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where ﬁ is the posterior expectation of ﬁ Asymptotlc posterior and

sampling d1str1but}ona1 agproxxmaf.xons are given for || ||2 when ||of

‘Vh w

is one of a family of norms natural to the problem. It is shown that
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the frequentist coverage probability of a variety of (1 /a) poitenor
probability regions tends to be larger than 1-a, but will be
infinitely often less than any £ >0 as n <« with pnor probablhty 1.

/9
A related contmuous time signal estimation problem is also stu-

dled. "‘L}/u.‘.‘ ; ;"'f j
r/[
; *This research was partially supported by the Office of Naval Research

¢ under contract number NO00014-84-C-0169, and the National Science
Foundation under gran% number DMS-820-2560.

..-;l.i

. Key Words and Phrases:\ Bayesian inference; nonparametric regression;
. confidence regions, signal extraction, smoothing splines. o ___

AMS-MOS Subject Classification (1880): Primary 62A15; Secondary 62G15,
62J99, 62E20, 62M99, 60G35.

Wz‘:;‘{ U s oggmoved )
ﬂh W x.-.‘ nl’”.‘ 1
1
diagtbation b waicdiad =

)
\
)
'
)
s
¥

o AT Y RTINS L T aat ) e AL Lo £ S0t £y L I A B S L



P N T N P T N O T P TR, S T OGN TN PO PRI TR Y OO Rl Bl b Qi RaR wpo by Bpr Ret Tat ® BRI o

o 1. INTRODUCTION

" In this article we consider Bayesian inference for a class of non-
9
Y
?l:‘: parametric regression models. Suppose we observe
‘r‘l'
B Yoo = Bltng) + & 15isn (1.1)
W
4
:’::: where tn =i/n, B:[0,1]»R is an unknown smooth function, and
.

€1,€2, -+ are ii.d. random errors with mean 0 and known variance
? 0% < =. The &, are modeled as N (0,0%). A Gaussian prior for § will now
5 be specified. Let m 22 and for some constants a,, . .., a, with a,, #0
' 4 let
s
‘;t
# m
& L =3 ad
¥ =
! '; be a constant coefficient linear differential operator (D = d/dt). Let w
Hha
E denote a standard Gaussian white noise on [0,1], which is formally the
B derivative of a standard Brownian motion <W(t): 0sts 1>. Let T be an
-E: m xm positive definite matrix and let B;, ..., B,, be boundary value
‘ »
‘I
;" operators of order m—1 or less, i.e., B;(B) a linear form in
£(0).£(1). DA(0), DA(1). . .., D™18(0), D™~8(1).
" Assume that Lg =0 and B;(g)=190, 1si<m imply g=0. Then B is
: assumed to be the solution of the stochastic differential equation
e
30 LB=w
B(8) ~ N(0.5) (1.2)
i
" where B(8) = (B{(B8),...,Bn(B)). Alternatively, one may express f
)
tﬁ through a simple stochastic integral

',, T o AT AT AT LT q."w'\q M SEY ',\" - N (\.- A, \-(A‘_l‘i‘ L
n - . a L3 _ 5 . & 3 )
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1
Bt) = {c(t.s)dW(shm(t)

where G is the Green's function for the operator L with homogeneous
boundary conditions B;(8) = 0, 1% Sm (see sections 3.3 and 3.4 of Nai-
mark, 1967) and B,(¢) is a solution to the homogeneous differential equa-
tion (LB, = 0) with boundary conditions that agree with 8 (B;(8,) = B;(B).
1Sism).

This specifies the prior for 8. The Bayesian model thus defined is
very similar to others that have appeared in the literature (Kimeldorf and
Wahba, 1970a, 1970b; Wahba, 1978; Wecker and Ansley, 1983). More

abstract modéls are discussed in section 2.

One of the attractive features of the Bayesian approach is that in
principle one can solve virtually any statistical decision or inference
problem. In particular, one can provide an accuracy assessment for
B. = E[B|Y,] using posterior probability regions. For instance, letting
||| denote Lp[0,1] norm, one can in principle determine a number 4, ,

such that
P[l[Bn ~BI* S 8 | Ya] = 0.95, :
thus giving a 95% posterior probability bound on the Lj-norm of the esti-

mation error. A useful large sample approximation for A, follows from

results given below, namely

On ~ pn + 1.6457, | ]
h
L

v - v ” v -« * '.. ..
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# where

Y

':‘: pm ~ mlanmB(Ykm,1-%m)(c?/n)i-1/2m

R

r-:,‘.,} 12 ~ m7lan /™ B(%m ,2-%m)(0®/n)>-1/2m

-" and B(z,y) is the beta function. (See (3.18), Theorem 3.1(a), (3.3), (3.1),
\

ot and the remarks after Theorem 4.1.)

N

Non-Bayesians often find such Bayesian procedures attractive

i
4/

> because as n »=, the frequentist coverage probability of the Bayesian
*

?! region tends to the posterior coverage probability in ‘‘typical” cases. [t

; was my hope that this would hold in the nonparametric regression set-
N

:: ting, thus providing a methodology for constructing large sample
“

W) confidence regions. Unfortunately, the hoped for result is false in about

N the worst possible way, viz.

h .. ) . -

* - limint (B, ~fIRS 4 16] = 0. as. (1.3)
3

%’{ Thus, if one fixes a sample path from the Gaussian prior, then the fre-
>

; ﬂ; quentist coverage probability of the region {8: ||B—PBalR S Ax) will

:_ infinitely often be arbitrarily small as n -+ =, for almost all sample paths.

s

) )

\E Nonetheless, for fixed n (large), the frequentist coverage probability

;',\ is at least 95% for 'most’’ sample paths in the following sense:

b lim P[P[[IBx - BI? < 8218] 20.95] = 1-a

e |

'3:,.3 where 1 - a depends on m as indicated in the following table:

"

CA)

s

L2

-F"

J‘:
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(see Corollary 3.4).

