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Concurrent Operations in Extendible Hashing

Meichun Hsu
Wei-Pang Yang

Harvard University
Cambridge MA 02138

Abstrect.

An algorithm for synchromising concurrens operations om
extendible hash files is presented. The algorithm is deadlock fres
and allowrs the searth operations to proceed concurrently with
insertion operations without having to acquire locks on the diree-
tory entries or the data pages. It aleo allows concurrent
insertion/deletion operations to proceed without having to acquire
locks on the directory entries. The algorithm is aleo uniqus in that
it combines the notion of verification, fundamental to the optimis-
tic concurrency control algorithm, and the special and kmown
semantics of the operati in extendible hash Rles. A prool of
correctaess for the proposed algorithm is also presented.

1. Introduction

The concurreney coatrol algorithm in a cooventional dats-
base management system enforces serialisability of transsctions
(Papadimitriou79|. Each transaction is normaily modeled as &
sequence of read and write stepe, and the concurrency coatrol algo-
rithm enforces serialisability withous assuming much knowledge of
the semantics of the resd and write steps of the transactions.
While this level of generality enables the concurrency control algo-
rithm to be applicable t0 any transaciion system, it does not take
advantage of the structures inherent in the applications to optimise
for higher level of concurrency and lower synchronisation over-
head. .

In recent years specialised concurrency coutrol algorithms
that taxe advantage of the knowiedge of the seructare and/or the
semaatics of transactions bave appeared {eg., SK80, KS83, KP79,
HMS3, HCS8, O'NieiS]. [n particular, much sttention has besn
paid to the optimisation of algorithms that synchromise concurrent
operstiona oo B-trees [e.g., BS77, LY81, MRSS|.

In this paper we present an aigorithm that synchronize con-
current operssions oo a file structured using extendibie bashing
TFNPS79|. Extendibie hashing is & form of dynamic hashing which
adapuvely updates a directory of pointers o data bucket, or data
pages. Since the directory entrnes are subject to update at any
moment, a search operation would normally be required o obtain a
lock on the directory entry it reads to prevent the directory entry
from being insdvertently changed. However, by exploiting the
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,known semantica of the sccesses to the directory entries, it is con-
iuivnblc that one can devise concurrency control algorithms thas
: minimise such overhead.

We present a concurrency control algorithm that allows the
search operation in an extendible hash fils to proceed without hav-
ing to set locks on the directory entries. We aiso allow concurrent
inssrtions to be synchronised with s mechasism which is simpler
and potentially able to offer a higher degres of concurrency.

The algorithm is also unique in that it utilises the general
mechanism behind the optimistic concurrency control algorithms
{KR81). By making use of verificstion at the right moment, opers-
tions sre guaranteed s consistent view of the data structures
required to ensure their correctness while minimizing the locking
overhead.

The structure of the paper is as follows. In the next section,
,the general mechanism of the extendible hashing scheme is
‘reviewsd. In Section thres, we present our concurrent search and
inssrtion algorithms, followed by a prool of correctness in Section
four. Section five concludes the paper sad pressnta a discussion of
future extensions.

2. Review of Extendible Hashing

Extendible hashing (FNPS789| is s file structuring and sesrch-
ing technique in which the user is guarantesd no more than two
page sccemses (o locate the data amociated with a given key.
Unlike conventional hashing, exvendible hasaiog has 3 dynmsmuc
structure that grows and shrinics gracefully as the database grows

The file consists of a directory (D) and data pages. The
direetory is characterised by a pledal depth g, and contains 2¢
entries, each of which pointa to a data page. The hash {unction. h.
transforms the keys of the key set into a “pseudo key™ of s bit
form; the first g bits of the pseudo key decerrune the directory
eniry corresponding to a key. Each data page is charactenszed by
» local depth I<g, and a bit pattern bp of length . A data page
with an [-bit bit pattern ép contamns ail keys the frst / biws of
whose pseudo keys conform to the bit pattern ép When a data
page overtflows, it local depth is incremented by 1 and the page u
split in two: one page is now charasctenzed by a bit pattern which
is the old bit pattern tad with an additional bit of ‘0’ and
the othar, with the bit of 1"

