
RD-A174 617 PROTOTVPE OF A COMPUTER METHOD FOR DESIGNING AND 1/2
ANALVZING HEATING VENTIL (U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF SVST S J BARLOW

UCASIFIED SEP 86 AFIT/GEM/DET/86S-1 F/G 3/1 NL

EEELS sn FhEEmnhEEEol
EEEEEmhohEohhE

I ohmmmmmmm.

*O 2.0jflI1.1 .6
11- 1 = 0

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS- 1963-A

OF

PROTOTYPE OF A COMPUJTER METHOD FOR
DESIGNING AND ANALYZING

HEATING, VENTILATING AND AIR CONDITIO>AING
PROPORTIONAL, ELE2CTRONIC CONTROL SYSTEMS

THESIS

Steven J. Barlow
Captain, USAF

AFIT/GEM/DET/36S- 1

0... DISTMIUTION STATMN A DTIC
~~1 Approved for public roeaae ELEC E

_j DEPARTMENT OF THE AIR FORCE
L.AIR UNIVERSITY 1B
AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

86 12 02 118

PROTOTYPE OF A COMPUTER METHOD FOR
DESIGNING AND ANALYZING

HEATING, VENTILATING AND AIR CONDITIONING
PROPORTIONAL, ELECTRONIC CONTROL SYSTEMS

THESIS

Steven J. Barlow
Captain, UJSAF

AFIT/GEM/DET/36S- 1

DTIC
SEL ECTE

DEC 2 1986

B

Approved for pubic releaS;

Distribution Unirait-

The contents of the document are technically accurate, and no
sensitive items, detrimental ideas, or deleterious information is
contained therein. Furthermore, the views expressed in the
document are those of the author and do not necessarily reflect
the views of the School of Systems and Logistics, the Air
University, the United States Air Force, or the Department of
Defense.

C1.

I I r

AFIT/GEM/DET/86S- 1

PROTOTYPE OF A COMPUTER METHOD FOR

DESIGNING AND ANALYZING HEATING, VENTILATING AND AIR CONDITIONING

PROPORTIONAL, ELECTRONIC CONTROL SYSTEMS

THESIS

Presented to the Faculty of the School of Systems and Logistics

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Engineering Management

Steven J. Barlow, B.S., P.E.

Captain, USAF

September, 1986

Approved for public release; distribution unlimited

Acknowledgments

A note of thanks and appreciation is extended to Major

Steven T. Tom, my thesis advisor, and Captain Jay Santos,

my thesis reader, for their guidance, suggestions and

assistance. To say they were instrumental to this thesis

is truly an understatement.

Thanks are also extended to Dr. Donald R. Clark of the

National Bureau of Standards, Mr. Ed Wilson and Mr. Larry

Struthers of HQ AFESC, Mr. Mark Provost of Barber Colman

and Mr. Al Zajac of Johnson Controls for their assistance

in identifying and discussing some of the reference

material I used in conducting this research.

Finally, my special love and deepest appreciation goes

to my wife, Colleen and my son, Nicholas, whose first

sentence was "Daddy do homework". Colleen's understanding,

patience and moral support during these past fifteen months

served as the cornerstone of our family and enabled me to

complete the program.

ii

Table of Contents

Page

Acknowledgements ii

List of Figures v

Abstract Vi

I. Introduction 1

General Issue 1
Research Problem 3
Research Objectives 3
Scope and Limitations 4

II. Background................. 7

Amplification of Problem 7
Investigation of Conventional and Computer-Based
Control Systems........ 12

Conventional Proportional Control
Systems 15
Computer-Based Control Systems 17

III. Methodology 22

Literature Review 22
Interview 23
Independent Study and Engineering Development. 24

IV. Literature Review 27

Existing Computer Programs 27
Adaptability of Existing Programs 33

V. Development of New Computer Programs 37

Emphasis on Structure Development 37
Criteria 38
Ccomponents Modeled 43

Structure of Computer Programs 44
Overview of Structure 45

Functional Context 45
Operational Context 47

Random Access Data Disk Files 51
File Handling Techniques 51
Data Storage and Retrieval Method . . 52

iii

Page

Data Disk File of Subsystem Analyzed . 58
Description of Subsystem . . . 60
Representation of Data Disk File . 61

Analysis of Computer Code Logic . . . 68
The Data Creation Program, CMODCRD . . 68
The Data Print Program, CMODPRD . . . 71
The Execution Program, CMODEXC . . . 73
The Data Edit Program, CMODEDD . . . 79

