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FOREWORD 

The research presented in this report was conducted with financial support provided 
from the Navy Exploratory Development Plan; Personnel, Training, and Human Factors 
block for the Human Factors Project (NP2A), Task 1, Expert Systems Technology for 
Real-time Propulsion Control. Additional support was provided under Independent 
Exploratory Development program element 62766N, Expert Systems for Fault Diagnosis: 
Stochastic Processes. 

The objective of the work is to explore and develop computer technologies to reduce 
the task complexity operators experience in coping with malfunctions during the operation 
of complex and critical real-time control systems. The current effort describes a 
machine learning methodology developed and implemented in a laboratory setting using, 
as a test-bed, a simulation of the reduction gear lubrication oil subsystem of the surface 
ship gas turbine propulsion plant. The methodology is embedded in computer programs 
collectively designed to be used as a decision aid to assist the propulsion plant operator. 
It utilizes machine learning, is able to cope with uncertainty at several levels, and is 
developed beyond the point of a research tool. Data are presented and analyzed with 
regard to the effectiveness of the approach. Relevance and applicability to other process 
control and classification problems are discussed. 
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SUMMARY 

Problem 

Personnel assigned the task of controlling large, complex real-time systems have 
considerable difficulties in correctly diagnosing system malfunctions. This is particularly 
the case in systems where the operator must make decisions based upon sets of alarms 
triggered by sensor-data whose values have exceeded specified operational range-limits. 
Information overload is almost always a significant part of this problem. However, in 
many of these systems there is insufficient information for diagnosis regardless of the 
volume of data or the real-time constraints of the system. Many distinctly different 
causes of malfunctions result in identical sets of alarms. In such cases, operators are 
completely unable to render meaningful decisions. 

Objective 

In these systems, there is often valuable additional information available that could 
be used to enhance the operators diagnostic capabilities. The sequential order in which 
alarms are triggered is an example of readily available, easily employed, highly beneficial 
information that is, unfortunately, seldom used for this purpose. Even more powerful is 
the information represented by the time at which these alarms are triggered. The latter 
is not easily used to its full advantage. The fact that (1) the timing of system events is 
subject to considerable natural variability and (2) the state of both the system and its 
environment are constantly changing presents a formidable obstacle to the development 
of a method for effectively using time for the purpose of decision-making. The objective 
of this work is to develop and evaluate a methodology for successfully doing this, utilizing 
learning machine principles to overcome the problems of continual changes in the system 
and in the sensor inputs. The method must work in real-time and in the face of 
incomplete information, providing predictions as to the cause of a malfunction as it is in 
the course of unfolding. 

Approach 

A portion of the Navy surface ship gas turbine propulsion unit was selected as the 
test-bed for this project; namely, the lubrication oil subsystem that services the reduction 
gears. A computer simulator of the various malfunctions affecting this test-bed was 
developed and tested. It incorporates normalized random variability that affects the time 
of triggering of alarms. The simulator operates in a manner that approximates parallel 
processing.  Two separate diagnostic programs were constructed: 

1. A computer program was developed to utilize knowledge of the order in which 
alarms are triggered to diagnose the cause of malfunctions. The order is represented by a 
dynamic tree structure. 

2. A computer program, STOCHASM, was developed to utilize knowledge of the 
time at which alarms are triggered to diagnose the cause of malfunctions. The pattern of 
timing of any alarm sequence associated with a given malfunction is represented by the 
normal distribution of its recent values, stored in a first-in/first-out queue. Matching of 
the timing characteristics of unknown malfunctions to known ones is accomplished by the 
use of factors based upon (a) the area under the curve of the distribution of the queued 
samples, delimited by the time of the latest alarm, and (b) the past incidence of the 
current sequence of alarms. 

V. 
Vll 



Findings 

The simulator was able to duplicate the various problems inherent in the target ship 
system. Use of knowledge of the sequence of alarms was found to significantly improve 
the ability to correctly diagnose the cause of a malfunction as it is unfolding. The 
methodology employed for handling knowledge of the timing of alarms worked effectively; 
it proved superior to utilization of only sequential information, worked well in real-time, 
and its learning capabilities successfully allowed it to automatically adapt to changes in 
the system and the environment. The degree of performance improvement was greatest 
early in the course of the malfunction, where it was the most useful. Possible 
deficiencies in the design of the target system were revealed by the program. Recom- 
mendations are made as to future requirements for fault handling of these systems. 

Conclusions 

The methodology for handling temporal data to enhance real-time fault detection and 
diagnosis is quite effective. While the program is not yet a comprehensive one, it could 
provide the operator with a powerful tool to assist him in deciding the cause of 
malfunctions as symptoms are unfolding. The methodology is generalizable to other 
problem domains that involve sensor-based diagnosis in real-time under conditions of 
uncertainty. 

vui 
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INTRODUCTION 

Problem 

The progress of rivers to the sea is not as rapid as that of man to 
error 

... every effect clearly has its cause, going back from cause to 
cause in the abyss of eternity; but every cause has not its effect 
going forward to the end of the centuries. 

Voltaire, 1764. 

Personnel who operate large, complex real-time systems often encounter major diffi- 
culties in attempting to cope with system malfunctions. Those difficulties are partly due 
to the intrinsic nature of the systems. 

1. Large numbers of computations and decisions must be performed in short periods 
of time   and require the consideration of vast amounts of stored data.    Decisions based 

7r?fVu^ .""T,   °^'^"   ^^   ""^"^^   ^^'^°^'   hesitation,   yet   those   decisions   may  be 
cr tically important for system survival and are sometimes irreversible. Some of the data 
relevant to making those decisions may be missing. On the other hand, data that are 
available may be incorrect, approximate, or irrelevant. 

SnhrLnI°'.""^7 r^"""'' ^^^ '^'^^"^ targeted for control may behave erratically. 
Subcomponents of  the  system  may  influence  one another  in a complicated,  nonlinear 

runnr.°Hi.'^lV"'^''''°""tr ""''^ °'^^' '^''^'^' '"^^^ ^^^ Separately controlled in unknown 
witZt     t .•''^^'-    ^°'-^°^^'-' '^^ 'y'-'^^  ^^y  have  to be  operated continuously, 
InfJ^ ^"t^'-upt^on, over long periods of time, during which the system may change its 
fundamental behavior as  the  result  of  numerous   random,  or  otherwise  unanticipated 

fin th^ f r'^     "'''''^^ '° ^°P^ ^''^ '' '^^ ^^^^ ^'^^^ ^h^ d^^ig-^ °f the target system 
so th.t th^h h -^^ systems) often contains a number of undetected or uncorrected flaws, 
so that the behavior of the system may not always correspond to predicted patterns. 

t.rait  ^''f ^'°" i° °P^'^^'T^^ difficulties  that  stem   from   the  intrinsic  nature  of  the 
o ?h. h^ H^-''''  .""^ ^'•^those that result from the fact that personnel are poorly suited 

to the handling of many of the tasks that system designers demand they perform. 

ev;,mnl. ^fuTT ^^^-^ ^^^^!^^^^ Physical limitations that restrict their performance. For 
mmZ. ' of? "^^^^..^"^^"^^^^"t computational speed to handle the thousands, sometimes 
millions, of sequential operations per second required to assess the state of the system 

datTTecXhlVf '°° ''°"; 'TK'"'^'' ^'^' ^°° ^°'^^^^^ ^° ^°P^ -^^^ ^he huge amount of data recall that   s required.   They are subject to many kinds of stress in operating these 
systems, in reaction to which their performance is likely to degrade. Furthermore human 

?nHul""' ^Kf'^"^'' ""'"'^' '° ^°"^ ^^^^'-^^ ^>'^^^- environments; exrmples'of This 
InfectL's agents.'''°'"' '° '"'' ''^' " '°" temperatures, high radiation  levels, and 

K.t  ^'     Tu''"'^"   operators   vary   considerably   in   their   capabilities;   optimum   matches 
aooUerto  th°'"'KT^ capabilities and his assigned task are exceptions to the rule.   Thi 
applies to  the problem  areas of personnel  selection,  training, motivation, assignment 
genetic endowment, and availability. vauon, assignment. 



Although effective manual control of such systems is inherently difficult, operators 
usually (and surprisingly) perform very well, provided normal operating conditions prevail. 
Operator failure, and subsequent system failure, is more likely to occur following a 
system malfunction. This is because, in the presence of a malfunction, decision-making 
must be performed under very adverse conditions in which the operational requirements 
described above are extreme in nature and often far exceed the capabilities of human 
operators. 

