TECHNICAL REPORT BRL-TR-2770

AD-A176 249

A UNIFIED THEORY OF
PENETRATION (U)

JAMES T. DEHN

DECEMBER 1986

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

DTIC FILE Copy
As
m ;’ f(')'l

2 -
=“ m

8¢ 1 29 053¢

vy
$

T oA TN AT H A A T R ST W POCTUEYA R P AL PR PR PRI P Pl P D e P WPl W it Pl w0 MR a0 s ot o Cu o Oy g Al o K4 AR A 'p';-\'



URITY CLASSIFICATION THIS PA

Form Approved
REPORT DOCUMENTATION PAGE OM8 No. 0704-0188
. Exp. Date: Jun 30, 1986
1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCLASSIFIED None
2;‘./ §Aecumrv CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE Unlimited - Distribution Statement A
N/A
4, PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
6a. NAME OF PERFORMING ORGANIZATION &b, OFFICE SYMBOL | 7. NAME OF MONITORING ORGANIZATION
(If applicable)
Ballistic Research Laboratory SLCBR~TB-A N/A
6¢c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Aberdeen Proving Ground, MD 21005-5066 -

8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL [ 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)
N/A
8¢. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS .
PROGRAM PROJECT TASK _ WORK UNIT
ELEMENT NO. [ NO. NO. ACCESSION NO.
11. TITLE (Include Security Classification)
A Unified Theory of Penetration
12. PERSONAL AUTHOR(S)
Dehn, James T.
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [15. PAGE COUNT
Technical FROM TO
16. SUPPLEMENTARY NOTATION
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROU' Penetration mechanics Shaped charge
KE Penetrator Theory

h& ABSTRACT (Continue on reverse if necessary and identify by block number)

Today's weapons employ compact fragments as well as long rods and shaped,[éharge jets. From
the viewpoint of an armor designer, it is desirable to have a method of dealing with all
three types of penetrator both in theory and in practice,

This report presents an equation of motion which in its most general form describes
penetration by a forming, stretching, eroding jet. In various specialized forms, it
describes penetration by pre-formed rods and compact projectiles. One specialized form
reduces to the classical jet penetration formula according to which penetration in a seni-
infinite target is proportional to the square root of the ratio of the jet and target
[densities. A correction for target hardness is automatically included. The solutions of
the various forms of the equation of motion are given explicitly in closed form and are

ﬁprofusely illustrated by numerical examples and comparisons with experimental data. — . . .7
(Cont'd) e
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
O unciassipeD/unLimiTED [ SAME As RPT. ] DTIC USERS
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) [ 22¢c. OFFICE SYMBOL
DD FORM 1473, 84 MAR 83 APR edition ay be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete.

LA N L L W U LSOO P MWW W W L L W L Y 0 W T Y U Y Y T P P A A A T PAE P 00 e T e o s, T S AT Al



i,. In this report we restrict ourselves to one dimension and to finite or semi-infinite
targets made of one material. The chapter on jets is also limited to descriptions of
a standard 81mm, 429 copper cone device. These restrictions will be removed in future

reports. P
. ,
’ ’[\:’3‘(71.0() ,N£S ' Fe” e \'{‘a’s}"“'v\ ML é\ct [P 549/?&,»& (:7 C{ s ;h_ ";_"Ir,'-' /i' T /‘/
. 4 I
Aocessioxz__l‘for . A,c?h-é v . Fhe 5y /Dra, o, I \5, .
NTIS GRA&L 4 P ¢
DPTIC TAB 'a
Unannounced O

Justification

By.-
Distribution/

| Iialadhdulioathoduiiodiabont A

Availsbility Codes

Avail and/or

Dist Special

Al

Q213348N
He)

ALy,

e Ll TS T A SR BN EAC SR PO M i ST S TSI I T ML WA AR T R A U N A R YT I T O A WA A SR MUY SO U M BN IO SR MU Mt




TABLE OF CONTENTS

Page

LIST OF FIGURES 4 « o ¢ o = s s s o s o s s o o o o o o o o o Vii
LIST OF TABLES + o« « « « o o o o o « o o o o s s o o oo o+ o Xii

I. FORMULATION OF THE PROBLEM « o o « o o o o « o o o ¢ o s o o 1
A. Overview of Penetration Mechanics . « ¢ o ¢ o o ¢ ¢ ¢ « @ 1

B. Forces Exerted on the Penetrator .« « o « « « o « « o o o 4

C. Pre-formed, Eroding Penetrators o « o o o o o o « & o« o o 14

De JEEB v o o 4 o o v e e e et e e e n e e e 17

II, SOLUTIONS ¢ « o o o o s o o o o o o o s o o s o o o o o o s o 20
A. Solutions withoﬁt VisSscoSity o« o ¢ o ¢« ¢ o o o ¢ o o o + o 20

1. Constant Mass Projectile .+ ¢ « o o o o « o ¢« o o o o 20

2. Eroding Projectile « o« o« o o o o o o o o o o o o o o 23

3, AStandard Jet . « ¢ ¢ ¢ o s 4 e s o o o e 0 oo o . 30

| a. Formation . « ¢ ¢ o o ¢ ¢« o o ¢ o o s o 4 oo s . 30

b. Stretching . « ¢ o ¢ o o o o s a ¢ ¢ ¢ s o o o « 33

.c. Fragmentation « + « « « = ¢ o o o o « o o o o o o 36

B. Dimensionless Solutions with Viscosity .« ¢ « o o o « « o 37

1. Constant Mass Projectile .« o« « o « o o ¢ o o o o o o 37

2. Eroding ProjJectile . « v « o ¢« o « o o o+ o o« o« o o+ 4

3. AStandard Jet .+ « ¢ o o e 0 0 0 6 s 0 s 0 o0 e . 43

III. EXAMP] 'S OF COMPACT PENETRATORS « « s o o ¢ o o o s« o « « o « 46
A. Semi-infinite TATrgEt8 « « « « « o o« o o o o « s o » o o o 46

l. Phenomenology . . + . 46

.
>
.
.
.
L]
.
.
L]
L]
[
.
3
.
.
.

Q.Examples....-o.--.......-..-..55

iii

. O, " e Lo o o d matia g ma B4 e RS 4 TSR badd § o R L A L ha N AME LI Ao § R LN G R L L. L e | sdm L. § mar h--\.-l'uAt-tmanll\.lmnﬂ.lMAIN!._1~\J



TABLE OF CONTENTS (CONT'D)
Page
a. Hard and Soft Steel Spheres vs, Steel « « « » « « 53
b. A Hard Steel Sphere vs, Two Steels . . « o o o o 59
¢c. Two Sizes of Hard Steel Spheres vs. Steel . . . 61
d. Tungsten Carbide Spheres vs. Copper . « « ; o o 64 )
e. Tungsten Carblde Spheres vs. Lead and Aluminum . 64
f. Hard and Soft Steel Spheres vs. Aluminum . . . . 68
g. Three Sizes of Hard Steel Spheres vs., Aluminum . 70
he Al/Cu, Cu/Cu and Cu/Al .+ ¢ v ¢ v ¢ o o o o o o o 12
10 AL/AL tO 9MM/ U8 o ¢ o o o o o s o o o o o o s o 16
j. Neglect of Erésion and Viscosity « « o« ¢ o o o o /8
B Finite TArgetS .« o « o« « o o o o o o o o o o e o o o o o 19
1. Phenomenology « o« o« « o o o 2 o o o o o 5 o o o o o o 79
2. EXamPleS o ¢ o ¢ o 2 o ¢ ¢ @« ¢ 5 o 5 c 8 o 6 0 o o » 88
a. Steel Spheres vs Three Thicknesseé of Aluminum . 88
b. Steel Spheres vs Several Thicknesses of Steel . . 92
c. Steel Spheres vs Titanium Alloy Plates . « « » o 93
EXAMPLES OF ROD PENETRATORS & « ¢ o« o o o o s o s s o o o o o 97
A. Deformation and Mass LOBS « v o « « « o o o o o o o o o o 97
B. Calculational A1dS .+ « o « o « o ¢ o o o o « o o s o o o 103
C, Semi-infinite TArgELB « « o o o o v o = o ¢ o o o ¢« o o o 112
1. Examples with Time-dcpendent Data . o « o o o « o o o 112
B. Steel/Magnesium . . « o « o o o o o s o o o o o o 112

b. Aluminum/Magnesium . . o« o ¢ o ¢ o o« o o o o o » 119

iv

e i et e S N R S N L L L T N TV T WY,.¥ .7 N VL VIR COY IS NN Prs VAl VIV VT . Y. R VI \wu\.-umum\—:\.rlp



PEEEARY TR R FOCTRIGL Y AN
\

'TABLE OF CONTENTS (CONT'D)
Page
Co Steel/ALuminum . « « o o ¢ o « o o o o o o o o o 123
2. Other EXAMPLES o o 5 o o o o o o o o o o o v o o o o 127
8. Aluminum/Lead . . . e e e e e e e e e e . 127
b. Steel/Steei O 12
¢. Steel/Aluminum -. D L3
d. Aluminum/Steel and Aluminum/Aiuminum e o o o . . 150
e, Tungsten ve}sus Steél and Aluminum . « . o o . . 159
£, Copper ;ersﬁs Copper, Aluminum and Steel . . . . 167
D. Finite Target EXamples, . . . o v o o v o o o o s o s o o 172
1. Steel/Steel o « o o o« o o o v s o s o o s o o o o o o 172
2. TUNESten/Steel o« « « o« o o o o o o o o o« o ¢ o o » o 188
V. SURVEY OF JET PENETRATION THEORIES « o v ¢ o o o o o o o o o« 195
VI. AN EXAMPLE OF A JET PENETRATOR « « &+ o o o o o o o o o o o« » 216
A. Device CharacteristicB .« ¢« « o « « o ¢ = ¢ « o o o o o o 216
B. Penetration by & Train of ROAS . « o « o o o o « o o o o 224
1. Experimental Data . « o« o ¢ ¢« o o ¢ o s o o s o o o = 224
a. Rods with Identical Striking Speeds . « ¢« & « o 224
b. A Train of Jet Fragments8 . ¢« « ¢ o o ¢ o o ¢ o = 226
2. Models of Penetration by a Fragment Train . . . . . . 229
C. Calculational A1dB o & « o o« o o o o o ¢ o o o o o o o o 234

D. Penetration/Standoff for Armor Steel . « o« o o o « o o o 236

1. Standoff = 2CD & o « o o o s o o o o o s » s o o » o 235

a. t S t S t . . - » * L ] L] L] L] - * . * . L] ® L[] L] . 238
o 1

——————

hmmmwammmnmmmuumm LTI TR 1L /LIS LMY SR £ AV WO 3R S M ) LS



TABLE OF

<t
b. tl Sttt
<
Ce t2 €ttt
2. Standoff = 6CD
a. t £ t<t
o

b, t.St<t

2= E
3. Standoff = 10CD
4, Standoff = 20CD

E. Penetration into Steel and Aluminum

CONTENTS (CONT'D)

Strengths-..-oo.ocoaon

1. Steel Targets

2. Aluminum Targets

a. t £ t<t¢
(o]

1
< ¢ £
b. tl._ t t2
o < <
c t2 £t < tE

F. Lead Targets . .
1. ¢t £ttt .
o
<t <
2. t2 St & tE .
G. Finite Targets .
SUMMARY AND CONCLUSION
REFERENCES
APPENDIX . . . . .

DISTRIBUTION LIST ,

vi

Targets of Various

Page
239

240
243
243
244
244

244

245
245
247
247
248
249
251
253
253
254
256
257
270

273

NG A N TR AT IR TS AL PPN T TN A0 A WA I 6N PO



LIST OF FIGURES

Figure Page
2.1  Dimensionless Solutions for Constant Projectile Mass . . . . . 40
2.2 Dimensionless Solutions for an Eroding Projectile . . . . . . 44
3.1  Number of Fragments Recovered from a Mild Steel Target

versus Speed « « o o ¢ ¢ s s 6 s s 6 6 a4 s o 6 s e s e s o o @ 47

3.2 'Number of.Fragments Recovered from Three Steel Targets )
VerBuSSpeed.g......-................48

3.3 Shapes of Softened Steel Spheres Recovered from Hard

Aluminum Targets « « « o + o o o o o o o o o o o ¢ o ¢ » o s o 20
3.b Craters Formed in Steel Targets by Steel Spheres . . . « . . « 51
3:5 Craters Formed in Various Targets by Aluminum Spheres . . . . 53
3.6 Hardened and Softened Steel Spheres versus Mild Steel . . . . 57
3.7 Hardened Steel Sphere versus Two Different Steels . « o« « « « 60
3.8 Two Sizes of Hardened Steel Sphere versus Steel . . . « « « o 62
3.9 Projectile Shatter Speed versus Target Density for

Hardened Steel Spheres . « « o « ¢ ¢ s o o s o o o o« o o o o + 63
3.10 Tungsten Carbide Spheres versus COPPEr o« « « o « o o o o ¢« o o 65
3.11 Tungsten Carbide Spheres versus Lead « « + s ¢ ¢ ¢ ¢ ¢ « « « o 66

3.12A Tungsten Carbide Spheres versus Two Different Aluminums . . . 67

3.13 Hardened and Softened Steel Spheres versus Aluminum . . . . o 69
3.1k Hardened Steel Spﬁeres of Various Sizes versus Aluminum . . . 71
3.15 Copper and Aluminum Spheres versus Copper or Aluminum . . . . 73
3.16 Aluminum Spheres versus Two Kinds of Aluminum . . . « o & « o 77

3.17 Front- and Back-Face Target Effects . ¢« ¢« ¢ « ¢« o o o« « » » o 81

3.18 Multiple Scabbing in Steel . . ¢« o ¢ o o + o o s o s s o s« » o 83

3.19 Limit Thickness versus Semi-inifinite Target Penetration
(Steel Spheres vs Aluminum) e o o e & & & ® e & * o ¢ & ¢ o @ 84

o e

3.20 Three Ballistic Limit Definitions . « &« o« ¢ o« ¢ o o s o« o o« « 85

vii

W N Y

B i o A P A L Al A SR AR Al Al bt S AL SR At A4 R A SR AR A R MO A R M b Aodh AN b odRaan SR AR A A Aek ALIEE AUSE AA e b Bed A L st LA L O L B L et A b Bk e ) A A A dm uﬂ




Figure

3.21

3.22

3.23
3.24
3.25

h,1

b2
4.3
bk
b5

h.10

h.11

h,12

k.13
h.1l
h.15
h.16

LIST OF FIGURES (CONT'D)

Types of Target Plate Failure . . . ¢« ¢« ¢ o ¢ o o o &

Hard and Soft Steel Spheres versus Three Thicknesses
OfAluminum:.00.--.-.-..--...0..

Flattening of Soft Steel Spheres versus Aluminum . . .
Steel Spheres versus Steel Plates . ¢ ¢« o s ¢ o ¢ o o
Steel Spheres versus Titanium Plates . « « ¢ « o« « o &

Compact and Long Rod Steel Projectile Deformation
after Impacting Steel . ¢« o ¢ ¢ o o ¢ ¢ 2 o o o o o »

Tungsten Rod Deformation while Penetrating Steel . . .

Copper Rod Deformation while Penetrating a Coppér Target

Inverted Copper Tube Recovered from Target « o« « « o

Penetration and Length versus Time for a Steel Rod
Penetrating Magnesimn e o s & & 8 o o e » 8 s e e o o

Penetration versus Impact Speed for Steel Rods versus
Masnesium..-ooooo.o-o-c-ovoooco

X-ray Photographs of Steel Rods Penetrating Magnesium

Craters Made by a Steel Rod Penetrating a Layered
Magnesium Target « « o« « ¢ o o o o o o o s o o o o ¢ o

Penetration and Length versus Time for an Aluminum Rod
Penetrating Magnesium . « . ¢« o o ¢ ¢ o ¢« o o ¢ o o .

Penetration versus Inpact Speed for an Aluminum Rod
versus Magnesium . « o ¢ ¢ ¢ s o 6 s 4 e e o s 0 e o o

Penetration and Length versus Time for a Steel Rod
PenetratingAluminum.................

Penetration versus Impact Speed for a Steel Rod versus
A lumi num * L) . . - L] L] * L] L ] . L] L] L] L] . L] * L] L] - - L]

Aluminum Rods versus Lead . ¢« o ¢« ¢ o o o o o « o o o
Steel Rods versus Mild Steel . « ¢ o o ¢ o ¢ ¢ ¢ o o o«
Steel Rods versus Armor Steel . o ¢ ¢ o o o ¢ ¢ s o o

Flattening Factors for Various Aspect Ratios (Steel
Rods/steel) L L] L] * L] . - L ] L] * » L ] L] L ] L] L] . . - L] 3

viii

89
91
94

95

98
100
101

102

114

115
116

118

120

122

124

126

128

132

133

136




LIST OF FIGURES (CONT'D)

Area Ratios (Steel RodS/Steel) o« v « o 2 o o o ¢ o o o o o o o 137

Steel Rods with Various Aspect Ratios Impacting Steel
TargetsatOHeSpeed.-.-.................139

SteeledB(LO/D0=3)/Steel..........~....-.140

Steel Rods versus Aluminum at Three Speeds
Target Craters « « o o o ¢ o « o ¢ o o ¢ ¢ o o o o ¢ o o o o o ;44

Steel Rods versus Two Kinds of Aluminum . . « o o o o o o o o 145

Steel Rods with Various Aspect Ratios Imparcting Aluminum
Targets at One SPEEG « « o « o o o o o o o o 5 o o o o o o o o 147

Flattening of Steel Rods against Twe Types of Alumipum . . . . 149
Steel and Aluminum Rods versus Steel . « « « « « & o « » « » o 151
Flattening of Aluminum Rods against Steel . « « « « « » » . . 152

Aluminum Rods Recovered after Impacting an Aluminum
TargétatVariousSpeeds.............-.....154

Various Aluminum Rods Recovered atter Impacting an
Aluminum Target at One Speed o« « « o « « o o o ¢ o o o « o o o 156

Aluminum Rods versus Aluminum TArgets .« o « « o o o o o o » o 157 ‘
Flattening of Aluminum Rods against Aluminum Targets . . . . . 158 |

Tungsten Rods versus Aluminum, Steel and Tungsten
Tdrget 8 * > . L ] L - » L] . L] L] L] . L] - L] L] L . L ] . - L] . * . L] 160

4,31 Flattening of Tungsten Rods against Three Target
Materials L ] - - . L] . L] - L] L] L 2 L) . - L] L ] L] L] - € - - > - A - 161

4,32 Various Aspect Ratio Tungsten Rods versus Armor Steel . . . . 163

h.33 Flattening of Various Aspect Ratio Tungsten Rods
against Armor Steel . . . v o 4 4 o o < o s e s o o o s o o o 164

: b.3h Deformed Tungsten Rods Recovered After Impacting
Stee) TArZetS « « « o o o o o o « o s o o o o o s o o o o o o 165

4.35 Two Sizes of Tungsten Rod versus Steel . ¢« « ¢« o « o ¢« ¢« « « o 166

4.36 Deformed Copper Rods Recovered after Impacting Copper
Targets............-..-..o........168

ix

e T U S



LIST OF FIGURES (CONT'D)

Figure Page
L,37 Deformed Copper Rods Recovered after Impacting a
veryHardSteelTﬂrget‘o-ooocoooo-.-..-000170
L.38 Copper Rods versus Aluminum, Steel and Copper . « ¢« « « « & & 171
4,39 Flattening of Copper Rods against Aluminum, Steel
and Copper L] . L] . L - L] L] * L » . Ld * L] * L ] L] * L4 * - * * . L] 173 -
4. 4o Photographs of Steel Rod Perforating a Steel Target
174
Pla.te . L] L] - » L] L] L ] L ] L] » L ] * * L] L L] L] L] L] L] L] L] L ] . L] L] »
h.h1 Performance of Steel Rod versus Steel Plate . « ¢« o o o o + & 175
4,42 Residual Speed of Steel Rods after Perforating Steel 177

PlatesofTonhickneﬁses e ® & s o 6 ® 8 & @ 6 o e & o e 2 @

h,43 Residual Mass of Steel Rods after Perforating Steel
Plates Of Two ThiCKNESBEE o « » o o o ¢ o o o o o o o o o « o 178

L. hh Flattening of Steel Rods against Steel Plates . . ¢ ¢ o o o & 180

bh.ks Residual Speed of Steel Rods of Various Masses after
Perforating a Steel Plate . ¢« o 4 ¢ ¢ ¢ o o o ¢ s « o o ¢ o & 185

4, k6 Residual Mass of Steel Rods of Various Masses after

Perforatinge.steelplate .uoococoo-o--o'--.186

Lout Residual Speed of a Tungsten Rod after Perforating a
Steel Pla.te . - . L) - - L] L] . . L] L * » L] . . L L] - . - L] L] L ]

189

4.48 Residual Mass of a Tungsten Rod after Perforating a Steel
Plate L[] L] L ] . . » L] - L] L] - L] ® * L] L ] L] L] L] . - L] L] n L] * . . 190

L. kg Residual Mass of a Tungsten Rod after Perforating a Steel
Plate L] L] . - - L] » - L - . . * L] L] L] L] L] * L] * L] L] L] L] L] L] [ ] 191

4,50 Flattening of a Tungsten Rod Perforating a Steel Plate . . . . 193

5.1 Jet Velocity and Penetration Velocity versus Time . . . . . . 203
6.1 Cuataway of 81 mm Precision Charge Device . o o« + ¢ o o o o o & 217
6.2 Photographs cf a Continuous Jet at Three Times . « o « o o o o 220 .
6.3 Penetration versus Standoff for a Semi-infinite Stack

Of Armor Steel PIates .« v « o o o o o o o o o o o o o o o o o223
6.4 Cutaway Showing Copper Residue in a Steel Targe: Billet . . . 227
5.5 Model Hole Profiles at 23CD for a Precision Jet . . . . . . .231

X

Ah BIF RSP B . AT BT O8N A RTE RS RUE TN RV YR NN FV. WYL N AL MR SUL SVE G, N, I R R B PR R S B T T T R Y Ry T L O T Y Y T Ty Ty g



hamd TSI RSN I A VRN TR AT TR A\ T L T LN

LIST OF FIGURES (CONT'D)

Figure Page
6.6 Model Hole Profiles at 38CD for a Non-precision Jet . . . . . 232
6.7 Penetration versus Time veréus a Stack of Armor Steel

Pl&tes a-t 2CD * o ¢ o e o » s o o e o & 9 & O o+ e o 2 ¢+ ¢ o 237

6.8 ‘Penetration versus Time for Steel and Aluminum Targets
. Of Various Hardnesss 8% 20D o+ « o o« « o o« o « o o s o o o o o 2846
6.9 Penetration versus Time for Mild Steel and Iead . &« o« &« « « ._252

6.10 Residual Jet Speed after Perforating Various Thicknesses
of Armor Steel Plates oooocaacooo-ooc'oocoozss

xi

YW WA U YN M 4 M w CaN i NAAA AN S YUY A LA BAAARAN A AN Wleh Sy DRI 1 P s Mt o (M S A B b o L 2 L T b R M A MmO R TP A PP S i A ]



LIST OF TABLES

Tab]_._g Pa.ge
1.1 Typical Ranges of Brinell Hardness Numbers and Yield
Strengths [ ] * [ ] L] . L] L] . L L] L ] L] L ] L ] L] L] * [ ] L] I L ] L] _. L ] L ] 6
6.1 Penetration by a Train of Jet Fragments . o o « « « o o o » 242
xii

L-.-- A MAN TS L ARV R A YRR WK AW O A T AT RO e A S Al O M M O I o A WO O O N A 0 YDA DDA OO LRI



e W

£
.t
o
LA
AN

I. FORMULATION OF THE PROBLEM

A. Qverview of Penetration Mechanics

Penctrators have been traditionally classified as either kinetic energy
(KE) projectiles or chemical energy (CE), that is, explosively-formed jets,
rods or pellets. Typical KE projectiles are launched from a gun and arrive
at a distant target with a definite striking mass, Mo’ and speed, éo‘ Thus,
the kinetic energy, 1/2 Moéoz’ is easily found. In contrast, jeps are
produced at che target by collapsing a metal liner with a hollow explosive
charge. Penetpation usually begins even before the jet is completely formed.
Jet aspect or iength-to-diameter (L/D) ratios are typically greater than 100
after formation, with the tip moving about 8 mm/us and the rear moving abocut
lmm/us . Long rod aspect ratios are typically less than 20 and each element
of the rod moves at the same speed before striking, commonly less than 2 mm/us.
This speed is also typical of fragment penetrators with aspect ratios near
unity.

Recently, zonsiderable effort has been devoted to the development of
explosively formed penetrators with aspect ratios near unity. These devices
tend to blur the traditional distinction between XE and CE weapons by fitting
into both categories. They are produced by the explosive ccllapse of a liner
(1like a jet), but arrive at a distant target as a single lump of definite
striking mass and speed (like a projectile). Such a penetrator is a cross
between a jet and a projestile and a cousin to the traditional fragment which
is launched and usually produced from a shell filled with explosive.

Because of the differences between jets and KE projectiles, separate
theories have been developed. Hydrodynamic theories have been favored for

Jets, while a variety of theories have been used for bullets and fragments.

With the advent of. high-speed, long rods, amended jet or bullet theories have"

been introduced. 1In this report, we will develop a single theory which
describes all types of penetrator from a unified viewpoint.

Two points of view have been used successfully in classical mechanics.
The mechanics of particles was systematized by Newton who spoke of "quantity

(1.1)

of motion" or momentum as we now call it . Continuum Mechanics followed
1l

|
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' Newton's principles. However, instead of cescribing the time evolution of the
coordinates of a particle or system of particles, the goal became a
description of the velocity, pressure and density history of every point in

space. This view was systematized by Euler (1.2

who also showed how the two
‘ viewpoints are connected. Especially when thay are applied to fluids, we now
call these viewpoints Lagrangian and Eulerian, although both forms are due to
Euler. lLamb (1.3) gives the history and mathematics of both viewpoints.
The choice of one viewpoint or the other 1s usually governed by -
considerations of simplicity. If a motion is symmetrical enough to be
characterized by one space coordinate, then the Lagrangian view is preferred .

even in hydrodynamics (1.&).

The general equation of motion which allows for
spatial variation of the diiatational and shear viscosity coefficients reduces
to the Navier-Stokes equation when these coefficients are constant and the
bulk viscosity vanishes (1'5). The usual FEulerian form of the hydrodynamic
equation of motion is the inviscid form of the Navier-Stokes equation. If
heat conduction is important, it is customary to account for it in the energy
rate ?quzgion vwhich reduces to Bernoulli's equation in the inviscid, adiabatic
1,

i case Usuzlly both heat conduction and viscosity are neglected in
hydrodynamics.

In this report, we wish to describe the motion of a so0lid projectile
penetrating a solid target. We limit ourselves to impacts by homogeneous
projectiles with zero yaw, striking flat target surfaces at zero obliquity
without spin. The targets are assumed to be homogeneous and effectively
infinite in lateral extent. The latter description means that there is no
detectable distortion of the outermost lateral dimensions of the target.
However, the targets may be either finite or semi-infinite in the direction of
penetration. The former description means they can he perforated by the
projectile speeds and masses available. The latter description means they are
thick enough to stop the penetrator without detectable distortion of the rear
surface of the target. ' N

Sliding friction forces are present during penetration énd can be
influential in the final stage of projectile motion. For example, Zaid and

(1.7 found that af;od of length greater than the thickness of the

co-workers
target plate might exit from the rear of the plate with almost no residual
velocity or, at a slightly lower striking speed, become embedded in the plate,

protruding from both the front and rear surfaces. Thgy.attributed the defeat
2
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of the slightly less energetic rod to projectile/plate friction. Wingrove
(1.8) has olso described the increased importance of frictional energy loss
near velocity ballistic limits and attributed this to an increase in the
coefficient of friction as the projectile velocity is reduced. However,
during most of the projectile motion, friction plays a negligible role, at
least for metal targets and projectiles, as has been pointed out by Krafft

(. 9). In this report we will neglect sliding friction. For similar reasons,

penetration by a spinning projectile is negligibly different from penetration
by a non-spinning projectile.
- For solid. targets we may also neglect gravity.

For thin target plates struck by projectiles near velocity ballistic
limits, plate bending can play a role. We will confine our attention here to
plates which are thick enough that such an effect is negligible. If we are
near a ballistic 1limit, this means that the target thickness is comparablé to
the projectile diameter.

Various measurements have been made of the manner in which the striking
energy of a projectile is eventually partitioned into projeotile and target
heating and deformation. (1.10 to 1. 12). In this report we will be concerned
only with the forces at work during a penetration, a process which is complete
in tens of hundreds of microseconds. We will not be concerned with the
eventual redistribution of the absorbed energy. Electromaénetic radiation,
usually a flash of light, accompanies some impacts. Although this occurs in
the time frame of interest, it is very brief and invoives a negligible amount
of energy.

We will treat both projectile and target as approximately incompressible.
Some energy is transported by wave motion in both target and projectile in the
time frame of interest. For example, the rear of a rod penetrator is slowed
when a wave generated at the front reflects at the metal/air interface. Waves
also radiate from the target cavity as it is_being produced. However, the
energies involved are usually negligible. An exceptioh may occur for jets
penetrating plastics as will be mentioned later. For very high impact speeds,
melting and vaporizaticn may also bocome important (1'13). In this report we
will avoid such cases. '

In a previous report (1.14)

we concentrated on the case of a constant mass
projectile striking a target plate at non-zero obliquity. In that case we

found that a force dependent on projectile displacement was essential for
3
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1 describing ricochet versus embedment versus perforation. However, such a

force was found to be negligible in comparison to other forces for zero A

obliquity impacts. Consequently, in the present report we will neglect forces

that depend on displacement. In that report we briefly discussed the case of

2 an eroding rod and transformed the time variable to obtain some interesting

solutions to particular cases. Here we will adopt a simpler approach by

assunming a particular form for the erosion rate. The previous report also

developed a model of projectile breakup which we will usé in a future report.

Finally, the previous report gave a survey of KE penetrator theories which we

“ will not repeat here. However, in Chapter V below, we will survey jet

' penetration theories. Selections from parts of the previous report appear in

_ the Sixth Symposium on Ballistics (. 15)

} The goal of the present report is to develop a unified theory which

_ includes the essential physics of the problem, yet is simple enough to use in

o initial design work where insight and ideas for experiment are more important
than great precision. Consequently, a number of examples will be given in

c order to facilitate the use of the theory. It is the author's opinion that

the exclusive use of complicated computer codes in penetration mechanics is

\ both premature and inadequate. Our current knowledge of the physics of

. penetration is still too rudimentary for us to reduce the problem to

o - improvements iin numerical methodology. Concentration on this aspect of the

problem, while eventually worthwhile, can distract us from learning the

physics we need to know. A simple theory should have the advantage that every

detail can be understood and modified by the user. It should also enable us

% to link the specialized field of penetration mechanics to the rest of simple

; physics where a few mathem.tical forms can be used to describe a remarkable

variety of phenomena (1. 16)

B. Forces Exerted on the Penetrator

As outlined above, our problem is sufficiently symmetrical to be
characterized by one space coordinate, S, by which we denote the position of
the center of mass of the penetrator. Here we will adopt the Lagrangian
viewpoint and describe the time evolution of this coordinate or some other
coordinate related to it. In the case of a solid projectile penetrating a

solid target the penetrator moves in a crater which is usually open at the
4
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rear. In this respect the motion is often simpler than for a solid penetrator
in a fluid target where a turbulent wake may exert a drag force on the

projectile (1'17).

Exceptions can occur as for penetration of a hard, brittle
target by a train of fragments as we shall see. If the target cavity 1s open
at the rear of the projectile and is wide enough to Jjustify neglect of sliding
friction on the sides of the projectile, then all target forces are exerted on
the front of the projectile. This seems to be true for most cases of interest.

Let the mass of the penetrator at any given time be denoted by M = PpV’
where pp is the density of the penetrator and V is its volume. When it is
apprepriate to speak of the penetrator length, L, and cross-secticnal area, A4,
thenV = AL, If the pressure or the front of the penetrator is p and the
pressure on its rear and sides is zero, then the pressure gradient along its
length is p/L, the force per unit volume. If we multiply this by the volume,
AL, we obtain pA for the opposing force due to the strength of the target.

(1.18, 1.19) has shown that the mean pressure exerted by a metal target

Tabor
on a metal penetrator is approximately equal to three times the ultimate yield
strength, or elastic limit,Yt, of the target material as determined in

standard tensile tests. He started with the theoretical predictions of Hencky

(1.20) and Ishlinsky (1.21)

which agreed that the pressure should be a bit less
than 3Yt. He then measured this pressure for various metals and found it

to be quite close to 3Yt' (1.19)
In the appendices of his book ' Tabor noted the proportionality

between the ultimate tensile strength and the Brinell hardness number

Yt z Cm(BHN) (1.1)
where Cm is a constant approximately equal to 0.3 x 108 (dyne/cmz)/(kg /mm2)
for steel or hard aluminum., For soft aluminum or copper he suggested Cm
values about 50% higher with intermediate values for other non-ferrous metals.
He also gave hardness values for many metals and a few indenter materials as

well as conversions between various hardness numbers. Table 1.1 here gives

some typical values., .
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Table 1.1 Typical range of Brinell hardness numbers, BHN, and yield
strengths, Y¢.

Material BHN (kg/mmz) Xt (dme/cmzz
lead 1 .5 x 103
copper 30-130 14-60 *
aluminum 15«150 7-50 "
steel 100-400 30-120 "
diamond 6,000 ' -

Since the mean pressure to keep bonds breaking and initiate plastic flow

in a target is
p =3, (1.2)
we can calculate the resistive force of the target due to its hardness as
a= pA = 3YtA - 3¢ (BHN) A (1.3)

from Eqs. (1.1) and (1.2). Here A is the time average value of the area
presented by the projectile to the target during the penetration. Commonly
the nose of the projectile deforms during a penetration so that A > A° where
Ao is the initial cross-sectional area of the projectile before penetration
begins. Thus the force a in Eq. (1.3) is a constant in the approximation we
are making here. For example, if the target is an armor steel with
BHN = 300kg/mm2, we find 3Y = 3 (90 x 108) = 2.7 x 1010dyne/cm2, and 1f A = lcm®
then a = 2,7x1010dyne==.27glmm/u 52 . Here we have converted to grams (g),
millimeters (mm) and microseconds (us), the mass, length and time units which
seem most appropriate to our problem.

The nose shape of a projectile can affect its penetration, especially as
it enters the target, or if the target is thin, and projectile plastic

deformation and/or erosion are not important factors (1'22). Shape is not

very important in a deep penetration or when projectile deformation and/or
erosion are important, since penetrator noses become hemi-spherical mushroom
caps. Whenever we discuss non-deforming projectiles in this report, we will
restrict ourselves to spheres or rods with hemi-spherical noses so we need not
be concerned with other shapes. Even for spheres we should, strictly
speaking, use a Hertzian contact surface to account for elastic deformation as
described by Goldsmith (1'23). Such precision is not important to our goal of

coupled insight and simplicity. Generally speaking, we will be concerned only
6
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with the area presented by a hemi-sphere of diameter somewhat larger than the
initial diameter.

A second type of resistance offered by a target is inertial and becomes
more important at higher speeds. We approximate this force by

2, 2 op? (1.4)

ko, P
where P 1is the penetration speed and ¢ = %PtA is a constant proportional to
the target density, pt, and the average projectile presented area, A. 1In Eq.
(1.4), kp1:§2 is the energy of a moving unit volume of target material after
its bonds have been broken, assuming it moves with the same speed as the
projectile nose. It is also the resistive force per unit area offered by the
térget because of its mass, so that multiplication by the area gives us the
inertial force.

Equations (1.3) and (1.4) give the two main forces we will be concerned
with. They require only a knowledge of the target density and hardness as

well as an estimate of the area presented by the penetrator. If we add these

two forces we have the form proposed by Poncelet 150 years ago. What is new
here is the use of 3Yt in Eq. (1.3) so that we can calculate the hardness
force term from measured Brinell numbers, instead of treating it as an
adjustable parameter. The form forc in Eq. (1.4) is not new, but it also
prevents us from treating it as an adjustable parameter. If any adjustment is
made, it will be in our estimate of A 2 Ao‘ Whenever possible, we will use
experimental information to estimate A, which appears in both a, the hardness
force, and ¢, the inertial coefficient.

A third type of target resistive force which is often considered i3 a
viscous force proportional to the first power of the speed (1.24) to (1'30).

None of these authors could do more than guess at the magnitude of this effect

since they had no experimental measurements of solid viscosity. More
recently, Walters (1.31) revived interest in solid viscosity by summarizing
the available experimental data. Unfortunately, there is mére than order of
magnitude disagreement between various experimental measurements, with Russian
workers tending to favor high values and American workers tending to favor low
p values. Thus Walters was forced to treat the viscous coefficient as an
adjustable parameter (?%tg;? wide experimental limits) when applying it to

penetration mechanics
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The notion of internal friction or viscosity is basically the same for
sr '3 and fluids as was pointed out by Thomson over 100 years ago.

‘This molecular friction in elastic solids may be properly
called viscosity of solids, because, as being an internal
resistance to change of shape depending on the rapidity
of the change, it must be classed with fluid molecular
friction, which by general consent is called viscosity

of fluids.n (1:33) , ' .

(1.34) made similar observations, pointing out

Somewhat earlier, Maxwell
that in a viscous solid the time rate of change of internal stress, g, is
proportional both to the strain rate, € , and the stress divided by a

relaxation time, r . That is,
3'=Gé,"-0'/‘r (105)

where G is the rigidity or shear modulus. An integration of Eq. (1.5) for

constant é gives

@ 1é+ (g, = 1) exp (/). (1.6)
where 7=G7T 1s the coefficient of viscosity. When sufficient time has
passed after an initial loading ( t }) T), ¢ > né » showing that in this
limit the viscosity is the shear stress divided by the strain rate. For
simple Newtonian liquids like water r is very short (10?125), and

considerable effort must be made to observe its relaxation. However, this has

been done on a regular basis for some time now (1'35). For non-Newtonian

liquids and solids, r can be much longer.

(1.36) Saw in Maxwell's r a way to "bridge the gap from solid to -

Hencky
liquid continua." By introducing relaxation time or its inverse (frequency),
he derived Euler's equations of viscous fluid flow from the deformation of an
originally elastic continuum. He showed that the Navier-Stokes equation is
the special case of large stress or small relaxation time.

A hit later, de Bruyne (1.37)

pointed out that Maxwell's relaxation time
could be written in terms of an activation energy, U:

8
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r =1, exp [U/RD)] (1.7)

where R is the gas constant, T is the temperature and r _ 1is the
high-temperature limit. Multiplying Eq (1.7) by G gives the viscosity n in
Maxwell's model which then has the form.postulated by Andrade (1'38). He

went on to observe that deformation of a solid takes place by "a change of
molecular position from one stable state, over an energy barrier, U, to
another stable state, and that only those molecules (or groups of molecules)
having sufficient energy of thermal agitation to get over the barrier are able

to make the change." He let o, be the ultimate stress and

U - VM(.,u-,)z/(zc) (1.8)

since the strain energy per unit volume stored in a solid might be written as
1/2-62 /G . Here Vy is the volume of a mole of material with Vy = NOVm’ if No
is Avogadro% number and Vm is the volume of a molecule. If the velocity is

v = 81/dt and the strain is él/dx,then ¢ is proportional to the velocity
gradient in Eq (1.6) after sufficient time has passed, t > ) r, that is,

- o= e = nd/dt (§1/dx) = ndv/dx. (1.9)

When 7= ¢/ = Gr , Eqs. (1.7) and (1.8) give

m=Gr, 6 exp [Vm (au - 6)2/(ZGkT)] (1.10)

where k=R/No is Boltzmann's constant. Eq. (1.10) says that the viscosity
decreases as the temperature increases in agreement with observations of
condensed matter (liquids and solids). The increase in thermal energy makes
it easier for potential barriers to be crossed. However, Eq (1.10) predicts
that n will decrease as the stress or pressure 1is increased toward its
ultimate value, g>0, 4 which is contrary to observations. As the pressure
applied to condensed matter increases so does the viscosity, since it becomes
more difficult to overccme potential barriers.

If r is large enough in Eq (1.6), then there will be an observable delay
in returning to the unstressed state when the material is unloaded. This
lagging of the strain behind the stress is a case of mechanical hysteresis

2

2 A R R e I L 1



which Zener has dubbed "anelasticity" (1'39). A number of stress-induced

mechanisms have been considered such as the inhibition of thermal or particle

diffusion or of viscous slip along grain boundaries. K@, a co-worker of Zener,

measured the internal friction of both single c¢rystal and polycrystalline

aluminum as a function of temperature and found a resonance peak near SOOOC in
polycrystalline specimens but not in single ¢rystals. He attributed this to

viscous slip at grain boundaries and estimated the viscosity of

polycrystalline aluminum to vary from 2 x 1016 poise near room temperature to *
about 2 x 10"1 poise at 660°C, the melting point. (1'u0). K& made similar

measurements for a number of other metals. For alpha-iren he found the -
45 -2 poise at 9!0°C

where a transition to gamma-iron occurs. He found three resonance peaks in

alpha-iron. Those centered at 20°C and 225°C he attributed to stress-induced
re-distribution of interstitial nitrogen and stress-induced inhibition of

nitrogen atom diffusion respectively. The main peak centered at 500°C and

extending from 4500°C to 600°C he attributed to viscous slip at grain

10 poise at 400°C to

103 poise at 600°C, values quite comparable to those of pyrex glass over the

same range (1'u1). K@ also studied the effects of impurities in aluminum,

iron and copper (1.42) as well as the effect of alloying aluminum and copper

(1.“3).

viscosity to vary from 10 ° poise near room temperature to 10

boundaries. He noted that the viscosity decreased from 10

s L F Y I W g

K@'s measurements were carried out at low stress levels and slow
speeds, so they may not be transferable to penetration mechanics where high
speeds and stresses occur, However, his finding that measurements of the
viscosity of solids vary widely with the characteristics of particular
specimens may help to account for the large discrepancies between viscosity
values reported by various workers for nominally the same materials.

Krausz and Eyring (1.44)

have developed these ideas and introduced
statistical quantum mechanics via Eyring's absolute reaction rate theory. In
the view of these authors a solid can be looked upon as a giant molecule, if it
is a perfect crystal. Of course, imperfections and grain structures modify
this view and the flow units might be grains rather than molecules in the case
of metals. They use their rate theory of plastic deformation to explain a
variety of phenomena, including mechanical hysteresis.