VI. Conclusions and Recommendations 82

Practical Implications of Results 83
Recommendations for Future Work 84

Appendix A. Printout of CMOD Programs . . . 88

Appendix B. Flowcharts of CMOD Programs 101

Appendix C. Sample Run of CMOD Programs 118

Bibliography 135

iv

* a.,.** 'S

List of Figures

Figure Page

1. Schematic of Subsystem Modeled 59

2. Representation of Random Access Data Disk File 62

v

Abstract

The Air Force needs a better method of designing new and

retrofit heating, ventilating and air conditioning (HVAC) control

system. Air Force engineers currently use manual

design/predict/verify procedures taught at the Air Force

Institute of Technology, School of Civil Engineering, HVAC

Control Systems course. These existing manual procedures are

iterative and time-consuming.

The objectives of this research were to: (1) Locate and, if

necessary, modify an existing computer-based method for designing

and analyzing HVAC control systems that is compatible with the

HVAC Control Systems manual procedures, or (2) Develop a new

computer-based method of designing and analyzing HVAC control

systems that is compatible with the existing manual procedures.

Five existing computer packages were investigated in accordance

with the first objective: MODSIM (for modular simulation),

HVACSIM (for HVAC simulation), TRNSYS (for transient system

simulation), BLAST (for building load and system thermodynamics)

and Elite Building Energy Analysis Program. None were found to

be compatible or adaptable to the existing manual procedures, and

consequently, a prototype of a new computer method was developed

in accordance with the second research objective. The prototype

method developed the architecture needed to meet the manual

procedure compatibility requirement and modeled three electronic

components: a sensor, controller, and hi signal selector.

vi

WI!

The method incorporates four programs, written in BASIC, and

copies of the programs, flowcharts, and sample runs are included.

The method was developed to be easily expandable and

recommendations for further development are given.

vii

I. Introduction

General Issue

The Air Force needs a better method of designing new

and retrofit control systems for heating, ventilating and

air conditioning (HVAC) systems for its facilities. Prior

to 1979, Air Force engineers or contracted Architect/

Engineering firm engineers usually specified the general

type of control system using a performance specification.

The construction contractor often subcontracted the control

system installation to a controls manufacturer who designed

and installed the control system.

This method of manufacturer-designed HVAC control

systems presented several problems to the Air Force. A

major'problem was that the designs were proprietary. As a

result, Air Force maintenance technicians often had

aafficulty understanding the documentation and servicing

the hardware. When the HVAC control systems subsequently

needed to be recalibrated and repaired, no one with the

necessary knowledge of the control systems was available.

Another problem was that the vendor-designed control

systems were usually standard designs (standard, that is,

for each particular vendor) and consequently, the control

systems usually were not optimized for each specific HVAC

system. Furthermore, the Air Force design engineers

Z1

usually did not fully understand how the control systems

operated due to the engineer's indirect role in the control

system design. This fact made it difficalt for them to

review the design or to inspect the installation.

In their study, Schultz, Kenna ano Kapka provided

strong evider~e that showed that the state of disrepair of

HVAC control systems in Air Force facilities was alarming,

primaril- -ue to the overall lack of knowledge on both the

engineering and technician level, Air Force wide (15).

Due to the need to combat this prevailing lack of

knowledge, the Air Force Institute of Technology (AFIT)

School of Civil Engineering developed a course entitled

HVAC Control Systems. (This course was originally titled

Facility Energy Systems). This course combats the problem

by teaching Air Force engineers how to design and analyze

HVAC control systems. The design procedures taught in this

course insure the designs contain all information that the

technicians need to maintain the control systems. The

history and the content of material taught in HVAC Control

Systems is described in detail in the background chapter of

this thesis. However, at this time it is necessary to

understand that Schultz and Kenna developed a new method

for designing heating, ventilating and air conditioning

control systems and the method has been constantly refined4..

by their successors at the School of Civil Engineering.

Schultz and Kenna followed a "generic" approach,

2

basing all designs on a few fundamental components which

can be supplied by many manufacturers. Schultz and Kenna's

approach has many advantages which are described in more

detail in the literature review chapter of this thesis.

Research Problem

Despite its strengths, the Schultz and Kenna method is

time consuming since, at the present time, all computations

must be done by hand. Furthermore, if the designer

optimizes the system to conserve energy (as he should), the

procedure becomes iterative. Consequently, it is

cumbersome to use the method as it currently exists. A

designer must perform many hand computations to predict the

control system responses and verify that the system will

operate as intended under all anticipated operating and

design conditions.

As a result of designers neglecting to perform this

iterative, time consuming process, the control system

designs are seldom optimized and may be inadvertently

designed with inherent deficiencies. This fact leads to

significant energy waste.

