
66M55 THR DEVELOPMENT PLA FOR THE SH-2V HELICOPTER i
U NCSYSTEM TRIlER C. (U) EEING RESEARCH INST INC
PROVO UT AIPPLIED TECHNOLOGIES GROUP.. 62 NOV 64

UCSSFIED 5N-65 N62269-94-C-0424 FIG 9/2 M

EEmnmnmmmmmmhE
mhE|hh|hhE|hhI
mhElhhhhlhEEEE
EIIIEIIIIIIEEE

11111"2---- 1112.0llll
1811111.21 1 1 .4 11-.

MICROCOPY RESCOuTION TEST CHART

500-0015

SOFTWARE DEVELOPMENT PLAN
FOR THE SH-2F HELICOPTER WEAPON SYSTEM

TRAINER (DEVICE 2F106) SOFTWARE CONVERSION
MODIFICATION

Contract No. N62269-84-C-0424 (Competitive Award)
Contract Value: $468,000

.. 5

Ln
Ln
00

Prepared for:
Accession For

Naval Air Development Center -FTIS GRA&I

Warminster, Pa. 18974 P-Ir TAB
U an - 1.v ed %

~~~~~~Sponsor : 1a 'rhti
, v l i l± ' 1 C o d -3s

Cmdr. Bateman ' ' ..
NAVAIRSY SCOM -~z ; eal "

AIR (413), Washington, D.C. '

orcd

Prepared by: D ["

~~Eyring Research Institute, Inc. w
~Applied Technologies Group

411 West 7200 South, Suite 100DS r Midvale, Utah 84047 A-LCTE

(801) 566-5628 B' 1 9 1987

AR()November 2, 1984

Per by:,

Eyin esachInttueIc



( 500-0015

SOFTWARE DEVELOPMENT PLAN

Table of Contents.

Section Description /Page

1.0 INTRODUCTION 1

1.1 Scope 1
1.2 Proeand Application 1
1.3 Definitions 1

2.0 PROJECT ORGANIZATION' 2

2.1 Corporate, Group, and Project
- Organization 2

2.2 Project Staffing 2
2.3 Staff Assignments 5

3.0 PROGRAM DESIGN APPROACH, 9

3.1 Incorporation of Trainer Services
Program 9

3.1.1 Process Controller 9
3.1.2 Services 10
3.1.3 Interrupt Handler 10
3.2 Executive Module modification 13
3.3 Modification of HQA Module 13
3.4 Disk File Modification 15
3.5 other Modifications 15
3.6 Support Software 18

4.0 IMPLEMENTATION APPROACH 20

4.1 Programmatic.Conver-sion Process 20

5.0 RESOURCE UTILIZATION CONTROL 22

5.1 Timing Analysis Tools 22
5.1.1 Spare CPU Time 22
5.1.2 Spare Time Measurement 23
5.1.3 Module Timing 23
5.2 Memory Resources 24

6.0 CERTIFICATION TEST PHILOSOPHY AND PLANS 27

6.1 Unit Test 27
6.1.1 Code Walk-Through 28
6.1.2 Code Execution 28
6.2 Integration Test 28
6.2.1 Linkage Test

% %



AWd WWLWW" _Ww~lv . '7. V'J7J A

500-0015

SOFTWARE DEVELOPMENT PLAN

Table of Contents (cont.)

Section Description Page

6.2.2 Input/Output Test 28
6.2.3 Operational Test 29
6.2.4 Relocatability 29
6.3 Acceptance Test 29

7.0 PROGRAMMING SUPPORT CENTER, 30

7.1 Programming Facilities 30
7.2 Programming Tools 30
7.2.1 Emulator Test System 30
7.2.1.1 Hardware Implementation 31
7.2.1.2 Software Implementation 31
7.2.2 System Test Driver 33
7.2,.3 REBUG 34

8.10 . QUALITY ASSURANCE., 35

9.0 PROGRAMMING STANDARDS 36

9.1 Programming Guidelines 36
9.2 Modularity Guidelines 37

10.0 - CONFIGURATION MANAGEMENT 38

10.1 Identification 38
10.2 Tracking Changes to the Software 38
10.3 Documentation 39
10.4 VISTA 41

11.0 GOVERNMENT-FURNISHED EQUIPMENT AND SERVICES 43

12.0 SOFTWARE INTEGRATION, 43

12.1 Integration of Phase II Software 46
12.2 Pre-Installation Testing 46

13.0 AREAS OF RISK 47

13.1 Input/Output Testing 47
13.2 Integration of Phase 2 Software 47
13.3 Delivery of GFE Items 47

14.0 SCHEDULES AND MILESTONES 48

15.0 RESOURCE ALLOCATION 62

iii



7.P. d- .P- 'V 'V '' J: \ ~ " t ! r. .j U' 
] ~ -~~~ V' dJi ._d. . r . L M 4W, U

500-0015

1.0 INTRODUCTION

1.1 Scope

This Software Development Plan (SDP) describes Eyring Research
Institute's comprehensive approach for implementing the software
conversion/integration tasks of Navy contract N62269-84-C-0424. The
scope of this contract includes the following tasks to be accom-
plished by Eyring:

a. Development/conversion of software required to facilitate
the transition of the SH-2F Helicopter Weapon System
Trainer (Device 2F106) Main Trainer Program for use
on the trainer's upgraded Harris computer system,
under control of the Harris standard operating system
(VOS).

b. Software integration support for inclusion of NAVAIRDEVCEN
Phase 2 changes into the SH-2F Operational Software
VOS version cited in item a.

c. Software integration support associated with the Flight
Control Loader upgrade objective of the SH-2F WST
Improvement Program.

d. Documentation and training related to items a. through
c.

1.2 Purpose and Application

The objective of this SDP, and the contract under which
it is specified, is to accomplish NAVAIRDEVCEN modifications
to the SH-2F WST to provide a more efficient platform to train
LAMPS H-2 aircrew in all aspects of procedures and tactics.

This document has been written and formatted in accordance
with Contract Data Requirements List (CDRL) Item A004, Data
Item Description DI-A-2176A, and applicable requirements of
DOD-STD-1679A(NAVY). The following sections provide detailed
information regarding Eyring's project organization; design,
implementation, and resource utilization approach; testing plan
and philosophy; and software integration plan. Other topics
addressed include areas of risk, project schedules and milestones,
and resource allocation.

1.3 Definitions

Terms used in this document generally comply with the defin-
itions of such terms given in DOD-STD-1679A(NAV). Terms used
in this document which are not defined in DOD-STD-1679A(NAVY)
are defined at the point of usage.

a'

'..~'.-".



4[

500-0015

2.0 PROJECT ORGANIZATION

2.1 Corporate, Group, and Project Organization

In accordance with corporate policy, decision responsibility
for performance of this contract has been delegated to the appro-
priate Eyring group and division; in this instance, Eyring's
Salt Lake City Division, which is a part of Eyring's Applied
Technology Group. Figure 2-1 depicts Eyring's corporate organization
to the division level.

Technical and financial management of the project is conducted
at the division/project manager level, with the project manager
directly responsible for technical, schedule, and budgetary
performance. The project manager is given broad management latitude
to ensure efficient, timely performance of contract tasks. Project
managerial performance is, in turn, monitored and reviewed by
means of periodic formal presentations to upper management personnel,
and by detailed, frequent budget reviews and expenditure reports
generated by Eyring's computerized accounting system.

2.2 Project Staffing

The project is staffed and structured so as to achieve
maximum efficiency (refer to Figure 2-2 for project organiza-
tion). The project staff is composed of qualified, trained indiv-
iduals who are proficient and experienced in Eyring's standards
and techniques related to projects of this nature. Where possible,
the project's conversion and development tasks are divided into
modular groups, and each task group is then assigned to a specific
development team. Each team member is required to interact with
other team members for purposes of conducting design and code
walk-throughs and other related reviews and evaluations, with
the ultimate result being an integrated, well-designed product
that complies with Eyring and contractual standards and requirements.

The individuals assigned to this project are:

a. Rosalee E. Millard, Project Mgr. and Sr. Project
Engineer

b. System/Software Analyst 1
c. Lynn Hancock, System/Software Analyst 2
d. Russell A. Carter, Data Manager and Technical

Writer
e. John Spencer, Staff Engineer 1
f. Martin T. Jakub, Staff Engineer 2
g. Diane Ogden, Technical Typist

Divisional and group managerial responsbilities will be
fulfilled by Clyde M. Stauffer IV and David K. Sorenson, respect-
ively.

2



500-0015

i

I mms r
1.- 9

-- Ia. --

-'Iq..'
0 4-

4oU

~ 4j

(a C

I. I~S

a -! ;0

"-4

Lo 9 3



500-0015

GROUP
VICE PRESIDENT

SENIOR PROJECT QUALITY
ENGINEER ASSURANCE

(PROJECT MANAGER) ENGINEER

STAFFSTFTEHIA
ENGINEER 1 NIER2TPS

Figure 2-2. SH-2F software conversion project organization.

4



x -L Y ,Vu. V J W tV V'V i ' . i m E -, .- ' . , - - *- - -T *• < < q

500-0015

2.3 Staff Assignments

The Project Manger/Senior Project Engineer has prime responsi-
bility for the technical management and team performance/execution
of the overall project. Functional duties include:

a. Develop the Project Plan (PP).

b. Monitor and evaluate project status and prepare
and submit performance and cost reports.

c. Prepare Design Approach and Software Development
Plan using the PP and software baseline data
as guides.

d. Schedule and conduct design reviews.

e. Monitor progress of project personnel to ensure
compliance with design approach.

f. Coordinate with QA on the development of Software
QA Plan and Computer Program Test Plan, Procedures
and Report.

g. Perform conversion of the Executive Routine (HAA),
Trainer Initialization Routines, and the Timer
Interrupt Handler.

h. Provide Technical Support Services for the flight
control loader upgrade at Norfolk and North island
NAS.

i. Supervise integration of new government-furnished
software into the trainer baseline.

j. Monitor and participate in verification testing.

k. Provide integration support at Norfolk and North
Island NAS.

1. Monitor and participate in Acceptance Test Procedures
at Norfolk and North Island NAS.

m. Supervise and monitor progress of documentation
development.

n. Supervise and monitor timely and accurate CDRL
compliance.

5

~~A A~Z.U~~.?E~~ %'~ ~ ~: ~ .



500-0015

The System/Software Analysts will function under the direct
supervision of the Project Engineer/Manager and will be responsible
for planning and executing the convers ion/integ ration requirements.
