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ABSTRACT

The observation model 4=(i/.)+, lji~n, is con- OTIC

sidered, where the t's are i.i.d. mean zero and variance u and f is D

an unknown smooth function., A Gaussian prior distribution is

specified by assuming $ is the solution of a high order stochastic
"'fI ' 

'_

differential 9quation. The estimation error 6 = - is analyzed,
where _ is the posterior expectation of a. Asymptotic posterior and

sampling distributional approximations are given forj 6 ii when 11

is one of a family of norms natural to the problem. It is shown that

the frequentist coverage probability of a variety of (1 - a) posterior
/_- C ,,. (

probability regions tends to be larger than 1 -a, but will be

infinitely often less than any c > 0 as n -t-- with prior probability 1.

A related continuous time signal estimation problem is also stu-

died. '
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1. INWODUCTION

In this article we consider Bayesian inference for a class of non-

parametric regression models. Suppose we observe

Y'i = (1) + C 1;5in (1.1)

where td = i/n, P:[0,1] -IR is an unknown smooth function, and

V1,-E,... are i.i.d. random errors with mean 0 and known variance

a2 < -. The Ei are modeled as N(O,a2). A Gaussian prior for P will now

be specified. Let m _ 2 and for some constants ao,..., am with a1 * 0

let

L E ckaD'
t=0

be a constant coefficient linear differential operator (D = d/dt). Let W

denote a standard Gaussian white noise on [0,1], which is formally the4

derivative of a standard Brownian motion (W(l): 0 _ t 9 1. Let E be an

m x 7n positive definite matrix and let B 1 ... , Bm be boundary value

operators of order ?rn-I or less, i.e., Bj (P) a linear form in

.4 P(o),fl((),Dfl(o),Dfl(1). . . ,Dm-P(O),Dmn-,P(1).

Assume that Lg a0 and B1 (g) = 0, 1 i 5m imply g -0. Then P is

assumed to be the solution of the stochastic differential equation

L P = w(1.2)
B(P) - N(0, E)

where B(P) = (B (#),. . . , B,(p)). Alternatively, one may express P

through a simple stochastic integral
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fi(f) = fc(ts)dW(s) + Pl(t)

where G is the Green's function for the operator L with homogeneous

boundary conditions B,(P) = 0, 1 ii m (see sections 3.3 and 3.4 of Nai-

mark, 1967) and p(I) is a solution to the homogeneous differential equa-

tion (L #I !m 0) with boundary conditions that agree with P (Bj (#1 ) = Bi(#),

1 _i _m).

This specifies the prior for #. The Bayesian model thus defined is

very similar to others that have appeared in the literature (Kimeldorf and

Wahba, 1970a, 1970b; Wahba, 1978; Wecker and Ansley, 1983). More

abstract models are discussed in section 2.

One of the attractive features of the Bayesian approach is that in

principle one can solve virtually any statistical decision or inference

problem. In particular, one can provide an accuracy assessment for

fn = E [P Yn ] using posterior probability regions. For instance, letting

1lll denote L2 [0,1] norm, one can in principle determine a number An

such that

P[I-I - 2 -A .IY1] = 0.95,

thus giving a 95% posterior probability bound on the L 2 -norm of the esti-

mation error. A useful large sample approximation for An follows from

results given below, namely

An An + 1.645 -n

a"' "aq"N ¢ ," "•
°

"
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where

P., " ,,-'a;1/'B (Yzm, 1 - Y, )(2/n)l- 1/ 2m

T2 I 7T-1 L/ B () ,, , 2 --1)(a2/n)2-1/2m

and B(z,y) is the beta function. (See (3.18), Theorem 3.1(a), (3.3), (3.1),

and the remarks after Theorem 4.1.)

Non-Bayesians often find such Bayesian procedures attractive

because as n-, o, the frequentist coverage probability of the Bayesian

4region tends to the posterior coverage probability in "typical" cases. It

was my hope that this would hold in the nonparametric regression set-

ting, thus providing a methodology for constructing large sample

confidence regions. Unfortunately, the hoped for result is false in about

the worst possible way, viz.

liminf P[ljl,#j 2 eA,1 I] = 0, a.s. (1.3)
n~ -own

Thus, if one fixes a sample path from the Gaussian prior, then the fre-

quentist coverage probability of the region : 11 - ,112 ! A,n will

infinitely often be arbitrarily small as n -, oo for almost all sample paths.

Nonetheless, for fixed n (large), the frequentist coverage probability

is at least 957. for "most" sample paths in the following sense:

lir e[e[lII-/Il2 _ 10.] > 0.95] = 1-a
nw

where 1 - a depends on m as indicated in the following table:

.1I
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m 2 3 4 10

t- 89.4% 90.5% 91.2% 92.7% 95%

(see Corollary 3.4).

It will be indicated in section 5 that the "typical" settings wherein

the frequentist coverage probability converges to the Bayesian posterior

coverage probability depend critically on finite dimensionality of the

parameter space. One would naturally conjecture that a result like (1.3)

holds whenever the prior is infinite dimensional.

