is the list of the nodes from which arcs need to be
; added to predecessor node.

; Ly is the list of the nodes from which arcs need to be
; added to successor node.

(t (let* ((Ix (list-difference (list-union
. pa pb) da))
(ly (list-difference (list-union
da db) db)))

; Once all of the arcs have been added to the

; predecessor node, stop and go add arcs to the
; successor node.

(cond ((not (equal Ix nil))

; Ix represents the index of the union set which

; corresponds to the node from which an arc must be added.
; Tuis thelist (1 2 3 ... # of elements in (the union of

; the predecessors of the predecessor node and the

; predecessors of the successor node)) - (IX). Ix and lu

, are used to build ANSX, which is the trans-index used to
, transpose the data array so that the new information

57

...........

I P Catar

-ﬂ-"‘ ‘s

LAY

ST NN XX

h Y

-~

J‘.-

bacaia A oia it ok A it s ko Sl B A s Bov Gt At b o i it T A ded e A" i Nl Al Aok S Il NN i TV R UTLWT T WA NS WL "N
FTRUORTW YT d T IR T A

gained by adding the arc will align with the other data
in the array. NARCOUT is number of the incoming arc's
outcomes (always equal to the last dimension of the array
of the node from which an arc is being added.
NEWSHAPE is the new size of the predecessor array
after the addition of the new arc.
ADDX then is the new array after addition of the arc.

(let* ((ix (list-elt-index
(list-union pa pb) A
(car Ix))) h
(iu (list-difference <
(iota (length N

(list-union

Ws W we we we we ws

(ansx (append (list ix)
iu))
3 (narcout
| (array-dimension ab
(1-(list-elt-index
pb (car Ix)))))
(newshapea (append
(list narcout)
(array-dimensions
aa)))
(addx (array-transpose
(array-reshape
aa newshapea)
ansx)))

; The next two lines update the frame with the new
; information of the predecessor node and calls addarcs to
; add the next arc.

(set-prob-array
nodea .
(list

(list-union

(list (car 1x)) pa))
addx)

I P RAARER NI
’ala a A A . m_ala

(set-descr

nodea
(list

(list-union

(list (car Ix)) da)))
(addarcs nodea nodeb)))

58

. . | e . .
REALAT RAAARSIS" WUV S AR

..............................

) ph
’
*,
; The remainder of this function add arcs to the successor 2
; node in the same manner as above. o
(t (et* ((iy (list-elt-index Dy
(list-union da db) X
(car ly))) -
(iu (list-difference N
(iota -
(length >
(list-union B
da db))) ")
(list iy))) 5
(ansy (append (list iy) g
iu)) .
(narcout
(array-dimension aa
(1- (list-elt-index .
pa (car ly))))) -
(newshapeb o
(append .
(list narcout) g
(array-dimensions
ab)))
(addy (array-transpose
(array-reshape
ab newshapeb) -
ansy)))) -
(set-prob-array -
nodeb ’.
(list -
(list-union o
(list (car ly)) pb)) ‘
addy)
(set-descr
nodeb
(list -
(list-union S
(list (car ly)) db))) .
(addarcs nodea nodeb))) .
)
)
) .
) v
) :
=
ok
h¢
*,
>
59 o
I N RN RIS R . e A AN SRR AR T A o - j

TIIPINIIRIPIIISIIIIIINIIIINIIIININIIYIINININIINININIIINIIINYY

ID ACCESS

’
’
i

. Gets or sets nodal information in the id frame.

(defun get-prob-array (node)
(car (fget current-id node 'data)))

(defun get-preds (node)
(car (fget current-id node 'preds)))

(defun get-descr (node)
(car (fget current-id node 'descr)))

(defun get-name (node)
(fget current-id node 'name))

(defun set-prob-array (node preds array-address)
(fset current-id node 'data array-address)
(fset-list current-id node 'preds preds))

(defun set-preds (node preds)
(fset-list current-id node 'preds preds))

(defun set-descr (node descr)
(fset-list current-id node 'descr descr))

(defun print-node (node)
(print "Node name is:")
(print (get-name node))
(print "Node predecessors are:")
(print (get-preds node))
(print "Node descriptors are:")
(print (get-descr node))
(print "Node probability array is:")
(list (get-prob-array node)))

60

.,

3] EEAAes

-
‘I
%y %y

ki AN

<, s

PV
e @ a -
s _-_

ot XX

..