There will be two software development teams, each headed by
a System/Software Analyst. Both teams will share the following 4

functional duties: 4

a. Review and become familiar with the GEE software
baseline.

11. Participate in analysis and development of the
Software Development Plan.

C. Participate in design reviews.

d. Participate in formulating Software Development
Guidel ines.

e. Prepare the applicable software documentation.

f. Perform technical support services for the Flight
Control Loader upgrade at Norfolk and North island
NAS.

g. Participate in verification testing.

h. Perform integration support at Norfolk and North
island NAS.

i. Participate in Acceptance Testing at Norfolk
and North Island NAS.

Functional requirements specific to Team 1 include:

a. Convert System Drivers (I/0 handlers), Put/Get
file handlers, and Trainer Data Files.

b. Help prepare the Program Package.

Functional requirements specific to Team 2 include:

a. Modify the Emulator Test System and Development
Tools Package.

b. Cony ~t the CDB, Trainer Simulation Modules,
Trainer Utilities, and Diagnostics.

C. Perform integration of government- furn ished software
into the trainer program baseline.

Staff Eng ineers will function under the supervision of

6

ZI



500-0015

a System/Software Analyst. They will perform conversion/integration
in conformance with specified team assignments. Their primary
responsibilities include participation in the design, conversion,
integration, testing, and documentation of trainer software.

The Quality Assurance Engineer will function under corporate
control to assure QA independence. The primary reponsibilities
of the QA Engineer are:

a. Assist in the preparation of the Software Development

Plan.

b. Participate in design reviews.

c. Develop the Software Quality Assurance Plan.

d. Develop the Computer Program Test Plan, Procedures,
and Reports.

e. Provide configuration management for:

1) Software baseline
2) Government furnished software
3) The new Flight Control Loader software

f. Monitor verification testing.

g. Provide necessary QA support and oversight for
project execution.

The Technical Writer/Data Manager will be responsible for
revision, development and production of all technical documen-
tation and data preparation and delivery during project execution.
His functional duties include:

a. Assist in preparation/publication of the Project
Plan (PP).

b. Review GFE documentation and establish the documen-
tation baseline.

c. Assist in the preparation of the monthly Performance
and Cost Reports.

d. Assist in the preparation/publication of the
Software Development Plan.

e. Assist in the preparation/publication of the
Quality Assurance Plan, and Computer Test Plan,
Procedures, and Reports.

7
0.

de,



500-0015

f. Prepare and publish applicable page changes for
all converted/integrated software documentation.

g. Assist in preparation/publication of the Software
Development Guidelines.

h. Develop and publish the Operator's Manual.

i. Modify the Trainer Programming Report.

j. Assist inpreparation/publicationof theVerification
and Acceptance Test documentation.

k. Assist in preparation/delivery of the Program
Package.

1. Develop training course and associated course
materials in collaboration with subject matter
experts.

The Technical Typist will assist in the preparation of
all reports, plans, and software documentation.

8 !- .

. -. •, % -. ........'* .. . . .-.. . .......... .... . ..- - - -. % . . % .• - ,% %.. , . . '. . .-. ,



-~~~~- - - 7 -.- -S.. -Z FT .-. - 4 4 4

50 0-0 015

3.0 PROGRAM DESIGN APPROACH

This section describes Eyring's overall approach for providing
a software system that is efficient, easy to maintain, and uses
the numerous capabilities of the Harris H800 computer and VOS r
operating system to provide improved SH-2F WST performance and
expandability. It should be noted that Eyring considers this
project to be primarily a conversion effort rather than a design
effort, and has formulated its technical recommendations based
on that consideration. The project will involve a limted amount
of design to replace or rewrite obsolete or unusable software
components; however, this effort must be conducted within the
constraints posed by the requirement to conform with pre-specified
hardware and software (operating system) capabilities and config-
urations. The majority of existing SH-2F modules will undergo
modification (conversion) requiring only module syntax changes
and removal of HOLD pseudo-operat ions. These changes will be
accomplished globally and programmatically, and are described
in detail in Section 4.0. Changes to software components that
may involve restructuring or rewriting of a module, or modules,
are described below.

3.1 Incorporation of Trainer Services Program

System services provide the interface between user programs
and the Harris VOS operating system. This section addresses
and describes the special services, or routines, that must be
made available to the SH-2F Main Trainer Program to enable real-time
performance and Direct Memory Access (DMA) 1/O under VOS. The
group of routines designed to provide this capability has been
designated the Trainer Services program, and comprises three
functional areas: 1) the process controller, 2) the services,
and 3) the interval timer (real time clock) and 1/O interrupt
handlers.

3.1.1 Process Controller

The process controller provides the load ing/unload ing mechanism
f or Trainer Services. This is accomplished by changing memory
BLU location '37 to point to the Trainer Services main routine
and then putting the process controller in wait mode while the
Main Trainer Program (MTP) executes. When the process controller
is removed from the wait mode, it restores the original contents
of location '37 and exits the system. This method of loading
and unloading the Trainer Services program provides a means
whereby only the MTP can access Trainer Service routines, and
eliminates the possibility of another program inadvertently .

accessing one of these services or a spurious interrupt being
processed by the special interrupt handlers.

9

AI



o-A -71 17, b, -Wk" -Y :-

500-0015

3.1.2 Services

The MTP has several needs that cannot be met by the existing
system services. These include the capability to: a) log error
messages from a user application to the OPCOM and the OPCOM
log, b) initialize the interface between VOS and the MTP, c)
change interrupt vectors, and d) place the MTP in wait sate
so that other processes may execute. The services area provides
a) trainer interface initialization, b) trainer reset, c) trainer
wait, d) OPCOM messages, e) interval timer start and stop control,
and f) I/O stacking.

The trainer interface initialization routine performs such
functions as setting up addresses for the interval timer interrupt
handler and the I/O interrupt handler, initializing variables
for timing routines, and setting the interval timer counter. Figure
3-1 presents the interface relationship between the MTP, VOS,
and the System Service Directory described below.

The trainer reset function performs restoration of the
original contents of the interval timer and the interrupt locations
for the interval timer and I/O, and removes the process controller
from the wait mode.

The trainer wait routine is used to put the MTP in wait
mode after the MTP has completed execution of a given frame.

The OPCOM message routine is used to provide communications
from the MTP, such as sending a status message to the OPCOM
terminal and OPCOM log.

The interval timer control routines perform interval timer
start and stop functions required by the Emulator Test System
described in Section 7.

The stacking routine performs functions required to operate
the I/O stack so that it can be initialized by the I/O interrupt
handler.

To facilitate incorporation of user services such as Trainer
Services, VOS uses a System Service Directory (SSD). User services
will be incorporated by adding the name of the service routine,
the BLU vector, and the sequence number of the routine to the
SSD as shown in Figure 3-1.

3.1.3 Interrupt Handler

The addressing mode capabilities of VOS require that all
I/O interrupt handling functions reside in physical address
space (monitor mode); i.e., at system level. Thus, those software
functions -- including the I/O interrupt handler and interval

10

P.



500-0015

TRAINER SERVICES MAIN TRAINER PROGRAM

Establish locations BLU $1NIT starts

'37, "65, '74, '71 <-----------------------------execution of
'77; install Trnr. Trainer Scrvices
Services; start
interval timer; HAA

put self in wait ----------------------------> (entered at 32 Hz
mode* from context switch

by interval timer

Trnr. interrupt hdlr.
fires at 32 Hz, init-
iates frame I/O, for-
ces context switch
that allows MTP to
execute.

1/0 interrupt handler
fires on EOB after
a DMA transfer to
trainer. Initiates
subsequent frame I/O
as required.

Services < ---------------------------- BLU to $SERVICES

SYSTEM SERVICE DIRECTORY

TRINIT '0037 '0001
TRRESET '0037 '0002
TRWAIT '0037 '0003
TRSTOP '0037 '0004
TRSTART '0037 '0005
O/M '0037 '0006
HAMSTRY '0037 '0007

*When putting Trainer Services in wait mode,

the system performs a context switch to
allow control to return to the Main Trainer
Program.

Figure 3-1. VOS/Main Trainer Program Interface block diagram.

11

- -. ..



500-0015

timer interrupt handler -- will br :n'rpi into the Trainer
Services program. Each time t-,- <1! cot:nter reaches
zero, an interrupt is qeot',r± . T :r , r i .. I handler resets t
the counter, processes the M"P :, sets up I 0 for
the frame, processes mode fl:qs, In: fr.Te execution.
The interval timer inter rupv h , ,'.. ,xecute at 32 Hz, %
the rate at which I ,0 mus bin '. A:-r initiating 1,
the handler will then, by :n- x sr I ' 1 , return control
to the Executive module HAA. HAA w,,1 .- r1 r if tne MTP should
return to a wailt stte, execute, hi:orn T tri n routines,
or, if it determines that an excution 1nIj condition exits,
execute the necessary routines tn eli.inate the lag during the
remaining frame time.

The I0 interrupt handler will execute at the completion
of each DMA transfer, and will initiate the next block I/O transfer
and return to the point of interruption. As explained in Section

3.2, all I/O routines will be removed from the Executive module

HAA and placed under Trainer Services. Input/output rates and
order of transfer will remain intact and unchanged.

Refer to the table below for a listing of Trainer Service
routines and functions.

Table 3-1. Trainer Services Routines

'.

Name Descr ipt ion

BLU Vector Definition -Entry into Trainer Services
Timer Interrupt Handler -Handles all bookkeeping functions

Initiates new I/O
Wakes MTP if in wait state
Forces context switch
Returns to point of interruption

or to HAA

I/0 Interrupt Handler -Initiates further I/O
Returns to point of interruption

O/M -Outputs message to OPCOM, log

TRINIT -Initializes Trainer Services
TRRESET -Resets Trainer Services

TRSTART -Starts interval timer
TRSTOP -Stops interval timer A

.5.

TRWAIT -Puts MTP in wait state
HADSTKA -Stacks I/O routines

12



500-0015

3.2 Executive Module modification

The Executive module (HAA) of the Main Trainer Program
(MTP) will be completely rewritten. Present HAA 1/0 functions
will be removed from the program and placed in the Trainer Services
program. The HAA module will become the event scheduler for
the MTP on a real-time basis -- HAA will, in operation, pass
control to a series of other MTP modules which are scheduled
for a specific time frame. No other program will execute at
a priority equal to or higher than the MTP, thus ensuring that
when the interval timer interrupt handler forces a context switch,
HAA will be the first routine executed after the interrupt.