In their discussion of viscosity and plastic flow, they develop an

expression which relates the strain rate, €, to the net number of times per

second that a flow unit moves in a direction determined by the stress:

N |
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éu[r/(z 1)] [ez-e'z]= (1/+) sinh z (1.11)

where

T A /(2AK®) | (1.12)

is the relaxation time,

2= (ga hgh /(2D =200 (1.13)
7KT
and
k* = (kT/h) exp [-a6*/(xT)] (1.14)

Here k* is the rate constant (sec '1) and involves Boltzmann's constant, k,
Planck's constant, h, and Gibb's free energy of activation, AG?, as well as
the temperature, T. The parameter z is proportional to the stress, ¢ , which
induces flow units to move from one site to another one an average distance A;
away. Here (xzxs) is the cross-sectional area presented by the flow unit to
the opposing medium. Consequently, o (A,A3)is the force. In moving to an

ad jacent site, the flow unit surmounts a potential energy barrier'which has a
peak located a distance A/2 from a valley, so the force does work olsA3z)/2 = VVH/Z-
This is the numerator of Eq (1.13), the activation energy. The thermal
factor, kT, in the denominator has the effect of assisting a passage over the
barrier at higher temperatures. The hole volume swept out during the motion
is VH= AZASA, while the volume of the flow unit is not much different, namely,
Vm = AIAZAS . The exponential terms in Eq (1.11) represent forward and
backward motions of flow units. Krausz and Eyring go on to generalize their
theory in order to include the motion of more than one type of flow unit, each
characterized by its own relaxation time, T, and occupying a fraction, Xji, of
the shear surface. They then proceed to apply their theory to a number of
soiids. However, they do not treat metals to any extent, except to point out
the analogy between superplastic flow of metals and the motion of viscous
materials like hot glasses. The great elongation which is possible without
necking or breaking is familiar to anyone who has observed a demonstration of

the glass-maker's art.
11
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Let us recall Maxwell's expression for the viscosity, n=Gr. If we use Eq
(1.11) for r,

n=[6/(2] (e?-e Py =[6/(26) ] € (1.15)

for 2)>1 in Eq (1.13). Near room temperature, the denominator of Zz is about
2kTN10'13érg. For liquids like water composed of small molecules QVH
should be a bit larger than this and z is a bit larger than unity. The second
form of Eq (71.15) is essentially the same as Eq (1.10) if T_  corresponds to
1/ (%) » Vg~ Vs and (G,-0) %6 corresponds to o in Eq (1.13). Thus both
equations describe a decrease of viscosity with increasing temperature.
However, unlike Eq (1.10), Eq (1.15) correctly describes an exponential
increase of viscosity with increasing pressure, ¢ ., For colloidal
suspensions, resins and polymers, the flow units and the stresses required to
move them become larger, thus increasing z for given T and making the second
form in Eq (1.15) an even better approximation. The possible application of
Eq (1.15) to polyerystalline metals is unknown at present. However, we note
that for G -..leolodyne/cm2 andzél-ﬁxlolos'% m= ezis expressed in poise.
Ir z =100 , then n~n 1043 poise, a number similar to values reported by
K& for iron (1'40).

The approximate form of Eq (1.15) has also been given by Frenkel who noted
A the work of Andrade and Eyring. Frenkel pointed out the necessity of revising
classical hydrodynamic theory to incorporate Maxwell's relaxation theory,
apparently unaware that Hencky already did this (1.36). In addition, he
discussed the need to modify the classical elastic theory of amorphous solids
to account for their fluidity (or viscosity) in order to describe the
continuous character of the transition from the liquid to the solid state when
this transition is not accompanied by crystallization. He devotes most of his
attention to the latter modification in order to describe the propagation of
transverse waves in fluids. From such a unified viewpoint, diffusion and
creep in solids are at one end (1~ 10125 or 30,000 years in geology) of a
relaxation time spectrum which extends to the viscous flow of Newtonian
liquids ( r~ 10'125 for water). As Frenkel remarks, this makes the
classification of condensed bodies into solids and liquids a matter of
practical convenience rather than something of fundamental importance (1.&6).

This rather long digression on the viscosity of so0lids and liquids is
meant to lay the groundwork for future learning about the possible usefulness
12
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of such concepts in penetration mechanics which describes high-pressure,
high-shear<rate events. At present we do not have enough gquantitative
information even to begin an adequate description. Polycrystalline metals are
Far from perfect crystals, although they are composed of crystallized grains
as well as other structures. Only in certain superplastic cases do they flow
like liquids in short times. Brittle metals tend to shatter like glasses or
ceramics under impact, while glasses can flow like superplastic metals under
the proper conditions. Solid plastics are also of interest in penetration
mechanics and can flow or shatter depending on conditions. In what follows we
will represent the possible effects of viscosity by a simple force term

proportional to the first power of the penetration speed, namely.

bP = 6rRnP = 6VirA np (1.16)
which is Stoke's law for a sphere of cross section A =,-R2 .
In summary then, the target force opposing penetration is

F=a+bP+ cﬁz (1.17)

where a depends on the target hardness by Eq (1.3), b depends on the target
viscosity by Eq (1.1€), c depends on the target density by Eq (1.4) and all
three depend on the time average area, A, presented to the target by the
penetrator nose. To anticipate a bit, we will find both a and ¢ to be
indispensable in describing the experimental observations which have been
made. However (in spite of our lengthy discussion of viscosity), we will find
b to be of negligible importance in describing such observations. This does
not mean that viscosity may not turn out to be of some importance in some
cases when better observations are made, perhaps in the penetration of very
hard targets (high z in Eq (1.13)) like glasses or ceramics for which
relatively few fundamental observations have been made. It is clear that a
and ¢ are important for solid targets, because bonds must be broken and target
material must be moved. We may conjecture that b is unimportant because the
process by which the moving target material eventually comes to rest is of no
importance in slowing the penetrator, provided there is little or no contact
between the moving target material and the penetrator, as in the case of most

metal targets. However, if there is considerable contact between moving
13
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target material and penetrator, as there may be in the case cf narrow channels
in hard, brittle targets, then b may be very important since the sides as well
as the nose of a penetrator will be affected by forces exerted by target
material. For example, if the narrow penetration channel in a glass target is
filled with a mixture of eroded penetrator and target material, both the
external friction between this material and the remaining penetrator as well
as the internal friction or viscosity of the eroded material might be
impertant. For a long rod penetrator or jet this part of the problem
resembles the motion of a solid cylinder inside a flowing "liquid" tube which
is in turn contained inside a rigid "pipe" (the undamaged part of the target). -

C. Pre-formed Eroding Penetrators

A typical example of this kind of penetrator is a rod of aspéct ratio
Lo/Do = 10 , Here subscript zero denotes initial value. Except for the
deformed nose which presents area A>Ao to the target, most of the rod retains
its original cross-sectional area, Ao' Thus to a good approximation, the
remaining mass is proportional to the remaining length, M = PpA L. Since

neither the penetrator density, Pp, nor Ao change with time, we can write
L=M(@pPA)=-M .
/(PpA,) L/ (PpAs) (1.18)

where ﬁp -‘ﬁi(for M<0) stands for the mass lost per unit time at the nose which
is located at position P (measured from the target surface) and moves with
speed § , the penetration speed (or growth rate of the crater depth). Let R
and R be the position and specd of the rear of the penetrator. Just before
imp...:t all parte of the penetrator move with the same speed. Just after
impact the target resistive force increases from zero to a large value, then
starts to decrease. During this brief, transient periosd (of a few
microseconds) the nose speed is decreased to a value ﬁo < ﬁo . Here we are
ignoring the details of this transient deceleration of the nose and start our
problem just after the resistive force of the target has peaked. The rear of .
such a rod will begin to decelerate a bit later when pressure waves generated

at the nose reach the rear and reflect at the solid-air interface., This

decelerazion of the rear may occur in several steps. Again we will ignore

suctt details and use average values.
14
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Since S is the position of the center of mass located halfway between the

nose and the rear at any time,

S + i/z

e
n

& _ M (1.19)
5 - W, /(pr“o) 9

and

§ - 1L/2

e
"

& Y (1.20)
S + MP/(ZPPAO)

where we have used Eq (1.18). Addition of these equations expresses the fact
that the speed of the center of mass is the average of P and R « Subtraction
of these equations expresses the fact that h>'§ , as expected. In the
ab§ence of erosion, L= ﬁp = 0and P = § = R with L = Lo and M = Mo.

Before proceeding to derive the equation of motion, let us consider an
analogous problem formulated by Goddard for rocket motion (1'“7). Here we
will simplify Goddard's treatment slightly by neglecting the mass of the
rocket motor case which has no analog in penetration mechanics. This means

setting k=0 in Goddard's equation. We will also use the symbol M'for the mass

remaining at time t instead of writing the difference between the initial mass:

and the mass expelled (as exhaust) up tc time t. The infinitesimal dM
represents the mass lost in time dt. During this time the upward (positive)
speed of the center of mass of the rocket relative to a stationary observer on
the ground is increased from v to v + dv. The mass which is lost moves at a
constant (exhaust) speed, Co' relative to the center of mass of the moving
rocket in the downward (negative) direction, so v-Co is the exhaust velocity
relative to the ground observer. The change in momentum of the system is
equal to the impulse imparted by the force of gravity, G, and the drag force

of the atmosphere, D. Thus

[M-am) (v+dv)+dM(v—Co)] - Mv = - (G+D)dt (1.21)

where My is the momentum at the beginning of the time interval dt and the

square brackets represents ti2 momentum at the end of this interval.

Initially Va = (0 so v-Co < 0 until enough speed has been attained to reverse

the sign. No attempt is made to follow the motion of the exhaust gas after it
15

e AV 4%s RV RV e RN R, T R, RO N Y Ry R Y, I T Y A s R T R R S ST G T, L A T Y Sl A Y A P R AR AT AL AR AL TaV, O RY YWY VLR VAV 'V, . ¥, VAN

Eﬁ'l b L U N SR B P O Ry epe—



has left the rocket. When we pass to the limit, d4t+ 0, dM=> 0, dv-+ 0, we can
neglect the second order term, dMdv, in Eq (1.21) and divide by dt to obtain

d(Mv)/dt = (v+C ) (dM/dt)-(G+D) . (1.22)

This equation states that the time rate of change of momentum is equal to the
sum of the forces acting upon the center of mass. In outer space where G =D =0
the mass loss increases the momentum (as it must also do if the rocket is to

rise from the earth's surface). The form of Eq (1.22) is that usually set

forth in physics texts (1.48, 1'u9). Of course Eq (1.22) can be simplified by

subtracting vdM/dt Trom both sides to obtain

Mdv/dt ucoid - (G+D) _ (1.23)

which is Goddard's equation with M= dM/dt. Shortly after ignition Coﬁ > (G+D)
and the rocket rises. At burnout, Co+0 and M0 so dv/dt<0 unlessG + D = (
by this time. Thus the rocket will either escape or slow down and fall back

to earth. Discussions of Goddard's equation may also be found in some texts

In the penetration problem we are describing, mass de)O is lost at the
front instead of the rear where it is wiped off by the target while moving at
the nose speed, P. The remaining Tass: M, is diminished by de while the
speed of the center of mass bzcomes S +dS, Thus,

[(M-de)(é+dé) +dny ()] - M§ = - Fdt (1.24)

which is the analog of Eq (1.21). In thelimit dt >0, we can neglect dMdS  and
write a form analogous to Eq (1.22) or go directly to a form analogous to Eq

(1.23), namely,

MdS/dt = (S-P) ﬁp -F . (1.25)

If we use Eq (1.19) frr ($-P), Eq (1.25) becomes

S = Y 2P F (1-;6\
hldS dt M Z A - ~ Uy
/ P /( P O)
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where F is given by Eq (1.17). In rocketry the force Coﬁ in Eq (1.23) is
independent of (G+D) and can be turned on or off. In penetration mechanics

the two forces on the right side of Eq (1.26) are connected since the
magnitude of the mass loss rate depends on the kind of target being
penetrated. In all cases of interest, targets decelerate penetrators, so the

right side of Eq (1.26) is negative. This limits ﬁp which achieves its

maximum possible value in the extreme caseP = 0/mud splattering on a hard
taréet). In this case F=za from Eq (1.17) and'ﬁp=2PpAo§o ﬁrom Eq (1.19). the
minimum value of M_is zero (no erosion). In this case P=§ in Eq (1.19) and

in Eq (1.17) with M:MO. Penetration without erosion occurs for example, when a
hard steel ball bearing impacts a typical aluminum target. For moderate
striking speeds and soft aluminum, penetration may even occur without

deformation of the projectile.

D. Jets

Typical jets stretch and eventually break into fragments because their
noses move much faster than their rears. It is possible to make a /
non-stretching jet (1'51?, but this is rarely done in practical devices. Such

jets are similar topre-tormed rods if penetration begins after jet formation

is complete and Eq (1.26) describes their motion. More generally, nenetration
begins before formation is complete and stretching must be accounted for as
well.

To describe simultaneous addition of mass at the rear of a jet and loss of
mass at its front, we can write M= HR - ﬁp, where ﬁR > 0 is the addition rate |

at its rear, while ﬁp > 0 is the additon rate at position P, its front. When

B R —

formation is complete, ﬁR+ 0 and M = - ﬂp as for a pre-formed rod.

For a rod we have been using the symbol Ao for its ¢ -oss-sectional area.

If the rod is a right circular cylinder, Ao is its cross-section at every point
along its undeformed length. If the rod is tapered slightly frcnt and/or rear
or has irregularities like sabot contact grooves along its length, then AO is
the cross section averaged over the rod length such that its product with the
density and length gives the measured mass, MO = p AOLO initially, or

p
M = A L at a later time with L < L . 1In this approximation any slight
P p o 0

| i
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change in AO with time is ignored. For the jet we will be considering, such
changes cannot be ignored. This jet happens to be tapered (narrower at the
front than at the rear). Here we will give Ao the same meaning, namely, the |

average cross-section over the jet length at any time, t. However, when the
jet stretches like a rubber band or piece of taffy being pulled, Ao decreases

too much to ignore. That is, its time rate of change, Ao < 0, is not

negligible. Since this stretching occurs even after formation (HR = 0) and in

fre? space (ﬁp = 0), it is a constant mass process and M = pp(AoL + AOL) = 0, _ -
or Ao = - AOL/L gives us an estimate of this effect. In other words, if we
observe a jet in free flight after formation and measure L, L and Ao as time
goes on, we can estimate Ao. We then assume that the same process occurs
during formation and erosive penetration, making anoth itribution to the
time rate of change of the length, namely, L (stretching) = LIAOI/AO > 0.
This can bhe added to the contributions from mass loss and addition to give a

total rate

(Mg = M )/p ALY + (L'Ao’/Ao)(pp/pp)

c
"

M + ppr,léol)/(ppAo> = (M + 1)/ A) (1.27)

where we have introduced the symbol y = ppL(&°l> 0 for the stretching rate,

with M = MR - Mp as before. For a pre-formed (ﬁR = 0), non-stretching (i= 0)

rod, Eq {1.27) becomes Eq (1.18) above. The form for a non-stretching,
still-forming Jet (1.51) is obvious. Generallv speaking, ﬁR > > M as we
shall see, so M > 0 during formation and L > 0. After formation (MR = 0), the

(e

sign of L will depend on the sign of (-ﬁp +0).
At any instant in time a jet always has a definite mass and length.
However, because of jet taper, the center of mass will not be located at the

midpoint of its length, but somewhat to the rear of this point. Let C be the

geomatrical center of the jet length. In a one-dimensional problem such as we . .
are considering any point may be chosen to describe the motion since all
forces are exerted through every point along the penetrator length.
Consequently, we can write the analogs of Egqs (1.19) and (1.20) as

f>=-é+L/2=C+(M+{J)1° . (1.28)

18
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and
RzC-L/2=Ca=(M+u)I (1.29)

where

I, = (20,40 o (1.30)
Since L may well be positive as we have noted, then R < P is a distinct
possibility as is R > P if formation is complete and erosion is severe. If we
have a non-stretching jet (y = 0), then A = AO,C = S and after formation is
complete Eqs (1.28) and (1.29) reduce to Eqs (1.19) and (1.20). After
formation (ﬁa = 0) of a stretching jet, it is possible that u= ﬁb so P=C=R.
Usually, however, y> M, so R < P.

. We must also generalize our equation of motion to describe a forming.
stretching, eroding jet. The mass added to the rear, dMR, has speed ﬁ, and

net mass change is dM:dMR-de. Thus

[(M+ dM,_ - de)(é + dG) + RdM

R + Pde] - MC = - Fdt . (1.31)

R
Now when we pass to the limit dt-» 0 and neglect dMRdé and dedé we find (upon
dividing by dt)

MdC/dt = - (& + R) ﬁR + (& - P) ﬁp - F . (1.32)

We can add € to R in Eq (1.29) to replace the coefficient of ﬁR in Eq (1.32)

and subtract C from both sides of Eq (1.28) to replace the coefficient of Mp
and obtain

Md/dt = - [2€ - (B +) I) HMo = (M +3) If - F (1.33)

where ﬁ:ﬁn-ﬂp. Simplifying leads to

MAC/dt = I M (M ) - (2€Mg + F) . (1.34)

This equation reduces to Eq (1.26) for a non-stretching jet (1} =0, A:Ao, C=S)

AR e

which has completed its formation ﬁR=0). Thus a typical jet differs from a
rod in three respects, h'viR>0, n>0 and taper.
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II. SOLUTIONS

A. Solutions Without Viscosity

1. Constant Mass Projectile

Our method in this report is to begin with the simplest case and add
complications as they are needed. Without erosion, r‘qp =0, M= M, and Eq
(1.26) becomes '

M_aS/dt = - (a+c§?) (2.1)

where we have used Eq (1.17) with b = 0, since 7 is assumed to be unimportant
in Eq (1.16), and with P = § in Eq (1.19). Two integrations of Eq (2.1) with

respect to time give us =

§ = Va/¢ tan (Y -Vac (t-t )/M ] (2.2)
and

S=§ + (Mo/c) 1n {cos [Yo -\/gzﬂ(t-to)/Mol/cos.Yo} (2.3)
where

Y, = tan™] (éO/\/Z7E) (2.4)

while to, S0 and éo are initial values. In this simple case we can eliminate

time between Eqs. (2.2) and (2.3) to obtain the solution in the S, S phase

plane
S =va/c tan cos™ {{cos Yo) exp [(c/MO)(S-So)]} (2.5)

Thus we can express all three solutions in the é, t plane, the S, t plane and

the é, S plane in terms of a finite combination of classical elementary
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functions. This is not usually possible for non-linear equations, as we shall
see,

We can also transform Eq (2.1) to the phase plane before we integrate
if we divide by § = dS/dt to obtain the separated form

§ d48/(asc$?) = - ds/M, (2.6)

If we have no time-dependent information as is usually the case in penetration
mechanics, a solution in the phase plane is all we need. The elimination of
the time variable in either the differential or integral form touches on an
important characteristic of mechanics. In either classical or quantum
mechanics, time is reversible and the equations of motionm are invariant with
respect to its inversion. Of course this is not true of the world in general
as is abundantly illustrated by the applications of irreversible
thermodynamics in physics, chemistry and bilology (2'121 An integration of Eq

(2.8) gives

(2.7)

§ =v/(a/c) {[1+(§ofvh/c)2] exp [-(2c/M )(S-5 )] - 1}

Clearly Egs (2.5) and (2.7) must be equivalent. This can be shown as follows.
Equate the squares of both equations to eliminate é, and recall the identity

tanzx = seczx-l, S0

sec® [cos'T{(cos Yo) exp [(c/Mo)(S-So)]}]

= D13, AET)?T exp [-(2¢/M ) (-5 )] (2.8)

after adding 1 to both sides. Now take the square root and recall that secx =

1/cos x, 80

1/{(cos Yo) exp [(C/MO)(S-SO)]} =\/[1+(§O/Va/c)2] exp [-(c/Mo)(S-SO)]. (2.9)

Now multiply by exp [(c/MO)(S-SO)], square, and recall the identity 1/c052x =

1 + tanzx, so
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¢ 1 + tan® [tan'1(§°/\/a/c)] =1+ (éofvé/cSZ (2.10)

where we have used Eq (2.4) for Y . Since Eq (2.10) is an identity, Eqs (2.5)
¢ and (2.7) are equivalent and we can use whichever form seems to be more
convenient in our calculations.

0y A frequent case of interest in penetration mechanics is embedment in a
¢ semi-infinite target. The problem ends when the penetrator is brought to rest
" (é-0). If we choose the origin of our coordinate system at the target face,
o then the initial position of the center of mass is SO=- Lo/z. The final

: position of the center of mass is SE (at embedment) and the final position of
the nose of the pe?etrator is PE s SE+LO/2 s SE
depth. If we let S = O in Eq (2.7), for example, and solve for (S - So) with

X S = SE' we find

- so. This 1s also the crater

Py = (M _/c) v+ (éofvé/c)2 g (2.11)

; which gives us the penetration depth as a function of the striking speed, So'
i for given penetrator mass, Mo' The target hardness appears in the parameter
: a, given by Eq (1.3) while the target density appears through the parameter
.Ac=.SotA in Eq. (1.4). The average area, A, presented to the target by the

‘penetrator during the penetration does not appéar under the square root in Eq

: (2.11) since Va/c =\/6Yt/pt} which depends only on the target strength and
' density. However, for M_ =ppAoL°, (MO/C) = (ZLO)(pp/pt)/(A/AO) with (A/Ao)iil,

depending on whether or not nose deformation has taken place.
' If we take the derivative of Eq (2.11) with respect to éo’ we find the

| slope,
dP_/d$ = (M /a) § /[1+(8_rATO?1, (2.12)
E o] 0 0 0

which vanishes in both extremes of small striking speed (SO+ 0) and large
striking speed (So-+w } and has positive values in between. By setting the
second derivative with respect to éo'equal to zero, it is easy to show that

SO=Va/c is an inflection point. Thus Eq (2.11) describes a situation in which

the penetration depth increases rapidly at first as éo is increased above

e



zero, but eventually approaches a situation in which further increase in
striking speed has little effect. By contrast, an increase in penetrator mass
always increases penetration depth in a linear manner. The advantage of
increasing penetrator mass rather than striking speed at high speeds has been
known for a long time. For examp'e, it was mentioned by Bethe more than forty
years ago (2'2). The law of diminishing returns expressed by Eq (2.11) is
sometimes called a sigmoid or lazy =S curve. Qf course, we can also set $=0

in Eq (2.5) to obtain
PE =-(M°/c) in cos t‘.e.n"1 (§°/v€73) (2.13)

which has Eq (2.12) as its slope as well.

' Another common case in penetration mechanics is perforation of a
finite plate. 1If To is the plate thickness, then we can find the residual
speed by letting S = T, in Eq (2.7) or Eq (2.5). Altérnatively, we could
choose another criterion fer perforation and let P = § - S° = To. Various
criteria for ballistic limits as well as the role of "breakout" effects will
be discussed in the next chapter. For example, a ballistic limit might be
defined by the simultaneous conditions §=20and P = To' S0 letting PE = To in
Eqs (2.11) or (2.13) enables us to find the limit speed,.S ;.

2. Eroding Projectile

In other fields ablation or erosion seems to depend on the speed with
which the object being ahlated moves through the medium responsible for its
erosion. The example of a space vehicle re-entering the earth's atmosphere

comes to mind. A simple form which expresses such a dependence is

Mz -up (2.14)
where Mozp is constant. As we shall see, this form is not only reasonable
(agreeing with trends in other fields), but enables us to describe many

observations in penetration mechanics rather closeiy. In addition, it enables

us to give an alternate derivation of the density law which has been used for
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so long to describe jet penetration. If there is a nose speed, ﬁ. below which
ernsion cseases, then we can set My ® 0 forvﬁ lass than this value, and
continue the solution as in the previous sub-section. However, there is no
avidence that erosion, once begun, ceases below some speed > o.

An integration of Eq (2.14) gives us

M=M -upP (2.15)

since Po = 0 in the coordinate system we have chosen.
If we use ﬁp = Iﬁl z “oé from Eq (2.14) in Eq (1.19) and solve for é,
we find

§ = (1au I.) P = kP (2.16)

where I = (ZpPAO)'1 is a penetrator characteristic. Since the constant, k, in
Eq (2.16) is greater than unity for B, 2 0, it is clear that the penetration
speed, ?, is less than the projectile center of mass speed, é, as we expect

when erosion of the projectile nose is taking place. Now let us use Eq
2

(2.15), Eq (2.16) and F«p = u°§ in Eq (1.26) with F = a + cP° to obtain
M [1-(u /M )P] k dB/dt = - (a+cP?) = = F (2.17)
[o] (o} o]
where
- 2
c=c- I , (2.18)

may be called the reduced inertial coefficient. From Eq (2.18) we see that
the effect of erosion UJ°>0) is to reduce the opposing force of the targetv
while reducing the mass of the projectile. Of course in penetration mechanics
(by contrast with rocketry) this tendency for a projectile to accelerate as it
loses mass is never so great that the net force on the right side of Eq (2.17)
turns positive. An extreme case of considerable interest occurs however when

- -1
c = 0 and only the target strength opposes the motion. Since I,= (2:pAo)
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and ¢ = .50 A, we can let ¢ = 0 in Eq (2.18) and solve for u, to find
=
po(max) ‘Vpp I AOA . (2.19)

Eq (2.19) gives us an estimate of the upper limit for the erosion rate
constant My (with zero as its lower limit). The effects of target and
projectile hardness on erosion rate appear through 4 > Ao' the nose
deformation. Once we have estimated A from a knowledge of Ao' then the
gecmetric mean of the densities enables us to estimate an upper limit for Moo

If we have no time-dependent data to describe (which is,
unfortunately, the usual case in penetration mechanies), then a solution in
the phase plane is sufficient, as we have noted. Let us divide Eq (2.17) by
P = dP/dt and obtain a separated form in the P,P plane.

&=

Integration of this equation gives

B o278 {114(8/a) (8 /10 2101-y m 3128 oK) 1 (2.20)

where (éo/k) = 50 from Eq (2.16). First let us note than Eq (2.20) reduces to
Eq (2.7) for M0, k>, P+5,C+c . This may be seen bty letting
W o= -(uO/MO)P and noting that

L [1-Cu /M P12/ (gK) L pig {(rawy 1/¥y-2CR/ (o)
UO'*O w+0
= eXxp [-(ZC/MO)P] (2.21)

by definititon of the base of the natural logarithm. Use of P = S - So and

P = S completes the demonstration.
For a semi-infinite target, embedment occurs and the motion ceases for

P>0 in Eq (2.20), so

P (M /y) (1-014(/a) (3 /)2 Ho X/ (260, (2.22)
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which reduces to Eq (2.11) for uo*~0, Ee-c, k+1. For perforation of a finite
target we might let P = T, to find the residual speed in Eq (2.20) and the
residual mass in Eq (2.15). The slope of Eq (2.22) is

dp_/d$_ = [Moéo/(ak) 1/t 1+(éo/k\/a/c)2] 1+H k/(20) (2.23)

which reduces to Eq (2.12) for uo-+0. Again we see that the slope vanishes

for very small and very large éo with an inflection point at

S = kA/(c Y , (2.24)

(o)

which reduces to éo =va/c for Mo~ 0.
In the special case ¢ =z 0, Eq (2.20) becomes

P =VI(§ /0% + 2a/(u 0] 1n [1-(u /M )P (2.25)

and

Pe = (M /u)) {1-exp [-(uok/Za)(éo/k)zl} (2.26)

replaces Eq (2.22). If we use M, = ppAoLo and Eq (2.19) in Eq {2.26), we find

P /L =\/Ypp/p; {1-exp [-(uok)/(Za)(éO/k)zl} (2.27)

where ¥ = AO/A £ 1. If the target strength is zero (a=0), this is the classical
density law which was originally derived to describe penetration by a jet of
constant length as we shall see. The exponential correction factor depends on
the target strength through the force a. Since uo/(2k) does not differ greatly
from.unity in most cases of interest, then for large éo and smail a,

(éo)zla » » 1 and the correction factor is negligible. However, for moderate
speeds and hard targets it is not negligible as we shall see,

Eo far we have considered only the solution in the phase plane, Eq

(2.20). This equation is easily separated since the right side is a function

of P while the left side is dP/dt. An integration gives us
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D(elX, X,) = [(xo-»' a/E)/(tMO/,uo)] (t-to) (2.28)

with

Xy ¢ :
D(elX, X_) =/ % =V (x-1)""2ux (2.29)
X
and

X = D1a(3/a) (8 /1021 (107 (M /u )17 (2.30)

Here ¢ = (uok)/(ZC) is the dimensionless erosion rate. Since X depends on P
by Eq (2.30) with X = X, for P = 0 initially, then Eq (2.28) 1is the soclution
in the P, t plane. However, the relation between t and P cannot be expressed
in terms of a finite combination of classical elemenbggy functions except ins
special cases.. As is usually the case with non-linear differential
equations, the solution involves some sort of special integral, at least for
ordinary, low-order equations. Here Eq (2.29) gives the special integral we
need. By analogy we might call it a generalized, incomplete, confluent '
hypergeometric function (2'3). We will encounter a number of special
integrals as we proceed. There 1s really no need to name them since they have
not been tabulated in standard references anyway. We only need to evaluate
them by any one of a number of standard methods, provided we reed a
time-dependent solution. Usually a phase plane solution will do. 1In the
chapters which follow we will'give examples of time-dependent solutions
together with metheods of evaluating the special integrals by simple
procedures. With the advent of electronic calculators, there is no need to
create tables of integrals. Particular cases can be evaluated as needed by a
few operations on a hand-held calculator, by the push of a function buttcn on
a slightly larger calculator, or by means of a subroutine if one's calculator
is fully programmable, Once P(t) is found, we can use Eq (2.20) to find the
solution in the 5, t plane as well as Eq (2.15) to find M(t).

Alternatively, we can find [1-(#0/M°)P] from Eq. (2.20) and use it in
Eq (2.17) to find
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dt = - [k )/(aX ¢ )] [1+(2/a) P14 "ab (2.31)

in the ﬁ, t plane. An integration gives

[uVasc x ¢ /L eM )] (-t ) = D (elz, Z) (2.32)
where D has the same form as Eq (2.29), but

Z =1+ (S7a)p? (2.33)
is the limit instead of X as in Eq (2.30). Of course xo = Zo.

For the special case ¢ = 0, a similar procedure can be used. By
integrating Eq (2.25) we find

R 1
[CuP )/Ce.M)] (t=t ) = d T/f' x~1/2 ¢ Mx-Byy (2.34)
00 1l o o X
with

1

1/¢
X=14+1n [1-(uo/Mo)P] (2.35)

whare €, = uokﬁoz/(Za). By using [1-(uo/M°)P] from Eq (2.25) in Eq (2.17)

with ¢ = 0, we find
N 1 ¢
: - o4 . =1/2_¢1(x=1)
[(uoPo)/(<1M°)] (u-to) =d :/; X e dx (2.36)
with
7 = (P/P ) (2.37)

instead of X as in Eq (2.35). Thus Eqs (2.34) and (2.36) give the solutions
in the P, t and ?, t planes respectively for the special case c= 0.

Finally, let us note that the projectile mass never vanishes in cases
of interest.

First, for relatively small erosion rates, € >0 in Eq (2.18), we can
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use Eqs (2.15) and (2.16) to write Eq (2.20) as '

D1eGradi?] = (a(Era)b 21 (M )2/ o ) (2.38)

Clearly even for ?-+0, M= ME > 0 at embedment.
Secondly, for ¢ = 0, Eq (2.25) can be written as

. . -1 . 172
P = Po [1+¢1 . in (M/Mo)] (2.39)

30 for ?-*0, ME = Mo exp (-(1) > 0 for finite ¢;-
Finally, for ¢ < 0 we can write Eq (2.20) as

2|c|/(t%k)

(1S17a) ¥% = 1 - [1-(12|/a)§02]/(M/M°) (2.40)

Now if (lc l/a) §°2§1, then FS0 in Eq (2.17) and dP/dt3 0, so the speed
increases, stays constant or decreases. The only realistic case in

penetration mechanics is given by the lowermost signs. In this case also,

then, i

M. = M [1-(131/a)p 2ok/(2lcl)y 4 : (2.41)
E o] o

In short, there should be a residual mass in every case of practical interest,
although it may be so small that it cannot be observed in practice. The only
cases in which the penetrator can be completely eroded involve either no

change in speed or an acceleration during penetration. While these cases are
mathematically possible, they do not occur. The extreme case of no i

penetration at all (P = ¢ always, the case of mud splattering on a steel |
plate) involves no speed charge and complete erosion, but is of little
practical interest. if'ter noting this case, it is hard to imagine a case in

which ac.celeration coulc occur,
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3. A Standard Jet

a. Formation

The jet we are considering in this report is formed from a ua° copper
cone (81 mm base diameter) collapsed by composition B explosive. In chapter VI
below we will describe this jet in more detail and note that its formation
rate, &R’ and its stretching rate are both constants to a good approximation.
We will also note that its formation rate is about ten times bigger than its
erosion rate even in dense, hard tairgets like armor steel. Consequently, for
penetration during jet formation it is a good approximation to take the mass
change rate to be a cqnstant, ﬁo, which is not much smaller than the formation

rate, MR:

M = &R - ﬁp:: &R = &o ‘ . (2.42)
This approximation will be used only for penetration during jet formation,
which for a standoff of about two cone diameters mighg_last for only ten
microseconds (compared to 300us for the entire penetration). This
approximation is good enough for our purpose an:d enables us to write explicit
solutions at early times. After jet formation is complete (ﬂRa-O), the mass
change rate in Eq (2.42) is M =--Mp
used Eq (2.42) for penetration of a semi-infinite target by either a rod or a

2 - “oﬁ by Eq (2.14) as for a rod. If we

Jet, we would face a problem near the end of the embedmernt. With ﬁp a
constant in Eq (1.19), P and S would differ by a constant and could not vanish
together at tE as they do in Eq (2.16). A constant ﬁp woul? f?rce us t?
assume that erosion stops before penetration stops so that P+ S before S+0.
This would introduce an unobserved discontinuity in P. Eq (2.16) also implies
a discontinuity in P if there is a discontinuity in erosion (uo-*O for t<tE).
but does not force us to assume that this occurs so that P and S may vanish
together at tE'
If we integrate Eq (2.42) we find

M=M Mo (t-to) (2.43) )

e}

If we use Eq (2.42) in Eq (1.28), we find

Cz=zP - (MO +u) IO (2.44)
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80 dé/dt = d§/dt. We can use these relations in Eq (1.34) to find

. ° - - ® 2
My {1+(M°/M°)(t-t°)] dP/dt = - (aF + bgP + cP ) (2.u5)

which is separable. The constants durihg formation are

Wi
*z3

u
[+

1

4
~~
=
e

1y )(M°+2MR) (2.46)
and

Op

b+ gﬁR : (2.47)

with the inertial coefficient ¢ unchanged. Here the effect of erosicn appears
in the relation ﬁo < &R (Eq (2.42)]. Eq (2.46) says that formation and
stretching tends to counteract the resistance due to target hardness, and in
fact overwhelms it as we shall see (3p< 0). However, Eq (2.47) says that
formation leads to a resistive term proportional to P even when viscosity 1is
negligible (b = 0). Thus the net effect of formation modified by erosion and
stretching will depend on target and penetrator properties as well as the
speed and must be assessed for individual cases.

The solution forms for Eq (2.45) depend on the value of the
discriminant

- - 2
For AF >0,
P= StanY - 8 (2.49)
- + Y -
P = (Molc) exp (cFYo) J - (3MO/M°) {exp [eF(Yo-Y)]-1} (2.50)
Y = tan™! [(F+8)/61 = Y_ = 1n [1+(H_/M ) (t-t )1"°§ (2.51)
- = Lo = A0 LT M=, .
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Yo
J i/: exp (¢ ; x) tan x dx (2.52)

with & = YA 7(2¢), B = by/(2c) and e gte 28 AAZ. The special integral in Eq

(2.52) 1s mentioned by Gradshteyn and Ryzhlk who point out that it cannot be

expressed as a finite combination of:telementary functions (2.&). The first

form of Eq (2.51) is simply Eq (2.49) solved for Y. When this is used in Eq

{2.50) and Eq (2.52) we have the solution in the P, P plane. The second form .
in Eq (2.51) gives Y(t) and may be used in Eq (2.49) to obtain the solution in

the ﬁ, t plane (which.is expressible as a finite combination of elementary

functions), or in Eq (2.50) to obtain the solution in the P, t plane,

For 8, = 0, F = a_ (1+b/4E_/0)?,

Peoa (I(F /372 4 2/¢ 1770 | (2.53)

P = (M /c)(F /a) /RE) - (aM /M )lexp(2)-1] (2.54)

' - =172 - =172 .

Z =g U(F/AY) - (F /20721 < 1o De(H /M) (-t )] (2.55)
PR

E :f x exp (x) dx : (2.56)
(o]

s = ﬁo/‘JEFc. The special integral in Eq (2.56) might

with « =—\1§F/c and €

be called an incomplete exponential integral.

For A_<0O,
—_—-r—-

P= (v -~7G)/(1-G) (2.57)
€=
Pe M /3 6 T Iv'B (1eeg) - TBLCP] (2.58) o
. - . - . -1/¢ s

G = (P-Yy }/(P=7) = G, [1+(MO/M°)(t-to)] F (2.59)

GQ -] wtgx
B (eE) :/ﬂ (1-%x)""x" Fax (2.60)

G
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—_— T

{
i

Hith( = M /- AF
+ - —
Y7 = (=bp 2V=dp)/(2c) (2.61)

the special integral in Zq (2.60) might be called a generalized incomplete
beta function.

b. Stretching
When jet formation is complete (t = t1), ﬁR = 0 and M= - uoﬁ, sc
M= M1 T (P-P1) (2.62)

vwhere M1 and P] are the mass and nose position at time t,. If we use

M=z - uoﬁ in Eq (1.28), we find
C=kP -1y (2.63)
so dC/dt = kdP/dt and Eq (1.34) becomes

KM, [1=(i /M )(P=P)] BdB/AP = - (a+DB4TH) =-F (2.64)

after using dP/dt = PdP/dP. Now

b

B.+%%g (2.65)

-

and

c=C = IO}%Z (2066)

with a unchanged. The form of T in Eq (2.66) is almost the same as for an eroding
rod in Eq (2.18). However, for a stretching jet (> 0) Eq (2.65) says that
there is a resistive force proportional to §, provided erosion takes place,

contrary to the case of a non-stretching rod (with negligible viscosity,

o
!
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b = 0). Jet stretching reduces the area A and so increases I,: (ZR“A)-1. One

effect of this is to increase Ipoz in Eq (2.66) which tends %o make C closer

to zero, and decrease target resistance. Another effect 1s to increase b.

The net effect of erosion and stretching is complicated and must be assessed

for individual jet/target combinations. When Ca0 we have a situation close

to the classical density law, as we say in Eq (2.27), modified not only by

target hardness but also by the interaction between erosion and stretching,

expressed by Iouoﬁin Eq (2.65). In some cases, the net effect may not depart )
greatly from the classical density law.

Now the form of the solutions depends on

A= 4al - B2, (2.67)
IfA> 0,

(P-P) =(,/4) {1-(F/F1)tk/2exp [Tk*(Y,-1)] (2.68)
Y 3 tan~! {(b/a) + 87} (2.69)

where F 1is given by Eq (2.64) and subscript 1 means at time

t1. Here ¢ = uo{E is the dimensionless erosion rate, k = 1 + Iouo as before,
B* = 513 and «a = /(22). Eqs (2.68) and (2.69) give the solutions in the P,
P plane as a finite combination of classic elementary functions. We can solve
Eq (2.68) for [1-(u,/M;)(P-P,)] and use it in Eq (2.64) to obtain

KM, (F/F1)‘k/2exp [Cws* (Y -1)] db/dt = - F (2.70)

which is the differential foram in the ﬁ, t plane since Y and F depend on B.

This equation is separable, and an integration gives us

(t-t)) = kM1F,"‘k’2exp (<xg'y,] (2.71)

P -
1 - - .
D" =/ F**/2" exp [-CkB™Y] dP (2.72)
b
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These equations give the solution in the t, P plane. Once we know P(t), we
also know F(t) and Y(t) and so P(t) from Eq (2.68) as well as M(t) from Eq
(2.62).

If8= 0, F = a (1+b/h/8)2, so

«k/2 -1/2
(P-P,) = (M,/u)) {1-(F/F,)

-1/2

exp [ek{(F/a) -(F,/a) 11} (2.73)

again expressing the solution in the P, P plane in terms of a finite

combination of elementary functions without special integrals as in Eq (2.68).

If we proceed as before, we find

(t-t,) = kMF, "/ Zoxp [Tk/F 1 D° C O (2.78)
b
p° f/; F%/2"Taxp (CkAF) ab. | (2.75)

As before, we have the complete solution in all three planes, once we know
B(t).

Ifa< 0,

(P-P,) = (M, /y) {1-(F/F1)‘k’2(c1/cf3"k’z} (2.76)
G = (P=y")/(Bu¥") (2.77)
vt o (B#4La)/(22) (2.78)

and B~= b/4/-A. As expected, Eq (2.76) expresses the solution in the P, P
phase plane as a finite combination of classical elementary functions.
Proceeding as before, we find

o (Ek/2) 8 (Ek/2)

1F1 1 (2.79)

(t-tl) = kM

o =[P1 pl(Ek/2)-11 [-(87) (Ek/2)] (2.80)

If A< 0, because € = 0, F = a + bP, s0
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(P=P) = (M /u) {1-(F‘/F)(a!b)(kuo/b)exp [-Cky /B) (B -P) 1} (2.81)

and

(t-t,) = ke F @OV oy (ot /B)B,1 D (2.82)

Pl p=014(a/B) (kig/B)]

D= exp [(kuo/ﬁ)x] dx , (2.83)

P

Instead of wofking with special integrals which involve § as a limit,
we can of course work with the inverse functions and express p symbolically as
a function of t, instead of t as a function of E. There is no particular
advantage to this procedure, however, so we will not adopt it.

For a constant mass change rate, the approximation we are using during
Jet formation, Eq (2.42), we can express P(t) as a finite combination of
classical elementary functions, Eqs (2.51), (2.55) and (2.59), while solutions
in the ?,P and P,t planes involve special integrals. For a mass change rate
proportional to the nose speed, we can express P(?) as such a finite
combination, while solutiomns in the P(t) and P(t) planes involve special
integrals.

¢. Fragmentation

As we shall note later, the jet we are considering starts to fragment
at the front first (at time t2) since the front is thinner than the rear (Jjet
taper). The fragmentation process proceeds to the rear so rapidly that for

t>t, the remaining penetration is accomplished by a train of fragments which

are ipproximately identical in size and shape although their striking speeds
are smaller the closer they are to the rear of the jet. These fragments tend
to yaw and become misaligined as time goes on and may encounter interference
from eroded target and/or jet material which enhances their misalignment
and/or yaw. Such matters are highly dependent on the original standoff and
the properties of the target and jet. Since interference, yaw and
misalignment require a three-dimensional treatment, a detailed theory (which

ought to be statistical in nature) is beyond the limits we have set for
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ocurselves in this report. A later report will discuss such matters
theoretically. In this report we will adopt a temporary expedient, an

efficiency factor, in place of a theory. This will be explained in Chapter VI.

below. When stretching ceases (j = 0), each jet fragment can be approximately
described as a rod, using the theory of section AZ above.

B. Dimensionless Solutions with Viscosity

So far we have not included viscosity in our solutions, except for section
A3 above for a jet. This was done in anticipation of the cases studied
below where viscosity does not seem to play a significant role. Viscosity was
included for a jet in Eqs (2.47) and (2.65), not because we have any evidence
that it is more significant for a jet, but because jet formation and
stretching factors require us to include a term invotz}ng the first power of
the speed in any case. Actually, the presence of such factors makes it even
more difficult to discern the role of viscosity. In this section we include
the viscosity term even for pre-formed, non-stretching penetrators for the
sake of completeness and as an aid to possible future use.

Sometimes non-dimensional formulations can be useful, especially if cases
with different parameter values can be represented by a single curve. Such
formulations are also more general since they require no choice of a system of
units. However, the indiscriminate use of dimensionless formulations in
reporting experimental data can often mislead rather than clarify, especially
if such data are not accompanied by the original dimensional data. For this
reason we always use dimensional formulations in our examples below. Finally,
the choice of a dimensionless representation is not unique, as we shall

illustrate by a few examples.