Research Objectives

The underlying goal of this research is to produce a

computer method of designing HVAC control systems which the

Air Force engineers can use to solve the problem identi-

fied: namely, to speed up the time consuming, iterative

3

design/predict/verify process. To this end, two objectives

were identified:

Research Objective Number 1. Locate and analyze an

existing computer-based method and modify it if possible to

meet this need.

Research Objective Number 2. Develop a new computer-

based mehtod that is fully compatible with the existing

manual design/analysis procedures taught at Air Force

Institute of Technology, School of Civil Engineering. This

objective was only intended to be pursued if an appropriate

existing computer method could not be located or

expediently modified.

As discussed in Chapter IV, an appropriate existing

computer method was not found so the research concentrated

on objective number 2.

Scope and Limitations

Research for this project was limited to the HVAC

control systems. Other system components (such as air

handlers, heating and cooling coils, dampers, valves, etc.)

were only considered in the context that they were the

objects of the HVAC control system.

Furthermore, only a specific HVAC control system type

was studied: namely, a conventional electronic proportional

HVAC control system as defined AFR 91-39 (4) (currently in

draft form) and in Haines (9:Ch 1). However, from a

systems modeling perspective, electronic proportional

44

,6%1

Li4

control systems and pneumatic proportional control systems

are nearly identical. As a result, the computer method

produced through this research can easily be adapted to

model a pneumatic control system.

The reader who is familiar with the subject of this

research will note that this research did not consider

direct digital control (DDC) HVAC control systems or energy

management and control systems (EMCS). However, these two

specialized areas of the heating, ventilating and air

conditioning controls industry are already receiving the

emphasis of the controls industry's attention. In fact,

the researcher observed that a very large amount of the

current research in the HVAC controls area focuses on

advanced computer-based control applications which are

essentially nothing more than advanced direct digital

control.

Although the HVAC controls industry labels direct

digital control as the accepted standard for new control

systems (19), current Air Force policy prohibits the use of

direct digital control in AF facilities (5). A major

reason for this ban is that both the hardware and the

software used by these systems is proprietary and not

easily serviced by Air Force technicians. If the industry

eventually develops "standard" control algorithms for these

devices and the Air Force allows their use, the computer

method described in this thesis could be modified to model

these algorithms. It should be noted that electronic and

pneumatic proportional control systems studied under this

research program comprise the vast majority of the existing

HVAC control systems in AF facilities (15:19), (4). For

the purposes of completness and for the benefit of the

reader who is unfamiliar with this subject area, a short

discussion comparing and contrasting conventional propor-

tional control (the focus of this research), energy

monitoring and control systems and direct digital control

is presented in the literature review section of this

thesis.

mm6

-1 ~

II. Background

This chapter will investigate two areas that will give

the reader a better understanding of the need for this

research. The first section, Amplification of Problem,

describes Air Force problems with existing HVAC control

systems and steps which have been taken to alleviate these

problems. The second section, Investigation of Conven-

tional and Computer-Based Control Systems, briefly compares

and contrasts the two broad types of control systems

implied in the title and reviews the current Air Force

policy on each type.

Amplification of Problem

The following statement is taken from the executive

summary of research accomplished by Schultz, Kenna and

Kapka in 1982: "The typical HVAC system in the USAF is in a

total state of disarray, and our technicians are ill-

equipped to remedy the problem" (15:2).

Schultz, Kenna and Kapka based that statement on

comments they received from the field while they were

conducting an educational program on the operation and

maintenance of RVAC systems. Consequently, they embarked on

a research effort aimed at validating or refuting that

statement. They used 18 volunteer Air Force HVAC

7

technicians, (eight military and ten civilian), and several

research methods including surveys, testing, laboratory

training and observation to draw their conclusions. Their

conclusions are summarized below (15:29-30):

a. Experienced Air Force HVAC maintenance personnel

do not have the knowledge needed to effectively maintain

typical Air Force HVAC control systems. but they posess the

ability to learn to do so.

b. The typical Air Force HVAC system is not operating

efficiently, nor is it being properly maintained.

c. Major improvements in the engineering support

provided to the HVAC systems maintenance force are required

if the Air Force is to realize the full energy savings

potential that exists.

4 Furthermore, in a survey administered to the research

subjects, the technicians indicated that (15:26-27):

a. Engineering assistance was sometimes available.

b. When received, the engineering assistance was

sometimes helpful. (7 out of 18 agreed)

c. The engineering drawings available at base level

did not contain the detailed information the technicians

needed to properly calibrate and maintain the HVAC control

systems and the technicians perceived the base level

engineers could not produce drawings containing the

required information.