An example will be cited at this point to (1) underscore the nature and extent of the 
problem, (2) highlight the areas in which improved techniques are needed, and (3) provide 
justification for the methodology presented in this report as an alternative to currently 
used techniques in fault diagnosis. 

Nuclear Power Plant Control 

The Three-Mile Island Nuclear Power Plant incident in 1979 exemplifies the inade- 
quacies of current methods of fault handling. Nuclear power plant control systems depend 
heavily upon sensor-based, human-operator mediated, fault handling. The sequence of 
events leading to the partial meltdown that took place at Three-Mile Island has been well 
documented (Lewis, 1980).  Briefly, the scenario was as follows: 

1. Main feedwater pumps that enable cooling of the reactor failed. In response, the 
feedwater backup pump system activated, but the backup pump system was blocked. The 
blockage was caused by closed valves that were supposed to have been opened manually, 
immediately following the previous routine maintenance procedure; but operators had 
failed to do so. At this point, operator console indicator lights implied the valves were 
open, even though, in fact, they were not. The discrepancy was due to the lack of limit 
switches on the valves that could indicate their actual (as opposed to intended) state. 
After considerable delay, the discrepancy was discovered; the valves were noted to be 
closed, at which point they were opened by operators, but, by then, elevated temperatures 
had led to elevated steam pressure in the primary system. 

2. Because of the elevated steam pressure, the reactor shutdown procedure 
(SCRAM) activated. Also, the emergency relief valve (to let off excessive steam 
pressure) opened, causing a drop in the pressure, as it was designed to do. However, after 
the pressure normalized, the emergency relief valve failed to return to a closed position 
as it should have done. Therefore, water (steam) continued to escape. That relief valve 
had previously been known by personnel to be defective, but had not been replaced or 
repaired. 

3. Since coolant water was being lost through the relief valve, the temperature 
again rose to abnormal levels correctly causing automatic activation of the emergency 
coolant system. Operators responding to the automatic coolant system activation 
manually shut it down after deciding its activation was an incorrect automation decision. 
The operators assumed the problem with the plant was that it contained too much water, 
rather than not enough, as was actually the case. 

i^. The reactor core continued to overheat as coolant water continued to escape. 
Hydrogen began to form. Two-and-one-half hours after onset of the malfunctions, 
operators finally realized the relief valve was defective and still open. It was then 
blocked, too late to prevent damage to the reactor core. 



Observations 

General factors contributing to the Three-Mlle Island incident can be categorized as 
follows: (1) defects In plant design, (2) poor quality control (construction) and poor 
maintenance, (3) poor management, and W human operational error (in the design and 
execution of fault diagnosis). Sufficient Information has appeared in news reports to 
suggest that the Soviet Chernobyl incident in April 1986 involved all of the very same 
factors. 

Certain observations concerning these Incidents are inescapable: 

1. Serious malfunctions can, and do, occur despite extraordinary measures. 

2. Multiple simultaneous malfunctions (and/or cascading malfunctions) can, and do, 
occur despite repeated statements by occasional officials, researchers, engineers, or 
designers that this is highly unlikely (Scarl, Jamieson, & Delaune, 1985). 

3. In systems of this type, humans perform poorly in the role of fault diagnosis. 
Despite our well-justified pride in our personnel, errors are the rule and not the exception 
under conditions of real-time fault handling. 

Notable In most systems of this sort, great emphasis has been placed on the need to 
construct a perfectly fault-free system. Comparatively, much less effort has gone to the 
development of better techniques for fault handling. When a disaster eventually occurs, 
as it invariably does, the focus is thereafter directed toward a search to discover what 
went wrong, who was responsible, and what can be done to prevent its recurrence. But, it 
is unrealistic and dangerous to design and operate systems on the assumption that serious, 
but potentially survivable, malfunctions and mishaps will never occur. Furthermore, it is 
quite probable that discoveries made in the course of analyzing systems during the design 
of fault diagnosis programs will lead to the recognition of defects in the target system 
and, hence, to the more nearly perfect systems we seek to achieve. It is Important to 
look more closely at complex and critical systems from a very different point of view: 
What measures can be taken to anticipate the occurrence of malfunctions or mishaps, and 
cope with any that might occur? 

The Root Problem;   Multi-sensor Integration 

In process control systems generally, and in nuclear power plant control particularly, 
the detection and diagnosis of faults depend upon two mechanisms: 

1. Large numbers of sensors are located at key points in the plant. The raw 
parameter values transmitted from these sensors are monitored and compared against 
pre-specifled upper and lower range-limits of normal. Parameter values (and their 
designated sensor names) are brought to the attention of the operator when their range- 
limits are exceeded. 

2. Human operators are responsible for performing (manually and in real-time) the 
multlsensor Integration (i.e., the process of observing all the sensor data, particularly the 
alarms, analyzing their significance, and correctly formulating a diagnosis). 

Herein lies the root of a serious problem in dealing with fault diagnosis. 



Design engineers and, to a lesser extent, plant operators can anticipate, reasonably 
well, the pattern of alarms that will be triggered by a known malfunction. To a lesser 
degree, this is the case even for multiple, simultaneous malfunctions. 

On the other hand, they have great difficulty in reasoning in the reverse direction; 
that is, mapping from a complicated pattern of sensor alarms back to causative faults. 
Since effective methods for doing this in large, complex systems are not presently known 
even to the engineers who design the system, the engineers can neither incorporate fault 
diagnosis into the system nor provide the operator with the methodology for doing this 
manually. Although human operators are "responsible" for real-time multi-sensor 
integration, the task is often not possible for them to perform. 

The obstacles encountered by operators in attempting to perform sensor-based fault 
handling have been widely publicized (MPR Associates, Inc. 1985; Roscoe & Weston, 1986; 
Seminara & Eckert, 1980; Sheridan, 1981;).  These include: 

1. Range-limits and Context-dependency. The range of limits of normal for any 
particular measured variable is context-dependent: What is normal in certain conditions 
may be abnormal in others. Often, instead of dealing with the need to consider context- 
dependency, inflexible range-limits for variables are simply empirically set at extra wide 
intervals so that false-positive alarms are avoided (Sheridan, 1981). 

2. Alarm Subsets. Alarms, and even groups of alarms, are not necessarily uniquely 
identifiable with a single subsystem: The same malfunction may activate different 
subsets of alarms on different occasions ("fan-out"), and, conversely, different malfunc- 
tions may activate the same set of alarms ("fan-in"). Moreover, all too often, following a 
malfunction all possible alarms are triggered, almost at once, rather than a subset (the 
"Christmas tree affect") (Chambers &: Nagel, 1985; Fortin, Rooney, & Bristol, 1983). 

3. Priorities. A key alarm during a particular malfunction may have been assigned 
a low priority because it does not ordinarily have much significance. Sometimes, 
however, that alarm may have great significance. Therefore, the assignment of priorities 
and the visibility of specific alarms to an operator should be based upon the total, current 
operational state of the system, since priorities are context-dependent. This is not done 
in practice. 

4. Uncertainty. The set of sensors installed into a system may not (a) supply 
optimal kinds of information (relevancy), (b) constitute a complete set of information 
necessary for diagnosis (sufficiency), and (c) transmit accurately or rapidly enough 
(reliability). In real-life situations, as previously described, even the domain is subject to 
fluctuation and uncertainty. Particularly important here is the tendency for continuous 
temporal changes involving almost all the variables. Incomplete system design is another 
form of uncertainty; unanticipated events have a nasty habit of cropping up at critical 
times. 

5. Multiple Simultaneous Faults. Operators have no way of determining whether 
the alarms and their current parameter values represent single or multiple lesions. Not 
only do multiple simultaneous faults occur, but single faults often cascade into a series of 
self-perpetuating lesions ("fault propagation"). 

6. Man-Machine Interface. The number of alarms or relevant data is often more 
than can be realistically displayed, inspected, and analyzed by the operator at his console. 



7. False Positives. False positive alarms are common. They may be caused either 
by inadequate control system designs or by defective sensors or consoles. They seriously 
complicate attempts to perform fault handling. 

8. Real-time Constraints. Multi-sensor integration is meaningless unless done in 
real-time. In many of these systems, decisions must be made within seconds. There is 
insufficient time for the operator to manually peruse and pre-process the enormous data 
base involved. 

The obstacles enumerated above are not meant to be exhaustive. Even so, the types 
of problems they embody serve to emphasize that better methods of personnel operator 
selection, training, testing, and motivating cannot alone make sensor-driven operator- 
mediated fault detection and diagnosis feasible. 

