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1.0 INTRODUCTION

1.1 Background

In military systems, particularly aircraft, the preponderance of
information is presented to the human operator in the visual mo”xzlity. During
critical periods of high workload, this produces an overload in the visual
channel which can reduce pilot and system effectiveness, safety, and

survivability.

The visual overload problem could be alleviated by making better use of
the auditory modality, particularly for information which humans customarily
process aurally (c.f., Doll, Folds, &.Leiker, 1984; Simpson, 1982; Werkowitz,
1981). For example, in the natural environment, sounds are often a cue as to
the direction of important objects or sources of information. Upon hearing a
novel sound, a human generally rotates his or her head and eyes toward the
source and acquires it visually. Auditory information is thus a natural cue

for visual acquisition of objects in the environment.

This research is directed toward developing ways to convey accurate
spatial information via audio signals delivered to the listener through
earphones or headphones. Some of the ways in which such simulated directional
audio cues could be used to enhance the performance of pilots of military
aircraft are the following:

l. Redirection of visual attention

Particularly in Head-Coupled Control/Display systems, a natural, non
workload—-intensive method i3 needed to cue the pilot where to look.

2. Enhancement of situational awareness

Directional audio cues could be used to help keep the pilot aware of
aircraft attitude in 1low visibility conditions, and to warn of
threats or closing terrain when visual attention is directed
elsewhere.

3. Enhahcement of communications and audio warnings

Giving audio messages and radio communications each a different
apparent direction could enhance their intelligibility and lessen

pilot response time, especially in nolse and jamming conditions.

11



1.2 Objectives

The specific objectives of this work were as follows:

| Design, fabricate, and evaluate an apparatus for demonstrating
simulated auditory localization (SAL), i.e. auditory localization
based on simulated cues provided via headphones.

2, Perform a review and synthesis of the research literature which
provides a basis for: (a) evaluating the feasibility and potential
‘value of using SAL {n the cockpit,vand (b) for identifying areas
where further research is needed to develop SAL into a valuable
pilot aid.

3. Conduct experimental research to determine characteristics of the
auditory stimulus, in the time and ftequency domains, which enhance

localization performance with simulated audio cues.

1.3 Summary and Conclusions

Section 2.0 of this report provides an extensive review of the research
literature on auditory localization. The first part of the review focuses on
the cues involved in the perception of sound—soutce direction and distance

relative to the listener when the listener's head is stationary.

The experimental evidence indicates that at least five, and possibly six,
cues play a role in the perception of the dtréction of a sound source relative
to the listener. The cues are known to the extent that the general physical
mechanism which produces each cue (e.g., the pinnae or outer ear) and the
region of the spectrum in which each cue operates can be specified. The
changes in the acoustic ﬁaveform at the eardrums or ear canal entrance as a
function of source direction have been precisely measured for many listeners,
and some common features have been identified. However, such waveforms,
called head-related transfer functions (HRTF's) are complex. Consequently,
there exists, to date, only a limited understanding of what features of the

HRTF's are actually used by the ear and brain as cues to source direction.

In the study of auditory distance perception, it is useful to distinguish
between absolute and relative cues. Absolute cues allow the listener to judge
source distance in the absence of any additional information about the source,
e.g., 1ts spectral composition and direction. Absolute cues are, of

necessity, binaural or involve head movement. Initial research suggests that

12



the interaural time (or phase) difference (TTD) is the major absolute distance
cue.

Relative cues allow the listener to. judge the absolute distance of a
sound source when the source characteristics (intensity and spectral
compoeition) are known or assumed. For example, one can judge the distance of
humai speakers assuming :hlt they are converqihg at normal conversational

'intensity. Relative cues also allow a listener to judge whether a single,

known source is closer or further away on two successive occasions. Furthar
research is needed to identify all the cues for auditory distance perception,
to determine how they interact, and to quantify how they vary as a function of
soutce distance.

