
APV-7ft?9 549 THE INFLUENCE OIAGRAMER'S TOOLIOX(U) AIR FORCE INST OF vi1
TECH WIdRXHT-PATTERSON WOl ON SCHOOL OF ENGINEERING
E R DRNSON DEC 86 WFITIOORA160-3

UNCL SSEDD F/O9/2 M.wa III I I I I I
mhhmhhhhhhhmol

Emhhmmhhhhum
EhEElhhhhlhhEIEEEEIIIIIIIIII
IIIIIIIIIIIIIIffllfllf

El""..IIII

16

6

.

11 .5 L A 1.6

,q",
DTICi I~lIIELECTE ll

TnH MFUE DIAGRAME'S

TOLBOX

Edward P, Dawson
Captain, USAF

AFITIGORIMA/86D- 3

Approved for public release; distribution unlimited

97 032os9w 'p l '. " -"p "} ? P.J .l ?i WJ'lr IM JP... t ir •%f=r R ir~ _ L..i = . , -. • {%, rar.5 t -. .. i_ -_t. "@.I. L " 11

AFIr/GOR/MA/86D- 3

THE INFLUENCE DIAGRAMER'S F

TOOLBOX

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfilment of the

Requirements for the Degree of

Master of Science in Operations Research Acceion For
NTIS CRA&I
DMIC TAB

Edward R. Dawson Uianiotnced

Captain, USAF
By

December 1986 A',labisily CJes

Di:~t 0'U

Approved for public release; distribution unlimited ri.c

" a ". "-= Y % .:' - . 't. * * 1 .

Lis of Figurs

Fig. 1 Initial Diagram .. 7

Fig. 2 MoifiedDiag a .. 7

Fig. 3 Example Probability Tree ... 8

Fig. 4 Numerical Example - Tree ... 9

Fig. 5 Example Influence Diagram. ... 10

Fig. 6 Initial Tree and Diagram. ... 13

Fig. 7 Interim Tree .. 14

Fig. 8 Interim Influence Diagram ... 15

Fig. 9 Final Tree .. 16

Fig. 10 Final Influence Diagram. ... 16

Fig. 11 Initial Influence Diagram. .. 18

Fig. 12 Final Influence Diagram. ... 20

Fig. 13 Node Removal 21

Fig. 14 Initial Influence Diagram. .. 32

Fig. 15 Add Arc to Node G ... 33

Fig. 16 Add Arc to Node H. .. 35

Fig. 17 Arc ReversaL .. 40

Fig. 18 Initial Influence Diagram. .. 42

Fig. 19 Final Influence Diagram. 43

Fig. 20 Electronic Circuit Card .. 45

Fig. 21 Initial Influence Diagram. 46

fig. 22 Reverse Arc from A to E....... 47

Fig. 23 Reverse Arc from B to E ... 48

Fig. 24 Reverse Arc from C to E ... 48 V

Fig. 25 Reverse Arc from D to S ... 49

Fig. 26 Reverse Arc from E to S ... 50

iii -

UNCLASS IFIED
. ICURITY 1V.ASSIFICATION OF 15I PAGE

Form -~r~REPORT DOCUMENTATION PAGE OAM5No. 0704oIU

is. RPORT SECURITY CLASSIFICATION Ib. T
UNCLASSIFIED

I. SECUllrIY C.ASSIFICAknON AUTHORITY 3. DISTRIBIUTON/IA AlI.IUTY OP REPORT

Approved for public release;
Pb. OEO AT1o8N/ DOWNGRING S4EDULS distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GOR/MA/86 D- 3

Im. NAME OF PERFORMING ORGANIZATION l6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

School of Engineering AFIT/ENC _

k ADORESS (Oty, State, and ZIP Caft) Ib. ADDRESS (01y, State. AM ZIP Code)

Air Force Institute of TechnologyWright-Patterson AFB, Ohio 45433

Is. NAME OF FUNDING ISPONSORING 8ib. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Of a..icabe)

IL ADDRESS (CRy, SMts, &Wd Z/PCode) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK IWORK UNIT
ELEMENT NO. ICNO. NO CESSION NO.

11. TITLE (ncsade Scunty OCAUcdatin)

See box 19

12. PERSONAL AUThOR(S)
Dawson, Edward Rhodes, Captain, USAF

IJ& TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Yew, AMonh, Day) iS. PAGE COUNT

MS THESIS FROM_ TO_ 1986 DecemberI 89
1t SUPPLEMENTARY NOTATION

17. COSATI COOS 18. SUBJECT TERMS (Contiwe on rewse if ecemny and okfmn0t by block number)
FIELD GROUP SUBROUP Decision Analysis, Influence Diagrams
12 01 Probabilistic Inference

19. ABSTRACT (Continue on revens if neceaus" and iduntify by block numbed) I %N Akh 90
Title: THE INFLUENCE DIAGRAMER'S TOOLBOX rlaJJV2

Alt Fosce 01A;:l, cI alchnology A .-
Thesis Chairman: Joseph A. Tatman, Captain, USAF wzjgw.,.ermm MB ou 4"a

Assistant Professor of Mathematics and Computer Science

The influence diagram is a graphical modeling language for the formulation
and analysis of decision analysis and probabilistic inference problems.
This research developed a foundation for a complete set of influence
diagram tools as an extension to the Lisp programming language. These
tools can be used in an interactive manner to solve problems modeled as
influence diagrams. This research demonstrated that multidimensional
arrays and frames can be used as data structures for the storage of
probabilistic and nodal information.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
IR"UNCLASSFIED/UNLIMITED 0] SAME AS RPT. [] OTIC USERS 5UNCLASSIFIED

22a. j.NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPIHONE (Includf Area Co7d) 22c. OFFICE SYMBOL
Joseph A. Tatman, Captain, USAF 513-255-5533 AFIT/ENC

DOForm 1473, JUN 86 ft'viouseodtlons areoboItt SECURITY CLASSIFICATION OF HIS OAGE

UNCLASSIFIED
5-.. •*s* ! W % % % -.~ : s.- , * ~

",P%%"+'%'.P%' " ." /'+/'/ ,+ + .. ", +"';;+."V2-- + ;+. + "". :-' "" " . ,". " " - .". . ." ,_; "

Table of Contents

Pire . ..ace.. . . i

List of Figures iii

Abstract ... iv

I. Pro ble... ...
Background .1......
Research ob em. ...Pb 3
Research of R u. ... 3
Scope
Summary of Results ... 4

h. Rfluence Diagrams 6
Enir nt...6

Te in Between Influence Diagrams and Trees......................... S
Manipulations .. 17

Terminology .. 17
Reversing Arcs .. 18
Removing a Node .. 20
Merging Nodes .. 22
Splitting A Node Into Two Nodes .. 23

Software Requirements .. 23

S Implementation .5 .. 25
Data Reptesentation................... 25
Hierarchy of Software .. 26
Description of Arc Reversal Code ... 28
Arc Reversal Algorithm. .. 32
Example Application of ARCREV.. 41
Node Removal Algorithm. ... 43

IV. Reliability Appcation ... 45

V. Conclusions and Suggestions for Further Research 51
Issues .. 5 1
Extensions and Improvements ... 51

Appendix A Documented Lisp code ... 53

Appendix B User Manual ... 74

Bibliography ... 180

V ita81

ii

The purpose of this rseach was to develop and implement a set of tools designed to

be used for the manipultio of influence diagrams. The influence diagram is a powerful

decision analysis technique which can shed light on almost any decision problem.

Given the tools and the framework developed in this thesis, the software implementor

can incorporate influence diagrams into decoisin support systems and expert systems as

wel as any other appropriate application.

In performing the work and the writing of this thesis I have had a great deal of

support and encouragement from others, both friends and family. I especially am thankful

to my advisor, Capt Joseph A. Tatman, for being so enthusiastic and motivating in times of

joy and need. I also wish to thank Maj Steve Cross for assisting and reviewing the

development of my Lisp code. This thesis could not have been accomplished without the

love and support of my wife, Marsha, a she strove constantly to isolate me from everyday

problems. Finally, I wish to thank God for being beside me every step of the way. Truly, I

have much to be thankful for as I complete this thesis.

Edward R. Dawson

:

,, .. .j, j,',., ,j ... '. .,'., .,, • . -. ',_.,,_ . -. ._ ,'., ' .- " . ,'-" .- , -'.'' .'4i- ,.': ',, 'J' '. '.' '.. '
"

S

The influence diagram is a graphical modeling language for the formulation and

analysis of decision analysis and probabilistic inference problems. This research developed

a foundation for a complete set of influence diagram tools as an extension to the Lisp

programming language. These tools can be used in an interactive manner to solve

problems modeled as influence diagrams.

This research demonstrated that multidimensional arrays and frames can be used as

data structures for the storage of probabilistic and nodal information, respectively. Since

the array held the probabilistic data, the use of a descriptor list was introduced to lend

meaning to each dimension of the multidimensional array.

The software that constitutes the toolbox, was prototyped using the APL language

before being implemented in the target language, Lisp. This was advantageous in that APL

was used to discover the correct array transformations that form the basis of the tools.

The results of the software development indicate that the multidimensional array is a

natural and effective foundation upon which to build a complete set of influence diagram

tools. : .

I
iV ~

:1,71

THE INFLUENCE DIAGRAMER'S

TOOLBOX

L Introduction

Background

Many decision problems have a number of interrelated uncertain variables and

alternatives. Decision analysis was developed to handle problems of this type based on a

firm analytical basis. One of the major techniques used in decision analysis for structuring

the problem at hand is the influence diagram. An influence diagram is a graphical

representation used to model a problem in terms of probabilistic variables and decisions.

The diagram is a network with directed arcs and no cycles. Nodes in the diagram represent

chance information and decisions. Arcs into a chance node represent probabilistic

dependence upon the root node of the arc. Arcs into decision nodes represent the presence

of information at the time of the decision. The diagram explictly shows information flow

and probabilistic dependence. For a complete description of influence diagrams see

Shacter, "Evaluating Influence Diagrams," 1986.

Historically, the idea of an influence diagram was to describe the structure of decision

problems to computers for manipulation. They were first developed by researchers in the

Decision Analysis Group of SRI International who were working, under contract to the

Defense Advanced Research Projects Agency(DARPA), to develop computerized aids for

decision analysis. To date, however, influence diagrams have been used primarily as a4

communication tool between the decision maker, the analyst, and functional area experts.

When a solution was desired, the influence diagram was translated into the corresponding

decision tree before analysis. It has been shown though that the influence diagram can be

used as the data structure for analysis and decision trees are not necessary for solution

(Olmstead, 1984:12).

The influence diagram serves several purposes. It identifies and describes the

interrelationships between the problem's variables. It is an important tool for

communicating between the decision maker, his experts and the analyst as well as between

the analyst and the computer. The influence diagram has proven to be an effective

representation for both formulation and analysis of probabilistic inference and decision

analysis problems.

For example, the influence diagram was used to model a toxic chemical problem.

Specifically, the decision involved the determination of the carcinogenicity of the chemical

and whether to ban, restrict or permit the use of the chemical. (Howard, 1984:747)

Another example is the selection of mission configurations in the Voyager Mars

project conducted by NASA. The problem was to select the appropriate spacecraft

configuration that would meet cost and benefit goals. Tatman showed that the simple pilot

model used in the NASA analysis can be modelled as an influence diagram. (Tatman,

1985:138-9) The diagram shows clearly that the configuration of the second mission must

be selected before the outcome of the first mission was known. This type of insight is a

valuable commodity to the decision maker and is an inherent benefit of the influence

diagram representation. .

Initial research has begun to explore the use of influence diagrams as an integral part

of a decision system. In his dissertation, Samuel Holtzman proposes the use of an

influence diagram to embody the formal decision model as a data structure in an intelligent

decision system. (Holtzman, 1985:139). He illustrated his ideas by implementing a

intelligent decision system named RACHEL, a laboratory expert system designed to aid

infertile couples and their doctors in the selection of medical treatment (Holtzman,

1985:155-6).