It will be indicated in section 5 that the ‘‘typical” settings wherein
the frequentist coverage probability converges to the Bayesian posterior
coverage probability depend critically on finite dimensionality of the
parameter space. One would naturally conjecture that a result like (1.3)

holds whenever the prior is infinite dimensional.

The procedure analyzed here differs fromn that advocated by Wahba

(1983) and Wecker and Ansley (1983) in the following ways.

(1) These authors use a ‘“‘mixed effects’” model wherein 8 = o+ 8,
and g, is given a proper prior of the type above but 8y is unprior-
ized and lies in a finite dimensional space (or can be said to have
an improper Lebesgue prior). The resulting regions are a mix-

ture of confidence and posterior probability. I believe (1.3) will

hold for this setting as well.

These authors only look at pointwise confidence intervals for 8(¢)

for some ¢ € [0,1] rather than the global confidence regions
treated here. I have not succeeded at analyzing the pointwise
intervals, but I believe that (1.3) will hold for them as well. See

section 5 for some relevant discussion.
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(3) We have assumed o is known, but [ am sure that this is inconse-

o quential.

0

;i.: (4) These authors assume f = bf, where B has a given prior and
;‘, b >0 is an unknown scale factor which is estimated. [ do not
:' know if our negative results still hold in this setting. In particu-
‘ lar (1.3) depends on the law of the iterated logarithm fluctua-
I tions of the bias £[B» — 8 | 8] about its mean (Lemma 3.2). Such
J fluctuations undoubtedly impact the smoothing paraheter esti-
.' mation procedure of Wahba (1983), known as generalized cross
: validation. (See also Craven and Wahba (1979) and Speckman
;‘ (1983).) Thus, an empirical Bayes approach may avoid this prob-
v lem.

*Q

i.'.: (5) Wahba (1983) considers the true function 8 to be fixed and
t smoother than one generated by the Gaussian prior. I believe
~ (1.3) may hold for many such smooth functions.

& Section 2 presents an analysis of an abstract version of the Bayesian
!‘ linear model. In section 3, a continuous time analog of (1.1) is investi-
' gated. In section 4, it is shown that the discrete model (1.1) can be well

approximated by the continuous time model. Section 5 contains some

concluding remarks.

i)
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2. THE ABSTRACT GAUSS-BAYES LINEAR MODEL

In this section,' we formulate and solve a general version of the
abstract linear moglel when the error vector is modeled as Gaussian with
known covariance and a Gaussian prior is used for the parameter vector.
Well known results about Gaussian measures on Banach spaces will be
used, for which Kuo (1975) is an excellent reference; see also Kuelbs
(1970, 1971), and Kallianpur (1971). We will drop the subscript n

throughout this section as we only consider a fixed prior and observation.

Suppose ¢ is (modeled as) a mean 0 Gaussian random vector on a real
separable Banach space _f_’-. and Y is the generating Hilbert space (GHS)
for the Gaussian measure L (&) = the distribution of ¢ on Y (Y is also
known as the reproducing kernel Hilbert space for L{e); see Kuelbs
(1970), Kallianpur (1971), or Kuo (1975). Let 8 be a mean zero Gaussian
random vector on a real separable Banach space @ with GHS @, and

assume B and ¢ are independent. Now let
X:8-Y
be a bounded linear operator, called the design operator, and suppose we

observe

Y = XB+o0¢

where 0>0 is known. We wish to estimate g from Y. To do this, we will

show that a posterior distribution exists and characterize it.
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As a remark, we note that Y plays little role in what follows - it is ¥
that is important. If it were not for the technical problem that L (&) will
not live on Y when dim Y =, we could carry out the analysis using only Y
with no mention of f Kallianpur and Karandikar (1985) have an elegant
approach to problems in this vein. Qur approach here is in the more
classical style using ordinary measure theory, for which it is necessary to

keep Z—around.

Proposition 2.1. There is a regular conditional posterior distribution
L(BlY), and in fact L(B|Y) is absolutely continuous w.r.t. the prior

L(B) . written L(B|Y) < L(B).

Proof. The assumption that the range R(X ) C Y guarantees the sam-
pling distribution L(Y !8) <« L (o¢) by Theorem 3.1, p. 118 of Kuo (1972).

An elementary Fubini argument completes the proof. o

As the inclusion map ¢: © - ® is continuous, it follows that the restric-
tion X of X to @ is in B (8,Y), the set of all bounded linear operators from
©-+Y. Let X* € B(Y,0) denote the adjoint and put

U = XX € B(®),

where B(0) = B(0,0). The description of the posterior is most easily

accomplished using the singular value decomposition of X, given next.
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Lemma 2.2. There exist complete orthonormal systems (abbreviated
c.o.n.s.) <¢v: v=12, - > for ® and <1;,,:u=1,2. . > for R(X),
the closure of R(X) in Y, and constants <a3: v=12, - > such that

Uy, = a2y, for W v, and

XWU = oWy \7" v (21)
X'n =¥ ., WV (2.2)
a2 < =, (R.3)