Upon execution, HAA will check a frame counter updated
by the interval timer interrupt handler to determine whether
the new frame is even or odd numbered. MTP modules are executed
during even frames; HAA will exit immediately during an odd
frame to provide other users with processing time. If an execution
lag is detected during an odd-numbered frame, MTP module execution
will continue.

The current system of tables to define execution rates
will be modified to use a bit mapping scheme. This approach
uses a table containing a four-word entry for each module.
The first word is the actual bit map, the second and third words
are the instruction (extended addressing branch) to the module
associated with that bit map, and the fourth word will contain
the execution time of the module when the module timer is activated.
The bit map will have the structure shown in Table 3-2.

The code will scan this table, checking bits in the bit
maps for each of the modules and comparing them with MTP cond-
itions to determine if the individual modules should execute.
This system makes it much easier to streamline the performance
of the MTP by allowing the programmer to use the RMM device
to activate module timing and manipulate execution rates and
groupings to find the optimal configuration.

As HAA completes execution of the modules, it will check
to see if a lag condition exists. Under normal conditions (nio
execution lag), HAA will call Trainer Services, which, in turn,
will put the MTP in a wait state to allow other processes to
run on the system. The MTP will be taken out of the wait state
by the interval timer interrupt handler.

* 3.3 Modification of HQA Module

The Virtual Memory features of VOS make implementation
of overlays complex and inefficient. Therefore, the present
overlay routines will be integrated directly into the MTP and
made memory-resident. All HQA calls to overlays will be converted
to direct calls. This will not affect the logic flow of HQA.

13



500-0015

Table 3-2. HAA Bit Map Structure

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

F TH ML SSS3F FF FF FF FF FF FF FF F
R I I EOP P PR R RR RR R RR RR RR R RR
E M G D W A A A A A A A A A A A A A A A A A A A
E E H I R R R M M M M M M M M M M M M M M M M
Z R U EE EE EE EE EE EE EE EE EE E
E M

1 11 11 1 198 7 6543 2 1
65 43 21 0

BIT 23 - IF SET THIS MODULE WILL EXECUTE WHEN MTP IS IN FREEZE MODE
BIT 22 - IF SET, ENGAGE TIMER ROUTINES TO TIME EXECUTION OF MODULE

BIT 21 - SET IF A HIGH MODULE
BIT 20 - SET IF A MEDIUM MODULE

BIT 19 - SET IF A LOW MODULE
BIT 18 -SPARE

BIT 17- SPAR

BIT 17 - SPARE

BIT 16 - IFSPAET EXCT INFAE1

BIT 15 - IF SET, EXECUTE IN FRAME 16

BIT 14 - IF SET, EXECUTE IN FRAME 15

BIT 13 - IF SET, EXECUTE IN FRAME 131

BIT 12 - IF SET, EXECUTE IN FRAME 13

BIT 10 - IF SET, EXECUTE IN FRAME 12

BIT 10 - IF SET, EXECUTE IN FRAME 10

BIT 9 - IF SET, EXECUTE IN FRAME 10

BIT 8 - IF SET, EXECUTE IN FRAME 9

BIT 7 - IF SET, EXECUTE IN FRAME 7

BIT 6 - IF SET, EXECUTE IN FRAME 7

BIT 4 - IF SET, EXECUTE IN FRAME 6

BIT 3 - IF SET, EXECUTE IN FRAME 5

BIT 3 - IF SET, EXECUTE IN FRAME 3

BIT 2 - IF SET, EXECUTE IN FRAME 3

BIT 1 - IF SET, EXECUTE IN FRAME 2

14



500-0015

3.4 Disk File Modification

The structure of the Main Trainer Program (MTP) will remain
the same with regard to disk I/O. The Put/Get routines will
be rewritten to: a) use relative records in unblocked files
(instead of sector addressing), b) initiate parameter lists,
and c) call standard VOS I/O services to place the request on
the system disk queue.

All changes to file structure will be transparent to the
user. At present, the only modification envisioned is removal
from the PPM file of all directories used to access other files. )

These directories will be placed in the last record of the file
they refer to, permitting quicker access, modification, and
replacement.

3.5 Other Modifications

In addition to the modifications required to interface
the MTP withVOS, Eyring has determined that the following modificati- P

ons will be required to provide memory expansion capability,
convenient FORTRAN interface methods, and relocatability for
the SH-2F WST software. These modifications include:

1) Incorporating extended addressing -- The Main Trainer
Program will be converted to take advantage of the extended
addressing capabilities of the Harris H800 computer and VOS
operating system. The primary benefit achieved by this change
is increased memory address space in the MTP (to 1 MW), providing
ample expansion room. Also, a new module can then be written
without concern or regard to which map it will reside in (map
independence). In the current version of the MTP, modules in
the upper map can only access variables in the lower map via
pointers and indirect instructions. These indirect memory access
go through pointers in Direct Address Constant (DAC) tables.
By using extended instructions, these pointers, and their dummy
names, can be eliminated. As an example, the code

DFKYBDP DAC CDFKYBD Floor Keyboard

TMA* DFKYBDP Load Keyboard Indirect(*)

will be replaced by

TMA %CDFKYBD Floor Keyboard

The replacement code is preferable since it is slightly faster
in execution, and is easier to understand.

The change described above will be done programmatically. A
list of DAC's (pointers) will be collected, and all indirect
instructions through the pointers will be replaced by extended

15



V., -1 -7 --- 7 -7 PZ ,r.v. x -4

500-0015

(direct) instructions. A cross-reference utility will later
be used to find DAC's that are not used by the program. These
unreferenced DAC's will be removed from the code.

In general, any instruction that accesses non-local va-
riables must be extended, since the variables may be in a distant
map. Thus, Eyring will to extend all direct or indexed instructions
that access non-local data. A software tool will be used to
accumulate a list of local data names, which will then allow
another program to do the necessary changes to the executable
code.

2) Removing executable code from the CDB -- To facilitate
easier maintenance and provide for cleaner partitioning of data
and executable code, subroutines currently contained within
the CDB will be extracted, thus making the CDB a true data repos-
itory.

3) Consolidating CDB data blocks -- Data in the CDB, currently
split into "upper" and "lower" map sections because of constraints
imposed by the Datacraft 6024/5 architecture, will be combined
into one contiguous block. Data in the CDB will also be placed
into monitor common. Data declared as common provides the means
for all modules in the MTP, whether written in assembly language
or FORTRAN, to globally access the same variables. In addition
to standard common data, VOS supports an enhanced version of
common known as monitor common. Common data further declared
as monitor common data is accessible not only to all modules
within a program, but to multiple programs as well. By placing
the CDB in monitor common, both the Trainer Services and MTP
can directly access the same memory, although each will be running
as individual programs. Test programs which monitor CDB variables
may also be written and executed as separate programs, running
at lower priority than the MTP, without impinging on trainer
time or memory resources.

In order for assembly language programs to access the CDB
in monitor common, each module must be prefaced with a "COMM"
and "MCOM" declaration. The symbolic names of all of the CDB
variables need not be explicitly listed in the COMM statement,
however, since a "STAB" statement can be used to obtain the
CDB symbol table image from previous assembly of the CDB.

In the current version of the CDB, many variables are initial-
ized at assembly time (using "DATA," "RDAT," "EQIV," pseudo-oper-
ations, etc.). Initialization of monitor common data at assembly
or compilation time is not supported, however, so a utility
program to generate a disk image of the initialized CDB will
be created. When the MTP is started, an initialization module
will read the disk image and initialize the CDB. The disk image
of the initialized CDB need be regenerated only if the CDB changes.
The utility program that creates the CDB initialization disk
image will use a CDB definition file as its input.

16 .

.. .. .... . ** ** • ... ..,,,. , , ... ..... " ', .-., • ",. .,.,.-,. .-... -.



500-0015

4) CDB Files -- In addition to the CDB initialization disk
image described above, several other files will be programmatically I

generated from a single CDB definition file (CDBDEF). Table
3-3 lists these auxiliary files derived from CDBDEF. Whenever
the CDB is modified, these auxiliary files will be regenerated
as well.

Although monitor common data cannot be initialized at assembly
or compilation time, this restriction does not apply to data
declared simply as common data. Thus, the CDBDEF file will use
standard assembly language versions of common declaration and
initialization statements, as shown by the example formats on
the following page:

Table 3-3. Auxiliary Files Generated from CDBDEF

File Name Description How Generated

CDB CDB in monitor common Batch program with input
from CDBDEF

CDBSTAB Symbol table (STAB file) Standard VOS assembler
of CDB variables option used to save

the symbol table image
(STAB file)

CDBINI Initialization values Directly from CDBDEF,

for CDB by utility program

.

CDBEQV EQIVs to CDB variables Batch program with input
for system-level prog- from CDBDEF
rams

CDBCOM FORTRAN common declar- Batch program with input
ations for COB varia- from CDBDEF
bles

(IAT) Initializes address ITBGEN with input from
tables for various CDBDEF
modes.

17

17 !

a..%

ilFl' L'.'t -% IIIi' '' % ']i 
"

'. ".- '_'.'-% '% ' 1' L • " " %'" % ." W'% .% % "1 " i % % " . . .% % % %



500-0015

COMM /CDB/ VARl(SIZE) (Comments) (Letter in Col 73)
CORG VARI
DATA (INITIAL VALUE(S) OF VARI, IF SUCH EXISTS)

COMM /CDB/ VAR2(SIZE) (Comments) (Letter in Col 73)
CORG VAR2
DATA (INITIAL VALUE(S) OF VAR2, IF SUCH EXISTS)

END$

This format is similar to that used in the existing disk-based
"TRNRIC" file as described in Table 6 of "SH-2F Trainer Software
Information On Initial Conditions." The letter in Column 73
is optional and describes those mode(s) in which the variable
must be loaded with initial condition values (this is imple-

mented in the present CDB).

From Table 3-3, note that the CDB itself is generated from
CDBDEF. This will be accomplished by commenting-out "CORG"
and "DATA" statements, and adding an "MCOM" statement to the
front of the file. The STAB file, CDBSTAB, is generated by
assembly of the CDB. CDBINI is a file of initialization values
copied to the CDB monitor common block when the MTP is started-up.
The fourth file in the table, CDBEQV, is an EQIV file for CDB
variables. It is necessary for monitor mode (physical addressing)

assembly-language routines to access CDB variables. The fifth
file has a similar function; i.e., allowing FORTRAN files to
access the CDB. Two batch programs will be provided to create

these files. The last file in the table contains the initialization
address tables for the IC routines. These are tables of the
addresses of CDB variables to be saved when cutting a new IC,
or to be loaded when restoring an old IC. The batch program
that performs this function currently exists (ITBGEN). The batch
programs listed in Table 3-3 will be written in FORTRAN 77 and
delivered with the new MTP.