1. Constant Massg Projectile

If we add (-b3) to the right side of Eq (2.1), the form of the

solutions will depend on the value cf the discriminant

Az bac - b° (2.84)
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Let us introduce the dimensionless time

T = @/ac/Mo)(t-to) (2.85)

as well as the parameters 8% = bAA and 8~ = bW-a.
For A » 0, let us choose the dimensionless displacement

o= (e/M)(5-S) = 1n (cos¥/cosY ) - g* (Y_-¥) (2.86) :
where Y = tan'1(v+ﬁ*) =Y, - T (2.87)
with v = §/tWa /(20)] - - (2.88)

being our choice of dimensionless speed. In the v,T -plane the solution is
then .

v = tan (YO-F) -g* (2.89)

which is found from Eq (2.86) with v = = do/dY = do/dT, or by solving Eq
(2.87) for v. Use of the two forms for Y from Eq'(2.87)'iﬁ BEq (2.86) gives
the solutions in the o,v and o,T planes. For embedment in a semi-infinite
target, T varies from zero to‘¥E = Yo-tan'1(ﬁ+), while v varies from v_ to

' g
in Eq (2.86)., If P = S - Sy = T,» the target thickness, is our perforation
eriterion, then replacement of (S - So) by To in Eq (2.86) gives us Yp which
can be used to find (Yo-?) or T in Eq (2.87) and so v_ in Eq (2.89). Such a

P
choice of dimensionless solutions is not unique, of course. For example, we

zero and ¢ varies from zero to °g which can be found by using YP = tan

can use ?/TE which varies from zero to one as does o/cE while v/vo~varies from
one to zero for a semi-infinite target, and so on.
Another formulation might use o =VA /(lzc) and

T = of =A/(Bac)T = [ﬁ/(zno)](t_to) (2.90)

instead of Eq (2.85), replacing T by Ta in Eqs (2.87) and (2.89). Since
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/1, = ?/?E, there is some advantage to using ratios. In another type of

E
problem where lLac is exgected to be less important than bz, we might use a

|8 o ov ar'we o gh

tormul;tion involving -A/b2 = 1/8” and dimensionless time (b/Mo)(t-to).

For 4 = 0, b = 24ac, F = a(1+v)2, and

o = 1n [(1+v ) /(0] = [Caw) ™ o (ev )71 (2.91)
- =1,-1

vV = ;T+(1+V°) ] -1 (2.92)

o =1n [1+(14v )T ) = 7 - (2.93)

where T is still given by Eq (2.85) but

-
b
—

v = $/vare (2.94)

instead of Eq (2.88). For v = 0 in Eq (2.91) we find ?E = v°/(1+v°) and o
from Eq (2.90), and so on.
For A< O,

o= 1n {L(1-6)/(1-G ) 3(6,/a) %} - 87 1n (c /@) '/ (2.95)
G = G° exp (-27) = (veB =1)/(v+f +1) (2.96)
T = [+ -A/(ZMO)](t-to) {2.97)

[(1-87) + (1+87)G1/[1-G] (2.98)

<
"

for v = S/(¥~a/(2c¢)1 instead of Eq (2.88) or Eq (2.94). In Eq (2.97) we have
chosen T to be like Eq (2.90). g
For cases with negligible viscosity, only the case A> 0 is of
. interest since a > 0 and ¢ > 0. Eqs (2.86) to (2.89) reduce in an obvious way
for 8% = b = 0,YA = 24ac to Eqs (2.2) to (2.5) or (2.7). E
!

Fig. 2.1 shows curves of a particular choice of dimensionless speed
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and displacement versus dimensionless time and each other for two values of b,
namely, b = 0 (A> 0) and b = 44 ac (A< 0). The curves for b = 24ac (A= 0)

lie between.

2. Eroding Projectile

Since we are adding (-bP) to the right side of Eq (2.17), the solution

forms will depend on
A= Bag - b2 (2.99)

where ¢ = ¢ - Iouozis given by Eq (2.18).
For A> 0, 1let a* =—w/A/(2€), B* = bﬁ\/A_ ’ Z= “o/z and k = 1 + “oIo ,

* +*
SO Pz a v, and ,

—

<o = (WM)P = {1-(F/Fo)‘k’2exp [-B%Ek(Y-Y )1} (2.100)
(F/a) = 1 + (b/a)(a*v) + (o/a)(a"v)? (2.101)
Y = tan™ (V+B+) : (2.102)

In this formulation o has the dimensions of speed, although ﬁ*. < and k are
dimensionless as are the variables o and v. When b = 8% = O,<z*+ a/c and Eq

(2.100) reduces to Eq (2.20) solved for P (P). Let

-ek/2

t= [a/(Ma*)] (t-t) = k exp (F*CkY 1 (F /a) (0" (2.103)

v - -
with D% i/. > (F/a) K 2" Taxp [-B%ekY] dv. (2.104)
v

Here T and D' are both dimensionless. When b = B+-+ O,°*+ WE/E, Eq (2.103)
reduces to Eq (2.32), since « = (uok)/(zé) = ek/2, Xo = 1+ voz by Eq (2.30)
and (F/a) = 1 + v2 = x from Eqs (2.101) and (2.29), so D'+ D.

Frem Eq (2.15) and Eq (2.100) we can define a dimensionless mass
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me MM =1 - (o ' (2.105)

Once we know v(T) from Eqs (2.103) and (2.104), we can find g(v) or g(¢)
from Egqs (2.100) to {2.102) and m(v) or m(tr) from Eq (2.105).

ForA =0, let P = av =+a/c v, 80 (F/a) = (1+v)2, and

€3 = 1- [(1+v)/(1+vo)]‘kexp [:k{(u-v)‘"1 - (1+vo)-1}] (2.106) -
T= [a/(M@)] (t-t ) = k(1ev ) -ekexp [-2k(1+vo)-1] ° (2.107) .
v P - -
p° f ° (1av)* ¥ 2exp (Ck(14v) ™11 av (2.108)

v

Even though Eq (2.106) is somewhat simpler than Eq (2,100), it is still
transcendental and cannot be made separable by solving for ﬁ(P) explicitly.
Since b = ZJ;€n> 0 for A = 0, there is no analog in section A 2 above. The
analog of Eqs (2.106) to (2.108) appears in section A3 above in Eqs
(2.73) to (2.75). The solution forms are the same. Only the parameters might
differ (ﬁz 0, b P4 b). The same correspondence holds for other values of A ,
80 there is no need for a special non-dimensional discussion for Jjets.

For A < 0, leta":-J-Tl-/(ZE). 8-=b/1,-—.(1, P = a“v, so

<o= 1- (F/FQ)‘"‘/2(00/3)8 « k/2 (2.109)
(F/a) = 1 + (b/a)(a"v) + (S/a)(a"v)? (2.110)
1
C = (av-r )/ (a"v=v") (2.111)
vE o (obiqC Q) /(20) (2.112) ;
N
- o ;
= la/Ma ) l{t-t) = k(F /a)"*/%c Fek/2 (p7) (2.113) ]
]
v - - . )
D / O (pya)tK/2-1-F @/, (2.114)
v
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the analogs of Eqs (2.76) to (2.80). The analogs of Eqs (2.81) to (2.83) are
also easily written as are other special cases.

Fig 2.2 illustrates some non-dimensional forms with € as parameter and
no target viscosity. The curves with € = 0 in Fig. 2.2 are the same as those
with b = 0 in Fig. 2.1 above. When € = 1, (b =0), v=1 -1, g=1 (1-.51) =
5 (1-v2), so the solution forms are particularly simple. For large € = uo/E,
that is, large erosion rate, small E, v/vo decreases relatively slowly during
most of the penetratipn and very rapidly toward the end. The penetration
depth, o/cE, becomes more linear in time as does the remaining mass, M/Mo,
which approaches zero. This behavior is characteristic of high speed rods and
Jets before fragmentation, although in the latter case it is modified by the
fact that b > 0 even if b = 0. However, the square-wave approximation for
v/vo, indicated by the dashed line in Fig. 2.2 is not observed experimentally
as we shall see. Consequently, steady-state theories which assume this
approximation are not correct. Neither are quasi-steady state theories which

try to keep and yet reject this approximation.

3. Standard Jet

Once formation is complete, the solution forms are identical to those
for an eroding projectile in II.B.2 above. We only need to use ® from Eq
(2.65) instead of b.

During formation the solution forms depend on the value of AF.in Eq
(2.48). Let

- (MO/MO) (t-t) . (2.115)

For A I 0, let P = [‘\/Z_;./(Zc)] v =48v, and 8% = SE"‘MF’ so Eqs
(2.49) to (2.52) become

o= (e/M) P =Jexp (€Y) - (B/(2M)] (exp [€5(Y -¥)]-1)  (2.116)

- < .+
Y = tan~' (v+8*) = Y, - In (1+1) /EF (2.117)
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with tf} and J as before.

For A F 0, let P = EF/c vV zaVv, 80 (F/QF) = (1+v)2. and

Q
1]

(e/M)) P = E (1+v) - (ac/f‘lo) lexp (2)-11 (2.118)

[ ]
(1}

<o [(1+v)"-<1+vo)“] = 1n (1T) (2.119)

with €p and € as before.
- For A F < 0, let P = («/—AF/c) vzigv, gt = 7*/6-, so

o= (e/M) P = [g"B(1ve.T) - gTB(e.T)] ¢ F (2.120)

G = (v-g")/(v=g") = 6 (1er)'/¢F (2.121)

with ii-‘, and B as befors.




< III. EXAMPLES OF COMPACT PENETRATORS

E A. Semi-infinite Targets

‘y 1. Phenomenology
¢
4
:ﬂ When a brittle sphere strikes a thick target above a certain threshold
speed it breaks into pieces and penetrates as a more or less compact .

n collection of fragments. Just below the threshold speed the sphere recovered
from the bottom of the crater after target sectioning will appear to be i

intact. However, there will be cracks, some nearly Jjoined to each other and }

the projectile surface, such that the removal process may cause the pieces to

separate. As the striking speed increases, the number of pieces recovered

i also increases until a speed is reached at which Tt 1s appropriate to speak of

ij projectile shatter. Fig. 3.1 shows the number of pieces recovered as a

\ function of striking speed for two sizes of hard ateel spheres impacting a

P

'ﬁ mild steel target. The speed at wnizsh breakup segins can be called éoF’ the
13 striking speed threshold for fracture. The larger (20 mm diameter) sphere
i% breaks into more pieces at a given itriking smeed —aan the smaller (12.7 mm
a diameter) but has about the same tireshold speee-. .
.ﬁﬁ Fig. 3.2 shows the number of pieces rwowe=ed for the 20 mm sphere
.$: impacting three types of steel target of differemnt nardness values. The

ﬁ lowest curve.is the same as in Fig. 3.1. The uppermost curve is for the

hardest target. Clearly, target hardness as well as projectile diameter (and

| hardness) influence the number of fragments produced. However, within the

1§i experimental accuracy available, there is almost no influence on the threshold i
;2 speed, éop‘ Near éo = 1 mm/ii7 the rate at which the number of fragments
increases with striking speed seems to decrease. One might conjecture that by
Q&: 1.5 mm/us, the projectile is shaltored to such an extent that further
i% pulverizatior will make little difference in the penetration process. More

X will be 3aic ztout t1is below. Figs. 3.1 and 3.2 are taken from a report by

e o (7.1
welmann =
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When a ductile sphere strikes a target, it flattens out, so that its
time-average cross-sectional area presented to the target, A, is greater than
its initlal cross-sectlional areaa, Ao. This is illustrated in Fig. 3.3 which
shows a series of 12.7 mm softened steel spheres recovered from hard aluminum
targets (3'2). As the striking spaed is ilacreased from 0.7 to 1.6 mm/is, the
recovered projectiles are found to be progressivelf more flattened, but are
still unbroken. The radial (D.) and axial or longitudinal (Dl) diameters
given in the Figure measure this effect. The crater depth or deepest position
of the projectile nose at embedment, PE' is also given. For éo = .863 mm/us,
PE is less than the original sphere diameter (Do = 12.7 mm) but greater than
the deformed longitudinal diameter (Dl = 10.75 mm). For-lower striking speeds
the sphere is not yet buried in the target and is easily removed if it has not
already rebounded. For higher speeds, some rebound may occur, but friction
can keep the projectile from leaving the target. A small air gap may exist
between the projectile and the ¢rater bottom at least for hard spheres, so it
%s necessary to section the target in order to obtain a true measure of PE

3'3). At still higher speeds this gap disappears and the front of the

flattened projectile is found in contact with the crater bottom.

Fig. 3.4b shows a flattened steel sphere at the bottom of a steel
target crater after an impact at about 1.5 mm/ys. Fig. 3.4a shows
progressively larger crater cross sections corresponding to higher striking
speéds (1.5 mm/us at the left to 3.75 mm/us at the right). The original
sphere is also shown below the last crater for comparison.' No mass loss was
reported in any case. However, incipient fragmenting of the sphere was
indicated by cracks at the higher speeds. The target hardness near the crater
wall was also observed to increase from its initial value (its value far from

the crater after imbact) by about fifty percent (3.&)'
Target density as well as target hardness has an etffect on flattening

or shattering a compact projectile as we shall see. There i3 some indication
of this if we compare Fig. 3.3 (steel vs. aluminum) with Fig. 3.4b (steel vs.
steel) for about the same impact speed. In Fig. 3.4b there is already an
indication that the projectile is beginning to turn inside out with its final
configuration resembling a mushroom cap (without the stem). Even at the
highest speed in Fig. 3.3 there is not yet an indication of this shape.
However, such a shape will result at still higher impact speeds, if the
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. Sphere Shape éo PE Dr D1
(mm/us) (mm) (mm) (mm)

C.T26 10.b 13.06 11.62

0.863 11.3 13.67 10.75

1.073 15.2 1b4.53 9.45

1.182 17.6 15,07 8.77

1.391 19.0 17.80 6.95

1.637 22.1 19.50 6.16
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targets after impecting at various speeds, éb.

Fig. 3.3. Shapes of softened steel spheres recovered from hard aluminum
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1.5 mm /us 2.2 3.8 4.0
' (a)

Fig. 3.4, Craters formed in steel plates by steel spheres.
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projectile does not shatter. Of course, after-impact observations such as
these do not tell us how the projectile shape changes in time during the
penetration. We might conjecture, however, that scmething close to the final
shape 1s assumed at earlier times for higher impact speeds. Since we have nc
evidence about time-dependent shapes, we will deal -only with the time-average
presented area, A, in this report.

Crater shapes are highly dependent on target properties even for
spherical projectiles. Fig. 3.5 shows various shapes in different target
materials, all produced by the same size aluminum spheres (D° = 6,35 mm)
striking at the same speed (éo =3 mm/us). The crater in the soft aluminum
target is nearly hemi-spherical, except for a large lip at its mouth,
indicating extensive plastic flow. Very little target materisl has been lost
and the process is almost pure deformation. The cratér in the cast iron
target has very irregular walls. There is a slight rise rather than a lip and
brittle fracture has caused most of the target material missing from the
crater to be ejected. The crater in the titanium target is conical. ‘Various
plastic materials (elokfron or perspex) exhibit quite different shapes. In
spite of their generic name, many polymer plastic solids are quitae trittle
under impact conditions and undergo extensive cracking in the neighboirhood of
an irregular crater. This Figure is taken from Smith and co-workers (3'5).

Similar effects concerning the dependence of crater sizes and shapes
on target properties have been reported by Pond and Glass (3'6). These
authors note that shock loading of singlefcryétal and polycrystalline
specimens result in different fracture phenomena, with craters in single
crystals influenced by the orientation of the crystal. Even pre-straining
versus annealing polycrystalline specimens can result in significantly
different craters produced by nominally the same projectile impacts.

The deformation of solids at slow rates is fairly well understood,
although the mathematical descriptions can get rather complicated. The
response of solids to high-speed loading is poorly understood, especially when
fragmentation caused by the interference of compression and rarefaction waves

occurs. Rinehart has published a series of piloneering works on the subject
(3.7 to 3.9)
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Fig. 3.5.

4;4,{.;, i%!_, o § s i
(b) ELEKTRON

(e) PERSPEX

Typical craters formed in varlous targets when
attacked by 6.35mm Diameter Aluminum Spheres at 3 mm/us.
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Much of the variability in penetration mechanics experiments can be
attributed to the variability of penetrator and target materials. This is
sspecially true when fragmentation phenomena of any kind occur, since these
are usually controlled by unknown defect distributions present in individual
specimens which are only nominally the same. Practical interest focuses on
the average performance to be expected from varinus batches of nominally the
same materials and various lots of devices manufactured to nominally the same
geometrical dimensions. Whether or not we have a basic understanding of the
phenomena involved, we eventually desire a statistical formulation of some
kind. In previous reports the present author has made some contributions to
the subject (3.12 to 3'13). ~In this report we will not euplcy .uct mciels.
Instead, we will use average values of parameters to represe:t and lescribe
the average performance to be expected.

In this chapter we will give a number of exam, iex of comyaict
projectile penetration, limiting ourselves to spheres as ro.resentative H»f
this class. Cubes, discs and pellets of more irregular -uipes ~sn exhioit
some shape dependence in penetration, at least at lower speeds, Th~

4 ) differences are ugually minor and are customarily descilbe? »>r a “share
factor” (3.1&). Many of the examples we will use in this chapter firsc

appeared in a series of seven symposia on hypervelocity impact whicn lasted

from 1955 to 1965. In the middle of this period, Charters (3°13)
article which described the_common interests in penetration shared by two

: scientific communities, namely, those interested in space exploration which

involves protectgon of space craft from meteorites as well as the study of

wrote an

meteor craters on planets and their satellites, and those interested in
military matters such as the attack and defense of armored vehicles and
fortifications. The considerable overlap and convergence of these fields was
evident then and is again evident in the Strategic Defense Initiative. -Some
of our examples will also be taken from individual reports, especially some
published after 1965.
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2. Examples

a. Hard and Soft Steel Spheres versus Steel

who measured crater

Let us begin with an example from Weimann (3'1)

depth, PE' versus striking speed, éo' for 12.7 mm diameter steel spheres
impacting a mild steel target. There are two sets of data in Fig. 3.6. The
upper set with the sharp break near 0.8 mm/us was obtained with hardened steel
spheres, while the lower set was obtained with spheresdeliberately softened to
make them ductile., The effect of soft sphere flattening from 0.5 to 1.0 mm/y8
is evident in the lower penetration depth achieved with these spheres compared
to the hardened spheres. For the hard, brittle spheres there is a greater
increase in penetration with increase in striking speed even beyond the
fracture threshold speed. At still higher speeds, PE at first decreases
sharply and then increases again at a lower rate, socn exceeding the local
maximum exhibited near 0.8 mm/ys. Above 1.5 mm/us the two data sets merge and
it seems L0 make no difference whether a sphere is deformed by shattering or
by flattening. The information in Fig. 3.6 should be compared with that in
Figs. 3.1, 3.3, and 3.l above.

It is interesting to note from Fig. 3.1 that the hardened 12.7 mm
sphere has already broken into two pieces at 0.5 mm/Ms. However, the pieces
are still together in the original spherical shape after the penetration. By
0.75 mm/us, the sphere has broken into five or six pieces. However, there has
not been time during the penetration for the pileces to separate and affect the
motion. In the range from 6.8 to 0.95 mm/us, the penetration decreases with
increasing speed. Now there are enough pieces that they do not remain
interlocked during the penetration. Instead, they spread apart and present a
larzer cross-sectional area to the target which impedas the penetration. Near
1.0 mmAM s this average area is almost as large as the area presented by the
softened, flattened sphere, since the penetration is not much greater. Near
1.0 mm/us the final sphere area in Fig. 3.3 has increased abcut 30% after
impacting an aluminum target. As noted in our discussion of Fig. 3.4, we
expect the increase to be larzer than this against a steel target. Above 1.5

mm/us in Fig. 3.6, the areas of the shattered sphere and the flattened sphere

:
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must be the same, since the penetration depths are indistinguishable. There
seems to be no mass loss for either sphere during the penetration, although
plieces of the shattered sphere might fall out of the target block if it is
oriented to permit this.

For a constant mass projectile, the penetration depth is given by Eq
(2.11). We recall from Eq (1.3) that a = 3Y:A and from Eq (1.4) that

C = 'SDtA' so the inflection point, Va/c =VBYt/pt, depends only on target
properties and is independent of A. Since A = Ao (A/Ao), then the time
average value of the inertial coefficient can be written as C = CO(A/AO) where
the initial value is C_ = .5p,A_ = .5¢,(r '/u)ooa. The mass is
3
M = = ( .
ﬂp(1r/6)Do » 80 M_/C _u/3)D°(pp/pt)

o
Eg (2.11) becomes

Pe = [(¥,/C)/(A/A)11av 1 +(S AT, /6 )2 (3.1)

For the mild steel target used,BHN ~125 kg;/mm2 or Yt-u0 X 108dyne/cm2. Since
Py = 7.85% g/cm3, we fiand the inflection point to be 03.55 mm/Rs. Since D° =
12.7 onm, Ao = 127 mm2=1.27c:n2 and Co = 4.97g/ce = 0.497g/mm. The mass was
reported to be M, = 6.36g so M /C, = 16.82 mm. Since Dpzot this should be
equal to (4/3) D° which implies that Do was actually 12.6 mm and only
nominally 12.7 mm.

Witp theue values and A/Ao = 1, we ~an calculate the uppermost dashed
curve in Fig. 3.6. This coincides with the solid curve connecting the hard
sphere data points from éo = J to éo = 0.75 mm/us. This agrees with the fact
that the hard sphere does not change its shape in this range, whether unbroken
(n < éo < 0.5 mm/us) or broken (0.5 < éo < 0.75 mm/us). In cnntrast, the
softered sphere has noticeably flattened by S° = 0.4 mm/us. By
So = 0.75 mm/ps, the penetration depth is only about 5 mm instead of 9 mm as
for the hard sphere, This implies (A/Ao) = 9/5 = 1.8 in Eq (3.1). The lowest
da~hed curve in Fig. 3.6 is 5/9 of the uppermost dashed curve. These two
curves bound the two data sets. Apparently the softened spﬁere area does not
change nmuch for impacts between 0.6 mm/us and 1.1 mm/us since the data points
lie close to the lowest dashed curve. However, for higher speeds, the time
average area during a penetration becomes smaller, because a mushroom cap
begina tc form as the rim of the flattened sphere flows back and trails behind

the center rear. By éo = 1.5 mm/us the data points for the soft sphere have
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Joined those for the hard sphere and lie on the middle dashed curve for whigh
(A/Ao) = 3/2 = 1.5 in Eq. (3.1). This curve coincides with the solid curve
which Joins the data points above S° = 1.0 mm/¥s. Tr2 fact that It passcs
through the soft sphere data point near S° = 0.4 mmAis, irndicates the amount
of flattening that has taken place at this speed. -Between 7.75 mm/us and
0.95 mm/us, A has increased from A, to 1.5 A, for the hard sphere because of
shatter. However, no further increase is indicated for a.s' .~ impact speeds.
This might mean a sharp leveling off in the number of pie.ar Jbove-1.0 mm/us .
as for the 20 mm sphere in Fig. 3.1. Further pulverization Lirobably takes
place at higher impact speeds. However, once there are enough pieces for the
shattered sphere to assume a compact shape, further subdivision does not seem
to change this shape. _

In this description we have not used Eq (2.22) for an eroding
penetrator since no mass loss was observed. In addition we have assumed that
viscosity is negligible. Thus, for esample, for P=S=1 mm/us, we have
assumed from Eq (1.16) that

b=6vVrAn<< a+cs .54 (3.2)

2 2

since a = .12A gmm/us2 and ¢ = .39Ag/mm, so eS< = «39A gmm/us2 for A in cm
not much la}ger than Ao = 1.27cm2. Eq (3.2) then implies

n <<.05g/(cm- us) = 5 x 10"3/(cm-s) =5x 10“ poise = 5 x 103pa-s. Walters
(3.16) quotes values of n both larger and smaller than this for steel,
depending somewhat on strain rate, but more on the laboratory making the
measurement. For example, investigators in the United States generally find
nn 102Pa-s, so that viscosity would be negligible in the present case. If n
is indeed as small or smaller than 102Pa-s = 1033/(cm-s), then b < .012g/us
from Eq (3.2) and bS < a, = .15 gmm/u32 < afor §< 12.5 mm/us. Tanis is far
above the speed range covered in Weimann's experiments. Although the
uncertainty in measured values of viscosity remains, there is another reason
for neglecting it in the present case. If it were a significant factor, then
the calculated penetration for undeformed spheres, the uppermost dashed line
in Fig. 3.6, would lie below the solid (experimental) curve for

éo~i 0.75 mm/us. Since the agreement between theory and experiment is so good

without including viscosity, we are justified in neglecting it.
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b. A Hard Steel Sphere versus Two Steels

|

Next let us consider some data reported by a co-worker of Weimann. i
Senf (3.1 impacted the same 12.7 mm hardened steel spheres against steel
targets of three different hardness values, all harder than the target
material used in Fig. 3.5. The two data sets in Fig. 3.7 are for the softest
and hardest targets Senf used and even the softest target allows less

- penetration than in Fig. 3.6. As expected for hardened, brittle spheres, both
data -sets in Fig. 3.7 exhibit an impact speed range where the penetration
declines because of sphere shatter.

The target material used for the upper solid curve in Fig. 3.7 had
BHN*--ZOOkg/mm2 which is 1.6 times harder than the target material in Fig. 3.6.
Since the target density is unchanged, this shifts the inflection point up by
A.6 to 0.7 mm/us which replaces 0.55 mm/us in Eq (3.1). With this change and
for A/Ao = 1, we can calculate thue uppermost dashed “curve in Fig. 3.7 which
agrees closély with the data up to éo,= 0.8 mm/us. When we use A/A° z 1.5, we
get the soli@ curve in Fig. 3.7 which passes through the upper data set above
1.0 om/us. '

A

We have not shown this as a dashed curve below 1.0 mm/us to avoid
confusion with another dashed cu;ve.

Similarly, the target material used for the lower solid curve in Fig.
3.7 had BHN = 367kg/mm2. This shifts the inflection point to 0.94 mm/us, a
value which replaces 0.55 mm/Us in Eq (3.1). The middle dashed curve in Fig.
3.7 is then obt§ined by using A/A°,= 1 and agrees with the lower data set
below 0.7 mm/us. Letting A/Ao = 1.5 gives the lowest dashed curve in Fig. 3.7
which agrees with the lower. data set above 0.8 mm/us.

B B

From our discussion so far, we see that a rather simple theory, using
measured values of target density and hardness as well as projectile mass and

size, can describe observed variations in both penetrator and target hardness

values. The only parameter which might be considered adjustable is A Z_Ao.
This has been varied by 80% or less and follows available experimental trends.
We note that the shatter threshold speeds in Figs. 3.6 and 3.7 show some
variability much like that reported (3.1) w! .. the sphere diameter was varied
from 9 to 20 mm against 2 single target material. We conclude that the
shatter threshold for typical steel/steel impacts is about 0.75 + 0.05 mm/us

since fragmentation is involved.

59

bab pte LU S PUOARS . A SRV T RS WY

T ML WSS S Y R M I | W S LR S R R MR LSS ™ I R LR AR R AT UM R IR AR AR AN TN R E ] A BAR "R R LA P R ARAT ARANMALP AP Y T x meN



= A A ey =

.

O
T
" 2
—-' -~ *
o)
-t
[
7]
P
")
®
=
o
5
@
ou——— >
" [V
1 =
. 9
© 8>
« U3 Sa
w @
o &
ov
f
o
h-p
2%
)
Eh
= o
"! e
= N
[ ]
P
.
)
L]
]
ol
[
—
o »

A L SR WAt Mort S x SR sy

60

it Rt s SR EEA S VRN | Mas  rme » M) P S sied L ol o S { Smw | S | FG o S L PR

A M )t FBa P Lsme S ES L LS LS\ S AW L L EMAAES WP L W LA AW L, L R LW A




¢. Two Sizes of Hard Steel Spheres versus Steel

As mentioned‘above, Weimann (3.1) also reported data for 8.9 mm and 20
mm hardened steel spheres versus a steel target with BHN ~ 200kg/mm2. The upper
curve in Fig. 3.7 lies between the two curves in Fig. 3.8 since it is for a
12.7 mm hardened steel sphere. In Eq (3.1), M°~ID03 while C°~D°2 S0 MO/C°-
Do’ while the inflection point remains unchanged if the target material is the
same. Thus for A/A° = 1 and A/Ao =z 1.5 we should be able to obtain the lower
and upper branches of the curves in Fig. 3.8 by multiplying the upper solid
curve in Fig. 3.7 by an appropriate factor. For the upper solid curve in Fig.
3.8 we used (20/12.7) while for the lower solid curve we used (8.9/12.7). The
measured masses of the spheres were 32.62 g and 2.92 g respectively which
differ by an order of magnitude. The agreement between theory and experiment
is reasonable for éo > 0.5 mm/ns, but theory lies below experiment for lower
impact speeds. The reason for this is not clear. One might conjecture that
there were some differences in the hardening of the spheres or targets used.

What data there is for low impact speeds in Figs. 3.6 and 3.7 lies close to
the theoretical curves.

Palmer and co-workers (3-18)

also impacted hard steel spheres on a
variety of target materials and noted a systematic decrease in the shatter
threshold speed (the onset of penetration decline) with increasing target
density. Fig. 3.9 shows their data for seven target materials. For steel
they found a value somewhat higher than that observed by Weimann and Senf,
perhaps because of a difference in projectile hardness (not reported). Other
factors besides target density probably influence the threshold speed for a
given projectile.

In the military literature the sgeed range from the onsef of
penetration decline to that speed at which penstration again is as dees; as it
was at the threshold is called the "shatier gap" (3'19). In World War II the
Britisn two-pounder projectile failed to perforate arzmor when fired close to
the target, but perforated when fired from farther away (lower striking speed

below the gap), or at amuch higher speed (above the gap).
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d. Tungsten Carbide Spheres versus Copper

Now let us turn to some other projectile/target material combinations.
Atkins (3.20)
speads up to 3 mm/us. Fig. 3.10 shows his data for two sizes of WC spheres
(Do = 12.7 om, M, = 16 g) and (D° = 3.175 mm, M, = 0.25 g) so the masses

differ by a factor of 64. No strength was reported for the copper target so

gun-launched tungsten carbide spheres against copper targets at

we have assumed BHN-60kg/mm or Y = 18 x 108, uging Cm = ,30 x 108

(dyne/cm )/(kg/mm ) in Eq (1.1). Since the density of copper is about

8.9 g/cm3, we find the inflection point to be about 0.33 mmAys. We also find
C° to be 0.57g/mm and 0.036g/mm for the larger and smaller spheres
respectively. This gives us (MO/CO) equal to 28.1 mm and 7 mm respectively.
Now Eq (3.1) gives us the lower impact speed branches of the two solid curves
in Fig.3.10 when we use A/A° = 1 and the upper branches when we use

A/Ao = 1.55. The agreement with experiment is good even for low impact
speeds. Once more an increase in presented area of about 50% seems to account
for PE versus éo above 2km/s.

e. Tungsten Carbide Spheres versus Lead and Aluminum

Later Atkins (3.21) impacted WC spheres on other target materials.
The solid curve in Fig. 3.11 connects his data points for a 2.0g sphere (D z
6.35 mm) impacting a lead target (p £ i1. 3g/cm ). If Yt 5 x 108dyne/cm2
we find the inflection point to be 0.05 mm/ms. We find Co = .18g/mm and
(MO/CO) = 11.2 mm in Eq (3.1). For A/A°

solid curve to 0.5 mm/pys, while for A/Ao = 1,63 we obtain agresment for éo >

1 we obtain agreement with the

1.5 mm/us. The "shatter gap" in this case extends from 0.5 mm/us to 3.0 mm/us.
The soft lead target seems to allow a bit more spreading of the shattered
sphere pieces than the copper target, although its greater density might tend
to counteract this trend.

In the same paper he reported data for the same spheres impacting two
strengths of aluminum. The upper curve in Fig. 3.12 is for soft 1100-F, while
the lower curve is for 2014 (pt = 2.7g/cm3). If we use Yt = 10 x 108dyne/cm2
and 60 x 108dyne/cm2 respectively, we find inflection points of 0.47 mm/As and

1.15 mm/uUs respectively. Since Co = .043g/mnm, MO/C° = 46.7 mm.
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For A/A, = 1 in Eq (3.1) we find agreement with both data curves on
their low-speed branches (up to 2 mm/Hs), If we let A/Ao 2 2 we obtain the
high-speed pranch curves shown. Since there is only one data point on each of
these high~speed branches, it is difficult to claim agreement above 3 mm/us.
The greater spreading of the shattered sphere indicated by the large value
A/Ao = 2 can be attributed to the lower density of aluminum compared to lead,
copper or steel. The higher threshold speed of 2 mm/us compared to 0.5 mm/us
for lead is comparable to the trend in Fig. 3.9 for steel spheres versus

aluminum and lead targets.

f. Hard and Soft Steel Spheres versus Aluminum

In Fig. 3.3 we showed some data from Weimann (3‘2) for a softened 12.7 mm
steei sphere impacting a hard aluminum target (BHN'~125kg/mm2). His data
is plotted as the lower curve in Fig. 3.13. He also used a hardened 12.7 mm
steel sphere against the same target and his data points are connected by the
upper curve in Fig. 3.13. He noted that the recovered spheres began to break
above 1.1 mm/us. However, there is no evidence of a decline in penetration up
to the highest impact speed used near 1.6 mm/pus. This is to be expected in
view of Fig. 3.9 which indicates that Weimann stopped_;ust short of the
shatter velocity. The inflection point for this aluminum target is
43§—7:: = 0.9 mm/us for Yt = .37 x 108dyne/cm2 and pt = 2.7g/cm3, while
C, = .5(2.7)(1.27) = 1.Tig/cm = .171g/mm, giving MO/Co = 48.9mm for
Ho 8.36g. With these values in Eq (3.1) we obtain the upper curve in Fig.
3.13 for A/A, = 1 and the lower curve for A/A, = 1.67. As in Fig. 3.6, we
note a change of the softened sphere data points from the upper curve to the
lower curve as the sphere flattens with increasing speed. Presumably if

speeds in excess of 2 mm/us had been used we would observe a shatter gap for
the hardened sphere and a convergence of the two data sets at higher speeds as
in Fig. 3.6.

The steel targets in Fig. 3.6 and the aluminum targets in Fig. 3.13
all had about the same hardness value (BHN-125kg/mm2). Presumably tha
differences in penetration observed are attributable to the fact that aluminum
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(A/A4)= 1.00
(A/20)=1.67

@ HARD
O SOFT

So (mm/us)
Hardened and softened 12.Tmm steel spheres versus
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is only about one-third as dense as steel. The greater density of steel
targets causes more flattening ui the same softened steel sphere for a given
impact speed (A/A° = 1.8 versus 1.6/ for aluminum). It is also responsible
for a lower fracture threshold speed (.05 mm/us versus 1.7 mm/us) and a lower
shatter threshold speed (0.8 mm/is versus perhaps -1.7 mm/us) for the same
harderied ateel sphere.

The three figures for tungsten carbide spheres, Fig. 3.10 to 3.12,
were for targets of different densities and hardness values. The shatte:
threshold speeds decrease as the densi‘y increases in agreement with the trend
in Fig. 3.9 for steel spheresy. The soft aluminum was about as hzra as the
copper, while the lead target was more than an order of magnitude scfter.
Target density appears to be the factor which dominates shatter threshold
speeds rather than target hardness, rrovided the projectile is hard encugh %o
shatter rather than flatten. Projectile density may also play a role,
although we need more information before we can assert this with any

confidence.

g. Three Sizes of Hurd Steel Spheres versus Aluminum

Weimann (3.2) alsc used the same hard aluninum as a target for various
size hardened steel spheres. His data for 2. mm, 9 mm and 3 mm spheres appear
in Fig. 3.14. The measured masses were 32.6Ug, 2.925, and 0.11g, a variation
of more than two orders of magnitude. The solid curves in Fig. 3.14 were
calculatad by using Eq (3.1) with the same target properties as in Fig. 3.13
and with A/A° = 1, s0 the penetrations are proportional to the masses at any
given impact speed. Obviously the upper curve ia Fig. 3.13 lies between the
two upper curves in Fig. 2.14., In no case was the shatter threshold speed
reached. The deviation between theory and experiment for the 20 mm sphere
above 0.8 mm/us is attributable to the fact that the target block used was
only 50 mm thick, not thick enough to be a truly semi-infinite target. As
Woimann noted, these targets exhibited bulges on their rear faces, a
phenomenon which allows a greater penetration depth than a semi--infinite

target would allow.
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h. Al/Cu, Cu/Cu, and Cu/Al

In this section and the next we will examine combinations of soft
aluminum and copper used as projectiles and targets. Since the materials used

2
’y, a

had about the same hardness values (BHN‘~33kg/mm2 or Yt = 109dyne/cm
study of projectile/target combinations becomes a study of density effects,
provided we compare spherical projectiles of the same diameter. The notation
Al/Cu means a spherical aluminum projectile impacting a copper target.

(3.22) obtained data for pure aluminum

Goodman and Liles
2.7g/cm3) and pure copper (p = 8.83/cm3). Fig. 3.15 shows their data for
Do 4,76 wm (3/16 inch) spheres with Mo = 0.158g for aluminum and 0.496g for

copper. These reported masses imply either somewhat different densities or

(p

diameters than were actuaily reported. Their data for Al/Al has been cmitted
since it is ejguivalent to the upper data set in Fig. 3.16 and lies close to
the Cu/Cu curve a3 Lt should, since MO/C° = (M/3)D°~for Al/Al and Cu/Cu, so
the curves differ culy 413 their inflection points. We expect (A/Ao) to be the

same.

Using the reported densities and strengths, we find the inflection
points to be about 0.5 mm/Ls Jor alumini targets and 9.2% aw/us for copper
targets.

Thé two lower curves in Fig. 3.15 Alffe’ bz 1w of projectile mass or
density since M /C = (H/3)D°(po/pt) with D_ari p, \he same. If we use
(A/A°)=1.0, we calculate the lowest solid curve and if we use (A/Ao) = 1.4, we
calculate the middle solid cu.ve Letti., (A/A)) vary slightly with éo would
give better agreement but is not . stifiea in view of the approximate nature
of our model and the variability o. the expriments. It is remarkable that a
single value for (A/Ao) can give such good agreement over such a range of
impact speeds., The lower value of (A/Ao) for the aluminum sphere impliss that
the denser corper target not only turns it inside out like a mushroo-. cap h»
also keeps its rim from spreading out on average during the penetratic: any
more than the original diameter. That is, (A/Ao) = (D/Do)2 = 1 implies that
the average diameter during the penetration, D, is no greater than the
original diameter.

The two upper curves in Fig. 3.15 differ because of target density
which appears not only in MO/C0 but also in the inflection point. If we use
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(A/Ao) = 1,85 with the other reported values, we calculate the uppermost curve
in Fig. 3.15. This implies that the less dense aluminum target allows the
deformed copper sphere to spread out more than copper-target does. This does
not contradict the trend noted in section f above (Fig. 3.13) where a
comparison was made with Fig. 3.6. In those cases impact speeds below

1.6 mm/us were used and the spheres were flattened but not fully deformed and
turned inside out. The denser steel targets flattened the soft steel spheres
more than the aluminum targets Adid [(A/Ao) = 1.8 versus (A/Ao) = 1.67].
However, at higher impact speeis, wa might expect the aluminum targets to
offer less resistance to lateral aprecading of the fully deformed spheres.

This interpretation is compatible with the final crater diameters, Dc’
measured at the original target surface and reported by these authors. We can
compare the three curves in Fig. 3.15 in the 3 to 4 mm/us range where data was
obtained in all cases. For Al/Cu, De/Do~3, for Cu#Cu,Dc/Do~U4 and for Cu/Al,
De/Do~5. 1In other words, as the projectile/target density ratio, Dp/o !
increases from 0.3 to 1.0 to 3.3, and Dc¢/Do increases from 3 to 4 to 5, we
find A/Ao increasing from 1.0 to 1.4 to 1.85 or D/Do increasing from 1.0 to
1.2 to 1.4. For lack of time-dependent information on projectile shapes, we
must be content with noting these trends.

Both the final crater depth, PE, and final crater diameter at the
surface, Dc’ increase as S° inereases. For Cu/Cu, PE/Dc is roughly equal to
the hem:izpherical value of 0.5 over the speed range investigated. However,
for Al/Cu this ratio increases from 0.3 to 0.4 over the range investigated,
while for Cu/Al it declines from 1.0 to 0.9. Presumably for high enough
impact speeds the hemispherical value will be reached. Near éo = 3.0 mm/ks,
we find that as Dp/Ot increases from 0.3 to 1.0 to 3.3, PE/Dc increases from
0.3 to 0.5 to 1.0. Thus the flnal crater shape changes from oblate (shallow)
to hemispherical to prolate {(deep) as the proujactile/target density ratio
increases tnrough unity. A theory of crater shapes must be at least
two-dimensiona%Bagg)so is beyond the scope of this report.

Engel sectioned and polished some of the target blocks used by
Goodman and Liles and measured the thickness of the projectile materiail
remaining in the bottom of the craters. The few thicknesses she reportsed for

4L.,76 mm apheres ranged from 0.02 to 0.70 wu and lead to less than 5%
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corrections to the crater depths reported by Goodman and Liles. Engels did
not report the lateral extent of the sphere residue nor estimate the sphere
mass remaining in the crater. For Cu/Cu she reported a thickness d = 0.18 mm
for § —~3 S mm/¥s and d = 0,10 for S ~ 4,5 mm/us. The surface arca of the
hemisphere is (u'la)D (1-cos 9) where 8 is the polar angle measured from the
center bottom point. If we assume that the entire sphere is still in the
crater and is spread uniformly over the center bottom, then the volume of the
4,76 mm sphere, namely 56.5 mm3, must be equal to d(r /Z)Dcz(i-cos ®) where D,
was reported by Goodman and Liles. In this way we estimate that for
é°~ 3.5 m/us, 9~60°, while for éo~ 4.5 mmAts, 8~75%° In neither case did
the aphere spread out over the whole crater.

The final diameter of the inverted sphere 1is Dcsin 6 and 1is about
17 mm at 3.5 maAs and 21 mm at 4.5 mmAs, that is,3.5 to 4.5 times Do’ if all
our assumptions are correct. This ia much larger than D = 5.6 mm, the average
value we have estimated during the penetration (almost 20% larger than Do).
We can conjecture that the aphere is initially flattened, achieving a diameter
greater than D, then turned inside out, having a diameter about equal to D for
most of the penetration, then spreads out to a diameter much greater than D

toward the end of the penetration. This conjecture is nct the same a3 another.

aonjecture oftsn found in the literature and called "secondary penetration.”
The latter conjecture supposes that the sphere residue has sonechow "ceased to
act" on the target {even though it is still in contact with it) and that the
target material continues to flow "l v itself," eventually coasting to a stop
when target strength dominates inertizl flow. There is no evidence for this
conjecture. On the contrary, the entire sphere seems to flow with the target
material up to the end of the penetraticn when all motion ceases. In fact,
since g < 90o for cases which have been examined, each element of the residual
projectile must have some forward component of velocity up to the very end.
This implies that each element of the sghere continues to deepen (as well as
widen) the crater up to the end of the motion. Elements which have spread
beyond 8 = HSO near the end of a penetration will contribute more to widening
tha . to deepering the crater, while for those with 6 < 45° the opposite will
be true. In any case, target material in contact with sphere material does

not flow "by itself,"” nor does the defcrmed sphere somehow "cease to act"
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before the end of a penetration. Even target material near the lip of a
crater which is no longer in contact with penetrator material is pushed up to
the end by adjacent target material which is still 1n-contact with penetrator
material.