Schultz, Kenna and Kapka provided additional evidence

which suggested that Air Force engineers were unable to

provide assistance to the technicians unless the engineers

successfully completed AFIT's HVAC Control Systems (15:2).

Thus, the purpose of this course is to teach Air Force

engineers how to design HVAC control systems that are

inherently energy conservative and maintainable. As part

of this course, engineers learn to prepare design drawings

which provide the technicians with the information they

need to properly maintain the systems.

By developing the engineer's skills in designing such

systems, HVAC Control Systems is directly addressing the

lack of knowledge that exists at the engineering level. The

course also indirectly addresses the problem of lack of

knowledge at the technician level by forcing the engineers

to include all appropriate maintenance information on the

HVAC control system design drawings.

The copcept of designing the control systems for

maintainability means that HVAC control systems should be

designed in a manner that facilitates maintenance rather

than hinders maintenance. The control system should be

logical and traceable. A logical design is one which is

easy for an engineer (other than the designer) or a

technician to understand. A traceable design is one in

which t'he control signal can be followed from component to

component, such that each component's effect on the signal

is easily recognized. This design for maintainability

9

L

concept is described more completely in Engineering

Technical Letter 83-1. Some of the requirements

established in this letter are:

a. Using remote sensors to accomodate locating

controllers in the mechanical room.

b. Logically grouping controllers, adapters, relays

and other standard control system components in easily

accessible centralized controls cabinets.

c. Including pneumatic test ports and electronic-

system terminal strips cross-referenced to the control

schematic to facilitate troubleshooting and calibration.

In an article published in the ASHRAE Journal, Major

Steven T. Tom presented the philosophy of the Engineering

Technical Letter 83-1 design criteria to the HVAC industry

(18:38-40). Tom provided an example where maintainability

features such as those above were ignored. He states:

It is difficult to check the calibration of a mixed
air controller, for example, when the calibration data
is not shown on the drawings and the controller itself
is mounted on a duct 30 feet above the floor. [Tom:38]

Tom summarized the Engineering Technical Letter 83-1

mandated provisions of a HVAC control system designed for

maintainability in his article. They are as follows:

a. A fully labeled control schematic which details

all set points, throttling ranges, proportional bands etc.

b. A fully labeled electric ladder diagram.

c. A sequence of control which provides a brief

written description of the control strategy.

10

d. A generic, functional description of each control

component including all relevant data (specs) for each

component.

e. A detail of the control panel which consolidates

key control system components in a central, easily

accessible location.

f. Legends and schedules which provide definitions of

symbols used in the sequence of control description and

clearly presents all data specified in the control

schematic.

The advantages of using the Engineering Technical

Letter 83-l philosophy to design HVAC control systems

become almost self-evident when compared to the performance

specification approach described in the background chapter

of this document. Whether one considers maintainability to

be an advantage in its own right or as the vehicle used for

achieving other more concrete advantages, maintainability

is the goal of the Engineering Technical Letter 83-1

method.

Tom lists three advantages to designing for

maintainability: accuracy, reliability and efficiency

(18:39). In the end, it is clear that there are numerous

advantages of designing heating, ventilating and air

conditioning control systems in accordance with the

Engineering Technical Letter 83-1 requirements.

11

Investigation of Conventional and Computer-Based Control

Systems

As indicated previously, the focus of this research

:effort is to produce a computer method that will assist the

controls system designer in analyzing a conventional

proportional control system. This concept differs

significantly from the concept of computer-based control

systems; however, the difference between these two concepts

could easily be misunderstood by the layman. In the method

developed through this research effort, the computer is

used as a tool in the design/analysis process; it is not

physically part of the control system. However, in a

computer-based control system, the computer is actually a

"component" of the control system.

To understand the similarities and differences between

conventional and computer-based control systems, it is

first necessary to have a general understanding of what a

control system is, what it's functions are, and how the

control system serves it's function. A HVAC control system

can be thought of as a group of interconnected components

which control a heating, ventilating and air conditioning

system. The control system components are connected in

series and parallel arrangements, with each component

performing a specific function within the overall system.

As defined in this thesis, four major elements are

necessary for a HVAC control system: a sensor, a

12

controller, a controlled device and a source of energy.