Ezemple. Consider the state of an extendible hash fle as
shown in Figure 2.1. Currently there are very [ew records with

pseudo keys that begin at '1’. All such records are collected into a

singie data page whose local depth is | and whoss 1-bit bit paitern
is '1’. When the page becomes full, as shown in Figure 2.2, it splits
into two data pages, each with local depth of 2: one data page now
has & bit pattern of ‘10’ and the other '11'. All keys whose pseudo
keys begin a¢ '10’ appear in the first of these data pages, and all
keys whose pseudo keys begin at '11° appesar in the other.
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When the data page whose local depth is equal to the global
depth of the directory overflows, the directory sise is doubled, i.c.,
the giobal depth is incremented by 1, and the overfllowing data
page is again allowed to split. For example, il we start with the
situation as shown in Figure 2.2, and if the data page pointad to
by the “010" pointer is already [ull, then the directory is doubled
and the page splits, as shown in Figure 2.3. (Figures 2.1 to 2.3 are
taken from Figures 8 to 10 in ([FNPS79).)

The extendible hashing scheme uses » iguously allocated
directory whose sise changes by factors of two. [t enables direct
access to the right data page (or bucket). No overflow ares is
used. In (FNPS78], it is shown that, in the case where the bucket
(page) size is 400 and the sise of the key set is 40,000, the storage

utilization, on the average, is about 68%.
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3. Concurrent Operations in Extendible Hashing

In this section we deseribe the algorithm of our comeurrent
operations in extendible hash fles. Throughout we will ignore the
issue of underflow and compaction. In other words, the number of
pages of the file only grows and never shrinks. The compaction
issue was also ignored in [LY81] and is generally justified by the
observation that databases tend to grow and the utility of the
storage recovered [rom on-line real-time compaction may not be
worth the trouble. Compaction can be handled by taking the
database offline {or a reorganization.

3.1. Search Algorithm

The search operation on an extendible hash file consists of (1)
applying the hash function to obtain a peeudo key, (2) examining
the first ¢ bits of the pseudo key to determine the directory entry
to be read, (3) reading the directory entry to Sod s pointer to the
data page to be searched, and (4) searching in the dats page to
find the key desired.

Deflnition of ths Search Algorithm.

Algorithm Search(given key k);
begin
xold:»0;
hashing:
caleulate k' = hik)m dod; - - - b, _;;
getpointer:

o b b etk i

What the search operation is vulnerable to is the concurrent
insertion operation that splits a dats page snd relocates s range of
the keys that include the key desired by the search operation.
This type of interference can be eliminated by requiring the search
snd the insertion operations to obtain a Jock oa the directory eatcy
and hold it until the operation ends. In our search algorithm, how-
ever, this type of interference is avoided by re-reading the direc-
tory entry when a search operstion could net find the key in the
dats page it has just read, without having to hold any lock on the
directory. This form of re-reading, or verification, continues until
either the key is found, or the value of the directory entry does not
chsnge between two consscutive readings. The algorithm is for
mally defined shortly.

Intuitively, the sesrch algorithm attempts to vertfy the diree-
tory entry it has previously resd befors it would conclude a search
{ailure. if the content of the directory entry has changed in the
mean lime, the search operation automatically retries with the new
pointer obtained. A formal proof of correctness of the aigorithm is
presented in Section 4.

read d, base ; /* the global depth and base sddress of the directory D */
§ e body ¢ - byy; /° take the initial d bits of k' */

probe:
do while x » xold;

x = got(D(t]); /* Dft] is the t-th antry in D ¢/
robe:

A = gei(x); /° resd s data page */
if key k in A then 'success’, return(x); /* ends search */

xold = x;

x = geu(D(t]); /* re-read directory ¢/

end;
recurn ('search fails');
end;

3.2. Insertion Algorithm

The wnsertuon operation in an extendible hash file conmmsws of
(1) appiymg the hashing {unction to the key to obtain the pssudo
key, (2) examune the first ¢ bits of the pseudo key to determune the
directory entry to be resd, (3) resding the directory entry to obtan
a pointer 0 2 data page, (4] reading the data page to search for
the existence of the same key, aad (5) inserung the key in the data
page, U the key does not¢ already exist. When inverting the new
key, if the dats page is [ull, then a spiit is performed, resuiting in s
new daia page to be crestad and at least one directory entry to be
updated. For now we will ignore the issue of directory expansion
{i.e., doubling in size). We will revisit this imsue brielly in the nal
section of this paper.