The procedure analyzed here differs from that advocated by Wahba

(1983) and Wecker and Ansley (1983) in the following ways.

(1) These authors use a "mixed effects" model wherein P = f0+#I

and P, is given a proper prior of the type above but P0 is unprior-

ized and lies in a finite dimensional space (or can be said to have

an improper Lebesgue prior). The resulting regions are a mix-

ture of confidence and posterior probability. I believe (1.3) will

hold for this setting as well.

(2) These authors only look at pointwise confidence intervals for P(t)

for some t E [0, 1] rather than the global confidence regions

treated here. I have not succeeded at analyzing the pointwise

intervals, but I believe that (1.3) will hold for them as well. See

section 5 for some relevant discussion.

-P J, d S
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(3) We have assumed a2 is known, but I am sure that this is inconse-

quential.

(4) These authors assume p = 1o where go has a given prior and

b >0 is an unknown scale factor which is estimated. I do not

know if our negative results still hold in this setting. In particu-

lar (1.3) depends on the law of the iterated logarithm fluctua-

tions of the bias E[ - ] about its mean (Lemma 3.2). Such

fluctuations undoubtedly impact the smoothing parameter esti-

mation procedure of Wahba (1983), known as generalized cross

validation. (See also Craven and Wahba (1979) and Speckman

(1983).) Thus, an empirical Bayes approach may avoid this prob-

lem.
4

(5) Wahba (1983) considers the true function # to be fixed and

smoother than one generated by the Gaussian prior. I believe

(1.3) may hold for many such smooth functions.

Section 2 presents an analysis of an abstract version of the Bayesian

linear model. In section 3, a continuous time analog of (1.1) is investi-

gated. In section 4, it is shown that the discrete model (1.1) can be well

approximated by the continuous time model. Section 5 contains some

concluding remarks.

4.,

4.
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2. THE ABSTRACT GAUSS-BAYES LINEAR MODEL

In this section, we formulate and solve a general version of the

abstract linear model when the error vector is modeled as Gaussian with

known covariance and a Gaussian prior is used for the parameter vector.

Well known results about Gaussian measures on Banach spaces will be

used, for which Kuo (1975) is an excellent reference; see also Kuelbs

(1970, 1971), and Kallianpur (1971). We uill drop the subscript n

throughout this section as we only consider a fixed prior and observation.

Suppose z is (modeled as) a mean 0 Gaussian random vector on a real

separable Banach space Y, and Y is the generating Hilbert space (GHS)

for the Gaussian measure L(c) = the distribution of e on _7 (Y is also

known as the reproducing kernel Hilbert space for L(c); see K~elbs

(1970), Kallianpur (1971), or Kuo (1975). Let P be a mean zero Gaussian

random vector on a real separable Banach space 8 with GHS e, and

assume P and e are independent. Now let

X: 6-'Y

be a bounded linear operator, called the design operator, and suppose we

observe

Y = XP+a,

where a> 0 is known. We wish to estimate P from Y. To do this, we will

show that a posterior distribution exists and characterize it.
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As a remark, we note that Y plays little role in what follows - it is Y

that is important. If it were not for the technical problem that L(t) will

not live on Y when dim Y = , we could carry out the analysis using onlyY

with no mention of _Y Kallianpur and Karandikar (1985) have an elegant

approach to problems in this vein. Our approach here is in the more

classical style using ordinary measure theory, for which it is necessary to

keep _around.

Proposition 2.1. There is a regular conditional posterior distribution

L(pI Y), and in fact L(PI Y) is absolutely continuous w.r.t. the prior

L (), written L(fl I Y) << L(fl).

Proof. The assumption that the range R (X) Y guarantees the sam-

pling distribution L(Y!) << L(a) by Theorem 3. 1, p. 118 of Kuo (1972).

An elementary Fubini argument completes the proof. 3

As the inclusion map t: 0 G is continuous, it follows that the restric-
0?

tion X of 7 to 0 is in B (E, Y), the set of all bounded linear operators from

9 -* Y. Let X* E B (_Y, G) denote the adjoint and put

U = X X B() ,

where B(e) = B(0,9). The description of the posterior is most easily

accomplished using the singular value decomposition of X, given next.

a'

II

' * , '.,'. ,'.,'.,e, .,".,., , " ."i- y " " " " ,".,".," . ..".." . .', "." :''-"::"."-,".," -'-. "'." . '.:.". ."" ", . " .r .."? ;," ." ,.' . .".'
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Lemma 2.2. There exist complete orthonormal systems (abbreviated

c.o.n.s.) (*,:v=l.2.. for and (7.:v1,2... for R(X),

the closure of ER(X) in Y, and constants <a 2: v =1, 2, such that

Ujp, = a3p fot vu and

xlv 0107t, (2.1)

X* = a , v (2.2)