In the next chapter we will examine some cases of ductile rods which
develop mushroom caps during penetration and for the most part turn inside
out, leaving a hollow tube of penetrator material lining a long, narrow
crater. In such cases a rod element ceases to have either a forward or radial
component of velccity at some time during the penetration. At this time we
can consider this rod element to be "eroded." Since the deformed elements of
ductile spheres are never turned back to this extent, they cannot be said to
be "eroded." In this sense there is no mass loss and a constant mass model is
Justified.

i. Al/Al to 9 mm/Us

The largest speed range examined for a given projectile/target
(3.24 £0 3.25) 1 the first

paper a 2024 aluminum sphere was used while in the second paper a 2017

combination has been reported on by Halpersoen

aluminum sphere was used. However, in both cases the sphere diameter was the

same, namely, D = 4.76 mm so M, = 0.158g as in section h above. Earlier

7 (3.26)

studies of Al/Al include a paper by Halperson and Atkins and one by
atkins 3+2"7 . The targets were either soft (1100-F) or hard (2014-T6)
aluminum. The slightly different types of aluminum used as projectiles seemed
to make little difference since data in Halperson's last paper merged smoothly
with data from his previcus paper. However, from Fig. 3.16 we see that target
hardness plays an uvndiminished role up to ¢ mm/us, a speed in excess of
typical jet tip speeds. Halperson concludes that hydrodynamic theories which

neglect target strength should not be used.

Others hiave also noted the undiminisned importance of target straongth

for impacts by zompact projectiles at the highest 3peeds attained (3.27 to

3330).

o = e = { ) sz 6.3% B 1),
Since pp Py W have MO/Co v,ll/?,,Do 6.3% mm i Eq (3.1) For the

11n9-F aluminum target we find an inflection peoint eof 6.5 mm/us as in section
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h above, while for the 2014 aluminum target (BHN = ZOOkg/mm2 or

Yt = 60 x 108dyne/cm2) we find an inflection point of 1.15 mm/us. Thus Eq
(3.1) differs only in the inflection point of the two target materials, if we
use A/Ao = 1.3 for both cases. In this way the solid curves Jjoining the data
points for each target were generated. The value of A/Ao = 1.3 i3 not very
different from A/Ao = 1.4 used for Cu/Cu in the previous section. The higher
inflection point for soft aluminum (0.5 mm/us) compared to that of soft copper
(0.25 mm/vs) makes the upper curve in Fig. 3.16 lie somewhat below the middle
curve in Fig. 3.15. The higher inflection point for hard aluminum

(1.15 mm/us) makes this curve lie well below the upper curve in Fig. 3.16.
Halperson (3.25) found approximately hemispherical craters for both types of
aluminum target with a slight tendency for the hard target craters to be a bit
oblate and the soft target craters to be a bit prolate. Although target
hardness has a very significant effect on crater depth, it only seems to have
a slight effect on crater shape, which is controlled more by the
projectile/target density ratio, as we have seen. Enéel (3.23) also examined
residual penetrators in the case of Al/Al and found about the same residual
thicknesses as for Cu/Cu. This implies the same spreading angles under the

assumptions made previously as well as no erosion.

J. Neglect of Erosion and Viscosity

If we add a term (-bP) to the target force, the penetration will
clearly be rreduced. In fact this reduction will be larger for larger striking
speeds which lead to larger penetration speeds. Since reasonable values of
A/Ao > 1 which reflect experimental observations of projectile deformation
already lead to rather close agreement between theory and experiment, we do
not need such a term.

A similar conclusion is true for erosion. We have already examined
some experimental evidence for a lack of erosion in the case of compact
projectiles. If we compare Eq (2.11) for a constant mass projectile with Eq
(2.22) for an eroding projectile, we find that a acn-eroding projectile
penetrates more deeply, if all other factors are egual. In fact, as the

striking apeed increases, so does the advantage of the constant mass
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projectile. Numerical comparisons can be made or series expansions used. In
the extreme case of near maximum erosion rate, ¢ = 0, the comparison is
especially simple when the projectile and target are made from the same
material, so Pp = Py = P and Ip = Y, = Y. In this case Eq (2.19) gives

t

u_= pAsoM/u = (pAL)(pA) =L /(A/A ) for a red, or
o] 02 0 Q 0 2 [e] o
Mg = {p (7D, /4)(2D,/3)1/[p (*D°/4)] = (2D,/3)/(A/A,) for a sphere. Thus Eq

(2.26) can be written as

PE=[L°/(A/A°)]{1-exp[-(2/3)x]} (3.2)
where we could use (2D°/3) instead of Lo. Similarly,
M /e = (oAOLO)/(.50A)=2L°/(A/Ao) for a rod or 2(2D°/3)/(A/A°) for a sphere.

Since lnfy = .5 ln y, Bq (2.11) can be written as

PEa[LOI(A/Ao)] {ln(14x)} _ (3.3)

where x (c/a)So2 = [p/(GY)]éoa. Eq (3.3) gives a greater P than Eq (3.2)
for all x> 0. Forx =20 (SO z 0), the penetrations are squal (but zero).
For large values of x the curly brackets in Eq (3.2) approach a maximum value
of unity, while the curly brackets in Eq (3.3) increase without limit. This
agrees with the general observation that a target which erodes a projectile
makes a better armor than one which does not.

B. Finite Targets

1. gpenomenologz

Target perforation is more complicated than penetration in a
semi-infinite target because break-in and break-out effects pecome nora

significant.
When a projectile first enters a target its nose shape has an effect

as we have mentioned. For axample, the area presented by a sphere entering a
target increases with penetration depth, P, according to the formula

A= wP(DO-P), 80 A increases from zero for P = 0 to ( w/u)Doz as P +(D0/2).
If the target thickness is of the same magnitude as the projectile diameter,
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T°~ Do' then this variation in A and the variation in target resistance it
implies are significant. However, if To > Do’ they are not. Analogous
formulas and considerations hold for conical, ogival or other nose shapes.
Only a flat-nose projectile immediately presents its maximum area. In section
I. B. above we mentioned the work of Osborn and Woodward (1‘22). A well-known
effect which they studied is the formation of a "cap" of target material which
is punched out and rides on the nose of a blunt projectile. Even Newton
discussed such an effect (3'31). When projectile deformation takes place, the
effects of nose shape are reduced. Under the right conditions, all
projectiles assume the most compact (hemi-spherical) nose shape. Lip
formation or other types of front-face target deformation also affect
penetration to some degree and may be included under break-in effects.

More attention is usually paid to back-face target deformation or
break-out effects like petalling, spalling or scabbing. For semi-infinite
targets these effects do not occur by definiticen. Hoﬁever, even bulging at
the back face can lead to greater penetration than would otherwise occur as we
saw in Fig. 3.14., Fig. 3.17 shows a sketch of front-face (break-in) and
back-face (break-out) effects in an aluminum target perforated by a hard steel
sphere (3'32). The diameter of the holé in the target is uneven but not much
larger than the diameter of the sphere which is not permanently deformed.
Exceptions occur at the front face where a lip has been formed and at the back
face where a shallow crater has been formed. The depth of this crater
diminishes the original target thickness, To’ to the value T shown in the

figure. As reported by Zook et al. (3'3’, (T/TO) is about 3/4.

As the striking speed increases so do the amplitude and speed of the
pressure pulse which travels ahead of the projectile and reflects as a tensile
wave from the rear surface of the plate. Interference between the incident
compressioﬁ wave and reflected tensile wave causes the plate to scab if the
amplitude exceeds the fracture threshold of the target material. Rinehart
(3.33 to 3.34) estimates this threshold to be about 1010dyne/cm2 for 2US-TH
aluminum and about three times this value for U130 steel. If the wave
amplltude is more than twice the threshold stress, multiple scabbing will
occur, An example of multiple scabbing in steel given by rinetart 1in shown in

Fig. 3.18. When the first scab forms, it leaves a naw xetal.:i.r inturface
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iiside the target. The trailing part of the incident pressure pulse then
reflects from this interface and interferes with itself, forming a second
scab, and so on, until the resultant amplitude drops below the threshold value.
Let us assume that the peak amplitude of a pressure pulse caused by a
projectile impact is proportional to the impact energy per unit volume of
projectile, namely (.SQPéoz). For a steel projectile with éo = 1 mm/uys this
is about U x 101°dyne/cm2 (or erg/cm3), which 13 above Rinehart's estimate of
the threshold for steel of 3 x 101°dyne/cm2. As we have seen, hard steel
spheres exhibit significant fracture effects at impact speeds above 0.7 mm/us.
For an aluminum target to fracture we need a pulse greater than 101°dyne/cm2
according to Rinehart, or twice this value for two scabs to form. If the
impact speed is great enough to produce one scab but not great enough to
produce two, then the depth of the back face c¢rater, namely, (TO-T) might not
increase as So increases. This depth might even decrease because of an
increase in pulse speed, leading to earlier interference closer to the back

surface. Little is known about the detailed effects of pulse shape and speed

as a function of geometry and material properties of projectile and target.

P

At present we must rely on the observation of experimental trends in order to

i T,

form any c¢onclusions.

The ballistic limit thickness of a finite target, Tl, is the minimum
thickness needed to prevent perforation according to some criterion. Clearly
'rl > To in Fig. 3.17. It 1is also true that Tl > PE’ the depth of the crater
in a semi-infinite target under otherwise identical conditions. Senf and
Weimann (3.35) impacted 12.7 mm hard steel spheres on“rinite hard aluminum

target plates and obtained the curves shown in Fig. 3.19. The curve labelled

X
=

PE is the same as the upper curve in Fig. 3.13. The curve marked Tl lies

higher than that marked P_ over the speed range investigated, with PE/T1~ 3/4.

Of course the amount by wgich Tl exceed PE depends on one's criterion for
perforation. In this matter there is no universal standard. Fig. 3.20 from
Backman and Goldsmith (3.36) illustrates the Army limit (any pinhole in the
rear of the target), the Navy limit (projectile emerges with zero residual
speed and falls under the action of gravity), and the protection limit (spall
just fails to perforate a witness plate of prescribed material and thickness a
given distance behind the target plate). The ratilo Tl/PE can vary from about
1.1 to 3.0, depending on one's definition of ballistic limit for particular

projectile/target combinations. For theoretical simplicity the Navy limit is
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Fig. 3.18, Multiple scabbing in steel subjected to explosive
attack,
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preferable and will be used in this report. Considerations of engineering
safety margins might lead us t> adopt more conservative limits, however.

If we have a soft, ductile target, its behavior near a ballistic limit
can be quite different from that of a hard, brittle target. Fig. 3.21a shows
two sketches of bulges in such a target made by the impact of a sphere. The
second skeécb shows an extreme case in which the crater depth, PE' is greater
than the original thickness of the target, To. Clearly, the limit thickness
is greater than To’ Tl > To. It is alsc greater than|PE for a semi-infinite .
tarzet in known cases. Thin, ductile :targets often fail by petalling at the
rear. Targets of intermediate strength will often fail by having a plug of
target material sheared out by the impact of a sphere. Fig. 3.21b is a sketch
of such a plug partially punched out of such a target. In this case the plug
is a "cap" which rides in front of the projectile, as mentioned above.

Further details con the phenocmenology of target platg_failure have been given

by Backman and Finnegan (3'37).

From our discussion so far we see the truth of the assertion we made
in the beginning of this section, namely, perforation is a more complicated
phenomenon than penetration in a semi-infinite target. Theories of thin
target perfovation are legion and generally address one or another type of
failure process. There does not seem to be a detailed unified theory which
can be specialized tc particular cases by letting certain parameters'vanish.
The state of the art of both theory and experiment has been recently
summarized and advanced by Goldsmith and co-workers (3.38 to 3;&2).

In this report we wish to remain as simple as possible so that our
unified theory will be useful as well as informative. For this reason we have
been avoiding detailed physical descriptions in order to concentrate on a few
main points. We will continue. to do so in the next section by once more
introducing an average parameter, T, which we will call the target thickness
at the moment of failure. As we see from Fig. 3.17, T can be given a
definite, if approximate, experimental meaning. It is similar to the average
presented area, A, which we have already used extensively and will use again.

This sort of procedure is certainly not completely satisfactory. However, it .
is presently necessary because of our lack of knowledge and perhaps even

desirable as a working tool.
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(a) DUCTILE YIELDING

Fig. 3.21
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2. Examples

a. Steel Spheres vs Three Thicknesses of Aluminum

The data shown in Fig. 3.22 for 12.7 mm steel spheres impacting hard
aluminum plates of three different thicknesses were also reported by Semnf and
Weimann (3'35). For To = 10 mm < D° they reported no differences between
impacts by nardened and softened s?heres. However, for To = 15 om > Do' the
residual speed after perforation, SR’ was greater for the hardened sphere
(open circles) than for the softened sphere (open squares), because of
flattening. The curves tend to merge and are experimentally indistinguishable

near the velocity ballistic limit, éo = 0.67 mm/us. The differences are even

1
greater for the thickest target (T°-2D°) and even the ballistic limits are

experimentally distinguishable, being about 0.95 mmAis for the hard spheres

(solid circles) and 1.0 mm/us for the soft spheres (solid squares). If there
were no target present ('1'° = Q), then éR = éo for any §°, the straight line in
the figure. -

In order to calculate the residual speed, éR' as a function Bf
striking speed, So’ let us once more assume that there is no erosion and that
viscosity ;s negligible. Then we can use Eq (2.7) which is the same equation
which led to Eq (2.11) for semi-infinite targets. A semi-infinite target was
defined to be one with a thickness, To, sufficiently greater than the final
depth of penetration, PE' that not even a bulge appears on the back face. If
To is small enough to permit a bulge, then a further reduction in T° versus a
particular threat projectile will result in plate failure, reducing To to T as
in Fig. 3.17 for a hard target, and turning a target victory into a defeat.
The value To = Tl > PE semi-infinite as in Fig 3.19 will just gain the
victory for the target. For 12.7 mm steel spheres versus hard aluminum, we
recall that the ratio PE/T1~ 3/4. This seems to be approximately equal to the
observed average value of T/'I‘° in Fig. 3.17. This is probably a coincidence,
although it would be nice if it were a more general relation. Additional
experiments are needed to clarify this point.

The argument of the exponential function in Eq (2.7) involves the
penetration depth P = S = So' At the moment of perforation, when target
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failure occurs, P = T = To(T/To), introducing the ratio (T/To). Since C =

CO(A/AO) as before, we can re-write the argument as
[ZTO/(MO/CO)][(A/Ao)(T/TO)] = [ZTO/(MO/CO)]¢ (3.4)

where ¢ denotes the product of our two average parameters in ratio form. When

P reaches the value T, S is the residual speed, éR’ and Eq (2.7) becomes
S, = a7e[1+(3_Mard) P Jexpl-20T /(M /C ) 1-11 72 (3.5)

First let us apply Eq (3.5) by calculating the solid curves in Fig.
3.22. Obviously, if T_ = O (no target), § = §,1 the straight line in Fig.
3.22. From section III.A.2.f above, we recall thatVa/c = 0.9 mmAi s is the
inflection point for a hard aluminum target, while M,/C, = 48.9 mm for a 12.7
mm steel sphere versus an aluminum target. For a hard steel sphere we also
recall that (A/Ao) =1, 80 ¢ = (T/To) = 3/4 = PE/TQ on average. Thus, Eg (3.4)
becomes .04¢To = '°3To’ and Eq (3.5) becomes

L]

éR = 0.94E1+($°/o.9)2]éxp(-.03T°)-1 (3.6)

for the so}id curves in Fig. 3.22 with To = 0, 10, 15 and 25 mm. Close
agreement with experiment supports the use of a single average value for
P/T, = T/T, = 3/4 for the ranges of So and T covered.

Second, let us apply Eq (3.5) by calculating the dashed curves in Fig.
3.22 for the soft steel spheres. We recall from Fig. 3.13 that these spheres
progressively flattened as éo increased above 0.4 mm/us. The dashed line in
Fig. 3.13 indizates the transition from (A/Ao) = 1 to (A/Ao) = 1.67 near
1.3 mm/us. This variation is plotted as the upper sclid curve in Fig. 3.23
which we have extended above 1.6 mm/us with a dashed line, indicating an
expected decrease in (A/Ao) as suggested by Fig. 3.6 (for steel targets). As
was mentioned, semi-infinite targets provide enough lateral confinement to
turn spheres into mushroom caps at high enough impact speeds, reducing A/Ao -
after such an inversion. Tapering of the crater diameter may be evidence of
this. The lower solid curves give the values of (A/Ao) vs éo used in Eq (3.5)
for the three dashed curves in Fig. 3.22. The agreement with experiment for

’I'o = 15 mm is rather good. The theory predicts an observable difference for
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T, = 10 mm plates near éo = 1.5 mm/us. Apparently only hard spheres were used

o
against this plate thickness. The data available for To = 25 mm plates is

somewhat scattered, but the agreement between theory and experiment is
reasonable. A

Fig. 3.23 indicates that finite targets flatten soft steel spheres
less than semi-infinite targets do, with thicker target plate effects
approaching those of a semi-infinite target. Presumably as the target
thickness approaches zero, these curves approach the value (A/Ao) = 1,
independent of So (the éo axis in the figure). We have not extended the
finite plate curves abcve éo = 1.6 mm/us. However, we can speculate that they
will not level off in the manner of the semi- » curve, since the break-out
crater at the rear of finite plates relieves the lateral confinement needed to
convert a sphere to a mushroom cap. We have no direct evidence for any of
these curves. Their postulated shape assumes a constant value of
(T/To) = 0.75, and the combination of these two assumptions is.supported
indirectly by agreement between soft sphere data and the dashed curves in Fig.

3.22. Other combinations are possible and more experimental information is
needed before we can resolve these questions. For example, (T/To) may
decrease somewhat as éo increases, requiring higher values of (A/Ao) for the
same ¢ = (T/To)(A/Ao). We might expect a decrease in (T/To) if flatter
spheres produce wider, shallower breakocut craters. If multiple-scabbing
occurs, we might even expect a suddsn decrease in (T/To) above some impact

speed.

Before leaving this example, let us recall Fig. 3.14 where a larger 20mm
hard sphere showed a penetration at higher impact speeds greater than that
calculated. For example, at So = 1.1 mm/us we calculated PE = 36 mm and
attributed-the difference to the reported back face bulging. If Tl/PE = §/3
and PE = 36 mm, then Tl = 48 mm, which is almost equal to the 50 mm thickness
of the target block used. This is consistent with the observed bulging.

b. Steel Spheres versus Several Thicknesses of Steel

Fig. 3.24 gives data for steel spheres impacting steel plates reported

by Backman and Finnegan (3'37).
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Curve (1) shows rusidual speeds of a hard steel sphere (D° = 6.35 mm)
perforating a mild steel target (To = 1.47 mm = 0.23D°). If we assume BHN =
100kg/mm® so Y, = 30 x 10%dyne/cn?, thenvVa/e = 0.5 mm/us. Since M_=1.05¢ and
C, = 0.124g/mm, (Mo/co) = 0.47 mwm and 2?0/(M°/C°) = 0.35. Since (A/Ao) = 1
for a hard sphere and (T/To) = 1 for a ductile target which stretches and
petals rather than cratering, we have ¢ = 1. Eq (3.5) then enables us to
calculate curve (1) in reasonable agreement with experiment. A slightly
greater target strength might give better agreement.

Curves (2), {(3), and (uj show the residual speed of the central
fragment of the fragment systems emerging from the back of the targets. These
curves are for mild steel spheres impacting armor steel térget plates which
cratered at the rear. We expect the deformed spheres to be the lead fragment.
Thé spheres were of different sizes (Mo = 1.15g, 1.32g and 0.92g), to obtain
integer ratios Do/'ro = U4, 2 and 1 respectively. The target strength was not
reported, but if we assume BHN = 300kg/mm2, Yt = 90 x 108dyne/cm2, then
W[:?; = 0.83 mm/ys. We expect CA/AO) > 1 for deforming spheres and (T/To) <1
for brittle targets reported to have spall craters at the back face. However,
no quantitative information was reported on either ratio. In the absence of
such information, we will assume that the product ¢=(T/T°)(A/A°) = 1 for the
speed and target thickness ranges used. Also ZTO/(MO/CO) is 0.375, 0.75 and
1.5 for curves (2), (3), and (4) respectively. The agreement between theory
and experiment i1s remarkable, considering the simple approximations we have

been making.
Before leaving this example, let us note that there was apparently

some difficulty in determining the ballistic 1imit for curve (2) as indicated
by the two open circles telow éo = 0.5 mm/us., If such a thin target craters
in the back, it offers almost no resistance to a prcjectile and the usual
statistical uncertainties involved in determining ballistic limits are

compounded when gross fracture dominates the phenomenon.

¢. Steel Spheres versus Titanium Alloy Plates

)
Ricchiazzi and Brown (3.43) have reported data for hard steel spheres
(Yt-100 X 108dyne/cm2, Mo =z 0.13g) perforating titanium alloy plates

(90Ti/6A1/4V, pt = B.43g/cm”, Yt = 40 x 108dyne/cm2, To = 1.32 mm). This
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steel sphere data was included for ccmparison with other shapes of tungsten
fragments. We find Do = 0.316 cm, Co = 0.0174g/mm, and MO/C° = 7.5 mm, so0
ZTO/(MO/CO) = 0.352. For lack of detailed information on target or snrhere
condition, we have assumed ¢ = (T/To)(A/Ao) = 1.3. We also find

V;7Z-= ‘VTE_ = .736 mm/us. With these values in Eq (3.5) we calculate the
curve in Fig. 3.25 which agrees closely with the experimental data points.
Again it is encouraging thatdsingle value of ¢ can do so well over the range

investigated.

Reproduced From
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IV. EXAMPLES OF ROD PENETRATORS

A. LDeformaticn and Mass Loss

For compact penetrators of spherical shape we saw that severe deformation
to a mushroom cap shape or severe shattering can occur at sufficiently high
impact speeds. However, there is no evidence that any penetrator mass is lost
duvring a2 penetration in the sense that no element of mess is without some
forward component of Qélocity right up to the end of the penetration, Very

*ductile projectiles might be found after a penetration spread in a thin layer
over most of the crater. Very brittle projectiles which have been pulverized
might be lost because of target orientation. Intermediate cases might yield
intermediate results when residual projectile masses are sought after an
event, More reporting of the whereabouts of projectile mass after a
penetration is surely desirable. In any case, our theory and the available
experimental evidence indicate that all of the mass of a compact spherical
projectile participates in the cratering process during the entire time of a
penetration event.

For compact projectiles of rod shape, that is with Lo/Do near unity, the
same . comments seem to hold. Fig. L.la shows a steel rod (Lo/Do =12 mm/12 mm' = 1,
M° = 10.6 g, BHN = 230 kg/mmg) lifted out of the sectioned crater it made in a
steel target (BHN = 135 kg/mmz) after an impact at about 1.0 mm/ps. This
figure is similar to Fig. 3.4b for a steel sphere impacting a steel target at
a somewhat higher speed (1.5 km/s). The mushroom cap shape is clearer in
Fig. 4.la. Pasrhaps the distorted rear end of the rod still forms a short stem
in the middle of the cap. Fig. L4.1b shows the remains of a long rod (LO/Do =
5L mm/S.4 mm = 10, M, = 9.85 g) made of the same steel after striking a harder
steel turget (BHN ~ 300 kg/mmz) but at a lower speed (SO = 0.735 mm/us). For
comparison, an original rod bvefore impact is shown beside it. The stabilizer
flare at the rear of each rod is evident. Clearly most of the mass of the
original rod has been lost. A measurement of the length of the residual rod
gives us a rough estimate of the residual mass if we multiply tliis length by

the original cross-sectional area and the density. However, this estimate
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D=12.0mm, 0.977 mm /us

.Fig. b.la. Compact steel rod deformed to a mushrobm cap (axial

section). 8, = «9TTmm/vs

b

2

m||unTnn|nu

0.735 mm/us

Tunlm|1||||||||||Tn|||m|T

D=54mm

Fig. b.1b. L /Do = .10 steel rod deformed to a mushroom cap with
stem. S_ = .735mm/s
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mist be corrected by adding the mass which 1s still present in the ragged

mushroom cap which tops off a somewhat fattened stem. Weighing the residual
projectile would give us the answer, but this measurement was not reported
(h'l). The diameter of the cap is about three times the original rod diameter.

Fig. 4.2a shows a time sequence of four X-ray pictures of a tungsten alloy
rod penetrating a steel target at 1.L mm/us, while Fig. L.2b shows a similar
sequence for a copper rod penetrating an aluminum target at about the same
speed (h'g). Similar pictures for steel on steel are not possible because of
a lack of contrast, bpt a similar mushrooming of the nose occurs as is evident
from Fig. 4.1b. The pictures in Figs. 4.1 and 4,2 have an imporiant feature
in common. In all of these metal/metal impacts, the crater is sufficiently
wider than the projectile body that the thin tube of eroded projectile
material seems to line the cavity walls without making significant contact
with the incoming projectile during penetration. This is why we can neglect
external friction as well as viscosity (internal friction) for typical
metal/metal penetrations and deal only with forces on the projectile nose. We
cannot do this if yaw is significant or for metal projectiles impacting very
hard, brittle targets like glass or various ceramics, as we have noted.

Fig. U4.3 (4.3) shows a sequence of drawings depicting the formation of a
copﬁer tube from a fully annealed soft copper rod penetrating a metal target.
Only. the upper half of each cutaway is shown because of axial symmetry. The
last sketch at the bottom of the series shows that most of the rod has eroded
‘near the end of the penetration, since most of the rod elements have lost any
forward ‘component of velocity. However, there is still a central stem
attached to the mushroomed nose. The impact speed in this example was 1.15
mm/us. At higher impact speeds this residual stem will be shorter, but never
'seems to disappear completely, During most of a penetration the mass of this
stem pushes on the nose and helps to make the eroded material turn back.
However, this stem has less mass near the end of a penetration and exerts an
ever smaller force. The net result is that such projectiles never seem to
turn completely inside out, but always retain a cap of projectile material at
thé forward end. As a penetration by a long rod nears its end, the rod
becomes a compact projectile and never quite completely erodes since the

central stem becomes so short it no longer can push cap material aside. This
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Fig., 4.2a. Tungsten rod versus steel at 1,lmm/us.

Fig. 4.2b. Copper rod versus aluminum at 1.4mm/ys.
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Fig. 4.3. Deformation of annealed copper target at various
penetrating depths of the penetrating hydrodynamic
head at the impact velocity of 1150 m/s (projectile
material: copper).
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Fig. k.ha. Copper tube (inverted copper rod) recovered from a
target.

Fig. L.4b. Axial section of same copper tube,

Sy
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agrees with our theory which predicts some residual mass in physically
reasonable cases even if this mass is tno small to observe easily. Fig. b.ka
shows a copper rod which has been irverted to a tube after penetrating a
target. Notice the cap at one end. Fig. L.Ub shows this same tube cut in
half lengthwise (an axial section). Again the cap at the end is clear. These

figures are also from Weihrauch (q'h).

B. Calculational Aids

In Chapter Three for compact (Lo/Do = 1) projectiles, we were able to
account for the available experimental data with one equation, Eq (2.11).
Since we had no time-dependent information, we did not need Egs (2.2) or
(2.3). Eq (2.11) is so simple that no special discussion was needed
concerning its use, All parameters were known experimentally except for the
flattening factor, (A/Ao). Ever here estimates could be made from
experimental information, althcugh final numerical values came from adjustment
to experiment. Remarkably, a single value seemed to suffice for all striking
speeds greater than those for which either shattering or plastic deformation
occurred. For higher striking speeds, we may conjecture that flattening
occurs early in a penetration, so that a single value of (A/Ao) hplds for most
of the penetration at such speeds.,

Eq (2.11) says that the penetration depth will increase without limit as
the striking speed increases without limit. Of course, this 18 not true when
striking speeds are so high that liquifaction and/or vaporization of materials
becomes important. Additional terms are needed in these cases. However, the
available data indicates that Eq (2.11) is good enough up to éo = 10 mm/us,
and quite adequate at ordnance speeds up to 2 mm/us.

In Chapter Four we wish to describe cases in which erosion occurs,
Consequently, our principal equation will be Eq (2.22). 1In the few cases
where we have time-dependent information we will also use Egs (2.28) to
(2.30), Now we wish to discuss the use of these equations in some detail
before illustrating them with examples,

We can write Eq (2.22) as
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M
. (Mo/po) f1-11+(3/7)8°% =(;é) Q ' (L.1)

(o3P 0

3 =k va/c (4,2)
and ’
€= wk/(2e) . : (4.3) )

In Eq (L.1), the definition of the factor, Q, is obvious. Here
(4.2) is somewhat larger than the inflection point in Eq (2.2L4). We recall
from Chapter II that Eq (2.22) or (4.1) reduces to Eq (2.11) if M, > 0.
Without erosion Eq (2.11) says that PE can increase without limit as So
increases, within the limitations of the model., However, for By > 0,
Eq (4.1) says that Pp approaches a finite limit, M_/u,, as éo increases.

We will be able to determine uo from experiment in only three examples
below. To estimate uo in other cases from these three cases, vwe will make an
assumption that lesser erosion rates follow the same trend as the maximum

erosion rate in Eq (2.19). That is, we will assume

Ho

=
£A, /pppt (A/a) (L.b)
where 0 < f < 1. By asdopting Eq (L4.L4), we are assuming that f and (A/Ao) are

approximately independent of Ao’ p.. and Py 8s well as projectile and target

P
hardness., In most cases of interest this turns out to be a fairly good
assumption. Exceptions will be mentioned as they occur. Our theory requires

Ho to be independent of speed for given So. However, it is possible that uo

might depend on S . Therefore, f /A/Ao in Eq (b4.4) must be independent of

e et
.

speed for given So’ and, if Uo depends on So so must this product. However,

f and (A/Ao) might individually depend on éo, even if u_ is independent of éo.

Eq (L.4) also says nothing about aspect ratio. As it turns out, (A/Ao) seems
to depend on aspect ratio at low speeds, and becomes independent of aspect

ratio at high speeds (see Fig. L.15). A minor dependence of (A/Ao) on Op and 0
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_alsb seems evident at high speeds, but is relatively weak for the density

-range of common interest,

For a rod,
- = 2 :
M =pAL = ° [(w/b) D, ] L, . (4,5)
If we divide Eq (L.5) by Eq (4.4), we find

’ (pE)LIMIT = (MO.’uo) = (Lo/pp/ptW(f \/A/Ao), (4.6)

W e e =

which we can compare to Eq (2.27) as éo -+ «, As expected, we find £ = 1 for
e Eq (2.27), since we used n (max) from Eq (2. 19) in this equation. For rods of
interest f <1 and (A/A ) >1l, so f /KTK— < 1 are all possibilities, 1In
% other words, Eq (4.6) says there is a high speed penetration limit which can

be greater than, equal to or even less than what is usually called the
hydrodynamic limit, (Lo /;;7;;3. We will discuss this again in Chapter V. 1In
our examples below, we will find that (PE)LIMIT is usually higher than the
hydrodynamic limit, sometimes much higher.

If we have penetratipn data over a wide enough range of striking speeds,

ﬂ we can estimate (PE)LIMIT experimentally. In such cases, Eq (4.6) enables us
ff to estimate an upper bound for Moo since we know Mo' That is,

g

3 Mo < Mo/ (Pe)pryre . (4.7)

» It is always dangerous to estimate such limits from incomplete experimental

¢ information, so we will generally use Eq (4.T) as a check on the following

procedure.
. Suppose we know er for rod/target combination 2, and wish to estimate
é‘ 3 Mg for rod/target combination 1. From Eq (L.4),
?
; y . [ /
‘ . ' o1 T Mo2 [flel/Bpl tl (A/Ao)ll/lfQAoz pp2 t2 (A/Ao)zl (4.8)

If f »/A/Ao is the same,as it is for rods of the same aspect ratios,
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o_ P, o P,

Yol = Ho2 [Aol pplpt1]/[A02 pp2°t2] * (k.9)

If, in addition, identical targets (ptl = pta) are struck by rods of the same
Dpz), Uol/U°2 is equal to the ratioc of the respeiLtive masses
per unit length, since AollA°2 = (Mo/Lo)ll(Mo/Lo)a by.Eq (L.5).

Now let us recall that a = 3YtA°(A/Ao), ¢ = .50 A (A/Ao), and

-1
I, = (eppAo) + Then by Eq (L.h)

density (ppl =

Iu, = (.s/pt/pp) (f /A/Ao) : (4,10)
and
2 2 2
Iouo = f [.SOtAo(A/Ao)l = £ (k.11)

From Eq (2.18) we recall that
- , 2
c=c - Iouo (b,12)
Now, if we use Eq (4.11) and the definition of c,
§=c (1-£7) = (.50, A (A/A )] (1-£2) : (L.13)
t ° [y o L) L ]
Then Eqs (L4.2) and (4.3) can be written as
= 2
F=0(1+ T H )/ /1t =0 (4.14)
and
2
€ = {(uo/AO)/[ot(A/AO)]} {(1 + Iouo)/(l—f )}
= (uo/Ao)/[pt (A/Ao)l (L.15)

where o = V6Yt/0t as before. The approximate forms hold if IO”o < <1 and

-
<4

f€ < < 1. Then Q in Eq (L4.1) becomes
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. 2. . €
Q=1 - [1+(s°/3) ]
M1 (14 (5 0)2)=(Mo /A ) TP (A/A )] ) (4.16)
Finally, from Egqs (4.1),
Pp = (Moluo) Q . (L.17)

Once ve have an estimate of u_, then on}y (A/Ao) is unknown and appears only
in Q. Since (A/Ao) seems to depend on So,.at least at low speeds, then Q
depends both explicitly and implicitly on So’ as ve see from Eq (4.16). If we
can use the approximate form of Q, (A/Ao) appears only in the exponent and at
high speeds should be independent of So. With this as a starting point, we
can estimate (A/Ao) for lover striking speeds, and then refine cur estimate by
using the exact form of Eq (L4.16).

This analysis allows us to describe at least five simple ways of studying
the effect that rod geometry (Lo and Do) and density (pp) have on penetration
into a given semi-infinite target (given Pys Yt and ). In the first two ways
wve Keep the aspect ratio the same, while varying either the size or density of
our rods. In the other three ways, we vary the aspect ratio, and either keep
the mass constant or allow the mass to vary by changing either Lo or Do but
not both,

In the first way, we multiply Lo and Do by & common factor, while keeping
pp the same, This produces a family of rods with a common aspect ratio and
f¢K7K;; so Eq (4.9) gives thein.different erosion rates which depend on their
area, Ao, or mass per unit lengﬁh. Then Ao cancels in the product Iouo which
is the same for all such rods:by Eq (4.10). Of course, (uo/Ao) is also the
same by Eq (L.4)., It also appears that f and /Z7K;'are individually the same
for all such rods, so that ,€ and Q are all exactly the same for this family
by Egqs (L.14) to (h.16)..;Since M LA, and Uom A, then (MO/UO)“ L, and
PV L, in Eq (L.1T7). Thus, a plot of PE/Lo versus So should give a single
curve for all rods in this family. Since we also have Lo% Do’ a plot of PE/DO
should do the same. Here we have an example where the use of a dimensionless

variable in plotting experimental data can reveal an important relation and
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prompt us to look for an explanation if we don't have one. Or, as we are now
doing, it can illustrate the descriptive power of a proposed explanation.
Indiscriminate use of dimensionless variables can be more confusing than
helpful, as we shall point out. This is especially true if only dimensionless
variables are reported without any way to recover the original dimensional
observations.

In the second way, we keep the aspect ratio the same by leaving Lo and Do

unchanged, while varying the rod density, o_. This can be done gradually by

alloying. However, because of experimentalpuncertainties, we need to compare
two metals of quite'different densities, like steel and tungsten. We have
assumed that f /K?K; is only slightly affected by such a change in density, so
My N/bp in Eq (4.4). An increase in °p will decrease § and increase € in Eq
(4.14) and (4,15), Both of these changes will increase Q in Eq (4.16). Since
Mom pp and uoN/S;; PEN/E; Q in Eq (L4.17) should increase somewhat faster than
/5;-as pp increases.

In the third way, we keep M_ constant in Eq (4.5) while keeping Op
constant and varying the aspect ratio (LO/DO). This implies that we keep
Do2Lo = D03 (Lo/Do) constant, so we must decrease Do’ if we increase (LO/DO),
and increase Lo’ if we decrease Do' If we decrease D or Ao’ wve decrease uo
by Eq (L.4), but keep (UO/AO) the same, provided f YA/A  is unchanged. We
also, keep Io“o the same for all rods in this family by Eq (4,10). Thus %, €
and Q will remain exactly the same. Thus by Eq (L.17), Pgv 1/, Nl/Doe will
increase as u, or Do decreases, Even for LO/DO* 1, uo* 0, the case for which
Eq (2.11) applies, PEN 1/D02, since ¢ NACN Doe. This simple result should
hold for high striking speeds when (A/Ao) becomes.independent of So’ but will
be modified at low speeds when (A/A ) depends on S_.

In the fourth way, we keep Dp and D0 constant, while varying Lo' Although
MO changes, MO/Lo does not, so My should bte the same for all rods in this
family as should Iouo and uo/Ao. Then £, € and.Q will be the same, so Péh LO
by Eq (4.17). Once more a plot of PE/LO versus S0 should give a single curve
for the family. This result will also be modified, if (A/Ao) depends on
aspect ratio as for low éo. If LO/Do +1, Eq (2.11) gives the same result.

In the fifth way, we keep pp and Lo constant, while varying Do' Then

2
. ; €
uom Do will change, but UO/Ao and Iouo will remain the same, Thus &, and
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Q are exactly the same. Since Mom Do2 also, (Mo/uo) will be unchanged as will
PE. Consequently, changing the rod diameter will not affect high speed
penetration, since we change the erosion rate as fast as we change the mass.
This result too will be modified if (A/Ao) depends on aspect ratio. Again for
LO/DO*‘I, Eq (2.11) gives the same result.

Much of what we have said is not obvious, and will become clear only
through examples.

Obviously, there are many other ways to vary rod geometry, density and
hardness. Significant changes in rod hardness can affect nose shatter and
alter penetration, at least over a limited range of striking speeds. In most
cases of interest, projectile hardnessis relatively unimportant. Many of the
other ways we can vary geometry and density would not qualify as "simple,” and
do not seem to have been used in systematic series of experiments as these
five ways have been used.

Finally, we wish to describe the few cases in the literature where some
time-dependent data exists. This is important, not only because these cases
provide a severe proving ground for our theory, but also because we want to
use the few values of Mo which can be determined from experiment as a starting
point for estimating My for the majority of cases where no such information

yet exists. '
Let us combine Egs (2,.28) and (2.29) o obtain

o
L}

X
10X € /) /(eM fu )] t = vt =f ° £-1 (x_1)"1/2 4y (L.18)
o (o} [o] x

and

2]

>
I

(1 + (éo/g) ll-P/(Mo/uo)]l/E =X (M/Mo)l/E . (4.19)
Here we have taken t, =0, while Z and € are given hy Eqs (4.2) and (4.3),
The definition of the frequency V is obvious from Eq (4.18), The final form
of Eq (4.,19) comes from Eq (2.15)., The integral in Eq (L4.18) must be
evaluated numerically, unlass € happens to be zero, integer or half-integer,

as we will now illustrate with a few examples,
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The first example below can be described by using the parameters € = 1, .
v = .2 s7! ana X,= 17, as we shall see. Since e = i, we cap evaluate the

integral in Eq (L4.18) without numerical approximstions:
17
D= ,2t =“/; dx/Vx=1 = 2(k- /x-1) (4,20)

and
X = 17 (1 - P/6L) (4.21)

since (Mo/uo) = 64 mm, .Eqs (4.20) and (4.21) relate P and t parametrically
through X. In a simple case like this, we can eliminate X to find

P =641 - [1 + (b=.1t)2)/27) . (4.22)

From this we can find P(t) also, if we desire, The smallest value of X which
gives real t in Eq (4.20) is X = 1. When X = 1 in Eq (4.20) we find the

g = YOus. When X =1 in Eq (4.21) we find Pg = 60 mm, as we
find from Eq (4.22), when t = LoOus.

embedment time, t

Usually, ve must evaluate iniegrals like D numerically. There are many
wvays to do this., Here we will select one for purposes of illustration,
namely, the four-point Gauss method. This is quite simple, yet aczurate
enough for our purposes. In what follows, we will use the notation of

(h.s)

Margenau and Murphy . - First, we transform the range of integration to

the unit interval by introducing a new varialbe, v, in the linear
transformation

x =X + (17-X) v (b.23)

in our case where X is the lower 1limit and 17 1s the upper limit. Then the

integral becomes
1

b= (110 [ F(v) av (4.24)
o]

with
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F(v) = (x-1)'1/2 = (X ¢ (17-X) v = 1]'1/2 = F(x) (k.25)

by Eq (4.23). In the four point Gauss method, D is approximated by the sum of

feur products as follows:
D & (17-X) (.17h [F(v ) + Flvg)] + .326 [Fiv;) + F(v,)]} (L.26) !

vhere v = .069, vy = ¢330, v, = +6T0 and vy = 931 are the four points on the
unit interval which optimize the method. These points are given with greater
precision in texts, aé'are the coefficients, .1TL4 and .326. Here we have
retained only three significant figures for the v, as good enough for our
purpose.

. Now, suppose X = 5 in Eq (4.23), so x = 5 + 12v. The x-values which
correspond to the four pre-selected v-values, together with the associated
values of the integrand, F(v) = F(x) in Eq (k.25) are X, = 5.84, F o= 55,

Xy = 8,96, F1 = 354, X, = 13.0L4, F2 = ,288 and xg = 16.16, F3 = ,25T7. Then

Eq (L4.26) vecomes

e X W

D =12 [.17Th (.455 + .257) + .326 (.354 + .288)] = 3.999 . (4.27)

This, is very close to the value D = 4 which we find by letting X = S in Eq
(4.20). b
Other exact integral forms are available for integer and half-integer )

values of € which can serve to hound whatever method we choose for a numerical

evaluation. For example, if € = .5,

L i

X
D i/, % ax/Vx(x-1) = 1n {[/§;'+ /xo-ll/[/f-l AT (4,28)
X

which, together with Eq (4.20), can bound D, if .5 < € < 1. Similarly, if
€= 1'57

| X » |
D =f /% dx/Vx-1 = fxo(xo-f) - X(X=1)

X
+ 1n :[/i; + /xom11/1/§'+ x-11}y (L.29)
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while, if € = 2,
2 —_
D =(g> [(2+Xo)¢ Xo-1 - (2+X)Y X-11 (4.30)

and so on. In every case we see that X = 1 is the smallest, physically
meaningful value of X, giving real t.

When a numerical integration is required, it is helpful to plot F(v):
versus v to discover whether or not the integrand has a steep slope in the unit

interval., If it does, a significant portion of the area undce the curve may
be neglected by a four-point approximation. It may be necessary to use two or
more sub-intervals selected to accomodate the curve and/or use more points in

each sub-interval.