Alternatives 

There have been attempts to supplement or substitute for the operator in order to 
better deal with the problems of fault handling. They involve the use of: (1) component 
redundancy and voting schemes, (2) computer Al/expert systems, (3) mathematical 
(computer) simulations, and W physical analog devices. Each of these embodies a number 
of advantages and disadvantages. A discussion of these approaches is beyond the scope of 
this report, but suffice it to claim the following: When used alone, or in combinations, 
they do not sufficiently overcome the previously enumerated obstacles to fault handling. 
Even worse, these approaches, themselves, tend to introduce new, additional, and mislead- 
ing uncertainties into the system. 

A CONTRIBUTION TO THE SOLUTION 

All certainty which does not consist in mathematical demonstration 
is nothing more than the highest probability; there is no other 
historical certainty. 

Voltaire, 176^. 

Objective;  An Effective Method for Dealing with the Stochastic Problem 

As noted previously, there are many obstacles to the overall goal of fault detection 
and diagnosis. One of the most difficult obstacles has been the inability to profitably 
make use of the timing of events that follow a malfunction in order to improve our real- 
time predictions of its most likely cause. We refer to this as the "stochastic problem " A 
methodology will be presented that can "effectively" cope with the stochastic problem. 
By the term "effective," we refer to the following characteristics: 

1. Variability. The method must be able to work well even though all changes that 
take place in the system are subject to random variability (i.e., a stochastic process). 
Therefore, the precise time of occurrence of each new event is unpredictable. In fact' 
even when the very same malfunction repeats itself and happens to produce the 
identically same ordered sequence of events, each new event will always be somewhat 
different from its counterpart in the previous occurrence of that malfunction, both in its 
absolute and relative time of occurrence. This is because time is represented by a 
continuous variable whose value is expressed as a floating point number (i.e., an infinite 
decimal). Since the time of occurrence of any two events will, in practice, never be 
exactly   the  same,  the   method  used   for   fault  detection  and  diagnosis   cannot   simply 



compare the time of occurrence of two events and decide whether or not they match 
perfectly, but, instead, must compare the times of many pairs of events and decide upon 
the best partial match of all of them. In short, the method must be able to cope with 
never-before-seen situations (data) and do so without succumbing to a combinatorial 
explosion in terms of the requirement for computational speed, storage, and recall of 
previous data. 

2. Uncertainty. The method must be sufficiently robust to handle the task of 
predicting the cause of the malfunction despite the possibility of the phenomena of fan-in 
and fan-out. The diagnostic predictions must be made while the malfunction is in the 
process of evolving, and not simply await the full development of all eventual symptoms 
of the malfunction. In short, the method must be able to cope with the uncertainty of 
insufficient data. 

3. Adaptability. The method must be able to adapt to environmental changes that 
affect the type, sequence, and timing of events following a malfunction. These changes 
include those resulting from equipment wear-and-tear, equipment replacement, altera- 
tions in temperature, design changes, etc. Moreover, the adaptation must occur with a 
minimal risk of false alarms. In short, the method must be able to automatically learn 
and remember newly occurring associations and forget outdated or newly invalid ones in 
an efficient, but not erratic, manner. 

^- Real-time. The method must be one that will work under real-time conditions. 
In most systems, this implies a fully automated decision aid. 

5- Predictive Power. The method must demonstrate that it can perform more 
effectively than alternative fault detection and diagnosis methods that do not make use of 
information embodied within the timing of events. (Currently, the alternative systems 
depend, for their predictive power, only upon the detection of specific subsets of alarms, 
or, in some cases, the detection of some pre-designated specifically-ordered sequences of 
alarms.) 

6. Generalizability. Ideally, the method should be one that can be generalized to be 
applicable to other information overload real-time problems. 

An effective methodology for dealing with temporal data is described below. It is not 
envisioned as a program that will undertake corrective action, but rather as one that will 
assist in the rapid determination of whether or not a malfunction has occurred, and, if so, 
the specification of its most likely cause. Its goal is that of enhancing the operator's 
knowledge in those areas where help is most needed . . . rapid assessment and decision- 
making. 

No claim is made as to having invented a drastically new and entirely different kind 
of computer algorithm as the basis for this methodology; quite the contrary, the aim is to 
convince the reader that relatively simple and well-known techniques can be beneficially 
brought to bear on this complicated set of problems. 

First, the test-bed for this program will be described; it is the lubrication oil 
subsystem servicing the reduction gears of the gas turbine engine propulsion unit of a 
Navy surface ship, the DD 963 class of destroyers. Then the methodology will be 
described and some aspects of its performance will be analyzed. 



The Test-bed 

Our selection of this test-bed was not because we believe it to be the most 
challenging one we could have selected, or the one in most need of this kind of 
application. Rather, it was selected because it is a convenient one having within it the 
ingredients typical of the general class of problems of interest to us. It will be readily 
evident that it closely corresponds to the problems of fault detection and diagnosis in 
space shuttle-crafts, in process control plants, and in nuclear power plants. 

Description of the Lube-oil Subsystem 

The gas turbine engine transmits power to the propeller shaft through reduction 
gears. These gears are large metal objects subject to enormous stress and friction. They 
form part of the mechanical transmission of the propulsion unit. In order to reduce 
friction and cool the gears, this part of the propulsion unit is contained within an oil-filled 
compartment. The subsystem that stores, supplies, circulates, filters, and warms or cools 
the oil for the compartment containing the reduction gears is referred to as the 
"reduction gear lube oil subsystem." Other parts of the subsystem include bearings, shafts, 
pipes, valves, sensors, heaters, filters, and motors. The subsystem may communicate with 
other lubrication oil subsystems that serve other parts of the propulsion unit. 

The reduction gear lube oil subsystem is susceptible to approximately 27 different 
kinds of malfunctions. These include both major and minor faults. They may be due to 
human error, mechanical failure, sabotage, or wartime damage. Ship and personnel 
survival greatly depend upon functional integrity of this subsystem. 

When a malfunction occurs involving the reduction gear lube oil subsystem, irrevers- 
ible damage to vital bearings may occur within minutes. Correct diagnosis of the cause of 
the malfunction must be made within seconds and the proper response instituted 
immediately in order to maintain the integrity of the propulsion unit and fulfill the 
mission of the ship. Responses that might follow the detection of a malfunction in this 
system include closing a valve, running the engine full ahead in spite of the malfunction, 
reducing engine speed, or stopping the engine entirely. Exactly which response is 
appropriate depends upon the cause of the malfunction as well as upon the ship's 
environment and mission. 

Prompt diagnosis is also necessary in order to prevent further deterioration of the 
system and to accomplish or arrange for timely repair. 

Real-time Limitations of the Subsystem 

■     Current operational reduction gear lube-oil subsystems do not allow real-time fault 
diagnosis, as evidenced by the following: 

1- The "Christmas Tree" Effect. As in the case of nuclear power plants, multiple 
alarms may be set off simultaneously. In the lube oil subsystem, operators relate that it 
is often the case that all alarms are triggered at once. No information is available on the 
operator's console as to the sequence of the activation of alarms. The operator may, 
after-the-fact, request a computer printout of the alarm activation data, which, of 
course, consumes precious time. Unfortunately, the frequency at which the computer 
samples the sensors for data is too slow to obtain meaningful timing information for the 
printout. Experienced operators relate that, in about ^5 percent of the cases, alarm 
printouts obtained even after full expression of all eventual symptoms resulting from a 



malfunction show sequences that are not specific (i.e., the set of alarms has multiple 
possible causes). Worst of all, irreversible damage to propulsion bearings has already 
occurred (in some cases) by the time the first alarm is triggered. 

2. Watch-standers. The set of alarms and sensors is incomplete. Missing sensor 
information is supplied by watch-standers. These are personnel whose job it is to visually 
inspect the dials, gauges, and integrity of the peripheral equipment. These objects are 
often located in cramped, dark, inaccessible, and potentially dangerous bowels of the ship. 
They cannot be inspected simultaneously or quickly. 

3. Technical Manuals. Operators rely largely upon technical manuals (such as the 
"Engineering Operational Sequencing System") to look up and obtain guidance in making a 
diagnosis and instituting action. The manuals are incomplete, contain errors, and make no 
attempt to cope with the mutual overlapping of symptoms and malfunctions (fan-in and 
fan-out). The manuals do not correspond with the real-life situation, where the operator 
must deduce the cause of a malfunction, starting with the knowledge of which alarms 
have thus far been triggered (variously referred to as the "bottom-up," "data-driven," 
"sensor-based," or "forward-chaining" method of diagnosis). Instead, they are arranged so 
that if the operator knows the cause of the malfunction (which is not the case) he can 
then locate a list of some of the alarms or symptoms that might possibly result and match 
that list with the set of alarms already triggered (this could be helpful only if there were 
no fan-in, where many different malfunctions can set off the same set of alarms; again, 
this is not the case). 