Ea < 00. (2.3)

Proof. X = X 0 £ and 6 is a compact operator. Hence X, U and V = XX*

are compact. U is also self adjoint and nonnegative definite on 0, so

there are nonnegative eigenvalues al,a2,. and eigenvectors

such that <*,> is a c.o.n.s. for 6, and Ui,, = a2- (Theorem 1.8, page 8 of

Kuo, 1975). We assume w.l.o.g. that a, - 2t . Put 77, = a;Xv , for

at,> 0 and then (2.1) and (2.2) hold. Now we have P= . with

convergence L (p) a.s. in T, so = v($,*V%>m7. As this latter series
V

converges L(p) a.s. in Y, and (P' 1 > 'K#'4'2> are i.i.d. N(0,1), it fol-

lows that E., < -. Alternatively, one checks that V is the covariance of

Xf in Y, so iraceV = V<

Even though E ) 6 with probability 0, the "stochastic linear func-

tional" f -, <0,0> is defined a.s. as a measurable map 8-,IR, for each

% N -I ..p . . . -. - - -1
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fixed 8EG. The properties of these maps are given by Kuelbs (1971) and

Kuo (1975), Lemma 4.7, p. 78. Similar remarks hold for t and <c,'7;,

77 E Y. Note that <Y,77> = XP.77> + a<$,?1>. a.s. Since X#3 E: Y, the

term f is defined as an ordinary linear function. We also have
Y'.

Karhunen-Loeve expansions: if el,e2 , is any c.o.n.s. for G, then

P = E,e, with convergence in 0, almost surely. See Kuelbs (1971).

Lernma 2.3. Let Y, =<Y rind Y andv = 1. 2,*~ Then

,('.,2,• ••IY) = ,L(fI Y,) = ,N((a2+a2)- aY,, [1+(a ,,,/')2]- 1)

ie., the pos terior distribution of 91,92, is that of independent nor-

mal random variables with the indicated means and variances.

Proof. Put ev = <_,rn'>. Then 9142, ., . . are i.i.d. N(o,1). Also

Y,,= af+ at, The result follows from this and elementary calcula-

tions. 0

As the inclusion t: -0 is continuous, every " E 90, the dual of 0,

defines by restriction an element of 0". If we identify e=o*, then

LOE B(TO) satisfies , =,,O V OEG. An inner product

type notation is being used for the (8", ) duality pairing.

J".4 %
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Theorem 2.4(a). The postenor L Y') on 8 is Gaussian 7_i th mean

= (a2 I +U)-'XY L(j,) as (2 4)

and cotamance

V = t(I +a- 2U)-L*.

(b). 6 = n- dependent of Y , and has a Caussian distributiton on

e unth mean 0 and cotariance V.

Remark. For (2.4) to make sense, we need to show X*Y is defined a.s. and

an element of E. Put

X Y = EY X7, = t .
V V

Note that ZE[(a Y,) 2] = V < , so the series on the right con-

verges a.s. in 0. Furthermore, we have for 'v" E 9 that

(e,X'Y> = (XeY_ a.s.,

as one can check from series expansions of both sides.

J

Proof. fi = Efi~, with a.s. convergence in 0. Hence, if E ,

2

As ZY(*¢, v>:= tL0*¢I) < it follows from Lemma 2.3 that

L ((" fl .. I Y) is Gaussian with mean

U - .. |p -
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and variance

72= 2

Note that

< , t(c,21 + U)- 1 'Y4> = ((aj+)L* %

= ;V(rt 4- )' . ¢,,> (a r )

.1 -% \ t,

Also <, (I +aU)-">.. = T2. This completes the proof of (a).

Put 6a, = <6, a + ) -I a Yp. It is easy to check that 6, is

Gaussian and independent of Y,, hence Y. The rest of (b) is easy. o

Now we introduce a parametrized family of Hilbert spaces which is

natural for the problem. For convenience, assume

R(X*) is dense in 9 (2.5)

where R(X*) = R(U) is the range of X*. Also, put

7 ~~~_L = a; "2 = a

For p E IR let e, be the Hilbert space obtained by completing the set of

finite-norm elements of B under the norm given by I1ff (0, where

'I.. ' p : .::..::;:_: .,:. . .. > < ..':< ....:: .;.: ... .:: ; : : ; % ;5;
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(01,02% = EVO8-V><2UIO

We collect some elementary facts about these spaces.

Proposition 2.5. Suppose (2.5) holds, then

(a) <0, - $.u>.and, <i(p:v=.2 i.... s c. o. 7., s. for eo.

(b) 01=8.

(c) X eztends to a Hilbert space isomorphism from eo to the Y

closure of E (X) .

(d) If p > T then 19, C 8, with continuous inclusion.

(e) Letting t, denote the inclusion 8- 0, where p 5 1, and iden-

tifying 00* with 0,, in the usual way. we have p= U' - ,.

(f) 18,, supports L (p) if and only if e-C <a.

