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I. FORMULATION OF THE PROBLEM

A. Overview of Penetration Mechanics

Penetrators have been traditionally classified as either kinetic energy

(KE) projectiles or chemical energy (CE), that is, explosively-formed jets,

rods or pellets. Typical KE projectiles are launched from a gun and arrive

at a distant target with a definite striking mass, M0 , and speed, So" Thus,

the kinetic energy, 1/2 M0 S , is easily found. In contrast, jets are
produced at khe target by collapsing a metal liner with a hollow explosive

charge. Penetration usually begins even before the jet is completely formed.

Jet aspect or length-to-diameter (L/D) ratios are typically greater than 100

after formation, with the tip moving about 8mm/).s and the rear moving about

lmm/ps . Long rod aspect ratios are typically less than 20 and each element

of the rod moves at the same speed before striking, commonly less than 2 mm/Ms.

This speed is also typical of fragment penetrators with aspect ratios near

unity.

Recently, considerable effort has been devoted to the development of

explosively formed penetrators with aspect ratios near unity. These devices

tend to blur the traditional distinction between KE and CE weapons by fitting

into both categories. They are produced by the explosive collapse of a liner

(like a jet), but arrive at a distant target as a single lump of definite

striking mass and speed (like a projectile). Such a penetrator is a cross

between a jet and a projectile and a cousin to the traditional fragment which

is launched and usually produced from a shell filled with explosive.

Because of the differences between jets and KE projectiles, separate

theories have been developed. Hydrodynamic theories have been favored for

jets, while a variety of theories have been used for bullets and fragments.

With the advent of high-speed, long rods, amended jet or bullet theories have

been introduced. In this report, we will develop a single theory which

describes all types of penetrator from a unified viewpoint.

Two points of view have been used successfully in classical mechanics.

The mechanics of particles was systematized by Newton who spoke of "quantity
(1.1)of motion" or momentum as we now call it . Continuum Mechanics followed

1



Newton's principles. However, instead of describing the time evolution of the

coordinates of a particle or system of particles, the goal became a

description of the velocity, pressure and density history of every point in

space. This view was systematized by Euler (1.2) who also showed how the two

viewpoints are connected. Especially when they are applied to fluids, we now

call these viewpoints Lagrangian and Eulerian, although both forms are due to

Euler. Lamb (1.3) gives the history and mathematics of both viewpoints.

The choice of one viewpoint or the other is usually governed by

considerations of simplicity. If a motion is symmetrical enough to be

characterized by one space coordinate, then the Lagrangian view is preferred

even in hydrodynamics (1.. The general equation of motion which allows for

spatial variation of the dilatational and shear viscosity coefficients reduces

to the Navier-Stokes equation when these coefficients are constant and the
(1.5)

bulk viscosity vanishes . The usual Eulerian form of the hydrodynamic

equation of motion is the inviscid form of the Navier-Stokes equation. If

heat conduction is important, it is customary to account for it in the energy

rate equation which reduces to Bernoulli's equation in the inviscid, adiabatic.
(1.6)

case . Usually both heat conduction and viscosity are neglected in

hydrodynamics.

In this report, we wish to describe the motion of a solid projectile

penetrating a solid target. We limit ourselves to impacts by homogeneous

projectiles with zero yaw, striking flat target surfaces at zero obliquity

without spin. The targets are assumed to be homogeneous and effectively

infinite in lateral extent. The latter description means that there is no

detectable distortion of the outermost lateral dimensions of the target.

However, the targets may be either finite or semi-infinite in the direction of

penetration. The former description means they can he perforated by the

projectile speeds and masses available. The latter description means they are

thick enough to stop the penetrator without detectable distortion of the rear

surface of the target.

Sliding friction forces are present during penetration and can be

influential in the final stage of projectile motion. For example, Zaid and

(1.7)co-workers found that a rod of length greater than the thickness of the

target plate might exit from the rear of the plate with almost no residual

velocity or', at a slightly lower striking speed, become embedded in the plate,

protruding from both the front and rear surfaces. They attributed the defeat

2



of the slightly less energetic rod to projectile/plate friction. Wingrove
has also described the increased importance of frictional energy loss

near velocity ballistic limits and attributed this to an increase in the

coefficient of friction as the projectile velocity is reduced. However,

during most of the projectile. motion, friction plays a negligible role, at

least for metal targets and projectiles, as has been pointed out by Krafft
S~(1.9)

.9 In this report we will neglect sliding friction. For similar reasons,

penetration by a spinning projectile is negligibly different from penetration

by a non-spinning projectile.

For solid targets we may also neglect gravity.

For thin target plates struck by projectiles near velocity ballistic

limits, plate bending can play a role. We will confine our attention here to

plates which are thick enough that such an effect is negligible. If we are

near a ballistic limit, this means that the target thickness is comparable to

the projectile diameter.

Various measurements have been made of the manner in which the striking

energy of a projectile is eventually partitioned into projectile and target
(1.10 to 1.12)

heating and deformation. . In this report we will be concerned.

only with the forces at work during a penetration, a process which is complete

in tens of hundreds of microseconds. We will not be concerned with the

eventual redistribution of the absorbed energy. Electromagnetic radiation,

usually a flash of light, accompanies some impacts. Although this occurs in

the time frame of interest, it is very brief and involves a negligible amount

of energy.

We will treat both projectile and target as approximately incompressible.

Some energy is transported by wave motion in both target and projectile in the

time frame of interest. For example, the rear of a rod penetrator is slowed

when a wave generated at the front reflects at the metal/air interface. Waves

also radiate from the target cavity as it is being produced. However, the

energies involved are usually negligible. An exception may occur for jets

penetrating plastics as will be mentioned later. For very high impact speeds,
(1.13)

melting and vaporization may also become important . In this report we

will avoid such cases.

In a previous report (1.14) we concentrated on the case of a constant mass

projectile striking a target plate at non-zero obliquity. In that case we

found that a force dependent on projectile displacement was essential for
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describing ricochet versus embedment versus perforation. However, such a

force was found to be negligible in comparison to other forces for zero

obliquity impacts. Consequently, in the present report we will neglect forces

that depend on displacement. In that report we briefly discussed the case of

an eroding rod and transformed the time variable to obtain some interesting

solutions to particular cases. Here we will adopt a simpler approach by

assuming a particular form for the erosion rate. The previous report also

developed a model of projectile breakup which we will use in a future report.

Finally, the previous report gave a survey of KE penetrator theories which we

will not repeat here. However, in Chapter V below, we will survey jet

penetration theories. Selections from parts of the previous report appear in
(1.15)

the Sixth Symposium on Ballistics

The goal of the present report is to develop a unified theory which

includes the essential physics of the problem, yet is simple enough to use in

initial design work where insight and ideas for experiment are more important

than great precision. Consequently, a number of examples will be given in

order to facilitate the use of the theory. It is the author's opinion that

the exclusive use of complicated computer codes in penetration mechanics is

both premature and inadequate. Our current knowledge of the physics of

penetration is still too rudimentary for us to reduce the problem to

improvements in numerical methodology. Concentration on this aspect of the

problem, while eventually worthwhile, can distract us'from learning the

physics we 'need to know. A simple theory should have the advantage that every

detail can be understood and modified by the user. It should also enable' us

to link the specialized field of penetration mechanics to the rest of simple

physics where a few mathematical forms can be used to describe a remarkable

variety of phenomena (1.16)

B. Forces Exerted on the Penetrator

As outlined above, our problem is sufficiently symmetrical to be

characterized by one space coordinate, S, by which we denote the position of

the center of inass of the penetrator. Here we will adopt the Lagrangian

viewpoint and describe the time evolution of this coordinate or some other

coordinate related to it. In the case of a solid projectile penetrating a

solid target the penetrator moves in a crater which is usually open at the
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rear. In this respect the motion is often simpler than for a solid penetrator

in a fluid target where a turbulent wake may exert a drag force on the

projectile (1.17). Exceptions can occur as for penetration of a hard, brittle

target by a train of fragments as we shall see. If the target cavity is open

at the rear of the projectile and is wide enough to justify neglect of sliding

friction on the sides of the projectile, then all target forces are exerted on

the front of the projectile. This seems to be true for most cases of interest.

Let the mass of the penetrator at any given time be denoted by M P PpV,

where Pp is the density of the penetrator and V is its volume. When it is

appropriate to speak of the penetrator length, L, and cross-sectional area, A,

then V - AL. If the pressure or the front of the penetrator is p and the

pressure on its rear and sides is zero, then the pressure gradient along its

length is p/L, the force per unit volume. If we multiply this by the volume,

AL, we obtain pA for the opposing force due to the strength of the target.

Tabor (1.18, 1.19) has shown that the mean pressure exerted by a metal target

on a metal penetrator is approximately equal to three times the ultimate yield

strength, or elastic limit, Yt, of the target material as determined in

standard tensile tests. He started with the theoretical predictions of Hencky
(1.20) and Ishlinsky (1.21) which agreed that the pressure should be a bit less

than 3Yt. He then measured this pressure for various metals and found it

to be quite close to 3Yt' t(1.19)

In the appendices of his book Tabor noted the proportionality

between the ultimate tensile strength and the Brinell hardness number

Yt = Cm(BHN) (1.1)

where C is a constant approximately equal to 0.3 x 108 (dyne/cm 2)/(kg /mm2
m

for steel or hard aluminum. For soft aluminum or copper he suggested C
m

values about 50% higher with intermediate values for other non-ferrous metals.

He also gave hardness values for many metals and a few indenter materials as

well as conversions between various hardness numbers. Table 1.1 here gives

some typical values.

5
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Table 1.1 Typical range of Brinell hardness numbers, BHN, and yield

strengths, Yt. 2 2

Material BIN (kg/nuii) Yt (dyne/cm2)

lead 1 .5 x 108

copper 30-130 1I-60

aluminum 15-150 7-50

steel 100-400 30-120

diamond 6,000

Since the mean pressure to keep bonds breaking and initiate plastic flow

in a target is

P - 3Y (1.2)

we can calculate the resistive force of the target due to its hardness as

a - pA - 3YtA - 3C (BHN) A (1.3)
t m

from Eqs. (1.1) and (1.2). Here A is the time average value of the area

presented by the projectile to the target during the penetration. Commonly

the nose of the projectile deforms during a penetration so that A > A0 where

A is the initial cross-sectional area of the projectile before penetration

begins. Thus the force a in Eq. (1.3) is a constant in the approximation we

are making here. For example, if the target is an armor steel with

BHN - 300kg/mn 2, we find 3Y = 3 (90 x 108) = 2.7 x 10 dyne/cm 2, and if A 1 lcm2

10 2
then a = 2.7x10O dyne= .27gmm/u M 5 Here we have converted to grams (g),

millimeters (mm) and microseconds (gs), the mass, length and time units which

seem most appropriate to our problem.

The nose shape of a projectile can affect its penetration, especially as

it enters the target, or if the target is thin, and projectile plastic
(1.22)

deformation and/or erosion are not important factors . Shape is not

very important in a deep penetration or when projectile deformation and/or

erosion are important, since penetrator noses become hemi-spherical mushroom

caps. Whenever we discuss non-deforming projectiles in this report, we will

restrict ourselves to spheres or rods with hemi-spherical noses so we need not

be concerned with other shapes. Even for spheres we should, strictly

speaking, use a Hertzian contact surface to account for elastic deformation as

described by Goldsmith (1.23). Such precision is not important to our goal of

coupled insight and simplicity. Generally speaking, we will be concerned only

6



with the area presented by a hemi-sphere of diameter somewhat larger than the

/ initial diameter.

A second type of resistance offered by a target is inertial and becomes

more important at higher speeds. We approximate this force by

1Pt ý2 A = cp2 (1.4)

where P is the penetration speed and c h ptA is a constant proportional to

the target density, Pt, and the average projectile presented area, A. In Eq.

(1.4), hpitp2 is the energy of a moving unit volume of target material after

its bonds have been broken, assuming it moves with the same speed as the

projectile-nose. It is also the resistive force per unit area offered by the

target because of its mass, so that multiplication by the area gives us the

inertial force.

Equations (1.3) and (1.4) give the two main forces we will be concerned

with. They require only a knowledge of the target density and hardness as

well as an estimate of the area presented by the penetrator. If we add these

two forces we have the form proposed by Poncelet 150 years ago. What is new

here is the use of 3Yt in Eq. (1.3) so that we can calculate the hardness

force term from measured Brinell numbers, instead of treating it as an

adjustable parameter. The form for c in Eq. (1.4) is not new, but it also

prevents us from treating it as an adjustable parameter. If any adjustment is

made, it will be in our estimate of A > Ao. Whenever possible, we will use

experimental information to estimate A, which appears in both a, the hardness

force, and c, the inertial coefficient.

A third type of target resistive force which is often considered is a
viscous force proportional to the first power of the speed(.2)t .3.

None of these authors could do more than guess at the magnitude of this effect

since they had no experimental measurements of solid viscosity. More
recently, Walters (1-31) revived interest in solid viscosity by summarizing

the available experimental data. Unfortunately, there is more than order of

magnitude disagreement between various experimental measurements, with Russian

workers tending to favor high values and American workers tending to favor low

values. Thus Walters was forced to treat the viscous coefficient as an

adjustable parameter (within wide experimental limits) when applying it to
I ~~~penetration mechanics" "12.
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The notion of internal friction or viscosity is basically the same for

srt(4 and fluids as was pointed out by Thomson over 100 years ago.

This molecular friction in elastic solids may be properly
called viscosity of solids, because, as being an internal
resistance to change of shape depending on the rapidity
of the change, it must be classed with fluid molecular
friction, which by general consent is called viscosity

of fluids." (1.33)

Somewhat earlier, Maxwell (1.3m) wade similar observations, pointing out

that in a viscous solid the time rate of change of internal stress, 3, is

proportional both to the strain rate, C, and the stress divided by a

relaxation time, r . That is,

-GE - /'r (1.5)

where G is the rigidity or shear modulus. An integration of Eq. (1.5) for

constant C gives

__- + ( r0  - exp (t/r) (1.6)

where 7= Gr is the coefficient of viscosity. When sufficient time has

passed after an initial loading ( t )> >), -> o, showing that in this

limit the viscosity is the shear stress divided by the strain rate. For

simple Newtonian liquids like water 7 is very short (10-12 s), and

considerable effort must be made to observe its relaxation. However, this has

been done on a regular basis for some time now (1.35). For non-Newtonian

liquids and solids, r can be much longer.

Hencky (1.36) saw in Maxwell's r a way to "bridge the gap from solid to

liquid continua." By introducing relaxation time or its inverse (frequency),

he derived Euler's equations of viscous fluid flow from the deformation of an

originally elastic continuum. He showed that the Navier-Stokes equation is

the special case of large stress or small relaxation time.

A hit later, de Bruyne (1.37) pointed out that Maxwell's relaxation time

could be written in terms of an activation energy, U:

8
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r = r,, exp [U / (RT)] (1.7)

where R is the gas constant, T is the temperature and 7 is the

high-temperature limit. Multiplying Eq (1.7) by G gives the viscosity n in

Maxwell's model which then has the form postulated by Andrade (1.38). He

went on to observe that deformation of a solid takes place by "a change of

molecular position from one stable state, over an energy barrier, U, to

another stable state, and that only those molecules (or groups of molecules)

having sufficient energy of thermal agitation to get over the barrier are able

to make the change." He let au be the ultimate stress and

U - VM(Ou-q)2/( 2G) (1.8)

since the strain energy per unit volume stored in a solid might be written as

1/2 ./G Here VM is the volume of a mole of material with VM - N V , if Na 0m a

is Avogadro's number and Vm is the volume of a molecule. If the velocity is

v - 61/dt and the strain is 61/dxthen a is proportional to the velocity

gradient in Eq (1.6) after sufficient time has passed, t >>r, that is,

Se -I '7d/dt (61/dx) - idv/dx . (1.9)

When n = u/C = Gr , Eqs. (1.7) and (1.8) give

n G r exp [V (u _ a ) 2 /(2GkT)] (1.10)

where k=R/N is Boltzmann's constant. Eq. (1.10) says that the viscosity

decreases as the temperature increases in agreement with observations of

condensed matter (liquids and solids). The increase in thermal energy makes

it easier for potential barriers to be crossed. However, Eq (1.10) predicts

that n will decrease as the stress or pressure is increased toward its

ultimate value, a->au , which is contrary to observations. As the pressure

applied to condensed matter increases so does the viscosity, since it becomes

more difficult to overcome potenfial barriers.

If r is large enough in Eq (1.6), then there will be an observable delay

in returning to the unstressed state when the material is unloaded. This

lagging of the strain behind the stress is a case of mechanical hysteresis



(1.39)
which Zener has dubbed "anelasticity" . A number of stress-induced

mechanisms have been considered such as the inhibition of thermal or particle
A

diffusion or of viscous slip along grain boundaries. Ke, a co-worker of Zener,

measured the internal friction of both single crystal and polycrystalline

aluminum as a function of temperature and found a resonance peak near 500 0 C in

polycrystalline specimens but not in single crystals. He attributed this to

viscous slip at grain boundaries and estimated the viscosity of

polycrystalline aluminum to vary from 2 x 1016 poise near room temperature to

about 2 x 10- poise at 660°C, the melting point. (. K0). made similar

measurements for a number of other metals. For alpha-iron he found the

viscosity to vary from 1045 poise near room temperature to 10- 2 poise at 910 0C

where a transition to gamma-iron occurs. He found three resonance peaks in

alpha-iron. Those centered at 200C and 2250C he attributed to stress-induced

re-distribution of interstitial nitrogen and stress-induced inhibition of

nitrogen atom diffusion respectively. The main peak centered at 5000 C and

extending from 400 0C to 6000 C he attributed to viscous slip at grain

boundaries. He noted that the viscosity decreased from 1010 poise at 400°C to

103 poise at 600 0C, values quite comparable to those of pyrex glass over the

same range (1.41). KO also studied the effects of impurities in aluminum,
(1.42)

iron and copper as well as the effect of alloying aluminum and copper
(1.43) Ke's measurements were carried out at low stress levels and slow

speeds, so they may not be transferable to penetration mechanics where high

speeds and stresses occur. However, his finding that measurements of the

viscosity of solids vary widely with the characteristics of particular

specimens may help to account for the large discrepancies between viscosity

values reported by various workers for nominally the same materials.

Krausz and Eyring (1.44) have developed these ideas and introduced

statistical quantum mechanics via Eyring's absolute reaction rate theory. In

the view of these authors a solid can be looked upon as a giant molecule, if it

is a perfect crystal. Of course, imperfections and grain structures modify

this view and the flow units might be grains rather than molecules in the case

of metals. They use their rate theory of plastic deformation to explain a

variety of phenomena, including mechanical hysteresis.

In their discussion of viscosity and plastic flow, they develop an

expression which relates the strain rate, C , to the net number of times per

second that a flow unit moves in a direction determined by the stress:
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C=(C/(2 r)][eZ-eZ] (1/= ) sinh z (1.11)

where

r= X /(2 X k*) (1.12)

is the relaxation time,

z M rVH (1-13)IZz = (•X 3 )/(2kT) = ~H(.3

2kT

"and

k*= (kT/h) exp [-AG*/(kT)] (1.14)

Here k* is the rate constant (sec ) and involves Boltzmann's constant, k,

Planck's constant, h, and Gibb's free energy of activation, AG*, as well as

the temperature, T. The parameter z is proportional to the stress, a , which

induces flow units to move from one site to another one an average distance X1

away. Here (X 2X3 ) is the cross-sectional area presented by the flow unit to

the opposing medium. Consequently, a(X2X3)is the force. In moving to an

adjacent site, the flow unit surmounts a potential energy barrier which has a

peak located a distance X/2 from a valley, so the force does work aX 2 X3 X/2 " OV /2.

This is the numerator of Eq (1.13), the activation energy. The thermal

factor, kT, in the denominator has the effect of assisting a passage over the

barrier at higher temperatures. The hole volume swept out during the motion

is VH= X 2X3X, while the volume of the flow unit is not much different, namely,

V = XI X2X3 * The exponential terms in Eq (1.11) represent forward and

backward motions of flow units. Krausz and Eyring go on to generalize their

theory in order to include the motion of more than one type of flow unit, each

characterized by its own relaxation time, Ti, and occupying a fraction, Xi, of

the shear surface. They then proceed to apply their theory to a number of

solids. However, they do not treat metals to any extent, except to point out

the analogy between superplastic flow of metals and the motion of viscous

materials like hot glasses. The great elongation which is possible without

necking or breaking is familiar to anyone who has observed a demonstration of

the glass-maker's art.
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Let us recall Maxwell's expression for the viscosity, q=Gr. If we use Eq

(1.11) for r,

n =[G/(2 ] (eZ-e-z)E [G/(2C) ] eZ (1.15)

for z>>l in Eq (1.13). Near room temperature, the denominator of z is about

-132kT"410 erg . For liquids like water composed of small molecules OH

should be a bit larger than this and z is a bit larger than unity. The second

form of Eq (1.15) is essentially the same as Eq (1.10) if T. corresponds to
1/(2C) ,VH•Vm, and (Ou-a)yG corresponds to a in Eq (1.13). Thus both

equations describe a decrease of viscosity with increasing temperature.

However, unlike Eq (1.10), Eq (1.15) correctly describes an exponential

increase of viscosity with increasing pressure, 0 . For colloidal

suspensions, resins and polymers, the flow units and the stresses required to

move them become larger, thus increasing z for given T and making the second

form in Eq (1.15) an even better approximation. The possible application of

Eq (1.15) to polycrystalline metals is unknown at present. However, we note
S 10de/cm2 and 2t7 1 e Zis expressed in poise.

If z = 100 , then n t, 1043 poise, a number similar to values reported by

Ke for iron (1.40)

The approximate form of Eq (1.15) has also been given by Frenkel who noted

the work of Andrade and Eyring. Frenkel pointed out the necessity of revising

classical hydrodynamic theory to incorporate Maxwell's relaxation theory,

apparently unaware that Hencky already did this (1.36). In addition, he

discussed the need to modify the classical elastic theory of amorphous solids

to account for their fluidity (or viscosity) in order to describe the

continuous character of the transition from the liquid to the solid state when

this transition is not accompanied by crystallization. He devotes most of his

attention to the latter modification in order to describe the propagation of

transverse waves in fluids. From such a unified viewpoint, diffusion and

creep in solids are at one end (T-.1012s or 30,000 years in geology) of a

relaxation time spectrum which extends to the viscous flow of Newtonian

liquids ( n 10-12 s for water). As Frenkel remarks, this makes the

classification of condensed bodies into solids and liquids a matter of (1.46)
practical convenience rather than something of fundamental importance

This rather long digression on the viscosity of solids and liquids is

meant to lay the groundwork for future learning about the possible usefulness
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of such concepts in penetration mechanics which describes high-pressure,

high-shear-rate events. At present we do not have enough quantitative

information even to begin an adequate description. Polycrystalline metals are

far from perfect crystals, although they are composed of crystallized grains

as well as other structures. Only in certain superplastic cases do they flow

like liquids in short times. Brittle metals tend to shatter like glasses or

ceramics under impact, while glasses can flow like superplastic metals under

the proper conditions. Solid plastics are also of interest in penetration

mechanics and can flow or shatter depending on conditions. In what follows we

will represent the possible effects of viscosity by a simple force term

proportional to the first power of the penetration speed, namely,

bP = 6 RnP = 6Vr nP (1.16)

2which is Stoke'a law for a sphere of cross section A = ir R

In summary then, the target force opposing penetration is

F = a + bP + cP2 (1.17)

where a depends on the target hardness by Eq (1.3), b depends on the target

viscosity by Eq (1.16), c depends on the target density by Eq (1.4 ) and all

three depend on the time average area, A, presented to the target by the

penetrator nose. To anticipate a bit, we will find both a and c to be

indispensable in describing the experimental observations which have been

made. However (in spite of our lengthy discussion of viscosity), we will find

b to be of negligible importance in describing such observations. This does

not mean that viscosity may not turn out to be of some importance in some

cases when better observations are made, perhaps in the penetration of very

hard targets (high z in Eq (1.13)) likA glasses or ceramics for which

relatively few fundamental observations have been made. It is clear that a

and c are important for solid targets, because bonds must be broken and target

material must be moved. We may conjecture that b is unimportant because the

process by which the moving target material eventually comes to rest is of no

importance in slowing the penetrator, provided there is little or no contact

between the moving target material and the penetrator, as in the case of most

metal targets. However, if there is considerable contact between moving
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target material and penetrator, as there may be in the case of narrow channels

in hard, brittle targets, then b may be very important since the sides as well

as the nose of a penetrator will be affected by forces exerted by target

material. For example, if the narrow penetration channel in a glass target is

filled with a mixture of eroded penetrator and target material, both the

external friction between this material and the remaining penetrator as well

as the internal friction or viscosity of the eroded material might be

important. For a long rod penetrator or jet this part of the problem

resembles the motion of a solid cylinder inside a flowing "liquid" tube which

is in turn contained inside a rigid "pipe" (the undamaged part of the target).

C. Pre-formed Eroding Penetrators

A typical example of this kind of penetrator is a rod of aspect ratio

Lo/D° = 10 . Here subscript zero denotes initial value. Except for the

deformed nose which presents area A>A to the target, most of the rod retains

its original cross-sectional area, A. Thus to a good approximation, the

remaining mass is proportional to the remaining length, M 0 PpA0 L. Since.

neither the penetrator density, Pp , nor Ao change with time, we can write

AL = N/(PpAo) = - Np/(p AA) (1.18)

where A . (for A(QJ stands for the mass lost per unit time at the nose which

is located at position P (measured from the target surface) and moves with

speed P , the penetration speed (or growth rate of the crater depth). Let R

and R be the position and speed of the rear of the penetrator. Just before

imp,.t all parts, of the penetrator move with the same speed. Just after

impact the target resistive force increases from zero to a large value, then

starts to decrease. During this brief, transient period (of a few

microseconds) the nose speed is decreased to a value P 0 R . Here we are

ignoring the details of this transient deceleration of the nose and start our

problem just after the resistive force of the target has peaked. The rear of

such a rod will begin to decelerate a bit later when pressure waves generated

at the nose reach the rear and reflect at the solid-air interface. This
deceleratLon of 'Uhe rear may occur in several steps. Again we will ignore

such details and use average values.
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Since S is the position of the center of mass located halfway between the

nose and the rear at any time,

= + L/2 = - /(2PA) (1.19)

and

R= S - L/2 = S + M P/(2P A ) (1.20)

where we have used Eq (1.18). Addition of these equations expresses the fact

that the speed of the center of mass is the average of P and R * Subtraction

of these equations expresses the fact that R> P , as expected. In the

absence of erosion, L - A - 0 and P - -" with L - L and M - M
p 0 0

Before proceeding to derive the equation of motion, let us consider an(1.47)
analogous problem formulated by Goddard for rocket motion . Here we

will simplify Goddard's treatment slightly by neglecting the mass of the

rocket motor case which has no analog in penetration mechanics. This means

setting k-0 in Goddard's equation. We will also use the symbol M for the mass

remaining at time t instead of writing the difference between the initial mass

and the mass expelled (as exhaust) up to time t. The infinitesimal dM

represents the mass lost in time dt. During this time the upward (positive)

speed of the center of mass of the rocket relative to a stationary observer on

the ground is increased from v to v + dv. The mass which is lost moves at a

constant (exhaust) speed, C0 , relative to the center of mass of the moving

rocket in the downward (negative) direction, so v-C is the exhaust velocity

relative to the ground observer. The change in momentum of the system is

equal to the impulse imparted by the force of gravity, G, and the drag force

of the atmosphere, D. Thus

[(M-d 61)(v+dv)+dM(v-Co)] - Mv = - (G+D)dt (1.21)

where Mv is the momentum at the beginning of the time interval dt and the

square brackets represents ti:3 momentum at the end of this interval.

Initially v • 0 so v-C < 0 until enough speed has been attained to reverse
0

the sign. No attempt is made to follow the motion of the exhaust gas after if

15

| :I
• • '.ih d '.•t ~. •\ b% • A ,,~ ,• L' \••. • ~ k •.t •?t •Lu •` l• AA%. 9 •~hU\ ~L L?% - " • A •[ & , L' &.



has left the rocket. When we pass to the limit, dt÷ O, dM- O, dv-+ 0, we can

neglect the second order term, dMdv, in Eq (1.21) and divide by dt to obtain

d(Mv)/dt = (v+C )(dM/dt)-(G+D) . (1.22)

This equation states that the time rate of change of momentum is equal to the

sum of the forces acting upon the center of mass. In outer space where G - D - 0

the mass loss increases the momentum (as it must also do if the rocket is to

rise from the earth's surface). The form of Eq (1.22) is that usually set

forth in physics texts (1.48, 1.O9) f course Eq (1.22) can be simplified by

subtrat.ting vdM/dt from both sides to obtain

Mdv/dt = C M - (G+D) (1.23)
0

which is Goddard's equation with A4 = dM/dt. Shortly after ignition C oM > (G+D)

and the rocket rises. At burnout, C 00 and A- 0 so dv/dt<O unlessG + D - 0

by this time. Thus the rocket will either escape or slow down and fall back

to earth. Discussions of Goddard's equation may also be found in some texts (1.50).

In the penetration problem we are describing, mass dMp >0 is lost at the

front instead of the rear where it is wiped off by the target while moving at

the nose speed, P. The remaining mass, M, is diminished by dMrP while the

speed of the center of mass becomes S +dS. Thus,

[(M-dMp) (S+dS) + dMp (P)] -MS = - Fdt (1.24)

which is the analog of Eq (1.21). Inthelimit dt-0, we can neglect dkIdS and

write a form analogous to Eq (1.22) or go directly to a form analogous to Eq

(1.23), namely,

MdS/dt = (S-P) N'i - F (1.25)
P

If we use Eq (1.19) f-r (S-P), Eq (1.25) becomes

NldS/dt =1 /(2PpA) / F (1.26)
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where F is given by Eq (1.17). In rocketry the force CoA in Eq (1.23) is

independent of (G÷D) and can be turned on or off. In penetration mechanics

the two forces on the right side of Eq (1.26) are connected since the

magnitude of the mass loss rate depends on the kind of target being

penetrated. In all cases of interest, targets decelerate penetrators, so the

right side of Eq (1.26) is negative. This limits Np which achieves its

maximum possible value in the extreme caseP P Omud splattering on a hard

target). In this case F=a from Eq (1.17) and Mp=2p pSA from Eq (1.19). the

minimum value of N is zero (no erosion). In this case P=S in Eq (1.19) and

in Eq (1.17) with =M 0. Penetration without erosion occurs for example, when a

hard steel ball bearing impacts a typical aluminum target. For moderate

striking speeds and soft aluminum, penetration may even occur without

deformation of the projectile.

D. Jets

Typical jets stretch and eventually break into fragments because their

noses move much faster than their rears. It is possible to make a

non-stretching jet (1.51), but this is rarely done in practical devices. Such

Jets are similar topre-formed rods if penetration begins after jet formation

is complete and Eq (1.26) describes their motion. More generally, penetration

begins before formation is complete and stretching must be accounted for as

well.

To describe simultaneous addition of mass at the rear of a jet and loss of

mass at its front, we can write M = MR - Mp where MR > 0 is the addition rate

at its rear, while M > 0 is the additon rate at position P, its front. When
p

formation is complete, MR÷0 and M - M as for a pre-formed rod.
R p

For a rod we have been using the symbol A for its c oss-sectional area.0

If the rod is a right circular, cylinder, A is its cross-section at every point

along its undeformed length. If the rod is tapered slightly frcnt and/or rear

or has irregularities like sabot contact grooves along its length, then A° is

the cross section averaged over the rod length such that its product with the
density and length gives the measured mass, M. p A L initially, or

0 0 0

M p A L at a later time with L < L * In this approximation any slight
p 0 0
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change in A with time is ignored. For the jet we will be considering, such0
changes cannot be ignored. This jet happens to be tapered (narrower at the

front than at tle rear). Here we will give Ao the same meaning, namely, the

average cross-section over the jet length at any time, t. However, when the

jet stretches like a rubber band or piece of taffy being pulled, A decreases

too much to ignore. That is, its time rate of change, Ao < 0, is not

negligible. Since this stretching occurs even after formation (AR = 0) and in

free space (A•p = 0), it is a constant mass process and A p PP(A L + A L) = 0,

or A 0 - A L/L gives us an estimate of this effect. In other words, if we0 0

observe a jet in free flight after formation and measure L, L and A as time

goes on, we can estimate A0o We then assume that the same process occurs

during formation and erosive penetration, making anothi itribution to the

time rate of change of the length, namely, L (stretching) = di 0A/A > 0.

This can be added to the contributions from mass loss and addition to give a

total rate

L R (H -lHp)lCpAo) + (L I/A )(P /p)

(M + p A I/)(p A + )(ppAo) (1.27)p o p 0 P.0

where we have introduced the symbol p p pLi •o1 > 0 for the stretching rate,

with M - Mp as before. For a pre-formed (H1 = 0), non-stretching (4= 0)

rod, Eq (1.27) becomes Eq (1.18) above. The form for a non-stretching,

still-forming jet (1.51) is obvious. Generally speaking, > > Mp as we

shall see, so A > 0 diuring formation and L > 0. After formation (MR = 0), the

sign of L will depend on the sign of (-M p ÷).

At any instant in time a jet always has a definite mass and length.

However, because of jet taper, the center of mass will not be located at the

midpoint of its length, but somewhat to the rear of this point. Let C be the

geometrical center of the jet length. In a one-dimensional problem such as we

are considering any point may be chosen to describe the motion since all

forces are exerted through every point along the penetrator length.

Consequently, we can write the analogs of Eqs (1.19) and (1.20) as

P + L/2 C + (M + 1) I (1.28)
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and

= C - L/2 C - (0.+ u) (1.29)

where

10 (2 pA) -1 (1.30)
0p 0

Since L may well be positive as we have noted, then < is a distinct

possibility as is A > P if formation is complete and erosion is severe. If we

have a non-stretching jet (ý = 0), then A = A ,C = S and after formation is

complete Eqs (1.28) and (1.29) reduce to Eqs (1.19) and (1.20). After

formation (N 0) of a stretching Jet, it is possible that A- M so P C = H.

pp_Usually, however, P> so h < P.

... We must also generalize our equation of motion to describe a forming,

stretching, eroding jet. The mass added to the rear, dMR, has speed A, and

net mass change is dM-dMR-dMp. Thus

U(M + dMR - dM p)(c + dC) + idMR + PdM p - MC = - Fdt . (1.31)

Now when we pass to the limit dt-- 0 and neglect dMRdC and dM pdC we find (upon

dividing by dt)

MdC/dt - (C + R) MR + (C p- ) M - F . (1.32)

We can add C to A in Eq (1.29) to replace the coefficient of MR in Eq (1.32)

and subtract C from both sides of Eq (1.28) to replace the coefficient of A p

and obtain

MdC/dt = - [2C - (A ) - ( I F (133)

where AA R-M . Simplifying leads to

MdC/dt = IoM (MA ) - (2CMR + F) (1.34)

This equation reduces to Eq (1.26) for a non-stretching jet (L =0, A=A0, C=S)

which has completed its formation MR=O). Thus a typical jet differs from a

rod in three respects, MR>O, >0 and taper.
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II. SOLUTIONS

A. Solutions Without Viscosity

1. Constant Mass Projectile

Our method in this report is to begin with the simplest case and add

complications as they are needed. Without erosion, M = 0, M = M0 , and Eq

(1.26) becomes

M dS/dt - (a+cý 2 ) (2.1)0

where we have used Eq (1.17) with b = 0, since n is assumed to be unimportant

in Eq (1.16), and with P S in Eq (1.19). Two integrations of Eq (2.1) with

respect to time give us

S= • tan EYo -0/a (t-t 0 )/Mo0  (2.2)

and

S S + (M /c) in {cos EY -Va/ (t-t0 )/M ]/Cos Y } (2.3)

where

YO tan- 1So /aVc) (2.4)

while to, S and S are initial values. In this simple case we can eliminate0 0

time between Eqs. (2.2) and (2.3) to obtain the solution in the S, S phase

plane

S=Vr/c tan cos-I [(cos Y ) exp [(c/M )(S-S ))1 (2.5)

Thus we can express all three solutions in the S, t plane, the S, t plane and

the S, S plane in terms of a finite combination of classical elementary
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functions. This is not usually possible for non-linear equations, as we shall

see.

We can also transform Eq (2.1) to the phase plane before we integrate

if we divide by S = dS/dL to obtain the separated form

2d/(a~c ) - dS/Mo . (2.6)

If we have no time-dependent information as is usually the case in penetration

mechanics, a solution in the phase plane is all we need. The elimination of

the time variable in either the differential or integral form touches on an
important characteristic of mechanics. In either classical or quantum

mechanics, time is reversible and the equations of motion are invariant with

respect to its inversion. Of course this is not true of the world in general

as is abundantly illustrated by the applications of irreversible

thermodynamics in physics, chemistry and biology (2.1*.k An integration of Eq

(2.6) gives

/i

=,/(a/c) {[1+(So /. 7)2] exp [-(2c/M )(S-So)] - 11 (2.7)

Clearly Eqs (2.5) and (2.7) must be equivalent. This can be shown as follows.

Equate the squares of both equations to eliminate S, and recall the identity
tan 2x = see2 x-1, so

sec 2 [cos-1 (cos Yo) exp [(c/M0 )(S-So0 )})

=[I+(So a/vc)2] exp [-(2c/M0 )(S-S 0 )] (2.8)

after adding 1 to both sides. Now take the square root and recall that secx

1/cos x, so

1/{(cos Y ) exp (c/(M )(S-S )]} i[+(S 0/vac)2) exp [-(c/M )(S-S )]. (2.9)
0 0 0 0 0 0

Now multiply by exp [(c/M0 )(S-So)], square, and recall the identity 1/cos 2 x

1 + tan 2x, so
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1 + tan2 [tan- 1 (, o/ v77) =1 . (jo 0Aa7 2  (2.10)

where we have used Eq (2.4) for Yo" Since Eq (2.10) is an identity, Eqs (2.5)

and (2.7) are equivalent and we can use whichever form seems to be more

convenient in our calculations.

A frequent case of interest in penetration mechanics is embedment in a

semi-infinite target. The problem ends when the penetrator is brought to rest

(S--0). If we choose the origin of our coordinate system at the target face,

then the initial position of the center of mass is S 0-L /2. The final0 0

position of the center of mass is SE (at embedment) and the final position of

the nose of the penetrator is PE C SE+L /2 = SE - So This is also the crater

depth. If we let S = 0 in Eq (2.7), for example, and solve for (S - S ) with

S = S, we find

(M /C) ln V(S/- (2.11)

which gives us the penetration depth as a function of the striking speed, Sop

for given penetrator mass, M0 . The target hardness appears in the parameter

a, given by Eq (1.3) while the target density appears through the parameter

c=.SPt A in Eq. (1.4). The average area, A, presented to the target by the

penetrator during the penetration does not appear under the square root in Eq

(2.11) since a--:=7/6Y/, which depends only on the target strength and

density. However, for M° =pp AoL (M /c) = (2L )(p /pt)/(A/Ao) with (A/Ao) _,

depending on whether or not nose deformation has taken place.

If we take the derivative of Eq (2.11) with respect to S0, we find the

slope,

dPE /d° (M /a) S0 /,+(So/va/c) 2, (2.12)

which vanishes in both extremes of small striking speed (0 -+ 0) and large

striking speed (S -- ) and has positive values in between. By setting the0

second derivative with respect to S equal to zero, it i1 easy to show that

s= a-c is an inflection point. Thus Eq (2.11) describes a situation in which
0
the penetration depth increases rapidly at first as S is increased above

02
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zero, but eventually approaches a situation in which further increase in

striking speed has little effect. By contrast, an increase in penetrator mass

always increases penetration depth in a linear manner. The advantage of

increasing penetrator mass rather than striking speed at high speeds has been

known for a long time. For example, it was mentioned by Bethe more than forty

years ago (2.2) The law of diminishing returns expressed by Eq (2.11) is

sometimes called a sigmoid or lazy -S curve. Of course, we can also set S = 0

in Eq (2.5) to obtain

PE = Mo/c) in cos tan"- (S0 &v47 ) (2.13)

which has Eq (2.12) as its slope as well.

Another common case in penetration mechanics is perforation of a

finite plate. If T0 is the plate thickness, then we can find the residual

speed by letting S = T0 in Eq (2.7) or Eq (2.5). Alternatively, we could

choose another criterion for perforation and let P = S - S0 = T0  Various

criteria for ballistic limits as well as the role of "breakout" effects will

be discussed in the next chapter. For example, a ballistic limit might be

defined by the simultaneous conditions S = 0 and P = To, so letting PE = T0 in

Eqs (2.11) or (2.13) enables us to find the limit speed,.Sol.

2. Eroding Projectile

In other fields ablation or erosion seems to depend on the speed with

which the object being ablated moves through the medium responsible for its

erosion. The example of a space vehicle re-entering the earth's atmosphere

comes to mind. A simple form which expresses such a dependence is

0: (2.14)

where Ao20 is constant. As we shall see, this form is not only reasonable

(agreeing with trends in other fields), but enables us to describe many

observations in penetration mechanics rather cioseiy. In addition, it enables

us to give an alternate derivation of the density law wiich has been used for
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so long to describe jet penetration. If there is a nose speed, P, below which

erosion ceases, then we can set ;A 0 0 for P less than this value, and

continue the solution as in the previous sub-section. However, there is no

evidence that erosion, once begun, ceases below some speed P > 0.

An integration of Eq (2.14) gives us

M =M -j oP (2.15)

since P 0= 0 in the coordinate system we have chosen.