2

The focus of this research is the development of a sufficient set of tools for

building and analyzing influence diagrams. This set of tools can then be used as building

blocks in the development of software systems that use influence diagrams. Given these

tools, Air Force analysts will be able to apply them to model and analyze decision problems

of interest to the Air Force. Since the tools are highly portable, they are available to all Air

Force analysts. Insu'uctions for obtaining the toolbox software is given in Appendix A.

Several efforts have resulted in influence diagram solvers. SUPERID written in Lisp

runs on the DEC-20. Leonard Bertrand is working on the IBM PC to build an influence

diagram solver in SMALLTALK. An influence diagram solver (DAVID) has been

programmed by Ross Schacter on the Apple Macintosh. All of these efforts are oriented

toward a packaged environment for influence diagram analysis. This effort differs in that it

provides a standard set of independent tools that may be incorporated into higher level

software systems that use influence diagrams, such as decision analysis aids, intelligent

decision systems, reliability analysers, and other software systems. These tools will be

portable, available, and well- documented to facilitate their use as building blocks.

B. Research Problem

The goal of this thesis is the development and implementation of a highly portable set

of influence diagram manipulation and analysis tools. The tools can be considered as an

extension of the Lisp programming language. They will incorporate influence diagram

operations into Lisp. This set of tools should facilitate the development of higher level

software systems that use influence diagrams to represent probability and decision

problems.

C. Research Objectives

To achieve the above goal, this thesis will develop and implement influence diagram

manipulation tools as an extension of Common Lisp that are: highly portable, robust and

.~... d

modifiable. Portability will be insured by the use of a development language that is

implemented on a wide range of computers: from micros to mainframes. The second

characteristic, robustness, is an inherent characteristic of the software itself. For a tool to

be considered robust it should function in a uniform way on structures of varying degrees

of complexity. The modifiability characteristic is incorporated by the use of a language that

is widely accepted and by well documented code. !

The various data structure alternatives that can be used to represent an influence Si.

diagram in a computer language must be explored. Also, the basic set of tools or building

blocks that should be included in the toolbox must be decided upon.

It will be necessary to determine the proper software development environment.

Specifically, the implementation language chosen should be capable of handling recursion,

frame-based knowledge representations, and multidimensional array manipulations. Most

importantly, the language chosen must allow the influence diagram tools to be broadly used

in building software systems that utilize influence diagram concepts. The language, while

developed on an IBM compatible, must be portable to minicomputers (such as the VAX

11/180), other microcomputers, and computers optimized for development of artificial "-

intelligence systems. The use of the toolbox must be demonstrated by a simple application.

D. Scope

This research will be limited to influence diagrams that contain only chance nodes.

Given the data ind programming structures developed in this process it will not be difficult

to incorporate deterministic and value nodes.

E. Summary of Results

This thesis has shown the implementation of influence diagram tools to be a viable

and valuable effort. With the foundations of the software environment, simple influence

diagrams can be solved interactively by the analyst.

4

4°

The use of multidimensional arrays was shown to be an effective and intuitive

structure for storage of the relevant probabilistic data. Further, the frame structure has been

used to represent an influence diagram in a straight forward and easily understood manner.

The development of these tools is significant for three reasons. First, the tools will

allow the resolution of an influence diagram down to some target diagram. For example,

an arc reversal corresponds to performing probabilistic inference via an application of

Bayes' rule. As the analyst uses the tools, he has full access to any intermediate results and

can gain insight as the problem is being solved. Secondly, the tools can be modified to

reflect some theoretically new influence procedure and then used to experiment on various

problems. Lastly, the tools may be incorporated into higher level systems such as expert

systems that model uncertainty.

The algorithms developed in this thesis, because of the use of multidimensional

arrays, are a straight-forward translation of mathematical theory into computer code for

manipulating discrete probabilistic data. Because of this fact, the code for the tools is

succinct and simple.

The following chapter will introduce influence diagrams and the permitted

transformations of the influence diagram before discussing the characteristics required of

the software used to implement the influence diagram tools. The third chapter then presents

the software implementation developed for this thesis including the data structure and the

applicable functions defined in Lisp. The fourth chapter, will illustrate the influence

diagram tools developed in this thesis by the solution of a reliability problem. Lastly,

conclusions and further research guidance is given in the final chapter.

5

' . .. -) _)% % .e 'a. ".) , .- .' -" .' -" -°. ". " ". " -" ." . .e " , .r • '0 . • ., '. -,,- .," • ,")" , " % , .. . e =,e , , ,I-oe 4

IL Influence Diagrams

The chapter will introduce the decision analysis probability inference environment as

it relates to this research. After describing the types of problems, the mathematical

manipulations allowed on influence diagrams will be covered. The final section of this

chapter will detail the requirements that the software must satisfy.

A. Environment

Many decision problems are characterized by a set of uncertain events known as state

variables. A state variable's uncertainty is defined by the use of probabilities to describe

the likelihood of possible outcomes. It is often necessary to know the cumulative effect of

all state variables to the possible outcomes. The cumulative effect can be found by forming

the joint density of the desired state variables.

For example, if a, b, and c are the state variables and S represents the current state of

information, then the joint density is described by {a,b,c I S1. The joint density of n state V.

variables can be expanded as n! different products of conditional densities. For example,

fa,b,c I S} = {c I a,b,S} {b I a,S) [a I S). (1)

If it is known that

{b I a,S} = tbIS) (2)

then the joint density can be written as:

{a,b,c I S} = c I ab,S} lb I S) [aI S). (3)

This expansion reduces the level of effort needed to solve the decision problem

containing these state variables because it allows the conditional independence between the eN

random variables to be exploited.

6

i T
N .ti

An influence diagram is a graphical representation of the decision problem in which it

is modelled the relevant conditioning probabilities. In the influence diagram, circles

represent state variables and arcs represent pairs of conditioning and conditioned variables.

For example, (1) can be modelled as shown in Fig. 1.

Fig. 1 Initial Diagram '

This is an identity influence diagram because it corresponds in a one-to-one manner to

the expansion identity and it is always a correct representation of the joint density of the

state variables. Using the fact (2) gives the modified joint density (3) which is described in

the following influence diagram (Fig. 2).

'ft

Aa

Fig. 2 Modified Diagram

The influence diagram, then, shows in a readily understandable graph the conditional

dependence and, more importantly, the conditional independence among the variables. 2
Since each term of an expansion or identity equation represents the associated

probabilistic data and each node in the influence diagram represents only one term in the

expansion, the node can hold the probabilistic data associated with the term of the

7 ,

J

Where Al represents the

{XI I A, S outcome I of node A. and
X2 Y{Xd At, S} is the probability

A X (2 ,S; of o ne I of node X given
the I outcome of node A and

XS} At sa of infoe S.

X2

JXI Al, iS

-Z

Fig. 3 Example Probability Tree E

expansion. As will be shown later, this data can be stored as a multidimensional array with

each dimension rereeting the influence from a conditionig varible and the last

dimension represent the possible outomes of the nod.

The Relationship Between Influenc Diagra ad Trees

The standard technique of decision analysis is the decision tree. The structure of this ,'

tree is a representation of the decision problem and is arranged to reflect the modelling of

the problem. The decision tree is composed of a decision, various alternatives, chance I

nodes, outcomes of the chance nodes and values. Since this thesis is concerned only with

modelling the chance events of a decision problem, the preceeding Fig. 3 shows the basic,.

elements of a probability tree.q

~.?

8Y 2S
Y,~

I A IS

~~X 6 .. %,

.j ~ ~ A I 'X'2 S ~ ~ P...* *..~~ ~.\~.

0.162

0.378

0.216
Xz .6

.4.7

.X 0.024

X2

.2 2 0.008

1.00

Fig. 4 Numerical Example - Tree

Notice that there are three levels of the tree corresponding to chance nodes A, X, and

Y. To solve the tee, a procedure known as "rollback' is used. This procedure will give

the composite effect of the probabilities along each sub-branch of the tree. This composite

effect is the joint density of a sub-branch and is formed by multiplying the probabilities

along the branch.

Using the structure in Fig. 3, the solution of a numerical example of the tree is

shown in Fig. 4.

I
9

. ,

Notice the set of numbers on the right hand side of the tree. These numbers are the

joint density of the tree and they describe the probability of each possible outcome. For

instance, the top-most number is found in this way.

{A,, XI, Y, I S} = {A, I SI{XI I A1 ,S}{Y 1 I X1 ,A1 ,S}

0.162 = (.9)(.6)(.3)

That is, the joint probability that the outcome of node A is one, the outcome of node

X is one and the outcome of node Y is one equals 0.162.

There are two important points about the above example problem that need to be

stated. First, notice that there are three levels of the tree. These levels correspond to the

chance events A, X, and Y. Secondly, the probabilities of the outcomes of node X vary

according to the probabilities of the outcomes of node A. Most importantly, also notice that

while the probabilities of the outcomes of Y vary with the outcome of X, they do n= vary

according to the outcome of node A. Notice the numbers that are the probabilites of the

outcomes of node Y in the top four sub-branches are the same in the bottom four sub-

branches.

The corresponding influence diagram for the example is shown in Fig. 5.

_ I
Fig. 5 Example Influence Diagram

This diagram denotes the three chance events, A, X, and Y and the "influence" on

each node. The circles represent the event and the arc denotes the influence. The root node

10

S~b

of the arc is known as the conditioning variable and the head of the arc is the conditioned

variable. Thus, the influence diagram is a compact representation of the set of variables

that condition the expansion of a joint probability density. In essence the previous

influence diagram describes the following equation:

{A, X, Y I S} = {AI S}{XI A,S}{Y I X,S}

The three terms on the right relate to the three nodes of the influence diagram. Since

the nodes are the repository of the probabilistic information, any automated manipulation

algorithm will need to relate the storage of probabilistic data to the chance nodes. For

example, the data of the above example can be described by the following arrays:

X Y
Outcomes 1 2 Al1 2 Xl1 2

.9 .
1 .6 .4 1 .3 .7
2 .8 .2 2 .6 .4

where the possible outcomes are used to index the array. For example, the "

probability the outcome of Y is I given the outcome of X to be I is 0.3.

In fact, {X I S} can be found by performing the following array multiplication: .3

Prob of X given S = AX

[.62 .38] [.9 .1] [6 :]

So the probability of X1 is 0.62. Notice, the left hand side is not conditioned by the

outcomes of node A. In fact, the probabilistic data reflect the influence from node A.

Also, since arrays are used to represent the data, the array multiplication operation can be

used to find the needed information.

1*1

Comparison of the Manipulation oa Dedsion Tree and the Corresponding fLmence

DI-gi

Since an influence diagram can be considered as the equivalent of the decision tree,

the influence diagram can be used to solve probabilistic problems without using a decision

tree.

For example, a common operation in the decision tree domain is to switch two

adjacent levels of the decision tree. Since the two levels are adjacent, a probabilistic

influence exists between the two levels. In the probability calculus, the above operation is

an application of Bayes' rule, i.e. if Y conditions X then,

{Xj Y, S} =.I _

where {Y I S) can be found by

lY I S) {XY I S}.

In the related influence diagram, this operation is shown by reversing an influence arc

between two nodes.

Using our example, the operation is demonstrated below in terms of the decision tree

and the influence diagram For the reader's convenience, the initial state is redisplayed here

in (Fig. 6).

12

-I

Decision Tree

.3 .18 - {X1, Y, I A,, S1

X.7.42 = {X 1, Y21A,, S)

.6 .24 - {X 2 , Y1 I A,, S)

.4 !

t'S

.4 .08 = {X2, Y2 1 A2 , S}

p.

..

A2 .6.12 {X2,Y1 IA2,Fig. 6 Initial Tree and Diagram

Since the X and Y levels of the decision tree are to be reversed, the joint density of X

and Y is shown as the right-hand side of the ft=e. The next step is to find

{Y IA,S}1. We want:

{Y1 IAl S) = X1,Y1 I A IS) + {X 2 ,Y 1 JAIS).