Two insertion operstions may interfere even when they are
inserting different keys. Undesirable intarference may be dim-
inated by requiring the insertion operation to hold locks on both
the directory entries and the data page thas it updates il the end
of the operation. In our sigorithm, however, the need to hold locks
on the directory entnes is avoided by requiring the insertion opers-
tion to perform verfication of the content of the directory entry it
has previously read efisr locking the dats page and before perform-

ing updaces on the data page. U venficanon fais. the operation
would unlock the page and lock a different one, and perform
another verification. The insertion operation sever blocks once ita
first lock is granced, therefore desdlock is eijmunaced.

[n handling splittiag, our algonchm requires that the newiy
sllocated page be locked until the affected directory entry(entnes)
is(are} updated. lnherent in the dymamic hashing aigorithm,
however, is the compiication that whea a key & is to be inserted
into & page which is already full, one split may not be enough.
When splitting occurs, the local depth of the splittiag page is incre-
mented by one snd s new page is allocated i the datsbase. The
original key range in the splitting page is divided in hall, with the
higher haif distributed into the new page and the lower half
retained in the splitting page. One of these two pages, say p, now
,contains the key range that includes k. It is noted that in extreme
'cases p may be {ull again before & is inserted. This occurs when
sl the existing records in the splitting page are all hashed into the
haived-key-range that contains . When this occurs, p needs to be
split again before k can be inserted. This process must continue
until & Anaily falls in s page which s not full However, the
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aumber of splits required, and therefore the number of new pages
need to be allocated %o allow & to be inserted, can be determined
from the contents of the splitting page when it is first examined.
We will denote this number to be a. [n general, n ranges {rom 0
to logy(24™“4)—1, where ¢ is the global depth and .4 is the local
depth of the splitting page befors splitting.

The way our concurrent insertion algorithm deals with the
above complication i to (1) have the splitting page as well as ol
the newly allocsted pages in the database locked, (2) rearrange
contents of these pages in privats work space and ailowing & 1o be

- inserted, (3) write the rewly allocated pages back to the database,
{4) update all the aflected directory entries, (3) unlock all new
pages, (6) write the splitsing page back to the database, and finally
(7) unlock the splitting page. One may choose to combine stepe ()
and (7) together as the last step, but thas is not strictly necessary.
Note that during the entire operstioa no directory entries asre
locked sad all search operasions proceed without being blocked. In
patticuiar, in stap (4) above, when multipie directory eatries are
updated, they are updated one by ome withous having to be

Definition of the Insertion Algorithm.
Algorithm Insert(givea key k);
begin
hashin

:
Caleuiate k’ w h(k)- boby - - - basy;
getpointar:

updated all in one atomic action. [t ia sssumed, however, that
updating any single directory entry is stomic, as well as writing
any single dats page L the database.

We provide the definition of our insertion algorithm below,
snd the formal proof of correctness is presented in Section 4.

3.3. Delation Algorithm

A deletion operstion in sa extendible hash fle consists
roughly of the same set of stepe 38 the insertion operstion, except
vhat it needs not Vo deal with the issue of overflow and page split-
ting. For our purpose, as mentioned in the beginning of this sec-
tion, we will ignors the issue of underflow and compaction. There-
fore syntactically s deletion operation is just like an insertion
operation that does not encountsr overflow. For brevity, we do
pot include a formal definition of its sigorithm.

resd d, bass; /* the globsl depth aad base address of the directory D*/
tom boby -+ - bey; /* take the initial d bite of k' °/

x = got(D{t]); /* Dit} is the t-sh entry in D */

lock_and_verify:
xold ;= x;
lock (x);

x = get(D(t]); /* re-read directory entry */
do while xold # x; /* verificatina loop */

unlock{x);
xold ;= x;
x = geUD(t]); /* re-read */
lock (x);
end;
proba: .