If we use M= IM 0 U o from Eq (2.14) in Eq (1.19) and solve for S,

we find

S= (ipoIo) P = k0 (2.16)

where Io= (2pp A ) is a penetrator characteristic. Since the constant, k, in

Eq (2.16) is greater than unity for uo > 0, it is clear that the penetration

speed, P, is less than the projectile center of mass speed, S, as we expect

when erosion of the projectile nose is taking place. Now let us use Eq
(2.15), Eq (2.16) and Ap = P 0o in Eq (1.26) with F = a + cP2 to obtain

M [1-(U /M )P] k dP/dt = - (acýP2) = - F (2.17)
0 00o

where

C: = - Io0o (2.18)

may be called the reduced inertial coefficient. From Eq (2.18) we see that

the effect of erosion (P >0) is to reduce the opposing force of the target0

while reducing the mass of the projectile. Of course in penetration mechanics

(by contrast with rocketry) this tendency for a projectile to accelerate as it

loses mass is never so great that the net force on the right side of Eq (2.17)

turns positive. An extreme case of considerable interest occurs however when

c 0 and only the target strength opposes the motion. Since I,= (2:p A 0
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and c - .SPtA, we can let c = 0 in Eq (2.18) and solve for p to find

110 (max) =-VPp Pt AA 1 (2.19)

Eq (2.19) gives us an estimate of the upper limit for the erosion rate

constant Uo (with zero as its lower limit). The effects of target and

projectile hardness on erosion rate appear through A > A0 , the nose

deformation. Once we have estimated A from a knowledge of A0 , then the

geometric mean of the densities enables us to estimate an upper limit for Po"

If we have no time-dependent data to describe (which is,

unfortunately, the usual case in penetration mechanics), then a solution in

the phase plane is sufficient, as we have noted. Let us divide Eq (2.17) by

P= dP/dt and obtain a separated form in the P,P plane.

Integration of this equation gives

/'-- a/dc[l÷(c/a)(So/k)2][l_(uo/Mo p]2/ 1o)_} (2.20)

where (S /k) P from Eq (2.16). First let us note than Eq (2.20) reduces to

Eq (2.7) forU' -* 0, k -1, P-S,c~c . This may be seen by letting0

w = -(Po/Mo)P and noting that

lim [1-(0o /M o)P2c/ (w0k) = lia [(0+w)1/w]"2cP(kMO)
P 0 -. 0 w -O

= exp [-(2c/Mo)PJ (2.21)

by definititon of the base of the natural logarithm. Use of P = S - S and
0

P = S completes the demonstration.
For a semi-infinite target, embedment occurs and the motion ceases for

P-.0 in Eq (2.20), so

P : (Mo/o) [1-[l+(.C/a)(S /k)e]-"o/(2c)} (2.22)
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which reduces to Eq (2.11) for p 0 -0, k-1. For perforation of a finite
target we might let P = T to find the residual speed in Eq (2.20) and the

residual mass in Eq (2.15). The slope of Eq (2.22) is

-," dP/1•P k/(2c)
dP E/d = CS /(ak)]/t1+(S / ac)2] o (2.23)

which reduces to Eq (2.12) for p o÷0. Again we see that the slope vanishes
for very small and very large S with an inflection point at

S = k ( E opk) (2.24)

which reduces to S =vra'7  for 1o÷ 0.

In the special case Z = 0, Eq (2.20) becomes

1 2
P =:(S 0k) + [2a/(0 k)] in [1-( o/Mo)P] (2.25)

and

PE = (M 0 /) (1-exp C-fok/2a)(So/k) 2 3) (2.26)

replaces Eq (2.22). If we use M° = p A 0L and Eq (2.19) in Eq (2.26), we find

P /Lo =•!•2ppl7 " (1-exp [-(pok)/(2a)(o /k)2 31 (2.27)
Eo p Pt 0

where y = A /A < 1. If the target strength is zero (a= 0), this is the classical
0 --

aen'ity law which was originally derived to describe penetration by a jet of

constant length as we shall see. The exponential correction factor depends on

the target strength through the force a. Since W 0/(2k) does not differ greatly

from unity in most cases of interest, then for large S0 and small a,

(S0 ) 2/a > '> 1 and the correction factor is negligible. However, for moderate

speeds and hard targets it is not negligible as we shall see. k

So far we have considered only the solution in the phase plane, Eq

(2.20). This equation is easily separated since the right side is a function

of P while the left side is dP/dt. An integration gives us
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D(elx, Xo0) = I[(X°0 1['/l(eMO/pO)] (t-to) (2.28)

with

xxo e-1 1/2d'
D(eIX, X0) x (x-l) "dx (2.29)

and

X = 1÷E(Z/a)(S 0/k) 2 ] [1.P/(Mo0 o)]A0 (2.30)

Here e = k)/(2c) is the dimensionless erosion rate. Since X depends on P

by Eq (2.30) with X = X for P = 0 initially, then Eq (2.28) is the solution

in the P, t plane. However, the relation between t and P cannot be expressed

in terms of a finite combination of classical elementary functions except in,

special cases.. As is usually the case with non-linear differential

equations, the solution involves some sort of special integral, at least for

ordinary, low-order equations. Here Eq (2.29) gives the special integral we

need. By analogy we might call it a generalized, incomplete, confluent

hypergeometric function (2.3). We will encounter a number of special

integrals as we proceed. There is really no need to name them since they have

not been tabulated in standard references anyway. We only need to evaluate

them by any one of a number of standard methods, provided we need a

time-dependent solution. Usually a phase plane solution will do. In the

chapters which follow we will give examples of time-dependent solutions

together with methods of evaluating the special integrals by simple

procedures. With the advent of electronic calculators, there is no need to

create tables of integrals. Particular cases can be evaluated as needed by a

few operations on a hand-held calculator, by the push of a function buttcn on

a slightly larger calculator, or by means of a subroutine if one's calculator

is fully programmable. Once P(t) is found, we can use Eq (2.20) to find the

solution in the P, t plane as well as Eq (2.15) to find M(t).

Alternatively, we can find [1-(m./M0 )P] from Eq. (2.20) and use it in

Eq (2.17) to find
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dt •- t(kM0 )/(aXo )0 [E1(C/a) 32'-'dý (2.31)

in the P, t plane. An integration gives

[oa o/( MO )I (t-to) D (*IZ, Zo) (2.32)

where D has the same form as Eq (2.29), but

Z 1 + (j/a)P2  (2.33)

is the limit instead of X as in Eq (2.30). Of course X 0 Zo.

For the special case c = 0, a similar procedure can be used. By

integrating Eq (2.25) we find

[( Ii lM IM 0)] (t-t 0) = d f x 1 -12e 1(-4dx (2.34)

with

X 1 1 + in [1-(Vo/Mo)P]I/ 1  (2.35)

where I = oikPo21(2a). By using [1-(V10/Mo)P] from Eq (2.25) in Eq (2.17)

with c 0, we find

E•o~ Po)/( M d = f x-1/2e 1(X-1)dx (2.36)
00( M C1Mo) (t-t 0 d 0

with

Z = (PIP)2 (2.37)

instead of X as in Eq (2.35). Thus Eqs (2.34) and (2.36) give the solutions

in the P, t and P, t planes respectively for the special case c = 0.

Finally, let us note that the projectile mass never vanishes in cases

of interest.

First, for relatively small erosion rates, Z > 0 in Eq (2.18), we can
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use Eqs (2.15) and (2.16) to write Eq (2.20) as

S1 (M/Mo)) (2.38)

Clearly even for P -O, M = ME > 0 at embedment.

Secondly, for c 0, Eq (2.25) can be written as

P : P0 [1". 1 in (M/Mo)]1/2 (2.39)

so for P-÷O, M = Mo exp (-4 > 0 for finite el.

Finally, for C < 0 we can write Eq (2.20) as

(IdI/a) 2 1 - [1-(I cI/a) 2 ]/(M/Mo)211/( %ok) (2.40)

Now if (I- I/a) 1, then F-O in Eq (2.17) and dP/dt>O, so the speed

increases, stays constant or decreases. The only realistic case in

penetration mechanics is given by the lowermost signs. In this case also,

then,

ME = M 01-(IcI/a)Po]1 >(21ýd)> 0 (2.41)

In short, there should be a residual mass in every case of practical interest,

although it may be so small that it cannot be observed in practice. The only

cases in which the penetrator can be completely eroded involve either no

change in speed or an acceleration during penetration. While these cases are

mathematically possible, they do not occur. The extreme case of no

penetration at all (P = 0 always, the case of mud splattering on a steel

plate) involves no speed charge and complete erosion, but is of little

practical interest. iJfter noting this case, it is hard to imagine a case in

which a~celeration coulc occur.
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3. A Standard Jet

a. Formation

The jet we are considering in this report is formed from a 420 copper

cone (81 mm base diameter) collapsed by composition B explosive, In chapter VI

below we will describe this jet in more detail and note that its formation

rate, HR' and its stretching rate are both constants to a good approximation.

We will also note that its formation rate is about ten times bigger than its

erosion rate even in dense, hard tar'gets like armor steel. Consequently, for

penetration during jet formation it is a good approximation to take the mass

change rate to be a constant, Mo' which is not much smaller than the formation

rate, AH:

A MR -M A M - IM (2.412)

This approximation will be used only for penetration during jet formation,

which for a standoff of about two cone diameters mighblast for only ten

microseconds (compared to 300us for the entire penetration). This

approximation is good enough for our puirpose anl enables us to write explicit

solutions at early times. After jet formation is complete (MAR 0), the mass

change rate in Eq (2.42) is A =-Ap = - UoP by Eq (2.14) as for a rod. If we

used Eq (2.42) for penetration of a semi-infinite target by either a rod or a

jet, we would face a problem near the end of the embedment. With p a

constant in Eq (1.19), P and S would differ by a constant and could not vanish

together at tE as they do in Eq (2.16). A constant Mp would force us to

assume that erosion stops before penetration stops so that P÷ S before S- o.

This would introduce an unobserved discontinuity in P. Eq (2.16) also implies

a discontinuity in P if there is a discontinuity in erosion (poi-O for t<tE),

but does not force us to assume that this occurs so that P and S may vanish

together at t V

If we integrate Eq (2.42) we find

M = M0 + Mo (t-t ) (2.43)

If we use Eq (2.42) in Eq (1.28), we find

C -1 (2.44)
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so dC/dt = dP/dt. We can use these relations in Eq (1.34) to find

M C1+(A4 /M )(t-t )I dP/dt - (aF + F *2 (2.45)

which is separable. The constants during formation are

a - : ;.)(A +,'A) (2.46)
0 J 0

and

bF z b + 2AI (2.47)

with the inertial coefficient c unchanged. Here the effect of erosion appears

in the relation Ao < HR (Eq (2.42)]. Eq (2.46) says •hat formation and

stretching tends to counteract the resistance due to target hardness, and in

fact overwhelms it as we shall see (IF< 0). However, Eq (2.47) says that

formation leads to a resistive term proportional to P even when viscosity is

negligible (b = 0). Thus the net effect of formation modified by erosion and

stretching will depend on target and penetrator properties as well as the

speed and must be assessed for individual cases.

The solution forms for Eq (2.45) depend on the value of the

discriminant

aF 4 4F C -C F2  (2.48)

For A > 0,

P 6 tan Y - (2.49)

P =(M/C) exp NEY )J (0Mo/A) {exp U *F(Yo-Y)3-1) (2.50)

Y = tan-I [(P+)/5] - Y - ln [1+(0 /M )(t-t )]I/F (2.51)
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0
exp (Ci x) tan x dx (2.52)

with -5 =-/'-/(20), (- = /(2c) and Ft-- 2Ao'. The special integral in Eq

(2.52) is mentioned by Gradshteyn and Ryzhik who point out that it cannot be

expressed as a finite combination oftelementary functions (2.4). The first

form of' Eq (2.51) is simply Eq (2.49) solved for Y. When this is used in Eq

(2.50) and Eq (2.52) we have the solution in the P, P plane. The second form

in Eq (2.51) gives Y(t) and may be used in Eq (2.49) to obtain the solution in

the P, t plane (which is expressible as a finite combination of elementary

functions), or in Eq (2.50) to obtain the solution in the P, t plane.

For • =_0, F- ( _÷aP/a'/c)2 so
F F

F o /;(Fo )- 1/2 + Z/ 1 F (2.53)

P = (M0 /c)(Fo/AF )I/E)- (aM o/A )[exp(Z)-13 (2.54)

F- )-1/2 _(F /i )- 1/2) nE.-A/ C- ) (.5Z = 4 F U(FaF) o F n [1+(Ao/Mo)(t-to) (2.55)

E =fZ x exp Wx) dx (2.56)

with a = and 4 Ao/ The special integral in Eq (2.56) might

be called an incomplete exponential integral.

For A.<O,
-r-

-Y+ (y -y "G)/(1-G) (2.57)

P = (Mo 014 F) G [Y+B (1,& F)- YB(c.F)] (2.58)

G =(P-i 4 )/(P-•-) G [1+(Io/M )(t-t )1-I/ (2.59)
0 0 0 0

B (F&) (1-x)- x'Lrdx (2.60)
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with 4 4-o-;, and

S- = ( F; - )/( 2c ) (2.61)

the special integral in Eq (2.60) might be called a generalized incomplete

beta function.

b. Stretching

When Jet formation is complete (t = tl), 1 = 0 and M --. - P, so

M ZM -1 Po (P-P1) (2.62)

where MI and P are the mass and nose position at time t. If we use

S= -0 P in Eq (1.28), we find
*fin

C kP - Iop (2.63)

so dC/dt kdP/dt and Eq (1.34) becomes

kMI [1-(0 /M )(P-PI)] PdP/dP - (aZbi÷Zp 2 ) =-F (2.64)
0 o1 1

after using dP/dt = PdP/dP. Now

b ' b + (2.65)

and

- c - Ioo2 (2.66)

with a unchanged. The form of c in Eq (2.66) is almost the same as for an eroding

rod in Eq (2.18). However, for a stretching Jet ('> 0) Eq (2.65) says that

there is a resistive force proportional to P, provided erosion takes place,

contrary to the case of a non-stretching rod (with negligible viscosity,
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b z 0). Jet stretching reduces the area A and so increases I,- (2,A) . One

effect of this is to increase Iio in Eq (2.66) which tends to make c closer

to zero, and decrease target resistance. Another effect is to increase b.

The net effect of erosion and stretching is complicated and must be assessed

for individual jet/target combinations. When Z;0 we have a situation close

to the classical density law, as we say in Eq (2.27), modified not only by

target hardness but also by the interaction between erosion and stretching,

expressed by Iowoiin Eq (2.65). In some cases, the net effect may not depart

greatly from the classical density law.

Now the form of the solutions depends on

A z 4aZ - S2 (2.67)

IfA > 0,

(P-P 1 ) -. jMII ) (1-(F/F 1 ) tk/ 2 exp [ZkO÷(Y1 -Y)] (2.68)

Y = tan- '(1/a) +,3+1 (2.69)

where F is given by Eq (2.64) and subscript 1 means at time
t Here t = Vo /c is the dimensionless erosion rate, k = 1 + I P as before,

0' 0 0

)+= b/;/-and a =-/(2Z). Eqs (2.68) and (2.69) give the solutions in the P,

Pplane as a finite combination of classic elementary functions. We can solve

Eq (2.68) for [1-(Po0/M 1)(P-P. 1 )] and use it in Eq (2.64) to obtain

kM1 (F/F1) exp [kO+(YI-Y)] dP/dt = -F (2.70)

which is the differential form in the P, t plane since Y and F depend on P.

This equation is separable, and an integration gives us

(t-t) kMI F exp (kCk Y 1] D (2.71)

D+ F{ Zk/ 2 exp [-'k$÷Y] dP (2.72)
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These equations give the solution in the t, P plane. Once we know P(t), we

also know F(t) and Y(t) and so P(t) from Eq (2.68) as well as M(t) from Eq

(2.62).

IfAx 0, F 2 a (1÷ c)2 , so

(P-P 1 ) (M1 /,) {1-(F/F 1 )*k/ 2 exp E[kc((F/a)' 1 / 2 -(F 1 /a)- 1/2 M (2.73)

again expressing the solution in the P, P plane in terms of a finite

combination of elementary functions without special integrals as in Eq (2.68).

If we proceed as before, we find

(t-t ) = 1- F 1- k/2 e(k// F D0 (2.74)

D°0  ] F;k/ 2 l exp (;k//F-) dP. (2.75)

As before, we have the complete solution in all three planes, once we know
P(t).

IfA< 0,

(P-P1) = (M1/p0) (1-CF/F1 )*k/2(Go/G?" k/2} (2.76)

G (P-y+)/(•--) (2.77)

-t ( - '(2ý) (2.78)

and "= b/C. As expected, Eq (2.76) expresses the solution in the P,

phase plane as a finite combination of classical elementary functions.

Proceeding as before, we find

(t-t 1 ) = kM1 Fl G k/2)- (2.79)

.Pl [('k/2)-1J [-(a-)(Ek/2)]

D-= F G (2.80)

If A< 0, because C 0, F a + bP, so
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(P-P 1) : (M1 / j) (1-(F /F)(a/b)( 0/b)exp [-(kp 06)(i l (2.81)

and

(t-tI) = kM1 Fl (a/)(k 0/) exp [-(ko/b )P 1 ] D (2.82)

D=P F-[1+(a/b)(kio/b)] exp [(kNo /b)x dx (2.83)

Instead of working with special integrals which involve P as a limit,

we can of course work with the inverse functions and express P symbolically as

a function of t, instead of t as a function of P. There is no particular

advantage to this procedure, however, so we will not adopt it.

For a constant mass change rate, the approximation we are using during

jet formation, Eq (2.42), we can express P(t) as a finite combination of

classical elementary functions, Eqs (2.51), (2.55) and (2.59), while solutions

in the P,P and P,t planes involve special integrals. For a mass change rate

proportional to the nose speed, we can express P(j) as such a finite

combination, while solutions in the P(t) and P(t) planes involve special

integrals.

c. Fragmentation

As we shall note later, the jet we are considering starts to fragment

at the front first (at t.me t 2 ) since the front is thinner than the rear (jet

taper). The fragmentation process proceeds to the rear so rapidly that for

t>t 2 the remaining penetration is accomplished by a train of fragments which

are approximately identical in size and shape although their striking speeds
are smaller the closer they are to the rear of the jet. These fragments tend

to yaw and become misaligned as time goes on and may encounter interference

from eroded target 3nd/or jet material which enhances their misalignment

and/or yaw. Such matters are highly dependent on the original standoff and

the properties of the target and jet. Since interference, yaw and

misalignment require a three-dimensional treatment, a detailed theory (which

ought to be statistical in nature) is beyond the limits we have set for
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ourselves in this report. A later report will discuss such matters

theoretically. In this report we will adopt a temporary expedient, an

efficiency factor, in place of a theory. This will be explained in Chapter VI

below. When stretching ceases (s a 0), each jet fragment can be approximately

described as a rod, using the theory of section A2 above.

B. Dimensionless Solutions with Viscosity

So far we have not included viscosity in our solutions, except for section

A3 above for a jet. This was done in anticipation of the cases studied

below where viscosity does not seem to play a significant role. Viscosity was

included for a jet in Eqs (2.47) and (2.65), not because we have any evidence

that it is more significant for a jet, but because jet formation and

stretching factors require us to include a term involving the first power of

the speed in any case. Actually, the presence of such factors makes it even

more difficult to discern the role of viscosity. In this section we include

the viscosity term even for pre-formed, non-stretching penetrators for the

sake of completeness and as an aid to possible future use.

Sometimes non-dimensional formulations can be useful, especially if cases

with different parameter values can be represented by a single curve. Such

formulations are also more general since they require no choice of a system of

units. However, the indiscriminate use of dimensionless formulations in

reporting experimental data can often mislead rather than clarify, especially

if such data are not accompanied by the original dimensional data. For this

reason we always use dimensional formulations in our examples below. Finally,

the choice of a dimensionless representation is not unique, as we shall

illustrate by a few examples.

1. Constant Mass Projectile

If we add (-bt) to the right side of Eq (2.1), the form of the

solutions will depend on the value of the discriminant

A 14ac - b2 (2.84)
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Let us introduce the dimensionless time

S= (Wvai/M 0 )(t-t 0 ) (2.85)

as well as the parameters 0 = bW-and 8" b/C-4?.

For A > 0, let us choose the dimensionless displacement

: (c/M0)(S-S 0 ) in (cosY/cosY ) - + (Yo-Y) (2.86)

where Y = tan' 1 (v÷+o) Y - 7 (2.87)

with v = 6/[(-Y/(2c)] (2.88)

being our choice of dimensionless speed. In the vT-plane the solution is

then

v = tan (Yo-') -6+ (2.89)

which is found from Eq (2.86) with v = - da/dY = do/d7, or by solving Eq

(2.87) for v. Use of the two forms for Y from Eq (2.87)*in Eq (2.86) gives

the solutions in the a,v and a,5 planes. For embedment in a semi-infinite

target, 7 varies from zero to 0E = Y0 -tan'(÷), while v varies from v to

zero and a varies from zero to aE which can be found by using YE = tan (0 )
in Eq (2.86). If P = S - So = To, the target thickness, is our perforation

criterion, then replacement of (S - S ) by T in Eq (2.86) gives us Yp which

can be used to find (Yo-T) or T in Eq (2.87) and so vp in Eq (2.89). Such a

choice of dimensionless solutions is not unique, of course. For example, we

can use T/fE which varies from zero to one as does O/cE while v/vo varies from

one to zero for a semi-infinite target, and so on.

Another formulation might use a =4 7 (c) and

T = aF =A/(4ac)7 = [E/•-/(2Mo)J(t-to) (2.90)

instead of Eq (2.85), replacing 7 by T/a in Eqs (2.87) and (2.89). Since
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T/. =/ there is some advantage to using ratios. In another type of
2

problem where 4ac is expecg to be less important than b , we might use a

formulation involving -4-/b- = 1/0" and dimensionless time (b/Mo )(t-to).
0 0

For A 0 0, b = 2ac, F a(1+v) 2 , and

= in [(l+v0 )/(l+v)] - [(1+v)--(1+v ) 1 (2.91)

00[ e(. 0 )-)i~(2.92)

a = in [1.(1÷v )f ] - (2.93)0

where • is still given by Eq (2.85) but

v z /a-Ic (2.94)

instead of Eq (2.88). For v = 0 in Eq (2.91) we find TE V V /(1+v ) and cE

from Eq (2.90), and so on.

For A< 0,

a in {[(I-G)/(I-Go)](Go/O)I} -/2 in (0o/G)1/2  (2.95)

G = G0 exp (-2r) = (v+/--1)/(v÷$'÷l) (2.96)

T = [-•--/(2M0 )](t-to) (2.97)

v = [(1-0-) + (1+0-)G]/[ -G] (2.98)

for v = S/[•/(2c)] instead of Eq (2.88) or Eq (2.94). In Eq (2.97) we have

chosen T to be like Eq (2.90).

For cases with negligible viscosity, only the case a> 0 is of

interest since a > 0 and c > 0. Eqs (2.86) to (2.89) reduce in an obvious way

for 0+ = b = 0,4A-= 24a- to Eqs (2.2) to (2.5) or (2.7).

Fig. 2.1 shows curves of a particular choice of dimensionless speed
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and displacement versus dimensionless time and each other for two values of b,

namely, b = 0 (A > 0) and b = 4-a (A< 0). The curves for b = 2'V (A: 0)

lie between.

2. Eroding Projectile

Since we are adding (-bP) to the right side of Eq (2.17), the solution

forms will depend on

A 4ac - b 2  (2.99)

where = c - 0 u 2is given by Eq (2.18).

For A> 0, let a+ =-F-/(2E), 0÷ b14A, 0= o/c and k 1 + ÷ o10

so P a + v, and

&c = ( 0/M )P = {1-(F/F )0k/ 2 exp &-k+i(Y-Y )]0 (2.100)

(F/a) 1 + (b/a)(ci÷v) + (Z/a)(a+v) 2  (2.101)

Y = tan- 1 (v÷0÷) (2.102)

In this formulation a + has the dimensions of speed, although Z+, 4 and k are

dimensionless as are the variables a and v. When b = 0, and Eq
(2.100) reduces to Eq (2.20) solved for P (P). Let

= [a/(Mo 0 ÷)] (t-to) = k exp o+ZkYo] (F0 /a)-.k/2(D+) (2.103)

with D+ =-•vv (F/a k/ 2 "lexp [-8÷RkY] dv. (2.104)

Here T and D+ are both dimensionless. When b 0, Z. c-, Eq (2.103)

reduces to Eq (2.32), since .- (Cu k)/(2c) : k/2, X0 = 1 + Vo0 by Eq (2.30)

and (F/a) = 1 + v2 = x from Eqs (2.101) and (2.29), so D+- D.

From Eq (2.15) and Eq (2.100) we can define a dimensionless mass
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m = M/M 1 -1 . (2.105)

Once we know v(T) from Eqs (2.103) and (2.104), we can find a(v) or ((T)

from Eqs (2.100) to (2.102) and m(v) or m(T) from Eq (2.105).

For A 0, let a v = 4•/c v,so (F/a) = (1+v) 2 , and

. 1- [(1+v)/(14v )]kexp L[k{(1.v)-1 - (1+v)-1 (2.106)

t= [a/(M0 a)] (t-t) k(1+v ) ";kexp ['ik(1+v 0)- D (2.107)

0 f V0  ýk-2 - -
D (1+v)k exp [Gk(1+v)-1 dv (2.108)

Even though Eq (2.106) is somewhat simpler than Eq (2.100), it is still

tran3cendental and cannot be made separable by solving for P(P) explicitly.

Since b = 2Ja•-> 0 for A = 0, there is no analog in section A 2 above. The

analog of Eqs (2.106) to (2.108) appears in sectionA3 above in Eqs

(2.73) to (2.75). The solution forms are the same. Only the parameters might

differ (ý> 0, b > b). The same correspondence holds for other values of A

so there is no need for a special non-dimensional discussion for jets.

ForA < 0, leta:-,-/(2c), 8-bkvC, -a v, so

k/2 Zk/
1 - ( F/F0) (G0 /C) (2.109)

(F/a) = 1 (b/a)(a-v) + (c/a)(a v) (2.110)

C (a-v- + )/(a-v- ) (2.111)

" (-b -: /1( C- (2.112)

: [a/(Mo -)](t-t) k(F /a)-*' k/2 G f2o-t-t (D-) (2.113)

=• v );•k/2-1 I -' 7 Zk/2d
D- o (F/a) C dv (2.114)
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the analogs of Eqs (2.76) to (2.80). The analogs of Eqs (2.81) to (2.83) are

also easily written as are other special cases.

Fig 2.2 illustrates some non-dimensional forms with c as parameter and

no target viscosity. The curves with Z = 0 in Fig. 2.2 are the same as those

with b =0 in Fig. 2.1 above. Wheni= 1, (b = 0), v = I -T , a =T (1-.5T)
2.5 (1-v ), so the solution forms are particularly simple. For large 1 /c,

that is, large erosion rate, small c,. v/v decreases relatively slowly during

most of the penetration and very rapidly toward the end. The penetration

depth, a/aEP becomes more linear in time as does the remaining mass, M/Mo,

which approaches zero. This behavior is characteristic of high speed rods and
jets before fragmentation, although in the latter case it is modified by the

fact that b > 0 even if b = 0. However, the square-wave approximation for

v/V0, indicated by the dashed line in Fig. 2.2 is not observed experimentally

as we shall see. Consequently, steady-state theorieswhich assume this

approximation are not correct. Neither are quasi-steady state theories which

try to keep and yet reject this approximation.

3. Standard Jet

Once formation is complete, the solution forms are identical to those

for an eroding projectile in II.B.2 above. We only need to use b from Eq

(2.65) instead of b.

During formation the solution forms depend on the value of A F in Eq

(2.48). Let

T (Mo/Mo) (t-to) .(2.115)

For A > 0, let [ : 6F!(2c)] v =6÷v, and 8+ = b 'a oF F so Eqs
(2.49) to (2.52) become

a = (c/M) P =J exp (+ ) - [EF/(2M0o)] (exp [ZF+(Yo"Y)]-I} (2.116)

Y tan-1 (v+S ) Yo in (l*T) I/ZF+ (2.117)
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with 4 and J as before.
For 0 = O, let - r V = av. 30 (F/aF) (1+v) 2 and

- F-7-- - / F

a = (c/M 0 ) P = E (1.v) - (ac/c ) [exp (Z)-11 (2.118)

Z = f (F [(lv) -"(1.eov ) 1 in (1+0) (2.119)

with 'F and c as before.

For A < 0, let P c) v = v, g = -±/6 , so

a= (c/M 0 ) P = [g÷B(1lcF-) - g-B(c ) G IF (2.120)

G = (v-g+)/(v-g") G o (0+)"1/cF (2.121)

with a and B as before.
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"III. EXAMPLES OF COMPACT PENETRATORS

A. Semi-infinite Targets

1. Phenomenology

When a brittle sphere strikes a thick target above a certain threshold

speed it breaks into pieces and penetrates as a more or less compact

collection of fragments. Just below the threshold speed the sphere recovered

from the bottom of the crater after target sectioning will appear to be

intact. However, there will be cracks, some nearly joined to each other and

the projectile surface, such that the removal process may cause the pieces to

separate. As the striking speed increases, the number of pieces recovered

also increases until a speed is reached at which ITt is appropriate to speak of

projectile shatter. Fig. 3.1 shows the number of pieces recovered as a

function of striking speed for two sizes of hard steel spheres impacting a

mild steel target. The speed at wniah breakup oegins can be called SoF' the

striking speed threshold for fracture. The larger (20 mm diameter) sphere

breaks into more pieces at a given :nriking sneed -han the smaller (12.7 mm

diameter) but has about the name tnreshold sp"•L.

Fig. 3.2 shows the number of pieces r-=wv-e--d -Pr the 20 mm sphere

impacting three types of steel target of different rdness values. The

lowest curve is the same as in Fig. 3.1. The uppermost curve is for the

hardest target. Cleai-L, target; hardness as well as projectile diameter (and

hardness) influence the number of fragments produced. However, within the

experimental accuracy available, there is almost no influence on the threshold

speed, So Near S 1= mm/jo, ¶he rate at which the number of fragments0'F" o

increases with. :triking speed seems to decrease. One might conjecture that by

1.5 mm/os, the projectile is shatp,,ed to such an extent that further

pulverization will make little difference in the penetration process. More

will be 3aic atout tiis below. Figs. 3.1 and 3.2 are taken from a report by

Weimann (
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When a ductile sphere strikes a target, it flattens out, so that its

time-average cross-sectional area presented to the target, A, is greater than

its initial. cross-sectional area, A0 . This is illustrated in Fig. 3.3 which

shows a series of 12.7 mm softened steel spheres recovered from hard aluminum

targets (3.2) As the striking speed is increased from 0.7 to 1.6 mmAls, the

recovered projectiles are found to be progressively more flattened, but are

still unbroken. The radial (DO) and axial or longitudinal (D I) diameters

given in the Figure measure this effect. The crater depth or deepest position

of the projectile nose at embedment, PE' is also given. For S = .863 mm/Ps,

PE is less than the original sphere diameter (DO = 12.7 mm) but greater than

the deformed longitudinal diameter (D1 = 10.75 mm). For'lower striking speeds

the sphere is not yet buried in the target and is easily removed if it has not

already rebounded. For higher speeds, some rebound may occur, but friction

can keep the projectile from leaving the target. A small air gap may exist

between the projectile and the crater bottom at least for hard spheres, so it

is necessary to section the target in order to obtain a true measure of PE
(3.3) At still higher speeds this gap disappears and the front of the

flattened projectile is found in contact with the crater bottom.

Fig. 3.4b shows a flattened steel sphere at the bottom of a steel

target crater after an impact at about 1.5 mm/ps. Fig. 3.4a shows

progressively larger crater cross sections corresponding to higher striking

speeds (1.5 mm/ps at the left to 3.75 mm/ps at the right). The original

sphere is also shown below the last crater for comparison. No mass loss was

reported in any case. However, incipient fragmenting of the sphere was

indicated by cracks at the higher speeds. The target hardness near the crater

wall was also observed to increase from its initial value (its value far from

the crater after impact) by about fifty percent 4

Target density as well as target hardness has an effect on flattening

or shattering a compact projectile as we shall see. There is some indication

of this if we compare Fig. 3.3 (steel vs. aluminum) with Fig. 3.4b (steel vs.

steel) for about the same impact speed. In Fig. 3.4b there is already an

indication that the projectile is beginning to turn inside out with its final

configuration resembling a mushroom cap (without the stem). Even at the

highest speed in Fig. 3.3 there is not yet an indication of this shape.

However, such a shape will result at still higher impact speeds, if the
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Sphere Shape P D D
0 PE r 1

(nn/Mq) (mm) (MM) (mm)

0.726 10.4 13.06 11.62

o.863 11.3 13.67 10.75

1.073 15.2 14.53 9.45

1.182 17.6 15.07 8.77

1.391 19.0 17.80 6.95

1.637 22.1 19.50 6.16

Fig. 3.3. Shapes of softened steel spheres recovered from hard aluminum

targets after impacting at various speeds, go"
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projectile does not shatter. Of course, after-impact observations such as

these do not tell us how the projectile shape changes in time during the

penetration. We might conjecture, however, that something close to the final

shape is assumed at earlier times for higher impact speeds. Since we have no

evidence about time-dependent shapes, we will deal-only with the time-average

presented area, A, in this report.

Crater shapes are highly dependent on target properties even for

spherical projectiles. Fig. 3.5 shows various shapes in different target

materials, all produced by the same size aluminum spheres (D = 6.35 mm)

striking at the same speed (So =3 mm/Us). The crater in the soft aluminum

target is nearly hemi-spherical, except for a large lip at its mouth,

indicating extensive plastic flow. Very little target material has been lost

and the process is almost pure deformation. The crater in the cast iron

target has very irregular walls. There is a slight rise rather than a lip and

brittle fracture has caused most of the target material missing from the

crater to be ejected. The crater in the titanium target is conical. Various

plastic materials (elektron or perspex) exhibit quite different shapes. In

spite of their generic name, many polymer plastic solids are quite brittle

under impact conditions and undergo extensive cracking in the neighborhood of

an irregular crater. This Figure is taken from Smith and co-workers (3.5).

Similar effects concerning the dependence of crater sizes and shapes

on target properties have been reported by Pond and Glass (3.6). These

authors note that shock loading of single-crystal and poiycrystalllne

specimens result in different fracture phenomena, with craters in single

crystals influenced by the orientation of the crystal. Even pre-straining

versus annealing polycrystalline specimens can result in significantly

different craters produced by nominally the same projectile impacts.

The deformation of solids at slow rates is fairly well understood,

although the mathematical descriptions can get rather complicated. The

response of solids to high-speed loading is poorly understood, especially when

fragmentation caused by the interference of compression and rarefaction waves

occurs. Rinehart has published a series of pioneering works on the subject

(3.7 to 3.9)
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()ALUMINUM (b) ELEKTRON

()CAST IRON (d) TITANIUM

(e) PERSPEXI Fig- 3.5. Typical craters formed in various targets when
attacked by 6.35mm Diameter Aluminum Spheres at 3 mm/ps.
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Much of the variability in penetration mechanics experiments can be

attributed to the variability of penetrator and target materials. This is

especially true when fragmentation phenomena of any kind occur, since these

are usually controlled by unknown defect distributions present in individual

specimens which are only nominally the same. Practical interest focuses on

the average performance to be expected from various batches of nominally the

same materials and various lots of devices manufactured to nominally the same

geometrical dimensions. Whether or not we have a basic understanding of the

phenomena involved, we eventually desire a statistical formulation of some

kind. In previous reports the present author has made some contributions to

the subject (3.12 to 3.13). In this report we will not e,•plcy 0ucc- ecdels.

Instead, we will use average values of parameters to represz.;t arA i4o~sc..be

the average performance to be expected.

In this chapter we will give a number of examile c o !po2>ct

projectile penetration, limiting ourselves to spheres as ro.resentative )f

this class. Cubes, discs and pellets of more irregular -ti-pes :Pn ixh.Ait

some shape dependence in penetration, at least at lower speeds. Th'

differences are usually minor and are customarily desci'.be-' ). a ',hap%

factor" (31)Many of the examples we will use in this ýhapter ii.s

appeared in a series of seven symposia on hypervelocity impact which2 lasted

from 1955 to 1965. In the middle of this period, Charters (3.15) wrote an

article which described the common interests in penetration shared by two

scientific communities, namely, those interested in space exploration which

involves protection of space craft from meteorites as well as the study of

meteor craters on planets and their satellites, and those interested in

military matters such as the attack and defense of armored vehicles and

fortifications. The considerable overlap and convergence of these fields was

evident then and is again evident in the Strategic Defense Initiative. Some

of our examples will also be taken from individual reports, especially some

published after 1965.
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2. Examples

a. Hard and Soft Steel Spheres versus Steel

Let us begin with an example from Weimann (3.1) who measured crater

depth, PE' versus striking speed, So, for 12.7 mm diameter steel spheres

impacting a mild steel target. There are two sets of data in Fig. 3.6. The

upper set with the sharp break near 0.8 mm/us was obtained with hardened steel

spheres, while the lower set was obtained with spheresdeliberately softened to

make them ductile. The effect of soft sphere flattening from 0.5 to 1.0 mm/us

is evident in the lower penetration depth achieved with these spheres compared

to the hardened spheres. For the hard, brittle spheres there is a greater

increase in penetration with increase in striking speed even beyond the

fracture threshold speed. At still higher speeds, PE at first decreases

sharply and then increases again at a lower rate, soon exceeding the local

maximum exhibited near 0.8 mm/ps. Above 1.5 mm/us the two data sets merge and

it seems to make no difference whether a sphere is deformed by shattering or

by flattening. The information in Fig. 3.6 should be compared with that in

Figs. 3.1, 3.3, and 3.4 above.

It is interesting to note from Fig. 3.1 that the hardened 12.7 mm

sphere has already broken into two pieces at 0.5 mm/Us. However, the pieces

are still together in the original spherical shape after the penetration. By

0.75 mm/us, the sphere has broken into five or six pieces. However, there has

not been time during the penetration for the pieces to separate and affect the

motion. In the range from 0.8 to 0.95 mm/us, the penetration decreases with

increasing speed. Now there are enough pieces that they do not remain

interlocked during the penetration, Instead, they spread apart and present a

larger cross-sectional area to the target which impedes the penetration. Near

1.0 mm/ls this average area is almost as large as the area presented by the

softened, flattened sphere, since the penetration is not much greater. Near

1.0 mm/us the final sphere area in Fig. 3.3 has increased about 30' after

impacting an aluminum target. As noted in our discussion of Fig. 3.4, we

expect the increase to be larger than this against a steel target. Above 1.5

mm/us in Fig. 3.6, the areas of the shattered sphere and the flattened sphere
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must be the same, since the penetration depths are indistinguishable. There

seems to be no mass loss for either sphere during the penetration, although

pieces of the .hattered sphere might fall out of the target block if it is

oriented to permit this.

For a constant mass projectile, the penetration depth is given by Eq

(2.11). We recall from Eq (1.3) that a = 3Y A and from Eq (1.4) that

C .50tA, so the inflection point, -Va -ý6ýt/%t, depends only on target

properties and is independent of A. Since A = A (A/A ), then the time

average value of the inertial coefficient can be written as C = C (A/A ) where

the initial value is CO = .5otA 0 .5Pt(,r/4)Do2. The mass is0

Mo p lp(w/6)Do0, so M o/C 0 z (4/3)Do0(Pp/P )
Eq (2.11) becomes

PE = [(Ma/C 0 )/(A/A 0 )]in-1( I 0  •t/Pt)2 (3.1)

For the mild steel. target used,BHN -125 kg/mm2 or Y t40 x 10 8 dyne/ cm2. Since

P t = 7.85 g/c3, we find the inflection point to be 0.55 mm/As. Since D0

12.7 mm, A0 = 127 im 2=1.27cm2 and C0 = 4.97g/cm = O.497g/mm. The mass was
reported to be Mo 8.36g so MoiC 16.82 mm. Since P =P this should be

equal to (4/3) D0 which implies that D was actually 12.6 mm and only

nominally 12.7 mm.

With these values and A/A0 = 1, we can calculate the uppermost dashed

curve in Fig. 3.6. This coincides with the sol"d curve connecting the hard

sphere data points from S 0 = 0 to S0 = 0.75 mm/=s. This agrees with the fact

that the hard sphere does not change its mhape in this range, whether unbroken

(0 < S < 0.5 mm/ws) or broken (0.5 < S < 0.75 mm/is). In contrast, the0 0

softened sphere has noticeably flattened by So = 0.4 mm/is. By
curveed insphere ,~ofteupems ahe uv. hs w

S= 0.75 mm/!s, the penetration depth is only about 5 mm instead of 9 mm as

for the hard sphere, This implies (A/A0 ) 9/5 = 1.8 in Eq (3.1). The lowest

da.-hed curve in Fig. 3.6 is 5/9 of the uppermost dashed curve. These two

curves bound the two data sets. Apparently the softened sphere area does not

change much for impacts between 0.6 mm/ws and 1.1 mm/ps since the data points

lie close to the lowest dashed curve. However, for higher speeds, the time

average area during a penetration becomes smaller, because a mushroom cap

begin2 to form as the rim of the flattened sphere flows back and trails behind

the center rear. By So = 1.5 mm/ws the 'ota points for the soft sphere have
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joined those for the hard sphere and lie on the middle dashed curve for which

(A/A ) = 3/2 = 1.5 in Eq. (3.1). This curve coincides with the solid curve
which joins the data points above S0 1.0 mm/i's. TY.9 fact that -t pesss

through the soft sphere data point near So = 0.4 mmA's, indicates the amount

of flattening that has taken place at this speed. -Between 0.75 mm=/s and

0.95 mm/us, A has increased from A to 1.S A for the hard sphere because of
In 0

shatter. However, no further increase is indicated for .Ai'.u- impact speeds.

This might mean a sharp leveling off in the number of pi~cý above 1.0 mm/Us

as for the 20 mm sphere in Fig. 3.1. Further pulverization ýprobably takes

place at higher impact speeds. However, once there are enough pieces for the

shattered sphere to assume a compact shape, further subdivision does not seem

to change this shape.