PIIIPIIIINININIIRINNSIIIIISIIINNNININIIIIINNINNNININIINNIINYY

.
b

; Test frames

(setq current-id 'id)
(fput 'id 'nodea 'type 'prob)
(fput 'id 'nodea 'preds '())
(fput 'id 'nodea 'descr '(a))
(fput 'id 'nodea 'name 'a)
(fput 'id 'nodea 'data (make-array '(2)
:initial-contents
'(0.7 0.3)))

(fput 'id 'nodeb 'type 'prob)
(fput 'id 'nodeb 'preds '(a))
(fput 'id 'nodeb 'descr ‘(a b))
(fput 'id 'nodeb 'name 'b)
(fput 'id 'nodeb ‘data (make-array '(2 2)
:initial-contents
(0.6 0.4)
(0.5 0.5)))

(fput 'id1 'nodeg 'type 'prob)
(fput 'id1 'nodeg 'preds '(a b))
(fput 'id1 'nodeg 'descr '(a b g))
(fput 'id1 'nodeg 'name 'g)
(fput 'id1 'nodeg 'data (make-array '(2 2 2)
‘initial-contents
'(((0.6 0.4)
(0.90.1))
((0.20.8)
(0.70.3))))

(fput 'idl 'nodeh 'type 'prob)
(fput 'id1 'nodeh 'preds ‘(b ¢ g))
(fput 'id1 'nodeh ‘descr ‘(b ¢ g h))
(fput 'id1 'nodeh 'name 'h)
(fput 'id1 'nodeh 'data (make-array '(2 2 2 2)
:initial-contents
'((((0.6 0.4)
(0.5 0.5))
((0.1 0.9)
0.30.7)))
((0.90.1)
(0.20.8))
((0.30.7)
(0.4 0.6)))))

DA B A it AR i Rk) B F‘JI‘:

...........

c et AaSL, Y, 4 I - " a s A" "8t pmaTet et e s o= - . . ‘- } .. -. ..
el e e T AT N A Ty

PRSI .
L IR IR T R VS RO N I RO ET AR A B3,

2999299979922 99999999999995099989999999 290999909999 99 099290

FRAMES

The following frames manipulation functions are from
Winston and Hom, "Lisp", second edition.

we we we we we ws

(defun fget (frame slot facet)
(cdr (assoc facet (cdr (assoc slot (cdr (get frame
'frame)))))))

(defun fput (frame slot facet value)
(let ((value-list (follow-path (list slot facet)
(fget-frame frame))))
(cond ((member value value-list) nil)
(t (rplacd (last value-list) (list value))
value))))

(defun fremove (frame slot facet value)
(let ((value-list (follow-path (list slot facet)
(fget-frame frame))))
(if (member value value-list)
(delete value value-list))))

; fclear sets (<facet-name>) to (<facet-name>).

(defun fclear (rrame slot facet)
(let ((clear-facet (follow-path (list slot facet)
(fget-frame frame))))
(cond (clear-facet (rplacd clear-facet nil) t)

(t nil))))

(defun fremove-slot (frame slot)
(putprop frame
(cons frame
(remove (assoc slot (cdr (get frame 'frame)))
(cdr (get frame 'frame))))
‘frame))

; FSET sets the addressed value slot to value rather than

; adding value to the contents of value slot. FSET-LIST
; changes (facet <> <> <>) to

;. (eval (cons 'facet-name value-list)).

62

.........................

........