3.6 Support Software

All support software will be analyzed to determine whether
specific functions may be replaced by a standard VOS utility
or diagnostic, or whether the existing program can be retained
and converted for use under VOS 3.1.

All DOS utilities modified by Reflectone, Inc. will be
replaced by standard VOS utilities that perform similar functions.
Many Reflectone-generated subroutines will also be replaced
by VOS routines. All hardware diagnostic programs will be replaced
by standard Harris diagnostic programs.

18



500-0015

The trainer diagnostic programs will be converted to be
compatible with VOS. Some of the utilities that were used with
the existing system will be retained, but will be modified to
become interactive or to use VOS capabilities.

In cases where an existing vendor support program is deemed
inadequate, Eyring will create a special-purpose support program
rather than modify the vendor program. For example, rather than
modifying the standard assembler to obtain a global cross-reference
listing of symbols, a special cross-reference program will be
used. Although such special-purpose programs may require additional
work beyond that required to modify the operating system or
its support software, the long-term benefits of continued compat-
ibility with new releases of the standard vendor software more
than compensate for any short-term gains.

The changes described above will provide a trainer software -

system that can be more easily expanded, tested, and maintained.

1.

19



MO Ws"1 Vh., U a - . -- P

500-0015

4.0 IMPLEMENTATION APPROACH

Eyring's implementation approach has been designed to provide
an efficient and reliable conversion process for SH-2F WST software.
The implementation plan includes the following objectives and

guidelines:

a. Eyring will retain as much of the existing software
design and control structure as possible.

b. Eyring will perform the conversion work on the same
type of computer as the present SH-2F WST system computer,
to insure compatibility.

c. Eyring will perform global syntax changes to the software
programmatically, to reduce the chance of human error.

d. Project personnel will be organized into teams with
specific areas of responsibility.

The existing control structure of the SH-2F WST software
will remain basically the same tnroughout the software conversion
process. The executive module (HAA) of the Main Trainer Program
is the event scheduler responsible for keeping the training
program on a real-time basis. As stated in the Program Design
Approach description (Section 3) , the interrupt handlers for
the interval timer, channel 2 I/O completion, and channel 7
I/O completion will be separate from HAA and will execute in
monitor mode.

4.1 Programmatic Conversion Process

To reduce the chance of human error when making global
changes to the software, Eyring has developed software that
performs repetitive conversion operations automatically.The
current DOS-based software baseline will be frozen and program-
matically examined to identify those modules which may require
change. A text-searching computer program will scan all source
code associated with the simulator system for lines of code
which may require module alteration. The following criteria
will be used to identify such modules:

a. Scan source for operators that end in W ( W).
This identifies all I/O instructions.

b. Scan for any interrupt control instructions.
c. Scan for T-register instructions. Operators

with T in the second or third position (_T_)
or _T), except for SRT, will qualify. All T-register
instructions reference the system clock.

d. Scan for DOS, DOSB, or DOSS in the comment field.
Instructions with this type of comment may be
coupling directly into DOS.

e. Scan for $ at the beginning of an operand. This

20



500-0015

references an external subroutine. A list of
externals will be created and each external will
be scanned for modules that may require change.

f. The programs will be test-run in unprivileged
mode to detect any privileged instructions that
are not detected by the preceding scans. Privileged
instructions will be isolated in a known set
of external subroutines to segregate them from
the main simulator program. This will allow
quick and convenient debugging of those routines
that can potentially hang the computer.

g. Any instruction that makes a memory reference
into the old operating system (DOS) will be detected
by VOS as an illegal memory reference when executed.
This will identify any instruction (and module)
for change that the scans failed to identify.

After the modules requiring change have been identified,
fixes that use "standard" solutions will be generated. Such
standard solutions may involve the use of standard system service
calls or, if needed, special "added" services which may be added
to the services already provided by the standard operating system.
Neither of these requires the modification of the operating
system or any vendor-supplied support software.

To ensure that the conversion work is compatible with the
SH-2F WST system, VOS version 3.1 will be used on Eyring's Harris
H800-2C system throughout the conversion process. Refer to Section
7 for a complete list of contractor hardware and software pro-
gramming resources.

As described in the project organization plan (Section
2) , two programming teams -- each comprising a system/software
analyst and a staff engineer -- will perform the conversion/
integration tasks.

21

" " + ' .1,2- .- - . "



500-0015

5.0 RESOURCE UTILIZATION CONTROL

Because this project principally entails conversion of
an existing software design (rather than design and development

of new software) that uses pre-specified hardware, processing
time reserves and memory recuirements are consistent with the
existing system. The processing time reserves will increase

from the original time reserves on the Datacraft 6024/5 because

of the increased speed of the Harris H800. The increased addressing

capability of the H800 will be utilized as indicated in the

Program Design Approach (Section 3) to permit future code expansion.

5.1 Timing Analysis Tools

The timing analysis tools described below provide the capa-
bilities for determining which modules may need performance

enhancement and whether modules need to be redistributed to
different time frames. These tools will be used primarily during
the conversion and integration of the software. During the

integration of new and modified modules in particular, the timing
analysis tools will identify modules that may be too large and
require further modification or redistribution among different
time frames.

5.1.1 Spare CPU Time

Frame time is defined as the period of time necessary to

accomplish a set amount of work and still maintain real-time

performance. There are two types of frame time employed in

the simulator.

1) I/O frame time, which is the length of time allowed
for the completion of one I/O sequence (1/32 of a
second).

2) Execution frame time, which is the length of time

available for the completion of one call list (1/16
of a second).

Cycle time is defined as the length of one major cycle (1/4
second). A cycle is composed of 8 I/O frames or 4 execution
frames.

Spare time is the actual amount of time available for use
in a given execution frame after all IO and module execution
has been completed. Eyring's calculation for spare time includes
a factor for the amount of system overhead that occurs during
normal trainer operation.

22

.J

7.



500-0015

Frame and cycle times can be altered dynamically by
modifying specific constants stored in the timer interrupt handler
and trainer executive module.

5.1.2 Spare Time Measurement

Accurate measurement of the spare time remaining in
each time frame can be difficult. Simplistic measurement algorithms
that essentially read elapsed real time fail to accurately quantify
"real" spare CPU power on modern computers that feature concurrent
DMA transfers, accelerated instruction pipelining, cache memory,
etc. A more powerful means of analyzing CPU usage is required.

In response to stringent requirements for measuring
spare time in previous real-time simulator work, Eyring has
perfected an algorithm that recognizes state-of-the-art processing
techniques and which fulfills the requirements of MIL-D-83468.
This algorithm will be incorporated in a new routine named TlT2,
which will replace the current HAHSTRY routine and provide signi-
ficantly enhanced capabilities.

When activated, TlT2 will receive control at the end of
each execution frame and continually execute a small loop of
instructions. The elapsed "clock" time for each loop will be
measured. A value for the fastest loop time encountered during
a run will be continually updated while the other loop times
will be averaged for each frame and cycle. The fastest loop
time corresponds to the case when no cycle-stealing I/O or system
overhead occurs to slow CPU execution. By taking the ratio
of the fastest loop time to the average loop time for each frame
and cycle, weighting factors may be obtained. Multiplying these
factors by the elapsed "clock" spare time yields the effective
spare CPU time.

The TlT2 routine will specifically identify the following:

-Time used in worst-case frame (T2)
-Percent of spare time in worst-case frame (TS2)
-Time used in worst-case cycle (Tl)
-Percent of spare time in worst-case cycle (TSl)
-Average cycle execution time over a test run
-The maximum frame execution time for each frame
-The average frame execution time for all frames over

a test run
-The identity of the frame number and encompassing

cycle of any frame exceeding available frame
time (lagging frame).

5.1.3 Module Timing

Individual MTP modules may be timed to provide performance

23



500-0015

information necessary to evaluate a new or modified module. This
timing measurement can be activated by a software engineer using
the RMM device to set the timer bit in the module entry of the
HAA bit map table (described in Section 3.2). The actual execution
time of the module is stored in the fourth word of the module
entry in the execution table contained in HAA. Using the load
map, the engineer can determine the address of the storage location
and set the RMM device to monitor the execution time of a module.

5.2 Memory Resources

The memory required by the current version of the SH-2F
MTP is approximately 70 kilowords (KW), including the Common
Data Base and overlay programs. This value will increase as
new code is added to improve the fidelity of the MTP. Converting
the MTP to execute on the Harris H800 computer under VOS provides

* the potential for greatly increasing the memory address space
available to the MTP.

Programs may be written to run in one of three addressing
modes on the H800. Compatibility mode, which emulates the addressing
of the Datacraft 6024 series of computers, constrains executable
code to a maximum size of 64 KW, with access by indirect and
indexed addressing to 256 KW of data (not executable) . Much

* larger executable code and data address space is obtainable
by using extended instructions, supported by the H800 in either
the extended or full addressing modes. Executable code can increase
to a maximum of 1 megaword (MW) in both modes while a data address

* space of 1 MW for extended addressing or 3 MW for full addressing
is available.

As part of the conversion process, Eyring will perform
the changes required to allow the MTP to execute in the extended
addressing mode, providing a maximum virtual address space for
the MTP of I MW. Using extended addressing rather than full
addressing will allow integration of any modules written in
FORTRAN (the Harris FORTRAN compiler currently supports only
the extended addressing and compatibility modes). Because extended

* instructions use two words of memory -- one for the operation
code and one for the address of the memory reference -- only
instructions which reference the global variables in the CDB
will be converted into their extended form. The use of extended
instructions, while requiring an extra word for those instructions
which reference CDB variables, obviates the need for DAC tables
and their associated memory and allows all modules to be completely
map-independent. Approximately 890 KW of spare virtual memory
address space will be available for future MTP expansion needs

* . by using extended addressing.

The Common Data Base will be placed in monitor common to
make all of the CDB variables accessible by all of the modules,

24



500-0015

whether written in FORTRAN or assembly language, in both the
Trainer Services Program and the MTP. All monitor common blocks
are loaded in high virtual memory, after all executable code,
by the Harris Vulcanizer program.

Figure 5-1 illustrates the memory maps for the Trainer

Services monitor-mode program and the MTP user-mode program
after conversion is completed. The amount of memory, approximately
100 KW, for the MTP includes additional memory for extended
instructions as well as modules for the System Test Driver. Added
together, the amount of physical memory required for VOS and
all resident trainer software totals approximately 177 KW. For
a physical memory size of 1536 kilobytes, this leaves 335 KW,
or 189%, as spare physical memory.