C. Semi-infinite Targets

1. Examples with Time-dependent Data

a. Steel/Magnesium

The mosi extensive collection of time-dependent information on

eroding penetrators has been reported by Perez (3'6).

continuation of his earlier work (4.7, u.s). In his more recent work he used

This is a summary and

flash X-rays to follow the loss in length suffered by a rod while penetrating
low density‘métal targets of magnesium and aluminum. This kind of information
is very valuable for learning about penetration and provides an excellent

testing ground for a theory.

(4.9) 3

First, consider Perez' data for a 2teel rod (Dp = 7.8 g/em”,

Lo/Do = 22 mm/2 mm = 11 reported and Mo = C.54 g calculated) striking a

3 8

magnesium target (ot =z 1.8 g/cm” reported, Y, = 10 x 10 dyne/cm2 estimated)

t
at éo = 3.27 mm/us. Fig. 4.5 shows the positions of the rod nose, P, and
rear, R, and so its remaining length, L = P - R, as a function of time, t.
The following values were estimated from his figure. Initially, P = 0,

R=~22mm, L = 22 mm. Near t = 6us, P= 16 mm, R = 0, L = 16 mm. Near

112

L L L L L o e e e L N R A i t A B M L AAL Rl We P (TR LSS rE SRS L IR Ar W MW Ok B . W R R B B PVRL Ll £ ST AR S OB SN L I ™ SN I W WA R W W d N s LA AE N\ R LU e TIEVEIR A



t = 1lus, P = 28 mﬁ. R=16mmand L = 12 mm. Near 18, 23 and 25us, P is 41,
48 and 50 mm, and L is about 7, 4.5 and 3.5 mm. At the end of the penetration
PE is about 60 mm while the remaining length in difficult to estimate but is
probably about 2 mm since the rod has been reduced to a crushed cap.

Eq (2.15) can be written as '

L (ppAo)(Lo-L)/P . (4.31)

Here Ao = .0314 cm2

s0 ppAo = ,2U5 g/cm = .0245 g/mm and L° z 22 mm. If we
use the L and P values estimated above, we find Uo = .009 g/mm for the erosion
rate. At the end of the penetration, the X-ray length is no longer a good
estimator of the residual mass because of severe rod distortion. The fact
thﬁt the data points give a single value of Uo supports our assumption that
M= -u°§ in Eq (2.14) with ", independent of speed for given éo' It does not

tell us, however, whether UO depends on §°.

Perez (u'10)'also reported penetration depths for the same steel rod

impacting this magnesium target at various striking speeds. In Fig. 4.6 we
see a dip in penetration similar to what we saw in Figs. 3.6 to 3.8 above
(steel spheres versus steel). In the case of steel spheres we had independent
experimental evidence from recovered projectiles that such a dip was
aésociatéd with shatter. Here we have no such direct evidence, although we
will see such evidence below for other rods. Because of this it seems
reasonable to .suppose that the dip in Fig. 4.6 .i1s associated with nose
shatter. For steel spheres versus magnesium, we saw that shatter began near
2.3 mm/us (Fig. 3.9). Here it begins closer to 3 mm/us, which is not
unexpected in view of the length of the rod and the time it would ‘.:ke for a
wave from the nose to reflect from therear and travel back to the nose. This
implies that a dip indicating the onset of nose shatter shovld occur at a
lower speed for a shorter steel rod against this magnesium target. In fact,
this is what Perez observed as shown by the middle curve in Fig. 4.6 for
L,/D, = 3 where the dip begins near éo = 2.5ﬁm/US.

Fig. 4.7a shows three radiographs at different times during the
p: cetration of the LO/DO = 11 rod into magnesium for éo = 2.85 mm/us. Even
the stabilizer flare is clearly visible in the earliest plecture as is the

mushrooming of the nose. There also appears to be no contact between incoming
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Fig. h.?a.‘ Steel rod (I /Do = 11) versus magnesium targeﬁ at
2.85mm/yus.

Fig. L.Tb, Steel rod (LO/DS = 3) versus megnesium target at
2.63mm/us.
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projectile body and eroded material. Fig. 4.7b shows three radiographs at
different times during the penetration of the L°/Do = 3 rods into magnesium
for éo = 2.63 mm/us, about the same striking speed as in Fig. 4.Ta. Seen at
the earliest time, the rod has mushroomed and resembles Fig. 4.1a. No
estimates of residual length versus time are possible.

Fig. 4.8 shows penetration by this steel rod into a stack of magnesium
plates'Separated by thin (0.1 mm thick) brass sheets. Fig. 4.8a shows three
radiographs taken at different times during the penetration while Fig. L4.8b
shows a cross-section afterward. Perez did not report either the striking
speed or the thickness of the magnesium plates (or final penetration depth).
He only wished to point out the deformation was essentially the same during
and after penetration, except perhaps near the top and bottom of the crater.
We would alsolike to point out that the crater in Fig. 4.8b has a balloon
shape. That is, it is wider over most of its length than at the impact
surface where crater diameters or areas are usually measured. We will comment
on this later.

Now let us use Eq (4.1) to calculate the uppermost curve in Fig. 4.6.
The mass of the rod was not reported, and the value .54 g was calculated from
the reported density and geometry. Perez mentioned that he added stabilizing
flares at the rear of his rods, which should increase the calculated mass a
bit. Since neither the mass nor geometry of these flares was reported, we
will estimate an édditional mass of .036 g for the flare, giving Mo = 576 g.
We have chosen this particular number to make M /ug = 64 mm with
n_ = .00§ g(mm. This seems reasonable in view of the data in Fig. 4.6. We

o
also find a = .001 (A/Ao) g mm/USz, c .0028 (A/Ao) &/mm, Io = 20.4 mm/g,
1.18. Of course, ¢ = (¢-.0017) g/mm,

- 2 .
Iouo = .18, Iouo = .0017 g/mm, and k

so we can find ¢ = 1.18 /a/% mm/us and € = .Suok/é = .0053/¢, once we decide
on (A/Ao) for a particular striking speed. If we use (A/Ao) = 2.5, we find

£ = .8 mm/us and € = 1. Then, for example, when 5S4 = 4 mm/us,

PE = 64 {1-[1+(M/.8)2]-1} = 61.5 mm. Similarly, if we use the values of
(A/Ao) shown at the bottom of Fig. 4.6, we can calculate the uppermost curve,
which agrees well with experiment. The horizontal dashed curve is the

¢ = 22 mm /7.8/1.8 = 45.8 mm. All of Perez' data

points lie above this limit and seem to approach 64 mm, 40% higher.

hydrodynamic limit, L_ /op/o
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Fig. 4.8. Craters Made by a Steel Rod Penetrating a Layered Magnesium Target.
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_ In Fig. 4.6 we have found that (A/Ao) declines from about 4 near
$° = 2 mm/Us to about 2 near éo = 3 mm/us. This is similar to the decline.in
(A/Ao) from 1.8 to 1.5 experienced by the softened spheres in Fig. 3.6 as S°
increased from 1 to 1.5 mm/us. As the impact speed increases it is likely
that the rod mushrooms earlier in the penetration and on average presents a
more streamlined nose, that is a lower value of (A/Ao). Except for the onset
of nose shatter near éo = 3 mm/us, this trend might have continued as

- indicated by the dashed curve. However, the shattered nose spreads out more
and (A/Ao) increases, levelling off at 2.5 above éo = 3.3 mm/us. For impact

. speeds higher than this, none of the parameters change. The gradual increase
in penetration is due entirely to the increase in éo.

Finally, let us use Eqs (4.18) and (4.19) to calculate P(t) in Fig.

h.5. Since (A/Ao) = 2.5 at éo = 3.27 mm/u8s, € = 1, v = .ZUS'1 and X = 17.
Since éo = éo/k = 2.8 mm/us, Eﬁoz = .Og gmm/#s2 which 1is much larger than.the
target strength term, a = .0025 gmm/us™ initially. However, by the time P
drops below .7 mm/us, the strength term begins to dominate the inertial term.
As P + 0, only target strength remains. Since € = 1, we can use Eq (4.22) to
calculate the upper curve in Fig. 4.5. Eq (2.15) gives the remaining mass,
M= Mo - uoP = (.576 - .006P) g. For PE = 60 mm, we find ME
the flare mass has not been eroded in this estimate. A crude estimate of the

defth of the crushed residue might be Lg = Mg /(o A ) = .15ecm= 1.5 mm. A
good estimate of the remaining length at early time is L M/(OpAo), while the

= 036 g, so cnly

position of the rear is R = P -~ L, the lower curve in Fig. 4.5,which is also
in reasonable. agreement with experiment.

b. Aluminum/Magnesium

Fig. 4.9 shows Perez' (h.11)

time-dependent data for an aluminum rod
impacting the same magnesium target, but at éo =z 3.35 mm/us. The Xeray
‘contrast was not as good as for steel/magnesium, so the length measurements
are more uncertain. Perez also made a few time-dependent measurements for the

same rod/target combination, with éo = 2.2 mm/us (u'12).

However, there were
too few measurements to make a separate determination of the ernsion rate.
The one measurement reported which included both tip and rear positions
confirms our assumption that o is independent of striking speed for a given

rod/target combination. In the present case, L.O/DO = 33 mm/3 mm = 11 and
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2.8 g/cm3 for Perez' aluminum rod, compared to Lo/Do = 22 mm/2 mm = 11,

°p

7.8 g/cm3 for his steel rod. He kept the aspect ratio the same, while

°p

multiplying both Lo and Do by 1.5. However, this is not our first way above,
since he also changed the density, pp.

When we apply Eq (4.31) to Fig. 4.9, we find By = .013 g/mm for all
times, again supporting our assumption that the erosion rate is independent
of speed during a penetration. From the reported density and geometry of the
rod, we calculate a mass of .653 g. If we add .075 g for the larger flare on
this larger rod, we find M = .728 g, so M /u = 56 mm., This is a reasonable
value for the high speed limit in view of Fig. u 10 which shows PE versus S
for this rod/target combination (4. 13)

We can also estimate Mo from Eq (4.9). Let aluminum/magnesium be

combination 1, and steel/magnesium be c¢ombination 2, with U = .00 g/mm as

o2
above. Since the targets are the same, pt1 = th. The square root of the
ratio of the projectile densities is v2.8/7.8 = .6. Since the ratio of the

initial diameters is DO1/D°2 = 3 mm/2 mm = 1.5, the ratio of the initial areas
2
is A°1/A°2 = (1.5)° = 2.25. Then

Moy © (.009 g/mm)(2.25)(.6) = .012 g/mm (4.32)
which 1is.-in reasonable agreement with our estimate from Fig. 4.8, considering
the uncertainties and assumptions involved. This indicates that Eq (4.8) or
(4.9) may be useful.

Next, let us use Eq (4.1) to calculate the upper curve in Fig. 4.9.
Since Ao = .0707 cm2, a = .00212 (A/Ao) g mm/usz, c = .00636 (A/Ao) g/mm,
I0 = 25.26 mm/g, Io“o = .328, Io“oz = .N0427 g/mm, k = 1.328,
£ = 1.328 Ya/& mm/¥s, € = .00863/3 andlwo/uo= 56 mm. If we use the values of
(A/Ao) shown in Fig. 4.9 we can calculate the upper curve which agrees with
experiment. Here the limit of 56 mm is about 36% higher than the hydrodynamic
limit, 33 /2.8/1.8 = 41 mm. We note that (A/A)) for aluminum/magnesium levels
off at 2.8 above SO = 4 mm/us. There is no evidence of nose shatter for this
softer aluminum rod with an impedance closer to that of magnesium than steel.
The limit value (A/Ao) = 2.8 is slightly larger than for steel/magnesium., If
we multiplied .012 g/mm by v2.8/2.5 we would obtain .013 g/mm as from Fig. 4.8.

121

Ve TRV WV T T



e 2 o~
o
{ L T 1 1 1 wy
|
=
=
-t
v = )
= NE
> 2 |7
> 3
Q [}
o) v
o >
(o) - —
b= 0
o )
o
o [[]
"'1‘." zo
o~ -
w —~
RS "
- € o
€ g
S— [o]
(-]
o =
-]
—o' 80
o~
g 5
(=1 ]
EU
] %
S
—-
e
-o 2
— [y}
i
=,
e—_t_ _t 3 -t 3 31 1 1 | =
o o o o o o o°
e Va] - ™ o~ -
(ww)id
122

S a0 o N R O Y T e



Finally, let us apply Eqs (4.18) and (4.19) to Fig. 4.8 with

(A/Ao) = 2.8 near éo =z 3.35 mm/us. Since € = .637 we must evaluate the D

-1
integral numerically. Since xo = 15.5 and v = 1148 ,

15.5  _ 363
D= .1t i/P X (x-1)""2 dx (4.33)
X
with
X = 15.5 (1 - B/56) 127 (4.34)
so for any P we can find X, D and t, as well as M = Mo (1 - P/56) = ppAoL and

RzP-L. For example, when P = 40 mm, X = 2.168, so

D= 13-33 [-17u (0327 + '103) + -326 (.21’4 + 0131)] = 2-5 (u.35)

in the four-point Gauss approximation. Then t = D/v = 22.Tus, which agrees
closely with Fig. 4.8. At this time M = .208 g,.L = 10.5 mm and R = 29.5 mm.
Similarly, for P = 20 mm, X = 7.746, and

D = 7-75“ [.17’4 (0172 + 0100) + '326 (01,41 + 011"‘)] s 1.012 (u-36)

)

so t =9.,2us, M= 468 g, L = 23.6 mm, R = - 3.6 mm, and so on. When X, =1,

E

D= 14,5 [.174 (.770 + .103) + .326 (.242 + .136)] = 3.99 (4.37)

so t_ = 36us, M, = .127 g, LEz 6.4 mm and R =~ 39.8 mm.

E E

c. Steel/Aluminum

(4.14) and is for a steel rod with

. Fig. 4.11 is alsc from Perez' paper
LOIDO = 22 mm/2 mm = 11, impacting an aluminum target at éo = 2.3 mmAus to
reach a final depth of 34 mm. This is less than the final depth in Fig. 4.5

for the same steel rod striking a weaker, less dense magnesium target at a
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higher speed, éo = 3.27 mm/us. It is also less than the depth for that
rod/target combination at the same speed as here, éo = 2.3 mm/UsS, 48 we see
from Fig. 4.6.

Fig. 4.12 from Perez (4.15)

shows some evidence of nose shatter
beginning near éo = 2.2 mm/us, although'the dip in penetration is slight
compared to that in Fig. 4.6 which begins near So = 3 mm/us. We expect a
difference in threshold speed from Fig. 3.9. The difference in the magnitude
of the effect might be attributed to a closer impedance match between steel
and aluminum. .

If we apply Eq (4.31) to Fig. 4.11, we find M, = -012 g/mm. We can
also use Eq (4.9) with steel/magnesium as combination two, Op1 ='pp2
/EE??EZ; = 1,245, so My = (.009 g/mm)(1.245) = .01 g/mm, reasonably close

to our estimate from Fig. 4.11.
Now let us apply Eq (4.1) to Fig. 4.12. As before, we take

Mo = .576 g, whish for uo = 012 g/mm, gives Mo/uo = 48 mm which seems

and

reasonable in view of Fig. 4.12. Perez did not report measured hardness

values for his targets either, although he gave some estimates. Here we will

take Yt = 20 x 108dyne/cm2, so for Ao = 0314 emz, a = .00188 (A/Ao) g mmnisz,

.00438 (A/Ao) g/num, and of course I, = 20.4 mm/g as before. Then

¢ - .00294 g/mm, £ = 1.245 va/é mm/us and € = .00747/2. If we use the
(A/Ao) values in Fig. 4.12, we can calculate the upper curve in agreement with
experiment. Our high speed limit of 48 mm is about 30% higher than the
hydrodynamic limit of 37 mm.

c

c

In Fig. 4.12 (A/Ao) again reaches a constant value above a certain
striking speed, a behavior we now expect. The limit value (A/AO) = 3.5 is
larger than we found for steel/magnesium where the limit value was 2.5 in Fig.
4.6. These values are both estimates which depend on the target strengths we
have assumed, Yt = 10 x 108dyne/cm2 for magnesium and Yt = 20 x 108dyne/cm2
for aluminum, in the absence of measured values. Better values of (A/Ao) will
have to await measured values uf target strengths. The important thing to
note is the shape of the (A/Ao) versus éo curves, not their exact values. A
theory of (A/Ao) versus éo based on first p. inciples will also have o await
better information.

Before discussing Fig. 4.11, let us note that Perez used two other
types of steel rod against the same alumirum target (u'16). These rods had

LO/Do = 33 ma/3 mm and 44 mm/4 mm respectively. These rods together with
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those used in Fig. 4.12 with LO/Do = 22 om/2 mm form a family with the same
density and aspect ratio but different mass., This ia an example =i our first
way above. When Perez plotted PE/Lo varsus éo' he found that a single curve
applied to all three rods. This is exactly what our theory predicts, and
provides further evidence in its support. Perez also used various steels for
these rods versus aluminum targets, but found no detectable difference (u'17).
Later we will see a case where projectile strength made a detectable
difference, at least for low +i;'ikirgz speeds.

Finally, let us apply Eqs (4.18) and (4.19) to Fig. #.11. Since
€ = .6 for (A/AO) = 3.5 wﬁeh éo = 2.3 mm/us, we must evaluate the D integral
numerically. We find xo = 7.4 and v = .08&us'1, 80

7.4 _.4 -5
D = .084¢ =f x (x=1)"°" dx (4.38)
X
with
X = 7.4 (1-p/ug) 167 (4.39)

Since we have already given several examples of using the four-point Gauss
method, we will restpict ourselves to one example here., For P = 20 mm, Eq
(4.39) gives X = 3.0, so

D =.ulu [.17“ (.1308 L J -185) -+ 0326 (0296 + 0220)] s 1-195 (uouo)

and t = D/v = 188 which agrees with Fig. 4.11. At this time,
M= .576 g (1-20/48) = .336 g = (.0245 g/mm) L so L = 13.7 mm and
R P~L = 8.3 mm. Similarly, for xE =1, PF = 33.6 mm, tE = 36.6us and

ME = .173 g from which we can estimate LE and RE’ and so on.

2. Other Examples

a. Aluminum/Lead

Fig. 4.13 shows Perez' data (4.18) for the same aluminum rod impacting

lead targets. Once more there is evidence of nose shatter at an expected
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lower speed (near 1.5 mm/us), Pere: extended previous data reported by

Tate (u'19). The seven open squares in Fig. 4.13 are Perez' data points,

while the circles were reported by Tate. Tate used a larger aluminum rod

(Lo/Do = 63.5 mm/6.35 wm = 10, Mo = 5.43 g) against 101.6 mm diameter lead
targets. Since these targets showed severe lateral distortion in preliminary
experiments, they were encased in steel to provide enough lateral confinement to
simulate a semi-infinite target. Differences between truly semi-infinite

lead targets and Tate's targets might be expected at higher striking soeeds.
Such steel Eonfinement could cause greater target resistance and decrease the
penetration depth compared to a truly semi-infinite lead target.

Perez used 1lead targets which were 280 mm in

diameter impacted by less massive (LO/Do = 33 om/3 mm = 11, Mo = .728 g)
aluminum rods. He judged his targets to be truly semi-infinite because they
exhibited no observable distortion at the sides or rear after a penetration
event.

Both Tate and Perez reported their results as PE/L° versus éo. In
Fig. 4.13 we show Tate's data in two ways. The upper set of data points (open
circles) consists of his PE/Lo values multiplied by 63.5 mm, while the lower
set (open triangles) consists of his PE/L° values multiplied by 33 mm, Perez'
rod length. The open squareqata points are Perez! PE/Lo values multiplied by
33 mm. The more or less smooth Joining of the two data sets near 2 mm/Hs is
expected'as we saw above in connection with steel/aluminum. The rods have
about the same aspect ratio, so PE/Lo should be independent of Do’ The lower

values found by Tate for 2 (< éo < 2.35 mm/us might be attributed to his use of
steel confinement. It is too bad that Perez did not report data at lower

speeds using his projectile/target combination. 1If he had, we might have
better evidence than is available.

The possibility of nose shatter is a relatively unimportant feature of
Fig. 4.13. The important thing to note is that Perez found an increase in
penetration with increasing speed from 2 to 4 mm/us. As Perez points out,
this contradicts the prediction of Tate's mode that there should be an
appboach to the hydrodynamic limit in this range as indicated by the dashed
curve in Fig. 4.13 andthe horizontal line at PE = Lo/S;7B:-= 16.4 mm, using
Lo = 33 mm. Instead, Perez' data seem tobe tending toward a limit almost
twice this hydrodynamic limit. Perez noted that his steel versus aluminum

data (Fig. 4.12 above) also contradict the prediction of Tate's model. Perez
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went on to generalize that the predictions of hydrodynamlc models are usually
too high for impact speeds below 3 mm/us and too low for speeds greater thar
3 mm/us. In fact, the discrepancies are much too large to be explained by
conjectured "afterflow" giving "secondary penetration." We will return to
this point again below.

Unfortunately, Perez was not able to obtain time-dependent infcrmation
about penetration into his lead targets, using the X-ray equipment available
te him. Consequently, we have no direct evidence for either erosion rate, uo,
or nose mushroonming, (A/Ao). as ve did in the three previous examples. This
is the usual situation in penetration mechanics. More powerful flash X-ray

(4.20) as well as very intense continuous X-ray sources (H.21)’

systems exist
but applications to penetration mechanics have been either very restricted or
non-existent.

If we wish to apply our theory to the data in Fig. 4.13, we are forced
to estimate both Mo and (A/Ao) From our previous experience in the last
three examples, we expect u to be independent of s while (A/A ) should
initially decline with increasing S , and eventually level off a* high speed.
We recall from Fig. 4.10 for aluminumversusmagnesium that the high speed
limit of (A/Ao) was estimated to be 2.8 and W, was .013 g/mm. Now we need the
limit of (A/Ao) and y  for lead which is six times more dense than magnesium
and an order of magnitude softer. It might be too much to expect that Eq
(4.8) or (4.9) will be accurate in such an extrapolation, even though it did
fairly well in making transitions between steel, aluminum and magnesium. For
example, if‘-U'o2 = 013 g/mm and“5::73;2 = /TT?§7TT§—= 2.5 with A = A and

01 02
pp1 = 0,0 in Eq (4.9), we would find H, = +032 g/mm for the lead target. This

is clearly too high, since M /u = 23mm when M, = .728g, which is too low in
view of Fig. 4.13, With F1g 4, 13 as a guide, M /u = 30 mm is a more reasonable
estimate. This implies My = .024 g/mm for the lead taret In turn, this implies that
[f‘1 V(A/Ao)1]/[f2 v( A/A ) ] = 3/4 in Eq (4.8) without knowing either £,/f, or
(A/A ) /(A/A ) If target density controls (A/A ) at high speed, then
(A/A ) for lead should be smaller since lead permits less lateral spreading
than magnes1um If f for lead were also less than f2’ then perhaps the
limit might be (A/AO) = 2 for lead. In all of our other examples, Eq (4.8)
will be more useful. However, an estimate from Fig. 4.13 is more useful
in the present case. Eq (4.8) would give us

o = (.013) (2.5) (.75) = .024 g/mm (4.41)
only with the help of Fig. 4,13,
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If we assume Yt = 5 X 108dyne/om2 for lead as we did before in Fig.

3.1t and use AO = L0707 cm2 for this aluminum rod with MO/I-I° = 30 mm, we find
5= 1.6/a/C mm/us and € = .0192/&8, with a = .000106 (A/Ao) g mmﬂisz,

¢ ox L0l (A/Ao) g/mm and I° = 25.26 mm/g as before. Then using the values of
(AIAO) shown in Fig. 4.13 we can calculate the upper solid curve ir agreement

with experiment. The closeness of this agreement is not a strong support for
our theory in this case, considering the fact that incomplete data sets from

two different laboratories are being superimposed. However, the trends
predicted by the theory and the similarity of these trends with other cases
where better information is available, is of some significance.

b. Steel/Steel

Figs. 4.14 and 4.15 show data from Hohler and Stilp (4.1) for
LO/Do = 10 and L /Do = 1 steel rods impacting mild steel target;
(BHN = 135 kg/mm ) and armor steel targets (BHN = 260-330 kg/mm ). The rods
were made of a third kind of steel of intermediate hardness {BHN = 230 kg/mmz),
The upper two 'full curves in each figure are for LO/Do = 10 rods,
one with LO/D° 54 mm/S5.4 mm (Mo = 9.85 g), the other with Lo/Do = 25 mm/2.5 mm
( Mo = 0.96 g).  The lower two curves in each figure are for Lo/Do = 1 rods,
one with LOID° 12 mm/12 mm (Mo = 10.5 g), the other with
LO/D° = 5.5 mm/5.5 mm (Mo = 1.03 g). The masses reported include the mass of
a stabilizing flare at the rear of each rod. Only smooth curves without data
points were reported in this paper for steel rods, and consisted of plots of

PE/Lo versus éo' The mass pairs in each case are close enough to 10 g and 1 g
that, for some purposes, we have here examples of our first way (vary the mass
but keep the aspect ratio constant) and our third way (keep the mass constant
but vary the aspect ratio). As we recall, for the first way a plot of PE/Lo
versus S  reduces similar curves to a single curve. In Figs. 4.14 and U4.15 we
have multiplied their PE/Lo curves by the appropriate values of Lo. This

. brings out more clearly the advantages of high aspect ratio rods over compact
rods in achieving greater penetration. If we had plotted PE/Lo instead of P
the curves for LO/Do = 1 would be higher than those for Lo/D = 10. In Fig.

0
4.15 we have plotted a fifth curve for L /D = 156.8 mm/4.9 mm =32, M =23 g

o' Yo
from a more recent paper by Hohler and Stilp (u.zz)_ The target was a

El
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slightly different armor steel and the projectile steel for this very long rod
was also slightly different from that of the other rods, but not enough to
make any difference to our purpose here. They reported 2 data points for

éo > 1.5 mm/us for the LOIDo = 32 rod but these are not included to avoid
compressing the scale of the figure. The dashed lines in Fig. 4.14 are the
hydrodynamic limits (the same for either figure of course).

We recall the deformation of Hohler and Stilp's Lo/Do = 1 and
LO/D° = 10 rods shown in Figs. 4.1a and 4.1b. Since D/D°- 3 for the deformed
cap of the recovered long rod at So = 735 mm/us, we expect A/Ao- 9 for this
rod at -this speed.

Let us assume that Mg = 0 for the compact (Lo/Do = 1) reds in both
figures, since there is no evidence of erosion. Then Eq (2.11) applies. 1If
Yt = U0 x 108dyne/cm2 for the mild steel target and Yt = 90 x 108dyne/cm2 for
the armor steel target, we find a = /5;73; =z .55 mm/ys and .83 mm/us
respectively. If we use the (A/Ao) values shown in Fig. 4.16 for LolDo =1,
we can calculate the lower curves in Figs. 4.14 and 4.15 in agreement with
experiment..

Now lét us apply Eq (4.1) to the long rod curves in these figures.

For Perez' steel rods with LO/D° = 22 mm/2 mm = 11 (Mo = 576 g) versus
aluminum, uinas +012 g/mm. In Eq (4.9) with Perez' rod/target as combination
two, Y0, /., = /7.85/2.8 = 1.67. For Hohler and Stilp's 0.96 g rod with
L/D, =25 mm/2.5 mm = 10, A_ /A = (D, /D )% = (2.5/2)% = 1.56, sou_ is
.031 g/mm. Since the aspect ratio is not gquite the same, we will adopt

Mg = .033 g/mm as our estimate for the 0.96 rod. Since this rod has

M /L. = .1&6? g/mm, we findu = «156 g/mm (.1467/.1824) = .125 g/mm for this

o’ ~o
very long rod. For the LO/Do = 10 rods we will also assume that the erosion

rates are the same for either target. This may not be quite true but seems

good enough for our purpose, especially in the absence of measured values.
this puts the entire burden of accounting for the observed differences on the

hardness values we have estimated for each type of target. Of course

uo is also assumed to be independent of striking speed as well as any lesser
speed during penetration. This enables us to assign any speed dependence
beyond the explicit éoz factor in Eq (4.1) to the flattening factor, (A/Ao).
If we use the flattening factors labelled L.O/Do = 10 and LO/Do = 32 in Fig.
4.16, we can calculate the upper curves in Figs. 4.14 and 4.15. The fact that

(A/Ao) depends only on aspect ratic and not on projectile mass (for the mass
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range examined) for any striking speed is an encouraging simplification. For
LO/D° = 10 we note that (A/Ao) ~ 9 as expected.

Hohler and Stilp also reported the area, Ac' of their target craters
measured at the original impact surface, at least for aspect ratios of 1 and
10 (u'1). The ratios, (AC/AO), are shown in Fig. 4.17, together with the
flattening factors, (A/Ao), from Fig. 4.15. The increase of (Ac/Ao) with éo
corresponds to an increase in taper of the crater c¢ross sections., These were
roughly right circular cylinder for éo near 2 or 3 mmA s, but acquired mouths
wider than the lower portions of the craters at higher speeds. For
éo > 1.5 mm/us, the flattening factors we have assumed are less than the
values of (Ac/Ao). This provides a consistent picture at high speeds.
Unfortunately, Hohler and Stilp did not include any crater cross-section
photographs for éo < 2 mm/uUs so we do not know the shape. However, for
So < 1.5 mm/Ms, we have assumed flattening factors which exceed the reported
values of (Ac/Ao). As we have noted, (A/AO)-9 is consistent with Fig. 4.1b.
A reasonable conjecture is that at low impact speeds, the craters tend to have
a balloon shape like that in Fig. 4.8b for a long steel rod versus magnesium.
We might speculate that at low impact speeds, nose mushrooming takes place
during a relatively long time which is a significant portion of the entire
penetration time. After impact. the nose blooms and then later in the
penetration the mushroom cap rim reverses and begins to slim down and present
a more compact profile. This gives a balloon shape, with the diameter (or
area) of the crater mouth smaller than for most of the crater. At high impact
speeds the entire cap formation takes place early in the penetration and makes
the crater mouth wider than the rest of the crater. The time average area
presented by a high speed rod is unchanged for most of a penetration and
becomes independent of éo as well.

An alternate explanation for the discrepancy noted in Fig. 4.17 for
éo < 1.5 mm/us is thatuoNvFK7K; as suggested by Eq (4.4)., Thus, for low
impact speeds when A/Ao is significantly larger than 1 or 2, we cannot neglect
a dependence of the erosion rate on impact speed. 1If “o is higher at low
speed, perhaps three or four times higher near éo = 0.5 mm/Hs for
So > 3.0 mm/us, then (A/Ao) need not be so high at low speeds., If low speed
craters are observed to be approximately right circular cylinders instead of
balloons, then we should adopt this explanation, so (A/Ao) < (Ac/Ao) at low

speeds instead of as shown in Fig. 4.17. This would make our calculation a
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little mere complicated since both Mo and (A/Ao) would depend on éo instea?

of just (A/Ao), For some projectile/target combinations, Mo dependent.qn S°
may be correct, while for other cnmbinations it may be independent of §, as we
assumed above. We don't have enough information to answer this question,
although, in the present case, the agreement bhetween (A/Ao) £ 9 and Fig. 4.1b
seems to faver My independent of So. We will assume this to be true in the

calculations which follow, with the understanding that experimental evidence
may eventually require a change.

Now let us turn to a case which illustrates our third way. In Fig.
4,18, Christman and co-workers (4.23) held the mass of their mild steel rods
constant (Mo = 0.6 g) while varying the aspect ratio as indicated in the lower
right. They launched these rods at the same speed, S° = 3.4 mm/us against
targets wade of the same mild steel (BHN = 110 kg/mm2 reported) as the rods.
For cne aspect ratio, LO/D° = 9.525 mm/3.175 mm = 3, they also reported
penetration as a function of striking speed, as shown in Fig. 4.19.

In Fig. 4.18 we have also plotted Py/L, versus (LO/DO). A casual
reader, unfamiliar with such a plot, might think that penetration decreases as
aspect ratio increases, exactly the opposite of the truth. It seems better to
plot PE versus éo' since plotting PE/Lo serves no useful purpose here, unlike
the examples of our first way, discussed above.

From Fig. 4.16 we expect (A/Ao) to vary with aspect ratio and striking
speed iq the manner indicated. This means that for So = 3.4 mmNs, we expect
(A/Ao) to be almost independent of aspect ratio. Since material properties,
striking speed and rod mass are all constant in Fig. 4,18, and since (A/Ao) is
practically. independent of aspect ratio, we conclude that uo must vary with
aspect ratio. This is hardly a surprise since we have already assumed that

f =0 in Eq (4.8) for LO/D° = 1, while f is a significant fraction of the
maximum erosion rate for LO/Do > 10. We can still use Eq (4.9) to go from one
rod to another of equal aspect ratio. Thus we estimate uo = .033 g/an
(.,0284/.0384) = .024 g/mm for the .6 g, LO/Do = 10 rod here with

MO/LO = .6 g/21.1 mm .0284 g/mm from the value we found for Hohler and
Stilp's .36 g, L,/D, = 10 rod with M/L = .66 £/25 mm = .0384 g/mm.

However, we do not know how f varies for intermediate values of the aspect
ratio like 2, 3 and 4. Fortunately, the data in Fig. 4.16 for Lo/Do = 3

extend to high enough striking speeds that we can estimate the high speed
limit to te Mo/Lb = .6 g/uo = 18 mm. This gives Wy = .033 g/mm and implies
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that f for LO/DO = 3 is about 6/10 of f for Lo/Do z 10 in this case. For
LOID° a2 32 we earlier assumed that { was about the same as for LO/D° = 10.

Now let us apply Eg (4.1) to Fig. 4.18. For Lo/Do = 10,
b= .024 g/mm, so M /=25 mm. With Y = 33 x 103ayne/en? (for
BHN = 110 kg/mma) and (A/Ao) = 2.4 from Fig. 4.16 for éo = 3.4 mmAMs, we find
PE = 22 mm in agreement with experiment. Similarly, for LO/DQ = 3,
u .033 g/mm, and (A/Ao) = 2.2 from Fig. 4.18 we find PE = 12.5 mm. If we
assume the same Mo and (A/Ao) values for LO/Do = 2, 3 and 4 and merely use the

Q

variation in Ao to find variations in Io’ Kk, ao, o § and €, we find

PE = 10.5 mm for L°/Do =2 and PE = 14 mm for LO/Do = 4. Since uo = 024 g/mm
for LolDo = 10 and By = 0 for LO/Do = 1, this implies a maximum Mg in the
vicinity of LO/D° = 3.

Next we apply Eq (2.11) for Ly/Dy = 1, ¥, = 0 and (A/Ao) = 2 from Fig.
4,18. We find PE = 9 mm whick is a bit high compared to experiment. Perhaps
there is some erosion for a compact rod, or perhaps the flattening factors for
mild steel versus mild steel are not quite the same as in Fig. 4.16 as we have
been assuming.

Finally, we apply Eq (4.1, to Fig. 4.19 with M, : .033 g/nx and (A/Ao)
estimated from Fig. 4.16 to be siightly more that 2 for So ¥ 2.0 owfur, about
2.5 near éo = 2 mm/Ys and about 6 near éo = 1 mm/¥s. In this way we calculate
the curve in Fig. U4.19 which &yrees with experiment,

‘Let us completi this section by considering tdb exaﬁ;ies which
illustrate our fourih zud fifth ways.

Tateland so-workers (4.24) impacted steel rods with various aspect
ratios agaihst a.mo . steel targets. The impact speed range they investigated
was small and low, generally from 1 to 1.5 mmfi s, so little can be said about
the effect of speed from their data. However, in some cases they kept the
impact spewud onstant and changed the rod aspect ratio either by changing
the lengti» with constant diameter (our fourth way) or changing the diameter
while nolding the length constant (our fifth way). Here we will only consider
an example of each procedure.

In one set of experiments, they kept Do = 7.5 mm and doubled Lo from
22.5 mm to 45 mm, which doubled the aspect ratio from 3 to 6 as well as
doubling the mass from 7.75 g to 15.5 g. For a constant striking speed of
§ = 1.525 mm/us, they found PE = 13 mm for the shorter rod and P, = 20 mm for

o E
the longer rod.

A T W W - m —— —wr w w w



In our discussion of the fourth way above, we assumed that the erosion
rate in g/mm should not change if Ao is kept constant and the aspect ratio is
changed by varying Lye If (A/Ao) does not change either (as for higher
speeds), then doubling Lo should double PE' However, at a low speed like
1.525 mm/ps, Fig. 84.16 leads us to expect an increase in (A/Ao) as the aspect
ratio increases. Consequently, the longer rod will flatten more and its
penetration will be less than double that of the shorter rod. We estimate
uo = .15 g/mm for either rod with Ao' Io' ao, co and k the same for either rod .
also. This value of Mo is slightly less than we might estimatﬁzfig? Eq (4.9)
since the rods used were considerably harder than the targets « For the
same reason we expect somewhat less flattening than is indicated from Fig.

4,16, If we use Yt = 90 x 108dyne/cm2 as usual with A/Ao = 2.2 for LO/Do

3
and A/A° = 3 for LO/Do = 6, we find PE = 13 mm and 20 mm respectively.

In another set of experiments, these authors kept Lo = 56.7 mm, while
reducing Do from 9.45 mm to 4.72 mm. This increased the aspect ratio from 6
to 12, while reducing the mass from 31.1 g to 7.75 g. When they used the same
= 23.5 mm for the
shorter, heavier rod and PE = 15.5 mm for the longer, lighter rod. This is a

striking speed, éo = 1.45 mm/us, for each rod, they found P

clear example where a decrease in mass is more important than ar increase in
aspect ratio in determining penetration depth. 37 course =he me3s was
decreased by a factor of four, while the aspect retio was wmw.y dousled. For
the LO/Do = 6 rod we keep (A/Ao) = 3 as before, and estima:®e E .24 g/mm we
find PE = 23.5 mm. For the LO/Do = 12 rod, the mass per unit length .s lower
by a factor qf four, 30 uo = .06 g/mm, However, Mo is also reduced by the
same factor, so (Mo/uo) = 129 mm aga ‘n. Now PE = 15.5 mm,

It would be a better test of our theu;y, of course, if we had
independent, experimental Zeterminations of v, and (A/Ao). Since these are ¥
not available, we have been forced to make : =timates, However, our estimates
are not arbitrary, and fit well with a veriety of experimental information
gathered by various workers. This illustrates one of the most important

characteristics of a good z:nheory, namely, its ability to connect pleces of a

puzzle into a coherert panrtern,

P
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¢. Steel/Aluminum

Fig. 4.20 is from Christman and co-workers (4.23)

and shows
cross-sections of three craters made by their 0.6 g, L /D° = 3 mild steel rods
striking soft aluminum targets (1100-0, BHN = 25 kg/mm“) at three different
speeds. The lowest striking speed, éo = 1.9 mm/ 8, is a little below the
shatter threshold evident in Fig. 4.21. As these authors remark, this 1s the
veginning of "the region where the projectile goes from gross plastic
deformation to complete fragmentation" (u‘25). In Fig. 4.20a, the narrow
crater has a smooth, roundéd bottom where the deformed mushroom cap came to
rest. The next highest striking speed, éo = 2.9 mm/us, is near the minimum
penetration in the shatter region. The crater in Fig. 4.20b is wider and
ragged near the bottom where pieces of the rod are strewn about. The highest
striking speed shown is éo = 4.4 mm/vs. This is near the end of the shatter
gap, where the penetration starts to exceed its previous maximum value. 1In
Fig. 4.20c, the crater is still wider, quite ragged, and bulbous in shape.
The;auﬁ&ora§pomment that,. at lower speeds, "most of the projectile remains

sﬂ,‘

Yk A .- .
inﬁhﬁ_iﬁﬁ theqbditom of" the crater. although grossly deformed. K qyr N -9~.

L6

. \_5.

o = 5.3 mm/ps, "the steel projectile has been completely broken up,:as ‘
evidenced by the 'scouring"of the crater-wall by the projectile rragments-
and the: cratér haa taken a 'bottle' shape with the maximum diameter ‘
approximately haifway down the crater rather than at the surface" (4. 26).
Presumably, at much higher striking speeds, the crater will approach a
hemi-spherfeél.shape.

The three pictures in Fig. 4.20 correspond to the three data points
with flags in Fig. 4.21. This figure also shows a lower curve for the same
steel rods impacting harder aluminum targets (2024-T3, BHN = 125 kg/mmz). The
effect of target hardness on penetration is obvious over the entire striking
speed range investigated, and is still 25 to 30% near éo = 5 mm/us. The
softer target shows a clearer shatter threshold at a lower speed. The harder
target curve resembles Fig. 4.12 (also steel/2024 aluminum), although the rods
in Fig. 4.12 had a larger aspect ratio. Since the projectiles in Fig. 4.21
were the same for both target materials, it is clear that target hardness as
well as target density can influence the shatter threshold. If we rcompare
Figs. 4.21 and 4.19, we see the effect of tarset density on penetration. The

effect of target density on nose shatter is not <vide --. ~-wever, since there
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1100-0 ALUMINUM TARGETS
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Fig. 4.20. Crater Sections, Velocity Effects
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is no information in Fig. 4.19 for éo < 1 mmA s where we might expect shatter,
if the rod were hard enough.

(4.23) and is

Fig. 4.22 is also from Christman and co-workers
comparable to Fig. U4.18 (steel/steel) with the addition of two data points for
LO/D0 = 15 and 20. The table in Fig. 4.18 is easily extended to give
LO/D°= 27.75 mm/1.85 mm = 15 and Ly/Dy = 34 mm/1.7 mm = 20, both with
M = .6 g. The same striking speed, éo = 3.4 mm/us, was used in both Fig.
4,18 and Fig. 4.22. Only the targets were different. Penetrations into soft
aluminum are about twice as deep as into mild steel for any aspect ratio at

this speed.

1
We recall that Perez (B.14)

also impacted steel rods (Lo/Do = 11)
against aluminum targets which were a bit harder (BHN ~ U0 kg/mmz) than the
soft aluminum targets here (BHN = 2% kg/mmz). From Perez' data in Fig. 4.11
we found an erosion rate of .012 g/mm. For the Lo/Do = 10 rod in Fig. 4.22,
we might expect about the same rate, perhaps a bit smaller. This gives us a
starting point from which to estimate erosion rates for the other aspect
ratios in Fig. 4.22. From Fig. 4.18 for the same steel rods versus steel, we
recall our estimates of .024 g/mm for LO/D° = 10 and .033 f/mm for LO/Do = 3.
That is, the shorter rod had an erosion rate about one-third larger than the
longer rod. 1In this way, we can estimate Mg = .015 g/mm for the LO/Do = 3 rod
versus aluminum. As the rod diameter decreases for Lo/Do > 10, we expect the
erosion rate to decrease somewhat, provided the flattening factor is
independent of aspect ratio at this high striking speed. Thus, we estimate
Wy ® .010 g{mp for LO/Do = 15 and uo = 0094 g/mm for Lo/Do = 20. This
decrease 1is also required if the very high speed limit (MO/HO) is to exceed
the penetration valiues reported in Fig. 4.22. For Lo/Do = 1, Wwe assume uo = 0
as before, and use Eq (2.11) instead of Eq (4.1) to calculate the penetration.
We also assume (A/Ao) = 2.4 for any aspect ratio in Fig. 4.22. This lets us
calculate the curve which seems to agree well with the observations.