N

SRR

)

N AANPIRNGRS

(defun fset (frame slot facet value) ; not W&H
(let ((set-facet (follow-path (list slot facet)
(fget-frame frame))))
(rplacd set-facet (list value))
value))

(defun fset-list (frame slot facet value-list) ; not W&H
(let ((set-facet (follow-path (list slot facet)
(fget-frame frame))))
(rplacd set-facet value-list)
value-list))

(defun fget-frame (frame)
(cond ((get frame ‘frame))
(t (setf (get frame ‘frame) (List frame) })))

(defun extend (key a-list)
(cond ((assoc key (cdr a-hist)))
(t (cadr (rplacd (last a-List) (List (List
key)))))

(defun follow-path (path a-list)
(cond ((null path) a-list)
(t (follow-path (cdr path) (extend (car path)
a-lis1)))))

UL A L A R T L I T S L L T R T R T T P2 Y
»

. LISP TOOLS

.

. The following functhons were used to implement the [D
. Soiver’s toolbox; however they form a valuable addition
. to any Lisp library.

: List-transpose 15 a function on two lists, from-index
. and trans-index. Trans-index provides the receipe for

. moving the elements of from-index in a certain way. For

. example, (list-transpose (abcd) (3 124))will
. return (bc ad) The trans-list, (31 2 4) can be
. understood 1n the following way:
| Take st element of from-index and make it the new
3rd element.

2. Take 2nd eiement of from-index and make 1t the new

Ist element.
3 Take 3rd element of from-index and make 1t the new
2nd eclement

4 Take 4th element of from-index and make 1t the new
4th element.

idefun list-transpose (from-index trans-index)
tlist-transpose | from-index trans-index
(hist-atoms (length from-index) Q)
(iota (length from-index))))

“defun hist-transpose | (from-index trans-index
to-index index)
‘cond
"(null fcar index)) w-1ndex)
a
'setq to-index (list-index-assign
to-index
(car trans index)
list-index -elt from- index
fcar indexi)))
st transpose | from-index (odr trans-index
to-index (cdr index))))

.........

The tunctions char less and char-greater are used o
compare two character lists of equal length tor
alphabeucu order

64

-

r% % 5 e e

> o

AR

LR

s

AT

I X o

_\..\'\(\l .’ '/ -J

(defun char-less (c1 c2)
(< (length (member c1 exploded-alphabet))
(length (member c2 exploded-alphabet))))
(defun char-greater (c1 ¢2)
(> (length (member c1 exploded-alphabet))
(length (member c2 exploded-alphabet))))

(setq exploded-alphabet
zyxwvutsrqponmlkjihgfedcba98
76543210))

; The function iota will generate a list of numbers, i.e.
; (iota9)returns (1234567 89)

(defun iota (n) (iotal n 1))

(defun iotal (n cnt)
(cond
((> cnt n) nil)
(t (cons cnt (iotal n (1+ cnt))))))

..........

2979999999

; The macro mac-doarray will access an array, element by

. element, and will perform the operations in the body.

; The vanable, indexlist, is the current index of the

array and is used in the body of commands. Indexlist

is iterated in row-major order. An example call is:
(mac-doarray a ((print indexlist)))

Notice that the body is a list of lists.

; The macro mac-doarray?2 is similar to mac-doarray except

, that it will access two arrays (not necessarily of the

. same number of elements) by generating indexlist] and
indexlist2 which correspond to arraynamel and
arrayname?2. Indexlistl and indexlist2 are available
A typical call can be found in the definition of array-
sum-reduce.

(defmacro mac-doarray (arrayname body)
“(let* ((largetlist (mapcar '1- (array-dimensions
Arrayname)))
(i (length targetlist))
(stoplist (list-index-assign
targetlist 1
(+ (list-index-elt targetlist 1)
D))

65

(do ((indexlist (list-atoms i 0)
(check-indexlist
(hst-mdex-assxgn
ti
(+ (list-index-elt indexlist i)
1)) targedist i)))
((list-equal indexlist stoplist) 't)
;@body)))

(defmacro mac-doarray2 (arraynamcl arrayname2 body)
“(let* ((targetlistl (mapcar '1- (array-dimensions
,arraynamel)))
(targetlist2 (mapcar '1- (array-dimensions
Arrayname2)))
(i1 (length targetlist1))
(i2 (length targetlist2))
(stoplist2 (list-index-assign
targetlist2 i2
(+ (list-index-elt
targetlist2 i2) 1))))
(do ((indexlistl (list-atoms il 0)
(cond
((list-equal indexlist1 targetlistl)
(list-atoms i1 0))
(t