25

. -.. . . .. . . . . . . . . . . . . . . . . . .



1 Megaword 1 Megaword 512 Kilowords

VOS
(approx. 64 K(W)

Spare Virtual Memory Spare Virtual Memory Spare Physical Memory
(approx. 335 K(W)

Common Data Base Common Data Base
(approx. 12 K(W) (approx. 12 K(W)

________________ Main Trainer Program Main Trainer Program
Common Data Base (approx. 200 K(W) (approx. 100 K(W)
(approx. 12 K(W)

*Trainer Services Trainer Services
(approx. 1 K(W) (approx. 1 KT-)

TRAINER SERVICES MAIN TRAINER PROGRAM PHYSICAL MEMORY
VIRTUAL MEMORY VIRTUAL M4EMORY



500-0015

6.0 CERTIFICATION TEST PHILOSOPHY AND PLANS

This section describes the general philosophy and plans
developed by Eyring to ensure that software delivered under
this contract satisfies Statement of Work requirements. The
overall purpose of the tests described below is to assist the
programmer/analyst in determining whether specific software

components meet these requirements within the guidelines and
policies of Eyring's conversion approach scheme, quality assurance
standards, and configuration management methods. The stated
purpose of each test must be accomplished before further conversion,
development, or testing can be undertaken.

To accomplish the objectives of this contract, a majority
of the SH-2F software components (modules) will require conversion,
rather than design and development. A converted module is that

which has only undergone a syntax change or similar minor modi-
fication; its logic flow will remain intact. A developed module
is that which has been designed by Eyring to satisfy the functions
of an existing module that is to be replaced. Eyring's test
philosophy has been designed to incorporate the testing needs
of both module types.

Deficiencies or flaws discovered during testing will be
sequentially recorded on a single Software Trouble Report (STR) . The

STR number will be entered in the VISTA change record as the
deficiencies are analyzed and corrected. This approach will
providedual paper-and-programmatic tracking of software deficiencies
and corrections. Following correction by the cognizant programmer/-
analyst, the module will undergo another full test.

Upon successful completion of unit testing, the module
will be "configured" and will proceed to the integration testing
phase. (Refer to Section 10 for a discussion of Eyring's config-
uration management plan.)

6.1 Unit Test

The first structured test applied under this plan to a
software module is the unit test. The purpose of a unit test
is to ascertain the module satisfies the following requirements:

a. Successfully passes a code walk-through

b. Satisfies quality assurance requirements

c. Compiles/assembles without error
d. Executes correctly, as designed
e. Satisfies design requirements.

27

-. % %- % ". % % \-. -. % - .%. , • •. . . . . . . '- A .. .



500-0015

6.1.1 Code Walk-Through

A successful code walk-through will verify that the source
code complies with programming and quality assurance standards. The
walk-through will be performed by the cognizant programmer/analyst
and the project quality assurance representative. In the case
of converted modules, the walk-through will serve to verify
the correctness of the module's changed syntax, accomplished
by a line-by-line comparison of the original and converted module. If
the walk-through indicates a logic change to the converted module,
that module will then be considered a developed module and will
be subject to all test requirements applied to developed modules. A
walk-through review of developed modules will focus closely
on the module's logic flow, in addition to its adherence to
the above-mentioned quality and programming standards.

6.1.2 Code Execution

Module execution will be verified through the use of test
driver programs developed by the cognizant programmer/analyst
for specific modules, or by use of the Harris debugger program. Con-
verted modules which successfully pass the code walk-through
will not be tested for execution, as the module's inherent logic
has not been changed. Test drivers will be designed to ensure
that all source code lines in developed modules are executed. Succ-
essful execution using the test driver or the Harris debugger
will verify that the design objectives and reqiirements of the
developed module have been met.

6.2 Integration Test

Configured modules, both converted and developed, will
undergo integration testing which has the following objectives:

a. Verify error-free linkage of modules
b. Verify proper input/output execution
c. Verify proper interface design and program operation

and initialization
d. Verify relocatability

6.2.1 Linkage Test

Configured modules will be linked to their appropriate
programs. Converted modules will be linked as a group; developed
modules will be linked individually.

6.2.2 Input/Output Test

Developed-moCule I/O will be tested to verify compliance

28

.4'

• i . . . - , .. ,.-4 '-.. '- -. ". -'.- -. --- ." -' - ---... ..- - "-- 2 - i . -' . .-i ..- .. .'-.'-. * -; A.-. ,-,. 5



500-0015

with design requirements, including the proper handling of erroneous
inputs. Programs that require user inputs will be subjected
to test inputs that exercise the full range of input parameters
up to and beyond boundaries. Programs not requiring user inputs
will be "snapshot" during execution, using a debugger or special
program.

6.2 .3 Operational Test

Operational testing will examine the interface between
the user, the hardware, and the software. User interfaces -

such as input prompts, error messages, and help messages -

will be reviewed to ensure their clarity and convenience. Methods
of correcting improper inputs will be examined for similar attri-
butes. Hardware interfaces (device channels) will be examined
to ensure that proper data and commands are being transmitted
to the channel, and to determine that the device functions properly.

6.2.4 Relocatability

Software relocatability will be verified by checking the
program's load address over several iterations of program execution.

6.3 Acceptance Test

After the converted software system is delivered and installed
at each facility, the system will undergo an acceptance test
in accordance with Eyring's Acceptance Test Plan and Procedures
documents. Test procedures will verify trainer performance within
the scope of the SOW. The Acceptance Test Plan and Procedures
will be largely based upon previous contractor experience with
similar installations. Deficiencies found during acceptance
testing will be corrected and retested; or if acceptable to
NADC representatives, will be waived. A final test report will
formally summarize the results of the acceptance test.

29



500-0015

7.0 PROGRAMMING SUPPORT CENTER

7.1 Programming Facilities

Software module conversion, development, and system integration
will be performed using Eyring's Harris H800 computer system.
Configured with 3.0 megabytes of physical memory, cache memory
option, and a 474 megabyte disk drive, the system provides more
than adequate processing time and storage capability. Since
the system is not used for day-to-day office automation and
administrative support, dedicated computer time for intensive
project development is available. Each member of the programming
team has a separate CRT terminal linked to the H800 computer.

Hardware and software included in the system are listed
below.

Hardware Software

-Harris H800-2CP computer VOS Operating System,
-Integral floating-point processor Version 3.1, including:
-3 MB of high-density memory -Cross Referencer
-6 KB of high-speed cache memory -System Debugger
-32 priority interrupts -Symbolic Debugger
-System console terminal and -Macro Assembler

Maintenance Aid Processor -FORTRAN 77
-474-MB Winchester disk drive -Text Editor

with IDC -VISTA
-Streaming magnetic tape unit
-600-LPM line printer
-16-port CNP
-Buffered Block Channel (BBC)
-Programmable Input/Output Channel
-Interactive CRT, Models 8686/8685

7.2 Programming Tools

7.2.1 Emulator Test System

Eyring will use an enhanced version of its Emulator Test
System to fly and test the simulator software in real-time without
a trainer cockpit. Joystick controls will replicate the cyclic
stick and collective lever, and yaw pedal controls will also
be used. Additional analog inputs will be available for config-
uration as required for specific tests. Discrete inputs will
be replicated using keyboard inputs and switch inputs. A low-res-
olution graphics display and additional alphanumeric CRT display
will indicate aircraft track, altitude, horizontal and vertical

30

- '!* -".4--. .. . . ...



500-0015

velocities, aircraft attitude, etc. All CDB variables will
be accessible by the Emulator Test System. Figure 7-1 is a
block diagram of the Emulator Test System.

7.2.1.1 Hardware Implementation. The Emulator Test System
will consist of an IBM XT Personal Computer connected to the
Harris H800 computer over an RS-232C serial communications line.
A standard CRT terminal will also be used. Communications between
the H800 and IBM XT will be full duplex at 19,200 bps. The
IBM XT will contain an I/O board providing 16 analog input channels,
2 analog output channels, and 24 DI/DO lines. Of the 16 analog
input channels, four will be dedicated to the collective, cyclic,
and pedal controls, leaving 12 channels available for configuration
for specific tests.

The analog output channels an,] DI/DO lines will not be
used initially but the software will be written to accommodate
their possible use. The IBM XT keyboard will be used to replicate
cockpit switches; each key can be configured as a "one-shot"
switch, a toggle on/off switch, or an increment/decrement button
for a CDB analog input variable. Certain "hardwired" outputs,
such as aircraft track, attitude, altitude, and velocity will
be displayed on the low-resolution graphics monitor connected
to the IBM XT. The numeric values of other variables will be
displayed on the standard CRT screen. The value of any CDB
analog or digital input variable may be altered by entering
its offset and desired value using the CRT keyboard.

7.2.1.2 Software Implementation. The Emulator Test System software
in the H800 will run as a separate real-time program with a
priority lower than the Main Trainer Program. It will receive

control during the idle time at the end of each frame. with
full access to the CDB via Monitor Common, it will use the frame
cycle counters relocated from the HAA module to the CDB to synch-
ronize its operation with the Main Trainer Program.

Communications with the IBM XT will be master/slave. The
IBM XT will transmit a block of input data upon reception of
a block of output data from the H800.

As much of the computational work as possible will be performed
by the program in the H800; the software in the IBM XT will
primarily handle communications, emulator input, and graphics

display. An input file containing the symbolic names of CDB
variables, the type of variable, biasing and scaling factors,
and associated IBM XT inputs will enable the H800 program to
insert input values from the IBM XT into the appropriate CDB
variables. Similarly, another file will contain the symbolic
namcs of the CDB variables to be displayed on the emulator Test
System CRT.

31

no"



tt jr o . t:

500- 0015

HARDWARE CONFIGURATION

H8O-2CP IBM XT

EMULATOR
CPU TEST SYSTEM KYOR

ANALOG/DIGITAL ANALOG INPUTS

_____________________________1/0_____PORT____ 
-COLLECTIVE

COMMUNICATIONS 19.2K bp -FOOT PEDALSJ

NETWORK PROCESSOP 4 SERIAL PORT
(C NP)

INTERACTIVE CRT

19.2K bps DISPLAY

KEYBOARD

SOFTWARE CONFIGURATION

H800-2CP IBM XT

DOS

ETS SUBSYSTEM
CDB (MONITOR COMMON)

ETS PROGRAM _

INTERACTIVE CRT

Figure 7-1. Emulator Test System block diagram.