Haines states that a control system consists of three

necessary elements: a sensor, a controller and a controlled

device (9:2). Instructional material published by Johnson

Controls, Inc. also lists three necessary elements of a

control system: a controller, a controlled device and a

source of energy. The apparent difference between Haines

and Johnson Controls is really only a matter of how the two

different sources classify the essential elements. Haines

considers the energy source as the means of accomplishing

the HVAC system control (9:7) and the three necessary

elements listed by Haines are the three different processes

(with each process being accomplished by a specific type of

control system component) that enable the energy source to

control the HVAC system. The Johnson Controls viewpoint

considers the energy source as one of the essential

elements but it combines the sensing and controlling

processes into one process (11:Ch XVI). Since the sensing

and controlling processes can be considered as two distinct

processes and it is clear that an energy source is needed,

for the purposes of this thesis, a control system must

contain the four necessary elements listed above as a

minimum.

These four elements are combined to give the control

actions needed to regulate the HVAC system. In addition,

many auxilary devices, commonly referred to as adapters,

13

-%

are usually added to give the desired indication and

control.

The first major element is the sensor. A sensor

measures a variable condition (e.g. room temperature) and

passes this "information" on to the second major element,

the controller. A controller processes the information fed

to it by the sensor and produces an output signal which

eventually is received by the controlled device (e.g. a

valve). Before reaching the controlled device, the

controller's output signal may be "conditioned" by an

adapter (e.g. a hi signal selector) as indicated above.

The source of energy, the fourth element, is the medium of

the control signal (e.g. air, electricity etc.).

Within a specific control system, two or more of the

broad types of components (sensors, controllers, auxilary

devices and controlled devices) could be grouped together

to form subsystems, with each subsystem providing a

specific function of the overall control system. For

example, a temperature sensor could be mounted in each of

two rooms and each sensor's output signal could serve as

the input signal to a controller. The output signals of

both controllers could then serve as the input signals to a

hi signal selector. The hi signal selector output signal

could then be passed on to a valve that regulates the

supply of water to a cooling coil. The complete control

system for these rooms would include heating controls,

14

.,. - - !

ventilation controls, fan controls, and various on/off and

safety controls. However, the sensor, controller, and hi

signal selector just described form a subsystem which

controls the cooling coil based on the warmest room

temperature.

While the above explanation and example of a subsystem

of a HVAC control system is very simple, it illustrates the

functions of individual components and specific subsystems

of an overall control system.

The similarities between conventional and computer-

based control systems are that both types contain the four

basic elements listed above and both perform the same

function; i.e., oversee the operation of the HVAC system.

The differences between the two types lie in the

characteristics of the physical equipment or components

used to perform the functions provided by the four basic

elements (and consequently, the method and accuracy of how

the functions are accomplised). The distinguishing

characteristics of each type of control system will now be

investigated.

Conventional Proportional Control Systems. Conven-

tional proportional control systems are usually further

classified by their energy source, namely pneumatic (air),

electric (line voltage alternating current or low voltage,

i.e. 24 volts, electricity), or electronic (very low

voltage, i.e. 15 volts or less, direct current electricity)

15

(Haines:7). Pneumatic and electric control represented the

"state-of-the-art" for commercial and industrial sized HVAC

systems from the inception of such systems through the late

1960s. Solid state electronic controls became popular in

the early 1970s and represented the state-of-the-art until

the introduction of computer-based control systems in the

late 70's. Conventional proportional control systems make

up a very large majority of the control systems installed

in Air Force facilities today. For the purpose of this

thesis, pneumatic, electric and electronic control systems

are considered conventional systems.

A typical conventional control system an average

commercial facility (such as a typical Air Force

administrative building) might contain twenty to thirty

*: components grouped into three or four subsystems.

A detailed explanation of conventional control theory

is beyond the scope of this thesis. The key concepts to

understand are that the controller is the "brain" of a

conventional control system, the system is "built up" by

linking together several "standard" components each

providing a specific function, and the input-output

equations for each component can be used to predict the

* control signal voltages or pressures from the sensor, to

the controller, through the adapters and eventually to the

controlled device.

4. 16

Computer-Based Control Systems. Computer based

heating, ventilating and air conditioning control systems

can be broken down into two categories: Energy Management

and Control Systems (EMCS) and Direct Digital Control (DDC)

systems.

In an energy management and control system, a computer

supervises the operation of the conventional proportional

control system. Traditionally, (since the mid 1970's) the

energy management and control system is added to an

existing conventional control system which then becomes the

slave of the energy management and control system.

Direct digital control can be considered the-next

generation of HVAC controls after Energy Management and

Control Systems. The growth in micro computer applications

during the late 1970s and early 1980s made these systems

possible, and direct digital control became the state-of-

the-art control technique during the same time period.