(check-indexlist
(list-index-assign
indexlistl
- il
(+ (list-index-elt
indexlistl i1) 1))
targetlistl i1))))
(indexlist2 (list-atoms i2 Q)
(check-indexlist
(list-index-assign
indexlist2
i2
(+ (list-index-elt
indexlis®2 12) 1))
targetlist2 i2)))
((list-equal indexlist2 stoplist2) 't)
@body)))

1990999909

Check-indexlist is used in mac-doarray and mac-doarray2
to get the next valid indexlist in row-major-order.

66

(defun check-indexlist (indexlist targetlist i)
(cond
((list-great-eqp indexlist targetlist) indexlist)
((not (list-less-eqp indexlist targetlist))
(setq i (1- 1))
(setq indexlist (list-index-assign indexlist i
(+(list-index-elt
indexlist 1) 1)))
(setq indexlist (list-index-assign indexlist (+ 1 1) 0))
(check-indexlist indexlist targetlist i))
(t
indexlist)))

19 PRIINYTY

. The function list-atoms will generate a list of the
specified atom (only one atom). l.e. (list-atoms 3 q)
retuns (qQ q q)-

(defun list-atoms (n a)
(list-atoms | n 1 a))

(defun list-atoms! (n cnt a)
(cond
((>cntn) ml)
(t (cons a (list-atoms 1 n (1+ cnt) a)))))

" Given a list and a valid number (index) list-index-elt
. will return the corresponding element from the list.

(defun list-index-elt (list index)
(list-index-eftl list index 1))

(defun list-index-elt] (list index cnt)
(cond
((= index cnt) (car list))
(t (list-index-elt! (cdr list) index (1+ cnt) 1))

: Given a list and an element, list-eit-index
will return the corresponding index of the list.

(defun list-elt-index (list elt)
(list-elt-index! histelt 1))

(defun list-elt-index ! (List elt cnt)
(cond
((equal elt (car list)) cnt)
(t (list-elt-index | (cdr sty elt (1+ ¢cnt))

. . o
—a ¥ _Ta a

’,

R |

PR I P ¢ . SO R LT . U
SRR VST VPR, SO Yk, JERA, Y PR NGV PRI LIS, S, >

" TN A ol o T W TN PR W T Ty
e le od e -Aa da s oo as g _EE g bt obs ke Jdi chaCahl i o ekl aibh b it A _ake ofh il o -V‘I‘Ir'v-r‘-f"“- L o0 ot ol o W o

..........

2999909900

List-index-assign will make the specified destructive
; assignment to the indexed position of the list.

(defun list-index-assign (list index new)
(do ((work-list list (cdr work-list))

(work-index 1 (+ 1 work-index))
(new-list nil))

((null work-list) new-list)

(cond

((= work-index index)
(setq new-list (append new-list (list new))))
(t (setq new-list (append new-list

(list (car work-list))))))))

sIesReRIRY

Switch-last-two will return a list with the last two
. elements of the given list reversed.

(defun switch-last-two (listl)
(let* ((index! (1- (length list])))
(index2 (length list]))
(holder (list-index-elt list] index1)))
(list-index-assign
(list-index-assign list] index |
(list-index-elt listl index2))

index2
holder)))

. The next four funcuons are designed to make the
. appropnate companson, clement by element, of two
lists of numbers.

(defun lhist-lessp (x y)
{cond
((null (car x)) 1)
((< (carx) (cary))
(list-lessp (cdr x) (cdr yI1))

tdefun list-equal (x v)
tcond
{(not (= (length x) (length vin mil)
((null (car x)) 1)
((equal (car x) (car v))
thst-equal (cdr ©) tedr vin)

h8

w— WY it

(defun list-less-eqp (x y)
(cond
((null (car x)) 't)
((< (car x) (car y))
(list-less-eqp (cdr x) (cdr y)))
((= (car x) (car y))
(list-less eqp (cdr x) (cdr y)))
(t 'nil)))

(defun list-great-eqp (x y)

(cond

((null (car x)) 't)

((> (car x) (car y))
(list-great-eqp (cdr x) (cdr y)))
((= (car x) (car y))
(list-great-eqp (cdr x) (cdr y)))
(t 'nil)))

INNNRREP

| List-rotate will take the car of the given list and
. append it to the cdr of the list, n imes.