32

d .4* 
.'



500-0015

7 .2 .2 System Test Driver

The System Test Driver is a tool designed to enable real-time
testing of new or mod if ied simulator software. It automatically
"flies" the simulator, recording values of user-specified CDB
variables as the flight progresses, for analysis or comparison
to other flights. Identical flights may be executed at any
time, allowing regression testing to determine the effect changes
to simulator software have on simulator response.

There are three operational modes associated with the System
Test Driver: Profile Generation, Rerun, and Analysis.

During profile generation the values of the CDB variables
used to drive the simulator software during later reruns are
recorded. These stimulus variables will be obtained by flying
the simulator using the trainer cockpit or the Emulator Test
Stand. As the simulator is flown, the values of the stimulus
variables, usually the positions of the primary flight controls,
will be recorded. Although associated primarily with the Rerun
Mode, a list of response variables (CDB variables) may also
be specified during profile generation. The values of these
response variables will simultaneously be recorded for later
analysis and displayed on the CRT.7

In the Rerun Mode, the System Test Driver reads the previously
recorded stimulus value-- to drive the simulator software. Values
of up to 20 response variables are simultaneously recorded and
displayed to the CRT.

The Analysis Mode is performed offline. The System Test
Driver analysis tools enable printing and comparison of response
files.

7.2.3 REBUG

The REBUG tool greatly eases the debugging of real-time
programs. It provides all of the commands of the standard Harris
DEBUG utility, including the capability to set breakpoints,
examine and modify memory and CPU registers, and dump memory. It
also provides additional commands to conveniently enter and
examine data as well as the ability to interface to user-written
debugging subroutines.

REBUG is activated by toggling a switch register (on the
Harris H800 computer system, this is accomplished by entering
a command at the MAP terminal) . Called during each frame by
HQA, the module HQDBUG will check the switch register to determine
whether to call REBUG. REBUG, in turn, may call user-written
debugging subroutines, named REBUG1 through REBUG4.

33



. -, .. . . . . ,. . - ..- . _ . .. -. * - * .. , ,,. . . _ , .,.4< _ . L ..- ~ ~ 4 . * & ' ~. . C . ,, . , . • J . . . . . .- . . .

500-0015

REBUGI is invoked whenever REBUG is entered -- either
as a result of toggling the switch register or when a breakpoint
is encountered. The default version of REBUGI stops the real-time
clock, providing the capability to freeze program execution
and examine or modify the contents of any memory location between
frames. REBUG2 is invoked just before leaving REBUG, usually
by entering the "CONTINUE" command. The default version of REBUG2
causes the real-time clock to resume counting from the point
just before REBUG was entered. If, while in REBUG, the user
enters the "EXIT" command, REBUG3 will be executed and both
REBUG and the Main Trainer Program are aborted. The default
version of REBUG3 does an immediate return.

Entering the "U" command will invoke REBUG4. The default
version of REBUG4 simply performs an immediate subroutine return,
but it may be written, for example, to format and output various
CDB variables.

Although not an intrinsic part of REBUG, the subroutine
REBUG5 is also called by HQDBUG during each frame execution
if the flag DEBUG2 is set (set or cleared by the RMM or REBUG) . The
default version of REBUG5 is an immediate subroutine return,
but it may be written to ouput status reports or to perform
other similar functions, if desired.

34

4~4~ . 4 . .
"' - , " - "- " - . " " ; " . " " '- " "- '. • ', .. ". ". ." : ",. - - "' ." " " - " - " - " , "- " - " " ," " . - " - , , " " ' , - -~



I o- 0- -- -- , y -

500-0015

8.0 QUALITY ASSURANCE

Contract No. N62269-84-C-0424 requires that the contractor
prepare a separate Quality Assurance Plan, in accordance with
CDRL Item A0006, and Data Item Description DI-R-2174A. As specified
by Form 1423, this item will be delivered 150 days after contract
award.

3

35



500-0015

9.0 PROGRAMMING STANDARDS

9.1 Programmning Guidelines

The following programming guidelines have been established
to facilitate software maintenance and ensure functional operation.
During the SH-2F WST conversion project, the programming standards
of the original code will be matched in the new code to the
greatest extent possible. All modules will have a header containing
the following information:

a. Module name, IDEN statement
b. Description of module purpose and function
C. Author's name and date of development
d. Modification reason; problem and solution
e. Modifying author's name and date of modification.

Comment lines will explain module logic. All modules will
* be structurally designed and concise, to facilitate module maint-
* enance.

Software to be developed and integrated as part of the
* SH-2F conversion program will adhere to DOD-STD-1679A and the
*following standards:

a. Code will be of a structured, hierarchic, top-down,
modular design.

b. Code procedures will remain fixed during execution.
Self-modifying code is not allowed.

C. Subprograms or subroutines will be coded as in-line
procedures only when execution time or storage is

4 critical.
d. When possible, the same symbolic names and entry points

used in the original system will be retained to increase
clarity, uniformity, and ease of internal documentation.

e. Where possible, all implementation-dependent parameters
or compile parameter options should be grouped and
identi fied.

f. In a program, subprogram, or subroutine where a data
storage location has morre than one name, use only
one of the names throughout the program.

g. V~nen doing jumps or branches, observe the following
rules:

1) Jumps will be permitted to named locations only
2) Jumps to current location references are not

permitted
3) Jumps or branches into conditional blocks are

not permitted.

36

. .. 
.



500-0015

h. Def ine named constants and compiler parameters to
indicate purpose, rather than value. Use separate
constants (parameter names) for different purposes,
even if some of these have the same values. Avoid
the use of numbers whose meanings are not implied
by their value.

i. Use the logical FORTRAN constants TRUE and FALSE for
true/false tests.

j. Avoid using program labels as arguments passed from
one program to another.

k. Identify which function is being satisfied in the
code by comments, even when a module satisfies only
one function, for Q.A. audit traceability.

1. Conform development/conversion coding to top-down,
structured testing phases.

M. Code stubs for real-time checkout that consume proper
time durations (where timing is critical).

n. Avoid in-code documentation redundancy.
0. Declare variable mode (i.e., integer, real, double

precision).
p. General-purpose modules shall have data lists included

in header comments.
q- The initials of the cognizant programmer will appear

in columns 71-73.

Deviations from these standards shall be approved by the
project manager . Deviations shall be described by comments
in the code.

9.2 Modularity Guidelines

The following modularity guidelines apply to executable
code:

a. A module is aseparate compilation (subprograms, programs.)
b. A module must have a name.
C. A module must return to its caller.
d. A module may invoke other modules.
e. A module must have a single entry and exit point.
f. A module is relatively small in size (indximum, 200

lines of code; average, 100 lines.)
g. A module should not keep a history for the purpose

of modifying its action or logic path.
h. A module must have a single function.
1. The number of possible paths through a module should

be minimal.

37



-- L W 9.L.TL.WL V %-I K-, V . .C *. . k I .

500-0015

10.0 CONFIGURATION MANAGEMENT

This section discusses the configuration management policy
that will apply to the conversion of SH-2F WST software. This
policy covers identification of software modules, tracking of
changes made to the software, and associated documentation.

10.1 Identification

Because this project principally involves the conversion
of existing software, the identification scheme used for the
existing software modules will be retained by Eyring. The current
scheme uses the "IDEN" statement of the Harris assembler language.
This statement identifies the SH-2F simulator system (2F106),
the module category (program category designator), the number
of the module, the revision (Rxx) and the date, the module's
language, the mnemonic name, and provides a short description
of the module's function.

The "IDEN" statement will be included in all new modules
developed by Eyring for the simulator. To identify these modules,
the letters "ERI" will be inserted into columns 71-73 of the
"IDEN" statement. The remainder of the statement will retain
the same format. If a new module is developed to replace an
old module, the "IDEN" statement will be carried forward to
the new module. If a new module is developed which does not
replace an old module, a new "IDEN" statement will be created
in the established format.

Prior to system delivery and installation, the revision
number of all system modules will be standardized; i.e. the
new revision number will be the highest current revision number
rounded up to the next multiple of ten. For example, if the
highest revision is R34, R34 will be changed to R40 and R40
will then appear on all modules. This will indicate that a
conversion of all the software modules has been completed.

10.2 Tracking Changes to the Software

This section discusses the procedures to establish and
protect a baseline for the simulator software provided by NADC,
make global changes to existing modules, develop new modules
to replace existing modules, and make changes to modules. To
keep track of changes, the modules will be placed under the
control of VISTA (VOS Integral Tracking and Analysis program).
For a more detailed description of VISTA, refer to paragraph
10.4 and Harris manual 0869007-000.

The "baseline" software provided by NADC on magnetic tape
will be copied to disk files in a protected area, each module
configured as a separate file. To protect the baseline files,

38

.. % " -; , . * ° ., .. . °".°" .- .- " .. , . . ". - ". " " . .". " . .'." "- , • ." . - °"%" " - - .". . . - .- - .



500-0015

all files will be designated public "read only." The files may,
under supervision of the configuration specialist, be copied
from the baseline area to a work area where all modification
work will take place. The work-area f iles will have public
read and write access but only the owner of the files, the config-
uration specialist, will be able to delete the files.

Because this project is principally a conversion rather
than a development effort, most changes to existing software
will be global; i.e., many modules will undergo identical modifi-
cation such as changes in syntax and removal of "HOLD" statements.
This will be accomplished by developing a program to perform
these changes in a batch-type operation. When all global changes
have been made the converted modules will be placed under the
control of VISTA. Programs used to effect global changes will
be maintained in a "tools" area that will contain the program
file and a comment file. The comment file will contain information
about the function of the associated program and instructions
on how to run the program.

If it becomes necessary to rewrite or replace an existing
module, Eyring project personnel will complete a Software Change
Proposal (SCP) form to document which modules are being rewritten
and why. New modules will be developed in the programmer's
work area. When the module successfully completes unit testing,

* it will be copied from the programmer's area to a configured
area and placed under VISTA change control. This will constitute
the first configured release of the new module.

As a method of tracking changes to individual lines of
source code, programmers will insert their initials in columns

* 71-73 of the specific code lines that have been modified. This
requirement will be enforced for both converted and developed

* modules following configuration of the specific module.

Refer to Figure 10-1 for a schematic depiction of the config-

* uration process.

10.3 Documentation

The Software Change Proposal (SCP) and the Software Trouble
Report (STR) are the two documents associated with configuration
management.

The SCP will be used to identify those modules replaced
by new modules. The configuration specialist will maintain
a file of SCP's submitted by project personnel.