^. Stress and Time. The decision process may be a very stressful one, particularly 
when the ship is performing a critical maneuver in high seas close to other ships, or is in a 
wartime engagement involving enemy torpedoes or missiles. Possible complications of a 
malfunction include the loss of ship power and maneuverability, oil fires, explosions, or 
disintegrations of engine components that are revolving at high speeds (early in the case 
of the Chernobyl incident, it was rumored that gas turbine engine fan blades had 
disintegrated and subsequently penetrated the nuclear reactor, precipitating the disaster), 
and death of operating personnel. There may be insufficient time for the operator to 
arrive at a critical diagnosis and decide upon corrective actions. 

•5. Diagnostic Steps as a Cause of Damage. Often, the engine must be restarted 
after a shutdown simply to make a diagnosis of the malfunction by prolonged operational 
observation. This, in turn, causes further engine damage. Once damage has occurred, 
repair to an engine may take several weeks or more, during which time the ship is 
disabled. 

6. Complexity. The lube-oil subsystem is a relatively small one. One indication of 
this (not always a reliable indicator, incidentally) is that it utilizes a maximum of only 18 
console alarms. Nonetheless, real-time diagnosis of the cause of a lube-oil subsystem 
malfunction is difficult because of the functional and anatomical interconnectivity of its 
components. Any defective component quickly and adversely affects the function, and 
eventually the integrity, of others through these multiple and cyclic communications. 
Figure 1 illustrates this. 

Clearly, there is need for a new and better approach to cope with malfunctions in this 
subsystem. Furthermore, there are indications that an approach using only the additional 
information of the order in which alarms are triggered will not suffice because of 
persisting ambiguity. This test-bed is, therefore, considered to be a good one to assess 
the additional value of an approach making use of temporal data. 
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A New Approach 

Description of the Computer Program "STOCHASM" 

A computer program that embodies a methodology capable of effectively handling 
temporal data will now be described. It is referred to as "STOCHASM." The program is 
composed of the following parts: 

1. LUBE-OIL. A simulator of the behavior of the physical plant following the onset 
of a malfunction. More specifically, it simulates the changes in value of the parameters 
monitored by the reduction gear lube-oil subsystem sensors. < 

2. WATCH-STANDER. A monitor of the outputs of the simulator used to detect 
the occurrence of parameter values indicating actual or imminent triggering of alarms. 

3. PATTERNS. A pattern recognition unit that maps and matches sequences of 
alarms, from evolving malfunctions, into stored data structures. 

If-. DECISIONS. A diagnostic routine that utilizes temporal data to complete the 
pattern matching. 

LUBE-OIL—The Simulator Portion 

Figure 1 was used as the basic framework for construction of a computer simulator of 
the malfunctioning lube-oil subsystem. Each node, or box, in the graph represents one of 
the following: 

1. A subsystem malfunction (Pm) that can set off the whole chain of events. For 
example, malfunction Pm-1 represents the rupture of a main pipe transporting lube oil 
from one part of the subsystem to another. 

2. An alarm (A) that can be triggered by the effect of a malfunction. For example, 
alarm A-15 indicates that the temperature of some of the propeller shaft bearings has 
exceeded the upper limits of normal. 

3. An abnormal intermediate condition (Pp), or system state, that can eventually 
develop as the result of a malfunction and can go on to cause other malfunctions, alarms, 
or abnormal conditions. For example, state Pp-32 represents a loss of subsystem lube oil 
pressure that can result from: 

a. failure of a pump (Pm-6), from any one of several possible causes, 

b. obstruction to flow (Pm-5), from any one of several possible causes, or 

c. a major leakage of oil from the subsystem (Pp-31), again, from any one of 
several possible causes. Eventually, this loss of pressure will directly trigger a number of 
alarms (A-1 .. A-7), but will also lead to increased friction and temperature of bearings 
(Pp-33), then to surface erosion of the bearings (Pm-1.5), causing vibrations of the gears 
and/or shafts (Pp-19), and so on. 

There is, of course, a very close correspondence between these boxes in the simulator 
and specific physical parts of the actual reduction-gear lube oil subsystem. The arrows 
(directed arcs) that connect two boxes indicate that the occurrence, or activation, of the 
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condition represented by the box at the origin of the arrow can iead to the development, 
or activation, of the condition represented by the box at the destination of the arrow. 

Within the simulator program software, each box is represented as a record ("frame") 
in which is recorded all the information that determines (1) how the condition represented 
by the box will affect other conditions or alarms, and (2) how the other conditions are 
permitted to affect this box.   This information includes things like: 

!• The current state or value of the process or alarm. For example, if the alarm 
represents temperature, what is its current value, what are the upper and lower range- 
limits of normal, and has the alarm been triggered yet? If the box represents a condition 
of low oil pressure, has it reached a symptomatic level yet, is it affecting any other 
processes in the subsystem, and, if so, to what degree? What is the threshold for 
symptomatic activation? 

2. The manner, rate, and extent to which boxes can influence one another. For 
example: Is there a time delay before the temperature begins to rise? At what rate does 
it change? What is the pattern of its change (i.e., does it increase in value according to a 
linear, logarithmic, or a sine/cosine curve)? How do several different simultaneous 
conditions combine their effects upon a common target? 

The simulation of a specific malfunction is begun by changing that box to indicate 
activation has occurred, and then starting to run the simulator. The simulator thereafter 
runs repeatedly, over and over again, until the malfunction eventually has triggered all 18 
possible alarms (this happens in all cases). Each run, or cycle, of the simulator 
corresponds to the passage of an arbitrary unit, or interval, of time. Exactly how much 
time elapses can be determined by the programmer. The impact of this sampling time 
will be discussed below. 

During each cycle, the simulator evaluates all of the boxes and computes new values 
for all of the information (state factors or attributes) in the box as though these 
evaluations and computations were done in parallel. In particular, it assesses the effect 
of all boxes upon each other and determines whether or not the activation of a new 
condition or alarm has occurred. Following every computation of a new value, the value 
is then modified by subjecting it to a normalized, random degree of increment or 
decrement, so as to mimic the variability that takes place in the real world. The actual 
range of variability results in a change of anywhere from +5 to -5 percent. This causes 
substantial differences from simulation to simulation regarding the exact time at which 
any of the alarms exceeds its normal range, and, hence, leads to possibly great variations 
in the order of alarms triggered by the same malfunction. 

WATCH-STANDER-The Monitor Portion 

At the conclusion of each simulator cycle, all the alarm boxes are evaluated by the 
monitor (WATCH-STANDER). Rudimentary trend analysis is performed. The monitor 
checks both the current parameter values and also their projected values (trend analysis) 
against the preset upper- and lower-limits of normal. As soon as any check indicates that 
a preset limit of any alarm has been exceeded, the monitor outputs the following 
information to either PATTERNS or DECISIONS: (1) the number (name) of the alarrn 
involved in this new event, (2) whether the event detected constitutes a warning (that 
results from trend analysis) or the actual triggering of the alarm, and (3) the time at 
which this new event has occurred. 
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PATTERNS-The Pattern Recognition Portion 

Each alarm received by PATTERNS is represented by a node (record, or frame) 
inserted into a software binary tree data structure that constitutes the program's 
memory. The level (depth) of the node in the tree represents the numerical position of 
the alarm within this particular ordered sequence of alarms stemming from this instance 
of the malfunction. For example, if the alarm is the third one to have been triggered 
during this simulation, then the node for this alarm is at depth = 3 in the tree. Siblings of 
the node (additional nodes situated at the same level in that same part of the tree) 
represent different alarms that have been known to occur in previous sequences having 
identical patterns up to, but not including, this point in this sequence. Nodes contain 
records of the number of times this exact (partial) pattern has been previously experi- 
enced, as well as a record of the previous malfunctions that are known to have caused this 
particular partial pattern. Terminal (bottom-most) nodes of the tree represent the last of 
the 18 alarms to be triggered during a malfunction. 

For example, if the first instance of malfunction "X" were to begin with the sequence 
of alarms "a," "b," "c," and "d," and the second instance of "X" were to begin with the 
sequence "a," "b," "d," and "c," the tree would be represented by Figure 2. 