Direct digital control uses digital microcomputers (instead

of conventional proportional controllers) to perform

controlling actions in HVAC contrbl systems (12:47). In

other words, the computer replaced the conventional

controller as the brain of the control system. Thus, a

direct digital control system differs from an energy

management and control system in that with direct digital

control, the computer actually replaces the conventional

system's proportional controllers and adapters instead of

17

Just supervising their action (6:3).

Direct digital control offers several advantages over

conventional proportional control systems. AFR 91-39

states that direct digital control has the potential of

being the most versatile method of controlling heating,

ventilating and air conditioning systems yet devised

(5:par 1-6). Two additional sources list additional

advantages of direct digital control as compared to

conventional systems (12:81), (6). These advantages are

summarized below:

a. Increased heating, ventilating and system

efficiency which results in optimum energy (and cost)

savings.

b. Lower capital cost (for buildings over 100,000

square feet).

c. Reduced maintenance requirements. (Eliminates

need for periodic calibration and adjustment.)

d. Ability to test alternative control techniques

quickly and at no additional cost.

e. Built in self-diagnostic cababilities.

f. Ability to be easily upgraded in future.

The disadvantages of direct digital control (as

obtained from the same sources) include:

a. Limited availability.

b. Limited support.

Current Air Force Policy. The Air Force currently

18

prohibits the use of direct digital control systems except

for "experimental" cases which must be specifically

approved on a case-by-case basis (5). However, with the

above lists of advantages apparently far outweighing the

disadvantages, one must ask why the Air Force maintains

it's anti-direct digital control policy.

The answer lies in two broad areas: past Air Force

experience with computer-based control systems and the

issue of maintainability.

The reader should be warned that the above lists of

advantages and disadvantages were developed from articles

written by people in the direct digital control industry.

Consequently, the lists may be considered biased. From the

Air Force's perspective, the above list of disadvantages is

not all inclusive, the disadvantages are more significant

than they appear by just being listed and also, some of the

above listed advantages are only claims made by direct

digital control manufacturers. These claims have not yet

been fully field tested because direct digital control

systems have only started to become popular over the last

five years or so.

The HVAC controls industry made similar claims about

energy management and control system systems in the 1970's

yet the AF has experienced a multitude of problems with

it's initial energy management and control system

endeavors. Most Air Force heating, ventilating and air

19

conditioning experts agree that the majority of the energy

management and control systems procured in the late 1970's

are only now being brought to "operational" status. In

fact, in May 1984, Major General Clifton D. Wright,

Director of Engineering and Services, instituted a policy

prohibiting any new energy management and control system

purchases until the problems with the existing, non-

operational energy management and control systems were

solved. This energy management and control system policy

was only rescinded in June 1985 (21). It seems logical

that the "lessons learned" from the Air Force energy

management and control system misfortune form the basis of

the policy prohibiting direct digital control.

Both AFR 91-39 and Tom provide insight which supports

the Air Force direct digital control policy. AFR 91-39

states:

Because direct digital control is a new concept, new
systems are being introduced almost every month and
old ones are being withdrawn from the market. For
this reason, direct digital control, except for "pilot
projects" is currently prohibited by the Air Force
Policy. [AFR:chp 1-6)

In his article, Tom addresses specific problems with

maintaining direct digital control systems (one of the

manufacturer purported advantages) from the Air Force's

viewpoint:

The design of maintainable control systems poses
special problems for the Air Force, as we require
"generic" designs and equipment. Current trends
within the HVAC controls industry are toward Direct
Digital Control and electronic "black boxes," many of

20

-EMey~*

which are designed to be easily maintained by
specially trained technicians. The term "specially
trained" is crucial--the hardware and the maintenance
procedures are specific to one manufacturer. This
approach works very well when applied to a single
building or a group of buildings with one
manufacturer's control system, but it causes severe
problems when applied to hundreds of control systems,
each of which was purchased from the least cost
bidder. [18:38-39)

Tom elaborates further on this issue by citing the

frequent rotation of Air Force technicians which would

create a need for continual retraining, especially in view

of the potential for worldwide deployment. He contends

that direct digital control systems are not more

maintanable from an Air Force perspective.

21

III. Methodology

Four primary approaches were used concurrently to

satisfy the two research objectives previously stated.

They were: literature review, interviews with persons

familiar with the various existing HVAC related computer

packages and with the School of Civil Engineering

mechanical faculty, independent study of the HVAC Control

Systems course material and of an appropriate programing

language, and finally, engineering development of a new

computer method.