The STR will be used to identify programming errors or
problems found during unit and integration testing. The STR's
will be sequentially numbered, and this number will concurrently

39



BASELINE AREA 500-0015

G SOFTWARE BASELINE

PROGRAMMING WORK AREAS

DEVELOPMENT CONVERSION
(Soft*are change proposal) I (Global changes)

C) I PROGRAMMING

TOOLS

o I Ly.IA.~AQ~.Mn

QQ A L I

I Establish Release Number Establish Release Number mI " Under VISTA Under VISTA

I UNIT TESTCI

I i MODULE CONFIGURATION

I " INTEGRATION TEST

I NEW SOFTWARE BASELINE

Figure 10-1. The Configuration Process

1. Baseline software is received from NADC. Magnetic tape is copied to disk
and given public read-only access. Each module is treated as a separate file.

2. Project configuration specialist copies selected modules to programming work
area(s) . Programmer/analysts can read from and write to work-area files,
but cannot delete these files. Global changes are performed on selected modules,

using programs from "Tools" area. Redesign or rewriting of obsolete modules

will be accomplished via Software Change Proposal and controlled by VISTA.

3. VISTA (VOS Integral Source Tracking & Analysis) will maintain a record of
cnanges to converted and developed modules by requiring that specific change

information be entered following each editing session.

4. When configured under VISTA, a file (module) is assigned a variant number;
for example, VE-1:0:0. The variant number and file name uniquely identify

the file. The first number is changed when it becomes necessary to customize
software. The second number is changed following successful completion of
testing. The third number is changed after each TX editing session.

5. Unit test is performed when programmer/analyst determines the module satisfies
design or functional requirements. Deficiencies found during unit testing
are recorded on Software Trouble Report (STR).

6. Following unit test, module is copied from programming work area to config-
uration area. Converted module will have release level incremented by one
(VE=l:l:0); developed module will be considered as first release at this
point (VE-l:0:0)

7. Integration test determines relocatable code links properly with other system
modules.

8. Modules successfully passing integration test become part of new, deliverable 40
software baseline.

%-.. -... -.. ...... % -.. ... ...... ... ,.,....-....... ... .-... .



500-0015

* be used as the change code for recording changes under VISTA.
A description of the problem(s) will appear on the report, as
well as in the VISTA file. The STR will be used to ensure that
all problems have been corrected before the module is retested.
The configuration specialist will maintain a file of the STR's,
divided into sections for unresolved and resolved STR's. This
file will also be used to generate any needed status reports.

10.4 VISTA

VISTA is a Harris CSD commercial program designed to maintain
* a history of changes and releases made to specific files of
*source code. VISTA files may only be modified using the Harris
* Text Editor (TX) . When an editing session is completed and

before the file is updated, VISTA requests that a six-character
change code and one-line change description be entered. The
description will contain the initials of the programmer making
the change. When the change involves a Software Trouble Report
(STR), the change code will match the number of the STR and
the description will match the error description on the STR.

Because only TX can be used to edit VISTA files, and TX
cannot be used in batch mode, global changes must be made before
putting the files under VISTA control. The use of TX to make
extensive, repetitive changes of a global nature would be a

*time consuming, error-prone, and tedious process. New modules,
however, will be under VISTA control from the outset of development.

* After a module passes unit testing, a new release will
be made using VISTA; i.e. , the module will be "conf igured."

* This will occur whenever unit testing on a module is successfully
completed. When an error is detected, either during unit testing
or integration testing, an STR will be filled out. VISTA will
then be used to track the changes made to the module, as explained
above, and to generate a new release when unit testing is completed.
This approach will provide a paper audit trail, as well as a
programmatic source, for detecting, tracking, and resolving

* software changes.

41



500-0015

11.0 GOVERNMENT-FURNISHED EQUIPMENT AND SERVICES

The following Government Furnished Equipment will be required
during performance of this project. (Source code must be supplied
on 1600-bpi, nine-track magnetic tape reels.)

ITEM DESCRIPTION DATE REQUIRED

1) SH-2F WST system source code ..................... 5 DAC

2) Trainer Programming Report (Volumes 1
through 6) and Mathematical Model
Report (Volumes 1 through 4) ...................... 5 DAC

3) Initial Condition dump - two sets of IC's
are needed to allow system testing of the
trainer software. These sets are defined as:

a. Aircraft on the ground, running
b. Aircraft in flight @ approx. 5000-ft

altitude ................................ 30 DAC

4) Scenario Data Bases - Includes the source
code for each of the appropriate Problem
World Data Bases .................................. 30 DAC

5) Trainer Test Pilots - A dedicated trainer
test pilot, available for the duration of
the Norfolk system integration, and for
the duration of North Island system inte-
gration. Pilots will fly actual trainer
missions so that the converted software
can be verified and prior to government
acceptance ........................... Dates to be determined

42

-..". .J. " ". . , " . ,' - • . . . , .. -.. . '2 .
.

- - - . - - - ' . - - '



500-0015

12.0 SOFTWARE INTEGRATION

Integration of the SH-2F operational software VOS version

into the actual SH-2F trainers at Norfolk and North Island will
be performed by Eyring personnel. The converted operational

software will be installed on the Trainer's H800 computer system

running under VOS 3.1. To accomplish the integration, the following

sequence of steps will be followed:

a. Install the software on the trainer system disk

b. Define the Trainer Services program

c. Validate operation of RTP I/O

d. Validate interface to graphic CRT controller

e. Validate interface to alphanumeric CRT controller

f. Validate interface to motion platform

g. Execute Main Trainer Program

h. Quantitative data collection

i. Qualitative pilot testing

j. Acceptance test

k. Integrate FFI modules

1. Quantitative data collection

m. Qualitative pilot testing.

Eyring's tentative system integration schedule is presented

in Figure 12-1.

Eyring will supply the SH-2F operational software VOS version
on 1600-BPI, 9-track magnetic tape. The software source and
job streams will be installed on the trainer system disk under

appropriate accounts and access protection. The job streams

will then be run to assemble or compile and link the Main Trainer
Program and stand-alone utilities in order to validate the compat-
ibility of the system used for the conversion effort with the
operational trainer system.

To provide the interface between the Main Trainer Program
and VOS, special system services are required and will be referred
to as the Trainer Services program. Trainer Services will be
interfaced to VOS by updating the System Service Director as

43

..... .. . ' ,. ,-'-a,, ., ,. . ..-... -J..,..-".. .-,...a. .....,-- ."- " .". . . . . . . .." ". . . . . . ." " ' " ' , ''



____ 0015

C

I- 1

'D'

z u

zz
o

V) 4

f. -, C, A

NO t.i
2 > 2 m .

0 4K
o -II

2i

E-.7



500-0015

detailed in Section 3.1.2 and by executing the OPCOM command
"ADD SERVICE" to set up the internal pointers so that the service
can be loaded from disk. These steps define the trainer services
as user services to VOS, but as stated in Section 3.1.1, do
not actually install them. They are not installed until the
Main Trainer Program is executed, to prevent them from being
accessed inadvertently.

Operation of the I/0 interface will be validated by running
stand-alone utilities DORT, BIT, and IOTST3. Since the RMM
module is linked with DORT, RMM device operation will also be
validated while executing DORT.

Interface to the graphic CRT controller will be validated
by running the stand-alone utility PUTDSP to transfer data from
a PPM file to the graphic CRT screen.

Interface to the alphanumeric CRT controller will be validated
by running the stand-alone utility PUTALF to transfer data from
a PPM file to the alphanumeric CRT screen.

Interface to the motion platform will be validated by running
the stand-alone utility MOTST.

After completing I/O, display, and motion interface validation,
the Main Trainer Program will be executed. Government-furnished
test pilots will be required to operate the trainer for testing.
To ensure accurate operation of the software, quantitative data
collection will be done using the System Test Driver discussed
in Section 7.2.2. REBUG may also be used for data collection
as discussed in Section 7.2.3. Qualitative pilot testing will
then be performed.

To complete the Eyring validation process, Eyring will
conduct a preliminary execution of the computer test procedures
that will be submitted as a separate document in accordance
with CDRL item A009 and Data Item Description DI-T-2144A. These
tests will include execution of all stand-alone utilities and
diagnostics as well as the Main Trainer Program.

At any time during the validation process, if a discrepancy
is discovered in the operational software, the appropriate correction
will be made and the area retested.

When Eyring has completed the validation process, the Acceptance
Test will be performed following the Computer Test Plan and
Computer Test Procedures. Eyring personnel will conduct the
Acceptance Test in association with Navy personnel.

45

-. . -,.. .. ... -.. ... ... .. ,i. ? -,-. .-.. .- ; ..: :...... . .. ,..,..,.....- . .



500-0015

12.1 Integration of PVqse II Software

Government-furnished Flight Fidelity Improvement (FFi)
software modules will be integrated into the SH-2F operational
software VOS version. It is assumed that these modules will
be supplied to Eyring for preliminary integration and testing
prior to the on-site installation. To ensure accurate operation
of the operational software Phase II version, quantitative data
collection and qualitative pilot testing will be performed.
When this validation process is completed, the Acceptance Test
will be performed following the Computer Test Plan and Computer
Test procedures.

12.2 Pre-Installation Testing

In order to eliminate as many trainer operational variables
or anomalies as possible before software system installation,
Eyring will require that the functional status of both SH-2F
WST's be certified by the appropriate Navy personnel prior to
Eyring's installation effort. The certification process will
require that all known trainer operational deficiencies be listed
and the list delivered to Eyring.

-p

_- 46

_a'C. 7



500-0015

13.0 AREAS OF RISK

Eyring has determined that the following areas pose risk
to contract schedule performance.

13.1 Input/Output Testing

Due to the unavailability of a complete SH-2F WST system
for validation purposes prior to installation, it will be impossible
to check all aspects of the various I/O interrupt handler programs
before the converted software is installed at the trainer facil-
ity. Following installation, software or hardware anomalies
or malfunctions may become apparent with subsequent adverse
impact on the proposed installation schedule. Although Eyring
will make every effort to validate I/O operations before install-
ation, and will draw upon its past experience in resolving in-
stallation-related problems, this area remains a prime risk
to schedule conformance.

13.2 Integration of Phase 2 Software

If it is found that Phase 2 software modules provided by
NADC to Eyring for integration are deficient or do not conform
with programming guidelines/requirements stated in CDRL Item
A008, Eyring may elect to return those modules to NADC for modif-
ication. This may result in adverse schedule impact prior to
or during system installation.