Figure 2.  Tree representing early stage of a typical malfunction. 
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The triggering-time of a particular alarm in a particular sequence is inserted into, 
and saved, in a circular, first-in/first-out queue that is linked to the alarm's node. A 
separate queue is established for every malfunction known to create this same partial 
sequence of nodes (Figure 3). If this same partial sequence, having the same cause, occurs 
on many occasions in the future, the time values saved in the queue will accumulate and 
eventually fill the queue. The most recently encountered time values will then begin 
replacing the oldest ones. The length of the queues could be a fixed number, but, in the 
more interesting case, their lengths will be variable and under the control of a higher- 
level supervisory routine. The supervisory routine will regulate the queue lengths on the 
basis of the rate at which the system is encountering never-before-seen sequences of 
events, the degree to which the time values deviate from previous patterns and other 
factors. 

FROM PREVIOUS  RLRRM 

1 
NODE   FOR 

FLRRM  C 

TO  NEXT  RLRRM 

QUEUE FOR 
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MRLFUNCTION-2 

Figure 3.  A tree node linked to several queues of time-values. 

With each addition of a new time value to a queue, PATTERNS computes the mean 
and standard deviation of the curve represented by the whole collection of time values in 
the queue. 
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DECISIONS—The Diagnostic Portion 

When the program is set to the task of diagnosing a newly occurring malfunction, 
alarm information is sent by WATCH-STANDER to DECISIONS. As each new package of 
alarm information is received, DECISIONS descends to the next lower level of the tree 
(Figure 2) and locates the node that corresponds to this specific alarm and sequence. If 
there is no node that corresponds with the new alarm, DECISIONS creates one and 
recognizes that this pattern is one that has never been previously encountered. Other- 
wise, DECISIONS must now determine the most likely causative malfunction, based upon 
the evidence (the pattern of alarms that have been triggered) so far. There may be more 
than one possible cause for this pattern. Each possible cause will be represented by a 
circular queue linked to the current node (Figure 3). For each one of those queues, 
DECISIONS determines how closely the new time value fits into the distribution of the 
time values already in the queue. The method for doing so is as follows: 

1. It is assumed that the time values in the queue have a normal distribution (Figure 
li-). A Z-Value for the new alarm is determined on the basis of the mean and standard 
deviation for the normal distribution curve of the queue values and the time value of the 
new alarm. For example, if the mean is M, the standard deviation is S, and the new time 
value is T, then the Z-Value is computed as follows: 

Z = (T-M)/S 

This is done for each of the queues associated with the current node. Using a standard 
table, the Z-Value determines the area under the normal curve representing the 
probability that any random variable having the standard normal distribution will take on 
a value between that of the new alarm and the mean of the queue distribution. All of 
this, of course, is elementary statistics. 

I 
N 
c 
I 
D 
E 
N 
C 
E 

T—I—I—I—I—r 

-->     TIHE    --> 

Figure 4. Actual distribution of queued trigger-times in a hypothetical case. 
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What we really want, however, is a probability or factor that reflects the degree to 
which the specific time value (T) for the new alarm is likely to belong to this particular 
queue distribution. That factor is defined as the magnitude of the remaining outside area 
("AREA") on the same side of the mean as the new time value (refer to Figures 5 and 6 for 
examples of how new time values are fitted into the normally distributed set of queue 
values shown in Figure ^). 
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Figure 5.  Example 1:  Area assignment to a new alarm time. 
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Figure 6.  Example 2:   Area assignment to a new alarm time. 
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2. The result of the previous table lookup ("AREA") is multiplied by the actual 
incidence of this partial sequence, yielding Pql (for queue number 1 corresponding to 
malfunction number 1), Pq2 (for queue number 2 corresponding to malfunction number 2), 
and so on. In effect, this means that the closeness of fit depends upon two major factors: 
First, the relative frequency at which this particular malfunction has been known to cause 
this alarm pattern in the past, and, second, the closeness of the current time value to the 
pattern, or distribution, of time values for this malfunction in the past. 

3. The final "probability" value, or factor, for each malfunction (Pn) is determined 
by expressing its Pq value as a percentage of the sum of the Pq values for all the queues 
linked to the current alarm node: 

PI =(Pql)/ (Pql+Pq2+ . . .+Pqn) 

i^. Following full development of the course of alarms resulting from a malfunction, 
if feedback is made available as to the actual cause of the malfunction, PATTERNS then 
enters the time value for each alarm in the sequence into the appropriate circular queue 
at each level of the tree. 

While this description may sound somewhat tedious, there are, in fact, only a very 
small number of simple computations, or table look-ups, that need to be done, so the 
program runs very quickly. 

Training and Testing Protocol w 

The Training Period. STOCHASM was run li-OQ times for each of the 27 possible 
malfunctions. At the conclusion of each run, the cause of the malfunction was made 
available as feedback to the program. During this period of time, DECISIONS was 
inactivated. The effect of this training period was to incrementally build a tree that 
incorporated STOCHASM's memory, or past experience, regarding the sequences of alarms 
(and their associated times) that result from repeated episodes of each of the malfunc- 
tions. Although the nature of the tree is altered with each new episode, the tree itself is 
permanently retained in memory. In effect, automatic learning is taking place in this 
period. STOCHASM, via DECISIONS, will, in the subsequent testing period, make use of 
the information stored in this memory-tree when attempting to make predictions. 

The Testing Period. When the training phase was completed, DECISIONS was 
activated and STOCHASM was then run again through each of the 27 possible malfunc- 
tions 200 additional times. The purpose now was to check how successfully STOCHASM 
was able to diagnose the cause of unknown malfunctions. Data was tabulated for each 
instance in which an alarm was considered in a "warning" state (as the result of WATCH- 
STANDER's trend analysis) or had actually been triggered.  The data included the: 

1. Time of the alarm. 

2. Time of all previous identical alarms seen by the program when the partial 
sequence was the same, sorted out according to the causative malfunction (data in the 
circular queues). 

3. Alarm number and name. 

i^.     Type of alarm (warning or triggered). 
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5. Actual malfunction being simulated. 

6. Order of alarms thus far. 

7. Degree of fan-out and fan-in at each step in each sequence. 

8. Prediction of the cause of the malfunction, based upon the actual statistical 
incidence of all malfunctions that had been encountered at that point in the past (done for 
each and every partial sequence ever seen by the program). 

9. Probability predictions made by DECISIONS, taking into consideration both (a) 
the past incidence of sequences of alarms, as done in item 8, as well as (b) temporal alarm 
data. 

The predictions of item 8 above reflect the actual past incidence in which specific 
patterns were caused by specific malfunctions. They do not take into consideration 
temporal data, only the ordered sequence of the alarms. For example, it might determine 
that when the sequence of three alarms triggered so far consists of alarm number ^, 
followed by alarm number 7, followed by alarm number 2, then 71 percent of the time (in 
the past) this sequence was caused by malfunction number 16, and 29 percent of the time 
by malfunction number 3. Hereafter, these predictions (item 8) are referred to as the 
performance of the "BETTER OPERATOR," as opposed to the performance of 
STOCHASM, which corresponds to item 9 above. 

Using the previous example for the BETTER OPERATOR, STOCHASM would attempt 
to further distinguish between malfunctions numbers 16 and 3 by also taking into 
consideration that the time intervals between alarm-pair numbers ^ and 7, and between 
alarm-pair numbers 7 and 2 match more closely to malfunction number 3 than to 
malfunction number 16. 

Testing was performed repeatedly, in a similar manner as above, under a multitude of 
different conditions in order to empirically assess the effect of varying the: 

1. Number of training runs. 

2. Magnitude of random variability used in computing parameter values. 

3. Length of the sampling time periods. 

^. Shape of the distribution curve used in determining the random variability of 
time values for events. 

5. Number of testing trials for each malfunction. 

6. Number of previous time values retained in memory (in the circular queues) for 
each event. 
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RESULTS 

The Distribution of Temporal Values 

When discussing the operations of the diagnostic unit, DECISIONS, it was stated that 
when the same malfunction repeats itself the time values of corresponding events within 
identical alarm sequences are assumed to have a normal distribution, as would be 
expected when monitoring real-life situations. As previously described, in order to 
emulate this, the simulator LUBE-OIL was constructed in such a way as to incorporate 
into all computations a normally distributed random variability, ranging from +5 to -5 
percent. Data were gathered to check how successfully this distribution was reflected in 
the final outputs of LUBE-OIL. 