"In this description we have not used Eq (2.22) for an eroding

penetrator since no mass loss was observed. In addition we have assumed that

viscosity is negligible. Thus, for example, for P S = I mm/is, we have

assumed from Eq (1.16) that

b = 6"«r"'n << a + c .51A (3.2)

since a = .12A gmm/i's2 and o .39Ag/mm, so cS2 = .39A gmm/As2 for A in cm2

2not much larger than A 1.27cm . Eq (3.2) then implies

n <<.05g/(cm- us) = 5 x 10 4g/(cm-s) = 5 x 104 poise = 5 x 103Pa-s. Walters
(3.16) quotes values of n both larger and smaller than this for steel,

depending somewhat on strain rate, but more on the laboratory making the

measurement. For example, investigators in the United States generally find

nq, 102 Pa-s, so that viscosity would be negligible in the present case. If Ti

is indeed as small or smaller than 102 Pa-s = 10 3g/(cm-s), then b < .012g/is
from Eq (3.2) and bS < ao = .15 gmm/Ps 2 < a for S < 12.5 mm/is. This is far

above the speed range covered in Weimann's experiments. Although the

uncertainty in measured values of viscosity remains, there is another reason

for neglecting it in the present case. If it were a significant factor, then

the calculated penetration for undeformed spheres, the uppermost dashed line

in Fig. 3.6, would lie below the solid (experimental) curve for

S < 0.75 mm/us. Since the agreement between theory and experiment is so good

without including viscosity, we are justified in neglecting it.
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b. A Hard Steel Sphere versus Two Steels

Next let-us consider some data reported by a co-worker of Weimann.

Serf (3.17) impacted the same 12.7 mm hardened steel spheres against steel

targets of three different hardness values, all harder than the target

material used in Fig. 3.6. The two data sets in Fig. 3.7 are for the softest

and hardest targets Senf used and even the softest target allows less

penetration than in Fig. 3.6. As expected for hardened, brittle spheres, both

data sets in Fig. 3.7 exhibit an impact speed range where the penetration

declines because of sphere shatter.

The target material used for the upper solid curve in Fig. 3.7 had

BHN-200kg/mm2 which is 1.6 times harder than the target material in Fig. 3.6.

Since the target density is unchanged, this shifts the inflection point up by

i-1.6to 0.7 mm/us which replaces 0.55 mm/us in Eq (3.1). With this change and

for A/A0 = 1, we can calculate thu uppermost dashed curve in Fig. 3.7 which

agrees closely with the data up to 0.8 mm/us. When we use A/A = 1.5, we
0. 0

get the solid curve in Fig. 3.7 which passes through the upper data set above

1.0 mm/Ps.

We have not shown this as a dashed curve below 1.0 mm/us to avoid

confusion with another dashed curve.

Similarly, the target material used for the lower solid curve in Fig.
23.7 had BHN = 367kg/mm . This shifts the inflection point to 0.94 mm/Us, a

value which replaces 0.55 mm/Us in Eq (3.1). The middle dashed curve in Fig.

3.7 is then obtained by using A/A = 1 and agrees with the lower data seto
below 0.7 mm/us. Letting A/A = 1.5 gives the lowest dashed curve in Fig. 3.7
which agrees with the lower-data set above 0.8 mm/ps.

From our discussion so far, we see that a rather simple theory, using

measured values of target density and hardness as well as projectile mass and

size, can describe observed variations in both penetrator and target hardness

values. The only parameter which might be considered adjustable is A > Ao-

This has been varied by 80% or less and follows available experimental trends.
We note that the shatter threshold speeds in Figs. 3.6 and 3.7 show some

variability much like that reported (3.1) wk - the sphere diameter was varied

from 9 to 20 mm against a single target material. We conclude that the

shatter threshold for typical steel/steel impacts is about 0.75 + 0.05 mm/us

since fragmentation is involved.
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a. Two Sizes of Hard Steel Spheres versus Steel

As mentioned above, Weimann (3.1) also reported data for 8.9 mm and 20
2mm hardened steel spheres versus a steel target with BHN ', 200kg/mm . The upper

curve in Fig. 3.7 lies between the two curves in Fig. 3.8 since it is for a
12.7 mm hardened steel sphere. In Eq (3.1), Mo -D while C -D 2 so M oC 0

D0, while the inflection point remains unchanged if the target material is the

same. Thus for A/A0 = 1 and A/Ao = 1.5 we should be able to obtain the lower

and upper branches of the curves in Fig. 3.8 by multiplying the upper solid

curve in Fig. 3.7 by an appropriate factor. For the upper solid curve in Fig.

3.8 we used (20/12.7) while for the lower solid curve we used (8.9/12.7). The
measured masses of the spheres were 32.62 g and 2.92 g respectively which

differ by an order of magnitude. The agreement between theory and experiment

is reasonable for S0 > 0.5 mm/ps, but theory lies below experiment for lower

impact speeds. The reason for this is not clear. One might conjecture that

there were some differences in the hardening of the spheres or targets used.

What data there is for low impact speeds in Figs. 3.6 and 3.7 lies close to

the theoretical curves.

Palmer and co-workers (3.18) also impacted hard steel spheres on a

variety of target materials and noted a systematic decrease in the shatter

threshold speed (the onset of penetration decline) with increasing target

density. Fig. 3.9 shows their data for seven target materials. For steel

they found a value somewhat higher than that observed by Weimann and Senrf,

perhaps because of a difference in projectile hardness (not reported). Other

factors besides target density probably influence the threshold speed for a

given projectile.

In the military literature the speed range from the onset of

penetration decline to that speed at which penetration again is as deep as it

was at the threshold is called the "shatter gap" (3.19). In World War II the

British two-pounder projectile failed to perforate armor when fired close to

the target, but perforated when fired from farther away (lower striking speed
below the gap), or at much higher speed (above the gap).
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d. Tungsten Carbide Spheres versus Copper

Now let us turn to some other projectile/target material combinations.

Atkins (3.20) gun-launched tungsten carbide spheres against copper targets at

speeds up to 3 mm1s. Fig. 3.10 shows his data for two sizes of WC spheres

C(D = 12.7 mm, M0 z 16 g) and (DO = 3.175 mm, M° x 0.25 g) so the masses

differ by a factor of 64. No strength was reported for the copper target so

we have assumed BHN- 60kg/mm2 or Yt= 18 x 108, using Cm = .30 x 108

(dyne/cm 2)/(kg/mm 2) in Eq (1.1). Since the density of copper is about

8.9 g/cm3, we find the inflection point to be about 0.33 mm/is. We also find
CO to be 0.57g/mm and 0.036g/mm for the larger and smaller spheres

respectively. This gives us (Mo/Co) equal to 28.1 mm and 7 mm respectively.
Now Eq (3.1) gives us the lower impact speed branches of the two solid curves

in Fig. 3.10 when we use A/Ao a 1 and the upper branches when we use
A/Ao = 1.55. The agreement with experiment is gooc even for low impact

speeds. Once more an increase in presented area of about 50% seems to account

for PE versus So above 2km/s.

e. Tungsten Carbide Spheres versus Lead and Aluminum

Later Atkins (3.21) impacted WC spheres on other target materials.

The solid curve in Fig. 3.11 connects his data points for a 2.Og sphere (D 0

6.35 mm) impacting a lead target (p t z 11"3g/cm3)" if Yt z .5 x 108dyne/cm2

we find the inflection point to be 0.05 mm/i.s. We find CO z .18g/mm and

(Mo /C ) 11.2 mm in Eq (3.1). For A/A 1 we obtain agreement with the

solid curve to 0.5 mm/Us, while for A/A = 1.63 we obtain agreement for S >
0 0

1.5 mm/1s. The "shatter gap" in this case extends from 0.5 mm/us to 3.0 mm/Us.
The soft lead target seems to allow a bit more spreading of the shattered

sphere pieces than the copper target, although its greater density might tend

to counteract this trend.

In the same paper he reported data for the same spheres impacting two

strengths of aluminum. The upper curve in Fig. 3.12 is for soft 1100-F, while

the lower curve is for 2014 (Pt = 2.7g/cm3). If we use Yt = 10 x 108dyne/cm2
8 2

and 60 x 10 dyne/cm respectively, we find inflection points of 0.47 mm/Us and
1.15 mm/Us respectively. Since CO = .043g/mm, Mo/Co = 46.7 mm.
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For A/AQ 0 1 in Eq (3.1) we find agreement with both data curves on

their low-speed branches (up to 2 mm/Us). If we let A/A0 a 2 we obtain the

high-speed branch curves shown. Since there is only one data point on each of

these high-speed branches, it is difficult to claim agreement above 3 mm/Us.

The greater spreading of the shattered sphere indicated by the large value

A/Ao = 2 can be attributed to the lower density of-aluminum compared to lead,

copper or steel. The higher threshold speed of 2 mm/us compared to 0.5 mm/us

for lead is comparable to the trend in Fig. 3.9 for steel spheres versus

aluminum and lead targets.

f. Hard and Soft Steel Spheres versus Aluminum

S(3.2)
In Fig. 3.3 we showed Aome data from Weimann (.2 for a softened 12.7 mm

steel sphere impacting a hard aluminum target (BHN -125kg/mm 2). His data

is plotted as the lower curve in Fig. 3.13. He also used a hardened 12.7 mm

steel sphere against the same target and his data points are connected by the

upper curve in Fig. 3.13. He noted that the recovered spheres began to break

above 1.1 mm/us. However, there is no evidence of a decline in penetration up

to the highest impact speed used near 1.6 mm/us. This is to be expected in

view of Fig. 3.9 which indicates that Weimann stopped just short of the

shatter velocity. The inflection point for this aluminum target is

46Y/ut = 0.9 mm/us for Y = .37 x 10 8 dyne/cm2 and Pt 2.7g/cm3, while

C0 = .5(2.7)(1.27) = 1.71g/cm z .171g/mm, giving M /C = 48.9mm for
0~0 0

M0 = 8.36g. With these values in Eq (3.1) we obtain the upper curve in Fig.
3.13 for A/A0 = 1 and the lower curve for A/Ao = 1.67. As in Fig. 3.6, we

note a change of the softened sphere data points from the upper curve to the

lower curve as the sphere flattens with increasing speed. Presumably if

speeds in excess of 2 mm/us had been used we would observe a shatter gap for

the hardened sphere and a convergence of the two data sets at higher speeds as

in Fig. 3.6.

The steel targets in Fig. 3.6 and the aluminum targets in Fig. 3.13

all had about the same hardness value (BHN-125kg/mm 2). Presumably the

differences in penetration observed are attributable to the fact that aluminum
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is only about one-third as dense as steel. The greater density of steel

target3 causes more flattening uf the same moftened steel sphere for a given

impact speed (A/A = 1.8 versus 1.61' for aluminum). it is also responsible
0

for a lower fracture threshold speed (.05 mm/ls versus 1.i mmius) and a lower

shatter threshold speed (0.8 mmA s versus perhaps -1.7 mmA/s) for the same

hardened steel sphere.

The three figures for tungsten carbide spheres, Fig. 3.10 to 3.12,

were for targets of different densities and hardness values. The shattei

threshold speeds decrease as the density increases in agreement with the trend

in Fig. 3.9 for steel spheres. The soft aluminum was about as hp-'aC as the

copper, while the lead target wa3 more than an order of magnitude softer.

Target density appears to be the factor which dominates shatter threshold

speeds rather than target hardness, ;rovided the projectile is hard enough to

shatter rather than flatten. P-ojectile density may also play a role,

although we need more information before we can assert this with any

confidence.

g. Three Sizes of HLrd Steel Spheres versus Aluminum

Weimann (3.2) also used the same hard aluzuinum as a target for various

size hardened steel spheres. His data for 2ý. mm, 9 mm and 3 mm spheres appear

in Fig. 3.14. The measured masses were 32.64g, 2 .9 2G, and 0.11g, a variation

of more than two orders of magnitude. The solid curves i~n Fig. 3.14 were

calculated by using Eq (3.1) with the same target properties as in Fig. 3.13

and with A/A 1, so the penetrations are propoitional to the masses at any

given impact speed. Obviously the upper curve in Fig. 3.13 lies between the

two upper curves in Fig. 3.14. In no case was the shatter threshold speed

reached. The deviation between theory and experiment for the 20 mm sphere

above 0.8 mm/Ps is attributable to the fact that the target block used was

only 50 mm thick, not thick enough to be a truly semi-infinite target. As

Wnimann noted, these targets exhibited bulge• on their rear faces, a

phenomenon which allows a greater penetration depth than a semi-infinite

target would allow.
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h. Al/Cu, Cu/Cu, and Cu/Al

In this section and the next we will examine combinations of soft

aluminum and copper used as projectiles and targets. Since the materials used

had about the same hardness values (BHN -33kg/mm 2 or Yt = 10 9 dyne'um ., a

study of projectile/target combinations becomes a study of density effects,

provided we compare spherical projectiles of the same diameter. The notation

Al/Cu means a spherical aluminum projectile impacting a copper target.

Goodman and Liles (3.22) obtained data for pure aluminum

p = 2.7g/cm3 ) and pure copper (p = 8.8g/cm3). Fig. 3.15 shows their data for
DO = 4.76 mm (3/16 inch) spheres with Mo = 0.158g for aluminum and 0.496g for

copper. These reported masses imply either somewhat different densities or

diameters than were actually reported. Their data for Al/Al has been omitted

since it is equivaIlent to the upper data set in Fig. 3.16 and lies close to

the Cu/Cu curve -a Jt should, since M o/Co = (4/3)Do-for Al/Al and Cu/Cu, so

the curves differ utluy 1i, their inflection points. We expect (A/Ao ) to be the
mame.

Using the reported densities Pr~d strengths, we find the inflection

points to be about 0.5 mm/Is 'or alumiiAiý targets and 0.25 nm/ps for copper

targets.

The two lower curves i' Fig. 3.15 diffe- bgc, v- cf projectile mass or

density since MQ/C = ( 4 / 3 )Do(P /pt) with D. at-A p. \he same. If we use

(A/A )=1.0, we calculate the lowest solid cur re and if we use (A/A) = 1.4, we
0 0 O

calculate the middle solid c•.ve Letti. , (A/Ao) vary slightly with go would
give better agreement but is not *, stifiea in view of the approximate nature

of our model and the variability o: the exp irimenta. It is remarkable that a

single value for (A/Ao ) can give such good agreement over such a range of

impact speeds. The lower value of (A/A ) for the aluminum sphtere impliets that

the denser copper target not only turns it inside out like a mushroo-.. cap rh

also keeps its rim from spreading out on average during the penetratio- any

more than the original diameter. That is, (A/A) (D/D) 2 = 1 implies that

the average diameter during the penetration, D, is no greater than the

original diameter.

The two upper curves in Fig. 3.15 differ because of target density

which appears not only in M/ IC but also in the inflection point. If we use
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(A/A) 0 1.85 with the other reported values, we calculate the uppermost curve

in Fig. 3.15. This implies that the less dense aluminum target allows the

deformed copper sphere to spread out more than copper target does. This does

not contradict the trend noted in section f above (Fig. 3.13) where a

comparison was made with Fig. 3.6. In those cases impact speeds below

1.6 mm/ps were used and the spheres were flattened but not fully deformed and

turned inside out. The denser steel targets flattened the soft steel spheres

more than the aluminum targets did [(A/A ) = 1.8 versus (A/A ) = 1.67).

However, at higher impact spee, s, % might expect the aluminum targets to

offer less resistance to lateral apreading of the fully deformed spheres.
This interpretation is comra:ible with the final crater diameters, D

measured at the original target surface and reported by these authors. We can

compare the three curves in Fig. 3.15 in the 3 to 4 mm/ps range where data was

obtained in all cases. For Al/Cu, Dc/Do-3, for CurCu,Dc/Do-4 and for Cu/Al,

Dc/Do-5. In other words, as the projectile/target density ratio, Pp/P tt

increases from 0.3 to 1.0 to 3.3, and Dc/Do increases from 3 to 4 to 5, we

find A/A increasing from 1.0 to 1.4 to 1.85 or D/Do increasing from 1.0 to

1.2 to 1.4. For lack of time-dependent information on projectile shapes, we

must be content with noting these trends.

Both the final crater depth, PE' and final crater diameter at the
surface, D., increase as So increases. For Cu/Cu, PE /Dc is roughly equal to

the hemispherical value of 0.5 over the speed range investigated. However,

for Al/Cu this ratio increases from 0.3 to 0.4 over the range investigated,

while for Cu/Al it declines from 1.0 to 0.9. Presumably for high enough

impact speeds the hemispherical value will be reached. Near S0 = 3.0 mm/us,

we find that as P /P increases from 0.3 to 1.0 to 3.3, PE/Dc increases frompt
0.3 to 0.5 to 1.0. Thus the final crater shape changes from oblate (shallow)

to hemispherical to prolate (deep) as the projactile/target density ratio

increases through unity. A theory of crater shapes must be at least

two-dimensional and so is beyond the scope of this report.

Engel (3.23) sectioned and polished some of the target blocks used by

Goodman and Liles and measured the thickness of the projectile material

"remaining in the bottom of the craters. rhe few thicknesses she reported for

4.76 mm spheres ranged from 0.02 to 0.70 m•, and lead to less than 5%
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corrections to the crater depths reported by Goodman and Liles. Engels did

not report the lateral extent of the sphere residue nor estimate the sphere

mass remaining in the crater. For Cu/Cu she reported a thickness d = 0.18 mm

for S ý. 3.5 mm/Ps and d = 0.10 for S -4.5 mm/Ps. The surface area of the
2hemisphere is ( V/2)Dc (1-cos a) where e is the polar angle measured from the

center bottom point. If we assume that the entire sphere is still in the

crater and is spread uniformly over the center bottom, then the volume of the

4.76 mm sphere, namely 56.5 mm3 , must be equal to d(w /2)Dc 2 (1-cos e ) where D0

was reported by Goodman and Liles. In this way we estimate that for

So 3.5 mm/ps, e-600, while for S -4.5 mmbs, 0 -T750. In neither case dido 0

the sphere spread out over the whole crater.

The final diameter of the inverted sphere is D sin e and is about

17 mm at 3.5 mmAis and 21mm at 4.5 mm/Ps, that is,3.5 to 4.5 times D0, if all

our assumptions are correct. This is much larger tban D = 5.6 mm, the average

value we have estimated during the penetration (almost 20% larger than D ).

We can conjecture that the sphere is initially flattened, achieving a diameter

greater than D, then turned inside out, having a diameter about equal to D for

most of the penetration, then spreads out to a diameter much greater than D

toward the end of the penetration. This conjecture is not the same as another

conjecture often found in the literature and called "secondary penetration."

The latter conjecture supposes that the sphere residue has somehow "ceased to

act" on the target (even though it is still in contact with it) and that the

target material continues to flow "I- itself," eventually coasting to a stop

when target strength dominates inertil flow. There is no evidence for this

conjecture. On the contrary, the entire sphere seems to flow with the target

material up to the end of the penetration when all motion ceases. In fact,

since e < 900 for cases which have been examined, each element of the residual

projectile must have some forward component of velocity up to the very end.

This implies that each element of the sphere continues to deepen (as well as

widen) the crater up to the end of the motion. Elements which have spread

beyond 6 = 430 near the end of a penetration will contribute more to widening

th,.... to deepeinig the crater, while for those with 0 < 450 the opposite will

be true. In any Tase, target material in contact with sphere material does

not flow "by itself," nor does the deformed sphere somehow "cease to act"
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before the end of a penetration. Even target material near the lip of a

crater which is no longer in contact with penetrator material is pushed up to

the end by adjacent target material which is still in contact with penetrator

material.

In the next chapter we will examine some cases of ductile rods which

develop mushroom caps during penetration and for the most part turn inside

out, leaving a hollow tube of penetrator material lining a long, narrow

crater. In such cases a rod element ceases to have either a forward or radial

component of velocity at some time during the penetration. At this time we

can consider this rod element to be "eroded." Since the deformed elements of

ductile spheres are never turned back to this extent, they cannot be said to

be "eroded." In this sense there is no mass loss and a constant mass model is

justified.

i. Al/Al to 9 mm/Us

The largest speed range examined for a given projectile/target

combination has been reported on by Halperson . In the first

paper a 2024 aluminum sphere was used while in the second paper a 2017

aluminum sphere was used. However, In both cases the sphere diameter was the

same, namely, D0 = 4.76 mm so M. = 0.158g as in section h above. Earlier

studies of Al/Al include a paper by Halperson and Atkins (3.26) and one by

Atkins '3.21). The targets were either soft (1100-F) or hard (2014-T6)

aluminum. The slightly different types of aluminum used as projectiles seemed

to make little difference 3ince data in Halperson's last paper merged smoothly

with data from his previous paper. However, from Fig. 3.16 we see that target

hardness plays an t'ndiminished role up to 9 mm/lis, a speed in excess of

typical jet tip speeds. Halperson concludes that hydrodynamic theories which

neglect target strength should not be used.

Others Lvve also noted the undiminisned importance of target strength
(3.27 to

for impacts by compact projectiles at the highest speeds attained
3,30)

Since p p =t we have M /C = (4/3)D = 6.35 mm in Eq (3.1). For the

1I00-F aluminiu• target we find an inflecsion point cf C.5 mm/Is as in sectt.on

76

S++'. A: - -LA.i, F , .% Mn'k• ,&. A LA , 1g 04A E L?ý k-A b,.. A - 1 %J &A 411 ul9t 'ft .. .



oLNo -

01

C~4J

qt!
4 c

m 00

E Co

0 1

-° -I

(ww) 3d

77I S.. .... ........ . .. j



l2

h above, while for the 2014 aluminum target (BHN = 200kg/mm2 or

Yt = 60 x 108dyne/cm2) we find an inflection point of 1.15 mm/Us. Thus Eq

(3.1) differs only in the inflection point of the two target materials, if we

use A/A = 1.3 for both cases. In this way the solid curves joining the data0

points for each target were generated. The value of A/Ao = 1.3 is not very

different from A/A0 = 1.4 used for Cu/Cu in the previous section. The higher

inflection point for soft aluminum (0.5 mm/Ps) compared to that of soft copper

(0.25 mm/ls) makes the upper curve in Fig. 3.16 lie somewhat below the middle

curve in Fig. 3.15. The higher inflection point for hard aluminum

(1.15 mm/•s) makes this curve lie well below the upper curve in Fig. 3.16.

Halperson (3.25) found approximately hemispherical craters for both types of

aluminum target with a slight tendency for the hard target craters to be a bit

oblate and the soft target craters to be a bit prolate. Although target

hardness has a very significant effect on crater depth, it only seems to have

a slight effect on crater shape, which is controlled more by the

projectile/target density ratio, as we have seen. Engel (3.23) also examined

residual penetrators in the case of Al/Al and found about the same residual

thicknesses as for Cu/Cu. This implies the same spreading angles under the

assumptions made previously as well as no erosion.

J. Neglect of Erosion and Viscosity

If we add a term (-bP) to the target force, the penetration will

clearly be reduced. In fact this reduction will be larger for larger striking

speeds which lead to larger penetration speeds. Since reasonable values of

A/Ao > 1 which reflect experimental observations of projectile deformation

already lead to rather close agreement between theory and experiment, we do

not need such a term.

A similar conclusion is tr~ue for erosion. We have already examined

some experimental evidence for a lack of erosion in the case of compact

projectiles. If we compare Eq (2.11) for a constant mass projectile with Eq

owe (2.22) for an eroding projectile, we find that a cni-eroding projectile

penetrates more deeply, if all other factors are equal. In fact, as the

striking speed increases, so does the advantage of the constant mass
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projectile. Numerical comparisons can be made or series expansions used. In

the extreme case of near maximum erosion rate, 6 = 0, the comparison is

especially simple when the projectile and target are made from the same

material, so pp = p't = p and Yp = Yt = Y. In this case Eq (2.19) gives

.0o M pA so Mo/u 0 = (p A0 L0 )/(p A) = Lo/(A/A0 ) for a rod, or

Mo/o Z= [p(2rDo2/4)(2D 0/3)]/[p(rD /4)] = (2Do/3)/(A/Ao) for a sphere. Thus Eq

(2.26) can be written as

PE:[Lo/(A/Ao )]{I-exp[-(2/3)x]} (3.2)

where we could use (2D /3) instead of L . Similarly,

Mo/C (pAoLo)/(.'5pA)=2L./'(A/Ao) for a rod or 2(2Do/3)/(A/A ) for a sphere.

Since ln4 = .5 In y, Eq (2.11) can be written as

P Et[L /(A/Ao0)] {ln(l.x)} (3.3)

where x = (c/a)t 2 - Cp/(Wl)]0o2. Eq (3.3) gives a greater PE than Eq (3.2)

for all x > 0. For x = 0 (0o = 0), the penetrations are equal (but zero).

For large values of x the curly brackets in Eq (3.2) approach a maximum value

of unity, while the curly brackets in Eq (3.3) increase without limit. This

agrees with the general observation that a target which erodes a projectile

makes a better armor than one which does not.

B. Finite Targets

1. Phenomenology

Target perforation is more complicated than penetration in a

semi-infinite target because break-in and break-out effects Oecome more

significant.

When a projectile first enters a target its nose shape has in effect

as we have mentioned. For example, the area presented by a sphere entering a

target increases with penetration depth, P, according to the formula

A =P(D -P), so A increases from zero for P = 0 to ( r/4)D 2 a3 P +(D /2).
0 0 0

If the target thickness is of the same magnitude as the projectile diameter,
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To- D0 , then this variation in A and the variation in target resistance it

implies are significant. However, if T0 >> D0 , they are not. Analogous

formulas and considerations hold for conical, ogival or other nose shapes.

Only a flat-nose projectile immediately presents its maximum area. In section

I. B. above we mentioned the work of Osborn and Woodward (1.22). A well-known

effect which they studied is the formation of a "cap" of target material which

is punched out and rides on the nose of a blunt projectile. Even Newton

diszussed such an effect (3.31). When projectile deformation takes place, the
effects of nose shape are reduced. Under the right conditions, all

projectiles assume the most compact (hemi-spherical) nose shape. Lip

formation or other types of front-face target deformation also affect

penetration to some degree and may be included under break-in effects.

More attention is usually paid to back-face target deformation or
break-out effects like petalling, spalling or scabb4.ng. For semi-infinite

targets these effects do not occur by definiticn. However, even bulging at

the back face can lead to greater penetration than would otherwise occur as we

saw in Fig. 3.14. Fig. 3.17 shows a sketch of front-face (break-in) and

back-face (break-out) effects in an aluminum target perforated by a hard steel
(3.32)sphere . The diameter of the hole in the target is uneven but not much

larger than the diameter of the sphere which is not permanently deformed.

Exceptions occur at the front face where a lip has been formed and at the back

face where a shallow crater has been formed. The depth of this crater

diminishes the original target thickness, To, to the value T shown in the
figure. As reported by Zook et al. (32), (T/To) is about 3/4.

As the striking speed increases so do the amplitude and speed of the

pressure pulse which travels ahead of the projectile and reflects as a tensile
wave from the rear surface of the plate. Interference between the incident

compression wave and reflected tensile wave causes the plate to scab if the

amplitude exceeds the fracture threshold of the target material. Rinehart
(3.33 to 3.34) estimates this threshold to be about 10 10dyne/cm2 for 24S-T4

aluminum and about three times this value for 4130 steel. If the wave

amplitude is more than twice the threshold stress, multipLe scabbing will

occur. An example of multiple scabbing in steel given by 1-t.e&art i:i shown in

Fig. 3.18. When the first scab forms, it leaves a rew .'CttaL..&o t'rface
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Fig. 3.17. Front-face and back-face target effects (hard

aluminum perforated by a hard steel sphere).
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inside the target. The trailing part of the incident pressure pulse then

reflects from this interface and interferes with itself, forming a second

scab, and so on, until the resultant amplitude drops below the threshold value.

Let us assume that the peak amplitude of a pressure pulse caused by a

projectile impact is proportional to the impact energy per unit volume of
Q 2

projectile, namely (.5p S ). For a steel projectile with S0 = 1 mm/rs this

is about 4 x 110 dyne/cm 2(or erg/cm3 ), which is above Rinehart's estimate of
10 2

the threshold for steel of 3 x 10 dyne/cm . As we have seen, hard steel

spheres exhibit significant fracture effects at impact speeds above 0.7 mm/Ps.

For an aluminum target to fracture we need a pulse greater than 10 10dyne/cm2

according to Rinehart, or twice this value for two scabs to form. If the

impact speed is great enough to produce one scab but not great enough to

produce two, then the depth of the back face crater, namely, (T -T) might not

increase as S increases. This depth might even decrease because of an

increase in pulse speed, leading to earlier interference closer to the back

surface. Little is known about the detailed effects of pulse shape and speed

as a function of geometry and material properties of projectile and target.

At present we must rely on the observation of experimental trends in order to

form any conclusions.

The ballistic limit thickness of a finite target, Tl, is the minimum

thickness needed to prevent perforation according to some criterion. Clearly

T1 > T in Fig. 3.17. It is also true that T1 > PE' the depth of the crater

in a semi-infinite target under otherwise identical conditions. Senf and

Weimann impacted 12.7 mm hard steel spheres on finite hard aluminum

target plates and obtained the curves shown in Fig. 3.19. The curve labelled

PE is the same as the upper curve in Fig. 3.13. The curve marked T1 lies

higher than that marked PE over the speed range investigated, with PE/TI1 3/4.

Of course the amount by which T1 exceed PE depends on one's criterion for

perforation. In this matter there is no universal standard. Fig. 3.20 from

Backman and Goldsmith (3.36) illustrates the Army limit (any pinhole in the

rear of the target), the Navy limit (projectile emerges with zero residual

speed and falls under the action of gravity), and the protection limit (spall

just fails to perforate a witness plate of prescribed material and thickness a

given distance behind the target plate). The ratio TI/PE can vary from about

1.1 to 3.0, depending on one's definition of ballistic limit for particular

projectile/target combinations. For theoretical simplicity the Navy limit is
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Fig. 3.18. Multiple scabbing In steel subjected to explosive
attack.
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preferable and will be used in this report. Considerations of engineering

safety margins might lead us to adopt more conservative limits, however.

If we have a soft, ductile target, its behavior near a ballistic limit

can be quite different from that of a hard, brittle target. Fig. 3.21a shows

two sketches of bulges in such a target made by the impact of a sphere. The

second sketch shows an extreme case in which the crater depth, PE' is greater

than the original thickness of the target, T . Clearly, the limit thickness

is greater than T , T, > T It is alsc greater thaniP, for a semi-infinite
0 0 C

target in known cases. Thin, ductile targets often fail by petalling at the

rear. Targets of intermediate strength will often fail by having a plug of

target material sheared out by the impact of a sphere. Fig. 3.21b is a sketch

of such a plug partially punched out of such a target. In this case the plug

is a "cap" which rides in front of the projectile, as mentioned above.

Further details on the phenomenology of target plate failure have been given

by Back1an and Finnegan

From our discussion so far we see the truth of the assertion we made

in the beginning of this section, namely, perforation is a more complicated

phenomenon than penetration in a semi-infinite target. Theories of thin

target perforation are legion and generally address one or another type of

failure process. There does not seem to be a detailed unified theory which

can be specialized tc particular cases by letting certain parameters vanish.

The state of the art of both theory and experiment has been recently

summarized and advanced by Goldsmith and co-workers (3.38 to 3.42)

In this report we wish to remain as simple as possible so that our

unified theory will be useful as well as informative. For this reason we have

been avoiding detailed physical descriptions in order to concentrate on a few

main points. We will continue. to do so in the next section by once more

introducing an average parameter, T, which we will call the target thickness

at the moment of failure. As we see from Fig. 3.17, T can be given a

definite, if approximate, experimental meaning. It is similar to the average

presented area, A, which we have already used extensively and will use again.

This sort of procedure is certainly not completely satisfactory. However, it

is presently necesoary because of our lack of knowledge and perhaps even

desirable as a working tool.
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2. Examples

a. Steel Spheres vs Three Thicknesses of Aluminum

The data shown in Fig. 3.22 for 12.7 mm steel spheres impacting hard

aluminum plates of three different thicknesses were also reported by Self and

Weimann 3 For T0 = 10 mm < D0 they reported no differences between

impacts by hardened and softened spheres. However, for T 15 MM > D, the

residual speed after perforation, SR' was greater for the hardened sphere

(open circles) than for the softened sphere (open squares), because of

flattening. The curves tend to merge and are experimentally indistinguishable

near the velocity ballistic limit, Sol = 0.67 ,m/us. The differences are even

greater for the thickest target (To~ 2D ) and even the ballistic limits are

experimentally distinguishable, being about 0.95 mmb s for the hard spheres

(solid circles) and 1.0 mm/us for the soft spheres (solid squares). If there

were no target present (T = 0), then S = 0 for any So', the straight line in

the figure.

In order to calculate the residual speed, SR' as a function of

striking speed, Lo, let us once more assume that there is no erosion and that

viscosity is negligible. Then we can use Eq (2.7) which is the same equation

which led to Eq (2.11) for semi-infinite targets. A semi-infinite target was

defined to be one with a thickness, To, sufficiently greater than the final

depth of penetration, PE' that not even a bulge appears on the back face. If

T is small enough to permit a bulge, then a further reduction in To versus a

particular threat projectile will result in plate failure, reducing To to T as

in Fig. 3.17 for a hard target, and turning a target victory into a defeat.

The value T0 = T1 > PE semi-infinite as in Fig 3.19 will just gain the

victory for the target. For 12.7 mm steel spheres versus hard aluminum, we

recall that the ratio P E/TI1- 3/4. This seems to be approximately equal to the

observed average value of T/To in Fig. 3.17. This is probably a coincidence,

although it would be nice if it were a more general relation. Additional

experiments are needed to clarify this point.

The argument of the exponential function in Eq (2.7) involves the

penetration depth P S So. At the moment of perforation, when target
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failure occurs, P = = T 0(T/T ), introducing the ratio (T/T ). Since C =

C0 (A/Ao) as before, we can re-write the argument as

[2T0 /(Mo/Co)][(A/Ao)(T/To)] = [2To/(Mo/Co)]e (3.4)

where 1 denotes the product of our two average parameters in ratio form. When

P reaches the value T, S is the residual speed, SR' and Eq (2.7) becomes

SR :=-F7c{[1÷+(So /;ac)2]exp[-2T o/(M o/C )31}1/2 (3.5)

First let us apply Eq (3.5) by calculating the solid curves in Fig.

3.22. Obviously, if To, = 0 (no target), SR = S , the straight line in Fig.

3.22. From section III.A.2.f above, we recall that aic = 0.9 mmbs is the

inflection point for a hard aluminum target, while Mo/Co = 48.9 mm for a 12.7

mm steel sphere versus an aluminim target. For a hard steel sphere we also

recall that (A/A ) = 1, so 4 = (T/T 0 ) = 3/4 = PEI/T on average. Thus, Eq (3.4)

becomes .04T 0 = .03To, and Eq (3.5) becomes

SR =i 0.9[1+(S /0.9) 2exp(-.03T0)-1 (3.6)

for the solid curves in Fig. 3.22 with T = 0, 10, 15 and 25 mm. Close
0

agreement with experiment supports the use of a single average value for

P/T 1 = T/T = 3/4. for the ranges of S and T covered.

Second, let us apply Eq (3.5) by calculating the dashed curves in Fig.

3.22 for the soft steel spheres. We recall from Fig. 3.13 that these spheres

progressively flattened as So increased above 0.4 mm/Vs. The dashed line in

Fig. 3.13 indicates the transition from (A/Ao) 0 1 to (A/A 0 1.67 near

1.3 mm/ps. This variation is plotted as the upper solid curve in Fig. 3.23

which we have extended above 1.6 mml/.s with a dashed line, indicating an

expected decrease in (A/A ) an suggested by Fig. 3.6 (for steel targets). As

was mentioned, semi-infinite targets provide enough lateral confinement to
turn spheres into mushroom caps at high enough impact speeds, reducing A/A0

after such an inversion. Tapering of the crater diameter may be evidence of

this. The lower solid curves give the values of (A/A ) vs S0 used in Eq (3.5)

for the three dashed curves in Fig. 3.22. The agreement with experiment for

T 0 15 mm is rather good. The theory predicts an observable difference for
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To a 10 mm plates near So = 1.5 mm/is. Apparently only hard spheres were used

against this plate thickness. The data available for.TO = 25 mm plates is

somewhat scattered, but the agreement between theory and experiment is

reasonable.

Fig. 3.23 indicates that finite targets flatten soft steel spheres

less than semi-infinite targets do, with thicker target plate effects

approaching those of a semi-infinite target. Presumably as the target

thickness approaches zero, these curves approach the value (A/A ) = 1,0

independent of So (the So axis in the figure). We have not extended the

finite plate curves above S0 = 1.6 mm/ps. However, we can speculate that they

will not level off in the manner of the semi- - curve, since the break-out

crater at the rear of finite plates relieves the lateral confinement needed to

convert a sphere to a mushroom cap. We have no direct evidence for any of

these curves. Their postulated shape assumes a constant value of

(T/T ) = 0.75, and the combination of these two assumptions is supported

indirectly by agreement between soft sphere data and the dashed curves in Fig.

3.22. Other combinations are possible and more experimental information is

needed before we can resolve these questions. For example, (T/T ) may

decrease somewhat as so increases, requiring higher values of (A/A ) for the

same 0 = (T/T 0 )(A/A 0 ). We might expect a decrease in (T/T 0 ) if flatter

spheres produce wider, shallower breakout craters. If multiple-soabbing

occurs, we might even expect a suddsn decrease in (T/To) above some impact

speed.

Before leaving this example, let us recall Fig. 3.14 where a larger 20mm

hard sphere showed a penetration at higher impact speeds greater than that

calculated. For example, at = 1.1 mm/ps we calculated PE = 36 mm and

attributed the difference to the reported back face bulging. If T /PE = 4/3
and PE = 36 mm, then T1 = 48 mm, which is almost equal to the 50 mm thickness

of the target block used. This is consistent with the observed bulging.

b. Steel Spheres versus Several Thicknesses of Steel

Fig. 3.24 gives data for steel spheres impacting steel plates reported

by Backman and Finnegan
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Curve (1) shows rusidual speeds of a hard steel sphere (D = 6.35 mm)

perforating a mild steel target (T0 = 1.47 mm = 0.23D ). If we assume BHN
2 8 20100kg/mm so Yt = 30 x 10 dyne/cm , then a/c= 0.5 mm/•s. Since M o1.05g and

C0 = 0.124g/mm, (M0/CM 0.47 mm and 2T /(Mo/Co) = 0.35. Since (A/Ao) = 1

for a hard sphere and (T/T°) = 1 for a ductile target which stretches and

petals rather than cratering, we have 0 = 1. Eq (3.5) then enables us to

calculate curve (1) in reasonable agreement with experiment. A slightly

greater target strength might give better agreement.

Curves (2), (3), and (4) show the residual speed of the central

fragment of the fragment systems emerging from the back of the targets. These

curves are for mild steel spheres impacting armor steel target plates which

cratered at the rear. We expect the deformed spheres to be the lead fragment.

The spheres were of different sizes (M = 1.15g, 1.32g and 0.92g), to obtain

integer ratios D0/T0 = 4, 2 and 1 respectively. The target strength was not
reported, but if we assume BHN = 300kg/mm2, Yt = 90 x 10 8dyne/cm 2, then

fa/c = 0.83 mm/ps. We expect (A/Ao) > 1 for deforming spheres and (T/T0 ) < 1

for brittle targets reported to have spall craters at the back face. However,

no quantitative information was reported on either ratio. In the absence of

such information, we will assume that the product 0=(T/T )(A/A ) = 1 for the

speed and target thickness ranges used. Also 2To/(Mo/Co) is 0.375, 0.75 and
1.5 for curves (2), (3), and (4) respectively. The agreement between theory

and experiment is remarkable, considering the simple approximations we have

been making.
Before leaving this example, let us note that there was apparently

some difficulty in determining the ballistic limit for curve (2) as indicated

by the two open circles below to = 0.5 mm/Ps. If such a thin target craters

in the back, it offers almost no resistance to a prcjectile and the usual

statistical uncertainties involved in determining ballistic limits are

compounded when gross fracture dominates the phenomenon.

c. Steel Spheres versus Titanium Alloy Plates

Ricchiazzi and Brown (3.43) have reported data for hard steel spheres

(Yt- 100 x 10 8dyne/cm 2, Mo = 0.13g) perforating titanium alloy plates
03 8 2

(90Ti/6Al/4V, Pt = 4.43g/cm , Yt = 40 x 10 dyne/cm2, To = 1.32 mm). This
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steel sphere data was included for ccmparison with other shapes of tungsten

fragments. We find D = 0.316 cm, C 0= .0174g/mm, and M /C = 7.5 mm, so

2T /(M /C ) = 0.352. For lack of detailed information on target or snhere

condition, we have assumed 0 = (T/T )(A/A ) = 1.3. We also find

Va/c = .5 = .736 mm/us. With these values in Eq (3.5) we calculate the

curve in Fig. 3.25 which agrees closely with the experimental data points.

Again it is encouraging that,[single value of 45 can do so well over the range

investigated.
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IV. EXAMPLES OF ROD PENETRATORS

A. Deformation and Mass Loss

For compact penetrators of spherical shape we saw that severe deformation

to a mushroom cap shape or severe shattering can occur at sufficiently high

impact speeds. However, there is no evidence that any penetrator mass is lost

during a penetration in the sense that no element of mass is without some

forward component of velocity right up to the end of the penetration. Very

-ductile projectiles might be found after a penetration spread in a thin layer

over most of the crater. Very brittle projectiles which have been pulverized

might be lost because of target orientation. Intermediate cases might yield

intermediate results when residual projectile masses are sought after an

event. More reporting of the whereabouts of projectile mass after a

penetration is surely desirable. In any case, our theory and the available

experimental evidence indicate that all of the mass of a compact spherical

projectile participates in the cratering process during the entire time of a

penetration event.