In order to c¢alculate the two curves in Fig. 4.21, we assume
Ho = .015 g/mm to be the same for both targets. This is similar to the
assumption we made for mild and armor steel targets in Figs. 4.14 and 4.15
where the hardness values differed by a factor of about 2.25. 1In Fig. 4.21
the hardness values differ by a factor of 5, so this assumption may be less
correct. Still, it allows us to make the target hardness responsible for the

observed differences in penetration. If we proceed in this way, we have
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A, = 079 en? and I, = 8 mm/g for the L /D, = 3 rod, as before. For either

aluminum target we have ¢ .0107 g/mm. For the hard aluminum target, we

find a, = .009 g mm/us2

a° s ,0019 g mm/usz. Then we can use the (A/Ao) values shown in Fig. 4.23 to

, and for the soft aluminum target,

calculate the two curves in Fig. 4.21.

Both (A/AO) curves in Fig. U4.23 have the same form, decreasing as éo
increases from a low value, then increasing above the shatter threshold, and
levelling off at high speed. This occurs for éo Z'R.S mmAs for the hard
target and for éo > 3.2 mm/us for the soft target. The latter value is just

below § = 3.4 mm/us in Fig. 4.22, and the value (A/A)) = 2.7 is what we used
for all aspect ratios there. Both curves in Fig. 4.23 approach the same high
speed limit, since density rather than hardness seems to control lateral
confinement at such speeds. Of course, hardness as well as density controls
penetration depth as we have seen. The value (A/Ao) = 2.7 is not much
different for steel/aluminum than for steel/steel in Fig. U4.16, where (A/Ao)
versus So has the same general form, as expected.

The vertical scale in Fig. 4.23 has been made the same as in Fig. 4.16
to facilitate comparisons. An obvious difference is the absence of a minimum
in Fig. 4.16. Another difference occurs for striking speeds less than
1.5 mm/us. For example, near éo = 1 mm/us, we can estimate (A/Ao) = 6 for
LO/D° ='3 steel rods versus steel from Fig. 4,16, From Fig. U4.23, we see that
near éo = 1 mm/us, (A/A°)=z 3 for the same steel rods versus aluminum.
Apparently, the less dense aluminum targets are less effective at initiating
flattening of these rods at low speeds. Of course, the opposite is true at
high speeds where the less dense aluminum provides less lateral confinement
than steel. Of course both aluminum targets are softer than the softest steel

target, although the hard aluminum is almost as hard as the mild steel

(BHN = 125 kg/mm® versus BHN = 135 kg/mm°).

We recall from Fig. 3.13 that an aluminum target did not flatten a
hardened steel sphere at all for éo < 1.5 mm/H¥s, It flattened a softened
steel sphere somewhat, giving (A/Ao) = 1.67 near éo = 1.5 mm/us. A mild steel
sphere has a value of (A/Ao) between 1 and 1.67. As we see from Fig. #4.23, a
short mild steel rod has (A/Ao 2 2 near S° = 1.5 mm/us for either aluminum
target. This agrees with our expectatlion that a blunt rod deforms more than a

sphere under similar conditions.
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We recall from Fig. 3.6 that a mild steel target was more effective at
flattening the same softened steel sphere than an aluminum target, giving
(A/Ao) = 1.8 at a lower speed, éo =z .7 mm/us. This trend agrees with what we
see in Figs. 4.16 and 4.23, although the differencesare more pronounced for
rods than for spheres.

The two curves in Fig. 4.21 also remind us of the two curves in Fig.
3.16 where hard and soft aluminum targets were also used to stop the same
projectile (aluminum spheres in that case). In Fig. 3.16 there was a 40 to
50% difference in penetration depth up to éo = 9 mm/us. In Fig. 4.21, the
difference is 30 to 40% up to éo = 5 mm/¥s. In Fig. 3.16 a single flattening
factor, (A/Ao) = 1.3, sufficed for aluminum spheres/aluminum over the entir=:
range studied from SO =z 3 mm/us to So = 9 mm/us. Most likely, this i: “he
high speed limit value of (A/Ao) for this projectile/target combiqati.n. .¢
is less than the comparable high speed limit value for steel rod- 1. Fii. 4.73
as expected, both because rods tend to deform more than spheres and 2-c.l will
spread laterally more in an aluminum target than aluminum will.

Finally, let us recall that for Fig. 3.13, we conjectured vurt Lhe EE
curves for hardened and softened steel spheres might converge at vighc~
striking speeds and have a single (A/Ao) value between 1 and 1.67, a+ they 2id
in Fig. 3.6, with (A/Ao) = 1.5 as the high speed limit value for steel spheres
on steel. This is close to the value (A/Ao) = 1.3 for aluminum spheres on
aluminum. In the next section (Fig. 4.24) we will see a case where soft and

hard short aluminum rods have somewhat different penetrations against the same
aluminum target at low speeds, but have the same penetration (Aand same high

speed flattening factor) for éo 2 4.5 mm/us.

d. Aluminum versus Steel and Aluminum

The lower curve in Fig. 4.24 is for Mo = .2 &, LO/Do = 3 alum%sug3§ods
versus mild steel targets. It is also from Christman and cofworkers :
who used both soft and hard aluminum rods, but found no difference in
penetrating steel targets. The upper curve ir Fig. 4.24 is the same as Fig.
4.19 for 0.6 g, Lo/Do = 3 mild steel rods versus mild steel targets and is
included here for comparison purposes. The target materials as well as the
projectile geometries are identical for both curves in Fig. 4.24. They differ

only in projectile density which leads to a factor of three difference in
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Fig., 4.25., Flattening factor for sluminum rods (M = .2g,

.t
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Lo/D = 3) of different strengths versus mild steel.

152

A giar s R R

3

LR D K AN St O ¢ T AT R Fon



projectile mass. However, the penetration depths differ by a factor of two
because of differences in erosion rate and flattening. This is an example of
our sacond way.

In the usual way, we estimate uo z .019 g/mm, assuming a smaller
high-speed flattening limit then for steel/steel because of the smaller
projectile density. If we use the (A/Ao) values shown in Fig. U4.25, then Eq
(4.1) lets us calculate the lower curve in Fig. 4.24. Once more the agreement

with experiment is satisfactory.

(4.23)

Christman and co-workers also impacted a variety of aluminum

rods against aluminum targets, Fig. 4.26 shows three soft (1100-0) aluminum
rods which were recovered after striking soft (1100-0) aluminum targets at
three different speeds. All of the rods had Mo = .2 g, LO/D° = 3. The
increase in deformation with striking speed is clear. For So =z .31 mm/us the
diameter of the nose has increased by about 50% so the flattening factor is
about two. For éo = .45 mm/us, the final diameter has doubled, so (A/AO) is
probably 4., For So = .98 mm/us, we see the formation of a mushroom cap and a
decrease in (A/Ao) as the projectile becomes more streamlined at higher
striking speeds.

Fig. 4.27 shows three aluminum rods with different hardness values
recovered after striking soft (1100-0) aluminum targets at the same speed,
éo = .9.mm/us. All three had MO = .2 8, LO/Do = 3 as in the previous figure.
Since the striking speed here is almost the same as that in Fig. 4.26c, it is
not surprising that the mushroom shape is about the same. The medium-~hard rod
in Fig. 4.29b has deformed much less, while the hardest rod in (c¢) has only
begun to deform with a combination of plastic flow and chipping. Tiny flares
for flight stability are visible in some of the pictures.

Fig. 4.28 gives data for soft (1100-0) and medium-hard (2024-T3)
aluminum rods versus soft (1100-0) and medium hard (2024-T3) aluminum targets.
Once more the undiminished importance of target hardness is evident to
éo > 6 mm/us. Christman and co-workers (4.23) also reported experiments with
inhibited Jjets against these targets. Inhibited jets are jet tips with the
rest of the jet removed. Usually they are produced from small angle cones and

have high tip speeds approaching twice the explosive detonation rate (4.27,

M.28). These authors found that the importance of target strength was
undiminished up to 15.7 mm/¥s, far above normal Jjet tip speeds. From such
experiments it is clear that one simply cannot neglect target strength at any
such speced, at least for compact projectiles.
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1100-0 ALUMINUM RODS
Lo/Dg=3.0, 0.2 g

1100-0 ALUMINUM TARGETS

0.31 mm/us | 0.45 | 098
(o) (b) (c) :

Fig. 4.26. Recovered Projectiles, Velocity Effects
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Anotiher important feature in Fig. 4.28 is the low speed difference in
penetration for soft and hard projectiles against the soft target. This is
comparable to Fig. 3.6 for soft and hard steel spheres versus a mild steel
target. But in Fig. 4.28 there is no observable difference againat the harder
target. The shape of the curve for the harder aluminum (2024-T3) rod versus
the soft aluminum (1100-0) target is similar to that of the upper curve in
Fig. 4.21 for a geometrically identical steel rod versus the same aluminum

. target. If softened steel rods had also been used in Fig. 4.21, presumably
there would be another set of data points somewhat below the upper curve at _
low speeds, which would mebge with the upper curve for So > 3.5 om/us. The
uppermost curve in Fig. 4.28 qffers sone evidence of nose shatter, but only
for the harder rod, and only against the softer target. Against a target of
equal (or greater) hardness, any difference there may be between plastic

deformation and shatter is not observable. Perhaps the hard target provides
enough lateral confinement to prevent the onset of spreading, if shatter
occurs, something a much softer target cannot do.

Figs..u.27a and 4.27t show Soft and hard rods recovered from the soft

e -
™ ™

target after atriking it at a speed where the difference in penetration in
Fig. 4.78 starts to be observable. Clearly, the harder rod has flattened

.

less. There also seems to be a chip missing similar to what is seen for the
still harder rod in Fig. 4.27c. This suggests a beginning of shatter.

It is interesting to compare Fig. 4.28 with Fig. 3.16 for aluminum
spheres (Do = 4,76 mm, Mo = .158 g) versus soft and hard aluminum targets.
The rods in Pig. 4.28 are 25% heavier than the spheres. However, their
penetration is more than 25% greater against comparable targets in spite of
erosion and greater flattening, because of their greater aspect ratio as well
as their greater mass.

The curve in Fig. 4.28 for the soft aluminum rod versus the soft
aluminum target is comparable to that in Fig. 4.19 for a geometrically similar
mild steel rod versus a mild steel target. Christman and co-workers also
reported data for aluminum/aluminum similar to that in Fig. 4.18 for

steel/steel, which we will not discuss here, since the principles involved

a have already been illustrated.

ﬁﬁ By the usual procedures, we estimate o = .008 g/. . which we will

> assume to be the same for either rod versus either target. This approximation
may not be as close to the truth as it was in other cases where the target
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ALUMINUM RODS
Lo/Dp=3.0, 0.2¢g, 090 mm/us

1100-0 ALUMINUM TARGETS

(c)

—

Fig. 4.27. Recovered Projectiles, Material Effects
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3.0 A EITHER ROD/2024-T3 TARGET .

B 1100-0 ROD/1100-0 TARGET
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Fig., L.29. Flattening factors for aluminum rods (MR = ,2g,
LO/Do = 3) of different strengths versus targets of
different strengths.
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strengths differed by less than a factor of five. Again, this assumption puts
the burden on (A/A ). If we use the (A/A,) values shown in Fig. 4.29,
together with target strengths of 10 x 108dyne/cm2 and 50 x 108dyne/cm2 for
the soft and hard targets respectively, we can calculate the curves in Fig.
4.28 from Eq (4.1). In Fig. 4.29 we see the expected shapes for the soft
target with a merger of the two curves at high speed. For the hard target,
however, we see a slightly larger flattening factor out to 6 mm/us. The

difference is only about 10%, and may be due to our assumption that uo is the
same for all rod/target combinations.

e, Tungggen versus Aluminum, Steel and Tungsten

("‘01)

Hohler and Stilp used two sizes of tungsten alloy rods

(Dp = 17 g/cm3, Mo = 3.2 g, Lo/Do = 29.1 mm/2.8 mm = 10.4 and M° = 30.9 g,
L/D =z 62.4 mm/6 mm = 10.4) versus mild and armor steel targets. Later
(8.23) they used similar rods against two slightly different aluminum targets,
both with Dt = 2.85 g/cm3 and BHN close to 80 kg/mmz. In addition, they used
targets made from the same tungsten alloy as the rods (BHN = 270 kg/mmz).
Still later (4.22) they used a slightly stronger version of this tungsten
alloy to make rods of various aspect ratios and fired them against armor steel
targets (BHN = 330 kg/mmz). As expected, small changes in projectile hardness
made no observable difference.

Fig. 4.30 shows data for their smaller tungsten rod versus aluminum,
mild steel and tungsten. The horizontal dashed line is the aluminum
hydrodynamfc'limit which is about S50% low at high speeds. The hydrodynamic
limits for steel and tungsten are not shown, but are only 10-15% low.

Let us estimate erosion rates by starting with our estimate for Hohler
and Stilp's 0.96 g steel rod, LO/DO = 25 rm/2.5 mm = 10 versus steel, which
was .033 g/mn. Eq (4.8) involves not only the ratio of the areas,

(2.8/2.5)2 = 1.25, but also the square root of the ratio of the rod densities,
/1777.85 = 1.47, so for this tungsten rod versus the steel target we have

g = (.033 g/mm)(1.25)(1.47) = .06 g/mm. This gives a high-speed penetration
limit of Mo/uo = 3.2 g/.06 g/mm = 53 mm, which agrees with the trend in Fig.
4.30. For the tungsten target we must multiply .06 g/mm by the ratio

’0t1/0 = Y17/7.85 = 1.47 to obtain .088 g/mm. This gzives a high-speed

te
penetration 1limit near 36 mm which seems a bit low in view of Fig. 4.30. If
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we adopt uo = .08 g/mm, we obtain a more reasonable limit values. Then, for
the aluminum target, we can multiply .08 g/mm by the appropriate square root
of the target densities to obtain uo = .03 g/mm and a limit in agreement with
Fig. 4.30. Suchrough estimates are about the best we can do with the
information available. Now when we use Eq (4.1) with the flattening factors
shown in Fig. 4.31 we calculate the curves in Fig. 4.30 in reasonable
agreement with experiment. At low speeds we expect the highest (A/Ao) value
for the tungsten target and the lowest for the aluminum target. The lack of
any difference at high speeds may be due to the approximate nature of our
calcualations. .

Fig. 4.32 shows some of Hohler and Stilp's (4.22) data for tungsten
rods of various aspect ratios versus armor steel. In particular, the examples
shown are for L°/D° = 163.2 mm/5.1 mm = 32, LO/Do = 41,7 om/4.17 mm = 10, and
LO/Do = 9 mm/9 mm = 1. For this last case we again assume that there is no
erosion and use Eq (2.11) with the flattening factor shown in Fig. 4.33, which
is almost independent of striking speed. The LO/Do = 10 example chosen here
was selected because it has about the same mass as the Lo/D, = 1 example.

With an erosion rate Hy = .13 g/mm and the (A/Ao) values in Fig. 4.33, Eq
(4.7) gives us the curve shown. Finally, the LO/Do = 32 example was almost
six times as massive as the other two rods, so the deeper penetration evident
in Fig. 4.32 is not simply due to larger aspect ratio. A better comparison is
with the LO/Do = 32 steel rod in Fig. 4.15, which was about the same size and
somewhat less than half the mass. An erosion rate uo = ,2 g/mm was determined
in the usual way, and this together with the (A/Ao) values in Fig. 4.33 used
in Eq (4.1) give us the curve in Fig. 4.32. In all cases there is reasonable
agreement with experiment. The trends in Fig. 4.33 are similar to those in
Fig. 4.16 for steel rods, except for LO/Do = 1., We recall Fig. 4.1a where the
compact steel rod was considerably flattened at low speed. Unfortunately,
Hohler and Stilp did not give a comparable photograph for a compact tungsten
rod at low speed. They did, however, show photographs of LO/DO = 10 tungsten

rods deformed at low speeds (4.1)

which are presented here in Fig. 4.34, If
we compare with Fig. 4.1b, it is obvious that the mushroom cap rim has broken
off the tungsten rods at some point in‘time, while it is still present on the
recovered steel rod. From Fig. 4.2a, the rim appears to be present on a

tungsten rod at the beginning of a penetration into steel. We may conjecture

that it is present during most of the penetration and breaks off near the end.
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Fig. 4.32. Tungsten alloy rods versus armor steel,
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Fig. bL.3k. Lo/Do = 10 tungsten rods with mushroom cap broken
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Fig. 4.35. Two tungsten alloy rods (LQ/Do = 23) vs. armor steel.
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We might also conjecture that a compact tungsten rod which produces only a
shallow crater, breaks much sooner and so does not have a much larger (A/Ao)
value at low speed tha~ at high speed.

Silsby (4.30)
( op = 17.3 g/cm3) versus steel targets (BHN = 230 to 270 kg/mmz). He used
two rod sizes Mo = 98 g, LO/Do z 155.8 mm/6.77 mn = 23 and Mo = 46 g,
LO/Do 121.8 mm/5.3 mm = 23. His data points are shown in Fig. U4.35 together
wich horizontal dashed lines representing the hydrodynamic limits.

also reported data for tungsten alloy rods

By the usual method we estimate uo = .217 g/mm for the 46 g rod and
My = «37 g/rm for the 98 g rod. Then Eq (4.1) together with (A/Ao) values for
LO/Do = 23 frou Fig. 4.33 gives the two curves in Fig. 4.35 in agreement with
experiment. For example, for § = 1, we can use (A/ﬂo) = 8, and so on.

(4.3u)

Tzte and co~workers also impacted tungsten rods of various
aspect ratios against steel targets over a rather small speed range. We could

use this data as we did their stzel rod data, but nothing new wculd be learned.

f. Copper versus Copper, Aluminum and Steel

(4.3) for

Finally, let us examine some data reported by Weihrauch
copper rcds (pp = 3.96 g/cm3, Mo = 3.8 g, LO/Do = 60 mm/3 mm = 20) impacting
copper, aluminum and - . _ets.

‘Fig. 4.36 (u'3°“)is & seaquence of photogr.phs < copper rods which
were recovered after striking copper targets at various speedsa. The targets

8

were annealed and somewhat softer (Y, v 10 x 10 dyne/cmz) than the rods

(th 20 x Tosdyne/cmz). For the low:st striking speed used, éo = U050 mm/us,
compression of the rod nose is barely perceptible and there is only a shallow
dimple, .C6 mm deep, in the target face shown at the right. As the striking
speed increases, the recovered r-d appears shorter and fatter and the crater
depth gradually increases. A round head backed by a flare appears on the rod
nose, until, by éo = .689 mm/us, the rod has been turned into a mushroom cap.
At this speed, the crater in the target is still only 6 mm deep, so the
projectile was easily recovered. For the highest striking spe=d shown,

So = ,893 mm/us, the crater is 17 mm deep and the target must b2 sectioned in u
]

order to examiune the remains of the rod, as shown in the final picture. Part
of the rod has become a irollow tube which lines the crater wall, while the

[

rest fills the bot“om of the hole. Recall Fig. U4.L above for the condi.ion of i
the rod after impact at still higher speeds. :
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rod recovered after striking a very hard steel target (steel RHF11,
Y, ™ 200 x 108
S = .05 mm/us, the target dimple depth was toc shallow to be measured. For

shows a similar sequence of photographs of the same

dyne/cmz) an order of magnitude harder than the rod. For

(7]
]

L4617 mm/us, the depth was only .065 mm, about the same as for the copper
target when S° = .050 mm/us. For So about .4 mm/us, the rod nose petals and
the projectile can be said to splatter on the target face.

Fig. 4.38 (4.32)
these copper rods against three types of target, annealed copper (which has
already been described), hard aluminum (Y ~ U5 x 108dyne/cm ) and a steel

which is still harder, but much softer (Y v 180 dyne/cm ) than the RHF11 steel
used in Fig. 4,35, At the lowest speed used against this (St 50) steel
target, namely, $

shows penetration depth versus striking speed for

= .22 mm/As, the crater depth was .038 mm compared to

° (4.33)

.014 mm in the very hard steel target

Copper rods are not generally used in practical applications.

However, they provide an example of a very weak, ductile penetrator material
of medium density which can be compared with penetrator materials we have
already examined, such as aluminum, steel and tungsten (of low, medium and
high density, but much stronger than the copper used here, which is more
comparahle to lead, commonly used for bullets). Copper is also widely used to
form shaped charge jJets, sollong rods made of copper can provide some basis
for comparison there as well. Fig. 4.38 gives us a good exauple at low sSpeeds
of the importance of target strength versus target density. If target density
were the only important factor, then the penetration curve for the copper
target ought'to lie below the curves for steel and aluminum, instead of above.
The copper target material is so weak, however, that its greater density does
not compeinsate for its lack of strength. We have already seen another example
not quite as extreme as this. The hard (2014) aluminum target in Fig. 3.12
above does about as well against a tungsten sphere as the much softer lead
target up to at least éo = 3 mm/us, in spite of the relatively low density of
aluminum.

Once more, we are dealing with a rod material for which we hava rno
measurements we can usge to estimate an erosion rate. If we follow the sane
procedure we used for tungsten rods, we estimate uo to be .059, .032 and
<055 g/mm for the copper, aluminum and steel targets respectively. Since MO =
3.8 g, the high speed-limit penetration, Mo/uo’ is 64.4, 119 ard €9 mm

169

W Tr A e -

L. $§ W WWNWWER] @ (oma g BB N LN T

|.-



Fig. 4.37.
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Deformed Copper Kods Recovered after Impacting a Very Hard Steel Target,
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Fig. 4.38. Copper rods (Mo = 3.8g, LO/Do = 20) versus copper,
aluminum and steel targets.
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respectively. These values are only about 8% higher than the hydrodynamice
limits. The first value seems reascnable in view of the bending of the copper
curve in Fig. 4.38. However, the highest speeds used for the aluminum and
steel targets were too low to irdicate bending of the curves. The three
values of Mo/uo increase as the density decreases, following the l/ﬂ;z rule in
Eq (4.8). Thus, we expect the curves in Fig. 4.38 to cross at higher speeds.
However, we have no experimental information on this point.

If we use the pasameters already given, together with the flattening
curves in Fig. #.39 in Eq (#.1), we calculate the penetration curves in Fig.
4,38. Again, the infiuence of target strength is evident in Fig. U4.39 since
the copper target flattens the rod less than the other targets in spite of its
greater density. The relative flattening by copper and steel agrees with the
trend in Figs. 4.36 and 4.37 as well. However, the steel used in Figs. 4.38
and 4.39 is much softer than that in Fig. 4.37 and does not petal and splatter
the rod as the very hard steel target does. Still, the (A/Ao) value for steel
near So = 0.9 mm/us is about 16, so the mushroom cap diameter is about U4 times
the original rod diameter, compared to only 3 times for the copper target at
this spead. The latter value agrees with the last photograph in Fig. 4.36.

D. Finite Target Examples

1. Steel/Steel

Compared to studies of penetration into semi-infinite targets, there
are relatively few examples of target perforation in the open literature,
which contain enough data above the ballistic limit that the shape of residual
speed or residual mass curves can be determined as a function of striking
speed. Consequently, this section wi'l be much shorter than the previous
section,

Fig. .40 shows a seres of superimpos~d X-ray photographs of a 7.73 g
steel rod (BHN = 555 kg/mma, LO/DO = 50 mm/5 mm = 10) perforating an armor
steel plate (BHN = 400 kg/mmz, To = 6.35 mm), reported by Herr and Grabarek
(u'Bu). The striking speed was 1.657 mmAis, the highest speed in Fig. U.u1,
From the latter figure we se2 than both the residual speed and the residual
mass increase as striking speed increases above the baliistic limit, From

Fig. 4.40 it is clear that there is a lot of debris around the penetrator as
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RESIOUAL ROD VELOCITY = 1500 M/SEC. :
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STRIXING VELOCITY = 687 M/SEC
STRIKING VAW « |5°

Lo e

FRAGMENT VELOCITY » ISW M/SEC ~ 404 M/SEC
FRAGMENT WEIGHT = 248 MILLIGRAMS ~ 19 WILLIGRAMS

TOVAL ANGULAR FRAGNENT SPREAD =88°

Fig. 4.40, (.78 gram Bearcat Rod, BHN 555, L/d = 10, perZorating
6.35mm RH Steel Armor, BHN 400, at normal obliquity.
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STRIKING VELOCITY (m/s) 678 719 803 969 1657
RESIDUAL VELOCITY (m/s) 308 369 556 826 1518
IMPACT YAW (°) 1.5 2.6 1.5 2.1 1.4
RESIDUAL WEIGHT
“SRIGINAT WEIGHT 0.56 0.61 0.73 0.78 0.82
RESIDUAL LENGTH .
~ORTGINAL LENGTH 0.59 0.61 0.74 0.78 0.81

Fig. 4.41. 7.78 gram Bearcat steel rod, GHN 555, L/d = 10,

perforating 6.35mm RH Steel Armor, BHN L00, at 0°
obliquity,
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it exits from the back of the target. This is not surprising, i{f we recall
our discussicn of breakout effects in Chapter III, especially the crater
formed at the back of the target, illustrated in Fig. 3.17. Herr and Grabarek
report that just above the ballistic 1limit an intact plug is visible. 1In the
case we are considering, this plug has a diameter about 1.75 times the
original rod diameter, a thickness equal to 0.65 times the plate thickness,
and a mass near 25% of the original rod mass for the 6.35 mm target, or twice
this mass for al1l2.7 mm thick plate. As the impact speed increases above the
ballistiec limit, this plug begins to break up. Well above the ballistic
limit, it shatters into small pieces, as illustrated in the far right picture
in Fig. 4.40. The shape of the debris cloud around the penetrator nose in the
pictures at the center of Fig. 4.40 suggests that the mushroom cap formed at
impact is suddenly released from lateral target confinement when the plug
forms and the target fails. For a high speed impact such as the onn
illustrated, it is not possible to distinguish shattered target plug material
from eroding rod nose material. However, a careful inspection of the length
of the rod in the last few pictures at the center of Fig. 4.40 suggests that
the rod continues to lose mass after it has pierced the plate. This is not
unexpected, since the shocked nose material is still pushing against the
remnants of the shattered plug, at least for a short time. Just above the
ballistic limit, the shocked nose is pushing against a massive, intact plug
for a longer time, since the exit speed is lower. Consequently, we expect
more mass loss after perforation at lower impact speeds than at higher impact
speeds, as observed.

The fesidual speed and residual mass data shown in Fig. U4.41 for the
6.35 mm thick plate have been plotted in Figs. 4.42 and 4.43. Similar data
for a target plate twice as thick were also reported and are included in these
figures. The reported velocity ballistic limits are also included in Fig.
4.42,., Obviously, more data points at other speeds would help delineate the
shapes of these curves. However, we must make do with the data available,
which 1is the best there is. At least trends are evident which are beyond the
uncertainties of the experiments.

Now let us examine an explanation which is consistent with :these
observations. We «xpect to be able to use Eq (2.20) to calculat= tue rexidual

speed, S This cpeed was measured using two X-ray flashes at distance: tar

R
encugh behind the target plate that all parts of the rod are travelling at the
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Fig. 4.43. Residual mass of steel rods (Mo = 7.78g, Lo/Do = 10)
perforating armor steel target plates ('I'o = 6,55 and

12.Tmm) .
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same speed, the residual speed of the center of mass, éR = kﬁR, where éR is
the penetration speed at the moment of target failure. Consequently, we can
re-write Eq (2.20) as

: 2 a2 1/€ 2
Sg = /ﬂ + 5 ] (MR/MO) -z (4.82)

where ¢ = k/a/G and € = .Suok/E as before, and
M,/M =1 « (uo/Mo) T (4.43)

from Eq (2.15) with P = T at breakout. We can estimate Mo from mass per unit
length considerations as usual, using 0.156 g/mm estimated above for Hohler
and Stilp's 9.8% g, LO/D° = 10 rod with MO/L.O = .1824 g/mm. Here Herr and
Grabarek's rod has MO/Lo = 154 g/mm, so uo = 132 g/mm, Similarly, we find
I, = 3.185 mm for this 7.78 g rod. Since the target hardness is

BHN = 400 kg/mm2 or Yt = 120 x 108dyne/cm2, we find a, = 072 g mmAJsz and

Cy = .0785 g/mm for the rod. Our estimate of uo gives us k = 1 «+ IJJO = 1.42,
while an estimate of (A/Ao) for given éo will give us a = a (A/Ao) and

¢ = cy (A/Ao) - Iouoz. The only parameter we need is T in Eq (4.43).

First, let us consider the 12.7 mm plate. Just above the ballistic
limit a plug was seen with fhickness 0.65 To:: 3.2 mm. This implies that the
target failed whern T = 0.35 T, = 4.5 mm = P. Since (uofMo) = .017 mm-1 in Eq
(4.43), then Mp/M, = .92 at this moment. In order to estimate (A/Ao) versus

éo' we turn to the curve labelled LO/D0 10 in Fig. 4.16 above. This appears

as the uppér curve in Fig, 4.44 labelled 12.7 mm. Here we are assuming that
the 12.7 mm thick plate is thick enough to produce a time average area, A,
about the same as a semi-infinite target, at least in the speed range of
interest here, which is above 1 mm/us. Thus, for example, (A/Ao) is about 7

for the ballistic limit reported, Sq = 1.06 mm/us. This gives

2 -
a = .504 g mm/us”, c = .549 g/mm, c = .493 g/mm, ¢ = 1.43 mm/us and € = .19.
Eq (4.42) becomes

5, - J1a2 « 1.062] (o2) 19 - (14302 - o, (4 .44)
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Similarly for éo = 1.1 mm/us, we have (A/Ao) near 6 so § = 1.45 mm/us and
€ s 322p 30

5, = A01.85)2 « (1.121 (.92) V22 _ (14552 = .45 mo/us  (4.45)

Likewise, for éo = 1.34 mm/us, we have (A/Ao)=z 4, sog = 1.5 mm/us, ¢ = .36,

and

- 8= M0s0% 4 (w1 (o) V036 L (1.50)2

.98 mm/us. (4.46)

These values are all in reasonable agreement with experiment as can be seen
from Fig. 4.42. For still higher speeds, we expect (A/Ao) to approach 2.4 as
in Fig. 4.16 so that & > 1.6 mm/us and € + 0.7. Since Cz and (MR/M0)1/€
reach fixed, finite values above éo = 2.5 mm/us, then éR-+ éo in Eq (4.42) as

¢ éo increases without limit. This means an approach to the straight line in

\ Fig. 4,42 marked To = 0 for which SR = S,» as in the case of no target at all.
) In other words, at sufficiently high impact speeds, the rod loses little

s speed. However, it should continue to lose 8% of its mass before target

failure, being reduced to 7.2 g at that moment. In addition, it will probably

lose up to a gram more aftef targét failure as the shocked nose continues to

interact with the shattered plug.

! Next, let us consider the 6.35 mm plate. The plug thickness was about

0.65 T°== Q.]S mm just above the ballistic 1limit, %mplying target failure for

P=T=0.35T =2.2mm. With (u /M) = .017 mn” as before in Eq (4.43), we

“ find MR/Mo = .96 when the target fails, implying a residual mass near 7.5 g at
this time. Since this target falils earlier than the thicker target, we might
expect that the time average area, A, at any impact speed in the range of
interest should be smaller., In other words, there is not enough time to

. flatten the nose as much as a thicker target does. If we use the lower curve

‘ in Fig. 4.44 for this thinner target, then we can calculate the upper curve in

Fig. 4.42 in agreement with experiment. For example, at the reported

ballistic limit, éo = .65 mmMms, we find (A/Ao) near 6, so
3= 192+ (6521 (962 | (1.45)2 = 0 (4.47)
a 181
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Similarly, for éo = 1.5 mm/us, we find (A/Ao) = 3, 80

1/.53 - (1.56)2 = 1,38 mm/pus (4.48)

5, =/1(1.56)° + (1.5)°1 (.96)
with intermediate values for intermediate speeds. Again, there is reasorable
agreepent with experiment.

As we reduce the target thickness to zero (To + 0) then T 0 in B2q
(4.43) and Mp/M_ > 1 in Eq (4.42) so §; = §_, the straight line in Fig. 4.42.

Thus we are able to calculate resicdual speed versus striking speed
curves with this model. However, Eq (4.43) only gives us the residual mass
when target failure occurs, which is an upper limit on the residual mass, bhut
is much larger than the residual mass observed at later times. Now let us try
to estimate the residual mass at later times as a function of striking speed
for these two target plates. ‘

First, consider the 12.7 mm plate which for éo = 1.1 mm/us has a
residual mass of MRﬁz 2.8 g, implying a loss of about 5 grams. A rough
estimate of the time to failure is T/So z 4.5 mm/1.1 mm/us = 4.1us. A rough
estimate of the total interaction time between the rod and the plate is
To/é0 = 12,7 mm/1.1 mm/us = 11.5us. The difference, 11.5 - 4.1 = 7.4us, is an
estimate of the interaction time betweer the rod and the plug. Suppose the
deformation wave in the rod travelled from its nose to its rear at about
4 mm/us. Then in T.4ms it has moved about 30 mm or 60% of the rod length. If
ail of this mass is lost by interacting with the plug, then only 40% or about
3 g remains, in rough agreeﬁent with Fig. 4.43. For éo z 1.34 mm/us,

T/S, = 4.5 nm/1.34 mm/us = 3.35us, while T /S = 12.7 nm/1.34 mm/us ~ 9.45us,
so the difference is 6.lus, an estimate of the interaction time between rod and
plug. At 4 mm/Ms in 6.lus, about 25 mm or half the rod length will be affected
during this time. If half the rod is lost then, half remains, or MR = 3.9 g in
rough agreement with Fig. 4.43., The broken state of the plug might reduce the
erosion and increase the residual mass. The experimental data is very sparse

and the statistics are inadequate. Because fracture is involved we expect fairly
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large experimental variations. At least this crude model can predict the trend
of the experimental data.
Now consider the 6.35 mm plate. For éo = 0.7 mm/us, an estimate of
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the total interaction time is 6.35 mm/0.7 mm/us = 9.1us, while an estimate of
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the penetration time up to failure is 'I‘/é° = 2.2 mn/0.7 mm/us = 3.1us8, giving

about 6us for interaction between the shocked rod and the intact plug. Now

suppose the deformation wave speed is a bit less at this lower striking speed.

If it moves at about 3.5 mm/us for 6us, then 21 mm or L42% of the rod will be

affected. If all of this mass is lost, then about 58% will remain, giving

MR = 4.5 g in rough agreement with experiment. Similarly, for éo = 1.0 mm/us
we have (6.35 -~ 2.2) = 4,15us for the rod/plug interaction time. If the speed
is still 3.5 mm/us, then about 14 mm or 28% of the rod will be affected, so
72% or MR = 5.6 g will remain. This estimate is low since MR is observed to
be closer to 6 g. Perhaps plug breakup reduces the interaction time with less
mass loss. For éo = 1.5 mm/us we have (4.2 - 1.,4) = 2,8us for the time, and
at 3.5 mm/us, about 10 mm or 20% of the rod will be lost sc 80% will remain or
MR'= .8(7.78 g) = 6.25 g, in agreement with observation. In these estimates
we have assumed a lower deformation wave speed resulting from impact on a
thinner target. We have no evidence for this, but it is not unreasonable.

Admittedly, our method of estimating residual mass is crude. However,
before attempting a more elaborate model, we should first determine
experimentally that this is indeed the way 1n which most mass is lost when
such a rod perforates such plates. Much better statistical observations of
plug and rod over a wider range of striking speed would be helpful. A more
elaborate modei is premature in the absence of such information.

It is encouraging that we can calculate the curves in Fig. 4.42 while
using a sing;e value of uo, the same as we would use for a semi-infinite
target, a single value of T = .35 To' in agreement with observations, and
reasonable values of (A/Ao), in fact,about the same values as for a
semi-infinite target in the case of the thicker plate ('I‘o > 2Do' T~ Do).
Correct values of target hardness and target and projectile density and
geometry were, of course, also used. However, we would need a greater variety
of observations in order to eliminate alternate explanations. As mentioned
above, one such alternate explanation might be to have uo vary with impact

. speed, For ex naple, if T = T, = 6.35 mm in Eq (4.43), then
W, = (7.8 - M:)/6.35 must be 0.5 g/mm for éo = .7 mm/Mus, 0.27 g/mm for éo =
1.0 mm/ais and 0.24 g/mm for So = 1.5 mmNs. The flattening factor would also
have to be different under this assumption that the original target thickness

183

P R T A LT T A R I I T I N I I e T R T A I T T B R T T N R B B A PO B B A A e B e AL i A L LS L R A W A A L AL N .



should be used in Eq (4.43) and not some fraction of it. Since LA is three
olos Will
be negative, but not so negative as to make F negative in Eq (2.17) and lead
to the unphysical prediction of acceleration rather than deceleration. There
is no mathematical difficulty or basic physical objection to this explanation.
However, it does not seem to fit as well into the complete picture of
penetration we are trying to construct. Only experiment can decide this
question. Until more information is available, we will not elaborate on such

alternative explanations. .

or four times larger than in our previous explanation,then ¢ = ¢ = I

The uppermost curves in Figs. 4.45 and 4.46 are the same as the upper
curves in Figs. U4.42 and 4.43. The lowest curves in Figs. 4.U45 and L.46 were
also reported by Herr and Gﬁabarek for a smaller 1.94 g,

LO/Do = 32 mm/3.2 mm = 10 rod of the same steel attacking the same 6.35 mm
thick plate. Intermediate curves are for a 3.89 g, LO/Do = 40 mm/4 mm = 10
rod. The number of data points is minimal, but at least the observed trends
agree with expectations. The ballistic limit reported for the 3.89 g rod
seems a bit high and distorts the shape of the curve in Fig. 4.45 compared to
the other two curves. As has been mentioned, ballistic limits are notoriously
difficult to determine and pequire & large number of experiments in orcer to
find a satisfactory average value.

'Herr and Grabarek report that the plug driven out of the target by the
1.94 g rod was smaller than that driven out by the 7.78 g rod. 1In particular,
it was thinner, with thickness about 0.4 To' which implies T = 0.6 To = 0.6
(6.35 mm) = 3.81 mm in the present case., By the usual procedure we find
052 g/mm for this rod and MR/Mo = 0.90 from Eq (4.43). Since
.0314 g/mm, Io = 7.96 mm/g and
k = 1.41. Then for éo = 0.9 mm/us, the reported ballistic limit, and
A/Ao = 4,2, we find

=
n

>
o
"

.08 cm2, a, = .0288 g mm/usz, c,

5 = A1.876)2 + (.9)27 (.9)1/+332 _ (1.476)2 = 0 (4.49)

Similarly if (A/A ) = 3 for éo = 1.2 mm/us,

3, A01.5312 + (1.2)21 (.9)1/*595 _ (1.537)2 = .85 mm/us  (4.50)
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with intermediate values for intermediate striking speeds. We note that the
values of (A/Ao) being used here are slightly smaller than those marked
6.35 mm in Fig. 4.44, It is difficult to say that this difference is real in
view of the experimental and theoretical uncertainties involved. Perhaps
there shouldlbe a single (A/Ao) curve for geometrically similar rods versus
the same target plate.

In order to estimate the residual mass of the 1.94 g rod in Fig. 4.46
we note that about 10% or .19 g is lost before target failure. Near
éo = 1 mm/us, this ocecurs in about 3.8us. If the interaction time with the
plug is about the same and the deformation wave speed is 3.5 mm/us as before,
then about 13.3 mm (41%) or about .8 g is lost after target failure, for a
total loss of .94 g. Thus the remaining mass should be nearly one gram., For

so'= 1.2 mm/uys, .19 g is lost before failure in about 3.8 mm/1.2 mm/us = 3.17Hs.
If this is also an estimate of the plug interaction time and the wave

speed is unchanged, then about 11 mm or .67 g more is lost after failure for a
total of .86 g lost, giving MR ~ 1.1 g. Both the experimental and calculated
values are uncertain, but at least the values and trends agree approximately.
Herr and Grabarek also used aspect ratios of 5 and 20 as well as 10

for these rods versus these plates. There are indications in their data that
crossovers may occur in both the residual speed and residual mass versus impact

speed curves. In other words, a rod with a greater aspect ratio may have a
higher ballistic limit and lose more mass just above the ballistic limit than
a rod with the same mass but lower aspect ratio. However, well above the
ballistic limit, the situation may reverse, with the longer rod having a
greater residual speed and residual mass. The data is too sparse and
inconsistent to say for sure., Consequently, we will not attempt a
quantitative description here.

In an earlier report, Grabarek (4.35)

carried out similar rod/plate

experiments using rods which were softer (BHN =~ 270 kg/mmz) than the targets

as well as rods harder than the target such as we have been examining. He

found that the ballistic limit was higher and the mass loss greater for the

- softer rods, although these differences tended to disappear well above the

‘ hallistic 1limit. It is certainly possible to use somewhat different Mo and

(A/Ao) values in our theory and reproduce these trends. However, nothing was
reported about possible differences in plug thickness. It seems preferable to

await better experimental information before presenting more calculations.
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(4.36) has also given data for long steel rods perforating

Lambert
armor steel plates 25.4 mm thick. However, there are very few data points for
particular cases and the speed range investigated was quite restricted. Where
trends are evident at all, they agree with what we have already seen from the

work of Herr and Grabarek.

2. Tungsten/Steel

(4.34) 3

Herr and Grabarek also used tungsten alloy rods (p_= 17 g/cm”,
BHN = 250 kg/mmz) of various aspect ratios and masses against the]iame steel
targets plates as above. The tungsten rods were softer than the targets yet
were brittle enough that they usually emerged from the rear of the target
broken into two or more pieces. In most cases there were not enough data
points to give a positive indication of trends. 1In general there was more
scatter for the smaller masses, thicker plates and greater aspect ratios.
Figs. 4.47 and 4.48 are for the heaviest, shortest rod and thinnest plate

used. In Fig. U.47 we have plotted the reported ballistic 1limit,
So = .52 mm/us and five residual speeds for the five impacts in which the

projectile was reported to emerge in one piece. When the projectile emerged
broken, different residual speeds were reported for the different pieces. In
one case, these speeds were almost a factor of two different, while in two
other caSes they ﬁere almost the same. In Fig. 4.48 we have plotted the

unbroken residual masses as circles and the sums of the broken pieces as +'s.
Below each + there is a B, indicating the mass of the bigger piece and an S,

indicating fhe mass of the smaller piece. In one case these symbols are
beside each other, since the pieces were of approximately equal size. A
dashed line has also been drawn, indicating the possibility of a maximum
residual mass. The existence of such a maximum rests on very slender
evidence, namely, a s3ingle data point near éo = .75 mm/us. Withou£ this point
the dashed line would be approximately horizontal. Ffig. U4.U49 shows similar
data for a 3.89 g rod which hints at the possible existence of a maximum.
Again there is only a single unbroken projectile data point to support this
possibility, aided by some broken projectile information. For longer aspect
ratios (10 and 20) and the thicker target plate (for any mass or aspect ratio)

there was no evidence of a maximum in MR versus éo' Instead the curves were

flat or slightly rising, similar to Fig. 4.46 in some cases.
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Fig. 4.47. Residual speed of T.78g, LO/Do = 5 tungsten rod after

perforating a 6.35mm armor steel plate.
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perforating a 6.35mm armor steel plate. .
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Fig. 4.49. Residual mass of 3.89g, LO/Do = 5 tungsten rod after
perforating a 6.35mm armor steel plate.
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Let us speculate for a moment about a possible erxplanaticn for a
maximum MR' supposing that such a phenomenon exists. Our previous explanation
for an increase in MR as So increases just above the ballistic limit wae a
decrease in interaction time between the shocked rod nose and the plug after
breakout. Herr and Grabarek's plug size measurements indicate that the plug
breaks up and eventually shatters as impact speed increases, resulting in less
mass being rubbed »ff the nose. The speed of identifiable plugs was generally
the same as the projectile speed. The same explanation might apply to
tungsten rods as well, except perhaps for short rods versus thin targets. In
such cases the interf'erence of shock waves might lead to nose shatter, similar
to that encountered in semi-infinite targets. Here, however, instead of a
decrease in penetration depth, we have an increase in mass loss over a certain
impact speed range. If a short, dense, projectile has a lower shatter
threshold than a less dense or longer one against a given target, then we
might speculate about the possibility of a maximum occurring at a higher
impact speed (say éo ~ 2 mm/ s) in Figs. 4.43 or 4.46 (or similar figures for
shorter rods). There is also a possibility of the onset of multiple scabbing
and double plug interaction with the rod.