13.3 Delivery of GFE Items

As of the date of this document, Eyring has not received
the Initial Conditions and Problem World data as requested in
our Technical Proposal. In addition, the SH-2F WST software
baseline was delivered to Eyring two weeks later than requested.
Cumulative delivery delays of this nature may result in development/
conversion schedule adjustments, with consequent slippage in
contractual delivery schedules.

47

". , '., '-,"',v ... ,.,; ',1. '.-',.; ."." .'-..."v ."-" .'-. v ... "." ."-. . ." " "-. '-"-"., -. -. . . .",," : -".,',,, ,'.,".,".,',.,,.',.'-



500-0015

14.0 SCHEDULES AND MILESTONES

Eyring's overall schedule for obtaining, converting, and
delivering the SH-2F WST software system is presented in Figure
14-1. This chart depicts performance of Statement of Work line
items, broken down into project tasks and subtasks as shown
in accompanying Table 14-1. This chart and table should be used
in conjunction with the Contract Deliverables List presented
in Table 14-2, and the resource allocation charts in Section
15.0 to obtain an overview of Eyring's planned project performance
timetable.

48

--



500-0015

- -
to'

00

cc < 0

C

4-

C! N* U"
'C . OJ

. I

,pC,

z -;

)* tI"4-

°.<



- " - -- 500-0015

0c

V, ,., N

- N © '

o

E

(D N

:4 I

C - ,,

-2 i

CL w

r-, w ( I .,, w D F

2:, : .r

oU 0 Z

c 05

-, :. '. :. ,;.: .; .'- -., : "- ,. , , . , . . . . . . . . ,, . . . ., -, .



500-0015

i <

-~~~~L F - - - - - - - - - z -

,~~~ <1 . . . .

LL

D w

<-51

i--4

C

C-, -e -

-

C'

2.51

., . " ' 4" "/ -J o " ° " '-" t /'. . W , - " /"" d.*'.r ,,,_,' , " " "." .' " "-'.. -%-, d .' .* '- "-.,"-4-"-



500-0015

c 0

-4-0

ix '

CC 1

0. cc- i. a

4i N

52



C - -- - - - - - -- - - - - - - - - - - - - - 5 00 -00 15

77

0'

0~

0 C0

co

NL w

o N 0

) w U~

4, CL

Ca 1_ I I5

'-S SC
5



PP-7 P - . -Y -'. 'Y -, . Y *. V ' 4U W- L-Uu u- . -

- - -- -- -- -- - - - -- -- -500-0015

,A Q

-~4-J

cc . .

cc~*1

0'* '

cy,

- T

c

00

0 0
zz w

D, 2-

CL

0jl

)-% %



-~~~~~~~~~ - -------- -- I - ---
500-0015

4..

0 N

~C CN

* ~0

co 

71

.' .

03f

00

N t

4 -4
Nz

0'

00

N-5 S



500-0015

Table 14-1. Description of Project Tasks

Line Item 1. SH-2F Weapon System Trainer Software Conversion.
Task 1. Line Item Management. This task is used to manage

line item 0001.

a. Line item 0001 management.

Task 2. Project Startup. This task is used to initiate
the project. Subtasks include:

a. Organize project team and make assignments.
Establish project accounting system.
Prepare project management plan.

b. Establish programming baseline standards.
Define conversion standards.

c. Obtain baseline from NAVY and review.
Obtain and review applicable documents referenced
in SOW.
Perform on-site review of current system.

d. Prepare Software Development Plan (SDP).
Prepare project performance schedule.

Task 3. Conversion Design. This task is dedicated to
the design of the trainer conversion software.
Subtasks include:

a. Prepare design approach.

b. In-house design review.

c. Prepare Software Development guidelines.

Task 4. Quality Assurance Support. This task is used
to prepare the Quality Assurance deliverables
pertaining to SOW Item 0001. Subtasks include:

a. Prepare Software Quality Assurance plan.

b. Prepare Computer Program Test Plan.

c. Prepare Computer Program Test Procedures.

d. Prepare Computer Program Test Report.

56



500-0015

Table 14-1. Description of Project Tasks (continued)

Task 5. Software Conversion/Integration. This task involves
the actual conversion and testing of the SH-2F
trainer systems. Subtasks include:

a. Modify emulator test system.

b. Develop system test driver.

c. Develop and refine conversion tools.

d. Convert trainer executive modules.

e. Develop timer interrupt handler.

f. Convert trainer initialization routine.

g. Convert Common Data Base.

h. Convert trainer simulation modules.

i. Develop system drivers (I/O handlers).

j. Convert Put/Get file handler.

k. Convert trainer utility programs.

1. Convert trainer diagnostic programs.

m. Software configuration.

n. QA and verification.

o. Norfolk integration.

p. Norfolk acceptance test.

q. North Island integration.

r. North Island acceptance test.

Line Item 2. Integrate Phase 2 -- Flight Fidelity Improvement
(FFI).

Task 1. Line Item Management. This task is used to manage
line item 0002.

a. Line item 0002 management.

Task 2. FFI integration. This task includes the integration
of NAVAIRDEVCEN developed software 

changes and

57



500-0015

Table 14-1. Description of Project Tasks (continued)

pending corresponding updates to the quality

assurance support documents. Subtasks include:

a. Obtain and integrate FFI GFE Software.

b. QA support of FFI.

c. Update Software Quality Assurance plan to include
FFI.

d. Update Computer Program Test Plan to include
FFI.

e. Update Computer program test procedures to include
FFI.

f. Update Computer program test report to include
FFI.

Line Item 3. Integration Support for new Flight Control Loader
(FCL).

Task 1. Line Item Management. This task is used to manage
line item 0003.

a. Line item 0003 management.

Task 2. FCL integration support. This task is to provide
technical support for FCL software updates.
Subtasks include:

a. Technical Support to integrate FCL Software.

b. QA and verification of FCL.

Line Item 4. Prepare technical data and software program package.

Task 1. Documentation. This task includes updating docu-
mentation affected by the software conversion.
Subtasks include:

a. Prepare Operator's Manual.

b. Modify trainer programming report.

c. Prepare verification and acceptance test documen-
tation.

d. Prepare program package.

58



500-0015

Table 14-1. Description of Project Tasks (continued)

e. Finalize program package.

Line Item 5. Prepare and Conduct Training Course.

Task 1. Train facility personnel. This task is to prepare
and conduct facility personnel training. Subtasks
include:

:. Conduct needs analysis/assessment.

b. Prepare course design.

c. Develop training materials.

d. Conduct training at Norfolk.

e. Conduct training at North Island.

Line Item 6. CDRL Technical Data

Task 1. Generate Reports. This task is to generate the
status reports, agendas, and minutes. Subtasks
include:

a. Performance and cost reports, agendas, and minutes.

59



500-0015

Table 14-2. Contract Deliverable Items List

Line Scheduled

Item Task Item Date

6 1 Performance and Cost Report (A001) 18 Oct 1984

1 1 Software Development Plan (A004) 2 Nov 1984

6 1 Performance and Cost Report (AO01) 15 Nov 1984

6 1 Performance and Cost Report (AO01) 15 Dec 1984

6 1 Performance and Cost Report (AO01) 15 Jan 1985

1 2 Software Development Guidelines 31 Jan 1985
(A005)

1 3 Software Quality Assurance Plan 31 Jan 1985

(A006)

6 1 Performance & Cost Report (AO01) 15 Feb 1985

2 1 Software Quality Assurance Plan for 4 Mar 1985
SOW Item 0002 (A006)

1 3 Computer Program Test Plan for Item 4 Mar 1985
0001 (A008)

2 1 Computer Program Test Plan for SOW 4 Mar 1985
Item 0002 (A008)

1 3 Computer Program Test Procedures for 4 Mar 1985
SOW Item 0001 (A009)

2 1 Computer Program Test Procedures for 4 Mar 1985

SOW Item 0002 (A009)

6 1 Performance & Cost Report (AO01) 15 Mar 1985

4 1 Program Package Document (A007) 1 Apr 1985

6 1 Performance & Cost Report (AO01) 15 Apr 1985

6 1 Performance & Cost Report (AO01) 15 May 1985

6 1 Performance & Cost Report (AO01) 15 Jun 1985

1 3 Computer Program Test Report for 25 Jun 1985
SOW Item 0001 (AOOA)

2 1 Computer Program Test Report for 25 Jun 1985
SOW Item 0002 (AOOA)

60
* , * . . * *- -**.-**** *



- V 17 - T -v zn

500-0015

Table 14-2. Contract Deliverable Items List (continued)

Line Scheduled

Item Task Item Date

4 1 Final Program Package Document (A007) 25 Jun 1985

4 1 Operator's Manual (A0OB) 10 Jul 1985

4 1 Trainer Programming Report 10 Jul 1985
Updates (AOOC)

6 1 Performance & Cost Report (AO01) 15 Jul 1985

6 1 Performance & Cost Report (AO01) 15 Aug 1985

L- ." A .% " "..' " . ." . / ." "/ .% ." % " • % % % % . . .



500-0015

15.0 RESOURCE ALLOCATION

Eyring's personnel resource allocation projection for the
duration of this contract is presented in Figure 15-1.

Figure 15-2 depicts Eyring's planned financial expenditures
for the duration of this contract.

4It

* L, .. , '' .,. ., .,. .- , , .,,, , . • , , --; ., , , .. .

,404* sN U m ld m ddm~d d M mtd H *%dN~nd * t .... .
'

' J " .4 .



500-0015

Senior Project Engineer

System/Software Analyst

System/Software Analyst -

Staff Engineer ---

Staff Engineer I ------------------------------------- i

Quality Assurance Engineer - ---------------------------------------

Technical W Iter -------------------------------

Cler Ical/Typlst .......-"---------------------- - 1/2 time

Figure 15-1. Resource allocation: manpower requirements vs. time

500,000 -

450,000 -

400,000 -

350,000 -

300,000 -

250,000 -

200,000 -

150,000 -

100,000 -

50,000 -

0 ETOT NV---SET------
1984 1985

Figure 15-2. Resource allocation: expenditure vs. time



VA