For compact projectiles of rod shape, that is with L /D0 near unity, the

same,.comments seem to hold. Fig. 4.la shows a steel rod (L o/D = 12 mm/12 mm'= 1,

M = 10.6 g, BHN = 230 kg/mm') lifted out of the sectioned crater it made in a"(BNkg/li 2)
steel target (BHN= 135 ) after an impact at about 1.0 mm!ps. This

figure is similar to Fig. 3.hb for a steel sphere impacting a steel target at

a somewhat higher speed (1.5 km/s). The mushroom cap shape is clearer in

Fig. h.la. Perhaps the distorted rear end of the rod still forms a short stem

in the middle of the cap. Fig. h.lb shows the remains of a long rod (L o/D =

5h mm/5.4 mm = 10, M. = 9.85 g) made of the same steel after striking a harder

steel target (BHN % 300 kg/mm 2) but at a lower speed (S = 0.735 mm/us). For0
comparison, an original rod before impact is shown beside it. The stabilizer

flare at the rear of each rod is evident. Clearly most of the mass of the

original rod has been lost. A measurement of the length of the residual rod

gives us a rough estimate of the residual mass if we multiply this length by

the original cross-sectional area and the density. However, this estimate
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D:12.0mm, 0.977 mm/ps

Fig. 4.1a. Compact stell rod deformed to a mushroom cap (axial
section). S = .977mm/IJs

- ~CU----

- I

0.735 mm/Ls

D" 5.4 mm

Fig. l4.1b. L /D =.10 steel rod deformed to a mushroom cap with
s~em. S = .735mm/Ps
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must be corrected by adding the mass which is still present in the ragged

mushroom cap which tops off a somewhat fattened stem. Weighing the residual

projectile would give us the answer, but this measurement was not reported
(14.1)

. The diameter of the cap is about three times the original rod diameter.

Fig. 4.2a shows a time sequence of four X-ray pictures of a tungsten alloy

rod penetrating a steel target at 1.4 mm/us, while Fig. 4.2b shows a similar

sequence for a copper rod penetrating an aluminum target at about the same
(14.2)speed . Similar pictures for steel. on steel are not possible because of

a lack of contrast, but a similar mushrooming of the nose occurs as is evident

from Fig. 4.lb. The pictures in Figs. 4.1 and 4.2 have an important feature

in common. In all of these metal/metal impacts, the crater is sufficiently

wider than the projectile body that the thin tube of eroded projectile

material seems to line the cavity walls without making significant contact

with the incoming projectile during penetration. This is why we can neglect

external friction as well as viscosity (internal friction) for typical

metal/metal penetrations and deal only with forces on the projectile nose. We

cannot do this if yaw is significant or for metal projectiles impacting very

hard, brittle targets like glass or various ceramics, as we have noted.

Fig. 4.3 shows a sequence of drawings depicting the formation of a

copper tube from a fully annealed soft copper rod penetrating a metal target.

Only, the upper half of each cutaway is shown because of axial symmetry. The

last sketch at the bottom of the series shows that most of the rod has eroded

near the end of the penetration, since most of the rod elements have lost any

forward c6mponent of velocity. However, there is still a central stem

attached to the mushroomed nose. The impact speed in this example was 1.15

mm/us. At higher impact speeds this residual stem will be shorter, but never

seems to disappear completely. During most of a penetration the mass of this

stem pushes on the nose and helps to make the eroded material turn back.

However, this stem has less mass near the end of a penetration and exerts an

ever smaller force. The net result is that such projectiles never seem to

turn completely inside out, but always retain a cap of projectile material at

the forward end. As a penetration by a long rod nears its end, the rod

becomes a compact projectile and never quite completely erodes since the

central stem becomes so short it no longer can push cap material aside. This
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Fig. 4 .2a. Tungsten rod versus steel at l.14mm/ua.

Fig. 4.2b. Copper rod versus aluminum at 1.L4mm/jjs.
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4

Fig. 4.3. Deformation of annealed copper target at various
penetrating depths of the penetrating hydrodynamnic
head at the impact velocity of 1150 rn/s (projectile
material: copper).



Fig. 4.4a. Copper tube (inverted copper rod) recovered from a
target.

Fig. 4.4b. Axia-l section of same copper tube.
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agrees with our theory which predicts some residual mass in physically

reasonable cases even if this mass is too small to observe easily. Fig. 4.4a

shows a copper rod which has been inverted to a tube after penetrating a

target. Notice the cap at one end. Fig. 4.4b shows this same tube cut in

half lengthwise (an axial section). Again the cap at the end is clear. These
(4.14)

figures are also from Weihrauch

B. Calculational Aids

In Chapter Three for compact (L o/D = 1) projectiles, we were able to

account for the available experimental data with one equation, Eq (2.11).

Since we had no time-dependent information, we did not need Eqs (2.2) or

(2.3). Eq (2.11) is so simple that no special discussion was needed

concerning its use. All parameters were known experimentally except for the

flattening factor, (A/A 0 ). Even here estimates could be made from

experimental information, although final numerical values came from adjustment

to experiment. Remarkably, a single value seemed to suffice for all striking

speeds greater than those for which either shattering or plastic deformation

occurred. For higher striking speeds, we may conjecture that flattening

occurs early in a penetration, so that a single value of (A/A ) holds for most

of the penetration at such speeds.

Eq (2.11) says that the penetration depth will increase without limit as

the striking speed increases without limit. Of course, this is not true when

striking speeds are so high that liquifaction and/or vaporization of materials

becomes important. Additional terms are needed in these cases. However, the

available data indicates that Eq (2.11) is good enough up to S = 10 mm/us,0

and quite adequate at ordnance speeds up to 2 mm/us.

In Chapter Four we wish to describe cases in which erosion occurs.

Consequently, our principal equation will be Eq (2.22). In the few cases

where we have time-dependent information we will also use Eqs (2.28) to

(2.30). Now we wish to discuss the use of these equations in some detail

before illustrating them with examples.

We can write Eq (2.22) as
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P (M/ ) {1 1 + 1 Q (4.1)
0 0 0 40

where

= k A7a/ (4.2)

and

P= 0ok/(2c) . (4.3)

In Eq (4.1), the definition of the factor, Q, is obvious. Here

(4.2) is somewhat larger than the inflection point in Eq (2.24). We recall

from Chapter II that Eq (2.22) or (4.1) reduces to Eq (2.11) if Po -÷ 0.

Without erosion Eq (2.11) says that PE can increase without limit as S0

increases, within the limitations of the model. However, for Po > 0,

Eq (4.1) says that PE approaches a finite limit, Mo/1o1, as S0 increases.

We will be able to determine P from experiment in only three examples

below. To estimate Po in other cases from these three cases, we will make an

assumption that lesser erosion rates follow the same trend as the maximum

erosion rate in Eq (2.19). That is, we will assume

Po = fAo0 VpPt (A/A 0 ) (4.4)

where 0 <'f < 1. By adopting Eq (4.4), we are assuming that f and (A/A ) are

approximately independent of Ao, pp and pt as well as projectile and target

hardness. In most cases of interest this turns out to be a fairly good

assumption. Exceptions will be mentioned as they occur. Our theory requires

Po to be independent of speed for given S . However, it is possible that
might depend on o . Therefore, f V'A/o in Eq (4.4) must be independent of T

speed for given So, and, if P depends on S so must this product. However,
0 .0

and (A/Ao) might individually depend on So, even if P is independent of So"

Eq (4.4) also says nothing about aspect ratio. As it turns out, (A/A ) seems

to depend on aspect ratio at low speeds, and becomes independent of aspect

ratio at high speeds (see Fig. 4.15). A minor dependence of (A/A ) on P and Pt
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also seems evident at high speeds, but is relatively weak for the density

.range of common interest.

For a rod,

M= = PA 0 [(r/4) Do21 L (4.5)

If we divide Eq (4.5) by Eq (4.4), we find

(P )LI1IT ( o = (MorP7 /(f rA/T7'o), (4.6)

which we can compare to Eq (2.27) as So As expected, we find f = 1 for

Eq (2.27), since we used p 0(max) from Eq (2.19) in this equation. For rods of

interest, f < l and (A/A0 ) > 1, so f iAA/A0 ý 1 are all possibilities. In

other words, Eq (4.6) says there is a high speed penetration limit which can

be greater than, equal to or even less than what is usually called the

hydrodynamic limit, (L VP /0t). We will discuss this again in Chapter V. In
o p t

our examples below, we will find that (PE)LIMIT is usually higher than the

hydrodynamic limit, sometimes much higher.

If we have penetration data over a wide enough range of striking speeds,

we can estimate (P)ELIMIT experimentally. In such cases, Eq (4.6) enables us

to estimate an upper bound for io, since we know M . That is,

-.: M /(P E)LIMIT (4.7)

It is always dangerous to estimate such limits from incomplete experimental

information, so we will generally use Eq (4.7) as a check on the following

procedure.

Suppose we know Po2 for rod/target combination 2, and wish to estimate

Sot for rod/target combination 1. From Eq (4.4),

1 `o2 f 1 Afbol pl 0 tl 0 1(A/A0 )1 /[If A0 lipPt (A/A0 )2] (4.8)

If f rA/1A is the same, as it is for rods of the same aspect ratios,
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U01o ' 2  Ao l lAo2 p2t2 (14.9)

If, in addition, identical targets (Ptl M P t2) are struck by rods of the same

density (Ppi = Pp2 ) Vol /o2 is equal to the ratio of the respet-ive masses

per unit length, since A ol/A2 = (M /L ) /(M /Lo)2 by Eq (4.5).
Nov let us recall that a = 3YtA0 (A/A0 ), c .5PtA0 (A/A ), and

Io = (2ppAo0 ) . Then by Eq (4.4)

110 (f /A/A-) (14.10)
p.. 0

and

Iouo2 f 2 [.5PtA (A/A 0 )0 = f2a (4.11)

From Eq (2.18) we recall that

S= c -IoUo2 (4.12)

Now, if we use Eq (4.11) and the definition of c,

c (1-f 2 ) = [.5pt A0 (A/A0 )] (1-f 2 ) . (4.13)

Then Eqs (4.2) and (4.3) can be written as

3 = ~ (j. + P )/ (/.14

and

(( 0 /(oAo)IM t (AIAo0)11 (ft + 1Io P 0 l-f 2)

( Uo/A)/[pt (A/A )] (4(15)

where a = 46'Y /p as before. The approximate forms hold if I < < 1 and
2t t 0 0

f < < 1. Then Q in Eq (4.1) becomes
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, =1 - + (5o/ a))2-(1o/Ao)/Tpt(A/Ao)• (4.16)

Finally, from Eqs (4.1),

P 0E = (Mo0lN) Q (4.17)

Once we have an estimate of jo then only (A/A ) is unknown and appears only

in Q. Since (A/A ) seems to depend on So ,at least at low speeds, then Q
00.

depends both explicitly and implicitly on S0 , as we see from Eq (4.16). If we

can use the approximate form of Q, (A/A0 ) appears only in the exponent and at
0high speeds should be independent of i 0. With this as a starting point, we

can estimate (A/A0 ) for lower striking speeds, and then refine our estimate by

using the exact form of Eq (4.16).

This analysis allows us to describe at least five simple ways of studying

the effect that rod geometry (L and D ) and density (p ) have on penetration

into a given semi-infinite target (given pt, Yt and c). In the first two ways

we keep the aspect ratio the same, while varying either the size or density of

our rods. In the other three ways, we vary the aspect ratio, and either keep

the mass constant or allow the mass to vary by changing either L or D but

not both.

In the first way, we multiply L and D by a common factor, while keeping0 0

Pp the same. This produces a family of rods with a common aspect ratio and

f/,A/A, so Eq (4.9) gives their different erosion rates which depend on their

area, A0 , or mass per unit length. Then A cancels in the product I V which

is the same for all such rods..by Eq (4.10). Of course, (P 0 /A0 ) is also the

same by Eq (4.4). It also appears that f and AIAoare individually the same

for all such rods, so that 4,E and Q are all exactly the same for this family

by Eqs (4.14) to (4.16). Since M 0 L A and 11 0 A0, then (M /0P )• L and

P 'I, L in Eq (4.17). Thus, a plot of P IL versus S should give a single
E. 0 Eo 0o

curve for all rods in this family. Since we also have L o % Do, a plot of P E/D

should do the same. Here we have an example where the use of a dimensionless
variable in plotting experimental data can reveal an important relation and
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prompt us to look for an explanation if we don't have one. Or, as we are now

doing, it can illustrate the descriptive power of a proposed explanation.

Indiscriminate use of dimensionless variables can be more confusing than

helpful, as we shall point out. This is especially true if only dimensionless

variables are reported without any way to recover the original dimensional

observations.

In the second way, we keep the aspect ratio the same by leaving L and D
0 0

unchanged, while varying the rod density, p. This can be done gradually by

alloying. However, because of experimental uncertainties, we need to compare

two metals of quite different densities, like steel and tungsten. We have

assumed that f vIAA is only slightly affected by such a change in density, so
0

0 '.V/p in Eq (4.4). An increase in Pp will decrease 4 and increase E in Eq

(4.14) and (4.15). Both of these changes will increase Q in Eq (4.16). Since

M \ p and P p-, P E,- Q in Eq (4.17) should increase somewhat faster than
0 p 0 p' E p
V/p as p increases.
p p

In the third way, we keep M constant in Eq (4.5) while keeping p

constant and varying the aspect ratio (L /D ). This implies that we keep

D o2L = Do3 (L /D ) constant, so we must decrease D0 , if we increase (L0/Do),

and increase L0, if we decrease D . If we decrease D or A 0 , we decrease Vo

by Eq (4.4), but keep (1r0 /A ) the same, provided f "A/Ao is unchanged. We

also, keep 1Io0 the same for all rods in this family by Eq (4.10). Thus C, C

and Q will remain exactly the same. Thus by Eq (4.17), PE' i/Po 1/Do2 will

increase as vo or D0 decreases. Even for L iD 1 1, Po- 0, the case for which
2 snecA 020Eq (2.11) applies, PE I/D2, since c A c Dn D This simple result should

hold for high striking speeds when (A/A ) becomes independent of S0 , but will

be modified at low speeds when (A/Ao) depends on S0 .0@

In the fourth way, we keep P and D constant, while varying L . AlthoughIntefut aw e p Pp 0 0

M changes, M I/L does not, so w°0 should be the same for all rods in this

family as shoi.ild I 00 and w' /A . Then 4, c and Q will be the same, so PE' L

by Eq (4.17). Once more a plot of PE/Lo versus So should give a single curve

for the family. This result will also be modified, if (A/A ) depends on

aspect ratio as for low So. If L /D -+l, Eq (2.11) gives the same result.o o

In the fifth way, we keep p and L constant, while varying D . Then
"In th 2 fithwang, but kee /Ap o 0

0- Do0 will change, but P0o/A° and 1 on° will remain the same. Thus 4, E and
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are exactly the same. Since M 0 D 2 also, (M o/Uo ) will be unchanged as will

PE" Consequently, changing the rod diameter will not affect high speed

penetration, since we change the erosion rate as fast as we change the mass.

This result too will be modified if (A/Ao) depends on aspect ratio. Again for

L 0/D0 - 1, Eq (2.11) gives the same result.

Much of what we have said is not obvious, and will become clear only

through examples.

Obviously, there are many other ways to vary rod geometry, density and

hardness. Significant changes in rod hardness can affect nose shatter and

alter penetration, at least over a limited range of striking speeds. In most

cases of interest, projectile hardness is relatively unimportant. Many of the

other ways we can vary geometry and density would not qualify as "simple," and

do not seem to have been used in systematic series of experiments as these

five ways have been used.

Finally, we wish to describe the few cases in the literature where some

time-dependent data exists. This is important, not only because these cases

provide a severe proving ground for our theory, but also because we want to

use the few values of p which can be determined from experiment as a starting

point for estimating po for the majority of cases where no such information

yet exists.

Let us combine Eqs (2.28) and (2.29) o obtain
.X

D = .X 0 I /k)I(M 0 /I)I t = vt X=I 0x -I (x-l)-1/ 2 dx (4.18)

and

X = 11 + (l /C)2] Il-P(Mo 0 lo) E = xo (M/4 0)l/E (4.19)

Here we have taken t = 0, while C and E are given by Eqs (4.2) and (4.3).
0

The definition of the frequency v is obvious from Eq (4.18). The final form

of Eq (4.19) comes from Eq (2.15). The integral in Eq (4.18) must be

evaluated numerically, unlmss E happens to be zero, integer or half-integer,

as we will now illustrate with a few examples.
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The first example below can be described by using the parameters c = 1,

V = .2 9 and X0= 17, as we shall see. Since c - 1, we can evaluate the

integral in Eq (4.18) without numerical approximations:

D - .2t =f dx/A- - 2( 4- VX-) (4.20)

and

X = 17 (l - P/64) (4.21)

since (M0 /Vo0 ) a 64 mm. Eqs (4.20) and (4.21) relate P and t parametrically

through X. In a simple case like this, we can eliminate X to find

P = 64(1 - 11 + (4-.lt) 2 ]/17} (4.22)

From this we can find P(t) also, if we desire. The smallest value of X which

gives real t in Eq (4.20) is X = 1. When X = 1 in Eq (4.20) we find the

embedment time, tE.= 40ps. When X 1 1 in Eq (4.21) we find PE = 60 mm, as we

find from Eq (4.22), when t = 40ps.

Usually, we must evaluate integrals like D numerically. There are many

ways to do this. Here we will select one for purposes of illustration,

namely, the four-point Gauss method. This is quite simple, yet accurate

enough for our purposes. In what follows, we will use the notation of

Margenau and Murphy (4.5). First, we transform the range of integration to

the unit interval by introducing a new varialbe, v, in the linear

transformation

x = X + (17-X) (4.23)

in our case where X is the lower limit and 17 is the upper limit. Then the

integral becomes

D = (17-X)J F(v) dv (4.24)
0

with
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F(v) = (x_/)-112 = Ix + (17-x) v - = F(x) (4.25)

by Eq (4.23). In the four point Gauss method, D is approximated by the sum of

"four products as follows:

D As(17-X) (.174 IF(v 0 ) + F(v 3 )] + .326 [F(vI) + F(v2)D} (4.26)

where vo = .069, v1 = .330, v 2 = .670 and v3 = .931 are the four points on the

unit interval which optimize the method. These points are given with greater

precision in texts, as are the coefficients, .174 and .326. Here we have

retained only three significant figures for the vi as good enough for our

purpose.

Now, suppose X = 5 in Eq (4.23), so x = 5 + 12v. The x-values which

correspond to the four pre-selected v-values, together with the associated
values of the integrand, F(v) = F(x) in Eq (4.25) are x = 5.84, F = .455,

o 0

xI = 8.96, F 1 = .354, x2 = 13.04, F2 = .288 and x3 = 16.16, F = .257. Then

Eq (4.26) becomes

D ýt12 [.174 (.455 + .257) + .326 (.354 + .288)] = 3.999 • (4.27)

Thisis very close to the value D = 4 which we find by letting X = 5 in Eq

(4.20).

Other exact integral forms are available for integer and half-integer

values of C which can serve to bound whatever method we choose for a numerical

evaluation. For example, if C = .5,

D =f dx/rx-(-x-1) = .ln {/X+ [ Yo -1/[X+ VX- 1- (4.28)

which, together with Eq (4.20), can bound D, if .5 < E < 1. Similarly, if

= 1.5,

D =. /xo" dx//'x"l X v1) ri"k(X-1)

+ In rXI'-'+ Av72 ii/[,'+ X7'-lT} (4.29)
0 0

111



while, if e = 2,

D (2) [(2.Xo) T - (2.X),.X-1 _, (4.3o)

and so on. In every case we see that X = 1 is the smallest, physically

meaningful value of X, giving real t.

When a numerical integration is required, it is helpful to plot F(v)

versus v to discover whether or not the integrand has a steep slope in the unit

interval. If it does, a aignificant portion of the area under the curve may

be neglected by a four-point approximation. It may be necessary to use two or

more sub-intervals selected to accomodate the curve and/or use more points in

each sub-interval.

C. Seml-infinite Targets

1. Examples with Time-dependent Data

a. Steel/Magnesium

The most extensive collection of time-dependent information on
(14.6)eroding penetrators has been reported by Perez ( This is a summary and

continuation of his earlier work (.7 4.8). In his more recent work he used

flash X-rays to follow the loss in length suffered by a rod while penetrating

low density 'metal targets of magnesium and aluminum. This kind of information

is very valuable for learning about penetration and provides an excellent

testing ground for a theory.

First, consider Perez' data (4.9) for a steel rod (pp = 7.8 g/cm3

L /D = 22 mm/2 mm = 11 reported and M = 0.54 g calculated) striking a

magnesium target (Pt = 1.8 g/cm3 reported, Yt = 10 x 108 dyne/cm2 estimated)

at S° = 3.27 mm/As. Fig. 4.5 shows the positions of the rod nose, P, and

rear, R, and so its remaining length, L = P - R, as a function of time, t.

The following values were estimated from his figure. Initially, P 0,

R - 22 mm, L = 22 mm. Near t = 6us, P = 16 mm, R = 0, L 16 mm. Near
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t = 11s, P a 28 mm, R = 16 mm and L = 12 mm. Near 18, 23 and 25ps, P is 41,

48 and 50 mm, and L is about 7, 4.5 and 3.5 mm. At the end of the penetration

PE is about 60 mm while the remaining length in difficult to estimate but is

probably about 2 mm since the rod has been reduced to a crushed cap.

Eq (2.15) can be written as

S= (P A 0)(Lo-L)/P (4.31)

Here A = .0314 cm2 so p A = .245 g/cm .0245 g/mm and L = 22 mm. If we

use the L and P values estimated above, we find Po = .009 g/mm for the erosion0

rate. At the end of the penetration, the X-ray length is no longer a good

estimator of the residual mass because of severe rod distortion. The fact

that the data points give a single value of 1o supports our assumption that

H = -•o in Eq (2.14) with P independent of speed for given S . It does not
0 0 0

tell us, however, whether Po depends on So.

Perez (4.10) also reported penetration depths for the same steel rod

impacting this magnesium target at various striking speeds. In Fig. 4.6 we

see a dip in penetration similar to what we saw in Figs. 3.6 to 3.8 above

(steel spheres versus steel). In the case of steel spheres we had independent

experimental evidence from recovered projectiles that such a dip was

associated with shatter. Here we have no such direct evidence, although we

will see such evidence below for other rods. Because of this it seems

reasonable to suppose that the dip in Fig. 4.6 'is associated with nose

shatter. For steel spheres versus magnesium, we saw that shatter began near

2.3 mm/.s (Fig. 3.9). Here it begins closer to 3 mmbs, which is not

unexpected in view of the length of the rod and the time it would >.ke for a

wave from the nose to reflect from the rear and travel back to the nose. This

implies that a dip indicating the onset of nose shatter should occur at a

lower speed for a shorter steel rod against this magnesium target. In fact,

this is what Perez observed as shown by the middle curve in Fig. 4.6 for

L /D = 3 where the dip begins near S = 2.5mm/Ps.

Fig. 4.7a shows three radiographs at different times during the
p. etration of the Lo/Do = 11 rod into magnesium for S0 = 2.85 mm/iis. Even

the itabilizer flare is clearly visible in the earliest picture as is the

mushrooming of the nose. There also appears to be no contact between incoming
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Fig. 4.7a. Steel rod (L 0IDo 11i) versus magnesium target at
2.85nm/ps.00

4 .4-A4'

Fig. h.Tb. Steel rod (L/D 0/Do 3) versus magnesium target at

2.63mm/lie.
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projectile body and eroded material. Fig. 4.7b shows three radiographs at

different times during the penetration of the Lo/Do a 3 rods into magnesium

for A = 2.63 mm/as, about the same striking speed as in Fig. 4.7a. Seen at
o

the earliest time, the rod has mushroomed and resembles Fig. 4.1a. No

estimates of residual length versus time are possible.

Fig. 4.8 shows penetration by this steel rod into a stack of magnesium

plates separated by thin (0.1 mm thick) brass sheets. Fig. 4.8a shows three

radiographs taken at different times during the penetration while Fig. 4.8b

shows a cross-section afterward. Perez did not report either the striking

speed or the thickness of the magnesium plates (or final penetration depth).

He only wished to point out the deformation was essentially the same during

and after penetration, except perhaps near the top and bottom of the crater.

We would also like to point out that the crater in Fig. 4.8b has a balloon

shape. That is, it is wider over most of its length than at the impact

surface where crater diameters or areas are usually measured. We will comment

on this later.

Now let us use Eq (4.1) to calculate the uppermost curve in Fig. 4.6.

The mass of the rod was not reported, and the value .54 g was calculated from

the reported density and geometry. Perez mentioned that he added stabilizing

flares at the rear of his rods, which should increase the calculated mass a

bit. Since neither the mass nor geometry of these flares was reported, we

will estimate an additional mass of .036 g for the flare, giving M° 0 .576 g.

We have chosen this particular number to make M0 /lo = 64 mm with

1o = .009 g/mm. This seems reasonable in view of the data in Fig. 4.6. We
2also find a .001 (A/A ) g mm/ws , c = .0028 (A/A ) g/mm, I 0 20.4 mm/g,

1 011 =.18, 1 0 o .0017 g/mm, and k = 1.18. Of course, Z = (c-.0017) g/mm,

so we can find C 1.18 V'a/5 mm/vs and E = .5wok/a = .0053/a, once we decide

on (A/A ) for a particular striking speed. If we use (A/A 0 2.5, we find

C = .8 mm/ps and E = 1. Then, for example, when SO = 4 mm/iis,

PE = 64 [1-[1+(4/.8) 2 ]-} 61.5 mm. Similarly, if we use the values of

(A/A 0 ) shown at the bottom of Fig. 4.6, we can calculate the uppermost curve,
which agrees well with experiment. The horizontal dashed curve is the

hydrodynamic limit, L 0Vp/Pt = 22 mm /7.8/1.8 = 45.8 mm. All of Perez' data

points lie above this limit and seem to approach 64 mm, 40% higher.
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In Fig. 4.6 we have found that (A/Ao) declines from about 4 near

S= 2 mm/Ps to about 2 near S = 3 mm/11s. This is similar to the decline ino 0

(A/A ) from 1.8 to 1.5 experienced by the softened spheres in Fig. 3.6 as S0 0
increased from 1 to 1.5 mm/ps. As the impact speed increases it is likely

that the rod mushrooms earlier in the penetration and on average presents a

more streamlined nose, that is a lower value of (A/A ). Except for the onset

of nose shatter near 9 = 3 mm/us, this trend might have continued as

indicated by the dashed curve. However, the shattered nose spreads out more

and (A/A0 ) increases, levelling off at 2.5 above o 0 3.3 mm/us. For impact

speeds higher than this, none of the parameters change. The gradual increase

in penetration is due entirely to the increase in S0.
Finally, let us use Eqs (4.18) and (4.19) to calculate P(t) in Fig.

-1
4.5. Since (A/A ) = 2.5 at S0 = 3.27 mm/us, e 1, s = .21s- and X0 = 17.

Since /k= 2.8 mm/us, P 2 = .04 gmm/Ms which is much larger than the
0 c=2•target strength term, a = .0025 gmm/us initially. However, by the time P

drops below .7 mm/us, the strength term begins to dominate the inertial term.

As P -1 0, only target strength remains. Since £ = 1, we can use Eq (4.22) to

calculate the upper curve in Fig. 4.5. Eq (2.15) gives the remaining mass,

M = M - 1OP = (.576 - .009P) g. For PE = 60 mm, we find ME = .036 g, so cnly

the flare mass has not been eroded in this estimate. A crude estimate of the

depth of the crushed residue might be LE = ME/(Pp AO) = .15 cm = 1.5 mm. A

good estimate of the remaining length at early time is L = M/(Pp A ), while the
position of the rear is R = P - L, the lower curve in Fig. 4.5, which is also

in reasonable. agreement with experiment.

b. Aluminum/Magnesium

Fig. 4.9 shows Perez' (4.11) time-dependent data for an aluminum rod

impacting the same magnesium target, but at S = 3.35 mm/ws. The X-ray0

contrast was not as good as for steel/magnesium, so the length measurements

are more uncertain. Perez also made a few time-dependent measurements for the

same rod/target combination, with L = 2.2 mm/us (4.12) However, there were

too few measurements to make a separate determination of tho erosion rate.

The one measurement reported which included both tip and rear positions

confirms our assumption that p is independent of striking speed for a given

rod/target combination. In the present case, L /D = 33 mm/3 mi : 11 and
0 0
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Pp z 2.8 g/cm3 for Perez' aluminum rod, compared to Lo/D 22 mm/2 mm = 11,

P p = 7.8 g/cm3 for his steel rod. He kept the aspect ratio the same, while

multiplying both L. and D0 by 1.5. However, this is not our first way above,

since he also changed the density, Pp
When we apply Eq (4.31) to Fig. 4.9, we find po = .013 g/mm for all

times, again supporting our assumption that the erosion rate is independent

of speed during a penetration. From the reported density and geometry of the

rod, we calculate a mass of .653 g. If we add .075 g for the larger flare on

this larger rod, we find Mo = .728 g, so Mo/1o = 56 mm. This is a reasonable

value for the high speed limit in view of Fig. 4.10 which shows PE versus 0

for this rod/target combination (4-13)

We can also estimate 1o from Eq (4.9). Let aluminum/magnesium be

combination 1, and steel/magnesium be combination 2, with Po2 = .009 g/mm as

above. Since the targets are the same, Ptl = Pt2. The square root of the

ratio of the projectile densities is 42.8/7.8 .6. Since the ratio of the

initial diameters is Dol /Do 2 = 3 mm/2 mm = 1.5, the ratio of the initial areas

is A1 /A 2  (1.5)2 = 2.25. Then

1101 = (.009 g/mm)(2.25)(.6) = .012 g/mm (4.32)

which is-in reasonable agreement with our estimate from Fig. 4.8, considering

the uncertainties and assumptions involved. This indicates that Eq (4.8) or

(4.9) may be useful.

Next, let us use Eq (4.1) to calculate the upper curve in Fig. 4.9.
2 2Since A = .0707 cm , a = .00212 (A/A ) g mm/ps , c .00636 (A/A ) g/mm,

2 0
S= 25.26 mm/g, Io 11 .328, 1o0o0 .00427 g/mm, k = 1.328,
S= 1.328 a/8 mm/us, € .00863/c and M o/o= 56 mm. If we use the values of

(A/A ) shown in Fig. 4.9 we can calculate the upper curve which agrees with
0

experiment. Here the limit of 56 mm is about 36% higher than the hydrodynamic

limit, 33 V/2.8/1.8 =41 mm. We note that (A/Ao) for aluminum/magnesium levels

off at 2.8 above So = 4 mm/ps. There is no evidence of nose shatter for this

softer aluminum rod with an impedance closer to that of magnesium than steel.

The limit value (A/Ao) = 2.8 is slightly larger than for steel/magnesium. If

we multiplied .012 g/mm by /2.8/2.5 we would obtain .013 g/mm as from Fig. 4.8.
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Finally, let us apply Eqs (4.18) and (4.19) to Fig. 4.8 with

(A/A)0 2.8 near S0 = 3.35 mm/Ps. Since e .637 we must evaluate the Di -1
integral numerically. Since X0 = 15.5 and ' .111's

f15.5 -. 363

D = .11t - x (x-1)'' 5 dx (4.33)
X

with

X = 15.5 (1 - P/56) 1 "5 7  (4.34)

so for any P we can find X, D and t, as well as M = Mo (1 - P156) p p A L and

R s P - L. For example, when P = 40 mm, X = 2.168, so

D = 13.'33 [.174 (.327 + .103) + .326 (.214 + .131)] = 2.5 (4.35)

in the four-point Gauss approximation. Then t = D/v = 22.7us, which agrees

closely with Fig. 4.8. At this time M = .208 g,.L = 10.5 mm and R = 29.5 mm.

Similarly, for P 20 mm, X 7.746, and

D = 7.754 C.174 (.172 + .100) + .326 (.141 + .114)] = 1.012 (4.36)

so t = 9.2-.s, M = .468 g, L = 23.6 mm, R - 3.6 mm, and so on. When XE 1,

P = 46.2 mm from Eq (4.34)

D 14.5 [.174 (.770 + .103) + .326 (.242 + .136)] = 3.99 (4.37)

so tE 36ps, ME = .127 g, LE2 6.1 mm and R E 39.8 mm.

c. Steel/Aluminum

Fig. '.11 is also from Perez' paper (11) and is for a steel rod with

L0/D 0= 22 mm/2 mm = 11, impacting an aluminum target at So = 2.3 mm/ws to

reach a final depth of 34 mm. This is less than the final depth in Fig. 4.5

for the same steel rod striking a weaker, less dense magnesium target at a
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higher speed, &o = 3.27 mm/.s. It is also less than the depth for that

rod/target combination at the same speed as here, S = 2.3 mmA's, as we see0

from Fig. 4.6.
(14.15)

Fig. 4.12 from Perez shows some evidence of nose shatter

beginning near So = 2.2 mm/ps, although the dip in penetration is slight

compared to that in Fig. 4.6 which begins near S0 = 3 mm/is. We expect a

difference in threshold speed from Fig. 3.9. The difference in the magnitude

of the effect might be attributed to a closer impedance match between steel

and aluminum.

If we apply Eq (4.31) to Fig. 4.11, we find P 0 = .012 g/mm. We can

also use Eq (4.9) with steel/magnesium as combination two, PP1 = p2 and

-tI/t2 = 1.245, so o = (.009 g/mm)(1.245) = .011g/mm, reasonably close

to our estimate from Fig. 4.11.
Now let us apply Eq (4.1) to Fig. 4.12. As before, we take

Mo = .576 g, wh!ich for Po = .012 g/mm, gives M0 /P = 48 mm which seems

reasonable in view of Fig. 4.12. Perez did not report measured hardness

values for his targets either, although he gave some estimates. Here we will

take Y = 20 x 18 2=, so for A .0314 cm2 , a = .00188 (A/A0) g mm/1s2

c = .00438 (A/Ao) g/mm, and of course Io = 20.4 mm/g as before. Then

c c - .00294 g/mm, C = 1.245 Va-/6 mm/.s and e = .00747/b. If we use the
(A/Ao) values in Fig. 4.12, we can calculate the upper curve in agreement with

experiment. Our high speed limit of 48 mm is about 30% higher than the
hydrodynamic limit of 37 mm.

In Fig. 4.12 (A/A ) again reaches a constant value above a certain0

striking speed, a behavior we now expect. The limit value (A/Ao) 3.5 is
0

larger than we found for steel/magnesium where the limit value was 2.5 in Fig.

4.6. These values are both estimates which depend on the target strengths we
have assumed, Yt = 10 x 108 dyne/cm2 for magnesium and Yt = 20 x 108dyne/cm2

for aluminum, in the absence of measured values. Better values of (A/A ) will
0

have to await measured values of target strengths. The important thing to
note is the shape of the (A/Ao) versus So cilrves, not their exact values. A

theory of (A/A ) versus Sg based on first p. inciples will also have i.o await
better information.

Before discussing Fig. 4.11, let us note that Perez used two other

types of steel rod against the same aluminum target (4.16). These rods had

Lo/Do = 33 wiz/3 mm and 44 mm/4 mm respectively. These rods together with
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those used in Fig. 4.12 with Lo/Do = 22 um/2 mm form a family with the same

density and aspect ratio but different mass. This is an example s our first

way above. When Perez plotted PE/L 0 versus So, he found that a single curve

applied to all three rods. This is exactly what our theory predicts, and

provides further evidence in its support. Perez also used various steels for
(4.17)

these rods versus aluminum targets, but found no detectable difference

Later we will see a case where projectile strength made a detectable

difference, at least for low •.ik~rg speeds.

Finally, let us apply Eqs (4.18) and (4.19) to Fig. 4.11. Since

C = .6 for (A/A 0 ) = 3.5 when So = 2.3 mm/Ps, we must evaluate the D integral

numerically. We find X0 = 7.4 and Y = .084us"I1 so

D = .084t =J 7 4 x-,4 (x-1)o 5 dx (4.38)

with

X = 7.4 (1-P,148) 1 . 6 7  (4.39)

Since we have already given several examples of using the four-point Gauss

method, we will restrict ourselves to one example here. For P = 20 mm, Eq

(4.39) gives X = 3.U, so

D =. ,4 [.174 (.408 + .185) + .326 (.296 + .220)] = 1.195 (4.40)

and t = D/v = l14 s which agrees with Fig. 4.11. At this time,

M = .576 g (1-20/48) = .336 g = (.0245 g/mm) L so L = 13.7 mm and

R = P - L = 8.3 mm. Similarly, for XE = 1, PF = 33.6 mm, tE 36.6ps and

M E .173 g from which we can estimate LE and REP and so on.

2. Other Examples

a. Aluminum/Lead

"Fig. 4.13 shows Perez' data (4.18) for the same aluminum rod impacting

lead targets. Once more there is evidence of nose shatter at an expected
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lower speed (near 1.5 mm/Ps). Perez extended previous data reported by

(4.19)
Tate 4 The seven open squares in Fig. 4.13 are Perez' data points,

while the circles were reported by Tate. Tate used a larger aluminum rod

(L 0 /D0 = 63.5 mm/6.35 mm = 10, Mo = 5.43 g) against 101.6 mm diameter lead

targets. Since these targets showed severe lateral distortion in preliminary

experiments, they were encased in steel to provide enough lateral confinement to

simulate a semi-infinite target. Differences between truly semi-infinite

lead targets and Tate's targets might be expected at higher striking speeds.

Sucb steel confinement could cause greater target resistance and decrease the

penetration depth compared to a truly semi-infinite lead target.

Perez used lead targets which were 280 mm in

diameter impacted by less massive (L0 /D0 = 33 mm/3 mm = 11, M° .728 g)

aluminum rods. He judged his targets to be truly semi-infinite because they

exhibited no observable distortion at the sides or rear after a penetration

event.

Both Tate and Perez reported their results as P E/L versus S In

Fig. 4.13 we show Tate's data in two ways. The upper set of data points (open

circles) consists of his PE/Lo values multiplied by 63.5 mm, while the lower

set (open triangles) consists of his PE/Lo values multiplied by 33 mm, Perez'

rod length. The open square data points are Perez' P E/Lo values multiplied by

33 mm. The more or less smooth joining of the two data sets near 2 mmAPs is

expected as we saw above in connection with steel/aluminum. The rods have

about the same aspect ratio, so P E/L should be independent of Do. The lower

values found by Tate for 2 < SO < 2.35 mm/us might be attributed to his use of

steel confinement. It is too bad that Perez did not report data at lower

speeds using his projectile/target combination. If he had, we might have

better evidence than is available.

The possibility of nose shatter is a relatively unimportant feature of

Fig. 4.13. The important thing to note is that Perez found an increase in

penetration with increasing speed from 2 to 4 mm/ps. As Perez points out,

this contradicts the prediction of Tate's mode that there should be an

approach to the hydrodynamic limit in this range as indicated by the dashed

curve in Fig. 4.13 andthe horizontal line at P = Lo/0 Pp/Pt = 16.4 mm, using

L = 33 mm. Instead, Perez' data seem tobe tending toward a limit almost

twice this hydrodynamic limit. Perez noted that his steel versus aluminum

data (Fig. 4.12 above) also contradict the prediction of Tate's model. Perez
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went on to generalize that the predictions of hydrodynamic models are usua ly

too high for impact speeds below 3 mm/ws and too low for speeds greater, thar

3 mm/us. In fact, the discrepancies are much too large to be explained by

conjectured "afterflow" giving "secondary penetration." We will return to

this point again below.

Unfortunately, Perez was not able to obtain time-dependent information

about penetration into his lead targets, using the X-ray equipment available

to him. Consequently, we have no direct evidence for either erosion rate, u,

or nose mushrooming, (A/A ), as we did in the three previous examples. This

is the usual situation in penetration mechanics. More powerful flash X-ray
systems exist (420) as well as very intense continuous X-ray sources (4.21),

but applications to penetration mechanics have been either very restricted or

non-existent.

If we wish to apply our theory to the data in Fig. 4.13, we are forced

to estimate both p0 and (A/A ). From our previous experience in the last

three examples, we expect U to be independent of S while (A/A ) should

initially decline with increasing S0, and eventually level off at high speed.

We recall from Fig. 4.10 for aluminum versus magnesium that the high speed

limit of (A/A ) was estimated to be 2.8 and P was .013 g/mm. Now we need the
00

limit of (A/A ) and p for lead which is six times more dense than magnesium

and an order of magnitude softer. It might be too much to expect that Eq
(4.8) or (4.9) will be accurate in such an extrapolation, even though it did

fairly well in making transitions between steel, aluminum and magnesium. For

example, if lo2 = .013 g/mm andP= -1.3/1.8 = 2.5 with A - A and
o 03gm nfti Pt2 -01 -, o2

Ppl = °0 p2 in Eq (4.9), we would find uo = .032 g/mm for the lead target. This

is clearly too high, since M o/o = 23mm when M = . 7 28g, which is too low in
00 0view of Fig. 4.13. With Fig. 4.13 as a guide, M0 /W° = 30 mm is a more reasonable

estimate. This implies p. = .024 g/mm for the lead taret. In turn, this implies that

[fL1 ,(A/A )o /[f2 (A/Ao)2] = 3/4 in Eq (4.8) without knowing either f /f2 or
(A/A0) /(A/A 0 ) 2 . If target density controls (A/A 0 ) at high speed, then

(A/Ao)I for lead should be smaller since lead permits less lateral spreading
than magnesium. If f for lead were also less than f2 0 then perhaps the
limit might be (A/A ) = 2 for lead. In all of our other examples, Eq (4.8)
will be more useful. However, an estimate from Fig. 4.13 is more useful
in the present case. Eq (4.8) would give us

WO = (.013) (2.5) (.75) .024 g/mm (4.41)

only with the help of Fig. 4.13.
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If we assume Yt = .5 x 10 8dyne/cm2 for lead as we did before in Fig.
3.11 and use Ao = .0707 cm2 for this aluminum rod with Mo /W = 30 mm, we find

0 00 2: 1.6 a/6mm/1s and E = .0192/8, with a = .000106 (A/A0 ) g mm/Ps

o • .04 (A/A0 ) g/mm and 10 z 25.26 mm/g as before. Then using the values of

(A' 0) shown in Fig. 4.13 we can calculate the upper solid curve in agreement

with experiment. The closeness of this agreement is not a strong support for
our theory in this case, considering the fact that incomplete data sets from

two different laboratories are being superimaposed. However, the trends

predicted by the theory and the similarity of these trends with other cases
where better information is available, is of some significance.

b. Steel/Steel

Figs. 4.14 and 4.15 show data from Hohler and Stilp (4.1) for

Lo/Do = 10 and L /D0 = 1 steel rods impacting mild steel targets

(BHN = 135 kg/mm ) and armor steel targets (BHN = 260-330 kg/mm 2). The rods

were made of a third kind of steel of intermediate hardness (BHN 230 kg/mm2).