Finally, let us apply Eqs (4.42) and (4.43) to Fig. 4.47. We recall
our estimates of Mo and (A/Ao) for Hohler and Stilp's (4.22) tungsten rods of
various.aspect ratios versus semi-infinite armor steel targets. Herr and
Grabarek's rod in Fig. 4.47 is softer than theirs while the target is harder.
In addition, the aspect ratio here is 5. For all these reasons we expect a
somewhat larger erosion rate than we might estimate on the basis of mass per
unit length alone. Here we will take u o = .25 g/mm. We would also expect
(A/Ao) to lie between the Lo/Do = 1 and LO/Do = 10 curves in Fig. 4.33 for a
semi-infinite target or a thick target. However, for a 6.35 mm target we
expect (A/Ao) to be somewhat lower stiil. The flattening factor used in the
present calculations is shown in Fig. 4.50 and meets these expectations.

Since Io = 1.47 mm/g, ao = 072 g mm/uuz, Co = 17 g/mm, k :71.37 and
¢ - .092 g/mm, we_can find 7 and ¢ . 1In addition
»35 (6.35 mm) = 2.2 mm as befcire, while MR/MO = .93 by Eq (4.43). then we

]

- Of
[

can calculate a curve in reasonable agreement with experiment,
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Fig. 4.50. Flattening factor for T.T8, Lo/Do = 5 tungsten rod
. ' versus 6.35mm armor steel plate.
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Hohler and co-workers (4.37)

employed LO/DO = 10 tungsten alloy rods
versus steel target plates of various thicknesses and obtained residual speed
and residual mass data quite comparable to that obtained by Herr and Grabarek.
However, they only usad two impact speeds for armor steel plates at zero
degrees obliquity, so it is difficult to construct complete curves of the type
we have been considering. They were more interested in determining a
thickness ballistic limit rather than a velocity ballistic limit. Since they
did not use an aspect ratio of 5, it is not surprising that they saw no
aevidence for a possible maximum in an HR vs So curve. However, for

LOID° = 10, they reported a smaller loss in rod length as the striking speed
increased from about 1 mm/us to 1.8 mm/us This agrees with an increase of
residual nmass with increasing éo as found by Herr and Grabarek for high
aspect ratio rods. A thickness ballistic limit is that value of P in Eq
(2.20) which reduces P to zero for given éo (and a given projectile/target

combination).
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V. SURVEY OF JET PENETRATION THEORIES

(1.14)

In an earlier report we surveyed bullet penetration theories. Here
we present a similar survey for Jet penétration theories in order to compare
older ideas with those being discussed in this report.

The first jet penetration theory seems to have been put forth in a report
by Kistiakowsky snd co-workers (5'1). Part of this report is devoted to their
theory of jet formation according to which small fragments of steel from the
liner of the hollow cavity in the explosive were guided by a gas Mach stem
into a pencil-like jet. The rest of their report discusses a theory of how
such a stream of explosive product gases and steel fragments might penetrate a
mefal target, usually also steel., Their model treats jJet penetration into
metal much like water-jet penetration into a mud bank. The head of the jet is
"econtinuously annihilated, and the momentum contained there is transmitted to
"

the steel which flows sideways...
material is deflected rather than annihilated. They took the length of jet

Of course, macs is conserved and the jet

removed from the stream per unit time to be equal to the difference between
the velocity of the head of the jet, V, as determined from experiments in air
or vacuum, and the velocity of penetration, U, as determined from the time it
took to perforate plates of various thicknesses, with U < V. The wearing down
of the head of the jet was responsible for the slowing of the jet during
perforation. After perforation, they sometimes observed a speeding up of the
Jet once more. If pp is the density of the jet penetrator and A is its
cross-sectional area, then DpA is its mass per unit length and ppA (Vv-U) is an
estimate of the mass lost per unit time during penetration. Since V is the
velocity of the jet, then ppA (V-U)V is the momentum transferred per unit time
from the jet stream to the target. Since the target also behaves like a
fluid, its resistance is purely inertial and resembles that offered by the air

to the flight of a metal fragment, namely, CDﬂtAUa, where C_ is the drag

D
coefficient, pt is the target density and U is the speed of the fragment. If

CD =1, and we equate the rate of momentum transfer to the resistive force,

pp (V-U)V = thE (5.1)
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Experimentally, they found V = § mm/us and U = 2.4 mm/us = .4V for steel
(pt = T.85 g/cm3) as well as V = 2.1 mm/us = .35V for lead (pt = 11.3 g/cm3).
Both of theee sets of values are compatible with pp = 2.1 g/cm3, much less
than the density of the steel liner used, but consistent with their picture of
a Jet stream composed of steel fragments carried along by gaseous explosive
products. They commented that this was probably fortuitous, but expressed
satisfaction that the penetration speeds were of the right order of magnitude
and in the correct order, higher for steel than for lead. Consequently, the
penetration depth into steel should be greater than into lead, because lead
has a higher density. Unfortunately, the opposite was observed;
namely, greater penetration into lead than into steel. This apparently is the
origin of the division into primary and secondary phases of penetration.
"Since the velocity of the jet is, of course, greater than the velocity of
F penetration, after penetrating through a certain thickness of steel, the jet
will have been all used up. The peretration during this phase will be
referred to as the primary penetration. Since, when this occurs, the steel in
) the target has some forward momentum, plastic flow forward probably continues
i until the forces have been reduced to about the elastic limit, and this will
F deepen the hole somewhat (referred to as secondary penetration). It is
believed that the depth of secondary penetration is rather small in steel,
because of its high tensile strength. However, for a very soft metal, such as

lead, the second part of the process might result in a considerable increase
(5.2)

E g o

in the depth of the hole."
These authors explicitly referred to their theory as an "hypothesis.”

They went on to speculate further about the anomalous penetration into lead:
"However, in the case of lead, the secondary penetration must be large.

The total depth of penetration is appreciaebly greater than for steel,

although, due to its greater density, the depth of primary penetration should

be less. No calculations have been made, but the facts are not surprising, on

account of the very low tensile strength of lead. No penetration at all can

occur if the momentum per unit length of the jet is not great enough to exceed

the elastic limit of the target materials. It may be that for lead the slow

tail of the jet is effective and for steel not." (5.3)

Near the end of their paper, the authors reported an attempt to verify

their model of the jet as a stream of gas carrying metal fragments.

196

Yty i [ T A W N R AR IR o e AR PO OO O MO ik 2t el s W A A AU AT i ™ LA VICEOBO GO N A



Experiments were done with liners made from steel filings cemented together.
Fine carvorundum and other fragmented materials were also used. Such liners
wvere inferior in their penetration performance tc solid linérs of similer
materials. Instead of questioning their model, they speculated that an
assortment of particle sizes might'be réquired to simulate the action of a Jet
instead of the single size used.

About a year later, Hill and co-workers (5.4) referred to the work of
Kistiakowsky and co-workers in building their own model of jet penetration.
They élso referred to a model developed by Bethe (5'5). They let V be the
velocity of the jet and U be the penetration velocity as before, and
introduced the length of the jet, £. They also introduced a Gallilean
transformation from the stationary laboratory coordinate frame to coordinates
with origin at the bottom of the crater being formed in the target, moving at
the constant speed, U. The pressure exerted by the jet at the stagnation
point at the bottom of the hole is -5pp (v-u)e, provided the material is
incompressible. This pressure is balanced by that exerted by the target
. material moving at speed, U, namely, .Sthz. If we equate these two

expressions, we find

. 2 _ 2

np(v-u) =P U (5.2)
Moreover, if % is the constant length of the jet and (V-U) is its constant
speed, then the time it acts on the target will be %/(V-U). If we multiply
this time by the penetration speed U, we should obtain the depth of

penetration

P = U/(V-U) = 2¢p§/pt' (5.3)

as we see by using Eq (5.2). The author's commented that this expresses an

"interesting conclusion that the depth of penetration is independent of the

velocity of the jet, and depends only on its length and density." The right

side of Eq (5.3) is now celled the hydrodynamic limit, as we have seen, since
it neglects strength, viscosity and compressibility. For compressible targets
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like rubber or paraffin, they took the pressure to be p = K(p/pt ~ 1), where K
is the target compressibility and p > Py is its compressed density. Then dp =
(K/pt) dep, and Jdp/P becomes

p - .
(K/ptZIr dp/p = (K/p.) 1n (p/e.) = (K/P.) 1n (1 + p/K). (5.4)
Pe
If we equate this expression to .502, we find

p = K texp [(.50,02)/K] - 1} & (.5p,U%) [1 + (.50,0%)/(2K)] (5.5)

ir (.Stha) < < K. For stegl targets they found this pressure correction to
be negligible, although it might not be negligible for a lead target. Even if
it were included for a lead target, it would not help to explain the observed
greater penetration into lead than into steel, vhich contradicts Eq (5.3). 1In
fact, it would make matters worse, since P, in Eq (5.3) would be multipiied by
a factor somewhat greater than unity.

If we divide Eq {(5.2) by ppvz, we find

u=v/sk el (5.6)

If we assume that a steel jJet has the same density as the conical liner from
which it was formed, then U = .5V for a steel target and .45V for a lead
target. This compares with U = .4V for steel and U = .35V for lead reﬁorted
by Kistiakowsky and co-workers. In general, the experimental precision
available at the time was not great enough to say for certain that V was
greater for one targeti or another when the speeds were this close. The
approximate agreement between Eq (5.6) and experiment was considered to be
encouraging. If a low value such as one-third the steel liner density,
namely, pp = 2,6 g/cm3, is used in Eq (5.6), then U = .37V for a steel target,
while U = .33V for lead, in close agreement with the values reported by
Kistiakowksy and co-workers,

Because of this agreement. Hill, Mott and Pack went on to modify their
thecry to take into account the possibility that the jet was composed of a

stream of explosive product gases, carrying steel liner fragments. They
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reasoned that such a low-density fragment Jet, where the metal occupies only a
small fraction of the volume, might exert a mean pressure considerably larger
than originally proposed. When a moving body collides with a stationary body
and is just brought to permanent rest, it has transferred all of its momentum.
However, if the stationary body is massive enough, the incident body will
reflect elastically with its incident speed. In this case the momentum
transfer is twice the incident momentum, since the stationary body gains as
much reaction momentum while accelerating the incident body as it does in
bringing it to momentary rest. Since the jet/target collision is never quite
- ' elastic, even for a Jet of low density, they modified their expression for the
mean pressure exerted by the jet to 2 [« Sp (V—U) !, where 1 < 2 <o, When

this expression is equated to the target reartion pressure, namely, .Sth , We

£ind
P = 2\ Ai;ﬂi: (5.7)
and
u=v/{+ “5;75;7k ] | (5.8)

instead of Eqs (5.3) and (5.6). The authors expressed the opinion that the
factor, A , should apply to most jet densities, except those with densities so
low thet penetration by individual fragments would have to be considered.

They also pointed out that their use of (V-U) instead of V as a multiplie.
to convert the mass loss rate, ppA(V-U), into a momentum loss rate, giving
Eq (5.2) instead of Eq (5.1), agreed better with the model of a low density
Jet being turned back rather than coming to rest during penetration. It also
agreed with their steady-state pressure balance theory.

Finally, these authors noted that after a high-speed penetration was over,
the average cross-gsectional area of the target crater, At’ is larger than the
area, A, of the penetrator (rod or jet). This allows eroded penetrator
maﬁerial to turn back without interfering with incoming material. Following
the suggestion of Kistiakowsky and co-workers, they also introduced a drag

coefficient, C Then the reaction pressure exerted by the target becomes

Dl
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[ SptAtU ] If we equate this to the pressure exerted by the jet, namely,
[ sp A (V-0)2], we find

o
i

LA /(pp/pt) [A/(CDAt)T (5.9)

and

[
"

v/[1 + VogTop! (WATTC AT )] (5.10)

where A, > A and CD'% 1 is unknown. By assuming that Eqs (5.7) and (5.8) are
correct, implying that A/(CDAt) = 1, it should be possible to measure A/At and
gso find CD' They went on to note that the mechanism of penetration by a Jet

must be similar to that by a bullet in the shatter region of velocities, since
in both cases the hole has an area greater than the cylinder of metal making

it, because the shattered metal must flow out again. This led them to suggest
that the total volume of hole excavated should be proportional to the kinetic

energy of all the Jet fragments, an idea which has been often used since then.
(5.6) 4,
which ?hey)discussed penetration by projectiles as well as by jets. Following
Bethe '~

change in projectile penetration behavior at high speeds where a constant

A short while later, these same authors published another report
s, they used the U2 term in the Poncelet force to account for a

target strength force was no longer sufficient. Consideration was alsq given
to Taylor's (5.7) modification of Bethe's hole enlargment theory. Hill, Mott
and Pack went on to note that the phenomenon of projectile shatter above a
critical striking speed shows that the force acting on the nose of the
projectile must increase with increasing velocity, as indicated by Poncelet's
velocity-dependent term.

They modified their previous discussion of Jet penetration by adding a
constant target strength term, 0, to the target reaction pressure to obtain
(.SOtUz + 0), : Ponceletzform. Now, if this is equated toc the pressure of the
Jet head, .5 A~ Pp (v-U)~, we find

2 2

52 % (-0)% = .SthZ s (5.11)
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vhere 5 is a sum of elastic and plastic terms as proposed by Bethe (5'5),

namely,
o = (Y/¥3) {1 + 1n [V3E/(2Y [1 + v])]} (5.12)

vhere Y is the yield stress, E is Young's modulus of elasticity and v is
Poisson's ratio. For ductile materials they agreed with Bethe's estimate that
¢ should be three or four times the yield stress. We recall Tabor's estimate

(1.18) of three times this stress. Now we find

P = 2U/{V-U) » “’/"p/pt {1 -0/[A2 oy (v-u)2} (5.13)
and
V=U-+ '/(pt U2+ 20)/(02 pp) (5.1b)

instead of Eqs (5.7) and (5.8) to which they reduce if o + 0. Here they have
chosen the positive sign of the square root in Eq (5.14) and have dropped 7
consideration of /K7TE;K;7 in agreement with their ldea thatrthis factor must
be equal to unity. Now Eq (5.13) gives them a way of explaining why
penetration into lead is greater than into steel in spite of its greater
density, provided 0 & O for lead but is not negligible compared to the jJet
pressure in the case of steel. However, as they noted, the entire theory
breaks down if the correction term in Eq (5.13) approaches unity. For steel
the correction factor would have to be greater than 0.2 to account or the
observed relative penetration depths into steel and lead.

They also noted that the idea of the jet density being much less than that
of the liner was a subject "on which there has been considerable speculation,

w (5.8)

but no real evidence. Because of this they attempted to compare Eq
(5.8) with some experimental results on copper and aluminum targets, without
success. They speculated that this might be due to the large scatter in the
exﬁerimental measurements.

Finally, they used Eq (5.13) to describe penetration of a steel jet into a

steel target, using ¢ = 5.5Y, not too far from their expected value of three
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or four times Y. Their comment, however, was very cautious: "This result can
only be considered fortuitous, but it does point to ¢ being of the order of

magnitude predicted." (5.9)

(5.1)

Kistiakowski and co-workers were also cautious about their theory,

referring to it as "A rough calculation of the rate at which momentum is

" (5-10), too qualitative to make

delivered to the plate by the jet...
predictions. Before continuing our review of the literature, let us comment
on some of the reasons why both the American and British groups were so
cautious. They knew that V, the jet tip speed before impact, was greater than
the speed of the rear of the jet or any portion between. Consequently, their
V was some sort of average velocity for the whole Jet. They also knew that
measurements of the penetration speed, U, depended not only on the material
used for the target, but also on the thickness of the plate. So again, U is
an average value for some typical plate thickness. The inconstancy of V and U
is shown in Fig. 5.1 taken from DiPersio and co-workers who made such

(5'11). Electrical contacts were

measurements about fifteen years later
placed betwéen one-inch thick steel plates in a "semi-infinite" stack. The
jet tip velocity, V, was taken to be the distance from the jet "origin" to the
front of a given plate divided by the time it took to traverse this distance.
The penetration velocity, U, was taken to be the thickness of a given plate
divided by the time it took to perforate this plate. Both V and U obviously
decline in time by a factor of four or more. Although the early British and
American groups probably did not know the magnitude of these changes, fhey
were aware that their essumption about the constancy of V and U was & rough
approximation. They also knew that the length of the jet was not constant
either. Its initial length depended on the standoff, or distance between the
cone base and the target face. In addition, it had to be stretching since the
tip moved faster than the rear. And finally, although there was no direct
evidence, it was unlikely that a stretching, eroding jet should have a
constant length. Again, the length, £, was known to be an effective or
average value., There were no time-dependent measurements available, so a
theory involving differential equations was probably considered to be of
little use. Apparently these early theorists decided on a formulation which

involved only the average values which were available from the experiments of

their day.
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The early theorists were aware that their choices of (V-U) to estimate
mass loss and (V-U)V or (V-U)(V-U) to approximate momentum transfer or
pressure were somewhat arbitrary. Although they did not discuss other
alternatives, they could have used V and V2 instead. For example, they might

have written .50 V2 for the average energy per unit volume of the incident Jet

and .Sthz for the average energy of the yielding target material, and equated

these values to obtain U/V. In this model, the time of action of the Jet
would be £/V, so the penetration depth should be U times this, or

P = 2U/V

!Npp/pt (5.15)

which is the same as Eq (5.3). Here U =V /;;75: instead of Ea (5.6).
However, for given Dp, this also predicts smaller U in lead than in steel, as
reported. To obtain U = .4V for steel, p_ would have to be 1.25 g/cm3 instead
of 2.6 g/cm3, as they used. Then U = .335 for lead, giving agreement within
the precision of their experimental information. In addition, if they had
wanted to use a differential expression for loss of jet length instead of a
difference between two velocities, they could have written .5 £2 for the
average energy per unit volume lost by the jet and .Sbtbg (vhere P = U) for
the averege energy per unit volume acquired by the target. Since these two

quantities should be equal, we obtain

Pt i (5.16)

This equation can be integrated with the initial condition that the
penetration depth is zero when the length consumed is zero, to obtain Eq
(5.15).

Now let us resume our review.

About the same time, flash X-ray techniques were being applied to the _ -
study of jet formation from the explosive collapse of a hollow conical liner.
Seely and Clark (5.12) followed the collapse process and the formation of jet
and slug as a function of time. Some of their pictures were included at the

end of an article published six years later (5'13). In commenting on one of
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_their pictures they concluded that the jet diameter (from a cone with a one

inch base diameter) was about 0.5 mm. "Thus within this diameter there must

J1U
be almost solid iron in order to register so definitely on the film.," (5.14)

Birkoff (5.15) used their pictures to dismiss jet formation theories which
employed focusing, spalling, or shock wave explanations., Instead, he
interpreted their evidence in terms of the usual hydrodynamical theory of jets
(5.16) which implied a re-direction of the liner mass without change in
density. In England, Tuck (5.17) wvas carrying out experiments very similar to
those of Seely and Clark and interpreting his own results much as Birkhoff was

) doing. This theory was further refined by Taylor (5'18). This report also

appears in the collection by Batchelor (5'19). Tuck also considered the idea
that the jet density was significantly lower than the liner density. He
admitted that the liner might be broken into very fine pieces. "If the _
fragmentation is so fine that no gaps exist between the particles into which
flow could take place, then, hydodynamically speaking, the system can be

treated as a fluid." (5.20)

Tuck went on to note the appearance of a
periodicity about 1 cm in length in the jet after formation, which signalled
break-up into a train of particles, all about the same size. "It is tempting
to explain the break-up of the jJet in terms of a tension arising out of this
velocity gradient. But there seems no evidence that the jet is a continuous
rod capable of supporting a tension and the indications are rather the reverse
since a graininess is already visible before the main breakup has developed,

w (5.21) oo

Tuck was not as definite about the density of the jet as Seely and Clark were.

S5till later, Pugh (5.22) discussed ideas very similar to those above.

and a general impression of cloudiness is given even earlier.

However, he tried to account for the fact that the jet tip speed was almost

8 mm/us while the rear moved much more slowly at about 2 mm/ys. He assumed a
linear decline in V from tip to rear and extrapolated the trajectories of
selected jet elements backward in time. ©Since theie trajectories crossed in a
relatively small region of his space-time plot, he chose the center of this
region as his coordinate origin, and suggested that one might think of all
elements of the jet as issuing simultaneously from the same point in space but
travelling at quite different speeds. This pcint has come to be called the
"virtual origin" of the jet. (One might call this the little-bang theory of a
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Jet's origin by analogy with the big-bang theory of the origin of the

universe.) If Z and t are the diastance and time a jet element has travelled

since its birth, then, its velocity is V = Z/t., Ify = /(Dt/A)/(Op/At) with
Cp = A =1 in Eq (5.10), then

U=2-=(2/t)/[1 + v] (5.17)

In this report Pugh considered pp and At to vary in time, so Y was not
constant and Eq (5.17) could not be easily integrated. He assumed that pp
varied inversely with time (lateral spreading of the particles composing the -
Jet). He also assumed that the crater area increased quadratically with Z.

Since this led to unreasonable conclusions, he temporarily abendoned this

apprcach.
In a second report with Fireman (5.23) Pugh noted receipt of the two

S

reports by Hill, Mott and Pack referenced above. He also decided to assume

Y constant in Eq (5.17), which can then be integrated to obtain

Z =12 (t/to)l/(l+ Y) . Z_+ P (5.18)

vhere Zo is the distance traversed by the tip when penetration starts at time
to’ that 1s, the distance from the virtual origin to the front face of the

) target, a distance about a cone height, H, greater than the standoff distance,
S. The second form in Eq (5.18) is obtained by adding the depth P at any time
t, with P = 0 for t = t_. If Y were equal to unity, then Eq (5.18) would be
parabolic, 1In this model the penetration at any time increases linearly with
Zo, which in turn is equal to the standoff plus s constant, (S + H). In this
way "ugh and Fireman were able to give an approximate explanation for the
observed increase in P with increasing standoff. Later, a similar treatment

(5.24)

was given by Abrahamson and Goodier « However, these authors assumed

that Zo varied in time and could not integrate their expression analyticelly.

B T TR

To account for the fact that penetration decreases at large standoffs,

Pugh and Fireman assumed a linear increase in jet radius and therefore a

3 quadratic increase in jet area, A, with increasing standoff, due to spreading

of the jet particles, This led to a series expression for P which was not
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easily joined to Eq (5.18), which was valid for short standoffs only.

In a third report (5.25)

Pugh and Fireman derived another series
expression for penetration.versus standoff at large standoff. However, these
results were also unsatisfactory.

Birkhott (9°26) 4150 tried to modify the theory of Hill, Mott and Pack to

include the effects of standoff. He took the jJet density, p_, to be inversely

P
proportional to the jet length, £, which in turn he assumed to increase

linearly with standoff, S. Thus

P = z/E;/pt oy VI/pt v V(s + vSs) /o, (5.19)

which gives a nonlinear increase in P with S. However, there is no maximum P
at finite standoff, predicted by Eq (5.19), so it too applies only at short
standoff. Here P = P, the final penetration depth vhen t = tﬁ in Eq (5.18).
Thus Pp v (S + H) in Eq (5.18) while Py~ va + b5 in Eq (5.19) which is closer
to what is observed. :

After World War II, Birkhoff, MacDougall, Pugh and Taylor (5.27) described
their hydrodynamic theories of Jet formation and penetration. Here we are
interested in the latter. They began by saying that, "To & first
approximation the strengths and viscosities of target materials can be
neglected and the problem can be treated by hydrodynamics." Initially, they
consider a continuous jet and explicitly assume three constants, length, 1,
speed, V, and penetration speed, U. Since the speed, U, is constant, a
Gallilean transformation to the stagnation point at the crater bottom is
permitted. In this coordinate system, steady-stete conditions hold, so
Bernoulli's theorem applies. Consequently, Eq (5.2) can be written. If the
jet length were effectively infinite (as it is in the case of water from a
hose) then the penetration would alsc be infinite. However, the finite
length, %, leads to an end of the motion when the jet is used up at time
2/(V-U). As before, multiplication by U leads to Eq (5.3), according to which
P is independent of speed. These authors comment that this surprising resuit
might be correct if one imagines that a faster jet is used up in a time which
is just small enough that the same penetration is produced. As they point ocut

once more, if this is true, it can only be so for speads and pressures large
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enough to Justify neglect of target strength. The results of later workers,
shown in Figs 3.16 and 4.28 for example, make us wonder what such speeds might
be. These results are for projectiles. However, we will see similar results
of the importance of target strength for jet penetration in the next chapter.

For a jet composed of dispersed particles these authors adopted Eq (5.7) !
with A under the square root sign, a practice introduced by Hill, Mott and
Pack in their second paper. Of course, it makes no difference whether we let

A vary between 1 and v2 or let YA vary between 1 and /5, that is, A vary
between 1 and 2,

In the next section of their paper Birkhoff and co-workers mention the
fact that neither the jet velocity, V, not its length, %, are constant. Since
the tip moves four times fasﬁer than the rear (8 mm/us versus 2 mm/us for
example), then each successive element of the jet strikes the bcttom of the
crater at a lower speed. One can of course speak of an average speed,

V = (8+2)/2 = 5 mm/us, but the variation from tip to rear is so large, that
one should really consider V to vary with time during the penetration. These

authors explicitly assumed that the jet density and the (incompressible)
target density were contant in time. Consequently, U in Eq (5.10) must vary
with time, so they wrote '

3 =~/PU dt (5.20)

However, they did not know how U varied in time, so they wrote
P =23/, (5.21)

vhere "J is a kind of average value of the quantity /KS;-during the process
of penetration,”" and % is explicltly cailed an "effective length." The
effective length was then assumed to have a linear dependence on standoff,
while the jet density was assumed to decrease quadratically with standoff
because of radial spreading. This led to formulas for short and long standoff

with adjustment of the parameters to insure joining of the curves.

-}

ity

They concluded their paper by comparing Eq (5.10) with experimental data

oL e

~

-
-

.3

for a variety of targets. In spite of scatter in the data, there seemed to be

>

general agreement.
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In view of the large difference in velocity between the tip and rear of
the jet, we should notice that there is a basic defect in the theory which has
been proposed. If V is to be treated as an average value over the length of
the Jet, then V varies with time as the Jet gets used up. Near the beginning
of a penetration by s fully-formed Jet,-the average speed might be about
5 mm/Hs as we have mentioned. However, this average value declines toward
2 mm/us as the jet is consumed. Without averaging, the Jet speed declines by
a factor of four. With averaging over its length, its speed declines by a
factor of 2.5 in this example. Either way, the dependence of V on % is
significant. If pp and py are constant in Eq (5.10) and V varies in time,
then U must vary in time if this equation means anything. We recall Fig. 5.1.
However, if U varies significantly in time, then a Gallilean coordinate
tfansformation to a stagnation point moving at constant speed is not possible.
Instead, a ccordinate system with origin at the stagnation poiﬁt is a
decelerating system., Consequently, there is no steady state and Bernoulli's
theorem does not apply.

It is unfair to criticize the authors of a theory for not adjusting their
ideas to accomodate facts they were only dimly aware of. Nor is this being
done. However, it is incumbent on us to devise new theories, when new facts
make the need apparent.

Several years later, Pack and Evans (5.28) undertook an explanation of two
deviations from the density law, Eq (5.3), which had by this time been firmly
established. One was the difference between a (smaller) penetration into
armor steel than into mild steel, which they explained on the basis of Eq
(5.13)., '"e other was the fact that for the 800, 35 mm base diameter mild
steel cone device they used, the 83 mm penetration into lead was about 25%
larger than the 66.5 mm depth they observed in mild steel. They noted that
the slug which follows the jet can become trapped part-.ay down the crater in
a hard steel target. Since lead target craters were much wider, they supposed
that the slug could find its way to the crater bottom and deepen the hole
further. In eddition, target "afterflow" was expected to be significant in
lead and these two factors together might account for the additionel depth

(83 -~ 56) ™ 27 mm. They did not recover such slugs from their targets, nor



did they give an estimate of their expected mass and speed. The evidence they
present is indirect and not convincing.

In later years, various workers used modified versione of Eq (5.11) to
explain their observations. We will review some of these ideas in what
follows.

Eichkelberger (5.29) adopted Eq (5.11), but he used the symbol y instead of
A 2 and took @ to be the difference between the target and Jet streugtihs,
namely, 0 = Ot - UP. Moreover, his constant Y , which he called a
statistical breakup factor, was given quite a different meaning from that
originally assigned toA. By this time improvements in flash X-ray photography .
had advanced to the point where everyone was convinced that the Jet density
was for all practical purposes equal to the liner densicy during formation and
stretching., In fact, even after breakup due to stretching, the jet fragments,
which continued to follow each cther, retained their original density. In
other words, the origiral idea which led to lz, namely, the jet cc - "~ting
of steel fragments dispersed in a column of explosive product gas, h. . to be
abandoned., We will see more about this in the next chapter. Eichelberger
wvented his ¥ to include any changes in the mode of momentum transfer which
might occur, as well as separation of the jet fragments after breakup and any
waver that might be present due to imperfections in charge or liner. For
short standoffs he found ¥ = 1 and Op equel to the density of his steel
liner. For sufficiently long standoffs when most of the penetration was done
by a Jet which was already broken into a train of fragments, he found vy < 1,
with no change in pp’ and Y continuing to decline as the standoff was
incrzacsed. He concluded that the Hill-Mott-Pack mechanism for a Low density
Jet did not apply and that A was always equal to unity. If o were
unimportant, then, following the general scheme of un effective length acting

for a finite time, we would have

P= % Yy p/ot . , (5.22)

In qualitative agreement with observations, this equation says that P will
decrease when the standoff becomes large enough that Y declines below unity
once the jet is fragmented and the fragments become misaligned., This is quite
different from Eq (5.7) which says that penetration will increase if a jet
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consisting of steel fragments dispersed in a gas stream becomes sufficiently
dispersed.

Eichelberger also tried different values for Ut and Up in order to see
whether experimental trends could be described. He found, for example, that
he could use the experimental yield stfength for a hard steel target, but had
to use three times the experimental strength in the case of an aluminum
target. He went on to express surprise that a steady-state hydrodynamic
theory could do even as well as it did when applied to a "violently
time-dependent phenomenon." Of course somé of this could be explained by the
large experimental uncertainties which were involved with attempts to verify
the theory. Some of these have been described by Eichelberger and co-workers
(5'30). This is also brought out by variations found in different

(5.31) repeated Eichelberger's tests and

laboratories. For example, Singh
found that he needed dt values seven times the measured values of either
steel or aluminum targets in order to obtain agreement between theory and
exneriment.

Cook (5.32) attempted to generalize Eq (5.11) further by adding to o three
terms to account for target compression, heating, and shock wave dissipation.
Such terms depend on the impact speed range invelved and so complicate the
theory considerably in an unknown way. Conditions for impact explosions were
also discussed. Cook seems to be the first author to write the solution of Eq
(5.11) for U in terms of V instead of for V in terms of U as in Eq (%5.1h).
Since Eq (5.11) is quadratic in either V or U, it is no more difficult to
solve for one than the other. If we choose the negative sign for the square

root, we find

U=v [1- /2172 cA(l-A)/(otvg) 1/(1-4) (5.23)

vhere A = pt/( A2 pp). Cook cited Eichelberger in letting A = 1 and used

the symbol ¢ for ¢ plus correction terms. He also noted the solution in the

case A =1, Dt = pp = p, to be

U=.5V [1 - 20/(pV°)] (5.24)

as well as corresponding expressions for P = U/(V-U).
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Allen and Rogers (5.33) repeated Eqs (5.23) and (5.24) and used the phrase
"modified Bernoulli's equation" to describe Eq (5.11). Since the jet length,
2,which was supposed to be constant is not, these authors decided to apply the
hydrodynamic theory to a rod which at least has a known length to begin with,
As they pointed out, accurate experimental verification of the theory had not
been reported previously. They introduced an average value for 0 or
$ for all metals and reported approximate agreement with their experiments
with wire rods made from magnesium, aluminum, tin, copper, lead and gold
striking aluminum targets at speeds up to almost 3 mm/Ms. An exception was
found when the rod density was much larger than the target density as in the
case of gold.

Alekseevski (5.34) also applied the steady-state hydrodynamic theory to

rods. He proposed using
f=v-U=vV-P (5.25)

for the magnitude of the change in rod length with time, 1In addition he
adopted Eq (5.11) with X = 1, but assumed that both V and U decreased in time
in such a way that Eq (5.11) continued to be true. He went on to caution the
reader that there is a2 minimum speed below which the model does not apply.
This is obvious from Eq (5.11) with o # 0. Clearly U and V cannot vanish and
the motion can only terminate by the rod vanishing while still moving at a
finite speed. He used an approximate solution for U in terms of V instead of

Eq (5.23) and integrated his equations with numerical techniques, assuming that
av/dt = - (o (g -2 (5.26)
/ (0 Jo )/ (2 -2 )

Unfortunately, he did not point out that variable V and U are not compatible

with the steady-state required by the theory. At least Hill, Mott and Pack .
wvere consistent in assuming constant V and U, )

Tate (5.35) also adopted Eq (5.11) with o = o £ = O P with .
de/dt = (U=V) < 0 and 4V/dt = - (op/op)/z. Unlike Alekseevski, he used Eq

(5.23) instead of an approximation, and integrated numerically except in a few



special cases. In a footnote, Tate points out that one cannot really use
Bernoulli's equation to describe an unsteady process. However, he assumes
that V and U are approximately constant during most of the penetration
process, For example, he uses his theory to describe penetration by aluminum
rods striking a polyethylene target at 1.6 mm/us, at least until their speed
has declined to about 0.6 mm/Ms, beyond which "the theory does not apply."
Since he was forced to use different values for the strength of the same
polyethylene target (one four times the other) when attacked by two different
strengths of aluminum rod, he recognized that "the theory is nct adequate in
this case." He also rationalized that for targets made of the same material
as the rod, we should expect the target strength to be greater "because of the
inertia of the surrounding material." We have already referenced a subsequent
article by Tate (4.19) in which he extended the ideas of this paper in an
attempt to describe situations in which rods were not completely consumed at
the end of a penetration. For rods much stronger than a target, he assumed
cessation of erosion together with a Poncelet form for the opposing target
force, The additional penetration could be added to that achieved during
erosion. He also discussed how numerical integration of his previous
equations could lead to a maximum in a plot of penetration depth versus impact
speed with the penetration decreasing and "tending ultimately to the
hydrodynamic limit." We have already seen that this is not true, at least in
the cases of steel/aluminum and aluminum/lead cited by Tate and refuted by
Perez (h'6). Perez restricted his own use of Eq (5.23) to speeds greater than
2.0 mm/ps.

Now let us return to a review of theories of penetration by jets rather
than by rods.

Since it was well established by 1960 that neither V nor U remained
constant during the penetration of a semi-infinite target, Allison and Vitali
(5.36) followed the ideas of Pugh (5.22) and Pugh and Fireman (5.23) as

expressed in Eq (5.18), at least for continuous jlets. For penetration by Jets

after break-up, they assumed hydrodynamic theory to hold for each jet particle
and added the total of these contributions to the penetration produced by the
jet before break-up. They found that equally gcod results could be obtained
by using the continuous jet theory for the entire penetration, provided they

introduced a cutoff velocity, VMIN’ instead of a fixed finite length, 2 .
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The following year, DiPersio and Simon (5.37) extended the method of
Allison and Vitali to include a discusaion of standoff at least on the rising
portion of the penetration-standoff curve. A year later, DiPersio, Simon and
(5.38) .

introduced UMIN instead of VMIN
and extended their discussion of standcff to the decllning portion of the

penetration-standoff curve, ©Still later, Merendino and Vitali (5.39) showed

Merendino as a cut-off for penetration,

experimentally that high strength aluminum targets are more efficient on a

weight basis than high strength steel in reducing Jet penetration. This :
violated the classical density law even when modified to include target

strength., The authors explained such behavior in terms of jet fragmentation

together with properties of aluminum not yet identified.

In 1977, Walters and Majerus (5.%0) proposed a penetration model which
included target strength and viscosity as well as inertia. A general
(5.41)

formulation was given by Walters and e two-dimensional Eulerian

formulation suitable for numerical integration was given by both authors
shortly afier (5.&2). In this model three regions in a penetrator were
distinguished and radial as well as axial flow was treated., Somewhat
different formulations were given for jJets and for projectiles. Walters
(5.43) also wrote a report on the role of viscosity in Jet formation, pointing
out that Russian workers usually included viscosity in their theories.
Measurements of solid viscosity both here and abroad were also discussed.
Finally, Walters and Majerius (5.4k) extended their model to include Jet
break-up by using an effective average jJet density lower than the 1inef
density. This they estimated by averaging the density of the jet fragments in
the train (equal to the liner density) and the negligible density of the air
gaps between these fragments.

The theory of Walters and Majerus seems to be the first attempt since
World War II to go beyond a steady-state or "quasi-steady-state" pressure
balance in calculating penetration. They use second order differential
equations and include a linear velocity decrease in the case of a jet.
However, they retain the form (V-U) for the jet speed somewhere near its tip
and ettempt to define the region over which V is reduced to U. They do not
treat addition of mass to the rear of a Jet which begins penetration before it

is fully formed, and discuss only mass loss at the front. Their model is
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simpler than many visco-plastic codes in use, but complicated enough to

require fairly elaborate calculations by machine.

(5.45)

More recently, measurements by Haugstad and Haugstad and Dullum

(5.46) have stimulated renewed interest in compressibility effects, at least

for certain target materials like some modern plastics. For example, Flis and

Chou

(5.47)

have developed a model to describe such effects.
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VI. AN EXAMPLE OF A JET PENETRATOR

A. Device Characteristics

A shaped charge device consisting of a 42° conical copper liner with base
diameter a bit larger than 80 mm, collapsed by composition B explosive has
often been referred to as a standard of comparison. Since there is so much
data available for this device, we will use it as our example. Fig. 6.1 is a
drawing of a central section through this device.

Let H be the height of the cone and X be the axial distance from its apex
downward. As the detonation wave sweeps over the cone from its apex to its
base, the amount of metal per unit axial distance which is accelerated toward
the axis increases for such a hollow cone with uniform wall thickness. This
is because the mass of each elementary ring of metal lying between evenly
spaced planes perpendicular to the axis increases as we approach the base.
Meanwhile, the amount of explosive per unit axial distance decreases,
approaching zero at the base of the cone. Consequently, the launch aspeed, or
final axial speed attained by the metal after explosive acceleration, decreases
as we approach the base, since the ratio of explosive mass to metal mass decreases.

The rate of mass addition to the rear of the jet can be written as
MR = m(t) V(t), where m(t), the mass per unit axial distance being moved, is
an increasing function of time, and V(t), its final axial velocity, is a
decreasing function of time. Consequently, ﬁR tends to be independent of time.

Although time-dependent measurements of m(t) and V(t) or their product
have not been made inside a collapsing cone, indirect estimates of m(X) and
V(X) have been made. For early steel cones, Pugh has made such estimates

(6'1). For a copper cone of the type we are describing, Allison and Vitali

have presented similar results (6'2). The base diameter of their cone was
slightly larger and their explosive was unconfined instead of having a thin
aluminum case as in Fig. T7.1l. However, these are minor differences for our
purpose. More recently, Harrison(6'3-d)has compared computational estimates
with the experimental estimates made by Allison and Vitali. He found
substantial agreement with their results for the nonlinear decline of V(X)
with increasing X. His values for the cumulative Jet mass Mj were larger than

theirs and had a slope, de/dx, which increased more slowly with X, but
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(6.5)

followed the same general trend. Even more recently, Simmons used a
computer program, HEMP, based on a Langrangian formulation, to study the same
problemand compared his results with those of previous computational estimates
using a computer program, BRLSC, based on an Eulerian Formulation, as well as
with radiographic experiments. His calculationswere carried out only for the
first 80% of the liner collapse, since computer run times became excessive.

He used the theory of Birkhoff et al., (5.15) for the remainder, in spite of
the fact that his code calculations showed a velocity gradient while this
theory assumes it is zero. A

The results of Allison and Vitali (6.2)

are based on experiment but are
inferences obtained by using the theory of Birkhoff et al. (5'15). The
radiographic experiments cited by Simmons are more direct experimental
evidence for liner and jet element position versus time, but say nothing about
mass. All of the calculations and experiments involve approximations and
uncertainties. However, there is general agreement between them, which
enables us to estimate the slope, dM. /dX = m(X), the velocity, dX/dt = V(X),
and so the formation rate, MR = m(X) V (X). The result is ﬂR= 2 g/lus, a value
vhich is substantially constant over the time of jet formation, although it is
a bit lower initially and a bit higher toward the end. We also find that the
Jet tip begins to form on the axis near X = 4O mm, moving nearly 8 mm/us, so
it should reach the cone base (X = 120 mm) in about 1Ous.

According to the estimates cited above, both de/dX and V = dX/dt are
nonlinear functions of X inside the cone. However, outside the cone
radiographic measurements have established that V varies 1%2e2r1y6wi§h

.6 - 6.7

distance along the jet length, decreasing from tip to rear . If Op

is the Jet penetrator density and r is its radius at any point along its
length, then MR = Op (wre) V is an expression for the rate at which mass is
added tc the rear of the jet during its formation. At any instant in time
during jet formation, we can write V = VO + AX where Vo is the constant speed
of a particular jet element and A is a constant. Consequently,

2 _ .
rrS = (MR/Dp)/(VO + AX) . (6.1)

Since op is the constant (liner) density, one consequence of ﬁR being

approximately constant is an inverse variation of r with position along the
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length of the jet. This decrease from rear to front agrees qualitatively with

observations of Jet’taper like the examples shown in Fig. 6.2 at three

different times (6'8). The Jet shown in Fig. 6.2 was produced by a hSo copper
cone of somewhat larger base diameter and wall thickness than that in Fig.

6.1. In addition, the composition B explosive was confined by a steel rather

than an aluminum case, and a spitback tube was used at the apex rather than

the rounded Shape in Fig. 6.1. This last feature is responsible for the tip
shape which is a more distinctive bulb than that produced by the device in Fig.

6.1. Otherwise, the main Jet features including jet taper are the same.

. These pictures were selected since they are one of the best examples available
in the open literature. About one-fourth of the Jet has formed in the bottom
picture of Fig. 6.2, while it is almost fully formed in the middle picture.
The stretching (and thinning dcwn) which occurs after jet formation is
especially clear from a comparison of the middle and top pictures. A conical
flare at the rear of the jet as well as the presence of fragmented material
between this flare and the slug to follow (not yet visible) are not counted as
part of the Jjet in our description.