Section 2.5 reviews research on the roles of head movement and vision in
auditory localization. The evidence deriving from each of four different
theoretical pernbec:ivdi is reviewed and integrated into a single model which
encbmpidueo all the findings. Auditory localization in the pressnce of head
movement and vision is viewed as a multiple~level feedback control system.
Visual information, prior knowledge, and feedback from motor activities
(especially eye wmovements) provide important inputs which help to control
auditory perception,

Sactions 2.6 and 2.7 review the research on the perception of auditory
motion and volume, and the effects of noise on auditory localization,
Regsearch in these areas 1is still in 1its infancy. Since these topics are
crucial to applications of SAL in the cockpit, further research is urgently
needed. Section 6.0, the long=term research and development plan, presents a

program of proposed research in this topic area.

Sections 2.8 and 2.9 include a discussion of possible upplications of SAL
technology in aircraft cockpits, the potential benefits of such applications,
and topic areas 1in auditory localization where further basic research 1is
needed,

Anothet major objective of this project was to design, build, and
avaluate a facility for produecing SAL cuea. Section 3.0 describes the SAL
research facllity, now in operation at the Georgia Tech Research Institute
(GTRI). Section 4.0 reviews a series of tests and refinements which were made
to the SAL facility to enhance and evaluate its psychological fidelity. It

‘e '-'ll";ak"-‘l‘: -i-'--.‘.:u":a cl"qjl'f"hﬂu;-.‘oi""ru ' .\‘;" n'l p.‘l u‘uo“.’}n“ 'wle IL
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was concluded that the SAL facility produces a high fidelity simulation of
normal, free-field auditory localization.

An experiment was conducted in order to compare localization performance
in the SAL facility (i.e., with simulated cues) to that in normal, unaided
localization. There was initially a small difference in localization accuracy

. (about 3 degrees RMS) which decreased to virtually zero after about one hour

of practice. The average time to localize a sound source with simulated cues
was slightly longer than with normal cues (about 3.4 sec versus 2.5 sec), and
this difference was still present after an hour of practice.

Section 5.0 summarizes resaarch which cﬁnmincq how the characteristics of
auditory signals in the time and frequency domains affects their usefulness as
directional signals in the cockpit. Two experiments were conducted in which
human listeners localized sounds on the basis of simulated cues delivered via
headphones. The first experiment compared localization performance in the SAL
facility for high- and low-pass filterad noise signals. The cut=off
frequencies of the stimuli were designed to pass portions of che'lpectrum
associated with some localization cues, while rejecting portions associated
wvith others. The second experiment used intermittent signals and examined the
effects on localization performance of burst duration, duty cycle (repetition
rate), and rise time for high- and low=frequency noise bursts. In contrast to
most previous studies in which the listener's head remained stationary,
stimulus characteristics had relatively little effect on localization speed
and accuracy. It is concluded that modulation of the received sound produced
by head movement allows the listener to judge the source direction, and that
such modulation renders cues assoclstad with the spectral and time=domain
composition of the sound much less important for localization than when the
head is stationary,

Although the overall effects of stimulus characteristics were small, the
rise time and repetition rate of intermittent stimuli produced trends which
have significance for the design of directional auditory displays.
Specifically, shorter rise times (e.g., | msec) and higher repetition rates (2
Hz and greater) produce better localization performance than longer rise times
and lower repetition rates.

Ovaerall, the rasults of the experiments suggest that, when the listener
can move the head, localization performance with simulated cues is relatively

14
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insensitive to the character of the audio signal. Thus localization
performance should not he seriously degraded for nonoptimal audio signals such
as tones and speech, as long as the listener's head is free to move.