The upper two full curves in each figure are for Lo/D° 0 10 rods,

one with L0 /D° = 54 mm/5.4 mm (M = 9.85 g), the other with L /D 0 25 =m/2.5 mm

CMO = 9.96 9). The lower two curves in each figure are for Lo/D 0 = 1 rods,

one with Lo/D° = 12 mm/12 mm (M = 10.5 g), the other with
0 0 0

Lo/D 0 = 5.5 mm/5.5 mm (M = 1.03 g). The masses reported include the mass of
a stabilizing flare at the rear of each rod. Only smooth curves without data

points were reported in this paper for steel rods, and consisted of plots of

PE/Lo versus So The mass pairs in each case are close enough to 10 g and 1 g

that, for some purposes, we have here examples of our first way (vary the mass
but keep the aspect ratio constant) and our third way (keep the mass constant

but vary the aspect ratio). As we recall, for the first way a plot of P E/Lo

versus So reduces similar curves to a single curve. In Figs. 4.14 and 4.15 we
have multiplied their P E/L curves by the appropriate values of L . ThisEo o
brings out more clearly the advantages of high aspect ratio rods over compact

rods in achieving greater penetration. If we had plotted P E/Lo instead of PE'

the curves for Lo/Do = 1 would be higher than those for L0 /Do = 10. In Fig.

4.15 we have plotted a fifth curve for Lo/Do = 156.8 mm/4.9 mm :32, M0 = 23 g
(14.22)from a more recent paper by Hohler and Stilp . The target was a
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slightly different armor steel and the projectile steel for this very long rod

was also slightly different from that of the other rods, but not enough to

make any difference to our purpose here. They reported 2 data points for

0 > 1.5 mm/iis for the L /D° = 32 rod but these are not included to avoid

compressing the scale of the figure. The dashed lines in Fig. 4.14 are the

hydrodynamic limits (the same for either figure of course).

We recall the deformation of Hohler and Stilp's L o/D = 1 and

L0/Do = 10 rods shown in Figs. 4.1a and 4.1b. Since D/Do0  3 for the deformed

cap of the recovered long rod at S0 = .735 mm/ps, we expect A/Ao0  9 for this

rod at this speed.

Let us assume that p 0 = 0 for the compact (L 0 /D0 = 1) rods in both

figures, since there is no evidence of erosion. Then Eq (2.11) applies. If

Yt = 40 x 108dyne/cm2 for the mild steel target and Yt 2 90 x 108 dyne/cm2 for

the armor steel target, we find a =/ao/Co = .55 mm/us and .83 mm/us
0 0

respectively. If we use the (A/A ) values shown in Fig. 4.16 for L /D0 = 1,

we can calculate the lower curves in Figs. 4.14 and 4.15 in agreement with

experiment.

Now let us apply Eq (4.1) to the long rod curves in these figures.

For Perez' steel rods with Lo/Do = 22 mm/2 mm = 11 (M = .576 g) versus

aluminum, Vi was .012 g/mm. In Eq (4.9) with Perez' rod/target as combination

two, rPtlP - /7.85/2.8 = 1.67. For Hohler and Stilp's 0.96 g rod with
tl 2 -2 2L0 /Do ='25 mm/2.5 mm = 10, A o/Ao2 = (D 1/Do2) = (2.5/2) = 1.56, so po is

.031 g/mm. Since the aspect ratio is not quite the same, we will adopt

.033 g/mm as our estimate for the 0.96 rod. Since this rod has

Mo/Lo = .11467 g/mm, we findo = .156 g/mm (.1467/.1824) = .125 g/mm for this

very long rod. For the L0 /D 0 10 rods we will also assume that the erosion

rates are the same for either target. This may not be quite true but seems

good enough for our purpose, especially in the absence of measured values.

this puts the entire burden of accounting for the observed differences on the

hardness values we have estimated for each type of target. Of course

Sis also assumed to be independent of striking speed as well as any lesser

speed during penetration. This enables us to assign any speed dependence

beyond the explicit 0 2 factor in Eq (4.1) to the flattening factor, (A/A ).

If we use the flattening factors labelled L 0 /D = 10 and L /D = 32 in Fig.

4.16, we can calculate the upper curves in Figs. 4.14 and 4.15. The fact that

(A/A 0 ) depends only on aspect ratio and not on projectile mass (for the mass
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range examined) for any striking speed is an encouraging simplification. For

L /Do = 10 we note that (A/A ) - 9 as expected.

Hohler and Stilp also reported the area, A., of their target craters

measured at the original impact surface, at least for aspect ratios of 1 and
S(4.1)

10 . The ratios, (A c/A ), are shown in Fig. 4.17, together with the

flattening factors, (A/A ), from Fig. 4.15. The increase of (A /A ) with So

corresponds to an increase in taper of the crater cross sections. These were

roughly right circular cylinder for So near 2 or 3 mmAis, but acquired mouths

wider than the lower portions of the craters at higher speeds. For

S > 1.5 mm/us, the flattening factors we have assumed are less than the
0

values of (A c/A ). This provides a consistent picture at high speeds.

Unfortunately, Hohler and Stilp did not include any crater cross-section

photographs for So < 2 mm/us so we do not know the shape. However, for

S < 1.5 mm/us, we have assumed flattening factors which exceed the reported

values of (A c/A ). As we have noted, (A/A )-9 is consistent with Fig. 4.1b.

A reasonable conjecture is that at low impact speeds, the craters tend to have

a balloon shape like that in Fig. 4.8b for a long steel rod versus magnesium.

We might speculate that at low impact speeds, nose mushrooming takes place

during a relatively long time which is a significant portion of the entire

penetration time. After impact. the nose blooms and then later in the

penetration the mushroom cap rim reverses and begins to slim down and present

a more compact profile. This gives a balloon shape, with the diameter (or

area) of the crater mouth smaller than for most of the crater. At high impact

speeds the entire cap formation takes place early in the penetration and makes

the crater mouth wider than the rest of the crater. The time average area

presented by a high speed rod is unchanged for most of a penetration and

becomes independent of SL as well.

An alternate explanation for the discrepancy noted in Fig. 4.17 for

S < 1.5 mm/us is thatij o4 A/A as suggested by Eq (4.4). Thus, for low

impact speeds when A/A is significantly larger than 1 or 2, we cannot neglect0

a dependence of the erosion rate on impact speed. If u is higher at low

speed, perhaps three or four times higher near S0 = 0.5 mm/Ps for

S0 > 3.0 mm/us, then (A/A ) need not be so high at low speeds. If low speed

craters are observed to be approximately right circular cylinders instead of

balloons, then we should adopt this explanation, so (A/A ) 5 (A c/A ) at low

speeds instead of as shown in Fig. 4.17. This would make our calculation a
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little mv~re complicated since both P° and (A/A 0 ) would depend on So instead

of just (A/Ao) For some projectile/target combinations, P dependent on So
000

may be correct, while for other combinations it may be independent of S0 as we

assumed above. We don't have enough information to answer this question,
although, in the present case, the agreement between (A/A ) 9 9 and Fig. 4.1b

seems to favor P' independent of S . We will assume this to be true in the
calculations which follow, with the understanding that experimental evidence

may eventually require a change.

Now let us turn to a case which illustrates our third way. In Fig.

4.18, Christman and co-workers (4.23) held the mass of their mild steel rods

constant (M° a 0.6 g) while varying the aspect ratio as indicated in the lower

right.~ They launched these rods at the same speed, So = 3.4 mm/s against

targets idade of the same mild steel (BHN = 110 kg/mm reported) as the rods.

For one aspect ratio, L o/D = 9.525 mm/3.175 mm = 3, they also reported

penetration as a function of striking speed, as shown in Fig. 4.19.
In Fig. 4.18 we have also plotted PE/L0 versus (Lo /D ). A casual

reader, unfamiliar with such a plot, might think that penetration decreases as

aspect ratio increases, exactly the opposite of the truth. It seems better to

plot PE versus So' since plotting PE/L0 serves no useful purpose here, unlike

the examples of our first way, discussed above.

From Fig. 4.16 we expect (A/A ) to vary with aspect ratio and striking

speed in the manner indicated. This means that for S = 3.4 mm/Us, we expect0

S(A/A 0 ) to be almost independent of aspect ratio. Since material properties,

Sstriking speed and rod mass are all constant in Fig. 4.18, and since (A/A ) is0

practically. independent of aspect ratio, we conclude that Po must vary with

aspect ratio. This is hardly a surprise since we have already assumed that

f = 0 in Eq (4.8) for Lo/D° = 1, while f is a significant fraction of the

maximum erosion rate for L /D 0 10. We can still use Eq (4.9) to go from one

rod to another of equal aspect ratio. Thus we estimate P. = .033 g/mw0

(.0284/.0384) = .024 g/mm for the .6 g, Lo/Do = 10 rod here with

- 0/M IL = .6 g/21.1 mm = .0284 g/mm from the value we found for Hohler and

Stilp's .96 g, Lo/Do = 10 rod with Mo/Lo = .96 g/25 mm = .0384 g/mm.

However, we do not know how f varies for intermediate values of the aspect

ratio like 2, 3 and 4. Fortunately, the data in Fig. 4.19 for L /D 0 3

extend to high enough striking speeds that we can estimate the high speed

limit. to te M /u = .6 g/u = 18 mm. This gives * = .033 g/mm and implies
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L0 (mm) 4.50 7.16 9.52 11.68 21.10

DO(mm) 4.50 3.58 3.17 2.92 2.11
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0 I I I I I 1 0.0
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Lo/Do

Fig. 4.18. Steel rods (M 0 0. 6g, S = 3. 4mm/ps) versus same
steel.
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that f for Lo/Do . 3 is about 6/10 of f for Lo/D 0 u 10 in this case. For

L /D a 32 we earlier assumed that f was about the same as for L /D = 10.

Now let us apply Eq (4.1) to Fig. 4.18. For LO /Do 10,

U 0 .024 g/lm, so H 0W = 25 mm. With Yt = 33 x 10 dyne/cm (foro 00 o

BHN a 110 kg/mm') and (A/A ) = 2.4 from Fig. 4.16 for •o = 3.4 mm/As, we find

P = 22 mm in agreement with experiment. Similarly, for L /D 3,

U0 = .033 g/lm, and (A/A. ) = 2.2 from Fig. 4.18 we find PE = 12.5 mm. If we

assume the same P and (A/A ) values for Lo/Do = 2, 3 and 4 and merely use the

variation in A0 to find variations in Io, k, ao, co, • and E, we find
PE = 10.5 mm for L I/D =-2 and PE = 14 mm for L0o/D0 14. Since ui = .024 g/mm

for L0/D0 = 10 and P = 0 for L0 /D°0  1, this implies a maximum p in the

vicinity of L /D = 3.
Next we apply Eq (2.11) for Lo/Do = 1, vo = 0 and (A/Ao) = 2 from Fig.

4.18. We find PE = 9 mm which is a bit high compared to experiment. Perhaps

there is some erosion for a compact rod, or perhaps the flattening factors for

mild steel versus mild steel are not quite the same as in Fig. 4.16 as we have

been assuming.

Finally, we apply Eq (4..1," to F.g -4.19 with P° .033 o/z and (A/A
0

estimated from Fig. 4.16 to be slightly more that 2 for S0 V 2.1. / about
2.5 near S0 = 2 mm/Us and about 6 near S -= 1 mm/Ps. In this way we calculate

C)o

the curve in Fig. 4.19 which 'isrees with experiment.

Let us complete this section by considering two examples which

illustrate our fourth aad fifth ways.

Tate and '-z'-workers (4.24) impacted steel rods with various aspect

ratios against aiý(,: steel targets. The impact speed range they investigated

was small and low, generally from 1 to 1.5 mm/• s, so little can be said about

the effect of speed from their data. However, in some cases they kept the

impact s id onstant and changed the rod aspect ratio either by changing

the Iength ,ith constant diameter (our fourth way) or changing the diameter

wh!.e nolding the length constant (our fifth way). Here we will only consider

an example of each procedure.

In one set of experiments, they kept D 0 7.5 mm and doubled L from

22.5 mm to 45 mm, which doubled the aspect ratio from 3 to 6 as well as

doubling the mass from 7.75 g to 15.5 g. For a constant striking speed of

S0  1.525 mm/us, they found 13 mm for the shorter rod and 20 mm for

the longer rod.
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In our discussion of the fourth way above, we assumed that the erosion

rate in g/mm should not change if A is kept constant and the aspect ratio is

changed by varying L . If (A/A ) does not change either (as for higher

speeds), then doubling L. 0should double PE . However, at a low speed like

1.525 mm/vis, Fig. 4.16 leads us to expect an increase in (A/A ) as the aspect

ratio increases. Consequently, the longer rod will flatten more and its

penetration will be less than double that of the shorter rod. We estimate
P0 = .15 g/mm for either rod with Ao, Io, ao, c and k the same for either rod

also. This value of ý° is slightly less than we might estimate from Eq (4.9)(2.19)
since the rods used were considerably harder than the targets . For the

same reason we expect somewhat less flattening than is indicated from Fig.

4.16. If we use Yt = 90 x 108 dyne/cm2 as usual with A/A = 2.2 for L /D = 3

and A/A° = 3 for Lo/D = 6, we find PE = 13 mm and 20 mm respectively.

In another set of experiments, these authors kept L 0 56.7 mm, while
0

reducing D0 from 9.45 mm to 4.72 mm. This increased the aspect ratio from 6
to 12, while reducing the mass from 31.1 g to 7.75 g. When they used the same

striking speed, S = 1.45 mm/Ps, for each rod, they found PE = 23.5 mm for the• ~0
shotter, heavier rod and P = 15.5 mm for the Ionger, lighter rod. This is a

Eclear example where a decrease in mass is more important than an. increase in

aspect ratio in determining penetration depth. If course :he mw-s was

decreased by a factor of four, while the aspect ratio was m-y ooumlid. For

the L /D = 6 rod we keep (A/A) = 3 as before, and estima- .m2i g/mm we
0 0 0

find PE = 23.5 mm. For the L0 /Do = 12 rod, the mass per unit length Is lower
by a factor of four, so V = .06 g/mm. However, M is also reduced by the

0 0
same factor, so (M0 /o) 129 mm aga'n. Now PE = 15.5 mm,

It would be a better test of our theory, of course, if we had

independent, experimental aeterminations of Po and (A/A ). Since these are

not available, we have been forced to mal, -it imates. However, our estimates

are not arbitrary, and fit well with a variety of experimental information

gathered by various workers. Thi- illustrat~e.-, )io of the most important

characteristics of a good :neory, namely, its ability to connect pieces of a

puzzle into a coherent paoerri.
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a. Steel/Aluminum

(4,.23)
Fig. 4.20 is from Christman and co-workers and shows

cross-sections of three craters made by their 0.6 g, L^/D0 = 3 mild steel rods

striking soft aluminum targets (1100-0, BHN a 25 kg/mm ) at three different

speeds. The lowest striking speed, S0 = 1.9 mm/ s, is a little below the

shatter threshold evident in Fig. 4.21. As these authors remark, this is the

beginning of "the region where the projectile goes from gross plastic

deformation to complete fragmentation" (1.25) In Fig. 4.20a, the narrow

crater has a smooth, rounded bottom where the deformed mushroom cap came to

rest. The next highest striking speed, S0 = 2.9 mm/Us, is near the minimum

penetration in the shatter region. The crater in Fig. 4.20b is wider and

ragged near the bottom where pieces of the rod are strewn about. The highest

striking speed shown is S 0 1 4.4 mm/Ws. This is near the end of the shatter

gap, where the penetration starts to exceed its previous maximum value. In

Fig. 4.20c, the crater is still wider, quite ragged, and bulbous in shape.

T a pomen that,.at lower speeds, "most of the projectile remains

thtb~tom of 'the "crater,,. although grossl eorei"~B'*
= 5.3 mm/$, "the steel projectile has been completely broken up,. as

evidenced by*,the 'scouring' of the crater-wall by the projectile fragments;

and the~crat*r has taken a 'bottle' shape with the maximum diameter
('4.26)

approximately halfway down the crater rather than at the surface"

Presumably, at much higher striking speeds, the crater will approach a

hemi-spherical shape.

The three pictures in Fig. 4.20 correspond to the three data points

with flags in Fig. 4.21. This figure also shows a lower curve for the same
2steel rods impacting harder aluminum targets (2024-T3, BHN = 125 kg/mm2). The

effect of target hardness on penetration is obvious over the entire striking

speed range investigated, and is still 25 to 30% near S = 5 mmbs. The

softer target shows a clearer shatter threshold at a lower speed. The harder

targetcurve resembles Fig. 4.12 (also steel/2024 aluminum), although the rods

in Fig. 4.12 had a larger aspect ratio. Since ',he projectiles in Fig. 4.21

were the same for both target materials, it is clear that target hardness as

well as target density can influence the shatter threshold. If we compare

Figs. 4.21 and 4.19, we see the effect of tarlj,,t density on penetration. The

effect of target density on nose shatter is not r'vide-_ q:wever, since there
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"CIO 15 STEEL RODS

Lo/Do=3.0, 0.6g

1100-0 ALUMINUM TARGETS

1.90 mm/AS 2.90 4.40

(a) (b) (C)

Fig. 4.20. Crater Sections, Velocity Effects
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is no information in Fig. 4.19 for S < 1 mmAjs where we might expect shatter,
0

if the rod were hard enough.S(14.23)
Fig. 4.22 is also from Christman and co-workers and is

comparable to Fig. 4.18 (steel/steel) with the addition of two data points for

L /D = 15 and 20. The table in Fig. 4.18 is easily extended to give

Lo/Do= 27.75 mm/1.85 mm = 15 and Lo/Eo 34 mm/1.7 mm = 20, both with

M = .6 g. The same striking speed, S0  3.4 mm/us, was used in both Fig.

4.18 and Fig. 4.22. Only the targets were different. Penetrations into soft

aluminum are about twice as deep as into mild steel for any aspect ratio at

this speed.

We recall that Perez (4.14) also impacted steel rods ML /D = 11)

against aluminum targets which were a bit harder (BHN - 40 kg/mm2 ) than the

soft aluminum targets here (BHN = 25 kg/mm2). From Perez' data in Fig. 4.11

we found an erosion rate of .012 g/mm. For the Lo/Do = 10 rod in Fig. 4.22,

we might expect about the same rate, perhaps a bit smaller. This gives us a

starting point from which to estimate erosion rates for the other aspect

ratios in Fig. 4.22. From Fig. 4.18 for the same steel rods versus steel, we

recall our estimates of .024 g/mm for L /D 10 and .033 f/mm for L 0D = 3.

That is, the shorter rod had an erosion rate about one-third larger than the
longer rod. In this way, we can estimate p = .015 g/mm for the L /D = 3 rod

versus aluminum. As the rod diameter decreases for Lo/Do > 10, we expect the

erosion rate to decrease somewhat, provided the flattening factor is

independent of aspect ratio at this high striking speed. Thus, we estimate

S= .010 g/mrm for L 0 /D0 = 15 and u = .0094 g/mm for L /D = 20. This

decrease is also required if the very high speed limit (Mo0 Ao) is to exceed

the penetration values reported in Fig. 4.22. For Lo/Do = 1, we assume Vo = 0

as before, and use Eq (2.11) instead of Eq (4.1) to calculate the penetration.

We also assume (A/A ) = 2.4 for any aspect ratio in Fig. 4.22. This lets us0

calculate the curve which seems to agree well with the observations.

In order to calculate the two curves in Fig. 4.21, we assume

Po = .015 g/mm to be the same for both targets. This is similar to the

assumption we made for mild and armor steel targets in Figs. 4.14 and 4.15

where the hardness values differed by a factor of about 2.25. In Fig. 4.21

the hardness values differ by a factor of 5, so this assumption may be less

correct. Still, it allows us to make the target hardness responsible for the

observed differences in penetration. If we proceed in this way, we have
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A u .079 am 2 and I0 z 8 mm/g for the Lo/Do = 3 rod, as before. For either,

aluminum target we have c 0 .0107 g/mm. For the hard aluminum target, we

find a0 a .009 g mm/•s , and for the soft aluminum target,
0 2

a 0 .0019 g rm/us . Then we can use the (A/A ) values shown in Fig. 4.23 to0o 0

calculate the two curves in Fig. 4.21.

Both (A/A ) curves in Fig. 4.23 have the same form, decreasing as 00 0

increases from a low value, then increasing above the shatter threshold, and

levelling off at high speed. This occurs for S 0 14.5 mmAws for the hard

target and for So 0 3.2 mm/us for the soft target. The latter value is just

below •o = 3.4 mm/us in Fig. 4.22, and the value (A/A0 ) = 2.7 is what we used

for all aspect ratios there. Both curves in Fig. 4.23 approach the same high

speed limit, since density rather than hardness seems to control lateral

confinement at such speeds. Of course, hardness as well as density controls

penetration depth as we have seen. The value (A/A ) = 2.7 is not much

different for steel/aluminum than for steel/steel in Fig. 4.16, where (A/AO)

versus S has the same general form, as expected.0

The vertical scale in Fig. 4.23 has been made the same as in Fig. 4.16

to facilitate comparisons. An obvious difference is the absence of a minimum

in Fig. 4.16. Another difference occurs for striking speeds less than

1.5 mm/Ps. For example, near S = 1 mm/us, we can estimate (A/A ) = 6 for

L/D =3 steel rods versus steel from Fig. 4.16. From Fig. 4.23, we see that

near SL 1 mm/us, (A/A ) ; 3 for the same steel rods versus aluminum.

Apparently, the less dense aluminum targets are less effective at initiating

flattening of these rods at low speeds. Of course, the opposite is true at

high speeds where the less dense aluminum provides less lateral confinement

than steel. Of course both aluminum targets are softer than the softest steel

target, although the hard aluminum is almost as hard as the mild steel

(BHN = 125 kg/mm2 versus BHN = 135 kg/mm 2).

We recall from Fig. 3.13 that an aluminum target did not flatten a

hardened steel sphere at all for S : 1.5 mm/us. It flattened a softened
0

steel sphere somewhat, giving (A/A 0 1.67 near So = 1.5 mm/us. A mild steel

sphere has a value of (A/A ) between 1 and 1.67. As we see from Fig. 4.23, a
o

short mild steel rod has (A/A 0 2 near S = 1.5 mm/us for either aluminum
0o 0

target. This agrees with our expectation that a blunt rod deforms more than a

sphere under similar conditions.
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We recall from Fig. 3.6 that a mild steel target was more effective at

flattening the same softened steel sphere than an aluminum target, giving

(A/A 0 1.8 at a lower speed, S = .7 mm/.s. This trend agrees with what we

see in Figs. 4.16 and 4.23, although the differencesare more pronounced for

rods than for spheres.

The two curves in Fig. 4.21 also remind us of the two curves in Fig.

3.16 where hard and soft aluminum targets were also used to stop the same

projectile (aluminum spheres in that case). In Fig. 3.16 there was a 40 to

50% difference in penetration depth up to S = 9 mm/us. In Fig. 4.21, the0

difference is 30 to 40% up o to = 5 mm/Ps. In Fig. 3.16 a single flattening

factor, (A/A ) = 1.3, sufficed for aluminum spheres/aluminum over the entir'

range studied from So = 3 mm/us to So = 9 mm/us. Most likely, this ia he

high speed limit value of (A/A ) for this projectile/target comb'.-atJ.n.

is less than the comparable high speed limit value for steel rod, 1, F:i.. 4.23

as expected, both because rods tend to deform more than spheres and O .'ii±l

spread laterally more in an aluminum target than aluminum will.

Finally, let us recall that for Fig. 3.13, we conjectured 'ar'.t tne

curves for hardened and softened steel spheres might converge at •ighe

striking speeds and have a single (A/A ) value between 1 and 1.67, a-.- they liii

in Fig. 3.6, with (A/A ) = 1.5 as the high speed limit value for steýel 4pherc-q0

on steel. This is close to the value (A/A ) = 1.3 for aluminum spheres on

aluminum. In the next section (Fig. 4.24) we will see a case where soft and

hard short aluminum rods have somewhat different penetrations against the same

aluminum target at low speeds, but have the same penetration (and same high

speed flattening factor) for S 0 34.5 mm/ws.
0

d. Aluminum versus Steel and Aluminum

The lower curve in Fig. 4.24 is for M .2 g, L /D 3 aluminum rods

versus mild steel targets. It is also from Christman and co-workers (4.23)

who used both soft and hard aluminum rods, but found no difference in

penetrating steel targets. The upper curve ir Fig. 4.24 is the same as Fig.

4.19 for 0.6 g, L /D = 3 mild steel rods versus mild steel targets and is

included here for comparison purposes. The target materials as well as the

projectile geometries are identical for both curves in Fig. 4.24. They differ

only in projectile density which leads to a factor of three difference in
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3.0

30 40

L. 0 /D 3) of difrn srnth versu mil stel

0 2 4 6 8go (mm Ips)

Fig. h4.25. Flattening factor for alumiinum rods (M -. 2g,
0

Lo/Do = 3) of different strengths versus mild steel.
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projectile mass. However, the penetration depths differ by a factor of two

because of differences in erosion rate and flattening. This is an example of

our second way.

In the usual way, we estimate 1 = .019 g/mm, assuming a smaller

high-speed flattening limit then for steel/steel because of the smaller

projectile density. If we use the (A/A ) values shown in Fig. 4.25, then Eq

(4.1) lets us calculate the lower curve in Fig. 4.24. Once more the agreement

with experiment is satisfactory.

Christman and co-workers (4.23) also impacted a variety of aluminum

rods against aluminum targets. Fig. 4.26 shows three soft (1100-0) aluminum

rods which were recovered after striking soft (1100-0) aluminum targets at

three different speeds. All of the rods had M .2 g, L /D = 3. The

increase in deformation with striking speed is clear. For S = .31 mm/is the0

diameter of the nose has increased by about 50% so the flattening factor is

about two. For S = .45 mm/us, the final diameter has doubled, so (A/A ) is0 0

probably 4. For So0 = .98 mm/is, we see the formation of a mushroom cap and a
decrease in (A/A ) as the projectile becomes more streamlined at higher

striking speeds.

Fig. 4.27 shows three aluminum rods with different hardness values

recovered after striking soft (1100-0) aluminum targets at the same speed,

S = .9 mm/ps. All three had Mc 0 .2 g, L0/D0 = 3 as in the previous figure.

Since the striking speed here is almost the same as that in Fig. 4.26c, it is

not surprising that the mushroom shape is about the same. The medium-hard rod

in Fig. 4.29b has deformed much less, while the hardest rod in (c) has only

begun to deform with a combination of plastic flow and chipping. Tiny flares

for flight stability are visible in some of the pictures.
Fig. 4.28 gives data for soft (1100-0) and medium-hard (2024-T3)

aluminum rods versus soft (1100-0) and medium hard (2024-T3) aluminum targets.

Once more the undiminished importance of target hardness is evident to

S> 6 mm/us. Christman and co-workers (4.23) also reported experiments with0

inhibited jets against these targets. Inhibited jets are jet tips with the

rest of the jet removed. Usually they are produced from small angle cones and

have high tip speeds approaching twice the explosive detonation rate (4.27,

4.28) These authors found that the importance of target strength was

undiminished up to 15.7 mm/1s, far above normal jet tip speeds. From such

experiments it is clear that one simply cannot neglect target strength at any

such speed, at least for compact projectiles.
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1100-0 ALUMINUM RODS

Lo/Do=3.0, 0.2 g

I100-0 ALUMINUM TARGETS

0.31 mrm,/,Ls 0.45 0.98
(a) (b) (c)

Fig. 4.26. Recovered Projectiles, Velocity Effects
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Anotiher Important feature in Fig. 4.28 is the low speed difference in

penetration for soft and hard projectiles against the soft target. This is

comparable to Fig. 3.6 for soft and hard steel spheres versus a mild steel

target. But in Fig. 4.28 there is no observable difference against the harder

target. The shape of the curve for the harder aluminum (2024-T3) rod versus

the soft aluminum (1100-0) target is similar to that of the upper curve in

Fig. 4.21 for a geometrically identical steel rod versus the same aluminum

target. If softened steel rods had also been used in Fig. 4.21, presumably

there would be another set of data points somewhat below the upper curve at

low speeds, which would merge with the upper curve for > 3.5 mm/ps. The

uppermost curve in Fig. 4.28 offers some evidence of nose shatter, but only

for the harder rod, and only against the softer target. Against a target of

equal (or greater) hardness, any difference there may be between plastic

deformation and shatter is not observable. Perhaps the hard target provides

enough lateral confinement to prevent the onset of spreading, if shatter

occurs, something a much softer target cannot do.
Figs..4.27a and 4.27b show soft and hard rods recovered from the soft

target after striking it at a speed where the difference in penetration in

Fig. 4.28 starts to be observable. Clearly, the harder rod has flattened

less. There also seems to be a chip missing similar to what is seen for the

still harder rod in Fig. 4.27c. This suggests a beginning of shatter.

It is interesting to compare. Fig. 4.28 with Fig. 3.16 for aluminum

spheres (DO 4.76 mm, M = .158 g) versus soft and hard aluminum targets.

The rods in Fig. 4.28 are 25% heavier than the spheres. However, their

penetration is more than 25% greater against comparable targets in spite of

erosion and greater flattening, because of their greater aspect ratio as well

as their greater mass.

The curve in Fig. 4.28 for the soft aluminum rod versus the soft

aluminum targot is comparable to that in Fig. 4.19 for a geometrically similar

mild steel rod versus a mild steel target. Christman and co-workers also

reporteA data for aluminum/aluminum similar to that in Fig. 4.18 for

steel/steel, which we will not discuss here, since the principles involved

have already been illustrated.

By the usual procedures, we estimate o = .008 g/ which we will

assume to be the same for either rod versus either target. This approximation

may not be as close to the truth as it was in other cases where the target
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ALUMINUM RODS

Lo/Do:3.0, 0.2g, 0.90mm/ls

1100-0 ALUMINUM TARGETS

J~ 4.

1100-0 2024-T3 7075-T6

() 1(b) (c)

Fig. 4.27. Recovered Projectiles, Material Effects
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3.0 A EITHER ROD/2024-T3 TARGET

8 1100-0 ROD/1I00-0 TARGET
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Fig. 4.29. Flattening factors for aluminum rods (MR - .2g,

L /Do = 3) of different strengths versus targets of

different strengths.
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strengths differed by less than a factor of five. Again, this assumption puts

the burden on (A/A ). If we use the (A/A.) values shown iM Fig. 4.29,

together with target strengths of 10 x 10sdyne/cm2 and 50 x 10 8dyne/cm2 for

the soft and hard targets respectively, we can calculate the curves in Fig.

4.28 from Eq (4.1). In Fig. 4.29 we see the expected shapes for the soft

target with a merger of the two curves at high speed. For the hard target,

however, we see a slightly larger flattening factor out to 6 mm/.s. The

difference is only about 10%, and may be due to our assumption that P0 is the

same for all rod/target combinations.

e. Tungsten versus Aluminum, Steel and Tungsten

Hohler and Stilp (4.1) used two sizes of tungsten alloy rods
(Pp= 17 g/cm3 , Mo = 3.2 g, L /D0 = 29.1 mm/2.8 mm = 10.4 and M0 = 30.9 9,

L /D = 62.4 mm/6 mm = 10.4) versus mild and armor steel targets. Later
(ý.29) they used similar rods against two slightly different aluminum targets,

both with Pt = 2.85 g/cm3 and BHN close to 80 kg/mm2 . In addition, they used

targets made from the same tungsten alloy as the rods (BHN = 270 kg/mm 2).

Still later (4.22) they used a slightly stronger version of this tungsten

alloy to make rods of various aspect ratios and fired them against armor steel

targets (BHN = 330 kg/mm2 ). As expected, small changes in projectile hardness

made no'observable difference.

Fig. 4.30 shows data for their smaller tungsten rod versus aluminum,

mild steel and tungsten. The horizontal dashed line is the aluminum

hydrodynami'c limit which is about 50% low at high speeds. The hydrodynamic

limits for steel and tungsten are not shown, but are only 10-15% low.

Let us estimate erosion rates by starting with our estimate for Hohler

and Stilp's 0.96 g steel rod, L /D° = 25 rm/2.5 mm = 10 versus steel, which

was .033 g/mra. Eq (4.8) involves not only the ratio of the areas,

(2.8/2.5)2 = 1.25, but also the square root of the ratio of the rod densities,

,17/7.95 = 1.47, so for this tungsten rod versus the steel target we have

PO = (.033 g/mm)(1.25)(1.47) = .06 g/mm. This gives a high-speed penetration

limit of Mo /P = 3.2 g/.06 g/mm = 53 mm, which agrees with the trend in Fig.

4.30. For the tungsten target we must multiply .06 g/mm by the ratio

/Pt /P /17/7.85 = 1.47 to obtain .088 g/mm. This gives a high-speed
ti t2

penetration limit near 36 mm which seems a bit low in view of Fig. 4.30. If
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we adopt P = .08 g/mm, we obtain a more reasonable limit values. Then, for
0

the aluminum target, we can multiply .08 g/mm by the appropriate square root

of the target densities to obtain Po = .03 g/mm and a limit in agreement with

Fig. 4.30. Such rough estimates are about the best we can do with the

information available. Now when we use Eq (4.1.) with the flattening factors

shown in Fig. 4.31 we calculate the curves in Fig. 4.30 in reasonable

agreement with experiment. At low speeds we expect the highest (A/A ) value0

for the tungsten target and the lowest for the aluminum target. The lack of

any difference at high speeds may be due to the approximate nature of our

calcalations.

Fig. 4.32 shows some of Hohler and Stilp's (4.22) data for tungsten

rods of various aspect ratios versus armor steel. In particular, the examples

shown are for L 0/D 0 163.2 mm/5.1 mm = 32, L0/Do = 41.7 mm/4.17 mm = 10, and

Lo/Do = 9 mm/9 mm = 1. For this last case we again assume that there is no

erosion and use Eq (2.11) with the flattening factor shown in Fig. 4.33, which

is almost independent of striking speed. The Lo/DO = 10 example chosen here

was selected because it has about the same mass as the Lo/DO= 1 example.

With an erosion rate 1o = .13 g/mm and the (A/Ao) values in Fig. 4.33, Eq

(4.1) gives us the curve shown. Finally, the L 0 /D0 = 32 example was almost

six times as massive as the other two rods, so the deeper penetration evident

in Fig. 4,.32 is not simply due to larger aspect ratio. A better comparison is

with the Lo/D0 = 32 steel rod in Fig. 4.15, which was about the same size and

somewhat less than half the mass. An erosion rate Pl = .2 g/mm was determined0

in the usual way, and this together with the (A/Ao) values in Fig. 4.33 used

in Eq (4.1) give us the curve in Fig. 4.32. In all cases there is reasonable

agreement with experiment. The trends in Fig. 4.33 are similar to those in

Fig. 4.16 for steel rods, except for Lo/D° = 1. We recall Fig. 4.1a where the

compact steel rod was considerably flattened at low speed. Unfortunately,

Hohler and Stilp did not give a comparable photograph for a compact tungsten

rod at low speed. They did, however, show photographs of Lo/Do = 10 tungsten
rods deformed at low speeds which are presented here in Fig. 4.34. If

we compare with Fig. 4.1b, it is obvious that the mushroom cap rim has broken

off the tungsten rods at some point in time, while it is still present on the

recovered steel rod. From Fig. 4.2a, the rim appears to be present on a

tungsten rod at the beginning of a penetration into steel. We may conjecture

that it is present during most of the penetration and breaks off near the end.
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Fig. 14.32. Tungsten alloy rods versus armor steel.
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off.
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We might also conjecture that a compact tungsten rod which produces only a

shallow crater, breaks much sooner and so does not have a much larger (A/Ao)

value at low speed tha-. at high speed.

Silsby (4.30) also reported data for tungsten alloy rods

(p = 17.3 g/cm3 ) versus steel targets (BHN = 230 to 270 kg/mm2 ). He used

two rod sizes M = 98 g, L /D 0 155.8 mm/6.77 mm= 23 and M = 46 g,

L /D = 121.8 mm/5.3 mm = 23. His data points are shown in Fig. 4.35 together

wich horizontal dashed lines representing the hydrodynamic limits.

By the usual method we estimate Po = .217 g/mm for the 46 g rod and
.37 g/mm for the 98g rod. Then Eq (4.1) together with (A/A ) values for

L /D 0 23 fromd Fig. 4.33 gives the two curves in Fig. 4.35 in agreement with

experiment. For example, for S = 1, we can use (A/AO) 8, and so on.

Tate and co-workers (4.24) also impacted tungsten rods of various

aspect ratios against steel targets over a rather small speed range. We could

use this data as we did their stael rod data, but nothing new would be learned.

f. Copper versus Copper, Aluminum and Steel

(4.3)
Finally, let us examine some data reported by Weihrauch for

copper rods (p 8.96 g/cm3 M= 3.8 g, L /D = 60 mm/3 mm = 20) impacting

copper, aluminum and - ets.

-Fig. 4.36 ( 4 ,3 L)is 4 sequence of photog,'.phs t:0 copper rods which

were recovered after otriking copper targets at various speeii. The targets

were annealed and somewhat softer (Y t 10 x 10 8dyne/cm2 ) than the rods

"( 20 x 10 dyne/cm ). For the lowest striking speed used, S°, .050 mm/us,

compression of the rod nose is barely perceptible and there is only a shallow

dimple, 06 mm deep, in the target face shown at the right. As the striking

speed increases, the recovered r,.d appears shorter and fatter and the crater

depth gradually increases. A round head backed by a flare appears on the rod

nose, until, by So = .689 mm/i.s, the rod has been turned into a mushroom cap.

At this speed, the crater in the target is still only 6 mm deep, so the

projectile was easily recovered. For the highest striking speed shown,

0 = 893 mm/us, the crater is 17 mm deep and the target must b? sectioned in0

order to examine the remains of the rod, as shown in the final picture Part

of the rod has become a ibollow tube which lines the crater wall, while the

rest fills the bottom of the hole. Recall Fig. 4.4 above for the condi.ion of

the rod after impact at still higher speeds,
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Fig. 4.37 (4.31) shows a similar sequence of photographs of the same

rod recovered after striking a very hard steel target (steel RHF11,
Yt 200 x 108dyne/cm2) an order of magnitude harder than the rod. For

S= . 0 5 m m / u s , t h e t a r g e t d i m p l e d e p t h w a s t o o s h a l l o w t o b e m e a s u r e d . F o r0

S = .461 mm/us, the depth was only .065 mm, about the same as for the copper

target when So = .050 mm/Ps. For So about .4 mm/us, the rod nose petals and

the projectile can be said to splatter on the target face.

Fig. 4.38 (4.32) shows penetration depth versus striking speed for

these copper rods against three types of target, annealed copper (which has

already been described), hard aluminum (Ytn 45 x 108dyne/cm2) and a steel

which is still harder, but much softer (Yt- 180 dyne/cm2 ) than the RHF11 steel
used in Fig. 4.35. At the lowest speed used against this (St 50) steel

target, namely, S = .22 mm/us, the crater depth was .038 mm compared to0(gt.33)
.014 mm in the very hard steel target (4.33)

Copper rods are not generally used in practical applications.

However, they provide an example of a very weak, ductile penetrator material

of medium density which can be compared with penetrator materials we have

already examined, such as aluminum, steel and tungsten (of low, medium and

high density, but much stronger than the copper used here, which is more

comparable to lead, commonly used for bullets). Copper is also widely used to

form shaped charge jets, so long rods made of copper can provide some basis
for comparison there as well. Fig. 4.38 gives us a good example at low speeds

of the importance of target strength versus target density. If target density
were the only important factor, then the penetration curve for the copper

target ought to lie below the curves for steel and aluminum, instead of above.
The copper target material is so weak, however, that its greater density does

not compeasate for its lack of strength. We have already seen another example

not quite as extreme as this. The hard (2014) aluminum target in Fig. 3.12

above does about as well against a tungsten sphere as the much softer lead

target up to at least 3 mm/ils, in spite of the relatively low density of

aluminum.

Once more, we are dealing with a rod material for which we have no

measurements we can use to estimate an erosion rate. If we follow the sane

procedure we used for tungsten rods, we estimate u to be .059, .032 and
0

.055 g/mm for the copper, aluminum and steel targets respectively Since M
o

3.8 g, the high speed-limit penetration, Mo/lo, is 64.4, 119 ard 6 mm
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Fig. 4.37. Defornmed Copper Rods Recovered after Impacting a Very Hard Steel Target.
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Fig. 4.38. Copper rods (M° = 3.8g, L /D = 20) versus copper,
0~00

aluminum and steel targets.
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respectively. These values are only about 8% higher than the hydrodynamic

limits. The first value seems reasonable in view of the bending of the copper

curve in Fig. 4.38. However, the highest speeds used for the aluminum and

steel targets were too low to irdicate bending of the curves. The three

values of Mo /O increase as the density decreases, following the Ii/p41 rule in

Eq (4.8). Thus, we expect the curves in Fig. 4.38 to cross at higher speeds.