A = gutix—ep); /° read data page p pointed to by x */

i key ¥ in A then 'efTor dupiication’, recurn:

case 1. 'A! < ¢ /° no need to split, where ¢ s the eapscicy of & page °/

A = page.inssrt (Ak);

case 2. Al = ¢ /* split required; assume no directory doubling */

3 = aumbper of new pages required;

YuYgr-- Te = allocate n new pages n database;
loek (§1,79m-+Fa)i /® keep new pages locked */ '
A. By, B.,...B, = rearrange old A and B's. adjust l.d, insert k:

for i = | to n do:

put (B;,y;=p); /°® write B's into datsbase */

end;
din:wry.nodifY(D.ll rerle );
uniloek (71,070 )i
PUYA, x—p);
unloek(x);

The function of directory . modify is

Procedure directory.modily(D,y,,...7. )i
begin

for all directory entries | alfected by split do;

i :w subscript of newtly silocated page containing key range of entry j;

put (5, Dlil)
end;
end;
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3.4. Discussion of Performanee

In this subsection we briefly discuss how our proposed algo-
rithm compares with “itandard techniques”. To our best
knowledge, there has been little discussion of concurrent operations
in extendible hashing in the literature. Therefore we will assume
the “scandard tecanique” in this case to be two-phm locking
(2PL). Using 2PL, s sesrch operstion must (1) obtain s shared-
lock on the directory entry, (2) obtain a shared-lock on the data
pags pointed to by the directory entry, (3) perform search and
then reicase both locks. An insertion/deletion operation must (1)
obtain an exclusive-lock on the directory entry, (2) obtain an
exclusive-lock on the data page pointed to by the directory entry,
and (3) perform updates and releass both locks. If the insertion
encounters the need to split the dats page, it must additionally
scquire exclusive locks on all directory entries allected by the split
before updating these entries and before relessing eny lock that it
has scquired.

We first show that the standard technique is prone to
deadlocks. Consider two adjascent directory entries d; and ¢,
pointing to the same data pags p where p currently has s local
depth which is 1 leas than the giobal depth. Two insertion opera-
tions /, and [y are run, one with s pesudo key mapped to d, and
the other to dy. Counsider the following interieaved execuiion
sequence using the standard technique:

I; locks d,;

Iy locks dy;

Iy locks p;

I, reads p and encounters overflow; _
1, attampts o lock dy;

Iy attempts to loek p;

The two operations are now deadlocked.

Also, using the standard technique, while a search operation
s never blocked by h h operatioa, it may be blocked by
an insertion operstion, aad vice versa. la our algorithm, a search
operstion s never blocked by aa insertion operation. Furthermors,
in our algorithm, insertion operations do not have to acquire s lock
on the directory entry befors reading it, resulting in savings in
locking overnead. The exact asture of the performance of the
aigorithm as compared 0 the standard technique wouid - require
additional anaiyms.

While the proposed sigorithm offers freedom {rom deadlocics,
potentiaily higher level of concurrency and savings in locking over
head, it is conceptuaily simpie and shouid be just as easy, il noc
eamer, o impiement. The only additional cost in the proposed
aigorithm is the cost of verification. The search operation is poten-
tially required o perform verification of the contens of the direc-
tory encry previousiy read. This venfication is needed only when
the key demred i3 not found. The nsertion aigorithm is aiways
required to perform verification. However, it can be argued that,
when a venfication is performed on a directory entry, the likeii-
hood that the Iatter s memory-resident (i.e., in the buffer pooi) is
very high. This is true even il one does not in general keep the
entire directory in memory. Thersfors the cost of verification due
0 re-reading the directory entries is but a few memory sccesses,
and can be largely ignored.

4. Proof of Correctness

To show that the above aigorithm is correct, we use the (ol
lowing steps:
(1)  Show that ail operations are deadlock-{ree and will tarminate.
(2) Show that the search operation is correct.
(3) Show that the insertion/deietion operstion is correct.

4N e - LRIV TR I VT ORI
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Assumptions:

(1) The database is finite in size. In other words, thers exists »
bound on the global depth.

(2) Each searchfinsertion/deietion operation consista of
sequence of read and write steps. Each read/write step
involves & dete granwie which is either a directory entry or a
dala pege. We assume that cach read and write step on snch
data grensle i gueraniced (o be slomic by the underlying
system, on top of which the current algorithms are impie-
mented. In other words, we assume that the get and put steps
in the definition of the algorithm are atomic steps. Note that
this assumption can be supported by a synchronization
mechanism at a lower level if necessary.