= .18 +.24 = .42

13,

13 :

U "

Notice that we have summed over X. Likewise, the following terms are found:

{Y2 1 A,SI =.58

{Y1 I A2 ,S = .36

{Y2 1A2,S} =.64

The decision tree is now updated to Fig. 7

5S

.42.

.9 1
Al

.5s 5,

< 2 .58
.36

Yl %

A2

.64
Y2

Fig. 7 Interim Tree

14

.'

"..,," ',WX ' ,.* ,'', *,-.,.,,',,:.;..' ',".% %, - ' .- %.',.,'-'3'-.- 7,'. ,"',:", .".... ' , - .," "'"; " '" " " ; "".-. ." " """ -'",. ,

Since Y is now influenced by A, the interim influence diagram is Fig. 8.

A

Fig. 8 Interim Influence Diagram

Now Bayes' Rule is applied to find {X I YA,S}.

For example, we want.

{Xj, I Y, A, S) { X1, Y I Al, S)

- .18/.42 = 0.429

le

1

p'.!

.1

15 .

C V .; o ,. .- -.-..- <-. -.. .. ,-V.... . . -.. .. -- ," ".

-'I - -. -, , i .W fj , r :, . . , : l l ' z fl a ",, :: ; . = ry U: ,= a n U . c .a aY _9 a , : .'. T .-,: , ,, =

Continuing in this manner, the resulting decision tree is:

.429•I
Al .724

.276
X2

.66
.36 Y4

" i .37

.8252

'

Fig. 9 Final Tree

The corresponding influence diagram is:

Fig. 10 Fina Influence Diagram "

16
[]

U-

p
where the node arrays for Fig. 10 are:

x Y
A A Y 1 2 A 1 2

1 1 .429 .571 1 .42 .58
.9 .1 1 2 .724 .276 2 .36 .64

2 1 .66 .37
2 2 .825 .125

The operation is now complete. The probabilistic arrays for the influence diagram are

found by manipulating the initial arrays in a precise manner. This process will be presented
p

in the section describing the arc reversal implementation in Chapter 3.

To summarize, this section has shown the close relationship between decision trees

and influence diagrams. It was also demonstrated that the influence diagram can be a

reposititory of probabilistic data and that data can be stored in an array. Indeed, the final

array for node X in the example, is a multidimensional array of rank 3 and the list (A Y X)

describes the dimensions of the array. For instance, the probability that X is one when A is

two and Y is one is 0.66. Notice that this probability is the (2 1 1) element of the node

X's probability array.

B. Manipulations

One of the primary objectives of this research is to show that the operations of

probability theory as applied to influence diagrams can be effectively implemented using

multidimensional arrays. By applying or transforming the influence diagram, insight is

gained in terms of probabilistic information.

1. Terminology

Before proceeding to describe the relevant transformations of the influence diagram

and its associated data, it is necessary to define the relevant terminology. An influence

.40
17 I

diagram is a directed network characterized by a set of elements and a subset of the possible

ordered pairs of the elements. Each node is an element and each arc represents an ordered

pair of elements. Given a node, x, the following terms are defined:

PX = the predecessors of x are tlose nodes that have a directed path to x.

DPX = the direct predecessors of x are the nodes that have an arc directly to x.

SX = the successors of x are those nodes that have a directed path from x.

DSX = the direct successors of x are the nodes that have an arc directly from x.

Other combinations have similar meanings, i.e., PSX is the set of predecessors of the

successors of the node x.

There are four basic operations allowed on chance nodes: reversing the arc between

two nodes, removal of a node, merging two nodes, and splitting one node into two nodes.

These operations will be discussed in the following sections.

2. Reversing Arcs

The reversal of an influence arc corresponds to the application of Bayes' rule in

probability theory. The situation prior to the reversal is shown in the example diagram

below:

A B C

Fig. II Initial Influence Diagram

where PX = (a b)

PY = (x b c)

18

. ,.. " ".*. -. ". . "74 - 4. .4 .. 'm"

The arc to be reversed in this example is between node x and node y. Notice that no

successor of x may be a predecessor of y. If this were the case, a cycle would be created

by the reversal of the arc between x and y. This means the reversal can be performed only

ifSX r PY = o.

Corresponding to the above diagram is the following joint density:

{a,b,c,x,y I SI = {a I SI {b I S} {c I S} {x I a,b,S} {y I x,b,c,S} (4)

Using the above defined terminology, (4) is rewritten as:

{a,b,c,x,y I SI ={a I S1 {b I SI {c I S} {x I PX,S} {y I PY,S}.

S{a I S1 {b I SI {c I S1 {x I PX,S} {y I x,PY-x,S}. (5)

where" ~" denotes set difference.

To do the actual reversal requires three steps. First, the joint density of x and y is

formed by the product of the two associated terms:

{x,y I PXY,S} = {x I PX,SI {Yl x,PY-x,S}. (6)

where PXY is the set of direct predecessors of either x or y.

The second step is accomplished to get

{y I PXY,SI = Ix {x,y I PXY,S} (7)

The third step is the application of Bayes' Rule:

{x I y,PXY,S} = {x,y I PXY,S}/{y I PXY,S}. (8)

Now equation (5) becomes:

{a,b,c,x,y I S1 = {a I S) {b I S} {c I SI {y I PXY,S} {x I y,PXY,S} (9)

where PXY =(a b c).

19

19

U
.'2 .'.2. *.''.'',' " "" .Z."",'..'..a'' .2, ,t. '_. ;-L'.." L'.'' ... '." ." .'j" "" .L.'J¢,''.''... . ". .'..'L" "'L-'.'L',''.''.'' . .'' " " .1*

The influence diagram for equation (9) is in Fig. 12. b,

Fig. 12 Final Influence Diagram

Comparing this diagram with the previous influence diagram, the result of the arc

reversal is two-fold:

1. Influences (arcs) have been added from all direct predecessors of x to y.

2. Arcs have been added from all direct predecessors of y to x.

Notice that if the arc reversal is again applied on the arc between y and x, no arcs will

be added since PX-y = PY.

3. Removing a Node

The removal of a node represents summing out the relevant state variable from the

joint density array of each ofthe node's successors. Let x represent the node to be

removed. A necessary precondition of this operation is the intersection of the set of

predecessors of the successors of x and the set of the successors of the successors of x

must be the empty set. This rule must be met so that no cycles will be created as a result of

the removal operation. After this condition has been met, the first step is to form the
N

relevant joint density by the following equation:

{x,SX I PX U PSX-x,S} = {SX I PSX,S} {x I PX,S}.

20
SI

%,4.
A

Once the joint density has been formed, the next step is to sum out the influence from

node x. The following equation describes this step:

Ex {x,SX I PX U PSX-x,S} = 7,X {x,SX I PXusx,S} = {SX I PXu,S}

The final step is to expand the previous expression into terms representing each of the

successors of node x. If node x had only one successor, this step is not necessary.

Notice that an arc is added from every direct predecessor to every direct successor of

x. Also, an arc will be added from every direct predecessor of every direct successor of x

to every other direct successor of x. An influence arc must also be added between every

pair of direct successor nodes of x while maintaining the previous order of conditioning

variables.

The removal operation will be described below in terms of removing node g into node 'Ar

h of the example diagram shown below.

GH

A B

Fig. 13 Node Removal

21

.C• . • . - 'C * . • C %- -

Since there is no successors of node h, the precondition has been satisified. The

three basic steps are outlined below.

1. Form the joint density:

{g,h I ab,c,S) = {h I b,cS} {g I a,b,S}.

Since node g and node h do not have the same set of conditioning variables, arcs

must be added. The following expression shows that arcs have been added from

node a to node h and from node c to node g:

{g,h I a,b,c,S} = {h I ab,c,S} {g I ab,c,S}.

2. Form the new array for node h by summing out g from the joint density:

AH I S {g,h I ab,c,S} = {h I ab,c,S}.

3. Since there is only one successor to node g, no expansion is necessary.

The operations of node removal and arc reversal are the only manipulations necessary

to reduce an influence diagram to a single node. This is a consequence of the fact that

every influence diagram has at least one conditionally independent node (i.e., no direct

predecessors) and at least one node with no direct successors.

However, in many decision problems, it is desired to reduce the influence diagram to

some specified subset of nodes and influences. To facilitate this goal, two more operations

are needed. These operations are: merging two nodes and splitting a node into two nodes.

These operations will be summarized in the next two sections. The reader is encouraged to

refer to Olmstead, p18-21 for further information.

4. Merging Nodes

When two nodes are merged, say node g and node h, an influence to g or h will now

be an influence to the combined node, g-h. Also an influence from either g or h will be an

influence from the merge node, g-h. A precondition of this operation is that the resulting

graph must have no loops, i.e., the intersection of PGH and SGH equals the empty set.

22

,-.,, . -. .-.-. ,- . --, .- ,- , .. ,.,- , ,-.. ,7 - - ,," , ,7-:.-,, - . - . ,. . U-

I- --. I1- J I I -

5. Splitting A Node Into Two Nodes

This operation can be considered the inverse of merging two nodes. Each influence

to or from the candidate node will require an influence to or from each of the two resulting

nodes.

For example, if the node g is to be split, then everywhere g appears it must be

replaced by (gl,g2) and the term {g I PG,...} must be split into the product of two terms,

one for each of the resulting nodes. Also, an inference will be needed between the two

resulting nodes.

It is not clear what the two terms are that must be formed from the above product.

This idea will be discussed in the section on suggestions for further research.

No preconditions need to be met for the splitting operation.

C. Software Requirements

This thesis effort has been directed to implement the Influence Diagrammer's Toolbox

for Air Force analyst's use in addressing decision problems. Since decision analysts have

access to a variety of computer resources, it is necessary that the software developed be

implementable or portable between a diverse set computer operating systems and hardware.

This requirement also means that the language chosen for implementation should be a

standard language that is widely avalable. The toolbox can also be considered standard in

that the influence diagram transformations are recognized as mathematically precise and

sufficient for the solution of the influence diagram. These transformations are value-

preserving reductions becasuse no information is lost in the transition to the resulting

influence diagram.

A specific tool should also be robust. By "robust", it is meant that the tool should be

able to handle diverse variations of the given nodes. For example, the arc reversal tool

23

U
* - . .
A'~ ~~ ' UU J

should be able to handle nodes that have different number of outcomes, predecessor lists

that are not equal, and arrays of different rank.

The tools developed should be modifiable since they may be applied to influence

diagrams which model a specific decision problem. If the modelled probelm should require

some specific structure or consideration, the tool should be amenable to modification to

reflect the new characteristic of the problem. The tools may also be used to explore new

types of nodes and influence diagram formulations that have been hypothesized to improve

methods of solution for decison problems.

Because the software tools must be portable, robust and modifiable, certain A

characteristics of the development and/or the implementation language are necessary. Since

the influence diagram contains all relevant data, the software environment should to able to

support a frame or frame-like data structure that is easily accessible and understandable.

Furthermore, the language chosen will feature multidimensional ar,'ays as a primitive data

structure for the storage of probabilistic data.

Because of the portability requirement, the language should be a language commonly

available and implemented on a variety of computers. Modifiability dictates the selection of

a language that is easily understood (i.e., not cryptic) and will allow a structured

programming hierarchy. Both the robustness and modifiability requirements are primarily

the responsibility of the programmer, but the language selection has been guided by the

ease of which the requirements are met.

The language chosen for this effort was Common Lisp. Although no commercially

available version of Lisp adheres fully to the Common Lisp standard (Steele), it was

determined that a version that formed a sufficient subset of Common Lisp would be

satisfactory. The specification of Common Lisp prescribes the use of frames and

multidimensional arrays as basic to the language. The specific software used in the

development of the thesis software was IQCLISP, by Integral Quality, Inc.

24

1_._AA& -

131 INMEENTATION - PROCESS OF DISCOVERY

This chapter introduces the influence diagram software tools. To do this, the data

represetation is discussed as it relates to the influence diagram, the organization of the

software is presented, and the algorithm for the arc reversal is related through the

application to a specific example.