However, we have no experimental information on this point.

If we uie the pavzameters already given, together with the flattening

curves in Fig. 4.39 in Eq (14.1), we calculate the penetration curves in Fig.

4.38. Again, the influence of target strength is evident in Fig. 4.39 since

the copper target flattens the rod less than the other targets in spite of its

greater density. The relative flattening by copper and steel agrees with the

trend in Figs. 4.36 and 4.37 as well. However, the steel used in Figs. 4.38

and 4.39 is much softer than that in Fig. 4.37 and does not petal and splatter

the rod as the very hard steel target does. Still, the (A/A value for steel

near S 0 0.9 mm/.s is about 16, so the mushroom cap diameter is about 4 times

the original rod diameter, compared to only 3 times for the copper target at

this speed. The latter value agrees with the last photograph in Fig. 4.36.

D. Finite Target Examples

1. Steel/Steel

Compared to studies of penetration into semi-infinite targets, there

are relatively few examples of target perforation in the open literature,

which contain enough data above the ballistic limit that Lhe shape of residual

speed or residual mass curves can be determined as a function of striking

speed. Consequently, this section will be much shorter than the previous

6section.

Fig. P.140 shows a seres of supe-impos.ý-d X-ray photographs of a 7.73 g
2

steel rod (BHN = 555 kg/mm , L /D 50 mm/5 mm = 10) perforating an armor
20 

0
steel plate (BHN = 400 kg/mm2, T 0 6.35 mm), reported by Herr and Grabarek

I(4 0)
''"-'. The striking z•peed was 1.657 mmAls, the highest speed in Fig. 4.11.

From the latter figure we see than both the residual npeed and the residual

mass increase as striking speed increases above the ballistic limit. From

Fig. 4.40 it is clear that there is a lot of debris around the penetrator as
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Fig. 4.39. Flattening factors for L /D 20, copper rods versus

copper, aluminum and steel..
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?~~ ~~ I RESIDIAL ROD VELOCITY * 50 /-"- " TIME AFTER IMPACT RESIOtJAL ROD WEIGHT & 14 GRAMS

~I0
to ft .

SRrIKNS VELOCITY - 457 M/SEC
STRIKIIS w YAW - -.5.
.. . ... ,- FRAGMENT VELOCITY M 1500 M/SEC- 404 M/SEC

FRAGMENT WEIGHT • 246 MILLIGRAMS - 19 MILLIGRAMS

TOTAL ANGUAR FRAGMENT SPREAD,858S

Fig. 4.40. 1.78 gram Bearcat Rod, BHN 555, L/d = 10, perforating
6.35mm RH Steel Armor, BHN 400, at normal obliiuity.
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50.5 mm

STRIKING VELOCITY (m/s) 678 719 803 969 1657

RESIDUAL VELOCITY (mr/s) 308 369 556 826 1518

IMPACT YAW () 1.5 2.6 1.5 2.1 1.4

RESIDUAL WEIGHT 0.56 0.61 0.73 0.78 0.82
ORIGYNAL WEIGHT

RESIDUAL LENGTH 0.59 0.61 0.74 0.78 0.81
ORTGINAL LENGTH

Fig. 4.4l. 7.78 gram Bearcat steel rod, GHN 555, L/d 1 10,
perforating 6.35mm RH Steel Armor, BHN 400, at 0
obliquity.
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it exits from the back of the target. This is not surprising, if we recall

our discussion of breakout effects in Chapter III, especially the crater

formed at the back of the target, illustrated in Fig. 3.17. Herr and Grabarek

report that Just above the ballistic limit an intact plug is visible. In the

case we are considering, this plug has a diameter about 1.75 times the

original rod diameter, a thicKness equal to 0.65 times the plate thickness,

and a mass near 25% of the original rod mass for the 6.35 mm target, or twice

this mass for a 12.7mm thick plate. As the impact speed increases above the

ballistic limit, this plug begins to break up. Well above the ballistic

limit, it shatters into small pieces, as illustrated in the far right picture

in Fig. 4.40. The shape of the debris cloud around the penetrator nose in the

pictures at the center of Fig. 44.40 suggests that the mushroom cap formed at

impact is suddenly released from lateral target confinement when the plug

forms and the target fails. For a high speed impact such as the on"

illustrated, it is not possible to distinguish shattered target plug material

from eroding rod nose material. However, a careful inspection of the length

of the rod in the last few pictures at the center of Fig. 4.40 suggests that

the rod continues to lose mass after it has pierced the plate. This is not

unexpected, since the shocked nose material is still pushing against the

remnants of the shattered plug, at least for a short time. Just above the

ballistic limit, the shocked nose is pushing against a massive, intact plug

for a l6nger time, since the exit speed is lower. Consequently, we expect

more mass loss after perforation at lower impact speeds than at higher impact

speeds, as observed.

The residual speed and residual mass data shown in Fig. 4.41 for the

6.35 mm thick plate have been plotted in Figs. 4.42 and 4.43. Similar data

for a target plate twice as thick were also reported and are included in these

figures. The reported velocity ballistic limits are also included in Fig.

4.42. Obviously, more data points at other speeds would help delineate the

shapes of these curves. However, we must make do with the data available,

which is the best there is. At least trends are evident which are beyond the

uncertainties of the experiments.

Now let us examine an explanation which is consistent with These

observations. We ,xpect to be able to use Eq (2.20) to calculate t~v (*e-idual

speed, SR, This -.peed was measured using two X-ray flashes a"; n L.'

enough behind the target plate that all parts of the rod are travelling at the
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•,6.35 mm

eft 12.7 mm
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Fig. 4.43. Residual mass of steel rods (MO 7.7 8 g, L0 /Do = 10)

perforating armor steel target plates (To m 6.35 and

12.7mm).
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same speed, the residual speed of the center of mass, R kPR, where is

the penetration speed at the moment of target failure. Consequently, we can

re-write Eq (2.20) as

SA 2 + 2 (MRIMo) 0 E 2 (4.42)SR 9E + SoJ( /

where C kia/d and C = .5P4 k/6 as before, and

MR/Mo 1 - (1 0o/M ) T (4.43)

from Eq (2.15) with P = T at breakout. We can estimate Uo from mass per unit

length considerations as usual, using 0.156 g/mm estimated above for Hohler

and Stilp's 9.85 g, Lo/Do = 10 rod with Mo/Lo = .1824 g/mm. Here Herr and

Grabarek's rod has M /L 0 .154 g/mm, so uO = .132 g/ram. Similarly, we find

IO = 3.185 mm for this 7.78 g rod. Since the target hardness is

BHN = 400 kg/mm2 or Yt = 120 x 10 8dyne/cm 2, we find ao = .072 g mms s2 and

a = .0785 g/mm for the rod. Our estimate of U gives us k = 1 + I = 1.42,
O0 00

while an estimate of (A/Ao) for given So will give us a = ao (A/Ao) and

co (A/Ao) - 'ogo . The only parameter we need is T in Eq (4.43).
First, let us consider the 12.7 mm plate. Just above the ballistic

limit a plug was seen with thickness 0.65 TO 3.2 mm. This implies that the

target failed when T = 0.35 To 4.5 mm = P. Since (Po/Mo) ;- .017 mm in Eq

(4.43), then MR/Mo ; .92 at this moment. In order to estimate (A/A0 ) versus
So' we turn to the curve labelled Lo/DO = 10 in Fig. 4.16 above. This appears

as the upper curve in Fig. 4.44 labelled 12.7 mm. Here we are assuming that

the 12.7 mm thick plate is thick enough to produce a time average area, A,

about the same as a semi-infinite target, at least in the speed range of

interest here, which is above I mm/us. Thus, for example, (A/Ao ) is about 7
for the ballistic limit reported, S = 1.06 mm/us. This gives

2

a .504 g mm/us , c = .549 g/mm, c .493 g/mm, & = 1.43 ram/ws and E = .19.

Eq (4.42) becomes

= •(1.43) + (1.06)2 (.92) - (1.43)2 0 . (4.44)
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Fig. 4.44. Flattening factors for L o/D 0 10 steel rod versus

armor steel plates of two different thicknesses.
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Similarly for o 1.1 mm/us, we have (A/A0 ) near 6 so 1 = .45 mm/us and

e .22, so

R = /C(1"45)2 + (1.1)2) (.92) 1/.22 _ (1.45)2 - .45 mm/us (4.45)

Likewise, for S0 = 1.34 mm/us, we have (A/A ) ; 4, so { 1.5 mm/us, E = .36,

and

R = /[(1.50 )2 + (1/34)2] (.92) 1.36 _ (1.50)2 .98 mm/us. (4.46)

These values are all in reasonable agreement with experiment as can be seen

from Fig. 4.42. For still higher speeds, we expect (A/A ) to approach 2.4 as

in'Fig. 4.16 so that ý - 1.6 mm/us and e + 0.7. Since 42 and (MR/Mo0 )1/

reach fixed, finite values above So = 2.5 mm/us, then SR - So in Eq (4.42) as

g increases without limit. This means an approach to the straight line in0

Fig. 4.42 marked To = 0 for which SR = So, as in the case of no target at all.

In other words, at sufficiently high impact speeds, the rod loses little

speed. However, it should continue to lose 8% of its mass before target

failure, being reduced to 7.2 g at that moment. In addition, it will probably

lose up to a gram more after target failure as the shocked nose continues to

interact with the shattered plug.

Next, let us consider the 6.35 mm plate. The plug thickness was about

0.65 T • 4.15 mm Just above the ballistic limit, implying target failure for
0o -1

P = T =0.35 T0 2.2 mm. With (P /Mo) 0 .017 mm as before in Eq (4.43), we

find M R/Mo = .96 when the target fails, implying a residual mass near 7.5 g at

this time. Since this target fails earlier than the thicker target, we might

expect that the time average area, A, at any impact speed in the range of

interest should be smaller. In other words, there is not enough time to

flatten the nose as much as a thicker target does. If we use the lower curve

in Fig. 4.44 for this thinner target, then we can calculate the upper curve in

Fig. 4.42 in agreement with experiment. For example, at the reported

ballistic limit, Sg = .65 mmAis, we find (A/A ) near 6, so

SR /(1".45)2 + (.65)2) (.96)1/.22 - (1.45)2 = 0 (4.47)
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Similarly, for = 1.5 mm/is, we find (A/Ao) - 3, so

4(1.56 )2 + (1.5)2 (.96) - (1.56)2 = 1.38 mm/us (4.48)

with intermediate values for intermediate speeds. Again, there is reasonable

agreement with experiment.

As we reduce the target thickness to zero (T 0 0) then T ÷ 0 in Eq
(4.43) and MR/Mo 1 1 in Eq (4.42) so R = A'o the straight line in Fig. 4.42.

Thus we are able to calculate residual speed versus striking speed

curves with this model. However, Eq (4.43) only gives us the residual masa

when target failure occurs, which is an upper limit on the residual mass, but

is much larger than the residual mass observed at later times. Now let us try

to estimate the residual mass at later times as a function of striking speed

for these two target plates.

First, consider the 12.7 mm plate which for SO = 1.1 mm/is has a

residual mass of MR! 2.8 g, implying a loss of about 5 grams. A rough

estimate of the time to failure is T/S 0 = 4.5 mm/1.1 mm/ps = 4.1s. A rough

estimate of the total interaction time between the rod and the plate is

T o/S = 12.7 mm/1.1 mm/ps = 1l.5is. The difference, 11.5 - 4.1 = 7.4ps, is an

estimate of the interaction time between the rod and the plug. Suppose the

deformation wave in the rod travelled from its nose to its rear at about

4 mm/us. Then in 7.4/ws it has moved about 30 mm or 60% of the rod length. If

all of this mass is lost by interacting with the plug, then only 40% or about

3 g remains, in rough agreement with Fig. 4.43. For S0 = 1.34 mm/is,

T/S° = 4.5 mm/1.34 mm/Ps = 3.35ps, while T /S° = 12.7 nm/1.34 mm/us , 9.45s,
so the difference is 6.1's, an estimate of the interaction time between rod and
plug. At 4 mm/is in 6.1ps, about 25 mm or half the rod length will be affected

during this time. If half the rod is lost then, half remains, or MR = 3.9 g in

rough agreement with Fig. 4.43. The broken state of the plug might reduce the

erosion and increase the residual mass. The experimental data is very sparse

and the statistics are inadequate. Because fracture is involved we expect fairly

large experimental variations. At least this crude model can predict the trend

of the experimental data.

Now consider the 6.35 mm plate. For So, = 0.7 mm/us, an estimate of

the total interaction time is 6.35 mm/0.7 mm/is = 9.1ps, while an estimate of
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the penetration time up to failure is T/So = 2.2 mm/0.7 mm/.s = 3.1Ps, giving

about 6ps for interaction between the shocked rod and the intact plug. Now

suppose the deformation wave speed is a bit less at this lower striking speed.

If it moves at about 3.5 mm/us for 6Ps, then 21 mm or 42% of the rod will be

affected. If all of this mass is lost, then about 58% will remain, giving

MR = 4.5 g in rough agreement with experiment. Similarly, for S0 1.0 mm/'s

we have (6.35 - 2.2) 2 4.15s for the rod/plug interaction time. If the speed

is still 3.5 mm/us, then about 14 mm or 28% of the rod will be affected, so

72% or MR 5.6 g will remain. This estimate is low since M is observed to

be closer to 6 g. Perhaps plug breakup reduces the interaction time with less

mass loss. For ý = 1.5 mm/Is we have (4.2 - 1.4) = 2.81s for the time, and
at 3.5 mm/Is, about 10 mm or 20% of the rod will be lost so 80% will remain or

MR = .8(7.78 g) z 6.25 g, in agreement with observation. In these estimates

we have assumed a lower deformation wave speed resulting from impact on a

thinner target. We have no evidence for this, but it is not unreasonable.

Admittedly, our method of estimating residual mass is crude. However,

before attempting a more elaborate model, we should first determine

experimentally that this is indeed the way in which most mass is lost when

such a rod perforates such plates. Much better statistical observations of

plug and rod over a wider range of striking speed would be helpful. A more

elaborate model is premature in the absence of such information.

It is encouraging that we can calculate the curves in Fig. 4.42 while

using a single value of I', the same as we would use for a semi-infinite

target, a single value of T = .35 To, in agreement with observations, and

reasonable values of (A/A ), in fact,about the same values as for a
0

semi-infinite target in the case of the thicker plate (T > 2D0, T N DO).

Correct values of target hardness and target and projectile density and

geometry were, of course, also used. However, we would need a greater variety

of observations in order to eliminate alternate explanations. As mentioned

above, one such alternate explanation might be to have Io vary with impact

speed. For ex aple, if T = To = 6.35 mm in Eq (4.43), then

JO 0 (7.8 - MR)/ 6 . 3 5 must be 0.5 g/mm for So = .7 mmtws, 0.27 g/mm for S0
1.0 mm/Ps and 0.24 g/mm for So = 1.5 mm/Is. The flattening factor would also
have to be different under this assumption that the original target thickness
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should be used in Eq (4.43) and not some fraction of it. Since u' is three2
or four times larger than in our previous explanation,then E u a - IoUo2 will

be negative, but not so negative as to make F negative in Eq (2.17) and lead

to the unphysical prediction of acceleration rather than deceleration. There

is no mathematical difficulty or basic physical objection to this explanation.

However, it does not seem to fit as well into the complete picture of

penetration we are trying to construct. Only experiment can decide this

question. Until more information is available, we will not elaborate on such

alternative explanations.

The uppermost curves in Figs. 4.45 and 4.46 are the same as the upper

curves in Figs. 4.42 and 4.43. The lowest curves in Figs. 4.45 and 4.46 were

also reported by Herr and Grabarek for a smaller 1.94 g,

L0/D0 = 32 mm/3.2 mm = 10 rod of the same steel attacking the same 6.35 mm

thick plate. Intermediate curves are for a 3.89 g, Lo/Do = 40 mm/4 mm = 10

rod. The number of data points is minimal, but at least the observed trends

agree with expectations. The ballistic limit reported for the 3.89 g rod

seems a bit high and distorts the shape of the curve in Fig. 4.45 compared to

the other two curves. As has been mentioned, ballistic limits are notoriously

difficult to determine and require a large number of experiments in orcer to

find a satisfactory average value.

'Herr and Grabarek report that the plug driven out of the target by the

1.94 g rod was smaller than that driven out by the 7.78 g rod. In particular,

it was thinner, with thickness about 0.4 T0 , which implies T = 0.6 T = 0.6

(6.35 mm) = 3.81 mm in the present case. By the usual procedure we find

U0 = .052 g/mm for this rod and MR/Mo = 0.90 from Eq (4.43). Since

A =.08 cm2 , a = .0288 g mm/ls , co = .0314 g/mm, 10 = 7.96 mm/g and

k = 1.41. Then for So = 0.9 mm/Is, the reported ballistic limit, and

A/Ao = 4.2, we find

R = /[(1.476)2 + ('9)23 ('9)1/.332 - (1.476)2 = 0 (4.49)

Similarly if (A/A ) = 3 for So = 1.2 mm/Is,

SR A(10537)2 + (1"2)2] ('9)1/505 - (1"537)2 = .85 mm/us (4.50)
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Fig. 4.45. Residual speed of L /D = 10 steel rods of three

masses perforating a 6 .35mm armor steel plate.
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Fig. 4.46. Residual masses of L o/D = 10 steel rods of three

masses after' perforating a 6.35mm armor steel plate.
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with intermediate values for intermediate striking speeds. We note that the

values of (A/A 0 ) being used here are slightly smaller than those marked

6.35 mm in Fig. 4.44. It is difficult to say that this difference is real in

view of the experimental and theoretical uncertainties involved. Perhaps

there should be a single (A/A 0 ) curve for geometrically similar rods versus

the same target plate.

In order to estimate the residual mass of the 1.94 g rod in Fig. 4.46

we note that about 10% or .19 g is lost before target failure. Near

S = 1 mm/ps, this occurs in about 3.8Ps. If the interaction time with the

plug is about the same and the deformation wave speed is 3.5 mm/ps as before,

then about 13.3 mm (41%) or about .8 g is lost after target failure, for a

total loss of .94 g. Thus the remaining mass should be nearly one gram. For

S 0 1.2 mm/ps, .19 g is lost before failure in about 3.8 mm/1.2 mm/1's 3.171s.

If this is also an estimate of the plug interaction time and the wave
speed is unchanged, then about 11 mm or .67 g more is lost after failure for a

total of .86 g lost, giving MR z 1.1 g. Both the experimental and calculated
values are uncertain, but at least the values and trends agree approximately.

Herr and Grabarek also used aspect ratios of 5 and 20 as well as 10
for these rods versus these plates. There are indications in their data that
crossovers may occur in both the residual speed and residual mass versus impact
speed curves. In other words, a rod with a greater aspect ratio may have a

higher ballistic limit and lose more mass just above the ballistic limit than

a rod with the same mass but lower aspect ratio. However, well above the

ballistic limit, the situation may reverse, with the longer rod having a

greater residual speed and residual mass. The data is too sparse and

inconsistent to say for sure. Consequently, we will not attempt a

quantitative description here.

In an earlier report, Grabarek (4.35) carried out similar rod/plate
experiments using rods which were softer (BHN - 270 kg/mm2 ) than the targets

as well as rods harder than the target such as we have been examining. He

found that the ballistic limit was higher and the mass loss greater for the

softer rods, although these differences tended to disappear well above the

ballistic limit. It is certainly possible to use somewhat different P and

(A/Ao) values in our theory and reproduce these trends. However, nothing was
reported about possible differences in plug thickness. It seems preferable to
await better experimental information before presenting more calculations.
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Lambert (4.36) has also given data for long steel rods perforating

armor steel plates 25.4 mm thick. However, there are very few data points for

particular cases and the speed range investigated was quite restricted. Where

trends are evident at all, they agree with what we have already seen from the

work of Herr and Grabarek.

2. Tungsten/Steel

(14.34) 3
Herr and Grabarek also used tungsten alloy rods ( p= 17 g/cm

BHN = 250 kg/mm2 ) of various aspect ratios and masses against the same steel

targets plates as above. The tungsten rods were softer than the targets yet

were brittle enough that they usually emerged from the rear of the target

broken into two or more pieces. In most cases there were not enough data

points to give a positive indication of trends. In general there was more

scatter for the smaller masses, thicker plates and greater aspect ratios.

Figs. 4.47 and 4.48 are for the heaviest, shortest rod and thinnest plate

used. In Fig. 4.47 we have plotted the reported ballistic limit,

= .52 mm/us and five residual speeds for the five impacts in which theo

projectile was reported to emerge in one piece. When the projectile emerged

broken, different residual speeds were reported for the different pieces. In

one case, these speeds were almost a factor of two different, while in two

other cases they were almost the same. In Fig. 4.48 we have plotted the

unbroken residual masses as circles and the sums of the broken pieces as +'s.

Below each + there is a B, indicating the mass of the bigger piece and an S,

indicating the mass of the smaller piece. In one case these symbols are

beside each other, since the pieces were of approximately equal size. A

dashed line has also been drawn, indicating the possibility of a maximum

residual mass. The existence of such a maximum rests on very slender

evidence, namely, a single data point near to = .75 mm/is. Without this point

the dashed line would be approximately horizontal. Fig. 4.49 shows similar

data for a 3.89 g rod which hints at the possible existence of a maximum.

Again there is only a single unbroken projectile data point to support this

possibility, aided by some broken projectile information. For longer aspect

ratios (10 and 20) and the thicker target plate (for any mass or aspect ratio)

there was no evidence of a maximum in M versus So. Instead the curves wereR o

flat or slightly rising, similar to Fig. 4.46 in some cases.
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Fig. 4.47. Residual speed of 7.78g, LID = 5 tungsten rod after'

perforating a 6.35mm armor steel plate.
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Fig. 4.48. Residual mass of 7.78g, L0 /Do = 5 tungsten rod after

perforating a 6.35mm armor steel plate.
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Fig. 4.49. Residual mass of 3.89g, Lo/Do = 5 tungsten rod after

perforating a 6.35mm armor steel plate.
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Let us speculate for a moment about a possible explanation for a

maximum M., supposing that such a phenomenon exists. Our previous explanation

for an increase in MR as S0 increases just above the ballistic limit was a

decrease in interaction time between the shocked rod nose and the plug after

breakout. Herr and Grabarek's plug size measurements indicate that the plug

breaks up and eventually shatters as impact speed increases, resulting in less

mass being rubbed off the nose. The speed of identifiable plugs was generally

the same as the projectile speed. The same explanation might apply to

tungsten rods as well, except perhaps for short rods versus thin targets. In

such cases the interference of shock waves might lead to nose shatter, similar

to that encountered in semi-infinite targets. Here, however, instead of a

decrease in penetration depth, we have an increase in mass loss over a certain

impact speed range. If a short, dense, projectile has a lower shatter

threshold than a less dense or longer one against a given target, then we

might speculate about the possibility of a maximum occurring at a higher

impact speed (say S 0 2 mm/ s) in Figs. 4.43 or 4.46 (or similar figures for

shorter rods). There is also a possibility of the onset of multiple scabbing

and double plug interaction with the rod.

Finally, let us apply Eqs (4.42) and (4.43) to Fig. 4.47. We recall

our estimates of Po and (A/A ) for Hohler and Stilp's (4.22) tungsten rods of
0 0

various.aspect ratios versus semi-infinite armor steel targets. Herr and

Grabarek's rod in Fig. 4.47 is softer than theirs while the target is harder.

In addition, the aspect ratio here is 5. For all these reasons we expect a

somewhat larger erosion rate than we might estimate on the basis of mass per

unit length alone. Here we will take v 0 = .25 g/mm. We would also expect

(f/A ) to lie between the L /D0  1 and L /D = 10 curves in Fig. 4.33 for a

semi-infinite target or a thick target. Howevor, for a 6.35 mm target we

expect (A/A 0 ) to be somewhat lower still. The flattening factor used in the

present calculations is shown in Fig. 4.50 and meets these expectations.

Since I = 1.47 mm/g, a = .072 g mm!'j:., C = .17 g/mm, k = 1.37 and
0 0 0

c = c - .092 g/mm, we-can find ý and £ . In addition

T = .35 (6.35 mm) = 2.2 mm as before, while MR/Mo = .93 by Eq (4.43). then we

can calculate a curve in reasonable agreement with experiment,
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Fig. 4.50. Flattening factor for 7.7g, L o/D = 5 tungsten rod

versus 6 .35mm armor steel plate.
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Hohler and co-workers (4.37) employed L0/Do a 10 tungsten alloy rods

versus steel target plates of various thicknesses and obtained residual speed

and residual mass data quite comparable to that obtained by Herr and Grabarek.

However, they only used two impact speeds for armor steel plates at zero

degrees obliquity, so it is difficult to construct complete curves of the type

we have been considering. They were more interested in determining a

thickness ballistic limit rather than a velocity ballistic limit. Since they

did not use an aspect ratio of 5, it is not surprising that they saw no

evidence for a possible maximum in an MR vs curve. However, for

L 0o/D°0 = 10, they reported a smaller loss in rod length as the striking speed

increased from about 1 mm/Us to 1.8 mw/us This agrees with an increase of

residual mass with increasing go as found by Herr and Grabarek for high

aspect ratio rods. A thickness ballistic limit is that value of P in Eq

(2.20) which reduces P to zero for given 0 (and a given projectile/target

combination).
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V. SURVEY OF JET PENETRATION THEORIES

In an earlier report (1.14) we surveyed bullet penetration theories. Here

we present a similar survey for jet penetration theories in order to compare

older ideas with those being discussed in this report.

The first jet penetration theory seems to have been put forth in a report

by Kistiakowsky and co-workers (5.1). Part of this report is devoted to their

theory of jet formation according to which small fragments of steel from the

liner of the hollow cavity in the explosive were guided by a gas Mach stem

into a pencil-like jet. The rest of their report discusses a theory of how

such a stream of explosive product gases and steel fragments might penetrate a

metal target, usually also steel. Their model treats jet penetration into

metal much like water-jet penetration into a mud bank. The head of the jet is

"continuously annihilated, and the momentum contained there is transmitted to

the steel which flows sideways..." Of course, mass is conserved and the jet

material is deflected rather than annihilated. They took the length of jet

removed from the stream per unit time to be equal to the difference between

the velocity of the head of the jet, V, as determined from experiments in air

or vacuum, and the velocity of penetration, U, as determined from the time it

took to perforate plates of various thicknesses, with U < V. The wearing down

of the head of the jet was responsible for the slowing of the jet during

perforation. After perforation, they sometimes observed a speeding up of the

jet once more. If p is the density of the jet penetrator and A is itsP

cross-sectional area, then P pA is its mass per unit length and p pA (V-U) is an

estimate of the mass lost per unit time during penetration. Since V is the

velocity of the jet, then p A (V-U)V is the momentum transferred per unit timep
from the jet stream to the target. Since the target also behaves like a

fluid, its resistance is purely inertial and resembles that offered by the air

to the flight of a metal fragment, namely, C 2tAU2, where CD is the drag

coefficient, Pt is the target density and U is the speed of the fragment. If

CD = 1, and we equate the rate of momentum transfer to the resistive force,

S(v-u)v = PtU2 (5.1)
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Experimentally, they found V = 6 mm/,ps and U = 2.4 mm/Ps = .4V for steel

(pt = 7.85 g/cm3 ) as well as V = 2.1 mm/ps = .35V for Tead (pt = 11.3 g/cm3 ).

Both of thesa sets of values are compatible with pp = 2.1 g/cm3, much less

than the density of the steel liner used, but consistent with their picture of

a jet stream composed of steel fragments carried along by gaseous explosive

products. They commented that this was probably fortuitous, but expressed

satisfaction that the penetration speeds were of the right order of magnitude

and in the correct order, higher for steel than for lead. Consequently, the

penetration depth into steel should be greater than into lead, because lead

has a higher density. Unfortunately, the opposite was observed;

namely, greater penetration into lead than into steel. This apparently is the

origin of the division into primary and secondary phases of penetration.

"Since the velocity of the jet is, of course, greater than the velocity of

penetration, after penetrating through a certain thickness of steel, the jet

will have been all used up. The peretration during this phase will be

referred to as the primary penetration. Since, when this occurs, the steel in

the target has some forward momentum, plastic flow forward probably continues

until the forces have been reduced to about the elastic limit, and this will

deepen the hole somewhat (referred to as secondary penetration). It is

believed that the depth of secondary penetration is rather small in steel,

because of its high tensile strength. However, for a very soft metal, such as

lead, the second part of the process might result in a considerable increase

in the depth of the hole." (5.2)

These authors explicitly referred to their theory as an "hypothesis."

They went on to speculate further about the anomalous penetration into lead:

"However, in the case of lead, the secondary penetration must be large.

The total depth of penetration is appreciably greater than for steel,

although, due to its greater density, the depth of primary penetration should

be less. No calculations have been made, but the facts are not surprising, on

account of the very low tensile strength of lead. No penetration at all can

occur if the momentum per unit length of the Jet is not great enough to exceed

the elastic limit of the target materials. It may be that for lead the slow
(5.3)

tail of the jet is effective and for steel not."

Near the end of their paper, the authors reported an attempt to verify

their model of the jet as a stream of gas carrying metal fragments.
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Experiments were done with liners made from steel filings cemented together.

Fine carborundum and other fragmented materials were also used. Such liners

were inferior in their penetration performance to solid liners of similar

materials. Instead of questioning their model, they speculated that an

assortment of particle sizes might be required to simulate the action of a jet

instead of the single size used.

About a year later, Hill and co-workers referred to the work of

Kistiakowsky and co-workers in building their own model of jet penetration.

They also referred to a model developed by Bethe (5.5). They let V be the

velocity of the jet and U be the penetration velocity as before, and

introduced the length of the jet, 1. They also introduced a Gallilean

transformation from the stationary laboratory coordinate frame to coordinates

with origin at the bottom of the crater being formed in the target, moving at

the constant speed, U. The pressure exerted by the jet at the stagnation
2point at the bottom of the hole is .5p P (V-U) , provided the material is

incompressible. This pressure is balanced by that exerted by the target
2

material moving at speed, U, namely, .5PtU . If we equate these two

expressions, we find

rp(V-U) 2 = PtU2  (5.2)
p t

Moreover, if Z is the constant length of the jet and (V-U) is its constant

speed, then the time it acts on the target will be Z/(V-U). If we multiply

this time by the penetration speed U, we should obtain the depth of

penetration

P = XU/(V-U) = ,p/Pt (5.3)

as we see by using Eq (5.2). The author's commented that this expresses an

"interesting conclusion that the depth of penetration is independent of the

velocity of the jet, and depends only on its length and density." The right

Bide of Eq (5.3) is now called the hydrodynamic limit, as we have seen, since

it neglects strength, viscosity and compressibility. For compressible targets
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like rubber or paraffin, they took the pressure to be p = K(p/pt - 1), where K
is the target compressibility and p > Pt is its compressed density. Then dp

(K/Pt) dP, and fdp/P becomes

(Ki t ft dp/P = (K/%t) in (P/0t) (K/Pt) in (1 + p/K). (5.4)

If we equate this expression to .5U 2, we find

p - K {exp [(.5PtU 2)/Kl - 1} (.5ptU2) 11 + (.5ptU2)/(2K)l (5.5)
2

if (.5p 2U ) < < K. For steel targets they found this pressure correction to
be negligible, although it might not be negligible for a lead target. Even if

it were included for a lead target, it would not help to explain the observed

greater penetration into lead than into steel, which contradicts Eq (5.3). In

fact, it would make matters worse, since Pt in Eq (5.3) would be multiplied by

a factor somewhat greater than unity.
2

If we divide Eq (5.2) by Pp V , we find

U = v/fl + . (5.6)
t p

If we assume that a steel jet has the same density as the conical liner from

which it was formed, then U = .5V for a steel target and .45V for a lead

target. This compares with U = .4V for steel and U = .35V for lead reported

by Kistiakowsky and co-workers. In general, the experimental precision

available at the time was not great enough to say for certain that V was

greater for one target or another when the speeds were this close. The

approximate agreement between Eq (5.6) and experiment was considered to be

encouraging. If a low value such as one-third the steel liner density,

namely, p = 2.6 g/cm 3, is used in Eq (5.6), then U = .37V for a steel target,

while U = .33V for lead, in close agreement with the values reported by

Kistiakowksy and co-workers.

Because of this agreement. Hill, Mott and Pack went on to modify their

thecry to take into account the possibility that the jet was composed of a

stream of explosive product gases, carrying steel liner fragments. They
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reasoned that such a low-density fragment jet, where the metal occupies only a

small fraction of the volume, might exert a mean pressure considerably larger

than originally proposed. When a moving body collides with a stationary body

and is just brought to permanent rest, it has transferred all of its momentum.

However, if the stationary body is massive enough, the incident body will

reflect elastically with its incident speed. In this case the momentum

transfer is twice the incident momentum, since the stationary body gains as

much reaction momentum while accelerating the incident body as it does in

bringing it to momentary rest. Since the jet/target collision is never quite

elastic, even for a jet of low density, they modified their expression for the
2 2

mean pressure exerted by the jet to X 1.5p (V-U) 1, where 1 < < 2. When
p 2

this expression is equated to the target reaction pressure, namely, .5PtU2, we

find

P = V 7/p 7p (5.7)
p t

and

U = V/I + Pt/Op/X 1 (5.8)
t p

instead of Eqs (5.3) and (5.6). The authors expressed the opinion that the

factor, X , should apply to most jet densities, except those with densities so

low that penetration by individual fragments would have to be considered.

They also pointed out that their use of (V-U) instead of V as a multipliei

to convert the mass loss rate, P pA(V-U), into a momentum loss rate, giving

Eq (5.2) instead of Eq (5.1), agreed better with the model of a low density

jet being turned back rather than coming to rest during penetration. It also

agreed with their steady-state pressure balance theory.

Finally, these authors noted that after a high-speed penetration was over,

the average cross-sectional area of the target crater, At, is larger than the

area, A, of the penetrator (rod or jet). This allows eroded penetrator

material to turn back without interfering with incoming material. Following

the suggestion of Kistiakowsky and co-workers, they also introduced a drag

coefficient, CD. Then the reaction pressure exerted by the target becomes
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C D .2 tAtU2 1. If we equate this to the pressure exerted by the jet, namely,

X l.5p A (V-U) 1, we find

P = E T /•Pt ) [A/(CDAt)l (5.9)

and

U = V/ri + t/(xvAf(CDkt) ) (5.10)

where At > A and CD < 1 is unknown. By assuming that Eqs (5.7) and (5.8) are

correct, implying that A/(CDAt) = 1, it should be possible to measure A/At and

so find CD. They went on to note that the mechanism of penetration by a jet

must be similar to that by a bullet in the shatter region of velocities, since

in both cases the hole has an area greater than the cylinder of metal making

it, because the shattered metal must flow out again. This led them to suggest

that the total volume of hole excavated should be proportional to the kinetic

energy of all the jet fragments, an idea which has been often used since then.

A short while later, these same authors published another report (5.6) in

which they discussed penetration by projectiles as well as by jets. Following
(5.5) 2Bethe , they used the U term in the Poncelet force to account for a

change in projectile penetration behavior at high speeds where a constant

target strength force was no longer sufficient. Consideration was also given(5.r)
to Taylor's modification of Bethe's hole enlargment theory. Hill, Mott

and Pack went on to note that the phenomenon of projectile shatter above a

critical striking speed shows that the force acting on the nose of the

projectile must increase with increasing velocity, as indicated by Poncelet's

velocity-dependent term.

They modified their previous discussion of jet penetration by adding a

constant target strength term, 0, to the target reaction pressure to obtain

(.5PtU2 + a), a Poncelet form. Now, if this is equated to the pressure of the
2 2jet head, .5 Pp (V-U) , we find

5 2 (v-u) = .5pU2 + a (5.11)
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(5.5)
where a is a sum of elastic and plastic terms as proposed by Bethe

namely,

o = (Y//r) {1 + in [/3E/(2Y [1 + v])]} (5.12)

where Y is the yield stress, E is Young's modulus of elasticity and V is

Poisson's ratio. For ductile materials they agreed with Bethe's estimate that

a should be three or four times the yield stress. We recall Tabor's estimate

of three times this stress. Now we find

P = £U/(V-U) ; £ /P { - /[X2 p (V-U) 2 2 (5.13)

p t p

and

V=U+ APt u2 + 2 0 ¢)/(X,2 p) (5.14)

instead of Eqs (5.7) and (5.8) to which they reduce if a -* 0. Here they have

chosen the positive sign of the square root in Eq (5.14) and have dropped

consideration of 'A/(C DAt) in agreement with their idea that this factor must

be equal to unity. Now Eq (5.13) gives them a way of explaining why

penetration into lead is greater than into steel in spite of its greater

density, provided a • 0 for lead but is not negligible compared to the jet

pressure in the case of steel. However, as they noted, the entire theory

breaks down if the correction term in Eq (5.13) approaches unity. For steel

the correction factor would have to be greater than 0.2 to account or the

observed relative penetration depths into steel and lead.

They also noted that the idea of the Jet density being much less than that

of the liner was a subject "on which there has been considerable speculation,

but no real evidence." (5.8) Because of this they attempted to compare Eq

(5.8) with some experimental results on copper and aluminum targets, without

success. They speculated that this might be due to the large scatter in the

experimental measurements.

Finally, they used Eq (5.13) to describe penetration of a steel jet into a

steel target, using a = 5.5Y, not too far from their expected value of three
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or four times Y. Their comment, however, was very cautious: "This result can

only be considered fortuitous, but it does point to a being Of the order of

magnitude predicted."

Kistiakowski and co-workers (5.1) were also cautious about their theory,

referring to it as "A rough calculation of the rate at which momentum is

delivered to the plate by the jet..." (5.10), too qualitative to make

predictions. Before continuing our review of the literature, let us comment

on some of the reasons why both the American and British groups were so

cautious. They knew that V, the jet tip speed before impact, was greater than

the speed of the rear of the jet or any portion between. Consequently, their

V was some sort of average velocity for the whole jet. They also knew that

measurements of the penetration speed, U, depended not only on the material

used for the target, but also on the thickness of the plate. So again, U is

an average value for some typical plate thickness. The inconstancy of V and U

is shown in Fig. 5.1 taken from DiPersio and co-workers who made such

measurements about fifteen years later (5.11). Electrical contacts were

placed between one-inch thick steel plates in a "semi-infinite" stack. The

jet tip velocity, V, was taken to be the distance from the jet "origin" to the

front of a given plate divided by the time it took to traverse this distance.

The penetration velocity, U, was taken to be the thickness of a given plate

divided by the time it took to perforate this plate. Both V and U obviously

decline in time by a factor of four or more. Although the early British and

American groups probably did not know the magnitude of these changes, they

were aware that their assumption about the constancy of V and U was a rough

approximation. They also knew that the length of the jet was not constant

either. Its initial length depended on the standoff, or distance between the

cone base and the target face. In addition, it had to be stretching since the

tip moved faster than the rear. And finally, although there was no direct

evidence, it was unlikely that a stretching, eroding jet should have a

constant length. Again, the length, Z, was known to be an effective or

average value. There were no time-dependent measurements available, so a

theory involving differential equations was probably considered to be of

little use. Apparently these early theorists decided on a formulation which

involved only the average values which were available from the experiments of

their day.
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The early theorists were aware that their choices of (V-U) to estimate

mass loss and (V-U)V or (V-U)(V-U) to approximate momentum transfer or

pressure were somewhat arbitrary. Although they did not discuss other

alternatives, they could have used V and V2 instead. For example, they might

have written .5p V2 for the average energy per unit volume of the incident jeb

and .50tU2 for the average energy of the yielding target material, and equated

these values to obtain U/V. In this model, the time of action of the jet

would be L/V, so the penetration depth should be U times this, or

P = LU/V = L/p (5.15)

which is the same as Eq (5.3). Here U = V V%/P t instead of Eq (5.6).

However, for given 0p, this also predicts smaller U in lead than in steel, as

reported. To obtain U = .4V for steel, Pp would have to be 1.25 g/cm3 instead
3rp

of 2.6 g/cm , as they used. Then U = .33V for lead, giving agreement within

the precision of their experimental information. In addition, if they had

wanted to use a differential expression for loss of jet length instead of a

difference between two velocities, they could have written .5P L for the

average energy per unit volume lost by the jet and .5P (where P = U) for

the average energy per unit volume acquired by the target. Since these two

quantities should be equal, we obtain

p = /P (5.16)
p t

This equation can be integrated with the initial condition that the

penetration depth is zero when the length consumed is zero, to obtain Eq

(5.15).

Now let us resume our review.

About the same time, flash X-ray techniques were being applied to the

study of jet formation from the explosive collapse of a hollow conical liner.

Seely and Clark (5.12) followed the collapse process and the formation of jet

and slug as a function of time. Some of their pictures were included at the
(5.13)

end of an article published six years later . In commenting on one of
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their pictures they concluded that the jet diameter (from a cone with a one

inch base diameter) was about 0.5 mm. "Thus within this diameter there must

be almost solid iron in order to register so definitely on the film." (5.14)

Birkoff (5.15) used their pictures to dismiss jet formation theories which

employed focusing, spalling, or shock wave explanations. Instead, he

interpreted their evidence in terms of the usual hydrodynamical theory of jets
(5.16) which implied a re-direction of the liner mass without change in

density. In England, Tuck (5.17) was carrying out experiments very similar to

those of Seely and Clark and interpreting his own results much as Birkhoff was

doing. This theory was further refined by Taylor (5.18). This report also

appears in the collection by Batchelor (5.l9). Tuck also considered the idea

that the jet density was significantly lower than the liner density. He

admitted that the liner might be broken into very fine pieces. "If the

fragmentation is so fine that no gaps exist between the particles into which

flow could take place, then, hydodynamically speaking, the system can be

treated as a fluid." (5.20 ) Tuck went on to note the appearance of a

periodicity about 1 cm in length in the jet after formation, which signalled

break-up into a train of particles, all about the same size. "It is tempting

to explain the break-up of the jet in terms of a tension arising out of this

velocity gradient. But there seems no evidence that the jet is a continuous

rod capable of supporting a tension and the indications are rather the reverse

since a graininess is already visible before the main breakup has developed,

and a general impression of cloudiness is given even earlier." (5.21) Thus

Tuck was not as definite about the density of the jet as Seely and Clark were.