Proof. X =X o and : is a compact operator. Hence X, U and V = XX*
are compact. U is also self adjoint and nonnegative definite on ®, so

there are nonnegative eigenvalues a?,a$, - - - and eigenvectors ¥, ¥a, - - °

such that <¢,,> is a c.o.n.s. for ©, and Uy, = aZy, (Theorem 1.8, page 8 of

Kuo, 1975). We assume w.lo.g. thata?2af2 ---. Putn, = a;'Xy, for

a, >0 and then (2.1) and (2.2) hold. Now we have 8 = 2<ﬁ,¢y>8¢, with
v
convergence L(B) a.s. in 9, so )_(-,? = Ea,,<6,¢,, 91;,,. As this latter series
v

converges L(B) a.s. in Y, and <B.1ﬁ,>e.<ﬁ,'¢2>e. -+ areiid. N(0,1), it fol-

lows that Za2 < . Alternatively, one checks that V is the covariance of

XBinY, sotrace V=ZaZ <=

Even though g € ® with probability 0, the ‘'stochastic linear func-

tional’" B -v<0.ﬂ>o is defined a.s. as a measurable map @ -, for each

LR R N e I PN L ) BT AN A R TP ol AT ST AP ARV AT AR L R R Y R I N P R Y AR
o I"-':-‘ N o -."\"s'«' J".'."'V'I Lo ol l Ty \\ A VO L o T .
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fixed §€ 0. The properties of these maps are given by Kuelbs (1971) and
Kuo (1975), Lemma 4.7, p. 78. Similar remarks hold for ¢ and <€.n>y.
ne€Y. Note that <Y,7)>Z=<Xﬂ.n>z+ o<e,n>x. a.s. Since XB €Y, the
term <X 3,1;>Y is defined as an ordinary linear function. We also have

Karhunen-Loeve expansions: if ej.ep - - is any c.o.n.s. for ©, then

g= 2<ﬁ,e,,>eey with convergence in 8, almost surely. See Kuelbs (1971).
v

Lemma 2.3. Let Y, =<Y,n,>; and B, =<p,¢,,>;, v=1,2, - . Then

L(ﬁl-ﬂ& e |Y) = &L(ﬂvlyu) = &N((o‘z-}-as)—lav}’u, [1 +(au/°')2]-l)

i.e., the posterior distribution of £,82 - - 1is that of independent nor-

mal random variables with the indicatied means and variances.

Proof. Put ¢, = <a.ny>-Y. Then B1.82, . . . ., £1,82, - - - arei.id. N(0,1). Also

Y,=a,f,+0e, The result follows from this and elementary calcula-

tions. O

As the ihclusion ¢: -0 is continuous, every ( € ©*, the dual of 8,

defines by restriction an element of ©*. If we identify ©=0*, then

O
R

P

1* € B(0*,0) satisfies <{'.1.8>6_. 5> <1.‘¢.9>0 .\ 6€0. An inner product

type notation is being used for the (5-‘.55 duality pairing.

T e R AT A T
L 8 '
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Theorem 2.4(a). The posterior L(f Y) on 0 1s Causstan utth mean
B = (B +U)7'X*Y . L(Be) as (2 4)
and corariance
V = ol +07%U) e .

(b). 6=¢8 -8 1is independent of Y , and has a Caussian distribution on

® with mean 0 and covariance V.

Remark. For (2.4) to make sense, we need to show X*Y is defined a.s. and

an element of . Put

X*Y = }r,X*n = Yo,V 9.
v v

Note that ZE[(a,Y,)?] = Za?(a? + 0®) < =, so the series on the right con-

verges a.s. in ®. Furthermore, we have for v 6€ 0 that

o.xvry, = <X6.Y>; as.,

as one can check from series expansions of both sides.

Proof. g = LB, ¥, with a.s. convergence in ©. Hence, if ¢ € o,

CBg s = BACE A o = A WY,

2
As Eu<l.‘(.¢u>e=llb‘ﬂlg<w, it follows from Lemma 2.3 that

£(<¢,ﬁ>§_. Fl Y) is Gaussian with mean

I “»
A0

DR E S E Wl U R A R T T L P T ’~_ . .'\.’-_’--,..\'...._.-._ .‘\..‘ ~.- "..(--._ S ','_'.’ RGNS .'_.-: ...... _‘ --'_-\ N S ]
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et m = zv(02+a3)-lauyv<"‘ C'WV>9
2
i" and variance
2
0'7. . -
R — 21~1
f ™ = B[1+ (a0l )
t-ir Note that
0N
s
> -1 = -1
b & (P +U) X'Y>6"e = ((B1+U) e (‘.X‘Y>e
A
5 n" -
*‘:: = 2y<(02]+U) Les ¢»¢u>8 (a,Y)
o 2=t
o = Zav(°2+au) <’"(v¢u aYv =M.
14
¥
w': Also <{, (I +0RU)" L (‘>§_ 0" 2. This completes the proof of (a).
o .
ot
o Put 6, = <6,¢y>e = B,-(c*+a?)"la,Y,. It is easy to check that 6, is
v
129 .
o4 Gaussian and independent of Y, hence Y. The rest of (b) is easy. o
QY
;'_E: Now we introduce a parametrized family of Hilbert spaces which is
a_":
) natural for the problem. For convenience, assume
. ': R(X*) isdensein © (2.5)
4
A A where R (X*) = R(U) is the range of X*. Also, put
g;: | 7 = o2, oy = ayly,.
e
2 For p€R let , be the Hilbert space obtained by completing the set of
e i
” finite-norm elements of ® under the norm given by ||6||, = <9. 9> where |
N p ‘
b
4
LY.
td

5

b
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(01.65), = TrECOLU R (U ),

We collect some elementary facts about these spaces.

Proposition 2.5. Suppose (2.5) holds, then

(a) B>, =<0UL), . and (py:v=12 -} isacons for 6.

(b) ©,=6.

(c) X exztends to a Hilbert space isomorphism from 6, to the Y
closure of R(X).

(d) If p>7 then 8, C 8, with continuous inclusion.

(e) Letting 1, denote the inclusion © » 8, where ps1, and iden-
tifying 8,* with 8, in the usual way, we have ,* = U™,

(f) ©, supports L() ifandonlyif L7~ < =.