A. Data Representation

Since the influence diagram has been proposed to hold all of the necessary

information to represent the decision problem, the data structure chosen should mirror an

influence diagram as closely as possible. The data structure should allow the grouping of

data elements as the characteristics of a single node. One of the most important data

elements is the probability array of the node. It is desired that multidimensional arrays be

used because each dimension can be designated to a specific conditioning state variable and

thus gives meaning to each element of the array. By using the multidimensional array,

well- defined array accessing functions and mathematical characteristics can be exploited in

the software implementation. For the above reasons, the "frame" data structure was

chosen. The general frame is represented as shown below: I
(frame

(slot '-1

(facet (value))))

An example of a simple influence diagram in frames is:

(id
(nodea (type (probability))

(predecessors 0)

25

z -I

I'._d%'... ,'." "% ',-tm% =-'-'''o"." • • -- ".", I " "t " _¢ t ,',_€ , ,_t ,"¢ t~~a,~ at#_'Uw

(descriptors (a))
(name a)
(data (0.7 0.3))))

(id
(nodeb

(type (probability))
(predecessors (a))
(descriptors (a b))
(name b)
(data ((0.7 0.3)
(0.5 0.5)))))

Two points need to be made at this point. First, since the descriptor list and the data

arrays are closely related, (i.e., the descriptor fist "describes" the dimensions of the array),

it is desired that the descriptor list be in some defined order. Since, in this implementation,.%

the nodes have alphabetical names, alphabetical order will be imposed on the first n -I

elements of the descriptor list. Since the first n -1 elements of the descriptor list constitutes

the predecessor list, the predecessor will also be maintained in alphabetical order.

Secondly, the last element of the descriptor list is always the node's name. So alphabetic

order is enforced on only the first n -I elements of the descriptor list.

The next section of this thesis will describe how the toolbox software is organized.
.4.
J

B. Hierarchy of Software

The software is organized into three areas: Construction tools, ID tools, and

Supporting functions. The Construction tools are designed to allow the user to build

influence diagrams and edit or delete information stored in the nodes or relationships

between nodes. ID tools are those functions that are mathematically correct transformations

of the influence diagram. The ID tools include all four of the operations described in

Chapter 2. The Construction tools and the ID tools are considered to be "Top-Level" tools

because both sets of tools are available to the user at execution time. That is, the user is

free to use the Top-Level tools to analyse a decision problem. Top- Level commands are

different than the Supporting functions which are introduced next.

26

7,U
Le"&,

The Suppoting functions are the software needed to implement the Top-Level

Commands. Although these commands are available at runtime, they support the Top-

Level commands. The software was organized in this manner so that changes to the code

would be localized to the appropriate function and, therefore, the code is easily modifiable.

The next section will describe the Top-Level commands.

Top-Level (User) Commands

Consbuction Tools

The list of tools given below represents a minimal set of operations that are needed to

construct valid and representative influence diagrams. Currently, only the PRINT-NODE

function has been built and tested. For developmental purposes, the influence diagram

representation in a frame was loaded at runtime. An example of these test frames is given

in Appendix A. A brief description of the Constructor functions are given below.
'.

BUILD-NODE - allows the user to build a node and integrate it into the current

diagram.

EDIT-NODE - allows the user to change the name, predecessor list, descriptor list,

type, and data associated with a given node.

DELETE-NODE - allows the user to erase a node from the current diagram. Also

prompts to move or remove current arcs (dependencies).

SHOW-I-GRAPH - presents the current influence diagram graph. 4I
PRINT-NODE - presents the information associated with a specified node.

ID Tools

Of the influence diagram manipulations described in Chapter 2, at present the

ARCREV tool is the only tool that has been built and tested. A continuation of this thesis

would center upon completion of the remainder of the influence diagram manipulation

tools.

27

.. - . '..: .-. , .-...:...- , ".' ;.... ..- " . , , .. . ,. ,

7-

ARCREV - reverses the probabilistic inference between any pair of chance nodes.

REMOVE-NODE - removes the designated node by forming the associated joint

density array.

MERGE-NODES - joins two nodes into one node.

SPLIT-NODE - divides one node into two new nodes.

Supporting Functions *1

All supporting functions have been written so that they bear no direct relationship to

influence diagrams but are an extension of the Lisp language. The supporting functions are

presented in detail in Appendix A.

C. Description of Arc Reversal Code

To implement the arc reversal as computer code, the following description illustrates

the algorithm with a specific example. Before proceeding, the following characteristics are

defined for the node X:

PX - A list of the direct predecessors of node X.

DX = A list of the "descriptors". The first n- I elements correspond to PX. The

nth element is the outcome of node X. The descriptor list is important

because it gives meaning to each dimension of the probability array.

AX = The probability array associated with node X.

28p

28"--

U o

S.4.4. r '.'% ~ ' ~ ~ q~ .v* ~ .' ~ ~ ~ .~*' ***% ',.%'-S

A.

An example is shown by illustrating Node B:

Node B:

PB = (A)

DB = (A B)
B

AB = A 1
0 .6 .4
1 .5 .5

Notice that the descriptor list (A B) maps in a one-to-one manner to the dimensions of,.'"

the probability array. The last dimension of the array and last element of the descriptor list
.5'.

represent the possible outcomes of node b. Notice also that the descriptor list can always be 4'

read backwards. The list (A B C F G), then, means that the probability array of the node g

represents the probability of g, given ab,c and f. Or in mathematical notation:

{G I A,B,CF,SI.

For example in node b, {B= I A=O,S} is the (0 1) element of AB, which equals 0.4.

The combination of the descriptor list and the probability array, then, forms a concise

representation which uses the conditioning variable's and the requested conditioned

variable outcome as indices to the probability array. The use of outcomes as indices is an .

intuitive way to reference the desired data.

Because the array contains all of the relevant data, it is an effective structure in that it

describes all possible outcomes as conditioned by other state variables. It is effective also

because well defined array manipulations can be used to implement the four influence

diagram transformations. Olnstead states, "Influence diagrams whose nodes are structured

as conditioning trees (as arrays do) constitute an efficient and general form for representing

decision problems." (Olmstead, 1984:96) The following discussion will cover a sample

arc reversal problem with specific highlights on array manipulations and operations.

For an arc reversal to be effected, there must be two nodes, say Node G and Node H.

29

Node G: PG Node H: PH

DG DH

AG AH

The following section will describe how arcs are added to the influence diagram prior

to the arc reversal.

Add-Arcs

The arc-reversal will require that DG = PH. That is, if DG = (A B G) and PH = (B C

G), then DG'= PH'= (A B C G). In other words, the direct predecessors to Node H

must include all of the descriptors of Node G.

Once PX, DX, and AX are updated for both Node G and Node H, the arc-reversal

can take place.

ReverseX

There are five basic steps to ReverseX. Using Node G and Node H as examples, the

steps are:

1. Format AG into FORMG. This action will result in the descriptors of FORMG in

the same order as the descriptors of Node H.

2. Form the joint probability array of Node G and Node H by multiplying element by

element the arrays FORMG and AH.

3. Define the new AH by summing down the columns of the joint probability array.

4. Format the new AH into FORMH. The descriptors of FORMH will now be the

same as those for AG.

5. Define the new AG by dividing, element by element, the joint probability array by

FORMH.

30

e'tV-e e'?, -

The following is an example described step by step using a written description,

corresponding pseudo-code, current status of the related data elements, and the resulting

influence diagrams.

The initial state is:

Node G: PG, DG, AG

PG = (A B)

DG (A B G)

AG-
,2 .8

.7 .3 AG is indexed by (plane,.6 4 row, column) = (A, B, C)
For example, element

9 .1 (0 0 0) is 0.6.

Node H: PH, DH, AH

PH = (B C G)

DH = (B C G H)

AH=

/4I.
.37..

.6.4 .9.1

AH is indexed by (hyperplane, plane, row, column)

=(B CG H)

Nodes A, B, and C have two outcomes and have no predecessors.

31

The initial diagram is shown in Figure 14.Gj H
Fig. 14 Initial Influence Diagram

Arc Reversal Algorithm

1. Add arcs if necessary

Part
I

a. Check to see if arcs need to be added to Node G.

Since DG does not equal PH, arcs do need to be added.

b. Pick a predecessor of H that is not a predecessor of G.

The only predecessor of H that is not a predecessor of G is node C.

c. Add the predecessor to G.

NEWARRAY = Reshape AG according to the number of outcomes

associated with the incoming arc.

.7.3 :.7.3]

.6 .4 .6.4

.9 .1 .9.1

Notice that NEWARRAY is now four-dimensional. The descriptor list that

corresponds to NEWARRAY is (C A B G). It is desired that the elements

of this list appear in the same order as the elements of (PG U PH). This is

accomplished in the next step by transposing NEWARRAY by AINSX =

(3 1 2 4). After the transposition, the descriptors of ADDX will be

(A B C G).

32

C7

ADDX = transpose NEWARRAY by ANSX

.97.1 .7.3
.9.1 .7 .3

.64 .2 .8
[.6 .4 /.2 .8

The current influence diagram showing the addition of the arc from Node C

to Node G is shown in Figure 15.

G

Fig. 15 Add Arc to Node G

d. Return to step lb. and pick a new arc to be added to Node G.

No more arcs need to be added to Node G.

e. Continue until all arcs that need to be added to Node G have been added.

All necessary arcs have been added to Node G.

f. Update Node G.

AG = ADDX

PG =(LXUPG)

= (A B C)

DG =(LX U DG)

=(A B C G)

33

o*• • . .-..' r ,_e ,...L.. .' ' " ". '- ._'.,'.. 'L 'o ,, '. %... . , .- .-Le..., '. ', €%.', €.'_...' .'. ' ,'....' e ¢ . ,. a., ,,. € .. , p

Part H

Part 11 will add arcs to the current successor node.

g. Check to see if arcs need to be added to Node R.

Since DG does not equal PH, arcs do need to be added.

h. Pick a predecessor of G that is not a predecessor of H.

An arc from node A needs to be added to node H.

i. Add the predecessor to H.

NEWARRAY = Reshape AH according to the number of outcomes

associated with the incoming arc.

.1 .9 .3 .7

.3 .7] .4.6

.6 .4 .9.1
.5 .5.2.8

[3 .7 .4 .6

.6 .4 .9.1
. .5 .2.8

Notice that NEWARRAY is now five-dimensional. The descriptor list

that corresponds to NEWARRAY is (A B C G H). It is desired that the

elements of this list appear in the same order as the elements of

(DG U DH). This is accomplished in the next step by transposing

NEWARRAY by ANSY = (1 2 3 45). After the transposition, the

descriptors of ADDX will be (A B C G H). Even though this

transposition was not necessary for this example, in general the

transposition is required.

34

ADDY = transpose NEWARRAY by ANSY %

.

.6 .4 %.9.

.5 .51 .2 .8

.1.9 .3 .7

.3 .7 .4 .6

.6 .4 .9.1
.5 .5 .2 .8

The current influence diagram showing the addition of the arc from Node

A to Node H is shown in Figure 16.

A a

Fig. 16 Add Arc to Node H

j. Return to step 2h. and pick a new arc to be added to Node H.
4P

No more arcs need to be added to Node H.

k. Continue until all arcs that need to be added to Node H have been added.

All necessary arcs have been added to Node H. I
1. Update Node H.

AH = ADDY U

PH = (LY U PH)

= (A B C G)

DH =(LY U DH)

(A B C G H)

35

2. Reverse the Arc

a. Create FORMG by reshaping and transposing AG into the likeness of AFL

FORMG = reshape AG by the shape of AH and transpose the result

so that the descriptors of FORMG will match the descriptors

of AFL

. .6 .6.9

.4 .4

*.6.6 9.