Proof. (a) and (b) are elementary. For (c) note that Xre,, = 7, and

<O,Up, > = <XG,77,>. For (d) note that IleII,,2_ (maxv-)tltI.1, and the

max,-y- is achieved at a finite, positive value by (2.3). For (e), note that

= 7;(I-P,, and by comparison of the series defining the two sides

of (&,,77> = <9.&p/77>, one obtains that i,, : = ;(I-P)<7,Ujp,>, V which

gives the result.
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Turning to (f), suppose C- < -. Then the operator D: e-)e given

by D 8= ?-1)/2 <8,0IP 1 >0 , is Hilbert-Schrnidt, so the norm II ."11[on 8

given by 8 911 = ID 8111 is a measurable norm (Exercise 17, page 59 of

Kuo, 1975) and hence the completion of 0 under IH IIII supports L( )

(Theorem 4.1, page 63 of Kuo, 1975). One easily checks that .j*l = *I.

Conversely, suppose 0, supports L(P), and let us calculate the covariance

operator V for L(P) on 0,. For 8E),

and = sic= i es in[(, weca idntf V 1 = *.NwVms

<8 V 0I=E <.62
,'''

and since () is dense in 9... we can identify V = UP-1 = cgo,. Now V must

be a trace class operator (Theorem 2.3(a), page 29, and Definition 2.2,

page 16 of Kuo, 1975), and the eigenvalues of V are so .yP-1 < . 0

li,
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3. CONTINUOUS TIME ESIIMATION

In this section we consider a continuous time analog of the problem

from section 1. It will be seen in the next section that the sequence of

experiments with discrete observations can be sufficiently well approxi-

mated by a sequence of experiments with continuous observations that

the limit theory of the latter is inherited by the former.

Suppose <($(t): Ogt ;5 I> is the stochastic process of (1.2) and let

<c(t):O; t _ 1> be a standard Gaussian white noise. Consider the

sequence of experiments with observations

Y.(t = #(I)+ m4 ae(t) 0 -a t 1,

where a > 0 is a constant. We write

= = a2/n. (3.1)

Now the GHS forL (r) is

Y = L2 [O,1].

0. the GHS for L (P), is equal as a set to the Sobolev space

W1= W;[O,1] = if: f maps [0,1]-]R, and

f ,Df .... m-f are absolutely continuous
with D m f EL 2 0Ii

The e inner product is

= (.eE-1 B( ) + f (L 8)(L ).
0

One can show that Iiieis equivalent to 1*1rwhere
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fl8H~1  = liD" eIl, +Ilel ,,

Now let Tbe a Banach space which will support L(P) and is continu-

ously imbedded in L2 (i.e., 6 C L 2 and has a stronger norm), e.g.,

= c -1 or W - . Let X": O'L 2 be the imbedding operator (Xo= 9). so

Y = X + a,. Then X. the restriction of Xto 0, is the imbedding of G in

L2 . To identify X*, start with

I I
f (L )(LXa'7) + B(G)'-IB(x* 7 ) = fe

0 0

valid for e E 9 and 7 E Y. Apply integration by parts to the integral (as in

section 1.5 of Naimark, 1967) and express the l.h.s. as

I -

f(L*L)(xo17)19+ r [cj-0(X*77)DJ 0(0) + Cj1(X*,l)D o(1)).
0 j=0

Here L* is the formal adjoint of L. Also, Ct ( ) is a boundary value opera-

tor of order 27n -j whose highest order term is of the form

tagD2 "-j (i). Thus " =X*7 can be obtained as a solution of the

differential equation

L*¢=77

cjj(¢) =0 0 j <m , i = 1,.2.

To derive Pn = E[#I Y.] = (,XI + U)-1 X*Y, it is convenient to use the fol-

lowing characterization: P, is the unique E3 E) such that for all 0 E 0,

I % <l + <X P, X - <,,, X %
= (4.XG>.

~ z ~;~.>cjZ ~~ ~ V N'".&~~ .
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If one writes this out and uses integration by parts, there results that (

is the solution of the stochastic differential equation

(XL.*L + 1)P = rn

C,,<p, = 0 ,0 9;< , _- =l,2=!
The r,'s and 7y's are the eigenvectors and eigenvalues of the differential

operator L*L with boundary conditions C# = 0, 0_-j < m, i = 1,2. Since

the highest order term of Cft(7 ) is ±a4D2 -e (i), the boundary condi-

tions are regular by the argument on pp. 60-61 of Naimark (1967). By

Theorem 2, pp. 64-65 of Naimark,

77 T , [d =. (3.2)

(Note that the eigenvalues have to be real and positive.) Put

Ck(p) = E40 +,\Y) - •

These quantities will have many uses. In particular note that

ElII-P11 2 = XnC I(X,,p)

EjjP-E[Pj]Ij2

Using (3.2), one can show that if -,Vm? < p < 1 -,m, then asX A0

Ck,\Qp) -,x-(P+elm) fz2mp[X +X -dz
0

= ,\-(P+'/"2)B (p + 1/2rn, c-p- 1/2 m) (3.3)

where
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S= Tr-l1/m

and B (u,v) = r(u)r(v)/F(u +v) is the beta function. The derivation for

the asymptotic formula for Ck(X,p) follows as in Corollary 5.4 of Speck-

man (1984). The evaluation of the integral is given in Gradshteyn and

Ryzhik (1965), formula 3.194.2, page 285.