The last section of this report (6.0) presents a long-term research and
development plan for an electronic simulator which could convey highly
accurate directional information by way of audio signals to a 1istenar wearing
earphones. The simulator will be suitable for airborne applications and will
have the capability to impress directional qualities on incoming signals in
real time. The simulator will also be able to alter the sound quality in veal
time in & manner coor'dinat:cd with the liltonor"l head movement. This is
necessary in order to make a sound appear to be stationary in space as the
listenar moves the head, and/or to simulate a moving sound source. Section
6.2 examines alternative approaches for building a real-time directional
synthesizer for audio signals, and Section 6.3 outlines the major technical
issues to be resolved. Section 6.4 outlines a research and developnent plan
for building 'and testing a prototype of the real=time directional synthesizer.
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2.0 LITERATURE REVIEW AND RECOMMENDATIONS

2,1 Introduction

" This section includes a review of the basic research literature on
auﬁitory localirstion and of one major attempt to use auditory localization in
a human-machine system (Garner, 1949). The purpose of this review is three-
folde Firat, the review provides a basis for evaluating the feasibility of
using simulated auditory localization (SAL) to provide directional cues in
hquicoupind?bon:roi/aiaplny'nistime. A sacond purpose of this review is to
identify other potential uses of SAL in human-machine systems, and to assess
thni-fufpibi@i:y of each such use. The third objective is to identify

requirements for further basic research which would fucilitate the development
nf SAL applications in human=machine systems,

The first topic addressed in this revievw is the acoustic cues which
enable humans to perceive the location of a iouhd loutco when the listener's
head is immobile. Spcciticnliy, the first three subsections of this review
address cues to sound-sour:e positions in the horizontal plane, the median
plane, and cues to distance. The next three subsections address the effects of
head and eye mevement on auditory localization, the perception of auditory
motion and volume, and the effects of noise on auditory localization., The
final two subsections discuss possible applications of SAL in the cockpit and
present recommendations for needad basic research on auditory localization,
An annotated bibliography is presented in Appendix A,

Throughout this report, "horizontal plane" means the horizontal plane
passing through the listener's {nteraural axis, The term "median" plane
refers to the median sagittal plane, or the plane of symmetry of the body,
The term "cue" refers to the physical characteristics of the proximal acoustic
stimulus at the listener's ear canal eutrance or aeardrum which allow him or
her to locate the source in space.

2,2 Localization in the Horizontal Plane

For many vyears, "duplex" theory dominated thinking and research on
auditory localization. Duplex theory holds that two types of acoustic cues,
interaural time difference (ITD) and interaural amplitude diffarence (IAD),
account for localisation in the horizontal plane. Even some relatively modern
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sources discuss ITD and IAD cues extensively, but make little or no mention of
other important cues. The persistence of duplex theory is probably related to
the fact that most auditory localization research has been performed with the
stimulus presented via headphones. This method allows the experimenter to
freely manipulate the proximal stimulus at each ear, but also eliminates cues

due to head movement and reflections and resonances of the pinnae and torso.

It is only relatively recently that the cues necessary for localization
in the horizontal plane have been understood well enough to obtain accurate
localization performance from a listener wearing earphones. Garner (1949)
summarized several unsuccessful attempts to simulate auditory localization for

gubmarine applications as follows:

"When the problem of auditory signaling is mentioned, usually
the first thing that comes to mind is the use of some indication of
lateral displacement of a sound source. If time, intensity, and
phase differences between the two ears are the cues we use in
localizing a sound source, then it should be simple to produce an
apparent displacement of a sound source by stimulating the two ears
differently in one of these respects. Unfortunately, it is not as
simple as that. (p.212)

e« Whatever the outcome of this type of research, it is clear

that more research is needed before it will be possible to simulate

good localization of sounds.” (p. 213)

When ITD and IAD cues are simulated and presented dichotically, via
earphones, the resulting sound is heard as if it were inside the head. Under
these conditions, the sound can be made to subjectively appear to the listener
as though it were located at various positions between his ears. However, the
sound always remains subjectively within the head; hence this type of
experiment 1s called lateralization. The ability to judge the corresponding
position outside the head, i.e., to localize, is quite poor in these

conditions (Mills, 1972).