.4 .4 11

.2.2 .77

.8.8 .3 .3

.2 .2 .7 .7

.8 .8 .3 .3

Note: The above step accomplished two operations at once. First, the

reshape of AG by NEWSHAPE resulted in an array that has the correct

number of dimensions, but the descriptor list of the reshape operation result

is (H A B C G). Before the joint density array can be computed, the

elements of the above descriptor list must be in the same order as the

elements of the descriptor list of Node K- The second operation will

transpose the array resulting from the reshape operation into the same

orientation as AH. The descriptor list of FORMG is (A B C G H).

b. Form the Joint probability array. Notice that the descriptor lists of FORMG and

AH are the same.

36

.1l

i,
. ".'/. .' :.'+,..' .- .. :'., ,..... .;.. ,.......:....o o;. ', , . .' , +-.. 3.-I

JOINT = FORMG x AH

.06 -54 .27 .63

.1228 .04 .06

.36 .24 [81 .09

.20 .201.02 .08

.24 .56 .12 .18

.12 .08 E.63 .07

.40 .401 .06 .241

The descriptor list of JOINT is (A B C G H).

c. Create the new AH by summing down the columns of the joint probability array.

NEWAH = sum down all columns of the joint probability array.

For this example, this operation will sum out the

inference from Node G. The descriptor list of the

array shown below is (A B C H).

• 1 .9.3 .6/

.3.6

•18 .82 .26 .7/4,

7o

d. Create FORMH by reshaping and transposing new AH into the likeness of the

joint probability array.

37

*45

FORMH = reshape NEWAH by NEWSHAPE and transpose the result so

that the descriptors of FORMH will correspond to the descriptors

of the Joint probability array.

- 18 .82 .31 .69
18 82.1

.56 .44 .83

.56 .44 .83 .17

.26 .74 .33 .67

.26 .74 .33 .67
.52 .48 .69 .31

.52 .48 1.69 .31

Note: The above step accomplished two operations at once. First, the

reshape of NEWAH results in an array that has the correct number of

dimensions, but the descriptor list of the reshape operation result is

(G A B C H). Before the new array for Node G can be computed, the

elements of the above descriptor list must be in the same order as the

elements of the descriptor list of JOINT. The second operation will

transpose the array resulting from the reshape operation into the same

orientation as the array JOINT. This is accomplished by transposing the

result-array. The descriptor list of FORMI- is (A B C G H).

.

38

7

UP- mom

e. Create the new AG by dividing the joint probability array by FORMH.

NEWAG - transpose (JOINT / FORMH) to place the derived outcomes of

the array AG in the last dimension.

- 3 .7 IZI.1
.66 .34 .91 .09

.64 .36 [98 .02

.54 .461 1.53 .4

.23 .77 9 0

.16 .841

f. Update Node G and Node H.

AG =NIEWAG

33 67.7
.1

.66 .34.9 .9

.64 .36 .98 .02
.54 .461 1_____ .53 .471

.08 .92 64 .36

.4.6.73 .2-71
.23 .77 .91 .09

.16 .841 1.23 .77

39

AH = NEWAH

.31 .69 .33 .67

56 .44 .52 .48

.18 .82 .26 .74

PH =PG

=(A B C)

PG =(PG U (DH- PH))

=(ABCH)

DG =switch last two of DH

=(A B CH G)

DH -PG

=(ABCH)

The final influence diagram showing the reversal of the arc from Node G to

Node H is shown in Figure 17.

Gi

Fig. 17 Arc Reversal

.4

.*

40I

Example Application of ARCREV

To show how ARCREV may be used in practice, the following example run has been

provided:

After loading the Influence Diagrammer's Toolbox and performing the following

command.

(setq current-id 'idl),

the following information is provided via the print-node command (and is the initial state):

(print-node 'nodeg)
"Node name is:
(G)
"Node predecessors are:
(A B)
"Node descriptors are:"
(A B G)
"Node probability array is:"
(3#A (((0.6 0.4)

(0.9 0.1))
((0.2 0.8)
(0.7 0.3))))

(print-node 'nodeh)
"Node name is:"
(H)
"Node predecessors are:"
(B C)&de
"Node descriptors are:"
(B C G H)
"Node probability array is:"
(4#A ((((0.6 0.4)

(0.5 0.5))
((0.1 0.9)
(0.3 0.7)))

(((0.9 0.1)
(0.2 0.8))

((0.3 0.7)
(0.4 0.6))))

41

4 '1 -'"

• ", '4";€4".;-,. .',"V-, ? . ,. ", . .,- - ' ' :'-:." -' "'; """" " '-;' " "'i %i';";'"-';';*:""".--,.-'-""-".

.WW; z, , - . a -.. n m n r 1-;-afl >r. , r- - - . . -. , -,'" %x WW W- ; r- : ,

So the inital state is the following influence diagram:

GaAj B
Fig. 18 Initial Influenc Diagram

Now the ARCREV command is applied to the arc between node G and node H.

(arcrev 'nodeg 'nodeh)

(ARC REVERSAL IS COMPLETE)

The resulting information is presented by print-node:

(print-node 'nodeg) p.

"Node name is:" J.
(G)
"Node predecessors are:"
(A B CH)
"Node descriptors are:"
(A B C H G)
"Node probability array is:"

(#5A (((((0.64 0.36)
(0.54 0.46))
((0.33 0.67)
(0.66 0.34)))

(((0.98 0.02)
(0.53 0.47))

((0.87 0.13)
(0.91 0.09))))

((((0.23 0.77)
(0.16 0.84))

((0.08 0.92)
(0.24 0.76)))

(((0.91 0.09)
(0.23 0.77)) I
((0.64 0.36)
(0.73 0.27))))))

2'

42 "

'.7

(print-node 'nodeh)
"Node name is:"
(H)
"Node predecessors are:"
(A B C
"Node descriptors are:"
(ABCH)
"Node probability array is:"

(#4A ((((0.56 0.44)
(0.18 0.82))

((0.83 0.17)
(0.31 0.69)))

(((0.52 0.48)
(0.26 0.74))

((0.69 0.31)
(0.33 0.67)))))

So the final resulting influence diagram is:

Fig. 19 Final Influence Diagram
p

Node Removal Algorithm

The arc reversal and node removal operations are closely related. The arc reversal is

effected by forming the joint density between two adjacent nodes, summing the old

predecessor out of the joint density array to get the new predecesssor, and finally getting

the new successor by applying Bayes' rule. As described before, node removal entails

forming the joint density array and summing out of the joint density array the variable

represented by the node to be removed. Notice that node removal is the same as arc

reversal through the creation of the new predecessor. In the case of node removal, this is

43

- . - - .. . - - . , , .

the updated successor. Since these two operations are so similar, the algorithms for add

arcs and reversex can be used to build REMOVE-NODE.

Specifically, REMOVE-NODE could use all steps of the arc reversal algorithm

through step 2b. All that remains to be done is to update the influence diagram's framne to

reflect the deletion of the specified node.

The node removal tool can then be developed using the same supporting commands

as ARCREV.

The remaining commands, merge-nodes and splitting a node, as shown in Chapter 2,

are valid transformations of the influence diagram. The algorithms for these commands can

be derived from the previously given theoretical base and should be implementable via the

supporting commands in Appendix A. An obvious extension of this thesis, then, is the

implementation of node removal, merge nodes, and splitting of a node operations.

V.

44

..'.

.. ..e'' 'e ,'. , '..'. ',,'.,'.,, . . , ; .. ,'. . ,....., , ." ... ", ." . .',.. ,.. ., , ."" ... -" .,.'. .', ,.,,' ." .. ." .. , ." .,,", .. ,.' .".. ,,"," .".' ,- .- '

IV. RELIABILiTY APPLICATIGN

Application

This chapter will explain the application of arc reversal to a simple reliability problem.

Given the following diagram which describes a subfunction, S of a electronic circuit

card. The subfunction, S, consists of two parts: a nested subfunction, E, and component

D. Subfunction E, in turn is composed of components A, B, and C.

L-EEIJ

CEp

iii'

Fig. 20 Electronic Circuit Card

Each subfunction or component has two states: working or not working. The

following data presents the assessed probabilities for each subfunction or component.

A B C D E S0 ABC 0 1 D E0 1
.3 .7 .6 .4 .5 .5 .1 .9 0 0 0 1 0 0 1 0

0 0 1 .9 .1 0 1.4 .6
0 1 0.8 .2 1 0.5 .5
0 1 1.4 .6
100.7 .3
1 0 1 .4 .6
1 1 0 .4 .6
1110 1

45

t

U,.-

The tables may be interpreted in this way: the probability that E is not working (0)

given that components A, B, C are all not working is one. The given state of a subfunction

or component is used to index the probability data.

Based on the above information the following influence diagram represents the initial

state:

Fig. 21 Initial Influence Diagram

A possible question that could be posed is: "What is the probability that the

subfunction, S, works?' To answer this question it is necessary to manipulate the

influence diagram so that the node S has no predecessors. By judicious application of arc

reversals, this information can be found.

Using the diagram as a guide, it can be seen that the arcs from E to S and from D to S

need to be reversed. First, the arc between E and S is examined as a possible candidate for

arc reversal. Notice that arcs would be added to S from A, B, and C and from D to E.

Since this action will result in nodes A, B, and C becoming predecessors of S; arcs which

would also need to be reversed.

Instead of reversing the arc from E to S, arc reversals will be done to remove all of

the current predecessors of E. Once this is done, the only arc that will be need to be added

46

r, _ t .. r ., . . : ' e ': ", '.'.'..," ".', ..: ' , '. '., . e ¢'. .' '.'., . U

'X

will be from node D to E. At that point, the arc E to S can be reversed. Notice also that the

arc from D to S can be reversed without adding arcs.

So the procedure that will be followed is:

1. Reverse A to E
2. Reverse B to E
3. Reverse C to E
4. Reverse D to S
5. Reverse E to S

1. Reverse A to E. Since the predecessors of E are not all predecessors of A, arcs will be

added from B and C to A. Then the arc between A and E is reversed. These actions result

in the following influence diagram and updated data for A and E.

Fig. 22 Reverse Arc from A to E

A E

BCE 0 1B C 0 1
000 .38 .62 o .7 . %
001 .49 .51 0 1 .55 .45
010 .46 .54 1 0 .52 .48
01 1 1 0 1 1 .12 .88
100 0 1
101 .07 .93
1 10 .125 .875
1 1 1 .21 .79

,,-

47

:..

I. ~ I I

, , .IF ig W 7 r . r J r. J. .r.. - r - Y ,

2. Reverse B to E. Since C is a predecessor of E but not of B, it is required that an arc be

added from Bto C. At this point the arc from Hto Ecan be reversed and results in the

influence diagram and updated tables below:

BE.

Fig. 23 Reverse Arc from B to E

B E
CE 0 1 C 0 10 0[.695 .350 .682 .318 "

01 .873 .127 1 .378 .622
10 .396 .604
11 .434 .566

3. Reverse C to E. Since the only predecessor of E is now C itself, no arcs need to be

added. Reversing the arc between C and E gives:

D| PI.

p

Fig. 24 Reverse Arc from C to E

48

-ei

The probability arrays for nodes C and E are shown below:

C E

E 0 1 0 10 .64P .5 .53 .47
1 .338 .662

Notice that the probabilty of subfunction E working is 0.47. All conditioning

variables have removed and E is conditionally independent at this point in the analysis.

4. Reverse D to S. Now E is a predecessor of S but not of D so it is required that an arc

be added from E to D. This action facilitates the arc reversal from D to S which caused the

influence diagram and data to be updated as shown below:

DI
Fig. 25 Reverse Arc from D to S

D S
ES 0 1 E 0U0.18 .T2 0 .5545

01 0 1 1 .0 .96
10 1 0
1 .06 .94

49

U

*5**.€* *" .l '* ... J'. ..- "*•... % ."-

5. Reverse E to S. No arcs need to be added since E has no predecessors and S has E as

its only predecessor. This final reversal gives:

Dp

Fig. 26 Reverse Arc from E to S

and the fial data is:

A B C D E
BCE 0 1CE 0 1 ElI 1 E S o 1
000 .38 .62 00 .695 .305 01.644 .356 00 .18 .82 0 .9394 .0606
001 .49 .51 01 .873.127 1 .338 .662 0 1 0 1 1 .3438 .6542
0 10 .46 .54 10 .396.604 10 10
011 I 0 11 .434 .566 1 1 .06.94
100 0 1
10 1 .07 .93
1 10 .125.875 S
111 .21 .79 0 1

.3103 .6897

Now that the procedure is complete, it can be seen that the probability that S works is

0,6897,.-

Other questions of a sirmilar nature can be answered by similar transformations of the

influence diagram.