Literature Review

A review of all appropriate literature was conducted,

including current refereed and trade journals, relevent Air

Force design guidance and policy on HVAC control systems,

and existing computer and/or mathematical models of HVAC

systems and control systems. The literature review

contributed significantly towards accomplishing research

objective number 1.

The literature review also assisted in meeting

research objective number 2 in that the researcher had to

locate and study the appropriate material in order to

determine whether to modify an existing computer method or

develop a new one. However, this process would be more

appropriately placed in the "independent study" approach

22

-Z1 ZI lzZ

and is discussed in that section.

Interview

The researcher conducted personal and telephone

interviews as a means of gathering some of the information

used in meeting both research objectives. The purpose of

the interviews was to benefit from the expertise of some of

the Air Force's and private sector's HVAC control system

experts. The interviews were not intended to quantify

underlying trends or predict phenomena; consequently,

statistical analyses commonly used for such purposes was

not appropriate for this research effort.

Interviews with the mechanical faculty of the Air

Force Institute of Technology, School of Civil Engineering

were conducted. These personal interviews served several

purposes. The interviews were used to develop the criteria

for the computer method which was used to design and

analyze HVAC control systems in accordance with the

objective of this research effort.

These interviews also aided in meeting research

objective number 2 by providing information which augmented

the information discovered through the literature review.

Since the Air Force Institute of Technology, School of

Civil Engineering mechanical faculty teach the manual HVAC

control system design method, they provided invaluable

insight for evaluating existing computer methods and fcr

23

developing the structure and determining the input and

output requirements of a new computer method.

The researcher also conducted telephone interviews

with other Air Force and private sector HVAC control

systems experts in conjunction with the literature review

to initiate the search for existing computer design

methods. Through interviews and the literature review, the

researcher inspected five computer-based HVAC analysis

packages which are discussed in more detail in the

literature review chapter of this document.

Independent Study and Engineering Development

The third and fourth approaches that the researcher

used were independent study and engineering development of

the new computer method. These two approaches had to

progress "hand-in-hand" as they were interrelated and could

*not be separated. Both approaches were aimed at developing

the expertise needed to meet research objective numbers 1

or 2: namely, to modify an existing computer method, if

appropriate, or to translate the existing manual HVAC

control system design/analysis method into a new

computerized method.

Regardless of whether the program selected was new or

existing, the researcher had to build a foundation of

knowledge in the appropriate programing language through

3elf study of appropriate reference texts. Finally, the

researcher had to refresh his knowledge of HVAC control

'24

knwede HVCcoto

i.....

system design by reviewing the course material for the AFIT

HVAC Control Systems course.

To meet the requirements of research objective number 1,

the researcher followed the steps listed below. These

steps describe the actions needed to locate and adapt an

existing computer program. A negative result at any one

step precluded advancing to the next step. At this point,

the particular program being investigated was considered

not adaptable and the program was removed from further

consideration. The steps used to evaluate an existing

computer program were:

a. Locate the program and obtain a copy of any user's

guides or other appropriate documentation.

b. Study the documentation to determine if the

program focused on the HVAC control system (as opposed to

the overall HVAC system) in sufficient detail to meet the

research objective.

c. Identify the programming language and determine if

the hardware requirements could be met by base level

designers.

d. Compare the program inputs, outputs and structure

to the desired program inputs, outputs and structure.

e. Determine whether or not changes to the existing

program necessary to get the desired results were feasible.

f. Modify the existing program.

g. Run and test the modified program.

25

As described in the literature review section of this

thesis, the researcher was not able to adapt any of the

five existing computer programs investigated under this

research effort. Thus, it was necessary to develop a new

computerized design/analysis method in accordance with

research objective number 2. The steps used to accomplish

this task are listed below in chronological order.

a. Select and learn the programing language.

b. Review the HVAC Control System course material.

c. Determine the program inputs, outputs and

structure.

d. Develop program architecture.

e. Select of the specific HVAC control system or

subsystem to model.
f. Write, test, and document program.

g. Run program(s) to demonstrate the use of the new

computerized design/analysis method.

264.

IV. Literature Review

In accordance with the first research objective, the

search through the current literature located several

existing computer packages which simulate single HVAC

system components independently as well as packages which

simulate entire complex HVAC systems. This section

describes experiments and simulations recently conducted in

order to demonstrate the capabilities of three computer

simulation packages, HVACSIM (which stands for HVAC

Simulation), MODSIM (Modular Simulation), and TRNSYS

(Transient System Simulation). All three were developed

wihtin the last five years. Two additional computer

simulation packages developed for HVAC applications exist,

BLAST (Building Loads and System Thermodynamics) and the

Building Energy Analysis Program developed by the Elite

Software Company. Finally, a source which develops

algorithms to be used in modelling HVAC systems and

individual components was located and will be briefly

described in this section.