Figure 7 shows the actual distribution curve for the time values of the triggering of 
one of these events.   In this case, a chi-square test for goodness of fit yields the value of 

2 2 
15.6 where  X (93)= 32.7 and  X fQ^^= 11.6.    This suggests that the simulator does a 

fairly good job of incorporating and propagating a normally distributed variability into its 
computations for the changes in parameter values over time. 
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Figure 7.  Distribution of trigger-times. 

Fan-out 

As seen in Figure 1, there is a mild, but nonetheless, significant degree of functional 
interconnectivity among the components of the reduction-gear lube-oil subsystem. Fur- 
thermore,  the amount of time required for a change in one component  to affect its 
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neighbors is variable. Under these conditions, repeated instances of the same malfunction 
might be able to cause more than one unique sequence of alarms (fan-out). For example, 
in the training and testing runs that STOCHASM was exposed to, from all possible 27 
malfunctions, there were a total of 36^ different sequences of alarms noted, with each 
sequence made up of 36 separate events (alarm warnings or triggerings). These 364 
sequences were analyzed to determine the extent of fan-out, on the average, for 
individual malfunctions. 

Figure 8 ("FAN-OUT") plots the average number of different partial alarm sequences 
seen as a function of the number of alarms set off thus far during the developing 
malfunction. Note that the problem of fan-out is mild at first, when the malfunction just 
begins, but accelerates very rapidly at later stages. By the time a malfunction reaches 
completion (all alarms have been triggered), there are, on the average, 2^^ different 
sequences by which the malfunction may manifest itself, with a range of 4 to 38. As the 
figure indicates, fan-out affects all the malfunctions. By the time any malfunction is less 
than half developed, 100 percent of its possible causes can be shown to have previously 
manifested themselves by more than a single pattern of alarms. 

(09V.  >> <<   24 

Figure 8.  Degree of fan-out of alarm patterns. 

From the point of view of the operator, who must perform symptom-based diagnosis, 
this means that his memory burden increases proportionally to the number of possible 
different sequences due to the same cause. He must recall each of the many different 
alarm sequences by which every malfunction may manifest itself. In other words, at 
every step of the malfunction the operator must be able to correctly answer the 
questions: 

1. 
tions?" 

"Is this a valid, known pattern of alarms for any one of the possible malfunc- 
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2. "If so, for which one?" 

3. "What has been the past incidence of this pattern as an indication of that 
particular malfunction?" 

Fan-out, then, is one of the factors contributing to "information overload." The problem 
may be even worse where the different sequences are only partially different and they 
share the same initial subpatterns in the early portion of the sequence. In this case, the 
operator must not only remember the different patterns, but be able to recall the exact 
points in the sequences where the several patterns diverge. 

Fan-in 

The data in Figure 9 ("FAN-IN") serve to give an estimate of the degree of 
convergence, or overlapping, of sequences from different malfunctions. Obviously, if the 
order in which alarms occur can be absolutely identical for more than one unique 
causative malfunction, then the operator (or computer) cannot possibly distinguish among 
the possible causes on the basis of alarm order alone. 
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Figure 9.   Degree of fan-in of alarm patterns. 

At the beginning of a malfunction, as shown in Figure 9 there are, on the average, 10 
different causes for each possible partial sequence of alarms. In some cases, there are as 
many as 15. As the malfunction develops, this reduces to an average of 2. Noteworthy is 
the fact that: 

1. As illustrated in Figure 9, early in the course of a malfunction, there are NO 
sequences that uniquely determine their cause; 100 percent of the patterns have 
previously had multiple possible causes. 
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2. At the conclusion of the nnalfunction, 1^9 out of all the possible 36^ sequences, 
or ^0.9 percent, still have multiple possible causes. Compare the closeness of this figure 
with the one of ^5 percent estimated by the operators (noted previously under the section 
"Real-Time Limitations of the Subsystem"). This closeness gives us some assurance that 
the simulator model used here is reproducing the kind and degree of problems faced bv 
operators of real systems. 

Performance of the "BETTER OPERATOR" 

As defined in the previous section on methodology, the "BETTER OPERATOR" is the 
part of the computer program that records, updates, and has available the actual 
historical incidence of all possible causes for each and every partial or complete sequence 
of alarms. Naturally, one would expect the performance of the BETTER OPERATOR to 
significantly exceed that of the human operator. The human has little or no real-time 
information or historical data regarding the possible sequences of alarms or their 
significance, and so can do little better than random chance. In our evaluation of 
DECISIONS, we need to know not only how much better it performs compared with the 
human, but also how it compares with the BETTER OPERATOR who has the advantage of 
computer memory and speed, but lacks the advantage of temporal information. 

In Figure 10 ("PROBABILITY ESTIMATE") the performance of the BETTER OPERA- 
TOR is plotted. This is averaged for all of the possible malfunctions, with each 
malfunction run 200 times, and subject to random (normally distributed) variability 
throughout. Performance is expressed in terms of the actual incidence on record in the 
data bank of BETTER OPERATOR regarding the likelihood that the causative malfunction 
is the one that is actually in the process of occurring. The incidence is updated with each 
new alarm event. The numerical sequence of events, from the beginning to the end of the 
simulated malfunction, constitutes the X-axis. For example, following the fourth event, 
BETTER OPERATOR, on the average, assigns an incidence (probability) of 0.169 to the 
particular malfunction that happened to be the actual cause of that sequence at that 
instance. 

Note the gradual and linear slope of the plotted curve, progressing from an initial 
average incidence of 10.8 percent to a final value of 51.6 percent. 

When BETTER OPERATOR is asked to rank the various possible causes at each point 
along the way, a similar curve is produced (Figure 11, "RANK ASSIGNMENT"). 

Performance of "DECISIONS" 

The performance of DECISIONS was measured in a similar manner, using its 
"probability" (or "factor") predictions in place of the incidence data used by the BETTER 
OPERATOR. For the sake of ease of comparisons, these results are superimposed on the 
previous plots in Figures 10 and 11. 

In contrast to the BETTER OPERATOR (where temporal data is not utilized), 
DECISIONS early and rapidly focuses upon the correct diagnosis, and, in general' 
consistently maintains its advantage. There is a prominent, short-lived drop-off 
performance, indicated by the arrow.  This will be the subject of discussion shortly. 

in 
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Figure 10.  Performance comparisons 1:  STOCHASM versus BETTER OPERATOR. 
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Figure 11.  Performance comparisons 2:  STOCHASM versus BETTER OPERATOR. 
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DISCUSSION 

Performance 

It is quite clear from the performance curves (Figures 10 and 11) that the approach 
using temporal data, in DECISIONS, provides a considerable diagnostic advantage. 
Moreover, the enhanced diagnostic power of DECISIONS is most evident during the early 
phase of a malfunction when it is most needed and most beneficial. Early diagnosis is 
essential if corrective action is to be effective and damage to be avoided; yet, early 
diagnosis, using the BETTER OPERATOR or the unassisted manual operator approach, is 
not possible in many systems (see the discussion below on fan-in/fan-out). This, of course, 
should not surprise anyone, since, intuitively, a program that has available to it additional 
important and relevant information would be expected to outperform programs that are 
not so well-informed.  The point is: 

1. DECISIONS is able to effectively use that information, despite the uncertainty 
of the data. 

2. The method used by DECISIONS is such that the benefit derived from using this 
additional information far exceeds the computational costs (i.e., it is an efficient method 
that is well worth using). 

3. DECISIONS works effectively and efficiently in a real-time environment. 

^. STOCHASM is a finished product that works. While it is a fruitful "research 
tool" and is capable of further enhancement, as discussed in Part 1 of this report, its 
methodology could be applied to fault detection and diagnosis problems as a decision aid 
now. 

Factors Affecting Performance 

The performance quality of DECISIONS depends upon many factors, including the 
sampling period, degree of sample variability, and the type of sample distribution curve. 
For example: 

1. If the time intervals at which LUBE-OIL cycles (and WATCH-STANDER checks 
the alarm boxes) are sufficiently small and the degree of variability in the time at which 
an event (alarm) is triggered is comparatively large, then, when a malfunction repeats, 
corresponding events will not significantly overlap in time (share the same time-slice 
value) and the spread of the time distribution curve for the values in the circular queues 
will be large (i.e., the curve will have a large standard deviation) (see Figure 12). 