Batteau and his colleagues (Batteau, 1967, Batteau, Plante, Spencer &
Lyle, 1963; 1965) were apparently the first to demonstrate auditory
localization performance using earphones with accuracy comparable to that
achieved with the unaided ears. Previous researchers, dating back to the 19th
Century, had speculated that the external ears, or pinnae, play a role in
localization by altering the quality of the sound depending on its direction
of origin (Shaw, 1982a). Bloch (1893) and McLean (1959) demonstrated that
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distortion of the pinnae impairs the abllity to localize sounds (cited in
Shaw, 1982b and Batteau, 1967, respectively). Angell and Fite (190la,b)
demonstrated that monaural localization is possible, although not with the
accuracy of binaural stimulation, and they suggested that the pinna plays a
role in lecalization (cited by Mills, 1972 and Gatehouse, 1982a).

The meathod used by Batteau ot al, (1965) to demonstrate simulated
auditory localization is shown in Figure 1. A listener was stimulated
dichotically using semi-insertion-electrostatic headphones with the signals
recorded from a pair of artificial pinnae. The pinnae wers mounted on high=
fid.lity microphones, which were attached to a bar and separated so as to
corraspond to the width of a human head. These artificial "ears” were located
in a separate room, acoulticilly isolated from the listener. The listener
reportead the apparent azimuth of a maraca shaken at various positions around
the artificial ears. The listener's head was restrained during the testing.
When the artificiel pinnae were attached to the microphones, the listener was
able to localize the maraca with excellant accuracy in both azimuth and

‘elevation. Without the artificial’ pinnae, the listener's judgements were

erratic and inaccurate. Intevestingly, with the artificial pinnae attached to
the microphones, the listener reported that the sound appesared subjectively to
be located some distance outside the head, rather than in the head, as sounds
presented via zarphones are normally perceived.

Since the Batteau et al. (1965) demonstration, investigators have
continued to analyze the cues necessary for auditory localization. More
recent findings suggest that auditory localization {s quite complex, depending
on as many as six different physical cues whose influence varies depending on
the location of the sound source relative to the listener's head and the
frequency of the stimulus. A numbar of investigators have measured the
transfer functions which describe how the spectrum of the free—field sound is
related to that of the proximal stimulus at the ear canal entrance or at the
eardrum (c.f., Flannery & Butler, 1981; Gardner, 1973; Mehrgardt & Mellert,
1977; Rodgers, 1981; Shaw, 1974b; Shaw & Teranishi, 1968; Weinrich, 1982),
Shaw (1982a) compiled a family of curves representing the average
transformation of sound pressure level (SPL) from the free field to the human
eardrum for 100 subjects studied in 12 separate studies, These curves, called
Head=Related Transfer Functions (HRTF's), are reproduced in Figure 2 and show
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ELECTROSTATIC
HEADPHONL

Figure 1, Method used by Batteau et al. (1965)
to simulate auditory localization.
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SPL at the eardrum as a function of frequency for 24 angles of incidence.
There are clear differences as a function of angle. Notice the substantial
difference for sounds in the anterior and posterior directions at comparable
angles. For example, the difference in SPL at 4 kHz for sounds located at 45
degrees and 135 degrees azimuth is about 10 db. Shaw concluded that the
external ear produces an abundance of direction—-dependent cues which could
serve as the sole basis of auditory localization. However, it is well known
that binaural localization is more accurate than monaural localization, hence
interaural differences must also play an important role,

Searle, Braida, Davis & Colburn (1976) developed a model of the decoding
process in auditory localization based on statistical decision theory, using
data from studies of horizontal and vertical localization reported over a tan-
year pariod. They conclude that there are six cues which the ear and bdrain
uses to decode the direction of a sound, and that monaural pinna cues are of
lass importance than interaural pinna cues (see Section 2.3.1 for further
discussion of this point), The six cues and their proparties are listed in
Table 1, Figure 3 defines the angular coordinates used in Table l. Searle at
al, (1976) used a nonlinear least-squares procedura to estimate the standard
deviation of localization possible on the basis on each cue alone. The
estimates, based on date from 18 experiments, are shown in Table 2. These
estimates are for binaural localization in the horizontal plane with a broad=-
band white noise stimulus and a speaker array spanning 90°. Although ITD and
IAD arc¢ among the most important cues, it is clear that pinna and torso cues
also play a role.

Measurements of auditory acuity provide 