(defun list-rotate (n listl)
(do((x 1(1+x))
(1 list! (cdr 1))
(res nil (append res (list (car 1)))))
((= x (1+ n)) (append | res))))

. List-union will take two alphabetical lists and form
their union. The result will be 1n alphabetical order.

(defun list-union (x y)
(cond ((equal x nil) y
({equal y nil) x)
(t (our-soft (list-unionl x y) char-less))))

(defun hist-unionl (x y)
(cond ({null x) y)
((member (car x) y) (list-union (cdr x) y))
(t (cons (car x) (hst-umon (cdr x) y)))))

~ Oursort and splice-in are delined in Winston and Hom,
Ind ed pi6OG

69

Ce g . T L
SRAAT Y ARSI U AN

rmv—“--—--v‘u-uv‘ L %R - acoan R B am e 4 e e San e T ha 4l

(defun our-sort (s predicate)
{cond ((null s) nil)
(t (splice-in (car s)
(our-sort (cdr s) predicate)
predicate))))

(defun splice-in (element s predicate)
(cond ((null s) (list element))
((funcall predicate element (car s))
(cons element s))
(t (cons (car s) (splice-in element

8)
predicate)))))

..........

999999999

 List-difference will return a result consisting of the
elements of "in" that are not members of the list,
; " Out" .

(defun list-difference (in out)
(cond ((null in) nil)
((member (car in) out) (list-difference (cdr in)
out))
(t (cons (car in) (list-difference (cdr in) out)))))

1IRPENIIYY

A primitive on-line help file is found in Appendix B.

199800090y

Array-index-elt and array-index-assign are used
, similanly as their counterpart commands for lists
(see above).

(defun array-index-elt (arrayname indexlist)
(apply #'aref arrayname indexlist))

(defmacro array-index-assign (arrayname index new)
“(setf (aref ,arrayname ,@index) ,new))

Array-indexname-assign is the same as array-index-assign
except that the second argu.nent is a vanable that has
been set to a valid list.

70

e e . i
‘e [A R X ., o et
AN A PO e A e s a a a i dt A gl

B . et e e
E AP RN, Pl e e e e SN,

~
o

AR WA S
......

(defun array-indexname-assign (arrayname indexname new)
(eval (append (list 'setf (append '(aref)
(list arrayname)
indexname))
(list 'new))))

PRIPPIPIPY

; Given an array and an index, array-transpose will take
; the array and rearrange the data according to the

; index. For a two-dimensional array, the only

; transpose is the (2 1) transpose (switch rows and

; columns). A three-dimensional array can have six

, different transpositions. A typical call is:

; (array-transpose a '(2 1 3))

; If a was a (2 3 3) shaped array, the (2 1 3) transpose
; _will return an array with shape, (3 2 3).
; This function is a version of the APL dyadic array
transpose.
(dcfun array-transpose (arrayname index)
(let ((newarray (make-array (list-transpose
(array-dimensions arrayname)
index)
:initial-element '0)))
(mac-doarray arrayname
((let ((translist (11st-transposc indexlist index))
(newelt (array-index-elt arrayname indexlist)))
(array-indexname-assign newarray translist newelt))))
newarray))

..........

PPNV

; Amy reshape will take the given array and the newshape
; (list) and will make a new array with the newshape.

; Elements from the given array will be stuffed into the

; new array in row-major order. Once the elements from
; the given array are exhausted, the next elements will

; come from the beginning of the array. (The idea for

; this function comes from APL.