2. On the other hand, if the time intervals are sufficiently large and the degree of 
variability in timing is comparatively small, corresponding events will greatly overlap in 
timing, the standard deviation will diminish, and the samples will tend to cluster into two 
main groups: (a) those that are close to or identical to the mean of the distribution, and 
(b) those that are not (see Figure 13). Interestingly, to whatever extent overlapping 
occurs, the effect approximates that which is achieved by not treating time values as 
continuous variables, but, instead, subdividing the full range of possible time values into 
subranges (refer to the section below, "Comparison of STOCHASM with Other Attempts 
to Deal with Temporal Data" for further discussion and examples). 
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This latter effect, wherein time values tend to cluster and assume one of a small 
number of possible values, can be used to advantage, especially when carried to the 
extreme where the number and distribution of subranges causes any given new time value 
to either match perfectly with a specific fault or not match at all (binary). It allows the 
possibility of more sharply distinguishing between alternative considerations for the cause 
of a fault. The use of this effect in this manner results in a program that more so 
resembles a heuristic algorithm in performance as opposed to a probabilistic one. The end 
result is analogous to the use of very high contrast film in photographic printing to 
eliminate shades of gray. Furthermore, the presence of this effect diminishes the 
importance of the assumption in this domain that the distribution of time values conforms 
to a normal curve. 

The disadvantage of increasing the sampling time relative to the degree of variability 
in alarm times is that this correspondingly diminishes the accuracy of the "probability" 
predictions and will introduce occasional errors. In its actual implementation, DECISIONS 
performs a weighted averaging of its probability predictions from event to event so as not 
to be unduly influenced by an infrequent spurious result. 

Incidentally, this author has recently seen a somewhat similar use of normal 
distribution curves as evaluation functions in exploring search trees (Palay, 1985). The 
treatment was confined to theoretical issues; no use was made of sampling time heuristics 
and there were no applications. The work is of merit and worthy of mention since it 
includes a lengthy validation of this particular usage of statistical curves and areas. 

Assumptions and Approximations 

While DECISIONS could have been implemented with a purely statistical approach, 
rather than a heuristic one, this was not its goal. Rather, the goal, as previously stressed, 
was to find "an effective method" for improving our predictive powers regardless of 
whether the technique involved statistics, heuristics, or any other mechanism. In doing 
this, approximation techniques were employed at a number of levels. The result, in 
effect, is best described as a "hill-climbing" approach. For example, let us assume that 
the circular (first-in/first-out) queues, established by PATTERNS and used by DECISIONS 
to make predictions, have a fixed length of W slots. The approximations being made 
Include the following: 

1. The ^0 most recent values are representative of the entire domain currently 
within reach. 

2. If there is any change in the domain, it will be a partial or gradual change rather 
than an abrupt and drastic one. 

3. The nature of the domain is that it is continuous. 

There are many benefits to be gained from making these approximations. New data 
values may be evaluated by extrapolation onto the current samples in the queues. Also, 
there are tremendous savings in memory storage requirements and in the need for speed in 
performing computations and searches. Finally, the model of the domain becomes 
adaptable, and, in this sense, learning is enabled. 
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The Mechanism of Learning and its Role 

The subject of learning mechanisms is not the focus of this report. Nonetheless, a 
few comments are in order to explain some of the advantages of employing such 
mechanisms in programs of this sort and how they generally affected the implementation. 
This is valuable if, for no other reason, it removes some of the mystique and suspicions 
often associated with the term "learning." 

The use of a circular queue to represent one aspect (time) of the domain allows 
gradual replacement of older time-values by newer ones; the representation of that part 
of the domain is continually updated. A shorter queue length obviously disposes to a more 
rapid adaptation to changes in the domain, since each new value will have a relatively 
larger impact upon the total sum and the mean of the distribution of samples. On the 
other hand, a longer queue length is more resistant to erratic behavior, since each new 
value has only a small effect upon the sum and mean of the sampled domain distribution. 
Ideally, the length of each of the queues is under hierarchical control and is, therefore, 
varied according to circumstances. For example, the queue would be shortened in length 
if feedback begins to reveal errors in diagnosis or if all members of a series of recent 
values are very far from the mean. 

The value of this adaptability for shipboard gas turbine systems would be tremendous. 
The component systems of each individual ship are constructed from parts that differ in 
physical makeup and functional behavior from comparable parts on other ships. Compon- 
ents change behavior as they undergo wear-and-tear. They change according to 
environmental conditions, for example, as the ship travels from a tropical climate to the 
arctic. They may be replaced by new and different parts when they breakdown or become 
obsolete. Only an adaptable, "learning" fault detection system can cope with constant and 
unpredictable change of this sort. 

Learning is also performed by PATTERNS by associating the sequential order in 
which alarms are received with the specific malfunction that causes that sequence. As 
previously described, this is done by using a dynamic data structure composed of a tree of 
pointer-linked nodes. As new and different sequences are experienced, the tree is 
enlarged, in real-time, by the addition of new linkages from existing nodes to newly 
created nodes representing the new sequences. The statistical and temporal data stored 
in the nodes of the tree could be looked upon as analogous to reinforcing and inhibiting 
factors that influence the strength of the connections between the nodes. Potentially, 
these factors could be employed by a hierarchical control structure to perform and 
regulate the pruning of older and seldom used branches of the tree. This would constitute 
another form of learning. 

Another advantage of the tree structure is that different alarm sequences starting 
off with an identical series of alarms can share the same nodes. This affords some degree 
of economy in the consumption of computer memory. 

An important point is that PATTERNS learns all sequences and their associated 
causes automatically, and uses that knowledge effectively in its pattern recognition work. 
Nowhere in STOCHASM are there rules that explicitly spell out any particular sequence of 
alarms or explicitly associate a sequence with a particular malfunction. All of this is 
done automatically, in real-time, using a combination of rules on how to learn from inputs 
and feedback. 
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The Significance of Fan-in to the Learning Process 

Learning is impaired in the presence of ambiguity. In presenting data about the 
degree of fan-in, it was pointed out that, more often than not, the same sequential 
pattern of alarms has several possible causes (i.e., ambiguity). This is not just a matter of 
information overload. Without additional kinds of information it is simply not possible for 
either the human operator or a computer control system to discriminate between the 
various causes, thereby resolving the ambiguity and making a definitive diagnosis. The 
implications of this deserve emphasis. 

Under conditions where a task cannot possibly be performed at all, it is folly to think 
that Improvements in personnel selection, training, evaluation, or motivation can enable 
the human to do that task when it is assigned to him. The operator is in desperate need of 
assistance here. 

The point is that additional information ^s available, but simply not being used (or 
being used to advantage) by most existing fault detection and diagnosis systems; it is 
information often in the form of temporal data. 

Resolving Ambiguities 

Quite obviously, the consideration of additional data (time values) by STOCHASM 
substantially reduced the level of ambiguity and improved performance. Note, however, 
that the average performance curve contains an indentation, or dip (indicated by the 
arrows in Figures 10 and 11), at which point performance temporarily degrades almost to 
the level of the BETTER OPERATOR. When looking at similar performance curves for 
individual malfunctions (not shown in this report for purposes of brevity), it is evident 
that: 

1. In some cases, degraded performance does not occur.  ' 

2. In those malfunctions where temporary degradation does occur, the malfunctions 
can be grouped into subsets wherein the time at which the dip occurs tends to be 
significantly different between subgroups, but consistently the same within members of 
the subgroup. 

Preliminary analysis of this degradation phenomenon suggests that, in these cases, either 
the functional structure of the system or the placement of particular sensors is such that 
it is not possible to take diagnostic advantage of temporal aspects of the malfunction 
processes. To a large degree, a timing "bottleneck" exists; the set of times at which a 
certain subset of the sequence of alarms are triggered is essentially the same for a whole 
group of malfunctions. 

If this analysis should prove to be correct, it could lead to the development of a 
powerful tool for improvement in the design of fault detection and diagnosis systems. 
Performance curves of the type presented here are easily obtained by either monitoring 
the actual plant or by simulation studies. The degradation dips in the curves may pinpoint 
irrelevant sensors, suggest better locations or types of sensors, or imply the need to 
redesign the plant system process flow in order to achieve more effective fault detection 
and diagnosis. 
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Comparison of STOCHASM with Other Attempts to Deal with Temporal Data 

There have been attempts to use temporal data for purposes of diagnosis by sub- 
dividing the full range of possible time values into discrete subsets (Tsotsos, 1985). 
Consider the hypothetical simplified case wherein an elapsed time sample is classified 
according to its membership in one of the following range subsets: 

1. Subset A.  Less-than-or-equal to 0.1 seconds, or 
2. Subset B.   More-than 0.1 but less-than-or-equal to 0.8 seconds, or 
3. Subset C.   More-than O.Z seconds. 