Proof. (a) and (b) are elementary. For (c) note that X¢, =7, and
= 2 2
<9,U¢,,>.e -<X9.1;,,>.I. For (d) note that ||8]|7 = (mvax)r{,"')llell,. and the
max, y2~" is achieved at a finite, positive value by (2.3). For (e), note that
Ul-Pgp, = 7(1=P)y, and by comparison of the series defining the two sides

of (, 9,17>p = <9.L,,"r)>l. one obtains that 4,°n = ¥ 7, “""’(n.U #u), %y which
v

gives the result.
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3
Turning to (f), suppose Y, 727! < . Then the operator D : @ 8 given —
v .
§"
by D& = 279’-1)/2<9.¢v'>0¢u is Hilbert-Schmidt, so the norm ||/ +|[[ on © ::
v ]
)
]
given by ||| 8||| = ||D 6]}, is a measurable norm (Exercise 17, page 59 of i
Kuo, 1975) and hence the completion of ® under |||+||| supports L(g) “,.:“
N
(Theorem 4.1, page 63 of Kuo, 1975). One easily checks that ||| «||| = [ellg. :‘:.'
B
Conversely, suppose @, supports L(g), and let us calculate the covariance -
operator V for L(8) on 8,. For 6€9, !
2 o
= = P 2

<6,V9>P E‘(O.ﬁ)p E‘[(§7u<9.¢u>o<ﬁ-¢u>o)
-
2 :t
= E[(275-%<9v¢v>oﬁv)2] = 27?-1<9.U¢V>1 ::

v v

LrEB.on) U Opiy, = (B.UPE)

and since O is dense in 8,, we can identify V' = Ue-l = totp®. Now V must

be a trace class operator (Theorem 2.3(a), page 29, and Definition 2.2,

YR

page 16 of Kuo, 1975), and the eigenvalues of V are {7271}, so Ly 1 < =. «©

[ T ‘l"'-"l':\’.l

X

,,;,/a» —~

!

:.n '
K
e
A
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3. CONTINUOUS TIME ESTIMATION

In this section we consider a continuous time analog of the problem
from section 1. It will be seen in the next section that the sequence of
experiments with discrete observations can be sufficiently well approxi-
mated by a sequence of experiments with continuous observations that

the limit theory of the latter is inherited by the former.

Suppose <ﬁ(t): 0st¢ §1> is the stochastic process of (1.2) and let
<e(t):0§t§1> be a standard Gaussian white noise. Consider the

sequence of experiments with observations

Ya(t) = B(t) + n-%oe(t) ., oOsts1,
where o >0 is a constant. We write

A = 02 = 2 /n. (3.1)
Now the GHS for L (¢) is
= Lg[0,1].
@, the GHS for L (8), is equal as a set to the Sobolev space
W3 = w3[0,1] = {f: f maps [0,1]-R, and
f.Df....,D™'f are absolutely continuous

with D™ f €L-{0,1]}.

The 8 inner'product is

1
(0>, = BOYETBE) + [(LONLS).

One can show that ||+||g is equivalent to ||o||,,? where

pLEALN, R SR I N .;fq'-
.:-'.:"\ &ﬁ{& ""\i&'\ ‘x}.{-\..A_ s " Q oy L g Py Sy " ‘AE

YN I IR LN TR AT LT e

- m B ASEEGe e . A A
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1612, = IID™6IZ, + |61,
Now let © be a Banach space which will support L(8) and is continu-
ously imbedded in Ly (i.e., G—g Lz and has a stronger norm), e.g.,
@=C™"1or Wi~!. Let X: ©-L, be the imbedding operator (X 8= 6), so

Y = XB+0,e. Then X, the restriction of X to ©, is the imbedding of © in

L, Toidentify X*, start with

1 1
{ (L 6)(LX*n) + B(6YE~'B(X*n) = _[ on

valid for 6€ @ and n€Y. Apply integration by parts to the integral (as in

section 1.5 of Naimark, 1967) and express the Lh.s. as

1 e
[ @) xn)a+"E, [Colsm)d? 60) + Cpa(xemn? 61,
J=

Here L* is the formal adjoint of L. Also, C;;(¢{) is a boundary value opera-
tor of order 2m-j; whose highest order term is of the form
+a2D? -7 ¢(i). Thus ¢ = X*n can be obtained as a solution of the

differential equation
L*L =
Cu(¢)=0, 0sj<m, i=12.

To derive B, = E[B|Yn] = (\i] +U)"'X*Y,,, it is convenient to use the fol-

lowing characterization: f, is the unique g€ © such that for all €0,

MgB 6y, + XB.X 6y = (Yo XE .
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If one writes this out and uses integration by parts, there results that Bn

is the solution of the stochastic differential equation
(AMaL*L +1)B = Y,
Ci(B)=0, 0sj<m, i=12.

The ¢,'s and 7,'s are the eigenvectors and eigenvalues of the differential
operator L*L with boundary conditions C;; =0, 0sj<m, i =1,2. Since
the highest order term of Cx(¢) is £a2D®*™~7¢(i), the boundary condi-
tions are regular by the argument on pp. 60-61 of Naimark (1967). By

Theorem 2, pp. 64-65 of Naimark,
7 = aa(mPm(1+0(W¥?) |, vow. (3.2)
(Note that the eigenvalues have to be real and positive.) Put

Ce(hp) = TrE(1+rn)7*.