Now 90 = L2 and E a Wm, where a means equal as sets and with

equivalent norms. From this it follows that

e8 a wIp , 9p9_. (3.4) ,

The proof is most easily accomplished with the K-method of interpola-

tion; see Theorem 3.4 of Cox (1986).

One of the reasons the norms 11-11p are so useful is because we can

derive explicit limiting distribution results as An -* 0 for the norm of the

error vector 6n = -

p

Theorem 3.1. Let - 1/2m <p < 1- 1/2m .,

(a) Put

Pn(P) = XCI(Xn,,p)

-n(p 2A4C 2(X1n,2p).

Then "s

L ([jjd,,IP2-A,,]/T,) => N(0,1) ,

as nL.~

1
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(b) Put

I/

77n) 2A4[C 3(X1n,2p) +XnC 4(1Xn,l.s2P)].

Then

Remarks. In view of Theorem 2.4(b), part (a) gives the asymptotic poste-

rior distribution for 116n 112. Part (b) gives the asymptotic sampling distri-

bution of I16n 1 . Note that On is random as it depends on f.

Proof. For (a), note that

1 1 2 V-( 2

V V

and <6n 4'i>. (41. <n42e are independent normal with mean 0 and vari-

ance Var(<6n-'*,> = Xnyt,(I +-Xny.,). The result foliows from Lindeberg's

central limit theorem after suitable truncation of the infinite series for

Part (b) is somewhat more difficult. The conditional distribution of

<6n,*1%,n,*,@ ,• given P is that of independent normals with mean

Xny&#,(l + ,\y,) -1 and variance f7L(1 + 17L)
-

. From this it follows that
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E[116,11Ill] =An+ ,, and

Var [116. 11P #] 77n + 4 -y (- 1)(1 +>1P (-y) - 4 .

From (3.3) we have 77 , , while from Lemma 3.2 below, the

second term above iso(X,- l/"), a.s. Now the proof follows as in part

(a) o

Lemma 3.2. Let -r > 1/2rn and k be such that

k > r + 1/4n. (3.5)

Put

= n) (Anyjr(j +X,\n.)k - 1 ).
ii-1

Then for some C E (0,o)

--m'An1/4"L(loglogn)-%(n) = C , a.s.
nI-**m

Um n1/4l(loglogn)-%w(n) = -c , a.s.

Proof. The first step is to show that there is a probability space carrying

a probabilistic replica of w(n), also denoted w(n), and a standard Wiener

process j W(t): t _ Oj such that the process given by

V(s) - -fW(st)g(t)dt s-O

g(t) = (cd/dt)h(t2 ') , (z) = Z"/Il+X)k
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satisfies

I-(n) - 24V((C Xn)-1A ') = o(X ;/4"(log logn)' (;3.6)

almost surely, where

C 2 2m

Note that (3.5) guarantees convergence of the integral defining V.

Let S., = Ejt1 2-%(P, 1) and

DI(n) = 2-%cj(n) =

where the last formula follows by partial summation. By Theorem 2.6.1,

page 107 of Csbrg6 and Rdvdsz (19i), there is a probability space carry-

ing a version of Su: Y= 1,2,• and a Wiener process [W(t): t _0 such

that for all d > O, as v -,

IS-W(v)l = a(v') a.s. (3.7)

Let

D 2(n) = -EW()[h(Xn7LI+)-h(Xnyv)].
I

*Note that

Ih (7LI+ 1) - h (kX,)j = \y, jIh(-y,

where y, -5'V! -7+I. Utilizing (3.2) one can show that

VL, - = 2 -(1 ( +o( 0 )). (3.8)

Also,

g ',',,) c,2 ),r-I(l + C,\v2) -k + (,\2,),r(l + C,\2) -(k ' )]

NI
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for some C, E (0,oo). Collecting things together we have

IDj(n)-D2(n)j - C2X;"/'ME(Xnv 2)1+(d- 1)/ 2

V

[(, 2M)r-1(l+c \n /L,.)- + (\v~"),')(l+c ,n V~m)-(k+l)],, 1A,2m (3.9)

where C2 E (0,o) is random (from (3.7)) and depends on 6. Note that the

summation above tends to a finite integral as n -. . Hence, taking 6 <Y

gives that

IDi(n)-D 2 (n)I = o( , /4(loglogn)#).

Next we show that D2(n) is suitably close to

D3(n) = - W( )(c,)'/,g((c \n)'/ ).