(defun array-reshape (arrayname newshape)
(let ((newarray (make-array newshape
:initial-element '0)))
(mac-doarray2 arrayname newarray
((array-indexname-assign newarray

indexlist2
(array-index-elt arrayname
indexlist1))))
newarray))

71

5
-
v

Y T

"ot e

LR EN

L Ll
LN WP

S

¢ ;
48"

XXX N

&
Given two arrays of the same shape and size, array-mult- 3
; elt will return an array which is the result of 0
; multiplying the two arrays element by element. ,
(%
(defun array-mult-elt (array1 array2) .

[k

(let ((newarray (make-array (array-dimensions array1)
:initial-element '0)))
(mac-doarray newarray .

((let* ((eltl (array-index-elt array 1 indexlist)) .
(elt2 (array-index-elt array2 indexlist)) '
(newelt (* eltl elt2))) :
(array-indexname-assign newarray indexlist .
newelt))))
newarray)) .
; Array-div-elt is the same as array-mult-elt only for
; division. -
(defun array-div-elt (array1 array2) R
(let ((newarray (make-array (array-dimensions arrayl) -
:initial-element '0))) : N
(mac-doarray newarray -
((let* ((eltl (array-index-elt array 1 indexlist)) by
(elt2 (array-index-elt array?2 indexlist)) .
(newelt (/ eltl elt2))) 3
(array-indexname-assign newarray indexlist -
newelt)))) -
newarray))
b
M ~
: List-index-delete will return a list with the indexed .
; element of the original list deleted. ~
(defun list-index-delete (list index) -

(list-index-deletel (reverse list) index 1 (length list)))

(defun list-index-delete] (list index cnt stop)
(cond
((= cnt (+ stop 1)) (reverse list))
((= cnt index) (list-index-delete] (cdr list)
index (1+ cnt) stop))
(t (list-index-delete 1 (append (cdr list)
(list (car list)))
index
(1+ cnt)
stop))))

72

. - . i Nt R L e Sty
k"._! m&’:’-ﬁ' N4 :(-'_fgf;:-:u:g N -,h'h'.)'.\’.'l:'l RPN RIRATDA AL AN

2999999999

; An-ay-sum-rcduce will return an array that consists of
; the sum of the given array across a specified direction
; (of dimension). In this case, dir is 2 number counted
; from the right of the array dimension list.

(defun array-sum-reduce (arrayname dir)
(let ((newarray (make-array
(list-index-delete
(array-dimensions arrayname)
dir)
:initial-element '0)))
(mac-doarray2 newarray arrayname
((let* {(newindex (list-index-delete indexlist2 dir))
(newelt] (array-index-elt newarray newindex))
(newelt2 (array-index-eit arrayname indexlist2)))
(array-indexname-assign newarray newindex
(+ neweltl newelt2)))))
newarray))

73

/.
“d
‘d
Sd
“d
:‘
N
R
2
N
R

‘
o
D
[|
~
. L]

P g ..' -

APPENDEX B USER MANUAL

"helpt", in the influence diagram toolbox.

INFRIIIIIPTY
v

; A primitive on-line help file.

(defun helpt ()

Top-Level Commands
(print ((arcrev nodea nodeb) - 1s the user level command
which will reverse the probabilistic inference between

nodes by adding arcs and performung Baves rule))

Supporting Commands
(pnint ((addarcs nodea nodeb) - adds arcs to the
predecessor inodea) and the successor ‘nodeb so that

the descnptor hist of nodea equals the predecessor a1 oeen

o

The software has been designed so that the analyst does not need to have a "User's

N .
P N WS

Manual" to be able to use any or all commands. This appendix is a print of the help file.

-d

b

P4 -l‘ -l:‘ .

' ‘.;n{'."-("’-’)

§ A
20 NN

s,

v

-
.

< -

-
o
.

-
.

PP S R A'A\.AA.J

(print '((array-transpose array translist) - returns a new

array consisting of the elements of array created by
using translist as a mapping function to write to the
new array. In APL, this function is known as a dyadic
transpose.))

(print ‘((array-indexname-assign arrayname indexname newelt)
- makes the specified destructive assignment to the
indexed position of the array. Indexname is a vanable
that is a list which is a valid index to arrayname.))

(pnint ‘((array-index-assign arrayname index newelt) - makes
the specified destructive assignment to the indexed
position of the array.))