50

U-2

....%,.. . ,'. " :. : .: .. ., : • :..i ", , .."..;: : ":,""::': ;"- " " '," ";"""-"- " '"" ": ""'

V. CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

This thesis demonstrated that the multidimensional array is a natural foundation for

the development of a toolbox of influence diagram manipulation and analysis tools. This

idea was used to develop and implement an algorithm to accomplish an arc reversal on two

nodes of an influence diagram. Furthermore, a sample reliability problem was solved

using the arc reversal tool. This chapter will present some of the issues or problems that

need to be addressed and will propose some extensions to this thesis.

A. Issues

There are two major concerns that need to be addressed in any follow-on research.

The first concern is the specification of the two new nodes to be created when splitting a

node. How should the probabilistic array of the original node be allocated to the two new

nodes? Is the probability array of each child node a duplication of the original probability

array?

The second concern is involved in the removal of a node operation. If the resulting

probability array has more than one conditioned state variable, the array needs to be

expanded into more nodes. The question is how is the expansion to be executed and in

what order are the nodes to be created. For more information on these problems see

Olmstead's dissertation, "On Representing and Solving Decision Problems."

B. Extensions and Improvements

There are several extensions to the software that are necessary to have a complete

environment and a robust set of tools. The extensions are:

The Constructor functions need to be completed and integrated into the environment.

It is desirable to have a one screen representation of the entire influence diagram.

If the proper graphics environment can be defined, it would be optimal to represent nodes

51

and arcs as graphics primitives. However, portability should not be sacrificed to meet this

goal.

The remaining ID tools need to be implemented: Remove Nodes, Merge Nodes,

and Split Nodes.

A fast and efficient adaptation of the branch and bound routine is needed for the

loop checking precondition of the arc reversal, merge nodes and node removal operations.

Add value, decision, and deterministic nodes and associated operations to the

current set of software.

Once the software is completely developed, it may be used in experimental

research on the optimal ordering of node removals.

The software should be ported to several computers by use of the XLISP version of

Common Lisp.

As is always true in software development, the software is never complete; however,

the more research done along these lines will give analysts and decision makers more

capability for developing systems, based on influence diagrams, for artificial intelligence,

reliability analysis and other computer-based systems.
V,

.5.4

.1'

.4

.4

a'.,'' ,% Dm % , ', °". _ , '° °* . J " . " . " *" . , °_o " ", " • * '_ _ .- "

.

APPENDIX A DOCUMENTED LISP CODE

This Appendix gives a listing of the source code for the Influence Diagrammer's

Toolbox. A Lisp-loadable version of the code can be obtained by contacting:

Capt. Joe Tatman
AFIT/ENC

WRIGHT-PATTERSON AFB, OH 45433

To load and run the code, the target Lisp should be Common Lisp compatible and have

implemented multidimentional arrays according to the Common Lisp standard.

The software contains sections describing the following in order:.

1. ID tools

2. ID access functions

3. Test frames (influence diagrams).

4. Frame Manipulation Functions .',

5. Lisp Tools (supporting commands which are an extension to the Lisp language).

53

:

1%

..

IN

D tools

Arcrev will reverse the probabilistic inference between
two adjacent nodes. First, the nodes have arcs added,
if necessary. Secondly, the reversal is effected by
use of Bayes rule.

(defun arcrev (nodea nodeb)
(addarcs nodea nodeb)
(reversex nodea nodeb)

'(arc reversal is complete))

; Reversex will perform Bayes' Rule on two adjacent nodes

; that have the same set of common predecessors

(defun reversex (nodea nodeb)

This first section will load local variables with
information from the frame for the two nodes involved.
Arraya, pa and na represents the data array, predecessor
list, and the name(symbol) of the node a. Lkewise,
arrayb and nb are the array and name of the node b.

(let* ((arraya (get-prob-array nodea))
(arrayb (get-prob-array nodeb))
(pa (get-preds nodea))
(na (get-name nodea))
(nb (get-name nodeb))

- This next section will reshape array a into the likeness
; of array b. Newshapea represents the dimension list by
; which to reshape arraya. Forma is the result of
; transposing the reshape of arraya. The purpose of this
; section is to make arraya conformable to arrayb and to
; have corresponding elements aligned. Ra is simply the
; rank of the predecessor's array. Ira is a list of the
; numbers 1 through the rank of the array (ra). (list-
; rotate ra ira) provides the trans-index to transpose the
; reshaped arraya.

(newshapea (append (last (array-dimensions arrayb))
(array-dimensions arraya)))

(ra (length (array-dimensions arraya)))
(ira (iota (length (array-dimensions arrayb))))
(forma (array-transpose (array-reshape arraya

newshapea)
(list-rotate ra ira)))

54

~ %./% 4.' * U. L-.f -','..'"-.--. --, . '."°.- ",.", ."..,:,'".% '"•" '.'''" " ".' .''.'''"-'". ., .7.'",".", -' '. '

.10

The next line will give the joint density function
between node a and node b.

(joint (array-mult-elt forna arrayb))

; The next two lines will define the new array to be stored
; in the old successor node (new predecessor node). This
; is done by summing down the columns of the joint density

array.

(si (1- (length (array-dimensions arrayb))))
(newab (array-sum-reduce joint 2))

; This next section will reshape newab into the likeness
; of the joint array. Newshapeb represents the dimension
; list by which to reshape newab. Formb is the result of
; transposing the reshape of newab. The purpose of this
; section is to make newab conformable to the joint density
; array and to have corresponding elements aligned. Si.
; (from the previous section), y and irb are used to
; contruct the appropriate trans-index to transpose the
; reshaped newab.

(y (list-difference (iota (length (array-dimensions I.

(list si))) arrayb)))

(irb (append (list si) y))
(newshapeb (append (last (array-dimensions arraya))

(array-dimensions newab)))
(formb (array-transpose (amfay-reshape newab

newshapeb)irb))

This section shows the creation of the new array of the
; successor (newaa). X is the index used to realign the
; result of dividing the joint array by formb. This
; operation will ensure that the dimension describing the _4

outcomes of the array will come last in the descriptor
list.

(x (switch-last-two (iota (length (array-dimensions
arrayb)))))

(newaa (array-uanspose (array-div-elt joint formb)

0Nx))),

55 ".#

'm

The remainder of this function is designed to update the
influence diagram with the new information.

(set-descr nodea (list (switch-last-two (get-descr
nodeb)))) .

(set-descr nodeb (list (list-union (get-preds nodea)
(get-name nodeb))))

(set-prob-array nodea (list Oist-union pa nb)) newaa)
(set-prob-array nodeb (list (list pa)) newab),t))

I'

51

565

The function addarvs will add arcs to either or both of
two adjacent nodes. Nodea is assumed to be the
predecessor of nodeb. When addarcs is finished, both
nodes will have the same set of direct predecessors
(except, of course, nodea will not have nodeb as a
predecessor.

(defun addarcs (nodea nodeb)

This first section will load into local variables the
relevant information about the two nodes from the
influence diagram.

(let* ((pa (get-preds nodea))
(da (get-descr nodea))
(aa (get-prob-array nodea))
(pb (get-preds nodeb))
(db (get-descr nodeb))
(ab (get-prob-array nodeb)))

This is the stopping condition,... when the predecessor
list of the successor is the same as the descriptor list
of the predecessor.

(cond (list-equal da pb)
'("arcs finished"))

Lx is the list of the nodes from which arcs need to be
; added to predecessor node.
; Ly is the list of the nodes from which arcs need to be

added to successor node.

(t (let* ((x (list-difference (list-union
pa pb) da))

(ly (list-difference (list-union
da db) db)))

Once all of the arcs have been added to the U
predecessor node, stop and go add arcs to the
successor node. -

(cond ((not (equal Ix nil))

Ix represents the index of the union set which
corresponds to the node from which an arc must be added.

Iu is the ist (1 2 3... # of elements in (the union of
the predecessors of the predecessor node and the
predecessors of the successor node)) - (IX). Ix and Iu
are used to build ANSX, which is the trans-index used to
transpose the data array so that the new information

57

S.
.

• " "'t "' .', " ". , , ,'.., ""," """""," ... ',.-d..,',. '- ., .:." ,-.',",; ,%,. ; ,' , : '' " ' ,.

; gained by adding the arc will align with the other data
; in the array. NARCOUT is number of the incoming arc's
; outcomes (always equal to the last dimension of the array
; of the node from which an arc is being added.
; NEWSHAPE is the new size of the predecessor array

after the addition of the new arc.
ADDX then is the new array after addition of the arc.

acet* (ix (list-elt-index I

(list-union pa pb)
(car lx)))

(iu (list-difference(iota (length
(list-union
pa pb)))

(list ix)))
(ansx (append (list ix)iu)) .-
(narcout
(array-dimension ab
(1-(list-cit-index

pb (car lx)))))
(newshapea (append

(list narcout)
(array-dimensions

aa)))
(addx (array-transpose

(array-reshape
aa newshapea)
ansx)))

The next two lines update the frame with the new
information of the predecessor node and calls addarcs to
add the next arc.

(set-prob-array
nodea ZI
(list %

(list-union
(list (car x)) pa)) I

addx)
(set-descr

nodea
(list "
(list-union
(list (car lx)) da))) N

(addarcs nodea nodeb)))

.

.

58

A.,

The remainder of this function add arcs to the successor
node in the same manner as above.

(t (let* ((iy (list-elt-index
(list-union da db)
(car ly)))

(iu (list-difference
(iota

(length
(list-union

da db)))
(list iy)))

(ansy (append (list iy)
iu))

(narcout
(array-dimension aa
(1- Oist-elt-index

pa (car ly)))))
(newshapeb
(append
(list narcout)
(array-dimensions

ab)))
(addy (array-transpose

(array-reshape
ab newshapeb)

ansy)))
(set-prob-array
nodeb
(list
(list-union
(list (car ly)) pb))

addy)
(set-descr

nodeb
(list

(list-union
(list (car ly)) db)))

(addarcs nodea nodeb)))

) '") .

'.

59 .-

ID ACCESS

Gets or sets nodal information in the id frame.

(defun get-prob-array (node) ,
(car (fget current-id node 'data)))

(defun get-preds (node)
(car (fget current-id node 'preds)))

(defun get-descr (node)
(car (fget current-id node 'descr)))

(defun get-name (node)
(fget current-id node 'name))

(defun set-prob-array (node preds array-address)
(fset current-id node 'data array-address) p.

(fset-list current-id node 'preds preds))

(defun set-preds (node preds)
(fset-list current-id node 'preds preds))

(defun set-descr (node descr)
(fset-list current-id node 'descr descr))

(defun print-node (node) ,
(print "Node name is:")
(print (get-name node))
(print "Node predecessors are:")
(print (get-preds node))
(print "Node descriptors are:")
(print (get-descr node))
(print "Node probability array is:")
(list (get-prob-array node)))

60

z _o.