Still later, Pugh (5.22) discussed ideas very similar to those above.

However, he tried to account for the fact that the jet tip speed was almost

8 mm/ps while the rear moved much more slowly at about 2 mm/ps. He assumed a

linear decline in V from tip to rear and extrapolated the trajectories of

selected jet elements backward in time. Since thfie trajectories crossed in a

relatively small region of his space-time plot, he chose the center of this

region as his coordinate origin, and suggested that one might think of all

elements of the jet as issuintg simultaneously from the same point in space but

travelling at quite different speeds. This point has come to be oalled the
"virtual origin" of the jet. (One might call this the little-bang theory of a
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jet's origin by analogy with the big-bang theory of the origin of the

universe.) If Z and t are the distance and time a jet element has travelled

since its birth, then, its velocity is V = Z/t. If y = "(pt/A)/(P p/A t) wi.th

C = 1= in Eq (5.10), then

U = z = (z/t)/!i + Y] (5.17)

In this report Pugh considered Pp and At to vary in time, so Y was not

constant and Eq (5.17) could not be easily integrated. He assumed that p

varied inversely with time (lateral spreading of the particles composing the

jet). He also assumed that the crater area increased quadratically with Z.

Since this led to unreasonable conclusions, he temporarily abandoned this

approach.

In a second report with Fireman (5.23) Pugh noted receipt of the two

reports by Hill, Mott and Pack referenced above. He also decided to assume

Y constant in Eq (5.17), which can then be integrated to obtain

z = z (t/t )1/(l+ Y) = z + P (5.18)
o0 0

where Z is the distance traversed by the tip when penetration starts at time0

to, that is, the distance from the virtual origin to the front face of the

target, a distance about a cone height, H, greater than the standoff distance,

S. The second form in Eq (5.18) is obtained by adding the depth P at any time
t, with P = 0 for t = t4. If Y were equal to unity, then Eq (5.18) would be

parabolic. In this model the penetration at any time increases linearly with

Zo, which in turn is equal to the standoff plus a constant, (S + H). In this

way Iugh and Fireman were able to give an approximate explanation for the

observed increase in P with increasing standoff. Later, a similar treatment
(5.24)

was given by Abrahamson and Goodier . However, these authors assumed

that Z varied in time and could not integrate their expression analytically.

To account for the fact that penetration decreases at large standoffs,

Pugh and Fireman assumed a linear increase in jet radius and therefore a

quadratic increase in jet area, A, with increasing standoff, due to spreading

of the jet particles. This led to a series expression for P which was not
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easily joined to Eq (5.18), which was valid for short standoffs only.

In a third report (5.25) Pugh and Fireman derived another series

expression for penetration versus standoff at large standoff. However, these

results were also unsatisfactory.

Birkhoff (5.26) also tried to modify the theory of Hill, Mott and Pack to

include the effects of standoff. He took the jet density, Pp, to be inversely

proportional to the Jet length, Z, which ir turn he assumed to increase

linearly with standoff, S. Thus

p -- z VrP/ 'p ~ /Pt Pt-(a + bS)/Pt (5.19)

which gives a nonlinear increase in P with S. However, there is no maximum P

at finite standoff, predicted by Eq (5.19), so it too applies only at short

standoff. Here P = PE' the final penetration depth when t = tE in Eq (5.18).

Thus PE , (S + H) in Eq (5.18) while PE ru Va +bS in Eq (5.19) which is closer

to what is observed. (5.27)
After World War II, Birkhoff, MacDougall, Pugh and Taylor described

their hydrodynamic theories of jet formation and penetration. Here we are

interested in the latter. They began by saying that, "To a first

approximation the strengths and viscosities of target materials can be

neglected and the problem can be treated by hydrodynamics." Initially, they

consider a continuous jet and explicitly assume three constants, length, Z,

speed, V, and penetration speed, U. Since the speed, U, is constant, a

Gallilean transformation to the stagnation point at the crater bottom is

permitted. In this coordinate system, steady-state conditions hold, so

Bernoulli's theorem applies. Consequently, Eq (5.2) can be written. If the

jet length were effectively infinite (as it is in the case of water from a

hose) then the penetration would also be infinite. However, the finite

length, X, leads to an end of the motion when the jet is used up at time

Z/(V-U). As before, multiplication by U leads to Eq (5.3), according to which

P is independent of speed. These authors comment that this surprising result

might be correct if one imagines that a faster jet is used up in a time which

is just small enough that the same penetration is produced. As they point out

once more, if this is true, it can only be so for speeds and pressures large
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enough to justify neglect of target strength. The results of later workers,

shown in Figs 3.16 and 4.28 for example, make us wonder what such speeds might

be. These results are for projectiles. However, we will see similar results

of the importance of target strength for jet penetration in the next chapter.

For a jet composed of dispersed particles these authors adopted Eq (5.7)

with X under the square root sign, a practice introduced by Hill, Mott and

Pack in their second paper. Of course, it makes no difference whether we let

X vary between 1 and r2 or let Yr vary between 1 and 42, that is, X vary

between 1 and :Ž.

In the next section of their paper Birkhoff and co-workers mention the

fact that neither the jet velocity, V, not its length, £, are constant. Since

the tip moves four times faster than the rear (8 mm/ls versus 2 mm/iPs for

example), then each successive element of the jet strikes the bcttom of the

crater at a lower speed. One can of course speak of an average speed,

V = (8+2)/2 = 5 mm/us, but the variation from tip to rear is so large, that

one should really consider V to vary with time during the penetration. These

authors explicitly assumed that the jet density and the (incompressible)

target density were contant in time. Consequently, U in Eq (5.10) must vary

with time, so they wrote

P = fu dt (5.20)

However, they did riot know how U varied in time, so they wrote

P = k J/ - (5.21)

where "J is a kind of average value of the quantity AP -- during the process

of penetration," and k is explicitly called an "effective length." The

effective length was then assumed to have a linear dependence on standoff,

while the Jet density was assumed to decrease quadratically with standoff

because of radial spreading. This led to formulas for short and long standoff

with adjustment of the parameters to insure joining of the curves.

They concluded their paper by comparing Eq (5.10) with experimental data

for a variety of targets. In spite of scatter in the data, there seemed to be

general agreement.
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In view of the large difference in velocity between the tip and rear of

the jet, we should notice that there is a basic defect in the theory which has

been proposed. If V is to be treated as an average value over the length of

the jet, then V varies with time as the jet gets used up. Near the beginning

of a penetration by e. fully-formed jet, the average speed might be about

5 mm/Ps as we have mentioned. However, this average value declines toward

2 mm/ps as the jet is consumed. Without averaging, the Jet speed declines by

a factor of four. With averaging over its length, its speed declines by a

factor of 2.5 in this example. Either way, the dependence of V on t is

significant. If p and pt are constant in Eq (5.10) and V varies in time,

then U must vary in time if this equation means anything. We recall Fig. 5.1.

However, if U varies significantly in time, then a Gallilean coordinate

transformation to a stagnation point moving at constant speed is not possible.

Instead, a coordinate system with origin at the stagnation point is a

decelerating system. Consequently, there is no steady state and Bernoulli's

theorem does not apply.

It is unfair to criticize the authors of a theory for not adjusting their

ideas to accomodate facts they were only dimly aware of. Nor is this being

done. However, it is incumbent on us to devise new theories, when new facts

make the need apparent.

Several years later, Pack and Evans (5.28) undertook an explanation of two

deviations from the density law, Eq (5.3), which had by this time been firmly

established. One was the difference between a (smaller) penetration into

armor steel than into mild steel, which they explained on the basis of Eq

(5.13)., The other was the fact that for the 800, 35 mm base diameter mild

steel cone device they used, the 83 mm penetration into lead was about 25%

larger than the 66.5 mm depth they observed in mild steel. They noted that

the slug which follows the jet can become trapped part-.ay down the crater in

a hard steel target. Since lead target craters were much wider, they supposed

that the slug could find its way to the crater bottom and deepen the hole

further. In addition, target "afterflow" was expected to be significant in

lead and these two factors together might account for the additional depth

(83 - 56) " 27 mm. They did not recover such slugs from their targets, nor
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did they give an estimate of their expected mass and speed. The evidence they

present is indirect and not convincing.

In later years, various workers used modified versions of Eq (5.11) to

explain their observations. We will review some of these ideas in what

follows.

Eichelberger (5.29) adopted Eq (5.11), but he used the symbol y instead of
2 and took o to be the difference between the target and jet strengths,

namely, 0 = Ct - 0 . Moreover, his constant Y , which he called a

statistical breakup factor, was given quite a different meaning from that
2

originally assigned to A. By this time improvements in fJlash X-ray photography

had advanced to the point where everyone was convinced that the jet density

was for all practical purposes equal to the liner density during formation and

stretching. In fact, even after breakup due to stretching., the jet fragments,

which continued to follow each other, retained their original density. In

other words, the original idea which led to X2 , namely, the jet cc "•ting

of steel fragments dispersed in a column of explosive product gas, h., to be

abandoned. 'We will see more about this in the next chapter. Eichelberger

wanted his Y to include any changes in the mode of momentum transfer which

might occur, as well as separation of the jet fragments after breakup and any

waver that might be present due to imperfectiona in charge or liner. For

short standoffs he found Y = 1 and P eque.1 to the density of his steelP

liner. For sufficiently long standoffs when most of the penetration was done

by a jet which was already broken into a train of fragments, he found y < 1,

with no change in P and Y continuing to decline as the standoff was

increased. He concluded that the hill-Mott-Pack mechanism for a low density

jet did not apply and that X was always equal to unity. If a were

unimportant, then, following the general scheme of an effective length acting

for a finite time, we would have

P = Y pPt (5.22)

In qualitative agreement with observations, this equation says that P will

decrease when the standoff becomes large enough that Y declines below unity

once the jet is fragmented and the fragments become misaligned. This is quite

different from Eq (5.7) which says that penetration will increase if a jet
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consisting of steel fragments dispersed in a gas stream becomes sufficiently

dispersed.

Eichelberger also tried different values for Ct and a in order to see

whether experimental trends could be described. He found, for example, that

he could use the experimental yield strength for a hard steel target, but had

to use three times the experimental strength in the case of an aluminum

target. He went on to express surprise that a steady-state hydrodynamic

theory could do even as well as it did when applied to a "violently

time-dependent phenomenon." Of course some of this could be explained by the

large experimental uncertainties which were involved with attempts to verify

the theory. Some of these have been described by Eichelberger and co-workers
(5.30)

This is also brought out by variations found in different
(5.31)laboratories. For example, Singh repeated Eichelberger's tests and

found that he needed J values seven times the measured values of either

steel or aluminum targets in order to obtain agreement between theory and

experiment.

Cook (5.32) attempted to generalize Eq (5.11) further by adding to a three

terms to account for target compression, heating, and shock wave dissipation.

Such terms depend on the impact speed range involved and so complicate the

theory considerably in an unknown way. Conditions for impact explosions were

also discussed. Cook seems to be the first author to write the solution of Eq

(5.11) for U in terms of V instead of for V in terms of U as in Eq (5.14).

Since Eq (5.11) is quadratic in either V or U, it is no more difficult to

solve for one than the other. If we choose the negative sign for the square

root, we find

U = V 11 - /6+ 2 oA(l-A)/(P tV2 ) ]/(1-A) (5.23)

where A = pp). Cook cited Eichelberger in letting X = 1 and used

the symbol • for a plus correction terms. He also noted the solution in the

case A Pt = Pp P, to be

U = .5V [1 - 2o/(pV 2)] (5.24)

as well as corresponding expressions for P = 9U/(V-U).
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Allen and Rogers (5.33) repeated Eqs (5.23) and (5.24) and used the phrase

"modified Bernoulli's equation" to describe Eq (5.11). Since the jet length,

£,which was supposed to be constant is not, these authors decided to apply the

hydrodynamic theory to a rod which at least has a known length to begin with.

As they pointed out, accurate experimental verification of the theory had not

been reported previously. They introduced an average value for 0 or

* for all metals and reported approximate agreement with their experiments

with wire rods made from magnesium, aluminum, tin, copper, lead and gold

striking aluminum targets at speeds up to almost 3 mm/Ps. An exception was

found when the rod density was much larger than the target density as in the

case of gold.

Alekseevski (5.34) also applied the steady-state hydrodynamic theory to

rods. He proposed using

i =v-u=v- (5.25)

for the magnitude of the change in rod length with time. In addition he

adopted Eq (5.11) with X = 1, but assumed that both V and U decreased in time

in such a way that Eq (5.11) continued to be true. He went on to caution the

reader that there is a minimum speed below which the model does not apply.

This is obvious from Eq (5.11) with a # 0. Clearly U and V cannot vanish and

the motion can only terminate by the rod vanishing while still moving at a

finite speed. He used an approximate solution for U in terms of V instead of

Eq (5.23) and integrated his equations with numerical techniques, assuming that

dV/dt - (c p/p )/(z -z ) (5.26)

Unfortunately, he did not point out that variable V and U are not compatible

with the steady-state required by the theory. At least Hill, Mott and Pack

were consistent in assuming constant V and U.

Tate (5.35) also adopted Eq (5.11) with a = a t - a with

dZ/dt = (U-V) < 0 and dV/dt = - (a p1a )/k. Unlike Alekseevski, he used Eq

(5.23) instead of an approximation, and integrated numerically except in a few
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special cases. In a footnote, Tate points out that one cannot really use

Bernoulli's equation to describe an unsteady process. However, he assumes

that V and U are approximately constant during most of the penetration

process. For example, he uses his theory to describe penetration by aluminum

rods striking a polyethylene target at 1.6 mm/ps, at least until their speed

has declined to about 0.6 mm/Ps, beyond which "the theory does not apply."

Since he was forced to use different values for the strength of the same

polyethylene target (one four times the other) when attacked by two different

strengths of aluminum rod, he recognized that "the theory is not adequate in

this case." He also rationalized that for targets made of the same material

as the rod, we should expect the target strength to be greater "because of the

inertia of the surrounding material." We have already referenced a subsequent

article by Tate (4.19) in which he extended the ideas of this paper in an

attempt to describe situations in which rods were not completely consumed at

the end of a penetration. For rods much stronger than a target, he assumed

cessation of erosion together with a Poncelet form for the opposing target

force. The additional penetration could be added to that achieved during

erosion. He also discussed how numerical integration of his previous

equations could lead to a maximum in a plot of penetration depth versus impact

speed with the penetration decreasing and "tending ultimately to the

hydrodynamic limit." We have already seen that this is not true, at least in

the cases of steel/aluminum and aluminum/lead cited by Tate and refuted by

Perez (4.6). Perez restricted his own use of Eq (5.23) to speeds greater than

2.0 mm/ls.

Now let us return to a review of theories of penetration by Jets rather

than by rods.

Since it was well established by 1960 that neither V nor U remained

constant during the penetration of a semi-infinite target, Allison and Vitali
(5.36) followed the ideas of Pugh (5.22) and Pugh and Fireman (5.23) as

expressed in Eq (5.18), at least for continuous Jets. For penetration by jets

after break-up, they assumed hydrodynamic theory to hold for each jet particle

and added the total of these contributions to the penetration produced by the

jet before break-up. They found that equally good results could be obtained

by using the continuous jet theory for the entire penetration, provided they

introduced a cutoff velocity, VMIN, instead of a fixed finite length,Z .
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The following year, DiPersio and Simon (5.37) extended the method of

Allison and Vitali to include a discussion of standoff at least on the rising

portion of the penetration-standoff curve. A year later, DiPersio, Simon and

Merendino (5.38) introduced UMIN instead of VMIN as a cut-off for penetration,

and extended their discussion of standoff to the declining portion of the

penetration-standoff curve. Still later, Merendino and Vitali (5.39) showed

experimentally that high strength aluminum targets are more efficient on a

weight basis than high strength steel in reducing jet penetration. This

violated the classical density law even when modified to include target

strength. The authors explained such behavior in terms of jet fragmentation

together with properties of aluminum not yet identified.

In 1977, Walters and Majerus (5.40) proposed a penetration model which

included target strength and viscosity as well as inertia. A general

formulation was given by Walters (5.41) and a two-dimensional Eulerian

formulation suitable for numerical integration was given by both authors
(5.42)

shortly after . In this model three regions in a penetrator were

distinguished and radial as well as axial flow was treated. Somewhat

different formulations wire given for jets and for projectiles. Walters
(5.43) also wrote a report on the role of viscosity in jet formation, pointing

out that Russian workers usually included viscosity in their theories.

Measurements of solid viscosity both here and abroad were also discussed.

Finally, Walters and Majerius (5.44) extended their model to include jet

break-up by using an effective average jet density lower than the liner

density. This they estimated by averaging the density of the jet fragments in

the train (equal to the liner density) and the negligible density of the air

gaps between these fragments.

The theory of Walters and Majerus seems to be the first attempt since

World War II to go beyond a steady-state or "quasi-steady-state" pressure

balance in calculating penetration. They use second order differential

equations and include a linear velocity decrease in the case of a jet.

However, they retain the form (V-U) for the jet speed somewhere near its tip

and attempt to define the region over which V is reduced to U. They do not

treat addition of mass to the rear of a jet which begins penetration before it

is fully formed, and discuss only mass loss at the front. Their model is
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simpler than many visco-plastic codes in use, but complicated enough to

require fairly elaborate calculations by machine.

More recently, measurements by Haugstad (5.45) and Haugstad and Dullum
(5.46) have stimulated renewed interest in compressibility effects, at least

for certain target materials like some modern plastics. For example, Flis and

Chou (5.47) have developed a model to describe such effects.
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VI. AN EXAMPLE OF A JET PENETRATOR

A. Device Characteristics

A shaped charge device consisting of a 420 conical copper liner with base

diameter a bit larger than 80 mm, collapsed by composition B explosive hos

often been referred to as a standard of comparison. Since there is so much

data available for this device, we will use it as our example. Fig. 6.1 is a

drawing of a central section through this device.

Let H be the height of the cone and X be the axial distance from its apex

downward. As the detonation wave sweeps over the cone from its apex to its

base, the amount of metal per unit axial distance which is accelerated toward

the axis increases for such a hollow cone with uniform wall thickness. This

is because the mass of each elementary ring of metal lying between evenly

spaced planes perpendicular to the axis increases as we approach the base.

Meanwhile, the amount of explosive per unit axial distance decreases,

approaching zero at the base of the cone. Consequently, the launch speed, or

final axial speed attained by the metal after explosive acceleration, decreases

as we approach the base, since the ratio of explosive mass to metal mass decreases.

The rate of mass addition to the rear of the jet can be written as

MR = m(t) V(t), where m(t), the mass per unit axial distance being moved, is

an increasing function of time, and V(t), its final axial velocity, is a

decreasing function of time. Consequently, MR tends to be independent of time.

Although time-dependent measurements of m(t) and V(t) or their product

have not been made inside a collapsing cone, indirect estimates of m(X) and

V(X) have been made. For early steel cones, Pugh has made such estimates(6.1) ( For a copper cone of the type we are describing, Allison and Vitali

(6.2)
have presented similar results . The base diameter of their cone was

slightly larger and their explosive was unconfined instead of having a thin

aluminum case as in Fig. 7.1. However, these are minor differences for our

purpose. More recently, Harrison (6.3-4)has compared computational estimates

with the experimental estimates made by Allison and Vitali. He found

substantial agreement with their results for the nonlinear decline of V(X)

with increasing X. His values for the cumulative jet mass M. were larger thanJ
theirs and had a slope, dMj/dX, which increased more slowly with X, but
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(6.5)
followed the same general trend. Even more recently, Simmons used a

computer program, HEMP, based on a Langrangian formulation, to study the same

problem and compared his results with those of previous computational estimates

using a computer program, BRLSC, based on an Eulerian Formulation, as well as

with radiographic experiments. His calculations were carried out only for the

first 80% of the liner collapse, since computer run times became excessive.(5.15)
He used the theory of Birkhoff et al., for the remainder, in spite of

the fact that his code calculations showed a velocity gradient while this

theory assumes it is zero.

The results of Allison and Vitali (6.2) are based on experiment but are

inferences obtained by using the theory of Birkhoff et al. (5.15). The

radiographic experiments cited by Simmons are more direct experimental

evidence for liner and jet element position versus time, but say nothing about

mass. All of the calculations and experiments involve approximations and

uncertainties. However, there is general agreement between them, which

enables us to estimate the slope, dM./dX = m(X), the velocity, dX/dt = V(X),

Sand so the formation rate, AR = m(X) V (X). The result is MR= 2 g/ps, a value

which is substantially constant over the time of jet formation, although it is

a bit lower initially and a bit higher toward the end. We also find that the

jet tip begins to form on the axis near X = 40 mm, moving nearly 8 mm/i1s, so

it should reach the cone base (X = 120 mm) in about l01Is.

According to the estimates cited above, both dMj/dX and V = dX/dt are

nonlinear functions of X inside the cone. However, outside the cone

radiographic measurements have established that V varies linearly with(6.6 - 6.7)
distance along the jet length, decreasing from tip to rear (if P

is the jet penetrator density and r is its radius at any point along its

length, then MR = p (rr2 ) V is an expression for the rate at which mass isB p

added tc the rear of the jet during its formation. At any instant in time

during jet formation, we can write V = V + XX where V is the constant speed0 0

of a particular jet element and X is a constant. Consequently,

S2 = (M P M)/(V° + XX) . (6.1)

Since 0 is the constant (liner) density, one consequence of MR being

approximately constant is an inverse variation of r with position along the
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length of the jet. This decrease from rear to front agrees qualitatively with

observations of jet taper like the examples shown in Fig. 6.2 at three

different times (6.8) The jet shown in Fig. 6.2 was produced by a 45° copper

cone of somewhat larger base diameter and wall thickness than that in Fig.

6.1. In addition, the composition B explosive was confined by a steel rather

than an aluminum case, and a spitback tube was used at the apex rather than

the rounded shape in Fig. 6.1. This last feature is responsible for the tip

shape which is a more distinctive bulb than that produced by the device in Fig.

6.1. Otherwise, the main jet features including jet taper are the same.

These pictures were selected since they are one of the best examples available

in the open literature. About one-fourth of the jet has formed in the bottom

picture of Fig. 6.2, while it is almost fully formed in the middle picture.

The stretching (and thinning down) which occurs after jet formation is

especially clear from a comparison of the middle and top pictures. A conical

flare at the rear of the jet as well as the presence of fragmented material

between this flare and the slug to follow (not yet visible) are not counted as

part of the jet in our description.

When the jet material has stretched to its breaking point, it begins to

neck down and separate into fragments. This occurs first near the tip where

the Jet is thinnest and later toward the rear, when it has thinned down

sufficiently. Radiographic estimates of the times involved have been
(6.9 - 6.1o)

discussed by Chou and co-workers . Part of the uncertainty in

such time-measurements comes from the difficulty of observing the separation

of the pointed ends of jet fragments using radiographs. The time estimated

for the beginning of jet beakup is 80 to 100ps after the detonation wave

passes the cone apex. If we take the mean value of 90Vs and add 1i0s (5Ps for

the wave to reach the portion of the cone which forms the let tip and 5ljs more

for this material to be accelerated and form the tip on the axis), we have an

estimate for the time at which fragmentation begins, namely t 2 = 100Os from

the beginning of jet formation on the axis. Chou and co-workers also estimate

that fragmentation is complete in about 150Ps.
The (6.7)
The report by DiPersio and co-workers cited above gives data for

three sizes of 420 copper cone liners driven by steel-cased composition-B
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eexplosive, all with rounded apices as in Fig. 6.1. The base diameters were

27 mm, 72 mm, and 96 mm, so the latter two cases bracket our example. They

found that the jets from such precision-made devices break into about 50

roughly equal-size fragments, which continue to travel at their original

speed without noticeable changein shape, orientation or alignment. This is

true for at least 300's, as judged from radiography of particulated Jets

extended over 240 cm (30CD) (6.11) Only the space between these fragments

grows with time. DiPersio and co-workers measured the mean diameter of each

fragment as well as the sun of their lengths. Then they calculated the volume

of jet material by assuming it was a right circular cylinder with this

diameter and length and calculated its mass by multiplying this volume by
38.9 g/cm , the density of copper. If we interpolate their results to obtain

the estimates we need for the 81 mm device we are interested in here, we find

that the fragments (idealized as right circular cylinders) are each about

1.43 cm long and 0.4 cm in diameter (or .12 cm2 cross-sectional area) with a

mass of 1.6 g, giving a total jet mass of about 80 g. The actual mean

fragment length is closer to 1.5 cm and might e approximated as the major

axis of an ellipsoid.

If the jet mass is 80 g and the formation rate is M1 = 2 g/'s, then the

time to form the jet is t 1 = 40ps fromtime zero when the tip first begins to

form on the axis nearX = 40 mm, moving at about 8 mm/hs. It takes about l0us

for the tip to reach the plane of the cone base, and after 30Ps more the tip
is located about 240 mm beyond the cone base near X = 360 mm. At this time

(t = t 1 .= hO1s) the rear of the jet has just formed near the cone base. Thus,

if the standoff distance, S, that is, the distance from the plane of the cone

base to the target face, is set equal to 240 mm or 3CD (Cone Diameters), S =

L , the fully-formed Jet length at the start of penetration. At time

t = 100.s when Jet breakup begins, the unimpeded tip will have travelled

another 6 O0s or b80 mm and will be located about 240 + 480 = 720 mm beyond the

original plane of the cone base. If the rear is moving at, say, 1.2 mm/Ws, it

will be located about 72 mm b ond this plane. Consequently, the jet length

at time t2 is about 648 mm when breakup begins. In other words it has

stretched about 408 mm since formation was completed. If S =720 mm (9CD),

then penetration starts as breakup begins. Since breakup is complete in about
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50ps, a much shorter time than the penerttion time in semi-infinite targets of

interest, then the entire penetration is accomplished by a train of jet

fragments. For larger standoffs, the average distance between fragments is

greater and the more opportunity they have to become mis-aligned. For smaller

standoffs, only part of the penetration will be accomplished by a fragmented

jet. This Is true even for zero standoff, if the total penetration time is

greater than 100ls. If t is the time at which penetration begins, and0

10 < to < tI = 4OwS (0 < S < 2ho mm = 3CD), then part of the penetration is

accomplished during jet formation. If t < t < t2 = 100Ws

(240 < S < 720 mm), then penetration begins after jet formation is complete

(MO = 80 g). Part of the penetration is accomplished by a continuous,

stretching jet, while the rest is accomplished by a fragmented jet. For

to > t2 (S > 9CD) as already mentioned, a train of jet fragments does the

penetrating.

All of the above numbers are approximate although they are based on the

best available information. There is no point in attempting to refine them,

until better experimental information is available.

Fig. 6.3 is the penetration/standoff curve for this shaped-charge device

versus a semi-infinite stack of armor steel plates each 25.4 mm thick. At

each of six standoff values a vertical line is shown which connects the

highest and lowest values observed, together with a circle indicating the

average value. As can be seen, even with a precision device, the experimental

uncertainty is considerable, varying from 5 - 10% for S < 6CD to about 50%

near S = 2OCD. Generally speaking, the uncertainty is larger the greater the

standoff. A notable feature of this curve is the occurance of a penetration

maximum near S = 6CD. This can be interpreted as follows. As S increases

from zero, the jet mass when penetration begins grows from M = 20 g0

(for S = 0) to M = 80 g (for S = 3CD). Understandably, a greater initial

mass as well as a greater initial aspect ratio leads to greater penetration.

For 3 < S < 6CD, no more mass is added, but the initial aspect ratio continues

to increase because of stretching. Consequently, the penetration continues to

increase. However, a larger portion of the penetration is accomplished by a

fragmented jet which counteracts the effect of the increased initial aspect

ratio, and the penetration increases more gradually. For S near 6CD most of
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the penetration is accomplished by a fragmented jet, and for S ý 9CD all of it

is. At greater standoffs the jet is not only fragmented before penetration

begins, but the jet particles also have time to become more and more

misaltgned, leading to lower penetration. The greater spread in the observed

penetration at large standoffs also corresponds to this greater misalignment.

B. Penetration by a Train of Rods

1. Experimental Data

a. Rods with Identical Striking Speeds

The fact that a significant portion or even all, of the penetration by

a jet is accomplished by a train of fragments has stimulated a number of

experiments over the years, using a train of identical rods all striking at

the same speed. Since the number of rods used has always been quite small and

since their speeds are identical, such trains do not simulate a jet which

might have 50 fragments with the first and last fragment striking speeds

differing bya factor of four or more. If a jet simulation is intended, then

it must be for a small section of the train. Of course, a jet simulation need

not be intended, since the question of the relative penetrating power of a

single rod and the same rod divided into spaced sections can stand on its own

merits.,

One might conjecture that a series of well-aligned, zero-yaw rods

could penetrate deeper than a single rod of the same diameter, material, total

length and striking speed. In the case of a single long rod the rear is soon

slowed by its connection to the front, long before it has a chance to act on

the target directly. If we divide this rod into equal parts and separate them

by enough space initially that a following rod strikes the target soon after

the preceding rod has been consumed, then the second rod should penetrate as

much as the first since it has not been slowed down before acting on the

target. If we believe that target "afterflow" is a factor, then we might try

to time the arrival of the next rod to take advantage of this movement.
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There are some difficulties with this conjecture. First, a deformed

residual mass is left in the bottom of the crater, so the next rod must

first perforate this mass before acting on the target. This might be

especially important if we segment the original rod into sections with

L o/D = 1 for which the erosion rate seems to be zero. If the target and

projectile are both soft enough to allow a rod to spread out in a thin layer,

this problem may not be severe. However, a hard target may confine the

residual rod mass enough to offer a significant obstacle to the next rod.

Such effects could be cumulative, eventually preventing the last rod in a long

train from ever reaching the crater bottom. Second, if we divide the original

long rod into a number of equal segments of the same diameter, both the mass

and the aspect ratio of the segments will be less than that of the original

rod. As we have seen, smaller mass and aspect ratio both favor smaller

penetration. Finally, there is no convincing evidence that "afterflow" is a

significant factor in targets of interest.

In summary, there may be cases in which penetration is improved or

degraded if we divide a long rod into equal segments. The fact that jet

penetration is degraded after breakup, as implied by a decrease in penetration

at large standoff, does not give us the answer for the case of a short train

of well-aligned rods all striking at the same speed.

Christman and Gehring (6.12) seem to have been the first authors to

report on the penetration ability of such "tandem" rods. They fired 2024-T3

aluminum rods at 4 mm/iis into 1100-0 aluminum targets. A single rod with

L /D =19.05 mm/3.175 mm = 6 penetrated 27 mm, a single rod with
0 o
L /Do = 9.525 mm/3.175 mm = 3 penetrated 15.7 mm, more than half the first

value. Two such L o/D = 3 rods fired at the same spot a long time apart gave

a total penetration of 28 mm, about the same as the L 0/D = 6 rod. "Tandem"

L /Do = 3 rods spaced about 3 mm and 10 mm apart, and so striking about l.s

and 2.5is apart, give total penetrations of about 20 mm and 23 mm

respectively, both considerbly less than the 27 mm-or 28 mm values above.

However, the interpretation of these results is very difficult because of the

large yaws and misalignments which were involved.
P e e n i a d ( 6 .1 3 )P
Perez and Giraud used a long steel rod and a hard aluminum

target in a reverse ballistics mode with an impact speed of 2 mm/os. As they
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divided their rod they found a decrease in penetration with increo-_-;.ng number

of rod segments. Increasing the spacing between their rId se',imer *s had n,

effect on this result, which they attributed to blockage of one rod by the

residual mass of the preceding rod. They compared their owrn result- with
(6.14~ to 6.16). tb~t aeo

those of Chou et al These authors shot short bullets made of

lead, copper-jacketed lead or tin at about 1 mm/iis, mostly into lead targets

(although other soft target materials were also considered). They tried cass

in which the masses of their two bullets were the same as well as cases in

which the first bullet was larger (longer) or smaller (shorter) than the

second. A 10s delay between the two bullets seemed to give some increase in

penetration over no delay, at least in some cases. However, delays of 30 to

100ls gave worse penetration. Two bullets fired minutes apart did the best of

all. They attributed their results to partial occlusion of the first crater

by flowing target and projectile material, which impeded the second bullet.

About the same time, Moore (6.17) used steel versus steel and claimed

a large increase in penetration due to rod division. He compared trains of

two or three rods with zero separation to a single rod on the basis of

something he called the "diameter of an equivalent cylinder," that is, a

cylinder of the same volume but with an aspect ratio of one. This method of

comparison is misleading, since it artificially penalizes the original long

rod by forcing it to have an incorrect aspect ratio. The same procedure also

artificially penalizes a two-rod train compared to a three-rod train. It is

not believable that one can make a better penetrator by simple division

without spacing. Perhaps his comparison of a two-rod group to itself with

different spacings between the rods has some validity, if the reported

differences were outside of experimental error (not discussed). The same

might be true of his three-rod group. However, only data normalized in terms

of the "diameter of an equivalent cylinder" was reported so it is impossible

to recover the original data with which one might make an evaluation.

b. A Train of Jet Fragments

The approximation that the fragments in such a train are alike in size

and shape is probably good enough for most practical purposes. However, if we
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Fig. 6.4. Photograph of a Sectioned Armor Target after
Penetration by a Precision 3.3 inch charge.

Jet-target material has plugged bottom of hole. Slug
is wedged in armor at the top.
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wish to consider a train of 50 fragments or even a significant fraction of

such a train, we cannot ignore the factor of four decrease in striking speed

which exists in such a train.

Simon and DiPersio (6.18) used solid billets of armor steel or

aluminum as targets for such a jet. They were able to radiograph the jet

during penetration of the aluminum billets by making them slender enough.

However, they had to section the steel billets lengthwise in order to study

the results of a penetration. In allcases large amounts of copper from the

jet were found in the craters. For at least one steel target the slug was

also found wedged near the top of the crater as shown inFig. 6.h. The buildup

of copper in the crater was found to increase as the standoff was increased

from S = h to S = 12 to S = 16CD. This increase could be associated with the

transition from a case in which only part of the penetration %as by a

fragmented Jet to cases in which all of the penetration was by such a jet,

whose fragments had more time to become misoriented and misaligned as the

standoff increased. Blockage and interference effects were cumulative and a

point was reached where many of the fragments from the rear of the jet never

reached the bottom of the crater. They chose to describe their observations

in terms of a cutoff velocity, which they interpreted as the speed of the

slowest fragment which was still able to deepen the crater. Fragments which

had speeds slower than this merely penetrated copper and added to the buildup.

In an earlier report (6.19) these authors contrasted the accumulation

of copper in the crater made in a truly solid target with the absence of such

an accumulation in a target consisting of a stack of plates. In the latter

case "this jet material is forced out between the target plates and can be

seen on the plate surfaces." Unfortunately, wge don't have much quantitative

information on possible differences in depth of penetration in a stack of

plates compared to penetration in a truly solid target. It seems likely that

the thickness of the plates used in a stack should have some influence on the

escape of eroded material with consequent reduction in interference and

possible increase in penetration. In the extreme case of a single plate which

qualifies as semi-infinite, it is clear that escape is minimized and

interference maximized. Prehaps the reverse is true if a large number of very

thin plates is used in a "semi-infinite" stack.
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Radiographic evidence and soft copper rod recovery experiments

indicate that there can be room for a straight, continuous jet to move down

the center of a tube of eroded jet material without being impeded, at least in

most metal targets (see Figs. 4.2 and 4.3). However, this is probably not

true after Jet breakup. Even slight misalignments of the jet fragments could

lead to contact with the material coating the cavity wall. In addition, once
a series of fragments begins to strike, it generates a series of interrupted

and probably irregular short tubes rather than the continuous tube generated
by a continuous jet. The combination of such effects can be cumulative and

lead to so much interference and material pile-up that the last jet particles

never reach the bottom of the cavity in a truly solid target. This effect

should decrease in a stack of plates and may even disappear if the plates are

thin enough.

2. Models of Penetration by a Fragment Train

Rineart(6. 90)

Rinehart ( proposed a simple method of describing penetration by

a fragment train. ' assumed that each fragment makes a spherical crater of

diameter, Pi, and volume (r/6) P, = fo- (.5 MiVi2), where f is ati empirical

constant. Here he adopted the suggestion by Hill, Mott and Pack that

the crater volume should be proportioned to the kinetic energy of a penetrator

of mass Mi and speed Vi. If we solve this relation for Pi and sum the

contributions of each fragment, the total penetration depth is

1 1/3 N Mi2 1/3

P (6f/w) 0 (.5 M (6.2)o i = ii

where N = 50 for the Jet we are considering while Mi = 1.6g for all i. If we

assume that all the fragments have, the same (average) speed, Vi = 5 mm/iis,
then fo = [2/(9r)] (g mm/us 2)/mm2 gives PE close to 400 mm. This is nearly
equal to the maximum of the curve in Fig. 6.3. To describe the whole curve,

f must somehow depend on standoff.

Alexander and Finnegan (6.21) considered penetration by a cluster of
spheres which were not necessarily aligned and did a dimensional analysis to

describe the net "invasion depth." At the same symposium, Golesworthy ( 6 2 2),Held
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(6.23),and Szendrei (6.2h) all proposed models to describe the crater made by

a train of jet fragments. The following year, Held (6.25) expanded his

discussion to include the effect of transverse velocity such as might be

imposed in a fly-over, shoot-down mode of attack.

About the same time, Segletes (6.26) proposed a similar model to

describecrater formation by a train of jet fragments. He used measured values

of the velocity components of each jet fragment in a train to calculate the

observed hole profiles. By superimposing ellipsoidal craters produced by

individual fragments he was able to reproduce experimental observations. For

example, Fig. 6.5 shows his hole profile calculations (two orthogonal views)

for a well-aligned train at a standoff of 23CD. Fig. 6.6 shows orthogonal

views for a badly aligned train at 38CD standoff. One view shows the

production of a dual crater, one branch slightly less than 1CD deep, the other

slightly more. Segletes' method requires measurements on individual fragments

and does not include a statistical generalization to describe the expected

performance of a batch of devices all nominally the same. He chose to base

his estimate of penetration by each fragment on the wave refraction theory of
Fitzgerald (6.27) In this theory, Fitzgerald attempts to apply quantum

mechanics to macroscopic deformation theory, an effort which has not gained

wide acceptance. Of course, there is no need to choose such a basis, since a

simple assumption of an ellipsoidal shape would suffice. More recently,
(6.28)Segletes expanded his model to include the effect of a superimposed

transverse velocity resulting from a fly-over attack mode.

In this report we will only be concerned with penetrations by trains

of jet fragments which have no superimposed transverse velocity component. We

assume that all the fragments are alike and idealize them as right circular

cylinders with L o/Do lh mm/4 mm = 3.5 and M = 1.6 g. If we assume that the

erosion rate is such that c = 0, we can use Eq (2.27). The argument of the

exponential in this equation becomes
(1 + .5v'7t/P) [ /z-- S~~ 2 .2yt 1.5)2/ (6.3

5.lPy/61 (So/k) / 2.2 x 10- (o /1 (6.3)t p p t 0o' t 0 t

when we use u = (P ) . The approximate form holds for

Pt' Pp = 8.9 x 10 3 g/mm . Our fragment speeds vary from SO '- 7.5 mm/ws to
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Fig. 6.5. PENJET Predictions of Hole Profile for Round 2937 at

23CD Standoff. Penetration in Cone Diameters.
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Fig. 6.6 Orthogonal Views of Projected Hole Profile of Round
2331 at 38CD Standoff aq Predicted by PENJET.
Penetration in Cone Diameters.
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So n 1.5 mm/us, so Eq (6.3) varies from .055/Yt to .002/Y t. For an armor
steel target Y .001 (g mm/us )/mm , so the exponential correction factor is

negligible for most of the (faster) fragments which penetrate about

Lo//iA-/h - 10 mm if A/A -- 2. However, for a slow fragment the correction
0 0 0

factor is about 0.1 so it penetrates about 9 mm. For a weak target like lead,

Yt is 100 times smaller, so the correction factor will be negligible for every

fragment in the train. In general, we will find smaller erosion rates, so

c > 0 and Eq (2.22) must be used instead of Eq (2.27).

We should be able to add the penetrations by each fragment if (1) they

are well-aligned, (2) there is no interference with the incoming fragments by

the mass flow, and (3) each fragment is completely eroded before the next one

strikes. The first two conditions tend to hold shortly after jet breakup,

although the third condition may not be true at this time. The opposite tends

to be true long after jet breakup and for the slower fragments. Unless thiere

is an air gap about equal to the length of a fragment between successive

fragments, we expect the nose of a following fragment to strike the rear of

the one in front of it before it has been eroded. The problem is quite

complicated and cannot be treated in the context of a one-dimensional model of

the type we are discussing. Even a three-dimensional treatment should be

statistical, since we want to describe the performance expected from a typical

sample taken from a batch of devices. Here we will content ourselves with a

temporary expedient, namely, the use of an empirical efficiency factor,

applicable for standoff S > 1OCD:

E = 2 exp (-.0693 S) (6.4)

with E = 1 for S < lOCD. The fomn chosen for Eq (6.4) is geared to the

standoff curve in Fig. 6.3 for the jet we are considering versus a stack of

armor steel plates and is not meant to apply to other situations. The choice

of E = 1 for small standoffs implies that whatever part of a penetration is

accomplished by a fragment train is close to the additive ideal. The

exponential decrease is meant to approximate the behavior at large standoff in

Fig. 6.3. We note that for S nu 65CD, E 1 .02 so the penetration by a very

inefficient train of 50 fragments is equivalent to that of a single
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representative fragment. At very large standoffs fragment dispersion

increases and the likelihood of two fragments striking the same spot

decreases. However, such a purely empirical formula like Eq (6.4) cannot be

expected to give correct quantitative predictions for extreme cases.