In order to provide a prool of correctness the criterion of
correctness must frst be articulated. We first give the following
definitions before we discuss the criterion of correctaess.

Definition. A scheduie i 8 sequence of steps, each of which
is in the form of A,(OP). The sction A can be read (R) or write
(W). The data granule is 2, which can either be s directory entry,
denoted as ¢, or & data page, dcnoud ap. OP is an operation,
which may cither be a h oper d d a8 S, which con-
sists of two stepe R, snd R,, or an mcmon/dclcuon operstion,
denoted as [, which consists of at least three steps, R,, R, and W,.
(Additional W, and W, may also appear in an insertion operation. )
An operatioa cn also be denoted, together with the key & of the
record to be operated on, as S(k) or I(k).

Ezample. An example of a schedule is

<SRUASVRANR(S)RAI)R, (D)W1), W, (1R, (2),W,(1)>,

in which three operations 5./ and / are involved.

Definition. Let A and A’ be two steps in & schedule. We say
that A < A'if A occurs befors A' in the schedule.

Ezempie. In the above example schedule, R (7)< W,(]).

Criterion of Correstness. The unit of atomicity used for the
purpose of defining correctness is the operation. [n other words, the
sigorithm is correct il any interieaved schedule C that the algo-
rithm sllows is equivaient (ie., Aawing the sems net ¢ffect) to soms
serialised execution SE of the same set of operstions. subject to an
sdditional restriction 0 be described in the next paragraph. The
notica of “having the same net edect” is defined as [oilows: if &
ssarc operauon [aiis(succeeds with record r) im C it aiso
[aiis{snceeeds with record r} in SE, and if an insertion/deietion
operation succesds({ails) in C it also succeeds(fails) in SE.

We first motivate the additional restriction. followed by the
formal defimition of the criterton of correctness. [t is spurous to
consider an interiesved schedule C correct if it resuits in a (ailure
of s search operation (i.c., the search operation does not find the
key it is looking for} while the search operation starts in C after an
insertion operation that inserts that key has Gnished its iast step.
For example, cc-sider an interieaved scheduie C =
< W, ({),0nsly(S),..> and assume thas /[ inserts key & in page p
and W,(I) is its last step, 5 searches {or key & and fails, and ne
deletion operation is invoived in this schedule. While one may find
the net result of schedule C equivalent to that of a serialised exe-
cution whers § is run before /, it is mesningiess to ider C
correct. Therefore we define s more mnmngful and more intuitive
criterion of correctness, while retaining the basic notion of atomis
city st the operstion levei, as (ollows:

A scheduie C of an interieaved execution of a set of
search and insertion/deletion operations is correct if the
net effect of C is equivalent to some serialized execution
SE of the same set of operations s.t. if the last step of
OP, s before the firse step of OP, in C then OP, ia
before OP, in SE.
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4.1. Proof of Termination
Lemme L. All operations terminate.

Proofl. Since no operation would hold aay lock while waiting
for another, no circular wait-for is possible, therefore no deadlock is
possible. Therefore the termination prool amounts to proving that
the potential loop in the operation will terminate. All operations
potentially invoive a loop of re-reading a directory entry. Given an
operation O that involves such a loop. the loop in O terminates
when the content of the last directory entry read is the same as
that of the previous directory entry read. The content of any
directory entry would change only when a split occurs in the data
page that the directory entry points to. Since the number of times
that any data page can split is bounded by the logg{/V), where N is
the maximum number of pages sllowed in this syscem, i.c., it is
bounded by the maximum giobsl depth of the system, the number
of times the value of a directory entry will change is bounded by
loga{V). Therefors the loop of re-reading the directory entry in O
will terminate.

4.2. The Search Operation is Correct

Lemmea 2. The search operation is correct.

Preef. To prove that search operstions are correct, we inves-
tigate what could possibly be the cause for it to be incorrect.
Sinee all search operations terminate, they sither succeed or fail.
W consider each of these two cases separately.