These quantities will have many uses. In particular note that
E|B-BlIf = MCi(Anp)
E|B-E[BIBNIZ = MCa(An.p).
Using (3.2), one can show that if -%m <p < 1-%m, thenasA~0

Ci(Ap) ~ KA~+1/2m) [z2mp[y 4 p2m ]k gy
0

= gA~G+12m)g (o +1,2m, k-p-1,/2m) (3.3)

where

AN NN _‘J-_'.";.'.'.r_'.'_ U
AT IR M AEAALAL JCPCTC N, M PR IR0




..‘
-17- :
't
k = nlgIi/m
)
and B(u,v) = [(u)l(v)/T(u+v) is the beta function. The derivation for
the asymptotic formula for C,(A,p) follows as in Corollary 5.4 of Speck- y

man (1984). The evaluation of the integral is given in Gradshteyn and

Ryzhik (1965), formula 3.194.2, page 285.

F S <

Now @=L, and @, = W3, where 2 means equal as sets and with

equivalent norms. From this it follows that :
v

@ = WpF , O0spsi. (3.4) :

The proof is most easily accomplished with the K-method of interpola- ’f
2

tion; see Theorem 3.4 of Cox (1986). <
»

One of the reasons the norms ||s||, are so useful is because we can

derive explicit limiting distribution results as A, -+ 0 for the norm of the
L

error vector 6, = 8- f,. N
’

»

Theorem 3.1. Let -1,/2m <p<1-1/2m. E
(a) Put

3

pn(P) = ACi(An.p) 3

3(p) = 2A5C2(An.20). ‘

N

.

Then ~

A

»
A([Hdn”p2°“nl/rn) => N(0,1) .

P

as n oo, ;

v

2
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g
: (b) Put
On(0.8) = MY (1 + A7) 382 - 1)

n2(p) = 2AE[C3(An.20) + Ay Co(An.1+20)].
) Then
L([I6nl12 = =Qnl/mn 1B) => N(01)

as n-»=, L(B) as.

Remarks. In view of Theorem 2.4(b), part (a) gives the asymptotic poste-
rior distribution for l[dnllf. Part (b) gives the asymptotic sampling distri-

bution of ]ldnHE. Note that (1, is random as it depends on 8.

Proof. For (a), note that
2 A 2 -1 2
l6n lp = g 7u<6n v‘Pv>‘o = Zv: Tv <6n -¢v>e

and <6,, .¢1>8 .<<5,,, .102>8 +++ are independent normal with mean 0 and vari-
ance Var<<5,,‘,~¢,,>e = A7%(1+2,7,)"!. The result foliows from Lindeberg’s

central limit theorem after suitable truncation of the infinite series for
16112
Part (b) is somewhat more difficult. The conditional distribution of

<6,,.'¢,>0.<6,,,.¢2>6, + -+ given B is that of independent normals with mean

A7, B(1+A,7,)"! and variance A, 7,(1 +\,7,)"2. From this it follows that

PR W .
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' = 19 =
N
E[16nlIZ18] = ptn + 0y and

Var [I'dn”pzl Bl = na + 4A1| 27 +"..'o(ﬁv -1+ x-r:')'u)-.4

ey

> From (3.3) we have 7, ® A\2~%~1/2™ yhile from Lemma 3.2 below, the

second term above is 0 (\3"%~1/2™), a 5. Now the proof follows as in part
(a) o

j Lemma 3.2. Let 7> 1/2m and k be such that

A

Q

V) k >T1+1/4m . (3.5)
N Put

>

3'
N an) = L Car)(1+2a7) 7 (60~ 1).

y=

- Then for some C € (0,),

I _—

i Lm A, 4™ (loglogn)~%w(n) = , as

n-so

)] 1/4m (y -% = -

i hﬂ_g})\,, (loglogn)~%2w(n) C , as.

q

.'

’ Proof. The first step is to show that there is a probability space carrying
5

f:'. a probabilistic replica of w(n), also denoted w(n), and a standard Wiener
Wy
-, process {W(t): t 20} such that the process given by

-

15 V(s) = - [W(st)g(t)dt . sz20

0

)

;- g(t) = (d/dA(E*™) . h(z) =z"/(1+z)

'

.I

f. |
" - - -'-.w*-;\\-s'.s'\ ". av A \\\'*\’.)('..\-*..\(l‘\,«

Ly ,'.((.h.-a.-\.-.‘\




satisfies
lo(n) = 24V ((cAn)~12™) = o(A;/*™(loglogn )% (3.6)
almost surely, where
c = azm®™.
Note that (3.5) guarantees convergence of the integral defining V.
Let S, = L=, 2 %(8?#- 1) and
Dy(n) = 27%a(n) = - TSUAMYr) =AM )]

where the last formula follows by partial summation. By Theorem 2.6.1,

page 107 of Csoérgd and Révész (1981), there is a probability space carry-

ing a version of {S,: v=1,2,- - - } and a Wiener process {¥(¢): ¢ 20} such

that forall 6 >0, as v+ =

IS, - W) = o(P) a.s. (3.7)

DZ("') = ‘Zv: W(”)[h'()‘n')’vﬂ) - h'()‘-n'rv)] .

Note that

[R(A7pe1) = R(AY) | = Mrvar = 7] 1R ()|

where 7, £, < 7,,1- Utilizing (3.2) one can show that
Yos1 = 70 = c2mAm(1+0(v7%)). (3.8)
Also,

[h' (A7) S Ci[AAWA™)™1(1 +c AP™) 7% + (MA™)T(1 +c AAm )=+ )]

a_s A SR L 8 A tna
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:fr, for some C; € (0,«). Collecting things together we have
Ny - -
v [Dy(n)=Dan)| € CAZVEME (Agiom)1+8-12m
: v
b [P ) (14 Mg 1B™) 78 + (M 2™) (140 M 12 ) ~EHD ], 127 (3.9)
)
v where C3 € {(0,=) is random (from (3.7)) and depends on §. Note that the
‘:‘ summation above tends to a finite integral as n +». Hence, taking § <%
gives that
)
! -
X - |Dy(n)=Da(n)| = o(A7'*™(loglogn)%).
*‘

Next we show that Dy(n) is suitably close to

& Dafn) = ~E W()er) 2 mg((cAn) /2 ™0) .
v
o,
A Two applications of the mean value theorem along with (3.8) yield
"
Y
. |Dg(n)=-Da(n)| <
. H - d -
C T IW W) (A )31 +0 (v %) A" (e Mt [1+0(v")))]
14

0
<2
j: for some C € (0,»), almost surely. If one uses the fact that |W(v)| = O(v)
g a.s. and applies the same argument that was used on (3.9), it can be
: ﬁ shown that the last expression is 0(1) a.s., which is o (A; 1/4™(log logn)%).