'pnnt ((array-index-elt arrayname indexlist) - returns the
element of the array (arrayname) located by the
indexlist.))

print {(array-reshape array newshape-list) - returns an
array of new dimensions list, by using the elements of
array |l 1n row major order.))

prnt ((array-mult-elt array | array2) - returns a new
array formed by multiplying element by element array |
and amayl.))

print i(array div-elt array 1 array2) - retumns a new array
formed by dividing element by element array | by

arrav?2))

APIQUNS | TVRPERIE,, TN T

75

e AR

.- . AN NS R e S N L M L S A, R S AP o T RO
!s‘;’."a .'a'.“’;"s";“ ;"-:‘:s‘.;"\"\':':s"\.'L\':s‘;s'l.' e e - A AT, PRI S A i SOk

(print '((array-sum-reduce array right-dim) - returns an
array by summing down the right-dim dimension of the
array. Right-dim is an index of the dimension list
denoted by counting from the right. The function is

implemented in this way because the meaning of a given

dimension is invariant to the length of the dimension "
list if counted from the right.)) ;
(print '((char-less charl char2) - compares two characters :
to see if charl is alphabetically less than char2.)) '
(print '((char-greater charl char2) - compares two E

characters to see if charl is alphabetically greater
than char2.))

(print '((extend key a-list) - used in frames.))

(print '((fclear frame slot facet) - clears the values from
the specified facet.))

(print '((fget frame slot facet) - returns the value
associated with the named facet.))

(print '((fget-frame frame) - returns the frame.))

(print '((follow-path path a-list) - used in frames.))

(print '((fput frame slot facet value) - places the value in

:
y

4

the frame.))

.

rpnnt ((fremove frame slot facet value) - removes a value :1:
from the frame. 3

print ((fremove-slot frame slot) - removes an entire 3_'

slot.)

n

st fsetframe slot facet value) - destructively sets

76 .

the value of the facet.,,

(print ‘({(fse1-List frame slot facet value-list neweit.
inserts newelt into the value-list (non-destrucuve; .,

(pnint ((get-prob-array node) - gets the probabiiity array
at the node .))

(pnint ((get-preds node) - retums the predecessor st of
the node. })

(print ‘((get-descr node) - returns the descnptor list of
the node.))

(print ‘((get-name node) - gets the name of the node)

(pnint ((10ta n) - returns a list of the numbers | through n.

(print ‘((list-transpose List ransform-list) - creates a
list by applying the transform-list as a mapping
function on the given list.))

(print ‘((list-atoms number atom) - retumns a list of the
length number consistng of the character atom.))

(print ‘((list-index-elt list index) - returns the element
of the list at the indexed position.))

(pnint ‘((list-elt-index list eit) - returns an index
corresponding to the position of the element in the
list. This function will only return the first
occurrence of the element.))

(print ‘((list-index-assign list index newatom) - a
destructive assignment of newatom to the list by the

index.))

77

(pnnt ((Lst-index-delete list index) - erases the indexed
clement of the st The list returned wall be shorter
by one element))

(pnnt ((List-lessp list] List2) - checks to see if the
elements of list] are less than the corresponding
clements of Lis2.))

rpnnt ((hist-equal list] Lst2) - checks to see if
corresponding elements are equal.))

tpnint ((list-less-eqp hist] list2) - checks to see if the
clements of list] are less than or equal to the
corresponding elements of list2.))

(pnnt ((hist-great-eqp histl list2) - checks to see if the
clements of list! are greater than or equal to the
corresponding elements of list2.))

(print ((hist-union list] list2) - returns an alphabetized
list of atoms in exther List] or list2.))

(print ‘((list-difference list] list2) - returns list of
atoms from list] that are not in list2.))

(pnnt ‘((list-rotate n list]) - appends the car of list to
the cdr of list n number of times.))

(pnint ((mac-doarray array (body)) - a construct that allow
access of the armay in row major order. Body is a list
of commands that use the indexed element of the array.
The variable that holds the current index is

indexlist.))