Two applications of the mean value theorem along with (3.8) yield

C F, i W ((\) (P, -1)2(l +0 (v-) lh" (c Xn , [ 1 +_o (v-')]

V

for some C E (0,o-), almost surely. If one uses the fact that I W (v) "0 (v)

a.s. and applies the same argument that was used on (3.9), it can be

shown that the last expression is 0 (1) a.s., which is o( (X;1/4"(log log n)%).

(The assumption T > 1/2m is needed here to guarantee that a summa-

tion converges to a finite integral.)

Now let D4(n) = V((c ,n)-/ , l ). Then

JD3(n)-D,(n)j -9 (c )-1/2mEZv , (3.10)

.

-V ... . . ... . . . . #- -, - -r.- e .--- ". . ".
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where

= sup J

is a sequence of i.i.d random variables and

for some a vE [0,1]. NowP[Zv_--y]=4P[W(1)_ y],soas v-. ,

Z= O(logv) a.s.

Plugging this into (3.10) and using a familiar argument shows that for any

6>O

JD3(n)-D4(n)j ( -  a.s.

as n -' . This completes the proof of (3.6).

Now we show that if s, = 7r-IX; 1/2'. then for some C E (0,-)

ll7M(snloglogs1% 6)-V(s,,) = C a.s. (3.11)
n

Since loglogs, = loglog (Tr-la- I/m 1/ m) log logn, the lemma will fol-

low from (3.6) and (3. 11). (Note that the corresponding lir in (3. 11) will

be -C by symmetry.) Put

Y(u) = e-iuV(eu) -o<u<o

u, = logsn = A + (2m)-llogn , n = 1,2,

where A = -log Tral/m is a constant. One can check that Y(u) is a sta-

tionary mean zero Gaussian process with covariance

=(u) = iu G(eut)G(t)dt
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C(t) = h(t-)

Equation (3. 11) will follow by showing

= 2 r(o) a.s. (3.12)

To prove this latter we will apply Case 2 of Theorem D of Quails (1977)

with a = 2. Assuming this result applies, it states that for c > 0,

P[Y(u,)> r(o)c(log u) ] = 0 or 1

'I, according as the integral

ft -1"(log t)" I 4(log t - Yjlog log t)-dt < -or=

This latter integral converges for c > 2 and diverges for c < 2, which

establishes (3.12).

In order to apply the aforementioned result in Qualls (1977), it isv"

necessary to check that Y has continuous paths, F(u) =o(Ilogu) as

u -lw, and F"(o) < 0. To show Y is a.s. continuous, it suffices to show that

V is a.s. continuous on [0,o), and for this it suffices to show V is a.s. zon-

tinuous on any finite interval [o,b] and then let b - through some
..

countable set. Now let A be an event of probability 1 on which W is con-

tinuous and for which there exists To (depending on the path of W) such

that for all T _L To

(2TloglogTY sup IW(t+s)-W(t)I 2. (3.13)
O~s PT/2

"" Such an event A exists by equation (1.2.4). page 30 of Csorgo and Rdv~sz

-j.-

-. . . . . ,, . 4. - 4I - - . ",,_ , 4 .,% .% . ,.% ,

. * , *. *..*.*,*. - . .Y *;"*...x ....'--,'. , - -,-,' .4 . --.. , ..... . . - ' - . , ...
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(1981). Let >0 be given. Pick T1 _! To such that

4 f 4(btloglogbt) 1g(t)Idt < E/2. (3.14)
T 1/2b

This is possible by (3.5). Now

SUP V(si)-V(s2)I :2 f sup W(s 1 t)-W(s 2t) 'g(t)'dt
OSs 1Ss 2 b T1 '2b OSS 19s 2:ib

Tt/2b

+ f oSUp 1W(s 1 t)-W(s 2t) g(t);dt = 11+12

Since

sup IW(st)-W(s2 t)f <  sUP !W(U -v)-W(U)l
O6s 1is 2Zb O:5v btO06v S bt

it follows from (3.13) and (3.14) that 11 < t/2. A straightforward uniform

continuity argument shows that there is a 6 >0 such that s - s 21 ;_ 6

implies 12 < e/2. This completes the proof of continuity.

To show P(u) = o(1/Iogu ) as u -, we have foru >0 and -r Y k-rn

I

F(u) e ( z'' '' )' fr/r T /  -d

+ f t(2'-1)/2m dt + e"u /2m f t ( -r- k )/ n dtl

- o (e -&? '2,)u) + o(e(r-)/ m4 )u)

As all the exponents are negative, the desired result follows. If

. . . . ..Z;. -%- . . ._
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T = Y k -m, then the middle integral is treated differently but the result

still holds.