(The assumnption 7 > 1/2m is needed here to guarantee that a summa-
y .
— tion converges to a finite integral.)
'S
:'1 Now let D (n) = V((c A\,)~*™ ). Then
™
SN
2]
> 1Da(n)=Dy(n)] S (cAa) 2™ £2Z,dny (3.10)

v

%
A%
&
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-22 .
where

Zy, = sup |W(t)-W()|

is a sequence of i.i.d random variables and
dny = 1g'([cAa]'2™ [v +an,))|
for some a,, € [0,1]. Now P[Z,2y] = 4P[W(1)2y], soas v+,
Z, = 0(logv) a.s.

Plugging this into (3.10) and using a familiar argument shows that for any

6>0

|Da(n) =Dy(n) = 0(A°) as.

as n »=. This completes the proof of (3.6).

Now we show that if s, = 7~ I\; /2™, then for some C € (0,)
lim (s, loglogs, )~ %V(s,) = C a.s. (3.11)
n
Since loglogs, = loglog (n~lg~/mn1/2m) ~ loglogn, the lemma will fol-

low from (3.6) and (3.11). (Note that the corresponding lim in (3.11) will

be -C by symmetry.) Put

Y(u) = e #4V(e%) , -wm<u<w
u, = logs, = A4+ (@2m)tlogn , n=12 .-
where 4 = -log no!’™ is a constant. One can check that Y(u) is a sta-

tionary mean zero Gaussian process with covariance : Q
"

Mu) = e~¥%u ]G(e “U )G (¢)dt
[}
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.\"'fﬂf*r\' -

G(t) = h(t™).

Equation (3.11) will follow by showing

o

! im (logun )~ %Y (w,) = 2%I(0) a.s. (3.12)
L n

5\: To prove this latter we will apply Case 2 of Theorem D of Qualls (1977)
' u,*

T

b

with a =2. Assuming this result applies, it states that forc >0,

’-5.

-

P[Y(uyp)> I(0)c (loguy )%] = 0 or 1

%
e

according as the integral

oEs

[
_ ft'cz/z(logt)cz/‘(logt - YKloglogt)~%dt < = or =w.
. 1
e
{_:3 This latter integral converges for ¢ >2% and diverges for ¢ < 2%, which
establishes (3.12).

%

‘-: In order to apply the aforementioned result in Qualls (1977), it is
e

e

2 necessary to check that Y has continuous paths, I'(u) = 0(1,10gu) as
*::‘ u »=, and ["'(0) < 0. To show Y is a.s. continuous, it suffices to show that
DY

- V is a.s. continuous on [0,«), and for this it suffices to show V is a.s. con-
'f..'o

tinuous on any finite interval [0,6] and then let b » = through some

.l countable set. Now let A be an event of probability 1 on which # is con-
.

’-3

’-, tinuous and for which there exists T, (depending on the path of #) such
o that forallT 2 T
2

v 2T log log T )~ % | W (¢ w(t) s 2 3.13)
" +5) - < 2. .

u (27 log log oSUp, [ W(t+s)=W(t)| (

N 0sssT 2
;f_. Such an event 4 exists by equation (1.2.4), page 30 of Csérgdé and Révész
4'::

2

>
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(1981). Let £ >0 be given. Pick T, 2 Ty such that
4 [ 4(btlogloght)®ig(t)iat < e/2. (3.14)
T,/ 2b
This is possible by (3.5). Now

! -V s W -W B *
0SUP L, (Vs = V(s2)] f [y 055y W(sit) =W sat)| g (t) dt

Ty/2b
w =
tf SuPg, Wlsit) =W (set)l g(t)idt = Iy + 1z
Since
W W W -
“smz“l (si)-W(sat)| s oSup | (u+v) - W(u)]
[VESTE9.11

it follows from (3.13) and (3.14) that /; < ¢ /2. A straightforward uniform
continuity argument shows that there is a § >0 such that |[s;-sp| £ 6 |

implies /5 < £/2. This completes the proof of continuity.

To show I"(u) = 0(1,/1ogu) as u » =, we have for u >0 and T # ¥k-m

PP W W

1
M(u) s e (7 /2m)u ftt/"‘[1+'rl/2m]"‘dt
()

‘u
+ ft(?”‘k)/a'" dt + e""‘/amft("")/"‘ dt]

7 S € P "."ANER RiEn

= O(e -(%+1-/2m)u) + 0(9((r-lc)/2m+%)u) '

As all the exponents are negative, the desired result follows. I[f

> S e odEEmmem-w R m R R _SEENm ¥
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A T = %k-m, then the middle integral is treated differently but the result
: still holds.

o

9
‘Q To show that I'*(0) < 0, first note that
ié' r(0) = %_[cz(t)dt + {[ztg(t)nzg'(t)]c(t)dt : (3.15)
o
!,

‘ The calculation is carried out by differentiating under the integral sign
. which is justified by the dominated convergence theorem and by the fact
P that there exists a constant ¢ such that for all u € [~1,1], |G(e~%¢)],
0
ltg(e~%t)|, and t3g'(e~*t)| are all bounded by ¢ min{1,¢}?™(™¥) which
iy