Test frames

(setq current-id 'id)
(fput 'id 'nodea 'type 'prob)
(fput 'id 'nodea 'preds')
(fput 'id 'nodea 'descr '(a))
(fput 'id 'nodea 'name 'a)
(fput 'id 'nodea 'data (make-array '(2)

(fput 'id 'nodeb 'type 'prob)
(fput 'id 'nodeb 'preds '(a))
(fput 'id 'nodeb 'descr '(a b))
(fput 'id 'nodeb 'name 'b)
(fput 'id 'nodeb 'data (make-array '(2 2)

:initial-contents
'((0.6 0.4)
(0.5 0.5))))

(fput 'idi 'nodeg 'type 'prob)
(fput 'idi 'nodeg 'preds '(a b))
(fput 'id I 'nodeg 'descr '(a b g))
(fput 'idi 'nodeg 'name 'g)
(fput 'idi 'nodeg 'data (make-array '(2 2 2)

:initial-contents
'(((0.6 0.4)

(0.9 0.1))
((0.2 0.8)
(0.7 0.3))))

(fput 'id I 'nodeh 'type 'prob)
(fput 'id I 'nodeh 'preds '(b c g))
(fput 'id I 'nodeh 'descr '(b c g h))
(fput 'idi. 'nodeh 'name 'h)
(fput 'id I 'nodeh 'data (make-array '(2 2 2 2)

:initial-contents
'((((0.6 0.4)

(0.5 0.5))''.
((0.1 0.9)
(0.3 0.7)))

('(0.9 0.1)
(0.2 0.8))

((0.30.7)
(0.4 0.6)))))

61

Z 7. k

,FRAMES

The following frames manipulation functions are from %
Winston and Horn, "Lisp", second edition. •

, •,

(defun fget (frame slot facet)
(cdr (assoc facet (cdr (assoc slot (cdr (get frame

'frame)))))))

(defun fput (frame slot facet value)
(let ((value-list (follow-path (list slot facet)

(fget-frame frame))))
(cond ((member value value-list) nil)

(t (rplacd (last value-list) (list value))
value))))

(defun fremove (frame slot facet value) .

(let ((value-list (follow-path (list slot facet)
(fget-frame frame))))

(if (member value value-list)
(delete value value-list))))

fclear sets (<facet name>) to (<facet-name>).

(defun fclear frame slot facet)
(let ((clear-facet (follow-path (list slot facet)

(fget-frame frame))))
(cond (clear-facet (rplacd clear-facet nil) t)

(t nil))))

(defun fremove-slot (frame slot)
(putprop frame -9,

(cons frame
(remove (assoc slot (cdr (get frame 'frame)))

(cdr (get frame 'frame))))
'frame))

;FSET sets the addressed value slot to value rather than
adding value to the contents of value slot. FSET-LIST
changes (facet <> <> <>) to
(eval (cons 'facet-name value-list)).

62

.".

(defun fset (frame slot facet value) ; not W&H'
(let ((set-facet (follow-path (list slot facet)

(fget-frame frame))))
(rplacd set-facet (list value))

value))

(defun fset-list (frame slot facet value-list) ; not W&H
(let ((set-facet (follow-path (list s!ot facet)

(fget-fraze frame))))
(rplacd set-facet value-list)
value-list))

(defun fget-frame (frame)
(cond ((get frame 'frame))

(t (setf (get frame 'frame) (list frame)))

(defun extend (key a-list)
(cond ((assoc key (cdr a-list)))

(t (cadr (rplacd (last a-list) (list (list
key)))))))

(defun follow-path (path a-hist)
(cond ((null path) a-list)

(t (follow-path (cdr path) (extend (car path)
a-list)))))

p

• ,v , . ' ,d .

LISP TOOLS

The following functions were used to -iple nent the ID
Solver's toolbox; however they form a valuable addition
to any LUsp library.

List- transpose is a function on two lists, from-index
and trans-index. Trans-index provides the receipe for
moving the elements of from-index in a certain way. For
example, (list-transpose '(a b c d) '(3 1 2 4)) will
return (b c a d) The trans-ist '(3 1 2 4) can be
understood in the following way:

I Take Ist element of from-index and make it the new
3rd element.

2 Take 2nd element of from-index and make it the new
I 1st element.

3 Take 3rd element of from-izdex and make it the new
* 2nd element-
4 Take 4th element of from-index and make it the new

4th element.

€defun list-transpoc (from-index twans-index)
fhIt transpose I from-index rans-imdex

(lhst-atoms (length from-index) 0)
(iota (length from-index)))) .

defun list-transpol (from-index trans-index
to- index index) .

cond
(null (car index)) to-index)

ictq to-index list- Lndex-assign
to-nindex
(car trans index)
list-index-elt from index

(car index m;;
1t tranpoe from-index r L dr trans- index

to-index 1cd" index)))))

The funcions Lhar less and char greater are used to
compare two character lists of equal length for
alphabeticJw (ffti'

64

r%-vqrzwV-.rW_ "7vv~qr1WJ~r WO WSW

(defun char-less (c I c2)
(<(length (member ci1 exploded-alphabet))

(length (member c2 exploded-alphabet))))
(defun char-greater (c I c2)

I(> (length (member c I exploded-alphabet))

(length (member c2 exploded-alphabet))))

(setq exploded-alphabetI
76543210))

ThIe function iota will generate a list of numbers, i.e.
;(iota 9) returns (12 3 4 5 6 7 8 9)

(defun iota (n) (iotal n 1))

(defun iotal (n cnt)
(cond
((> cnt n) nil)
(t (cons cnit (iota 1 n (I+ cnt))))))

, The macro mac-doarray will access an array, element by
*element, and will perform the operations in the body.

IlTe variable, indexlist, is the current index of the
*array and is used in the body of commands. lndexlist
*is iterated in row-major order. An example call is:

* (mac-doarray a ((print indexlist)))
Notice that the body is a list of lists.

*The macro, rac-doarray2 is similar to mac-doarray except
*that it will access two arrays (not necessarily of the
*same number of elements) by generating indexlistlI and
*indexlist2 which correspond to arrayname I and
*arraynarne2. Indexlistl and indexlist2 are available

A Atypical call can be found in the defintion of array-
*sum-reduce.

(defmacro mac-doarray (arrayname body)
'(let* ((wargetlist (mapcar I- (array-dimensions

,Arrayname)))
(0 (length targetlist))
(stoplist Olist- index- assign

targedist
(+ (list-index-elt targetlist 0)

OMM

65

(do ((indexlist (list-atoms i 0)
(check-indexlist
(list-index-assign

indexlist i
(+ (list-index-cit indexlist i)

1)) targetlist i)))
(list-equal mndexlist stoplist) 't)
,@body)))

(defniacro mac-doarray2 (arrayname I arrayname2 body)
'(let* ((targetlist 1 (mapcar '1- (array-dimensions

,arrayname 1)))
(targetlist2 (mapcar '1- (array-dimensions

(il engh trgelisl))Arrayname2)))
(i2 (length targetlisti))

(stoplist2 (list-index-assign
targetlist2 i2
(+. (list-index-cit

targetlist2 i2) 1))))
(do (indexlistl (list-atoms ii. 0)

(cond
(list-equal indexlistl targetlisti)

(list-atoms ii 0))
(t

(check-indexlist
(list-index-assign

indexlistl

(4- (list-index-cit
indexlistl il) 1)) 5

targetlisti ii)
(indexlist2 (list-atons, i2 0)

(check-indexlist
(list-index-assign

indexlist2
i)2)

(+ (list-index-cit

targetlist2 i2)))
((list-equal indexiist'2 stoplist2)'t 1)

,@body)))
;b

Check- indexiist is used in mac-doarray and mac-doarray2
*to get the next valid indexlist in row-miajor-order.

66

(defun check-indexlist (indexlist targedist i)
(cond
((list-grea-cqp indexist targedist) indexist)
((not (list-les-eqp indexlist targetlist))
(setq i (1- i))
(setq indexlist (list-index-assign indexlist i

(+(list-index-elt
indexlist i) 1)))

(setq indexeit (list-index-assign indexlist (+ i 1) 0))
(check-indexlist indexlist targetlist i))
(t
indeixist)))

; The function list-atoms will generate a list of the
; specified atom (only one atom). I.e. (list-atoms 3 q)
* returns (q q q).

(defun list-atoms (n a)
(list-atoms 1 n 1 a))

(defun list-atoms 1 (n cnt a)
(cond
((>cnt n) nil)
(t (cons a (list-atoms I n (I+ cnt) a)))))

Given a list and a valid number (index) list-index-elt
* will return the corresponding element from the list

(defun list-index-elt (list index)
(list-index-eltI list index I))

(defun list-index-elti (list index cnt)
(cond
((= index cnt) (car list))
(t (list-index-tit I (cdr list) index I cnt)))))

, Given a list and an element, list-elt-index
will return the corresponding index of the lst.

(defun list-eit-indcx (list elt)
(list-elt-ndex I list t))

(defun list-elt-ndex I (list elI cnt)
(cond
((equal eit (car list) cnt)
(t (list-eli-index I (cdr list) elt (I cnt)))))

67

;List-index-assign will make the specified destructive
; assigrnment to the indexed position of the list.

(defun list-index-assign (list index new)
(do ((work-list list (cdr work-list))

(work-index 1 (+ 1 work-index))
(new-list nil))

((null work-list) new-list)%
(cond
((-m work-index index)
(setq new-list (append new-list (list new))))
(t (setq new-list (append new-list

(list (car work- list))))))))

Swirch-last-two will renarn a list with the last two
elements of the given list reversed. P

(defun switch-last-two (list 0)
(letO ((index 10- (lengt list))

(index2 (length list 1))
(holde'r (list-index-eit list I index 1)))

(list- index -assign
(lit-index-assign list 1 index I

(list-idex-elt listi tndcx.2l,
index2
holder)))

*The next tour functionis are designed to make the
*appropriate compariso, elemnent by element, of two
*lists of numbers.

(defun list-lessp (x y)
(cond
((ull (cmr x)) t
((< (car) (car Y))
Olist- lessp (cdr %) cdr vnm

defun list-equal (x v)
(Cond
((not (- (len gth %) i en gth vflm nil1)
((null (car %) t)
(equal ic Ar x (car v il
list-equal icdr x) icdr- i)

%4

(defun list-less-eqp (x y)
(cond
((null (car x)) 't)
((< (car x) (car y))
(list-leas-eqp (cdr x) (cdr y)))
((- (car x) (car y))
(list-les eqp (cdr x) (cdr y)))
(t nil)))

(defun list-great-eqp (x y)
(CoMd
((null (car x)) t)
((>(car x) (car y))

(list-great-eqp (cdr x) (cdr y)))
((- (car x) (car y))
(list-grmt-eqp (cdr x) (cdr y)))
(t 'nil)))

List-rotate will take the car of the given list and
* append it to the cdr of the list, n tmes.

(defun list-rotate (n list 1)(do ((x 1(-x))

(listi (cdr 1))
(rte nil (append res (list (car I)))))
(-x (I + n)) (append I rea))))

SList-union will take two alphabetical lists and form
their union. The result will be in alphabetical order.

(defun list-union (x y)
(cond ((equal x nil)))

Oequal y nil) x)
(t (our-sort (list-union I x y) 'char-less))))

(detul list-union 1 (x y)
(cond ((null x) y

((Member (car x) y) (list-union (cdr x) y))
(t (cons (car x) (list-union (cdr it) y)))))

Our.urt and splice-in are dc.lned in Winston and Ho-n.
2rnd ed p ,66

69

J. - * .. X
,'

. ',- . " ' % "-' -,-" ' ', ' ' - "" - - . S'.- "- * _, S"• /

(defun our-sort (s predicate)
(cond ((null s) nil)

(t (splice-in (car s)
(our-sort (cdr s) predicate)
predicate))))

(defun splice-in (element s predicate)
(cond ((null s) (list element))

((funcall predicate element (car s))
(cons element s))

(t (cons (car s) (splice-in element
(cdr s)
predicate)))))

; List-derence will return a result consisting of the
; elements of "in" that are not members of the list,
S"out".

(defun list-difference (in out)
(cond ((null in) nil)

((member (car in) out) (list-difference (cdr in)
out))

(t (cons (car in) (list-difference (cdr in) out)))))

.A primitive on-line help file is found in Appendix B.

. Amy-index-elt and array-index-assign are used
* similarly as their counterpart commands for lists
; (see above).

(defun array-index-elt (arrayname indexlist)
(apply #'aref arrayname indexlist))

(defmacro array-index-assign (arraynane index new)
'(serf (aref ,arrayname ,@index) ,new))

Array-indexname-assign is the same as array-index-assign
except that the second argumnent is a variable that has
been set to a valid list.