Membership in a specific subset may then be used, via computer program production 
rules, as evidence that indicates or favors a particular diagnosis. There are disadvantages 
to this methodology: 

1. First of all, it presumes accurate knowledge, in advance, of the meaningful 
borders between subsets. In the example above, one would have to predetermine that it is 
most meaningful to separate samples into those that have a time value of more-than or 
less-than-or-equal-to 0.1, as opposed to using some other border value such as 0.2 in 
place of 0.1. 

2. Next, it treats the border values in a context-independent manner; they remain 
the same under all conditions, regardless of the current values of other parameters or 
significant changes in the system state. 

3. Further, it allows for no differentiation between time values that are widely 
separated from one another yet are members of the same subset. For example, in the 
hypothetical case above, an event having a time value of 0.15 would not, in this scheme, 
be differentiated from one having a time value of 0.75. Both values reside well within the 
same categorical subset, yet the two events are clearly not identical and the time 
difference between them may be very significant as a clue to the diagnosis. 

^. Finally, it does not permit flexibility for the program to adapt to dynamic 
changes in the border values (i.e., those changes that occur as the plant is running). Again 
using the previous example: Initially, use of the value of 0.1 as a border between subsets 
A and B may be valid in the sense of best enabling a diagnosis. But the state of the 
system may be subject to rapid change of the kind that shifts the best possible border 
value, for purposes of diagnosis, from 0.1 to 0.7. Ignoring this possibility of context- 
dependencies of border values will result in erroneous diagnoses. 

The alarm handling methodology developed by General Electric as a part of its 
"Advanced Nuclear Technology Operation" program (Mott, Pugh, & Cook, 198^) directly 
deals with the context-dependency of temporal data. Again, time values are expressed as 
a small set of subranges rather than dealing with time as a truly continuous parameter; 
and, again, there are no provisions for changes in these subrange-limits ("patterns") once 
they are established. Ranges, however, are computed in advance for each of the different 
events in an alarm sequence. The authors deserve credit for recognizing the importance 
of context-dependency when using timing information and for the use of an innovative 
approach. 

STOCHASM attempts to go further and incorporates a combined approach that: 

1.     Uses knowledge of the ordered sequence of alarms. 
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2. Uses knowledge of the past history of time values (temporal information) for 
every alarm, m any alarm sequence, and for any possible malfunction so as to incorporate 
context-dependency. 

«f f.h    ^i'^^^^^^y uses the floating point value of the time of triggering an alarm instead 
01 litting It into a small subset of range-limits. 

It. Employs a "learning" technique so that the significance of alarms and their 
temporal values is constantly updated by experience. 

In doing so, STOCHASM makes considerable use of embedded context-dependency in 
regard to (1) the sequential order of alarms and (2) temporal data. The drawback of the 
present version of STOCHASM is that it does not also treat the value of the sensor 
parameter that underlies the event (such as the numerical values of temperature, fluid 
level, rotational speed, and pressure) as similarly having context-dependency and being a 
continuous variable. For example, WATCH-STANDER blindly accepts upper and lower 
range-hmits as the mechanism for determining whether or not an alarm is to be triggered. 
The same approach used to handle the temporal data can be modified to handle this 
problem of context-dependency of sensor values. This, in fact, constitutes the next phase 
planned for this project and is anticipated to profoundly enhance the detection and 
diagnosis acumen of the program. 

Toward a More General Applicability—A "Black Box" Tool 

The same type of approach that was used in STOCHASM, as well as that which is 
contemplated for the next phase of this work, can, with some modifications, be applied to 
other similarly structured problems with inputs of continuous variables. Indeed STO- 
CHASM was set up with exactly that in mind. It incorporates a "black box" mentality 
assessing the significance of a sequence of inputs having a floating point format, without 
regard to the input domain, and blindly (but effectively) associating patterns with 
diagnostic names supplied by feedback. As such, there is nothing to prevent its direct 
apphcation to other domains, such as medical diagnosis, lofargram assessment in 
antisubmarine warfare (ASW) sonar classifications, and the military mission-control/star- 
wars-defense-initiative problem of multi-sensor integration. One should look upon the 
problem of fault detection and diagnosis as only one example of a more generic problem 
in which case it is reasonable to claim that a methodology effective as a solution for one 
example is also potentially applicable to others in the more general domain. 

"LUBE-OIL" as a Model 

The simulator for this program was put together with great care. Operators were 
consulted at many phases of its construction. Large volumes of technical ship and engine 
manuals were analyzed to assure that the simulator would be realistic. Considerable 
performance data was collected and studied to ensure, within reason, its validity But 
total, absolute realism was not the goal, nor is it necessary, important, or even relevant. 
All that was needed was a test-bed manifesting the general kinds of behavior typical of 
these malfunctioning systems and to show that the methodology of STOCHASM can be 
used to advantage in those kinds of systems. Indeed, in many of the studies done as part 
of this project, the simulator was changed away from the actual typical ship system 
behavior in order to provide a more severe challenge to the proposed solution methodolo- 
gy. While It would be important in an actual application setting to have STOCHASM begin 
Its operation with stored data that is as close as possible to the real-world lube-oil 
subsystem behavior, remember that data of that sort could always be obtained- 
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1. From a more realistic simulator, if and when necessary. 

2. By analyzing actual plant system outputs over a finite period of time. 

3. Directly by STOCHASM by allowing it to monitor one or more actual shipboard 
plant systems (as opposed to a simulator) for a finite period of time before beginning to 
actually use STOCHASM as a decision aid. After all, STOCHASM in no way would modify 
or interfere with the ongoing system of fault detection, diagnosis, and corrective action, 
such as it is; and STOCHASM has the advantage that it is programmed to learn from 
experience. 

A Comprehensive Solution 

As implied in Part 1 of this report, there are many facets to the problem of 
automated, real-time fault detection and diagnosis. A comprehensive solution must 
eventually deal with all of them.  Those not addressed in this phase of our project include: 

1. Cluster analysis of alarms (determining subsets of the alarm sequence that can 
be treated coherently as one unit). 

2. Temporal compression techniques and other methods for comparing temporal 
patterns that differ because their common cause varies in severity. 

3. Enhancement of automatic trend analysis (the prediction of the diagnosis while 
the symptoms are in the early stages of development) by dealing with context-depen- 
dency. 

'f. The evaluation of real-time performance, such as by measurement of elapsed 
times to check speed of decision making or measurement of utilized computer memory. 

5. The ability to generalize and encode complex patterns of events so as to 
extrapolate when perfect matches are not possible. 

6. Preventing faulty human maintenance and control decisions from either occur- 
ring or, having occurred, leading to the development of malfunctions. 

7. Dealing with false-alarms. 

8. Achieving high-level, or general learning, as opposed to very domain-specific or 
type-specific learning. 

9. Coping with multiple, simultaneous, independent faults. 

This report, then, is not put forth as a finished product, but rather as an illustration 
that it is possible to deal successfully with members of this group of problems, and, 
therefore, a comprehensive solution is a reasonable goal. 

CONCLUSIONS 

Relatively simple techniques, such as those in the computer program STOCHASM, 
can be successfully applied to the key problems of real-time fault detection and diagnosis. 
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STOCHASM is of considerable value in studying this general class of problems. For 
example, it illustrates that it can be useful in distinguishing between operator and system 
tasks that are feasible and those that are not; it provides insights about design 
deficiencies; it provides a tool for quantifying performance in these systems; it allows for 
the convenient handling of uncertain and time-dependent data; and it is proof that even 
relatively low-level learning techniques can be effectively used and are of enormous 
practical value. 

STOCHASM has proven to be more than just an analytical research tool. It works, 
and works well. The methodology could be beneficially applied to actual systems, if 
desired, even at this stage. It is a program that is readily amenable to further 
enhancements, such as dealing with the context-dependencies of variables, in real-time, 
to achieve superior results over the use of preset upper and lower range-limits of normals. 
Because of its black-box structure, the program is generalizable and could be easily 
applied to other domains having comparable problems involving temporal data, random 
variability of data, and changing domains. 

We should continue to attempt to design and build perfect systems; but we should also 
recognize that unanticipated events will continue to frustrate those attempts. Therefore, 
we are advised to make equally vigorous efforts to develop more advanced techniques for 
real-time fault detection and diagnosis to assist the operator. The computer program 
herein described represents a step in that direction. 
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