C. Calculational Aids

In order to apply the theory described by Eqs (2.42) to (2.83) above, we

must estimate a number of parameters.

For a given standoff, S, we need to know the time, to, when penetration

begins, taking as our zero time the moment the jet tip is formed on the axis.

We can let

to = lo + s/8 (6.5)

since it takes about l0ps for the tip to reach the cone base if it travels at

8 mm/us. Thus, if S = 2ho mm - 3CD,t =to 40is = t,, and the jet has just

finished forming as penetration starts. The jet mass initially is

=M to =.2(10 + s/8) (6.6)Mo

since MR = 2 g/Ps. Of course M = 8 0 g for t > tI. The Jet length when

penetration begins might be estimated from

L = 60 + 3S/4 . (6.7)0

Thus for S = 0, L = 60 mm, about half the cone height in agreement -with0

radiographs of a collapsing cone taken as the Jet tip reaches the plane of the

base. For S = 240 mm = 3CD, L = S, which should be the fully-formed jet0

length at t 40ps. For S = 720 mm = 9CD, L = 600 mm = 7.5CD. This should

be the fully-stretched jet length at t = lOOis. Since the jet has stretched

360 mm in about 50ps, the stretching rate L = 360 mm/50s = 7.2 mm/Ps.

If we divide Eq (6.6) by Eq (6.7; with 6 factored out, we find

M0/L = 1/3 g/mm for arny start time during jet formation. Since the space
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average initial cross-sectional area is defined as A = (M /L )/p , then

A = .375 cm2 for 0 < S : 240 mm. Since the mass stretching rate in Eq (1.27)
.0

is P = ppLTA0 1 ,the constancy of A implies 0 = 0. However, for larger

standoffs, M = 80 g, so

A = 80 g/(p Lo) 0 15/(10 + S/8) cm2  (6.8)

by Eq (6.7). Thus, for S = 720 mm, t = lOOPs, and A = .15 cm2 by Eq. (6.8).

20
Ao .12 cm which we estimated above for a jet fragment idealized as a right

circular cylinder.

We are making two kinds of approximation. One is the use of approximate

numerical values such as 8 mm/.s for the tip speed (instead of 7.6 mm/Ps) and

80 mm for the cone diameter (instead of 81.28 mm as in Fig. 6.1). More

accurate values could be used without complicating the theory. However, these

values are good enough for our purpose. We are also using another kind of

approximation in order to avoid unmanageable complications in our theory. For

example, we are using an average area, Ao, which does not change in time. Por

00
a stretching Jet, A 0 O , a fact which we account for by the factor ý. if we

let A be a function of time, then we would not be able to integrate Eq (2.45)

so simply. Since A does not change greatly for most calculations of

practical interest, and since we do not know what function of time to use, we

have avoided this unnecessary complication. We are interested in the jet area

just behind the mushroom cap, which is always smaller than A , the average
2 0

over the jet lengý a. We estimated A = .375 cm foi, S < 3CD, so the area of
2

interest will be smaller, probably less than .3 cm . The tip of our jet is
2bulbous, so taking A = .3 cm , a bit on the high side, should tend to0

compensate for neglecting to treat the tip separately. When the jet is fully
2stretched, A is near .15 cm , about half its value during formation.0

For calculational purposes, during a given time period, we will take the
time average value of the area of interest to be equal to the average of A at

0

the beginning and end of the period as estimated from Eqs. (6.5) and (6.8).

For example, if the period extends from 4 0us to lO0us, we find A = .3 cm2 at

40lis, the value we assumed for jet formation, and A = .15 cm2 at 100iIs. This
0
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2gives an average A of .225 cm If the period extends from 40Us to 7ois
(S 4 480 mm from Eq (6.5)), the average A is .5 (.3 + .21) - .255 cm 2, and so

on. For penetration during jet formation, A is the same at the beginning and
2

end of any period, so the average value is A = .3 cm0

We recall that i = ppL IAo0 = p LA when no mass is being added. Here

p= 8.9 g/cm and L = .72 cm/ps as mentioned above. Once we have found A

for the particular time period we are considering, we can calculate *.

In order to estimate the erosion rate, U0 , we recall section f of

Chapter IV. There we saw rates for a high aspect ratio L o/D = 60 mm/3 mm2 0

20 copper rod of cross-section A = .0706 cm , at least at low speeds. Since0
we are assuming that vo is independent of speed, we can use our previous

method to estimate erosion rates for our copper jet. For example, we found

S= .055 g/mm for the rod versus a steel target. If we multiply this value

by (Ao/.0706), where A is the jet area, we can estimate Vi for the jet.

Since the jet has a higher aspect ratio than the rod, 're expect a slightly

lower erosion rate. For example, for A = .3 cm2 , we estimate V 0 .2 g/mm

for the forming jet versus steel. Similarly, we can use the rod values of

.032 g/mm versus aluminum and .059 g/mm versus copper, multiplied by suitable

factors. For a jet fragment with an aspect ratio of 3.5, we expect a higher

value than we would find from using the rate for an L I/D = 20 rod, as
00 2

explained above. For example, instead of about .1 g/mm for A - .12 cm , we
0

might expect pi = .15 g/mm for a jet fragment versus steel. Thus, against a

steel target our estimates for P will be ! .2 g/mm, depending on the stage

of penetration. If all 80 g of jet were eroded at the rate of .2 g/mm, this

would require 400 mm of penetration. If lower rates applied to part of the

penetration, we expect somewhat greater penetration, in agreement with the

curve in Fig. 6.3 for mid-range standoff values.

"D. Penetration/Standoff for Armor Steel

1. Standoff = 2CD

Merendino and Vitali (6.29) obtained the penetration/time curve in

Fig. 6.7 for S = 2CD. They reported a final penetration depth, P 397 mm,
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reached 250ps after the start of penetration. In four such tests, the maximum

penetration was 399 mm, the minimum was 374 mm and the average was 386 mm,

also shown in the figure. We see that these values are representative of the

29 values averaged in Fig. 6.3. The armor steel target plates had
2BHN = 300 kg/mm

a. t < t<t

If we use S = 160 mm in Eq (6.5), we find to = 3M s. With this value

we find M = 60 g from Eq (6.6), and L = 180 mm from Eq (6.7). We also take02 0

Ao = .3 cm , since S < 240 mm. This first stage of the penetration only lasts

10lis, since jet formation is complete when t = 4011s.

As explained above, we estimate 1o = .2 g/mm during formation. In

addition, I = 1.87 mm/g, k = l.44 and P = 5.6 mm/us. The penetration speed0o 0

drops rapidly at first, then decreases more slowly. The average value of the

slope in Fig. 6.7 during this period is about 4 mm/Us. Consequently, the

average time rate of erosion is M = (.2 g/mm)( 4 mm/i's) - .8 g/us in

Eq (2.42). If we did not have prior knowledge as in Fig. 6.7, we could

iterate the entire calculation until a self-ccmsistent average value emerged.

Since the mass addition rate at thE rear has heen tstizated to be M = 2 g/us,
6R

then M = 2 - .8 = 1.2 g/Ps J.n Eq •2.42). Tht-_ M.. = i0 + 1.2 (40 - 30) = 72 g0

at the end of this stage of the penetration f,±m Mq (2.--13).

For high-speed penetration by rods we have Learned to estimate a

flattening factor of A/A° = 2. For an armor steel target we find
.2 2n( 2~ 6a -081/g mmiws ani s,) a = ý162 g mm/ls2, since A = .3 cm2 . Similarly

0, 0

c = .23 6 g/mm. Since i = 0 during formation as explained above, Eq (2.46)
2

gives a = .162 - (1.87)(1.2)(1.2 + 4) = - 11.5 g mam/us . From Eq (2.47) with

b = 0, we fin! bF= 4 g/iis. A A - 26.9 (g/Ps) < 0 with

1-7F= 5.18 g/Vs, so Eqs (2.57) to (2.61) apply. We find
F

y + 5.,18)/.472 = 2.5 mm/Is •i•i! = -4 - 5.18)/.472 = - 19.5 mm/Ps.

In addition, M -I V'A = 1.2/5.18 = .23. From Eq (2.59),

(5.6 - 6 + 19.5) = .12, and0 • . -- 1/, =

z .12 1 • 1.2!bO)(4o - 30)]-/°23 -05. From Eq (2.5.7.) we find the
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speed at time t to be P1 = (2.5 + 19.5 (.05)1/(l - .05) = 3.7 mm/us. In

order to find the penetration depth, P,, from Eq (2.58), we must evaluate two

special integrals:

B (cp, -B, (.23) -J S1 x`'23/(l-x)) dx

" .05

= .07 [.174 (2.063 + 1.858) + .326 (1.969 + 1.894)] = .14 (6.9)

,.12
B (1*+ c-) = B (1.23) I Ix /(1x-)] dx

1F 1 f 0.05

= .07 1.174 (37.57 + 16.14) + .326 (26.94 + 19.55)] = 1.72 (6.10)

usingthe four-point Gauss Method. Then Eq (2.58) gives

*.PI, (6o/5.18)(.05)' 2 3 12.5 (1.72) + 19.5 (.14)] = 41 mm (6.11)

which agrees closely with Fig. 6.7 after lOis of penetration.

b. tl<_ t_< t

Since tI = 4N1 s and t = 100Ns with to = 30is, we are considering the

time period from lO~s after penetration begins to M0ps after penetration

begJlnsa The initial values for this stage of the penetration are the final

valuies of the previous stage, namely, M1 = 72 g,PI = 3.7 mm/ps and

Pl = 41 mm. We can subdivide this 601s time period into as many intervals as

we like, using the final values of one interval as the initial values of the

next. As an illustration, we will treat the entire period as a single

interval. As discussed above, the time-average value of the length-average
rea is A = .225 cm2 .2 From this we estimate i = .18 g/mm, I = 2.5 mm/g

0 2 O

and k =-.1.4.5. With (A/Ao) = 2, we find a = .12 g mm/ps and c = .18 g/mm. In
0

addition, 1 = (8.9 g/cm3 )(.72 cm/i's)(.225 cm2 ) = 1.44 g/ps. From Eq (2.65)

with b • 0, we find S = .58 giPs and from Eq (2.66), E = .11 g/mm. From Eq

(2.67) A= -. 284 (g/A s) 2 and /P-• .53 g/i s, so Eqs (2.76) to (2.80) apply.

Moreover, e= .18/. 1 1.64 so ck 2 = 1.19. Since $- = .58/.53 = 1.09, we
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have 0"(Ik/2) = 1.25. From Eq (2.78) we find÷ +

Y (-.58 + .53)/.22 - -. 23 mmlbIs and Y - (-.58 - .53)/.22 - -5.05 mm/Us.

Also G1 - (3.7 + .23)/(3.7 + 5.05) - .45, and from Eq (2.64)

F1 a .12 + .58 (3.7) + .11 (3.7) .12 + 2.15 + 1.5 + 3.77 g ms/us 2. Then

from Eqs (2.79) and (2.80) we find

D- 1(I00 - 4o)/(1.45 x 72)] (3.77) 1 . 1 5 (.45)-1. 2 5 - 7.4

= (.12 + .5 8 x + .1lx 2 ). 1 5 1(x + .23)/(x + 5.05)1-1" 2 5 dx (6.12)

P22From this equation we find P2 = 1.8 mm/us, since

D- = 1.9 [.174 (4.666 + 3.374) + .326 (4.095 + 3.621)] = 7.4 . (6.13)

2
Now we can use this value of P2 to find F 2= .12 + .58 (1.8) + .11 (1.8) -

.12 + 1.04 + .36 = 1.52 g ms/Us and G2( 1.8 + .23)/(1.8 + 5.05) - .296.

Then Eq (2.76) gives

2 (1.52) 4 1.251

= 41 + 162 = 203 mm (6.14)

close to the value in Fig. 6.7 after 70s of penetration. From Eq (2.62) we

find M2 ,= 72 - .18 (203 - 41) = 72 - 29 = 43 g. Thus 80 - 43 - 37 g of Jet

have been used during the first two stages of penetration.

C. t <t<E

Experimentally, the entire penetration took about 250ps, so tE = 280.s

when we add 30us, counting from our zero time. Since t 2 = 100i.'s, this last

stage of the penetration takes about 180ps compared to 70us for the first two

stages combined, which accomplished about half the total penetration with an

expenditure of slightly less than half the mass. Since each fragment on

average is 1.6 g, it takes over 2.5 times longer for 43/1.6 = 27 fragments to
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accomplish the other half of the penetration, even though this is an almost

ideal train with an efficiency of E n 1. This is because the striking speeds

range from a high of P. 2 1.8 mm/ps to a low of about 1.2 mm/ps as measured by

Majerus and Walters (6.30)
As explained above, our estimate for the erosion rate of these jet

fragments versus a steel target is W 0 .15 g/mm. Since the striking speeds

are all below 2 mm/ps, we expect the flattening factor, (A/A ), to be greater

than 2. We recall from Fig. 4.39 that for an L /Do = 20 copper rod versus

steel for 1.2 < S < 1.8 mm/us, the flattening factor was about 5. However,

for a lower aspect ratio like 3.5, we expect a lower value for (A/A ). Let
(A/A ) = 2.5 for these jet fragments as an average value, With these assumptions

and Ao a .12 cm 2, we find a = .08 g mm/ps2 and c = .12 g/mm. In addition
Io0 4.68 mm/g and k - 1.7. From Eq (2.18), c = .015 g/mm, so Eq (2.22)

becomes

= (1.6/.15)(i - (I + Ofc)2J8-5ý (6.15)

since ;/(ak2 ) .06 (us/mm)2, while P k/(2c) = 8.5. From Eq (2.15), we have
0

Mi = 1.6 - .15Pi (6.16)

with i - 1 to 27. The speed difference between the first and last fragments

is .6 mm/us so the drop in speed between one fragment and the next is

.6/26 =. .023 mm/us. Table 6.1 gives the striking speed, So:i of each fragment
in the train, assuming that there are no collisions or interference, followed

by the penetration produced by that fragment, Pi and the residual mass, Mi.

For a stack of plates of this type, we are assuming that all residual mass

escapes between the plates. The cumulative penetration and cumulative

residual mass are also given in the last two columns of the table. Three

decimal places are retained to minimize errors of a purely numerical type.
This does not imply that the calculation is anywhere near this accurate. The

total cumulative penetration by the fragment train is 188 mm. If we add this
to the 203 mm produced by the continuous part of the jet, we find a total

overall penetration of 391 mm. This is slightly less than the reported high
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Table 6.1

1 1.800 8.313 .353 8.313 .353

2 1.777 8.228 .366 16.5141 .719

3 1.7514 8.1142 .379 214.683 1.098

14 1.731 8.053 .392 32.736 1.1490

5 1.708 7.961 .14o6 14o.697 1.896

6 1.0;85 7.868 .1420 148.565 2.316

7 1.662- 7-7T72 .14314 56.337 2.750

8 1.639 T.6714 .1449 614.o11 3.199

9 1.616 7-5714 .14614 71.585 3.663

10 1.593 7.1471 .1479 79.056 14.1142

i1 1.570 7.366 .1495 86.1422 14.637

12 1.5147 7.259 .511 93.681 5.1148

13 1.5214 7.150 .528 100.831 5.676

114 1.501 7.038 .5144 107.869 6.220

15 1.1478 6.925 .561 1114-7914 6.781

16 1.1455 6.809 .579 12i.603 7.360

17 1.1432 6.691 .596 128.2914 7.956

18 1.1409 6.571 .6114 1314.865 8.570

19 1.386 6.1448 .633 1141.313 9.203

20 1.363 6.3214 .651 1147.637 9.8514

21 1.3140 6.198 .670 153.835 10.5214

22 1.317 6.071 .689 159.906 11.213

23 1.2914 5.9141 .709 165.8147 11.922

214 1.271 5.810 .729 171.657 12.651

25 1.2148 5.677 .7148 177.3314 13-399

26 1.225 5.5142 .769 182.876 114.168

27 1.202 5.1407 .789 188.3146 114-957
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of 399 mm and somewhat more than the reported low of 374 mm, but not far from

the average experimental value of 386 mm. We may simplify the calculation by

taking the average of 8.313 mm and 5.407 mm, namely, 6.56 mm, and multiplying

by 27 fragments to get 185 mm. This plus 203 mm gives 388 mm, even closer to

the experimental average.

We see from Table 6.1 that almost half of the last fragment mass

remains after it is brought to rest, while the total cumulative residual mass

is about 15 g, almost 35% of the 43 g mass of the fragment train. If the

target had been a solid billet instead of a stack of plates, we would expect

interference and a lower penetration with a lot of residual mass in the crater.

2. Standoff = 6CD

Unfortunately, we do not have any time-dependent experimental data at

this standoff. The only information we have is a final penetration depth of

about 440 ± 40 mm from Fig. 6.3. Since S 480 mm, to =0Ms > tI by Eq

(6.5), so the jet is completely formed (M° = 80 g) and partially stretched

when the, penetration begins.

a. t < t<t2

.-Since t 2 = lOOps in our coordinate system, this first stage of the

penetration lasts for 30ps. The initial area at t = 70ps is .214 cm2 from Eq

(6.8), and is .15 cm2 at t 2 so the average area over the time of the first

stage is A° = .18 cm2 . This gives po = .14 g/mm. We also find p = 1.15 g/Ps,

I = 3.12 mm/g, k = 1.44, P = 5 mm/ps, a = .1 g nm/ps2 and C = ,14 g/mm with
0 0

(A/A) = 2. Then b .44 g/ps, ' = .04 g/mm and A = - .178 so vCT= .42. Weo +

have • 3.5, Ek/2 = 2.52, 6-= 1.05 and a- (2k/2) = 2.65, y = ,25,

Y- - 10.75, G = .36 and F = 3.8 g mm/ps 2 . Then0 0

(100-70) (3.8 )2.52(.36)-2.65 = 112.7

-/ 5.6 (. 1 + .44x + .04x 2 ) 1 -52 1(x + .25)/(x + 10.75)1-2 ,6 5  dx (6.17)

.2
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from which we find P2 - 4.6 in/us.

D" 11.174 (iii.I + 116.3) + .326 (12.5 + 114.5)) - 113.6 (6.18)

2Then G 2 .316 and F2 = 2.97 g mm/us , so

/80 E ~l /29 7 2.-52 136 2.-65S
Si - 3 .8 ,/ \ -.3163

= 571.4 (1 - (.537)(1.413)) = 138 mm (6.19)

Without time-dependent information we have no check on this intermediate

result. However, we note that the value in Eq (6.19) is about 38 mm larger

than the depth after 30us in Fig. 6.7. From Eq (2.62) we find

M2 = 80 - .14 (138) = 60.68 g which becomes a train of 38 fragments.

b. t< t 5<t

Eqs (6.15) and (6.16) should apply to this fragment train as well.

Now, however, the first fragment strikes at 4.6 mm/us so P 1 10.66 mm by Eq

(6.15) while P38 = 1.2 ml/us and P38 = 5.4 mm as for the last fragment in

Table 6.1. The average penetration per fragment is thus 8.03 mm or 305 mm for

38 fragments. If we add 138 mm to this from the first stage we find 443 mm

for the total penetration which is close to the average value observed.

3. Standoff = 1OCD

Here the entire penetration is accomplished by a train of 50
fragments. If SO = 8 mm/us for the first fragment, then P 1 10.67 mm, while

P50 is still 5.4 mm for an average of 8.03 mm and a total of 4 02 mm. This is
close to the average value of the 65 observations in Fig. 6.3.

4. Standoff = 20CD

For S > 1OCD we invoke our efficiency factor in Eq (6.4), namely,

E = .5 for S = 20CD. The 50-fragment train would still penetrate 402 mm as
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for S = 10CD if E - 1. As it is, we calculate a total depth of 201 mm, which

is close to the average of the 24 observations in Fig. 6.3.

E. Penetration into Steel and Aluminum Targets of Various Strengths

We are fortunate to have time-dependent experimental data for these

targets for at least one standoff, namely, S = 2CD. In their report cited

above (6.29) Merendino and Vitali also studied aluminum and steel targets with

a range of hardness values, using the same techniques with stacked plates.

Four selections from their data are shown in Fig. 6.8. Both steel targets

offer greater resistance to penetration than either aluminum target.

Moreover, for a given metal density, the greater the hardness, the lower the

penetration. Clearly, a hydrodynamic theory which neglects target strength

cannot explain such results. Once more the importance of including hardness

for high speed penetrations is evident. Ine hardest aluminum target used in

Fig. 6.8 did almost as well as the softest steel target, considering final

penetration depth. In fact, we might expect a still harder aluminum to

outperform a somewhat softer steel with BHN < 100 kg/mm2.

Another feature of these curves is the fact that, for given target

density, they are almost indistinguishable early in the penetration versus a

fast, continuous jet. However, at later times, after the jet has broken into

a train ,of fragments, the curves are easily distinguished, especially for the

less dense aluminum targets which differ in hardness by a factor of 6.8

instead of 3 as in the case of the steel targets.

1. Steel Targets

The lowest curve in Fig. 6.8 has already been calculated during our

discussion of Fig. 6.7. We recall that at the beginning of the penetration of

the steel target with BHN = 300 kg/mm., a F = a - Io M (M + 2 M R

.162 - (1.87)(1.2)(5.2) = 11.5 g mm/us 2 while TF = 4 g/•js and c = .236 g/m.r.

For a steel target with BHN = 100 kg/mm2 , the only factor which changes will
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be a, which we expect to drop to .162/3 = .054 & mm/Ps. Clearly this will

give a negligible change in the opposing force, F, so the predicted

penetration will be almost identical, in agreement with what is observed.

Here we are making our usual assumption that the erosion rate is the same for

two such targets of the same density. Similarly, we recall for the second

stage of penetration that initially the force was F1 = .12 +

2.15 + 1.5 = 3.77 g mm/ps , while at t2 it was

F2 = .12 + 1.o4 + .36 = 1.52 g mm/us 2. Switching to a = .12/3 = .04 g mm/ps 2

for the softer steel target is a negligible change, and the curves are still

indistinguishable in agreement with Fig. 6.8. However, during the last stage

of the penetration by a train of 27 fragments, target hardness becomes

important in the coefficient of S 2 in Eq (6.22), namely 7C/(ak 2). Since a
0decreases by a factor of 3 for the soft steel target, Eq (6.15) becomes

P. = 10.67 11 - [i+ .18 s 8.s (6.20)I (Soi ) I60

although Eq (6.16) remains the same. Now we find P1 = 10.46 mm instead of 8.3 mm

as in Table 6.1. Similarly, P27 = 9.17 mm instead of 5.4 mm for an average

of 9.82 mm and a total of 265 mm. If we add 203 mm to this from the first two

stages of penetration by the still continuous jet, we find 468 mm, which is

sooewhat below the value shown in Fig. 6.8 which was a deeper than average

penetration.

2. Aluminum Targets

a. to < t < tl

During the first 1Os of penetration we can estimate the erosion rate

by multiplying. 2 g/mm for a steel target by /2.7/7.83 as usual to obtain
A = 1.87 mm/g as before so now k = 1.22 and P =6. mm/ws, larger than for

steel. The average speed is about 5 mm/ls so

M= (.12 g/mm)(5 mm/os) = .6 g/ws. Since = 2 g/ws, M = 1.4 g/lis, so
p 2

M1 = 60 + 1.4(lO) = 74 g. With (A/Ao) = 2, we find a = .10 g mm/Ws- for the
22target with BHN = 183 kg/mm and a = .015 g mm/ws for the target with
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BHN = 27 kg/mm2 . Of course c = .081 g/irm for either target. Then

a = .1 - (1.87)(1.4)(1.4 + 4) = - 14.0 g mm/Ps 2 for the harder target and

- F - 14.085 g mn/lis for the softer target. These value's are practically

the same. Of course bF = 4 g/Ps and c are exactly the same for both targets,

so the curves will be indistinguishable as observed. Then / = 4.53
+ F

approximately the same for both, giving y = 3.27 and Y = -52.65. Also

1.4/4.53 = .31, and G = (6.5 - 3.27)/(6-5 + 52.65) = .055, while

GI = .055 I1 + (1.4/60)(101)-1/31 = .028, so

P1 = [3.27 + 52.65 (.028)1/(1 - .028) = 4.9 ram/us. Next we find

B1 (.31) = .076 and B (1.31) = 1.921, so

P1 = (6o/4"53)(.028)'I13."27 (1.921) + 52.65 (.076)] = 45 mm in approximate

agreement with Fig. 6,8.

b . t < t <

To start off the next 6 0us of penetration we have M = 7T4 g,

4.9 mm/ps arnd Pl 4 5 mm. Now P = .108 g/mm and I = 2.44 mm/g so1 1 o o

k = 1.26. With (A/AO) = 2, a = .076 g mm/Ps for the harder target and

a = .011 g mm/us for the softer one, with c = .108 g/mm for both. Of course

i- = 1.23 g/is as before, so b = (2.44)(.108)(1.23) = .324 g/ls and

= .108 - (2.44)(.108)2 = .08 g/mm. Then V--• = .285 gl/s for the harder

target and = .266 g/is for the softer. Moreover, E 1.35 and :k/2 = .85

for both, but 8 = 1.137 And a (Ek/2) = .966 for the harder, while

6 = 1.218 and - 1 .137 and •" (Zk/2) = 1.035 for the softer. Also

Y = -. 244, Y = -3.8o6, G1 = .591 and F 1  3.58 g mm/Ps2 for the harder

target, while Y = -. 362 mm/us y = -3.686 mm/us, G1 = .613 and

F, = 3.52 g mm/Ps2 for the snfter. Since the resistive forces of the two

targets are slightly different, there will be a slight but observable

difference in penetration as in Fig. 6.8.

For the harder target we find

60 85( -. 966
D - . - (3.58)' .591) = 3.165

4 (.O76 + .324x + .08x2)Il5[( + . 2 4 4 )/(x + 3.806)1-966 dx (6.21)
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* 2
and P2 = 2.92 mm/us so G2 = .470 and F2 = 1.704 g mm/us2, and

P (1.704 8 -.85 • . 966

452  + 3.S (-.470)

= 45 + 685 {1 - (.532)(1.248)} = 45 + 230 = 275 mm (6.22)

so

M2 = 74 - .108 (230) = 49.2 g (6.23)

For the softer target we find

D = (3.52)* 5(613)-l-035= 3.1151. 26(74)

= (.011 + .32 4 x + .08x 2 )-' 1 5 [(x + .3 6 2)/(x + 3.688)]-1" 0 3 5 dx (6.24)

p 2 2
and '2 = 2.95 mm/us, so G2 = .499 and F2 = 1.663 g mm/lJs 2 , so

174 1.- *85 1 1.035

(1-08)~1 (3..4

= 45 + 685 {f - (.529)(1.237)) = 45 + 237 = 2 8 2 mm (6.25)

so I2 = 74 - .108 (237) = 48.4 g. (6.26)

Thus, when jet breakup begins, the crater in the softer target is about 7 mm

deeper.

C. t <t<_t ,

For fragments versus a soft aluminum target let (A/A) = 2.1 and
o2

estimate u = .085 g/mm. Since A = .12 cm2, we find a = .006 g mmws and2
c .034 g/mm, I = 4.68 mm/g and k = 1.4, so c = 0 and Eq (2.26) becomes

0

F: (1.6/.085) I1 - exp(-5.06S 2 )0 (6.27)
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since wo /(2ak) = 5.06 (us/mm) 2  Thus, even for the slowest frpgmnt, the

exponential correction factor is negligible, and we have 18.8 mm of

penetration by each of 30 fragments. The cumulative total for thc train is

564 mm. If we add 282 mm from the continuous part of *the jet. we find 846 mm,

which is close to the final value in Fig. 6.8.

The harder aluminum target is 6.8 times harder, so we expect an

increase in (A/A0 ) as well as in a . If (A/A0 ) = 3, we fir , = .06 g mm/jis 2

and c = .05 g/mm. If Po is the same, then IO and k are tco to c = .016 g/mm

and Eq (2.22) is

Pi = 18.8 {1 - [1 + .425S 2-1. 1 9 , (6.28)

since c/(ak2 ) = .425 (•s/mm) 2 and V 0ok/(2c) = 1.19. The first fragment strikes

at about 2 = 2.9 mm/ps so P2 = 15.7 mm. The last fragment strikes at
1.2 mm/ps, so P30 = 8.1 mm. The average value of 11.9 mm gives 357 mm for the

train. When we add 275 mm from the continuous part of the jet, we find 632 mm

which is much higher than the value near 500 mm shown in Fig. 6.8. Perhaps

the harder target gives a higher erosion rate near .15 g/mm as well as a

larger flattening factor near 6. These values would give something close to

the observed penetration, but they are hard to justify. If we keep the more

reasonable values used above, then we might consider using an efficiency

factor of E = .6 which reduces penetration by the fragment train to about

215 mm. Adding 275 mm gives 490 mm, close to the observed value.

A Justification for using an efficiency factor much less than unity

might be based on observations by Merendino and Vitali (6.29) They used

flash X-rays to observe Jet penetration into a hard (6061) aluminum target

billet at 4CD standoff, and concluded that the material eroded from the impact

of each fragment did not flow smoothly along the crater wall. Instead, they

observed a series of bulbous craters with partial closures between craters.

This pinching off effect could well cause interference with incoming fragments

and lead to reduced efficiency for the train. The rapid bending over of the

hard aluminum curve in Fig. 6.8 suggests that such effects "cascade,"

producing agreat deal of interference with the last fragments in the train.

Unfortunately, these authors did not report flash X-ray observations for a
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stack of plates as well as a solid billet. In addition they used 4CD instead

of 2CD and a shaped charge device not as precisely constructed as that used

for Fig. 6.8. In spite of these differences, this explanation seems to be

plausible although difficult to quantify except in the ad hoc, purely empirical

manner suggested above, namely, E = .6.

F. Lead Targets

One of the anomalies of early hydrodynamic theory was greater penetration

into lead than into steel, contrary to the density law. When better

measurement techniques became available, the discrepancy turned out not to be

as large as vas once thought, but real nonetheless. Feldman (6a3oa)

slightly larger (86 mm) version of the shaped charge device we are considering

at 2.44CD standoff against semi-infinite stacks of plates 2.54 cm thick with

break-foils between. Fig. 6.9 shows his curves for mild (1020) steel and

lead. His mild steel curve lies slightly above that in Fig. 6.8, perhaps

because of a slightly lower target strength (not reported). His curve for

lead shows.. that its greater density does offer greater resistance to

penetration by the continuous portion of the jet. However, penetration by the

fragment train continuea for a longer time in lead with even the slower

fragments making a substantial contribution because of the very low strength

of lead. Feldman gave similar data for aluminum and zinc as well. In his

figure 4b, he reported crater areas for lead to a depth of 550 mm. For lead,

these areas were much larger than for his other target materials at the

original target surface but were only about 50% larger near the bottom. He

did not offer "secondary penetration" as an explanation, nor did he attribute

his results for lead to penetration by a slug. Feldman's curves were later

reported, at least in part, by Majerus and co-workers (6.31)

Since the standoff used was 210 mm and this early version of the device we

are describing had a tip speed closer to 7 mm/us than 8 mm/us, then the

penetration began at to = 10 + 210/7 = 4 0iis, with this change in Eq (6.5). In

other words, the penetration began just as jet formation ended, so M = 80 g.
o
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During this same 60s period we took the average area of the jet to be

.225 cm2 and the erosion rate in steel to be .18 g/mnm. Let us multiply this

latter value by A11.3/7.85 to obtain Vo = .22 g/mm for lead. Of course

I = 2.5 mm/g as before, so k = 1.55 and P = 7/1.55 = 4.5 mm/us. For lead
0 2 0 2

with AO = .225 cm and (A/Ao) 0 2 we find a = .0007 g mm/us and

c a .254 g/mm. We still have u = 1.44 g/us so b = 1oo = .79 g/ls from Eq

(2.65), and E = .133 g/mm by Eq (2.66). Then A = -. 62 (g/ps) 2 and

/7 = .79 g/Ps 2 : since a is so small. Again Eqs (2.76) to (2.80) apply with
.22- -=u /c = 133 = 1.65, - = b/VCK = 1, and Zk/2 = 1.28 = "(Ck/2). In

addition, Y+ = 0 and Y- = -5.9 mm/Us, giving Go = (4.5 - 0)/(4.5 + 5.9) = .43

from Eq (2.77) and F = .0007 + 7.9 (4.5) + .133 (4.5)2 = 6.25 g mm/us 2. Then0

D= r(00 - 40)/(1.55 x 80)I(6.25/.43)1"28 = 14.9

&4.5 . 2

= j S(.0007 + .79x + .133x2).25 [x/(x + 5.9)1-1.28 dx (6.29)

P2
from which we find @2=2.6 mmips. Then

G2 = (2.6 - 0)/(2.6 + 5.9) = .31 and

F2 = .0007 + .79 (2.6) + .133 (2.6)2 = 2.95 g mm/Ps 2, so

= (80/.22) 1.28 = 152 mm (6.30)

which is close to the va2ue reported in Fig. 6.9 after 60us of penetration.

2. _t L ttE

The mass at the beginning of this second stage is

M2 = 80 - .22 (152) = 46.5 g which is divided into a train of 29 fragments2 2

which accomplish the majority of the penetration. We can estimate the erosion

rate from that of the previous stage by recognizing that the area is now

.12 cm2 compared to .225 cm2 before. Then

UO = (.12/.225)(.22 g/mm) = .117 g/mm. We use this procedure because of the
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very low strength of lead. By a like procedure we find a = .00036 g mm/ws 2

and c = .138 g/mm. Since I1 0 4.68 mm/g as before for this stage of the jet,

we find k - 1.55 and E = .074O/mm. Consequently, c/(ak2) = 85.6 (us/mm)2 and

uok/(2;) 1.23, so Eq (2.22) becomes

P = (1.6/.117){l - (1 + 85.66 21-1- 2 3} (6.31)

Clearly, even for the last fragment with S = 1.2 mm/us the correction factor0

is negligible because of the low strength of lead, so each fragment penetrates

(1.6/.117) = 13.7 mm for a total of 397 mn for the train. When we add 152 mm

from the first stage, we find 549 mm, close to the observed value.

G. Finite Targets

There is very little data in the open literature on the perforation of

plates by jets. Fig. 6.10 does however show residual Jet speed measured after
(6.31)

perforating various thicknesses of armor steel at a standoff of 2CD

The five data points are generally the average values from three or four

experiments and lie on the straight line.

S = 7.2 - .015 T (6.32)

when the target thickness, T, is given in mm. The value SR = 7.2 mm/ps is

somewhat less than the reported tip speed of 7.6 mm/us and the thickness

T = 480 mm which reduces SR to zero in Eq (6.32) is somewhat more than the

400 mm penetration depth which was reported as the average for a semi-infinite

stack of armor steel plates in Fig. 6.3. This is to be expected because of

breakin and breakout effects which are important in the case of finite plates.

In addition, measurements of SR were carried out sufficiently far behind the

plates that the recovered jet element speed rather than the penetration speed

is being observed. The thickness T = 400 mm reduces SR to 1.2 mm/us in Eq

(6.32), which is the free-flight speed of the rear of the Jet. The linear

decrease in Fig. 6.10 corresponds to the linear decrease in speed along the
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length of the jet. This implies that for finite plates with thickness less

than 80% of the jet penetration in a semi-infinite stack of plates, we may

estimate the residual speed 200 or more mm behind the plate to be the

free-flight speed of the first jet element to emerge from the back of the

plate.
We recall from Chapter IV, section C above that armor plates failed when

rods penetrated only part way through. For example a 6.35 mm thick plate

struck by a 7.78 g L0 /D0 = 10 steel rod at about 1 mm/is failed when

P = .35 T . Similar information is not available for thicker plates struck by0

copper jets at 2CD at much higher speeds. Suppose, however, that we assumed

that the plates used to gather the data in Fig. 6.10 failed when P = T 0/3.

This means that To = 120 mm corresponds to P = 40 mm. We recall that for a

semi-infinite stack of armor steel plates we found P = 3.7 mm/hs after about

40 mm penetration with k = 1.44. Then we expect SR = 1.44 (3.7) = 5.32 mm/ps,

which is close to the value observed in Fig. 6.10 for T = 120 mm.0

Clearly we need more information on the penetration of finite plates of

various thicknesses and materials before we can expect to obtain an adequate

testing ground for a theory. We hope to pursue this matter in a later report.

SUMMARY AND CONCLUSION

We have derived a single equation and developed a self-consistent method

for calculating the performance of all types of penetrators against finite or

semi-infinite monolithic targets at zero degrees obliquity. Perhaps we have

raised as many questions as we have answered. If this is true, then we have

accomplished one of the main objectives of a theory, which is to stimulate
thought and further experimentation. We have also presented a reasonably

simple method of calculating such performance and have illustrated it with

many examples. Future reports will extend this non-linear theory to targets

with non-zero obliquity, as well as targets consisting of arrays of (possibly

spaced) plates. The treatment will also be extended to glass and ceramic

target materials when suitable data becomes available. At present, we do not,

really understand the mechanisms at work in such target materials.

The author wishes to thank William de Rosset and John Kineke of the

Ballistic Research Laboratory for their many helpful discussions.
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APPENDIX

Mass/Speed Tradeoffs

For KE weapons, should we invest more in mass or in speed? An answer to
this question can be given by a recent model.

If our bullet does not erode, its penetration depth in a semi-infinite
target can be described by

S= .5(M /c) in (I+(S /a)2] (2.11)

where a, the inflection point in a PE versus S curve, depends only on target

strength and density. The constant c depends on target density and projectile
presented area. If we fix this area and vary the projectile mass, M0 , by

varying its density and/or length, then the depth at embedment, PE' is a

function only of striking mass, M0, and striking speed, So Then

3P E/Mo = (.5/c) in [,+(A0/a)2] (a)

and

apzElAf° = (M0/a.) A/l0+( 0o/a)21 (b)

Clearly PE(MO, So) has no maximum for finite, positive values of the mass and

speed. Here the constant, a, depends on target strength and projectile

presented area which we have assumed constant. Clearly PE and its derivatives

depend on both target and projectile characteristics.

We want to compare the rates (a) and (b) and to do this, we must
specify the parameters and express both rates in the same units. The latter
may be achieved in two ways: either multiply (a) by M /A or multiply (b)

0 0

by 0/M . Let us adopt the second procedure and use an example with a=c=l so
a=v a•7•l. Then we can construct the following tabie:

S 0 1 2 3 5 ' mm/Is
(a) .5 In(I+S ) 0 .35 .8 -.!5 1.63 mm/g

.0O
(S /M )(b) S /1(l+S 2) 0 .5 .8 .9 .95 1.0 mm/g

In this case, it is more advantageous to increase 0 below 2 mm/ws, but more

advantageous to increase M for S > 2 mm/us. The crossover speed where bogh
0 0
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rates are equal depends on the target strength and density. A general

expression may be found by equating (a) and (So /M) (b) to obtain

[l+(0/a)2] in [1+(o0/a)2] = 2(6 /a)2 (C)

which for given a may be solved for the crossover speed, S0

The model has been shown to hold at least up to S = 10.0 mm/Ps.
0

Obviously, it does not hold for very much higher speeds when melting and
vaporization become important.

If our bullet erodes, then

PE = (Mo1/io){1- [+(So/8)2] 0j (2.22)

where po is a constant erosion rate in g!mm. Here C is a dimensionless

erosion rate, e = (t0 k)/(2t), where k also depends on P as well as the

projectile deneity and presented area. F is related to c and also involves

1o as well as the projectile density and area. The parameter C is similar

to a in Eq (2.11) and is r = k/a/at. For V 0 0, C - 0, k " 1, F - c and

a. It is easy to show that Eq (2.22) reduces to Eq (2.11) in this limit.

It can also be shown that in most cases of interest we can take C and C as

well as po be approximately constant for a given projectile/target combination.

Then we can find the rates

aPE /Mo = (1/po )fl-[l+(S/ )0 ]> (d)

and

ýP/E°/a S [Mo/(ak)] o/[l0+(ýo 0 )2 1/ + (e)

Again we! see that P E(M , S ) has no maximum for finite, positive values of

mass and speed.

Let us consider an example for which V = 4.7 g/mm, r = 1.1 mm/ps,

c = 1, a = 2, and k = 1.25. Then we can c~nstruct the following
table:

0 1 2 3 5 mm/•6s
0

(d) 0 .1 .16 .19 .20 .21 mm/g
(0 /M )(e) 0 .12 .09 .06 .02 0 mm/g

0 0
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Again the rate of increase of P with M continues to grow as § increases

(without limit). However, in this case it increases very little above S =0

3mm/Ps. The comparable rate of increase of PE with So reaches a maximum near

the inflection point and decreases thereafter. A plot of PE versus M for anySEO
A above 3 mm/ps will be approximately a straight line with slope 0.2mm/g.

A plot of PE versus So for given M will be an almost horizontal line above

§o = 3 mm/us. This approach to a maximum PE = M0 /P0 is characteristic of

erosive penetrations. Of course, the particular maximum can be increased by

increasing M (or reducing P ). A general expression for the crossover speed0 0

can be obtained by equating (A.4) and (o /Mo) (A.5) to obtain

= 2E(S 0 /r)
2  M

which for given C may be solved for So When E = 1, we have So = in Eq (f).

The above analysis enables us to answer the question in the first
paragraph. It is always advantageous to increase both mass and speed versus a
semi-infinite target. For speeds below the inflection point (below 1 or
2 mm/Ps), it can be more advantageous to increase the striking speed. For
higher speeds, it is always more advantageous to increase the projectile mass.

This conclusion holds for semi-infinite targets. The same may not be true
for complicated targets with more open structures.
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