A AR LA

.
.l

.
- .1
78 .
b_l
i
<
".‘s& AR R PP LTS AT P JURIACI DA T T O » b T SR _:;._.
N A A_’-“‘A_{L..-_’L'A’L'LLLL“_LLL.s_\-L O g " Lonan, 2" 8% At S i

.'.\."\ -'__\.

(print ‘((mac-doarray? array| array?2 (body)) - similiar to

mac-doarray except that it will access two arrays (not
necessarily of the same number of elements) by
generating indexlist] and indexlist2 which correspond
10 arrayname] and arrayname?2. Indexlist]l and
indexlist2 are available for use in the body of the
call 1o mac-doarray2.))

(print '((print-node node) - displays the information of the
node.))

(print ‘((reversex nodea nodeb) - will reverse the
probabilistic inference between nodea and nodeb. Nodea
and Nodeb facets where the nodea and nodeb information
18 located))

(pnnt ((set-prob-array node preds array-address) - assigns
an array to a node in the influence diagram.

(pnint ‘((set-preds node preds) - assigns a predecessor list
to a node in the influence diagram.))

(print ‘((set-descr node descr) - assigns a descriptor list
to a node in the influence diagram.))

(print ‘((switch-last-two list) - reverses the order of the
two right-most elements of the list.))

t)

79

"”’) ' -wn.h-

- TN
\..__.'\.\.1.\. Vi TH ‘1“1.\.\.‘1;1.\.\.\‘1.& &.&.\A AN 4.\. 1.5.

U IS

A st et atad

Holtzman, Samuel. "Intelligent Decision Systems” PhD dissertation, 1985. Dept of
Engineering - Economic Systems, Stanford University CA 9430S.

Howard, Ronald A and James E. Matheson, eds. “Readings on The Principles and
Applications of Decision Analysis.” Vols [(1983) and II (1984). Strategic
Decisions Group.

Olmstead, Scott M. “On Representing and Solving Decision Problems.” PhD dissertation,

1984. Dept of Engineering - Economic Systems, Stanford University CA
94305.

Shachter, Ross D. "Evaluatung Influence Diagrams” Submutted to Operations Research.
Revised May, 1984. Dated January 1986. Department of Engineenng -
Economic Systems Stanford University, Stanford CA 94305.

Steele, Guy L. Jr. Common Lisp: The Language. 1984 Digital Press (Copynght by
Digital Equipment Corporation).

Tatman, Joseph A. "Decision Processes in Influence Diagrams: Foundauons and
Analysis” PhD dissertation, 1985. Dept. of Engineering - Economic Systems,
Stanford University CA 94305.

80

L ARG

.‘.‘.'.‘.{‘.‘.‘

Xi LA

’

SRS

s

XXX

Bt P

15 R SRR A

IR

%

l’

VITA e

Captain Edward R. Dawson was born on 27 Apnl 1957 at Elmendorf AFB, Alaska :Z

He graduated from high school at London Central H.S. in High Wycombe. England. in 3
1975 and has attended the University of Southern Mississippt from which he received the -
hY

degree of Bachelor of Science in Mathematics 1n August 1981, Upon graduation. he .
~

received a commussion in the USAF through the ROTC program. He was subsequently N
assigned to Headquarters Tactical Air Command, Force Structure Analysis, Langley AFB.)
N,

Virginia, until entening the School of Engineening, Air Force Institute of Technology, in >
May 198S. NY
L)

N

~

b Y

Permanent address: Route 4, Box 866 ~

South Boston, Virginia -

24592]

3

-

“'

.c.

.-‘

“

“~

N

A

RS

XY

>
’; 1

3

A

N

»
_
81 o
N
DA
j
e D
- 4-'..’.!-.1.;-;":'4 e NI AN e N N e e N A NN S

|
|

N Al P e

LG OR Y SRR N

'3/

)T1C

e T e e

AP AR

PRP AT TSI

At el e

Y D

&-'—-‘—q~“'_.- . eaCicmr. WEENEE 6 A 4 a A ASEESTE _®,-,

e Al AN aA A AP ok SRR A e e AR W 7T PRI Sy W N
1. " . . %

—