70

p.],

• . .,.... , : .:.:/ .. ,:-.-; . , - " - - . '.-'- . " -".'-" " -- ,.,-'-': ;'-'-'i., ,. "',

" .%.% ;- ':-" . .."..' • ,_- . .. ,- ., , ,. ", o- .-,_ -_ 9.

(defun amray-indexname-assign (arrayname indexname new)
(eval (append (list 'setf (append '(aref)

(list amyname)
indexname))
(list 'new))))

; Given an array and an index, array-transpose will take.
; the array and rearrange the data according to the
; index. For a two-dimensional array, the only
; transpose is the (2 1) transpose (switch rows and I
; columns). A three-dimensional array can have six
; different transpositions. A typical call is:

(array-transpose a '(2 1 3))

; If a was a (2 3 3) shaped array, the (2 13) transpose
; will return an array with shape, (3 2 3).
; This function is a version of the APL dyadic array
; transpose.
(defun array-transpose (arrayname index)

(let ((newarray (make-array (list-transpose
(array-dimensions arrayname)

index)
:nitial-element '0)))

(mac-doarray arrayname
((let ((translist (list-transpose indcxlist index))

(newelt (array-index-elt arrayname indexlist)))
(array-indexnamc-assign newarray translist newelt))))

newarray))
,5,

; Array-reshape will take the given array and the newshape
; (list) and will make a new array with the newshape.
; Elements from the given array will be stuffed into the
; new array in row-major order. Once the elements from
; the given array are exhausted, the next elements will

come from the beginning of the array. (The idea for
this function comes from APL.

(defun array-reshape (arrayname newshape)
(let ((newarray (make-array newshape

:initial-element 'O)))
(mac-doarray2 arrayname newarray

((array-indexname-assign newarray
indexlist2

(amfay-index-elt arrayname
indexlistl))))newarray))

71

.?

."'.'"'"~ ~ % ** %~". . -'" " " " " 7 ' ".' '"" • " ' • " '' "

;Given two arrys of the same shape and size, array-mult-
ciet will return an array which is the result of

;multiplying the two arrays element by element.

(defun array-mult-elt (arryl1 array2)
(let ((newarray (make-array (array-dimensions array 1)

:initiai-ciemcnt '0))
(mac-doarray newarray
(let* ((cit 1 (array-index-cit array 1 mndexlist))

(cia2 (amfy-index-cit array2 indexlist))
(neweit (* elti cia2)))
(array-indexname-assign newarray indexlist

neweit))))
newarray))

Array-div-cit is the same as array-muit-cit only for
division.

(defun array-div-cit (array 1 array2)
(let ((newarray (make-array (amry-dimensions array 1)

:uutia-eement '0))
(mac-doamry newaffay

((let* ((cizi (array-index-cit array I indexiist))
(cit2 (array-index-cit array2 indexiist))

(neweit (/ clt I cia)))
(array-indexname-assign newarray indexlist

newelt))))
newarray))a

* lst-index-delete will return a list with the indexed
e lement of the original list deleted.

(defun list- index-delete (list index)
(list-index-delete I (reverse list) index 1 (length list)))

(defun list-index-delete I (list index cmt stop)
(cond

(uncnt (+ stop M) (reverse list))
((ncnt index) (list-inidex-delete 1 (cdr list)

index (1+ cnt) stop))
(t (list- index-delete I (append (cdr list)

(list (car list)))
index
01+ cnt) ''

stop)

72

* .-, .*. a * ~ 'Sa~..I% %.:'S

;Array-sum-reduce will return an array that consists of
;the sum of the given array across a specified direction
;(of dimension). In this case, dir is a number counted

;from the right of the array dimension list.

(defuin array-sumn-reduce (arrayname dir)I
(let ((newarray (make-array

(list-index-delete
(array-dimensions arrayname)

dir)
:initial-element '0)))

(inac-doarray2 newarray arrayname
((let* ,'(newindex (list-index-delete indexlist2 dir))

(newelti (amfy-index-cit newarray newindex))
(newelt2 (array-index-cit arrayname indexlist2)))

(array-indexname-assign newarray newindex
(+ newelti newelt2)))))

newarray))

73

VTwu.-'www~lwL F-II-rs

APPENDEX B USER MANUAL

The software has been designed so that the analyst does not need to have a "User's

Manual" to be able to use any or all commands. This appendix is a print of the help file,

"helpt", in the influence diagram toolbox.

A primitive on-line help file.

(defun helpt0

* Top-Level Commands

(pnint '((arcrev nodea nodeb) - is the user level command

which will reverse the probabilistic inference between

nodes by adding aits and performiung Bayes rule))

* Supporting Commands

print U(addarcs nodea flodebi adds arcs to the

predecessor inodra) and the %uccr',sor fl(xicrh so "a,~

the descnptor list of nodca equails :he prdeco Ok

(print '((array-transpose array translist) - returns a new

array consisting of the elements of array created by

using translist as a mapping function to write to the

new array. In APL, this function is known as a dyadic

transpose.))

(print '((array - indexname-assign arraynarne indexnarne newelt)

makes the specified destructive assignment to the

indexed position of the array. Indexname is a variable

that is a list which is a valid index to arrayname.))

(print '((array-index-assign arrayname index newelt) - makes

the specified desaructive assignment to the indexed

positon of the array.))

print ((array-index-elt arrayname indexlist) - returns the

element of the array (arrayname) located by the

indexlist.))

pnnt f (array-reshape array newshape-list) - returns an

array of new dimensions list, by using the elements of

array] in row major order.))

print ((array-mult-elt array I array2) - returns a new

array formed by multiplying element by element array I

and array2))

print i arra,, div-clt array I array2) - returns a new array

formed by dividing element by element array I by

array2.n W,7

75

(print '((array-sum-reduce array right-dim) - returns an

array by summing down the right-dim dimension of the

array. Right-dim is an index of the dimension list

denoted by counting from the right. The function is

implemented in this way because the meaning of a given

dimension is invariant to the length of the dimension

list if counted from the right.))

(print '((char-less charl char2) - compares two characters

to see if char is alphabetically less than char2.))

(print '((char-greater charl char2) - compares two

characters to see if charl is alphabetically greater

than char2.))

(print '((extend key a-list) - used in frames.))

(print '((fclear frame slot facet) - clears the values from

the specified facet.))

(print '((fget frame slot facet) - returns the value

associated with the named facet.))

(print '((fget-frame frame) - returns the frame.))

(print '((follow-path path a-list) - used in frames.))

print '((fput frame slot facet value) - places the value in

the frame.))

print ((fremove frame slot facet value) - removes a value

from the frame.

pnnt (fremove-slot frame slot) - removes an entire

',lot.)

,r" , ramc slot facet value) - destructively sets

76

.- . . . q- o- * J

the value of the facet,,

(prnt ((ft-list frame Slot facet value-hisz newea,

inserts ncwelt into the value-list (non-destrucuve,

(print '((get-prob-a ray node) - gets the probability arrav

at the node.))

(pnnt ((get-preds node) -returns the pnedecessr 'Lit)t

the node.))

(pnnt '((get-descr nodc) - retuins the descriptor list of

the node.))

(print '((get-name node) - gets the name of the node)

(print '((iota n) - returns a list of the numbers I through n

(print '(list-transpose list transform-lst) - creaIes a

list by applying the transform-list as a mapping

function on the given list.)) 0

(print '((list-atoms number atom) - returns a list of the

length number consisting of the character atom.))

(print '((list-index-elt list index) - returns the element

of the list at the indexed position.))

(print '((list-elt-index list elt) - returns an index

corresponding to the position of the element in the

list. This function will only return the first

occurrence of the element.))

(print '((list-index-assign list index newatom) - a

destructive assignment of newatom to the list by the

index.))

77

print (list- ndex-delet list index) - eraws the indexed

clement of the ht The list returned will be shorter

by one element)

prit (ht-lessp listI hst2) - checks to see if the

elements of lisl are less than the corresponding

elements of lis.))

pnnt (Idst-equaJ list 1 list2) - checks to see itf

corresponding elements are equal))

(print ((list-less-eqp listl lst2) - checks to see if the

elements of list ame less than or equal to the

corresponding elements of Wit2.))

(print ((hst-grat-eqp listl list2) - checks to see if the

elements of listI are greater than or equal to the

corresponding elements of list2.))

(print ((list-union listl list2) - returns an alphabeuzed

list of atoms in either listI or list2.))

(print '((list-difference listl list2) - returns list of

atoms from listl that are not in list2.))

(print ((list-roate n listl) - appends the car of list to

the cdr of list n number of times.))

(pnnt '((mac-doarray array (body)) - a construct that allow

access of the array in row major order. Body is a list

of commands that use the indexed element of the array.

The variable that holds the current index is

indexlist.))

78

* N * *.. *~ *~'- . ,.-

(print '((mac-doarray2 array I array2 (body)) - similiar to

mac-doarray except that it will access two arrays (not

necessarily of the same number of elements) by

generating indexlistl and indexlist2 which correspond

to arraynanel and arrayname2. Indexlistl and

indexlist2 are available for use in the body of the

call to mac-doarray2.))

(prnt '((print-node node) - displays the information of the

node.))

(print '((reversex nodea nodeb) - will reverse the

probabilistic inference between nodea and nodeb. Nodea

and Nodeb facets where the nodea and nodeb information

is located))
-I.

(print ((set-prob-array node preds array-address) - assigns

an array to a node in the influence diagram.

(print '((set-preds node preds) - assigns a predecessor list

to a node in the influence diagram.))

(print '((set-descr node descr) - assigns a descriptor list

to a node in the influence diagram.))

(print '((switch-last-two list) - reverses the order of the

two right-most elements of the list.))

t)

79

'-4

" ¢ a' * qs o a aj* e ,~m 'a ",b e s , i . a- . a. . %. -. % . .A.'' . l' I " '.'

BIBLIOGRAPHY

Holtzman, Samuel. "Intelligent Decision Systems" PhD dissertation. 1985. Dept of
Engineering - Economic Systems, Stanford University CA 94305.

Howard, Ronald A and James E. Matheson, eds. "Readings on The Principles and A
Applications of Decision Analysis." Vols 1 (1983) and 11 (1984). Strategic
Decisions Group.

Olmstead, Scott M. "On Representing and Solving Decision Problems." PhD dissertation.
1984. Dept of Engineering - Economic Systems, Stanford University CA
94305.

Shachter, Ross D. "Evaluating Influence Diagrams" Submitted to Operations Research.
Revised May. 1984. Dated January 1986. Departnent of Engineering -
Economic Systems Stanford University, Stanford CA 94305.

Steele, Guy L. Jr. Common Lisp: The Language. 1984 Digital Press (Copyright by
Digital Equipment Corporation).

Tatman, Joseph A. "Decision Processes in Influence Diagrams: Foundations and
Analysis" PhD dissertation, 1985. Dept. of Engineering - Econormic Systems, a

Stanford University CA 94305.

'-a

a4

I

-1X
80 %.

a.........................

.4,

VITA

Captain Edward R. Dawson was born on 27 Apil 1957 at Elmendorf AFB. Alaska

He graduated from high school at London Central H.S. in High Wycombe. England. in A

1975 and has attended the University of Southern Misissippi from which he received the

degree of Bachelor of Science in Mathematics in August 1981 Upon graduation. he

received a commission in the USAF through the ROTC program. He was subscquentlk

assigned to Headquarters Tacucal Air Command, Fore Stnucture Analysis, Langley AFB.

Virginia, until entcring the School of Engineering. Air Force Institute of Technology, in

May 1985 %

4

Permanent address. Route 4. Box 866
South Boston. Virginia

24592

8

8.4

",x, . - "J .- "" -'-" '"".-'. "- -- "- '-" -"'" "-"" " " " " " : " ' " "" "" " "" " " " " " • " " " " ' " " " " -. "
% -- % "e .- ' % . "a% '° % ,a ,% ",, ", . "- "- ", % "- '- °- "- " " "- % a' *" %

"===Num
owI

most**awI