(i) If » search operstion S succeeds, ie., if it finds the key it
is looking for, then it must be correct. This caa be shown as
follows. Suppose the record it finds is r. Then thers must exist an
inservion operation [ that inserts r. We can construct an
equivalent serislized execution in which [ is before S. If there also
exista a deletion operasion [, which deletes r, then in the
equivaiens serialised exocution we must let [, be sfter S. This
equivaient serialised execution is legal (according te the definition
of correctness) as long s the last step of [, did sot come before
the firss step of S in our intariesved schedule. Suppose the lass step
of I, did come befors the Brss stap of S. Then the oaly way for r
to still linger in the databass when S starts is for it to be in soms
dats page p from out of which r was relocated (ie., via page split)
w s differens page p’, from which J; deleted r, and p is still in &
tranment state containing r. However, il [, is Snished by the time S
starts. the directory entry corresponding to r would bave aiready
be pomncng to p'. S therefore could not pomsbly ges acrwm to p.
Therveiore the lass step of [, could nos come before the first step of
S in our mterieaved schedule. Thersfore the equivaienc sermiized
«xecution is legal. Therefore the search operssion is correct.

(i) If a search operasion S fails, it couid [ail incorrectly only
when copeurrent reiocation exista. [n other words, we wunt to
show that if a search operation S(k) [ails, and *he lest data page
resd by S(k) is p, then there exists no insertion operation [ such
that [ relocates the key range containing k [rom p to p' = p before
S(k) reads p.

Suppose that there exists such an insertion operation I. Let d
be the directory entry corresponding to the key k. Then [, before
fnishing, would Brst write the directory entry d and thea writes p.
Wae denote these steps a8 W,(1) and W, ([}. Wae also denote the
final steps of S(k) in resding directory d, reading page p, then re-
reading (i.e., verifying) directory d as R (S).R,(S) and V,(S). By
definition of the lailed search operation, the value read in R,(S)
would be equal to that of V,(5). There are four cases of poemble
interieaving:

(1) W) <R,(S) sad W,([)<R,(S). In this case, since [ relo-
cates k from p to p’, the directory entry read by S(k) should
not contain a poin.er to p, therefors S{k) would not have
read p, contradictory.

(2} WD <R(S) and R, (1)< W,(S). la this case, similar argu-
mens as sbove, S should not have read p, siso contradictory.

(3) R, (S)<W,(I) snd W,(I)<R,(5). In this case, the V, atep of
§{k) would have read the new pointer (i.c., to p’) which is not
unh'l to the old pointer (i.e.to p} resd in the R, step, con-
tradictory.

(4)  RS)<Wd(I) and R,(S)<W,(I). In this case, S(k} would
read tie oid content of page p before I reiocates k out of -R
contradictory to definition of .

' Therefore we conclude that there exists no insertion opers-
tion [ that could have relocated k out of p before S(k) reads p as
its lut_ d;!.a page to read belore termination. Therefore the sesrch
operation is correct.

Combining (i) and (ii) above we conclude that the search
operation is correct.

4.3. Insertion/Deletion is Correct

Since search operations do not updste the database, they
would not aflect the correctness of aa insertion operation. There-
fore to prove that insertion operations are correct we need only to
take into sccount interferences among insertion operations them-
selves, and betwesn insertion sad deletion.

We introduce some notations to refer to specific steps of aa
insertion/deletion operstions. We are interssted in the tailing end
of the steps in these operations, i.e., thase in the Anal round of the
verification loop and those st the very end. The sequence of the
read/write steps of the lest round of the verification loop of an
insertion/deletion consists of <R,L,,V,>, where L, stands for
exclusive lock of p, V; stands for the step of verifying the content
of the directory entry resd in R,. We denote R, and V, in this
last round of verification as R, aad V°,. Note thas by definition,
the content of the directory entry read in R°, sad V', must be
jdentical. Alter the last round of verification, the page pointad to
by the value resd in R’, is read. We denote this step as R’,.
The Gnal sequence of steps o an insertion/deietion operation that
does not invoive a split is <W,,U, >, where W, and U, stand for
arite and unlock of the page p which was locked betwesn R °, and
V’, during the last round of verif The seq for oue
involving a spiit s <W, U, W, U,>. whers U uniocks all new
pages, and W, ia the last directory entry update. We will denote
these last stepe of directory update and page write as W', and
W’,. Note thas the direcrory enwry wntten in W*, may not be
the same entry resd in R, or V' .