\ is square integrable on (0,=) by (3.5). Noting that the quantity in brack-

ets on the r.h.s. of (3.13) is d/dt[¢%g(¢)], an integration by parts will
y yield
I
E (0 = %_ofcz(t)dt - {tzgz(t)dt.
: Let 7; denote the first integral in this last expression and /; the second.
. Then integration by parts gives

) I, = -2 [tg(t)C(t)de

; 0
L»

v and Cauchy-Schwarz applied to this integral gives /; < 211%1 2% which
implies /{ < 47/, and hence I"'(0) = 4/ -/, < 0. @O

2
-

4

Corollary 3.3. Let -1/2m <p<1-1/2m . Suppose that A, >0 is

chosen so that

3
Py
D e p e B PPt B e Ay RS e AT AT A A e e
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KN
& -
:' P[}|Bn —ﬂ”pz sS4, [Yn] =1-a (3.16)
5 for some a € (0,1). Then
L)
‘5
¥ lim int P[|Ba - BIZ S 8a 18] = 0 .  as (3.17)
e
~
Y Proof. By Theorem 3.1(a)
3
. Ap ~ pn + 24T (3.18)
¥ "
-~
o where z, is the upper 100a% point of the N(0,1) distribution. By
-
Theorem 3.1(b)
2 IP[”Bn-ﬂ”ngAnlﬁ] - ¥((zaTn =Qn)/n)| = O
a.s. as n »=, where & denotes the N(0,1) distribution function. (Note
) that convergence in distribution to N (0,1) implies uniform convergence
h of the distribution function to ¢.) Now 1, /7, tends to a finite limit and
N
1
R by (3.3). Hence, by Lemma 3.2
]-imninf (zaTn =0n)/ M = ~=
which proves (3.16) ©
Corollary 3.4. With the selup of the previous corollary, the prior proba-
5 bility that the (1-a) Bayesian posterior probability region
ﬂ

{0€0,: ||B, ~ 6I|2 S Ax] is conservative in its frequentist coverage

N > ;:,.ﬁ,;,'\- A AT A N N At P A A e N et T NN NN N

R P P S S
J‘.- ‘.f.. \~I . .
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ik probability tends to $(z,(1 -‘r%)(l ~72)"%) where

72 = (1-p~-1/4m)(20/3-1,/6m).

N -~ g
AN

-
.

Proof. We wish to calculate

i

5

3

s

¢ Pig: P[|Bn-Blfsdnlflz1-0a].

'

. The difference between this and

s

Wy ,

- P[®((zqTh = Qn)/ M) 2 1-a] = P[Q, < (Th = Mn)Z4)

[

’ tends to 0. One can show as in Theorem 3.1(a) that

L(0/(t2-72)%) => N(0,1). Using this and (3.3) one can show that the

7. last displayed probability tends to a limit of the form &(2,R) where R is

1€ an algebraic form in some beta functions. If one substitutes

3 B(z.y) =T(z)I(y)/T(zx+y) and wuses the recurrence relation
[(z+1) = zT'(z), then the claimed result follows after some algebraic

.;: manipulation. O

‘.

Lo
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-
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4. DISCRETE TIME ESTIMATION

In this section we consider the original discrete time problem in
(1.1), where g is given the prior specified in (1.2). By virtue of the next
result, it follows that Theorem 3.1 and Corollaries 3.3 and 3.4 hold in this

setting as well, thus justifying the statements made in the introduction.

Theorem 4.1. Suppose that m 22 and
—1/21ﬁ <p<1-1"2m
and that
Ele|? < =
where
2z 6/(2m-3).

Then there exists a probabilily space carrying versions of 8,
€1,82,' '+ and a sequence {T,(t): 05t <1] of Gaussian white noises

such that if
Yoo = Bli/ )+, , 1Sisn

Bn = E[ﬁlYn] ' 6n=3n'ﬁ

P.(t) = B(t) + on~%%,(t) . Ostst

Bn = E[BI?.] . B =B.-8

then

16 =Bnll? = 0 (A7)

R P R IR RS X EF AT |
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Remarks. Note that ||8,/|2 = 0, (M~ 1/2™) follows from E H?n”pa =, (p).
Since ||6, —3nll2 = 0, (A 12™), it follows that ||6, |2 = O, (AL~ 12m),

Hence

A

L1602 = 1B li2] S 116n =Fnllo [16nll,+ l16all,]

EP(A'(ll-p)/Z)QP(A’(.l-p-lﬂm)/z) = gp(}‘,l‘—p-lﬂfm).

Now T, R AJP=1/4m and 5, mA1P~1/4™M 56 we may replace the continu-
ous time estimation error (now denoted 3,) with the discrete time esti-
mation error 6, in Theorem 3.1, and the results still hold. Corollaries 3.3
and 3.4 depend only on these results and the properties of (),, which

depends only on 8.

Proof. We have
6a =8allZ < 2lira = sallZ + 211(Bn - B )2
where
™n = Bn —E[BalB] .  sn=Fn-E[Ra16]

(Al +Un)"'U, -118

B.g = E[Bn—ﬁ!ﬁ]

B, = E[f,-BI8] = [MI+U)WU-I]8.