To show that r"°(0) < 0, first note that

r"(o) = Xf G2(t)dt + f [2tg(t)+t 2g'(t)]G(t)dt. (3.15)
0 0

The calculation is carried out by differentiating under the integral sign

which is justified by the dominated convergence theorem and by the fact

that there exists a constant c such that for all u [-1E1], iG(eut)I,

ltg(e-ut)l, and t 2g'(e-ut)l are all bounded by c minJ,t'2(' - ), which

is square integrable on (0,-o) by (3.5). Noting that the quantity in brack-

ets on the r.h.s. of (3.15) is d/d[t 2 g(t)], an integration by parts will

yield

r"(0) = Yf G2(t)dt -f t2g2(t)dt

Let 11 denote the first integral in this last expression and 12 the second.

Then integration by parts gives

*1 =1 -2ftg(t)C(t)dt
0

and Cauchy-Schwarz applied to this integral gives I < 21YsI2 which

implies II < 412 and hence V'(0) = 4It - 1 2 < 0 3

Corollary 3.3. Let -1/2m <p< 1-1/2m. Suppose that An >0 is

chosen so thtat

2. -%
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P[lin - 911,02 9An.I Yn] = I1-a (3.16)

for some a E (0, 1) . Then

li n n-12_A p = 0 , a.s. (.7

Proof. By Theorem 3.1(a)

An - Y% + ZT, (3.18)

where z. is the upper 100a% point of the N(0,1) distribution. By

Theorem 3. 1(b)

IP[II, -!pl - n I#] - (zar- n00m)/in) I -, 0

a.s. as n -, :, where 0 denotes the N(0, 1) distribution function. (Note

that convergence in distribution to N(0, 1) implies uniform convergence

of the distribution function to .) Now -, /7, tends to a finite limit and

77n 1/4m

by (3.3). Hence, by Lemma 3.2

lia nf (zrl,-f,)/,, = -/7

which proves (3.16) o

Corollary 3.4. With the setup of the previous corollary, the pror proba-

bility that the (1-a) Brzyesia posterior probability region

jeee6o: 11p- 8112! Anj is conservative in its frequentist coverage
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probability tends to -P(z.(l -r%)(1 -r2) - ) wwre

r2 = (1-p -1/4m)(2p/3-1/6-m).

Proof. We wish to calculate

The difference between this and

P[$((Z.'r -0)/17n) _ 1-a] = PicI :- (1n -?ln)z.]

tends to 0. One can show as in Theorem 3. 1 (a) that

L(fl/(-@ 72)14) => N(0,1). Using this and (3.3) one can show that the

last displayed probability tends to a limit of the form 'I(zaR) where R is

an algebraic form in some beta functions. If one substitutes

B (xy) = r(x)r(y)ir(x +y) and uses the recurrence relation

r(x+i) = xr(x), then the claimed result follows after some algebraic

manipulation. 0

..



4. DISCRETE TIME ESTIMATION

In this section we consider the original discrete time problem in

(1.1), where P is given the prior specified in (1.2). By virtue of the next

result, it follows that Theorem 3.1 and Corollaries 3.3 and 3.4 hold in this

setting as well, thus justifying the statements made in the introduction.

Theorem 4.1. Suppose that mn _ 2 and

-1/'2m < p < 1- 1/2m

and that

E It, 12+6 <

where

6 9 6/(2m-3).

Then there exists a probability space carrying versions of P,

C 1 E2,'*' and a sequence 'n (t):O t9 11 of Gaussian white noises

such that if

Yt = fi(i/n) +z , 1i

=nt P(t) + on3 1?f(t) 0 19t 1

then

116 n. -1.. . .2p .. . ..

%:1- 2
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Remarks. Note that _OII = 0_( -P- /2m) follows from EII = L,1(p).

Since 116. ,, 2 =.p = (Q--1/12), it follows that 11d,.,l2 = 0(X -1/ 2 ").

Hence

111,6.,112 - I11 ,,.1121 g jjI1 ,,, - '. [lld jll. + jtl,.llP]

= ('-P))Op (,-- 1/'2 .)/2) ( -P- '')

Now T, n -- /4, and n, ; ,-- /4m so we may replace the continu-

ous time estimation error (now denoted 3) with the discrete time esti-

mation error 6 n in Theorem 3.1, and the results still hold. Corollaries 3.3

and 3.4 depend only on these results and the properties of On, which

depends only on

Proof. We have

I16,n -W[ ', !5 211r, ,S,,,1 + 21(B,. f,,)lI

where

rn= On-E[pIP] , s.= d-E[onj]

BnP= E[p-PIP] =[(XI+Un)-'Un-I]P

ff = E[pn-PIP] =[(\I+U)-U-I]P.

We will show that each of the two quantities on the r.h.s. of the inequality

above has the correct order as n -* -.

Now

rn = (Xnl+un)-'X.,_
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and following the notation of Cox (1984b) put

= (xI+U)-x,.