Defimtson. Let | be an imseruocn/deiecion operauon. We
define the raage of the keyw reiocatea by [ as the mugrenen st of
1. denoted aa magrenen(/).

Since the delewion operstion pever reiocaces any record, its
MIgTanon set 8 obviously empty.

Lemma 8. Any two concurrent nsertion, deiesion Opersuons
I, and [, siwsys wterieave correctly.

Proof. Lat the key to be operstad by [, be k, aod that by Iy
s k;. Assume without loms of generaiicy R, <R ,idy. We
consider the {ollowing cases, and [or escn case we snow that they
interieave correctiy.

(1} migretion(/,) contains kq. Then /, must update the direc-
wory entry for ky, denoted as 4y, thas [y needs w0 resd. Two
b are idered. (i) [y reads 4, in the final round
sfter [| updates it. {i.e. W, (1) <R’ /(1) where W4"(I.) »
2

the step in which /, updates 4, ) Then /; cannot read the
page pointed o by d., it read untl [, reieases the lock on it,
by which time [, wouid have finished all its operations on
directories. Therefore the only depeadency that the
directory entry operations can possibly induce between [,
and [y are [, giving to /5. Since [, will not read or write any
data pages alter /, writes them. the oniy dependency that
the data page operstions can induce are aiso /, pving 0 /q.
Therefors any interieaving between /| and /5 is equivaient o




serializing [, before I, therefore they are correct. (ii)
W,.’(I,)>R',(!,), i-e., I reads 4,, before I, updates it. In

this case [; will be forced to wait till /, relesses its lock on
the page it is splitting, by which time W;,’U,) would have
already occurred, which means V°,(/;) would have failed,
contradictory.

(2) migration(/) does not contaim k;. There ars also two sub-
cases. (i) migration(/,) contains k,. Let the page read in
R',(1) be p. I, holds a lock on p ill finish. Since
R°,(1)<R’ (1), I can read p (il it ever does) only after I
is finished. Therefore the only possible dependency is /, giv-
ing to [y, therefors the interieaving is correct. (ii)
migration(/;) does not contain k,. In this case no conflict
can occur between [, and [, on directory entries. And since
dats pages are two-phase locked, the interleaving must be
correct.

From the above three lemmas, one concludes that our algo-
richms for concurrent search/insertion/deietion operations are
correct. Q.E.D.

5. Conclusion

We have presented an algorithm (or synchronising coacurrent
operations in extendible hash files. The slgorithm allows the
search operations 1o proceed concurrently with insertion operations
without having to acquire locks on the directory entries or the data
pages. It also allows concurrent insertion/deietion operstions to
proceed without having to acquire locks on the directory entries.
Moreover, because at most a single lock is required at any time for
each of these operations, the algorithm is deadlock fres. The aigo-
rithm combines the method of verification used in the optimistic
concurrency controi algorithm sad the special structures of opers-
tions in extsndible hash Sles together to yield a higher level of con-
currency as weil as a lower synchronisation overhead.

In this paper we ignore the issues of underfiow and compac-
tion. We also did not discuss the imsue of directory expansion (i.e.,
doubling) extensively. However, the latter can be bandled by o
straightforward extension of the current aigorithm, to require that
(1) every time a verification (i.e., re-rend) of the content of the
directory entry is performed, the global depth and the base address
of the directory are also re-read, and thas (2) the oid version of the
directory is carried around in memory for a specified perod of
time. (Incidentaily, (2) can be reiaxed il the bics in the pseudo key
used to index to the directory are the suffix racher than the
prefix of the pseudo key.) If these prove to be pracucal to impie-
ment, directory expansion can be allowed to proceed conewrrently
with search operations. [n any cass, database quiescence can
always be resorted to as the method for handling directory expan-
swon.

The aigonthm can also be appiied to handle dynarmue perfect
hash files [YD84|. The dynamic periect hash file structure empioys
a2 method that optimizes the space requirement of the directory
used in an extendible hash file, thus rendering it more practical to
consider the directory being memory residenc. However, the struc-
ture of the directory in a dynamic perfect hash file is more compli-
catad than thas of sn ordinary extendible hash fle, and extensions
of the current algorithm must be sought for.
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