When the jet material has stretched to its breaking point, it begins to
neck down and separate into fragments. This occurs first near the tip where
the Jjet is thinnest and later toward the rear, when it has thinned down
sufficiently. Radiographic estimates of the times involved have been

. discussed by Chou and co-workers (6.9 - 6'10). Part of the uncertainty in
such time measurements comes from the difficulty of observing the separation
of the pointed ends of jet fragments using radiographs. The time estimated
for the beginning of jet beakup is 80 to 100us after the detonation wave
passes the cone apex. If we take the mean value of 90us and add 1Ous (5us for
the wave to reach the portion of the cone which forms the jet tip and SUs more
for this material to be accelerated and form the tip on the axis), we have an
estimate for the time at which fragmentation begins, namely t2 = 100ds from
the beginning of jet formation on the axis. Chou and co-workers also estimate
that fragmentation is complete in about 150Hs.

The report by DiPersio and co-workers (6.7) cited above gives data for

three sizes of L2° copper cone liners driven by steel-cased composition-B
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explosive, all with rounded apices as in Fig. 6.1. The base diameters were
2T mm, 72 mm, and 96 mm, so the latter two cases bracket our example., They
found that the jets from such precision-made devices break into about 50
roughly equal-size fragments, which continue to travel at their original
speed without noticeable changein shape, orientation or alignment. This is
true for at least 300us, as judged from radiography of particulated Jets
extended over 240 cm (30CD) (6'11). Only the space between these fragments
grows with time. DiPersio and co-workers measured the mean diameter of each
fragment as well as the sum of their lengths. Then they calculated the volume
of jet material by asédming it was a right circular cylinder with this
diam=ter and length and calculated its mass by multiplying this volume by
8.9 g/cm3, the density of copper. If we interpolate their results to obtain
the estimates we need for the 81 mm device we are interested in here, we find
that the fragments (idealized as right circular cylinders) are each about
i.43 om long and 0.4 cm in diameter {or .12 cm® cross-sectional area) with a
mass of 1.6 g, giving a total jet mass of sbout 80 g. The actual mean
fragment length is closer to 1.5 cm and might e approximated as the major
axis of an ellipsoid.

If the jet mass is 80 g and the formation rate is &R = 2 g/Ws, then the

time to form the jet is t., = UOus fromtime zero when the tip first begins to

form on the axis near X = io mm, moving at about 8 mm/us. It takes about 1lOus
for the tip to reach the plane of the cone base, and after 30us more the tip
is located about 2L0 mm beyond the cone base near X = 360 mm. At this time

(t = t1.= LOus) the rear of the jet has just formed near the cone base. Thus,
if the standoff distance, S, that is, the distance from the plane of the cone
base to the target face, is set equal to 240 mm or 3CD (Cone Diameters), S =
Lo’ the fully-formed jet length at the start of penetration. At time

t2 = 100ps when jet breekup begins, the unimpeded tip will have travelled
another 60us or L8O mm and will be located about 240 + LBO = 720 mm beyond the
original plane of the conre base, If the rear is moving at, say, 1.2 mm/ds, it
will be located about 72 mm b ond this plane., Consequently, the jet length
at time t, is about 648 mm when breakup begins. In other words it has
stretched about LO8 mm since formaition was completed. IT 5 = 720 mm (9CD),

then penetration starts as breakup begins. Since breakup is complete in about
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50us, a much shorter time than the peneration time in semi-infinite targets of
interest, then the entire penetration is accomplished by a train of jet
fragments. For larger standoffs, the averag= distance between fragments is
greater and the more opportunity they have to become mis-aligned. For smaller
standoffs, only vpart of the penetration will be accomplished by a fragmented
Jet. This is true even for zero standoff, if the total penetration time is
greater than 100us, If to is the time at which penetration begins, and

10 <t <ty = Lous (0 < S < 2L0 mm = 3CD), then part of the penetration is
accomplished during jet formation. If tl < to < t2 = 100us

(240 < S < 720 mm), then peretration begins after jet formation is complete

1

(Mo = 80 g). Part of the penetration is accomplished by a continuous,
stretching jet, while the rest is accomplished by a fragmented jet. For
to > t2 (8 > 9CD) as already mentioned, a train of Jet fragments does the
penetrating.

All of the above numbers are approximate although they are based on the
best available information. There is no point in attempting to refine them,
until better experimental information is available.

Fig. 6.3 is the penetration/standoff curve for this shaped-charge device
versus a semi-infinite stack of armor steel plates each 25.4 mm thick. At
each of six standoff values a vertical line is shown which connects the
highest and lowest values observed, together with a circle indicating the
average value. As can be seen, even with a precision device, the experimental
uncertainty is considerable, varying from 5 - 10% for S < 6CD to about 50%
near S = 20CD. Generally speaking, the uncertainty is larger the greater the
standoff. A notable feature of this curve is the occurance of a penetration
maximum near S = 6CD. This can be interpreted as follows. As S increases
from zero, the jet mass when penetration begins grows from Mo =20 g
(for 8 = 0) to M, = 80 g (for 8 = 3CD). Understandably, a greater initial
mass as well as a greater initial aspect ratio leads to greater penetration.
For 3 < S < 6CD, no more mass is added, but the initial aspect ratio continues
to increase because of stretching. Consequently, the penet%étion continues to
increase. However, a larger portion of the penetration is accomplished by a
fragmented jet which counteracts the effect of the increased initial aspect

ratio, and the penetration increases more gradually. For S near 6CD most of
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the penetration is accomplished by a fragmented jet, and for 8 > 9CD all of it
is. At greater standoffs the jJet is not only fragmented before penetration
begins, but the Jet particles also have time to become more and more
misaligned, leading to lower penetration. The greater spread in the observed

venetration at large standoffs also corresponds to this greater misalignment.

B. Penetration by a_zpain of Rods

1. Experimental Data

a. Rods with Identical Striking Specds

The fact that a significant portion or even all of the penetration by
a Jet is accomplished by a train of fragments has stimulated a number of
experiments over the years, using a train of identical rods all striking at
the same speed., Since the number of rods used has always been quite small and
since their speeds are identical, such trains do not simulate a jet which
might have 50 fragments with the first and last fragment striking speeds
differing bya factor of four or more. If a jet simulation is intended, then
it must be for a small section of the train. Of course, a jet simulation need
not be intended, since the question of the relative penetrating power of a
single rod and the same rod divided into spaced sections can stand on its own
merits.

One might conjecture that a series of well-aligned, zero-yaw rods
could penetrate deeper than a single rod of the same diameter, material, total
length and striking speed. 1In the case of a single long rod the rear is soon
slowed by its connection to the front, long before it has a chance to act on
the target directly. If we divide this rod into equal parts and separate them
by enough space initially that a following rod strikes the target soon after
the preceding rod has been consumed, then the second rod shéuld penetrate as
much as the first since it has not been slowed down before acting on the
target. If we believe that target "afterflow" is a factor, then we might try

to time the arrival of the next rod to take advantage of this movement.
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There are some difficulties with this conjecture. First, a deformed
residual mass is left in the bottom of the crater, so the next rod must
first perforate this mass before acting on the target. This might be
especially important if we segment the original rod into sections with
LO/Do = 1 for which the erosion rate seems to be zero. If the target and
projectile are both soft enough to allow a rod to spread out in a thin layer, g
this problem may not be severe., However, a hard target may confine the
residual rod mass enough to offer a significant obstacle to the next rod.

Such effects could be cumulative, eventually preventing the last rod in a long
train from ever reaching the crater bottom. Secbnd, if we divide the original ;
long rod into a number of equal segments of the same diameter, both the mass
and the aspect ratio of the segments will be less than that of the original
rod. As we have seen, smaller mass and aspect ratio both favor smaller
penetration. Finally, there is no convincing evidence that "afterflow" is a
significant factor in targets of interest.

In summary, there may be cases in which penetration is improved or
degraded if we divide a long rod into equal segments. The fact that Jjet

penetration 1s degraded after breakup, as implied by a decrease in penetration

il al e e

at large standoff, does not give us the answer for the case of a short train

of well-aligned rods all striking at the same speed.

(6.12)

Christman and Gehring seem to have been the first authors to *

report on the penetration ability of such "tandem" rods. They fired 202L-T3
aluminum rods at 4 mm/us into 1100-0 aluminum targets. A single rod with
LO/Do .19.05 mm/3.175 mm = 6 penetrated 27 mm, a single rod with

LO/Do = 9,525 mm/3.175 mm = 3 penetrateda 15.7 mm, more than half the first

value. Two such Lo/Do = 3 rods fired at the same spot a long time apart gave
a total penetration of 28 mm, about the same as the Lo/Do = 6 rod. "Tandem"
LO/DO = 3 rods spaced about 3 mm and 10 mm apart, and so striking about 1lus
and 2.5us apart, give total penetrations of about 20 mm and 23 mm
respectively, both considerbly less than the 27 mm-or 28 mm values above.
However, the interpretation of these results is very difficult because of the
large yaws and misalignments which were involved.

(6.13)

Perez and Giraud used a long steel rod and a hard aluminum

target in a reverse ballistics mode with an impact speed of 2 mm/us. As they
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divided their rod they found a decrease in penetration with incres-.ng number
of rod segments. Increasing the spacing between their rod seymer .s had no
effect con this result, which they attributed to blockage of one rod by the
residual mass of the preceding rod. They compared their own results with
those of Chou et al (6.1 to 6°16). These authors shot short buliets made of
lead, copper-jacketed lead or tin at about 1 mm/us, mostly into lead targets
(although other soft target materials were also considered). They tried casers
in which the masses of their two bullets were the same as well as cases in
which the first bullet was larger (longer) or smaller (shorter) than the
second. A 10us delaylbetween the two bullets seemed to give some increase in
penetration over no delay, at least in some cases. However, delays of 30 to
100us gave worse penetration. Two bullets fired minutes apart did the best of
all. They attributed their results to partial occlusion of the first crater
by flowing target and projectile ma?gri$%, which impeded the second bullet.

About the same time, Moore used steel versus steel and claimed
a large increase in penetration due to rod division. He compared trains of
two or three rods with zero separation to a single rod on the basgis of
something he called the "diameter of an equivalent cylinder," that is, a
cylinder of the same volume but with an aspect ratio of one. This method of
comparison is misleading, since it artificially penalizes the original long
rod by forcing it to have an incorrect aspect ratio. The same procedure also
artificially penalizes a two-rod train compared to & three-rod train. It is
not believable that one can make a better penetrator by simple division
without .spacing. Perhaps his comparison of a two-rod group to itself with
different spacings between the rods has some validity, if the reported
differences were outside of experimental error (not discussed). The same
might be true of his three-rod group. However, only data normalized in terms
of the '"diameter of an equivalent cylinder" was reported so it is impossible

to recover the original data with which one might make an evaluation.

b. A Train of Jet Fragments

The approximation that the fragments in such a train are alike in size

and shape is probably good enough for most practical purposes. However, if we
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MATERIAL PILE-UP

BOTTOM OF HOLE

=S

© e e e e .

Fig. 6.4. Photograph of a Sectioned Armor Target after
Penetration by a Precision 3.3 inch charge,
Jet-target material has plugged bottom of hole., 5lug
is wedged in armor at the top.
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wish to consider a train of 50 fragments or even a significant fraction of
such a train, we cannot ignore the factor of four decrease in striking speed

@ vhich exists in such a train.

(6.18)

Simon and DiPersio used solid billets of armor steel or
aluminum as targets for such a jet. They were able to radiograph the jJet j
during penetration of the aluminum billets by making them slender encugh.
However, they had to section the steel billets lengthwise in order to study
the results of a penetration. 1In allcases large amounts of copper from the
Jet were found in the craters. For at least one steel target the slug was

also found wedged ne&r'the top of the crater as shown inFig. 6.4. The buildup
of copper in the crater was found to increase as the standoff was increased
from S = 4 t0o S = 12 to S = 16CD. This increase could be associated with the
transition from a case in which only part of the penetration was by e
fragmented jet to cases in which all of the penetration was by such a jet,
vhose fragments had more time to become misoriented and misaligned as the
standoff increased. Blockage and interference effects were cumulative and a

point was reached where meny of the fragments from the rear of the jet never i

P

reached the bottom of the crater. They chose to describe their observations
in terms of a cutoff velocity, which they interpreted as the speed of the
slowest fragment which was still able to deepen the crater. Fragments which
had speeds slower than this m?gely)penetrated copper and added to the buildup.
.19

In an earlier report these authors contrasted the accumulation
of copper in the crater made in a truly solid target with the absence of such
an accumulation in a target consisting of a stack of plates. In the latter
case '"'this Jet material is forced out between the target plates and can be
seen on the plate surfaces." Unfortunately, we don't have much gquantitative
information on possible differences in depth of penetration in a stack of

plates compared to penetration in a truly solid target. It seems likely that

the thickness of the plates used in a stack should have some influence on the t

escape of eroded material with consequent reduction in interference and b

possible increase in penetration. In the extreme case of a single plate which
qualifies as semi-infinite, it is clear that escape is minimized and
interference maximized. Prehaps the reverse is true if a large number of very

thin plates is used in a "semi-infinite" stack.

- TS
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Radiographic evidence and scoft copper rod recovery experiments
indicate that there can be room for a straight, continuous jJjet to move down
the center of a tube of eroded jet material without being impeded, at least in
most metal targets (see Figs. 4.2 and 4.3). However, this is probably not
true after jet breakup. Even slight misalignments of the jet fragments could
lead to contact with the material coating the cavity wall. In addition, once
a series of fragments begins to strike, it generates a series of interrupted
and probably irregular short tubes rather than the continuous tube generated
by a continuous jet. The combination of such effects can be cumulative and
lead to so much interference and material pile-up that the last jet particles
never reach the bottom of the cavity in a truly solid target. This effect
should decrease in a stack of vlates and mey even disappear if the plates are

thin enough.

2. Models of Penetration by aFragment Train

(6.20)

Rinehart propcsed a simple method of describing penetration by

' assumed that each fragment makes a spherical crater of

3_ , -1 2
1 fo (.5 Mivi ), where fo is au empirical

constant. Here he adopted the suggestion by Hill, Mott and Pack (5.4) that

a fragment train,
diameter, Pi’ and volume (»/6) P

the crater volume should be proportioned to the kinetic energy of a penetrator
of mass Mi and speed Vi. If we solve this relation for Pi and sum the
contributions of each fragment, the total penetration depth is

Py = (65 "Hmt3 RE mv, 2173 (6.2)
i=1

where N = 50 for the jet we are considering while Mi = 1.6g for all i. If we
assume that all the fragments have the same (average) speed, Vi = 5 mm/us,
then f_ = (2/(97)] (g mm/use)/mma gives P close to 400 mm. This is nearly
equal to the maximum of the curve in Fig. 6.3. To describe the whole curve,
fo must somehow depend on stand?gfél)

Alexander and Finnegan - considered penetration by a c¢luster of
spheres which were not necessarily aligned and did a dimensional analysis to

: 6.22
describe the net "invasion depth." At the same symposium, Golesworthy ( ),Held
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(6.23) (6.2h)

, &and Szendrei all proposed mocdels to describe the crater made by

a train of Jet fragments. The following year, Helad (6.25)

expanded his
discussion to include the effect of transverse velocity such as might be
imposed in a fly-over, shoot-down mode of attack.

(6.26)

About the same time, Segletes proposed a similar model to
describecrater formation by a train of jet fragments. He used measured values
of the velocity components of each Jet fragment in a train to calculate the
observed hole profiles. By superimposing ellipsoidal craters produced by
individual fragments he was able to reproduce experimental observations. For
example, Fig. 6.5 shows his hole profile calculations (two orthogonal views)
for a well-aligned train at a standoff of 23CD. Fig. 6.6 shows orthogonal
views for a badly aligned train at 38CD standoff. One view shows the
production of a dual crater, one branch slightly less than 1CD deep, the other
slightly more. Segletes' method requires measurements on individual fragments
and does not include a statistical generalization to describe the expected
performance of a batch of devices all nominally the same. He chose to base
his estimate of penetration by each fragment on the wave refraction theory of
Fitzgerald (6‘27). In this theory, Fitzgerald attempts to apply quantum
mechanics to macroscopic deformation theory, an effort which has not gained
wide acceptance. Of course, there is no need to choose such a basis, since a
simple assumption of an ellipsoidal shape would suffice. More recently,
Segletes (6.28) expanded his model to include the effect of a superimposed
transverse velocity resulting from a fly-over attack mode.

.In this report we will only be concerned with penetrations by trains
of Jet fragments which have no superimposed transverse velocity component. We
assume that all the fragments are alike and idealize them as right circular
cylinders with LO/DO:z 1% mm/4 mm = 3.5 and M, = 1.6 g« If we assume that the
erosion rate is such that ¢ = 0, we can use Eq (2.27). The argument of the

exponential in this equation becomes

3

(1 + 5vp 7o) | Yo p /6] (éo/k)e/yt N2.2 % 107 (éo/l.s)z/rt (6.3)

when we use ug = (uo) The approximate form holds for

MAX®
Voo T 8.9 x 10_3g/mm%. Our fragment speeds vary from So v 7.5 mm/Hs to

Pt




Fig. 6.5. PENJET Predictions of Hole Profile for Round 2937 at
23CD Standoff. Penetration in Cone Diameters.
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Fig. 6.6 Orthogonal Views of Projected Hole Profile of Round
2331 at 38CD Standoff ag Predicted by PENJET,
Penetration in Cone Diameters.
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S ~ 1.5 mm/us, so Eq (6.3) varies from .OSS/Y to .002/Y . For an armor
steel target Y & ,001 (g mm/us )/mme, so the exponential correction factor is
negligible for most of the (faster) fragments which penetrate about

LO//Z7K;'N 10 mm if A/A° v~ 2, However, for a slow fragment the correction
factor is about 0.1 so it penetrates about 9 mm. For a weak target like lead,
Yt is 100 times smaller, so the correction factor will be negligible for every
fragment in the train. In general, we will find smaller erosion rates, so

c >0 and Eq (2.22) must be used instead of Eq (2.27).

We should be able to add the penetrations by each fragment if (1) they
are well-aligned, (2) there is no interference with the incoming fragments by
the mass flow, and (3) each fragment is completely eroded before the next one
strikes. The first two conditions tend to hold shortly after jet breakup,
&ithough'the third condition may not be true at this time. The opposite tends
to be true long after jet breakup and for the slower fragments. Unless tuere
is an air gap about equal to the length of a fragment between successive
fragments, we expect the nose of a following fragment to strike the rear of
the one in front of it before it has been eroded. The problem is quite
complicated and cannot be treated in the context of a one-dimensional model of
the type we are discussing. Even a three-dimensional treatment should be
statistical, since we want to describe the performence expected from a typical
sample taken from a batch of devices., Here we will content ourselves with a

temporary expedient, namely, the use of an empirical efficiency factor,

applicable for standoff S > 10CD:
E =2 exp (-.0693 S) (6.4)

with E = 1 for S € 10CD. The form chosen for Eq (6.4) is geared to the
standoff curve in Fig. 6.3 for the jet we are considering versus a stack of
armor steel plates and is not meant to apply to other situations. The choice
of E = 1 for small standeffs implies that whatever part of a penetration is
accomplished by a fragment train is close to the additive idesl. The
exponential decrease is meant to approximate the behavior at large standoff in
Fig. 6.3. We note that for S ~ 65CD, E v .02 so the penetration by a very
inefficient train of 50 fragments is equivalent to that of a single
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representative fragment. At very large standoffs fragment dispersion
increases and the likelihood of two fragments striking the same spot
decreases. However, such a purely empirical formula like Eq {(6.4) cﬁnnot be

expected to give correct quantitative predictions for extreme cases.

C. Calculational Aids

Tn order to apply the theory described by Eqs (2.42) to (2.83) above, we
must estimate a number of parameters. V . '

For a given standoff, S, we need to know the time, td, wheﬁ penetration
begins, taking as our zerv time the moment the jJet tip is formed on the axis.

We can.let
t, = 10 + 5/8 ' o ' (6.5)

since it takes about 10us for the tip to reach the cone base if it travels at
8 mm/us. Thus, if S = 240 mm v 3CD, t_ = LOus = t,, and the jet has just
finished forming as penetration starts. The jet mass-initially is

M, = Mt = 2(10 + s/8) ‘ ' | (6.6)

since &R = 2 g/us. Of course Mo = 80 g for to >t The Jlet lengtﬁ.whén

1.
penetration begins might be estimated from

L, = 60 + 38/4 . (6.7)

Thus for 8 = 0, Lo = 60 mm, about half the cone height in agreement with

radiographs of a collapsing cone taken as the jJet tip reaches the plane of the

base. For S = 240 mm = 3COD, Lo = S, which should be the fully-fofmed Jet

length at t = LOys. For S = 720 mm = ©CD, L, = 600 mm = 7.5CD. This should

be the fully-stretched jet length at t = 100us. Since the jet has stretched

360 mm in abcut 50us, the stretching rate L = 360 mm/50s = 7.2 mm/us. ‘
If we divide Eq (6.6) by Eq (6.7} with 6 factored out, we find

MO/Lo = 1/3 g/mm for any start time dur'ng Jet formation. Since the space
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average initial cross-sectional area 1s defined as A0 = (MO/LO)/OP, then
A, = o375 gma for 0 < S € 240 mm. Since the mass stretching rate in Eq (1.27)
is u = ppL!Aol »the constancy of A0 implies | = 0. However, for larger

standoffs, Mo = 80 g, so
- _ .
A= 80 g/(ppLo) ~ 15/(10 + S/8) em (6.8)

by Eq (6,7). Thus, for S = T20 mm, t, = 100us, and A_ = .15 cm® by Eq. (6.8).
For § = 1,120 mm, to = 150us, Ao = ,10 cmz. This is close to the value

Ao = .12 cm.2 which we estimated above for a Jet fragment idealized as a right
circular cylinder.

- We are making two kinds of approximation. One is the use of approximate
numerical values such as 8 mm/us for the tip speed (instead of 7.6 mm/Ms) and
80 mm for the.cqne diameter (instead of 81.28 mm as in Fig. 6.1). More
accurﬁfe»valﬁes could be used without complicating the theory. However, these
values are good enough for our purpose. We are also using another kind of
apﬁro*imation in order to avoid unmanageable complications in our theory. For
e;gmple, we are using an average area, Ao, which does not change in ?1me. For
a stretching Jet, Ao # 0, a fact which we account for by the factor H. If we
let Ao be a tunction of -time, then we would not be able to integrate Eq (2.LS)
80 simply. VSince Ao does not change greatly for most calculations of
practical interest, and since we do not know what function of time to use, we
have avoided this unnecessary complication. We are interested in the jet area
Juét.bebind the mushroom cap, which is always smaller than Ao, the average
over the Jet lengiii, We estimated Ao = .375 cm2 foir S < 3CD, so the area of
interest will be smaller, probably less than .3 cma. The tip of our jet is
bulbous, so taking Ao = ,3 cm2, a bit on the high side, should tend to
compensate for neglecting to treat the tip separately. When the jet is fully
stretched, AO is near .15 cm2, about half its value during formation.

For calculational purposes, during a given time period, we will take the
time average value of the area of interest to be equal to the average »f Ao at
the beginning and end of the period as estimated from Eqs. (6.5) and (6.8).
For example, if the period extends from 40us to 100us, we find Ao = .3 cm2 at

LbOous, the value we assumed for jet formation, and AO = .15 cm2 at 100¥s., This
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gives an average A° of .225 cm2. If the period extends from LOus to TOus

(s = 480 mm from Eq (6.5)), the average A, is .5 (.3 + .21) = ,255 cm2, and so

on. For penetration during jet formation, Ao is the scme at the beginning and

end of any period, so the average value is Ao = .3 cm .

We recall that y = ppL IAOI = ppf.Ao when no mass is being added. Here i
pp = 8.9 g/cm3 and L = .72 cm/us as mentioned above. Once we have fo?nd Ao
for the particular time period we are considering, we can calculate u.

In order to estimate the erosion rate, uo, we recall section f of
Chapter IV. There we saw rates for a high aspect ratio LO/D0 = 60 mMm/3 mm =
20 copper rod of cross-section Ao = .0706 cm2, at least at low speeds. Since
we are assuming that Mo is independent of speed, we can use our previous
method to estimate erosion rates for our copper jet. For example, we found
uo = ,055 g/mm for the rod versus a steel target. If we multiply this value
by (Ao/.0706), vhere A is the Jet area, we can estimate My for the jet.
Since the Jet has a higher sspect ratio than the rod. we expect a slightly
lower erosion rate. For example, for Ao = ,3 cm2, we estimate uo = ,2 g/mm
for the forming jet versus steel. Similarly, we can use the rod values of
.032 g/mm versus aluminum and .059 g/mm versus copper, multiplied by suitable !
factors. For a jet fragment with an aspect ratio of 3.5, we expect a higher
value than we would find from using the rate for an Lo/Do = 20 rod, as R
explained above. For example, instead of about .1 g/mm for Ao = ,12 em, we
might expect hy = .15 g/mm for a jet fragment versus steel. Thus, against a
steel target our estimates for uo will be £ .2 g/mm, depending on the stage
o5f penetration. If all 80 g of Jet were eroded at the rate of .2 g/mm, this
would require 400 mm of penetration. If lower rates applied to part of the
penetration, we expect somewhat greater penetration, in agreement with the

curve in Fig. 6.3 for mid-range standoff values. !

D. Penetration/Standoff for Armor Steel

1. Standoff = 2CD

. or =

Merendino and Vitali (6.29) obtained the penetration/time curve in

rig. 6,7 for S = 2CD., They reported a final penetration depth, PE = 397 mm,
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reached 250us after the start of penetration. In four such tests, the maxlimum
penetration was 399 mm, the minimum was 374L mm and the average was 386 mm,
also shown in the figure., We see that these values are representative of the
29 values averaged in Fig., 6.3. The armor steel target plates had o

BHN = 300 kg/mmz.

a. t St<t

If ve use S = 160 mm in Eq (6.5), we find t, = 30us. With this value
we find M02= 60 g from Eq (6.6), and Lo = 180 mm from Eq (6.7). We also take
Ao = .3 em”, since 8 < 240 mm. This first stage of the penetration only lasts
10us, since jet formation is complete when t = LOus.

As explained above, we estimate My = +2 g/mm during formation. 1In
addition, Io.= 1.87 mm/g, k¥ = 1.44 and Po = 5,6 mm/us., The penetration speed
drops rapidly at first, then decreases more slowly. The average value of the
slope in Fig. 6.7 during this period is about 4 mm/¥s. Consequently, the
average time rate of erosion is &n = (.2 g/mm)(4 mm/us) = .8 g/us in
Eq (2.42). If we did not have prior knowledge as in Fig. 6.7, we could
iterate the entire calculationuntil a self-consist=nt average value emerged.
Since the mass addition rate at the rear has been =stimated to be ﬁR = 2 glus,
then ﬁo =2 - .8 =1.2 g/us in Bq 12.b2). Ther M. = 50 + 1.2 (k0 - 30) = T2 g
at the end of this stage of the penetration f~om Eg (2.43).

.For high-speed penetration by rods we have lLearned to estimate a
flattening factor of A/A0 = 2, For an armor steel target we find
a_ = .081/g mm/us2 and.sn a = .12 g mm/usz, since Ao = ,3 cmz. Similarly
c = .236g/mm. Since W = 0 durlng formation as explained above, Eq (2.46)

gives a = .1€2 - (1.87)(1.2)(1.2 + L) = - 11.5 g mm/uag. From Eq (2.47) with
b =0, we fini b= b gfus. 10 AF = - 26.9 (g/lls)p’ < 0 with

/——AF- = 5.18 g/us, so Eqs (2.57) to (2.61) apply. We find

v+ = (=& + 5.18) /.72 = 2.5 mm/i's and Y = -b - 5,18)/.472 = - 19.5 mm/us.
In addition, i; = &ﬂ//:K; =1.2/5.18 = .23. From Eq (2.59);

G = (5.6 = Z.5)/(5 6 + 19.5) = .12, and

Goo= .12 "1+ 1.2/00) (L0 - 30)]"”“23 = .05. From Eq (2.57) we find the.
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speed at time t, to be P, = (2.5 +19.5 (.05)1/(1 - .05) = 3.7 mm/us. In
order to find the penetration depth, Pl, from Eq (2.58), we must evaluate two
special integrals:

o ‘ 12
-.23
B1 (s-i,) = B1 (.23) 'foslx /(1-x)] dx

= ,07 [.17T4 (2.063 + 1.858) + .326 (1.969 + 1.894)] = .1k {6.9)

.12
B, (1.23? =./ro [x _1‘23/(1-¥)] dx

B, (1 +ez)
1 .05

F

.07 [.174 (37.57 + 16.14) + .326 (26.94 + 19.55)] = 1.72 (6.10)
using the four-point Gauss Method. Then Eq (2.58) gives
P% (60/5.18)(.05)°23[2.5 (1.72) + 19.5 (.14)] = b1 mm (6a1)
whicg ag;eés ;loseiy with Fig. 6.7 after 10us of penetration.
be £, St

,-. Since ¢, = Lous and t,

time period from 1lOus after penetration begins to TOus after penetration

= 100us with to = 30us, we are considering the

begins» The initiel values for this stage of the penetration are the final
values -of the previous stage, namely, M, = 72 g, él = 3,7 mn/us and

Pl = 41 mm. We can subdivide this 60us time period into as many intervals as
we like, using the final values of one interval as the initial values of the
next. As an illustration, we will treat the entire period as a single
interval. As discussed above, the time-average value of the length-average
area is Ao = ,225 cma. From this we estimate Wy = .18 g/mm, Io = 2.5 mm/g
and k =.1. hS. With (A/A ) =2, we find a = .12 g mmAJs and ¢ = .18 g/mm. 1In
addition, ¥ = (8.9 g/emd )( 72 emps)(.225 em®) = 1.44 ghis. From Eq (2.65)
with b = 0, we find b = .58 gMs and from Eq (2.66), & = .11 g/mm. From Eq
(2.67) 8= -,284 (g/iis)2 and v-Ah= .53% ghs, so Eqs (2.76) to (2.80) apply.

Moreover, €= .18/.11 = 1.64 so £k '2 = 1.15, Since 8~ = ,58/.53 = 1.09, we

230

W S . —  —

-éﬁilﬂiﬁﬂﬁQﬁQé&Q&xﬁQQ}2QQQﬁﬁéyﬁﬁﬁiﬁ}QQQQQQQQ&}IXﬁmﬂﬁﬂé



have B (ek/2) = 1.25. From Eq (2.78) we find

y* = (=.58 + .53)/.22 = -.23 mm/us and Y = (=.58 = .53)/.22 « =5.05 mm/us.
Also G, = (3.7 + «23)/(3.7 + 5.05) = .45, and from Eq (2.64)

Fo= .12+ .58 (3.7) + .11 (3.7)% = .12 + 2,15 + 1.5 + 3.77 g mm/usz. Then
from Eqs (2.79) and (2.80) we find

"1.25 =

D™ = [(100 - 50)/(1.45 x 72)] (3.77)122(.u5) 7.k

3.7
=.J( (.12 + .58x + 11x2) " [(x + .23)/(x + 5.05)17*%Pax  (6.12)
P s
2 -

From this equation we find P. = 1.8 mm/us, since

2

D” =1.9 [.174 (Lh.666 + 3.37L4) + .326 (L4.095 + 3.621)] = 7.4 ., (6.13)

Now we can use this value of 52 to find F2 = ,12 + .58 (1.8) + .11 (1.8)2 =

.12 + 1.0k + .36 = 1.52 g mm/us® and G, = (1.8 + .23)/(1.8 + 5.05) = .296.
Then Eq (2.76) gives

1.15 1.25
1.52 .45
5 hi + (72/.18) {1 - (3777) (:296) }

41 + 162 = 203 mm (6.14)

o
[

close to the value in Fig. 6.7 after TOUs of penetration. From Eq (2.62) we
find M2.=‘72 - .18 (203 - 41) = 72 - 29 = 43 g, Thus 80 - 43 = 37 g of jet

have been used during the first two stages of penetration.

Experimentally, the entire penetration took about 250us, so tE = 280us
when we add 30us, counting from our zero time. Since t2 = ;00us, this last
stage of the penetration takes about 180us compared to TOMs for the first two
stages combined, which accomplished about half the total penetration with an
expenditure of slightly less than half the mass, Since each fragment on

average is 1.6 g, it takes over 2.5 times longer for 43/1.6 = 27 fragments to
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accomplish the other half of the penetration, even though this is an almost
ideal train with an efficiency of E = 1. This is because the striking speeds
range from a high of §2 = 1,8 mm/us to a low of about 1.2 mm/us as measured by
Majerus and Walters (6‘30).

As explained above, ocur estimate for the erosion rate of these Jet
fragments versus a steel target is “o = .15 g/mm. Since the striking speeds
are all below 2 mm/us, we expect the flattening factor, (A/Ao), to be greater
than 2. We recall from Fig. 4.39 that for an Lo/Do = 20 copper rod versus
steel for 1.2 <« éo < 1.8 mm/us, the flattening factor was about 5. However,
for a lower aspect ratio like 3.5, we expect a lower value for (A/Ao). Let
(A/Ao) = 2.5 for these jet fragments as an average value, With these assumptions
and A » .12 cmz, we find a = .08 g mm/us2 ani ¢ = .12 g/mm. In addition
IO'- 4,68 mm/g and k = 1.7. From Eq (2.18), ¢ = .015 g/mm, so Eq (2.22)

becomes

P, = (1.6/.15){1 - (1 + .ofvéc)zl'a's} (6.15)

since E/(a.ka) = ,06 (us/mm)a, vhile uok/(eé) = 8,5, From Eq (2.15), we have

M1 = 1.6 - .ISPi (6.16)
with { = 1 to 27. The speed difference between the first and last fragments
is .6 mm/us so the drop in speed between one fragment and the next is
.6/26 =, ,023 mm/us. Table 6.1 gives the striking speed, éoi.of each fragment
in the train, assuming that there are noc collisions or interference, followed
by the penetration produced by that fragment, Pi and the residual mass, Mi'
For a stack of plates of this type, we are assuming that all residual mass
escapes between the plates., The cumulative penetration and cumulative
regsidual mass are also given in the last two columns of the tabie. Three
decimal places are retained to minimize errors of a purely numerical type.
This does not imply that the calculation is anywhere near this accurate. The
total cumulative penetration by the fragment train is 188 mm. If we add this
to the 203 mm produced by the continuous part of the jet, we find a total

overall penetration of 391 mm. This is slightly less than the reported high
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Table 6.1

Fragment 8, P M, B, Z,M,
1 1.800 R.313 353 8.313 .353
2 1.77T 8,228 .366 16,541 .T19
3 1.75k4 R.1k2 .379 2L, 683 1.098
4 1.731 8.053 392 32.736 1.490
5 1.708 7.961 106 40.697 1.896
6 1.685 7.868 420 48.565 2.316
T 1.662 T.T72 L3k 56.337 2.750
8 1.639 T.6Th ko 6h.011 3.199
9 1.616 T«STh a6k T1.585 3.663

10 1.593 T.471 479 79.056 4,1k2
n 1.570 T.366 .k9s5 86.uh22 4,637
12 1.547 7.259 .511 93.681 5.148
13 1.52k T.150 .528 100.831 5.676
1l 1.501 7.038 Skl | 107.869 6.220
15 1.478 6.925 .561 11h,794 6.781
16 1.L455 6.809 579 121.603 7.360
17 1.432 | 6.691 .596 128,294 7.956
18 1.409 6.571 .61k 134 .865 8.570
19 1.386 6.L48 .633 141.313 9.203
20 1.363 6.324 651 147.637 9.354
21 1.340 6.198 .670 153.835 10.524
22 1.317 6.071 .689 159.906 11.213
23 1.29L 5.941 .709 165.847 11.922
2L 1.271 5.810 .T29 171.657 12.651
25 1.248 5.677 .T48 177.334 13.399
26 1.225 5.5L2 .T69 182.876 1h;168
27 1.202 5.407 .789 188,346 14,957
242
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of 399 mm and somewhat more than the reported low of 374 mm, but not far from
the average experimental value of 386 mm. We may simplify the calculation by
taking the average of 8.313 mm and 5.407 mm, namely, 6.56 mm, and multiplying
by 27 fragments to get 185 mm. This plus 203 mm gives 388 mm, even closer to
the experimental average. '

We see from Table 6.1 that almost half of the last fragment mass
remains after it is brought to rest, while the total cumulative residual mass
is about 15 g, almost 35% of the L3 g mass of the fragment train. If the
target had been a solid billet instead of a stack of plates, we would expect

interference and a lower penetration with a lot of residual mass in the crater.

2. Standoff = 6CD

Unfortunately, we do not have any time-dependent experimental data at
this standoff. The only informaticn we have is a final penetration depth of
about LLO * 4O mm from Fig. 6.3. Since S = 480 mm, t, = TOus > t, by Eq
(6.5), so the jet is completely formed (Mo = 80 g) and partially stretched
when the, penetration begins.

a, t £ t<¢t
.,.0.2_._-_.2
~Since t2
penetration lasts for 30ps. The initial area at t = TOus is .21k cm2 from Eq
(6.8), and is .15 em®

= 100us in our coordinate system, this first stage of the

at t2 80 the average area over the time of the first
stage is A° = .18 cm2. This gives My = .14 g/mm. We also find ﬁ = 1.15 glus,
Io = 3,12 mm/g, k = 1.khk, bo =5 mm/us, a = .1 g mm/us2 and C = ,14 g/mm with

(A/A) = 2. Then b= .hk g/us, e = .04 g/mm and A = - .178 so /- a= .L2. We

have € .= 3,5, £k/2 = 2.52, g"= 1.05 and B (£k/2) = 2.65, vy = - ,25,
v = -10.75,G_= .36 and F_= 3.8 ¢ mm/us2. Then

- _ (100-70) 2.52 -2.65 _

D = 1.44(80) (3.8) (.36) = 112.7

5.6
= ‘/t (1 + bhx + .0bx2) 52 (x + .25)/(x + 10.75)172°65 ax  (6.17)
<P
P2
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from which we find ﬁa = 4,6 mm/us,
D™ = 1].174 (111.1 + 116.3) + .326 (12.5 + 11L4,5)] = 113.6 (6.18)

Then G, = .316 and F_ = 2.97 g mm/psa, 80

2 2

. (_gg) {1 ) (2.97) 2.52 ( .36> 2.65}

2 14 3.8 .316 )
= 5Tl.4 {1 - (.537)(1.413)} = 138 mm (6.19)

Without time-dependent information we have no check on this intermediate
result. However, we note that the value in Eq (6.19) is about 38 mm larger
than the depth after 30us in Fig. 6.7. From Eq (2.62) we find

M2 = 80 - .14 (138) = 60.68 g which becomes a train of 38 fragments.

b. EQ St <t

Eqs (6.15) and (6.16) srould apply to this fragment train as well.
Now, however, the first fragment strikes at 4.6 mm/us so P, = 10,66 mm by Eq
(6.15) while §38
Table 6.1. The average penetration per fragment is thus 8.03 mm or 305 mm for
38 fragments. If we add 138 mm to this from the first stage we find LL3 mm
for the total penetration which is close to the average value observed,

= 1,2 mm/us and P38 = 5.4 mm as for the last fragment in

3. Standoff = 10CD

Here the entire penetration is accomplished by a train of %0
fragments. If éo = 8 mm/us for the first fragment, then P1 = 10,67 mm, while
PSO is still S.4 mm for an average of 8.03 mm and a total of 402 mm., This is
close to the average value of the 65 observations in Fig. 6.3.

L. Standoff = 20CD

For S > 10CD we invoke our efficiency factor in Eq (6.4), namely,
E = .5 for S = 20CD. The SO-fragment train would still penetrate 402 mm as

244

T LR TR T R R BT A BCRESRR S SHALE AR TARAY IS 41 1% VTSN Vb



for S = ]J0CD if E =1, As it is, we calculate a total depth of 201 mm, which
is close to the average of the 24 observations in Fig. 6.3.

E. Penetration into Steel and AluminumATarggts of Various Strengths

We are fortunate to have time-dependent experimental data for these
targets for at least one standoff, namely, S = 2CD. In their report cited
(6.29)

above Merendino and Vitall also studied aluminum and steel targets with
a range of hardness values, using the same techniques with stacked plates.
Four selections from their data are shown in Fig. 6.8. Both steel targets
offer greater resistance to penetration than either aluminum target.
Mdreover, for a given metal density, the greater the hardness, the lower the
penetration. Adlearly, a hydrodynamic theory which neglects target strength
cannot explain such results. Once more the importance of including hardness
for high speed penetrations is evident. %Tne hardest aluminum target used in
Fig. 6.8 did alﬁost as well as the softest steel target, considering final
penetration depth. In fact, we might expect a still harder aluminum to
outperform a somewhat softer steel with BHN < 100 kg/mmz.

@nother feature of these curves is the fact that, for given target
density, they are almost indistinguishable early in the penetration versus a
fast, continuous jet. However, at later times, after the jet has broken into
a train of fragments, the curves are easily distinguished, especially for the

less dense aluminum targets which differ in hardness by a factor of 6.8

ingtead of 3 as in the case of the steel targets.

l. Steel Targets

The lowest curve in Fig. 6.8 has already been calculated during our
discussion of Fig. 6.7. We recall that at the beginning of the penetration of
the steel target with BHN = 300 kg/mmz, ;F =a - Ioﬁo (&o + 2 &R)
.162 - (1.87)(1.2)(5.2) = - 11.5 g mm/us2 while BF = L4 g/us and ¢ = .236 g/mm.

For a steel target with BHN = 100 kg/mme, the only factor which changes will

L A A O L A N L T L Ay L A R A o



Al (BHN= 27)
750
Al BHpsz1 !
500 |- .
~ ITER PHN=1OY)
—g =1
E
o STEEL (G 4AN=300)
250

| ] ] | A !
0 250 500

microseconds
Fig. 6.8. Jet penetration versus time for four targets at 2CD
standoff.
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be a, which we expect to drop to .162/3 = .054 g mm/us. Clearly this will
give a negligible change in the opposing force, F, so the predicted
penetration will be almost identical, in agreement with what is observed.
Here we are making our usual assumption that the erosion rate is the same for
two such targets of the same density. Similarly, we recall for the second
stage of penetration that initially the force was F1 = ,12 +

2.15 + 1.5 = 3.7T g mm/usz, while at t_ it was

- F2 = .12 + 1.0k + .36 =1.52 g mm/usz.2 Switching to a = .12/3 = .0k g mm/ps2
for the softer steel target is a negligible change, and the curves are still
indistinguishable in agreement with Fig. 6.8. However, during the last stage
of the penetration by a train of 27 fragments, target hardness becomes
important in the coefficient of éoa in Eq (6.22), namely E/(akz). Since a

decreases by a factor of 3 for the soft steel target, Eq (6.15) becomes

P, = 10.67 {1 -[1+ .18(801)2"-8-5} (6.20)

although Eq (6.16) remains the same. Now we find P, = 10,46 mm instead of 8.3 mm

as in Table 6.1. Similarly, P27 = 9,17 mm instead of 5.4 mm for an average
of 9.82 mm and a total of 265 mm. If we add 203 mm to this from the first two

s o,

T BT

stages of penetration by the still continuous jet, we find 468 mm, which is

s -
e o &l

somevhat below the value shown in Fig. 6.8 which was a deeper tha