Now we apply some results in section 4 of Cox (1986). One can show that

for all z 1 ,X 2 in 0

I<(U - UX2>I ; Cn1 [IIx IIIIX 2 110 + IIXlIIOIIZ 21I/m]

where C E (0,-) is a constant, so Assumption 4.1(f) of Cox (1986) holds

with An Cnh, s = I/rn. j =2. See the remarks after this Assumption

for a proof of the above inequality. Now by equation (4.6) of Cox (1986),

lIIrn - F- 112 CmL2[C2(,.p+ 1/rn)EI~rnII& + C(,)IrI~

This latter inequality can be inverted for p = 0, 1/7y to give bounds on

EJIrI'j2 and E11r.l2/Im in terms of EIIlo1 and EIl1!l?>m. When these are

substituted back into this inequality and the estimates on C2 are used

there results

It is easily seen that this last quantity iso(X, -P) as m k 2. 9

Now put

= an-(NI + U)-()dB, oFn()
0

where Fn(t) =n-[n] as in (3.7) of Cox (1984), then following (3.9) of

that paper,

IF 11 .jj n 'C2( 1 ,p 1 /n)o (n A%)

.5'

,. .. -.' '. " . '_'.._-, .-. .-"..", v-...-.- --.-- '.' -.-'.'..-w,'..-.'-" ""," '.'-"-.k > , U '
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a.s. Using the estimate on C2, the definition of X, and the hypothesis

that 6 9 6/(2m-3). it follows that the last displayed quantity is o()-P),

a.s.

Next, we have from (3.10) of Cox (1984b) that

Il~n- s~yLjj = 0(n 1 (n-logn)C2 bw.p + 1/rn))

and this is g (X,-P). This completes the proof that I1r' - Sl 2 = 2(x-P).

Finally we must take care of II(B -w)PI, where BL and 4L denote

the bias operators for the respective problems. Let

maxp,1/mnj < T < 1- 1/27n, and let I*fI. denote the operator norm of

a linear operator from 61. to @,,. Then by equation (4.6) of Cox (1986),

IBn - ff i1,. Cr- 1C (X, 1p+ 1/m)Ilff, f,o +

+ 1/m) ,m I 1.,

C2%(X, ,p )?, lM IP)Xn 1 11r,o + C2%(Xnp)Ilfn ll.,/,I .

Now by Theorem 2.3(c) of Cox (1986), lIIIIl,1p f CX(-)/2 as long as

pf _f'_p+2. Plugging this into the above expression and using the esti-

mates on C2 yields

~i

Now

As - < 1 - 1/2m, l < a.s., by (3.2) and Proposition 2.5(f), and so the

last expression is a.s.

. . .. . , ' , . .I,.. - , , , , . .-. . ,.-, ._, ... .. , .. ,.. . ";.-,-...:.-,-.-,. .- :':,
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5. CONCLUDING REMARKS

To provide more insight into the foregoing analysis, consider the case

where dim = I < -. Then it is easy to obtain the analog of Theorem 3.1.

Calculating the asymptotic posterior distribution of 116,, 112z, we have

11I6n!Io) L A n x~7V(1 +/fJc

Since (1 + Any,,) - ' - 1 as n -, for v = 1,2... 2, k, it follows that

Y;116 )=> L -PE2

where the distribution on the right is a weighted sum of X2 random vari-

ables. The corresponding calculations for the sampling distribution are

112(l 1 pll) = _-ytp,,- - )-2C2

-2p2

The second and third summations on the r.h.s. (which result from the

bias) are each,(XV1 ), so

(X;,'1 l6n 1121p) => L_ ,, C 2

Thus, the asymptotic posterior and sampling distributions are identical,

so a (1-a) posterior probability region of the form in (3.16) has (asymp-

totically) the right coverage probability from the sampling point of view.

This results from the fact that the random (conditional on P) variability
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dominates both the sampling and posterior distributions, with the bias

E [P - P I ] being of smaller order.

In the case when dimO = -, the bias and random variability are

always of the same order of magnitude. This is the driving force behind

Corollaries 3.3 and 3.4.

Concerning extensions of the major results (Theorem 3. 1, Lemma 3.2,

and Theorem 4. 1), one would like to look at more general Gaussian priors

and more general quantities than 116nJ 2 I believe that analogous results

can be obtained (for 116 i,2 in any setting wherein -7 ,b V for some r > 0

(see Cox (1986)). The specific setting here allowed us to use the sharp

eigenvalue asymptotics (3.3) at some points in Lemma 3.1 (see (3.8)). The

extension to other quadratic forms can also probably be accomplished.

As in Wahba (1983), we would like to construct a confidence interval for

#(t) for some t E [0, 1]. In the setup of section 3, note that

L(6 1,(t)) = N(0, An E(1+Xn7 v)-1 9 2 (t))

On 6(t )I P) N N(Mn, V7,2 7,(

where

=

I conjecture that both variances above are Xw 1/-*2m, and also that

lim sup [\('- c(loglogli')]-4Mn E (0,o) , a.s.

This would imply analogs of Corollaries 3.3 and 3.4 for the "confidence"
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intervals for 6,, (t). The difficulty here is in obtaining results on the

behavior of 9p,,(t).
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