We will show that each of the two quantities on the r.h.s. of the inequality

above has the correct order as n -+ =,

Now
- -1
Tn = (Ml +Up) 'Xp*2,
LW e L% WS N LN e e A SRS CSAY ICIRY " LSS LS ENEY WA SART
:. "'ﬁ\\ ,\_, s Oun LMy (Nl ay) ) s 2 s,

RCRERCS TSRS
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and following the notation of Cox (1984b) put

| Tn = (Ml +U) ' Xoen .
Now we apply some results in section 4 of Cox (1986). One can show that
forall z,z,in ®

IU - Un)z1.22y, | € Cn'{|[zillymllz2llo + Iz 1llolZ 2]l m]

where C € (0,») is a constant, so Assumption 4.1(f) of Cox (1986) holds
with k, = Cn~}, s = 1/m, j =2. See the remarks after this Assumption

for a proof of the above inequality. Now by equation (4.6) of Cox (1986),
E|ra =Tall2 $ Cn7¥Co(Anp+ 1/ m)E|Ira]I§ + C2(An.P)E7nlIEm] -

This latter inequality can be inverted for p =0, 1/m to give bounds on
E|r,||& and E|ir,||2/m in terms of E||7,||§ and E|[7,||? /;m. When these are

substituted back into this inequality and the estimates on (; are used

there results
Elira -7al2 S Cn-dgs-¥/m.
It is easily seen that this last quantity is o (A1 ™) as m 2 2.

Now put
1
5. = on % [ (M +U) ¢(t)dBy o Fp(t)
0

where F,(t) =n~![nt] as in (3.7) of Cox (1984), then following (3.9) of

that paper,

I7a = 52liF = n7'Ca(An . +1/m)o (n~0/1240)
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a.s. Using the estimate on C,, the definition of A,, and the hypothesis
that é 2 6,/(2m -3), it follows that the last displayed quantity is o (A7),

a.s.

Next, we have from (3.10) of Cox (1984b) that

52 = snllZ = Op(n~Y(n"tlogn)Co(An.0 +1/m))

and this is gp()\,{"): This completes the proof that |[rq = sa|l5 = g,()\,‘,"’).
Finally we must take care of ||(B, -gn)ﬁllpz where B, and H, denote

the bias operators for the respective problems. Let

max{p,1/m] <t <1-1/2m, and let ||+||;, denote the operator norm of

a linear operator from &, to 8,. Then by equation (4.6) of Cox (1986),
1B = Bullrp S Cn='{CHMnp+ 1/ m)(Ballro +
CH(An.p + 1/ 2™ B lr 1 m +

C2Mn LI~ 12™ (B llr0 + CE(n.0)1Ballr.1 m} -

Now by Theorem 2.3(c) of Cox (1988), ||§,.||,, S CA™P)/2 a3 long as
pSTsp+2. Plugging this into the above expression and using the esti-

mates on Cj yields

1B "gn”‘r.p s C!A&-p-f!/?nﬁ';% .

Now

t.
2

(Ba =Bp)Bl2 s CAZP-3/2mem g2,

AsT<1-1/2m, ||f||2 < = a.s., by (3.2) and Proposition 2.5(f), and so the

5

last expression is a.s.

oy

-
’4 l' l.
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Op(MP32memy = o (MP). o
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5. CONCLUDING REMARKS iy
To provide more insight into the foregoing analysis, consider the case K

n

where dim® = k < ». Then it is easy to obtain the analog of Theorem 3.1. :
Calculating the asymptotic posterior distribution of |[6,,]|§, we have N
"

2 X -1,2 )

Ll6alls) = L] X My(1+ A7) e8| - R

v=1 r

Since (1 -l-)\,,‘y,,)"l +>lasn-»x=forv=12,...,k, it follows that é
-1 | 2 & 2 ;

LOGY6alD) => L|Y 7bel }

v=1

where the distribution on the right is a weighted sum of x* random vari-
ables. The corresponding calculations for the sampling distribution are -I

k 4

LUSAIRI) = L M 3 7B(1+ )2 ?
v= 5

a2y -2 2§ 1+ -2p2 p!

# A3 2‘7.%“(1 +ha7)Reu8, + AR T P14 A7) S| A

v= v=

X

The second and third summations on the r.h.s. (which result from the N
Ay
bias) are each 0,(A;!), so i

-1 2 | & 2
é(&t Ildn“p 18) => L 2 70er | . ;
Thus, the iasymptot:ic posterior and sampling distributions are identical,

I‘

by

so a (1--a) posterior probability region of the form in (3.16) has (asymp- N
he

totically) the right coverage probability from the sampling point of view. R
This results from the fact that the random (conditional on 8) variability ::’.
:
;..
>3

s

L
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dominates both the sampling and posterior distributions, with the bias

E [Bn - B| B] being of smaller order.

In the case when dim® = «, the bias and random variability are
always of the same order of magnitude. This is the driving force behind

Corollaries 3.3 and 3.4.

Concerning extensions of the major results (Theorem 3.1, Lemma 3.2,
and Theorem 4.1), one would like to look at more general Gaussian priors
and more general quantities than lld,,llpz. I believe that analogous results
can be obtained (for ||6,(|2 in any setting wherein 7, ~ " for some 7 >0
(see Cox (1986)). The specific setting here allowed us to use the sharp
eigenvalue asymptotics (3.3) at some points in Lemma 3.1 (see (3.8)). The
extension to other quadratic forms can also probably be accomplished.
As in Wahba (1983), we would like to construct a confidence interval for

B(t) for some ¢ € [0,1]. In the setup of section 3, note that

L(S,(t)) = N(0, A, g(l + A7) " 0E(t))

L(6a(t)18) = N(Mp, An g (1+ A7) 202(2))

where

M, = M%I“/u”(l”\n“/v)"ﬁu%(t)-

I conjecture that both variances above are & A}~1/2™ and also that

lim sup [A = 12™) (loglog 1,/ A )] %Ma € (0,=) , as.

n &

This would imply analogs of Corollaries 3.3 and 3.4 for the ‘‘confidence”

»

»
»
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intervals for 6,(¢). The difficulty here is in obtaining results on the

behavior of ¢,(¢).
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