Existing Computer Programs

The Center for Building Technology, National Bureau of

Standards developed MODSIM in 1984 as part of a building

system package, HVACSIM (10:752).

27

-, ', , . ' ,,,..,,..-. . .y , , ,

Clark et al. derived equations used to model several

HVAC system components (pipes and ducts, a heating coil,

and a three- way, mixing valve) and simulated these

components using HVACSIM both individually and as a

subsystem of a larger HVAC system (2:737). The components

and subsystem were then set up in the lab and measurements

were taken to verify the validity of the computer

simulation. The predicted results from the MODSIM

simulation matched the experimentally measured results very

closely (2:745). Clark et al. also briefly discuss models

for other HVAC system components and phenomena which are

easily handled by HVACSIM including pumps, fans, flow

splits and mergers, two-way valves, dampers, temperature

sensors, and hysteresis effects.

Hill simulated a multizone air handling system serving

two zones using MODSIM (10). Hill's objective was to

demonstrate the capabilities of the MODSIM package, not to

be an exhaustive study of a multizone air handling system

or any particular control strategies (10:758).

He ran three simulations comparing the same morning

start-up procedure using three different control

strategies. The simulated system integrated models of the

ducts, fans, three-way valve, hot water coil, mixing

dampers, temperature sensors, controllers, and a room

model. Essentially, Hill's three control strategies

included various combinations of proportional plus integral

28

control vs. only proportional control of the hot water coil

and the zone mixing dampers. No experiments were conducted

to verify the simulation validity. However, based on the

combination of Hill's results (which analyzed the

differences and similarities of the three strategies) and

Clark et al.'s work (using HVACSIM) cited above, Hill's

simulations were assumed to be valid (10:757).

As indicated above, Hill concluded that the systems

were accurately simulated and meaningful results were

obtained. He then listed some capabilities and features of

the MODSIM package including:

a. Detailed simulation of large complex heating,

ventilating and air conditioning systems and operational

modes.

b. Accurate modeling of short-term dynamics with

long-term system performance.

c. qan investigate system dynamics and subsystem

interactions.

d. Realistic treatment of pressures and flows.

e. Can produce modular simulations that allow rapid

changes to the operational modes.

f. Easily solves differential equations using a

state-of-the-art nonlinear equation solving package which

accomodates accurate transient simulation. This feature

makes MODSIM superior to systems only allowing steady-state

simulation.

29

X, .* .

1%"

g. Modular organization of the program makes

construction and alteration of simulations relatively easy

(10:758).

I. Hill points out that "many ideas for the design of

MODSIM were borrowed from TRNSYS" (10:752), which was

developed prior to MODSIM. TRNSYS is a "component-based

transient simulation program" (13:766) developed by the

University of Wisconsin Solar Energy Laboratory in the 1981

time frame.

Lau et al. used TRNSYS to simulate the effects of four

different control strategies on a chilled water plant for a

1.4 million square foot commercial facility controlled by a

small energy management and control system (13:766). The

strategies they simulated included determining optimum

chiller, cooling tower, and pump strategies, chilled water

storage mode regulation strategies, chilled water reset,

and storage tank subcooling. Each control strategy was

performed manually and they plotted the measured

performance data against the simulated data to assure the

TRNSYS simulations were accurate (13:776-779). Lau et al.

developed component models for the chiller and cooling

tower from the algorithms provided by Stoecker and the

manufacturer's data for the equipment (13:772-773). They

developed the models for the four control strategies

simulated, but the article did not provide much detail on

*the actual modeling process.

30

Lau et al.'s overall objectives were to develop the

models, determine if the control strategies could save

energy and dollars, and demonstrate the use of TRNSYS.

They concluded control strategies could be developed and

the benefits of simulation with TRNSYS were clearly

demonstrated. However, the authors made a statement

(quoted below) which lends strong credence to the approach

developed and advocated by the School of Civil Engineering

mechanical faculty regarding achieving energy conservation

through maintenance and maintenance through designing for

maintainability.

An examination of the AHUs [air handler units] showed
that many of the outside air dampers were out of
adjustment, causing excessive amounts of outside air
during hot weather. The reduced cooling loads
resulting from the proper adjustment likely result in
as great or greater savings than all of the computer
strategies. [13:773]

The final HVAC system computer simulation studied for

this thesis was a TRNSYS simulation conducted by Hackner et

al. (8).

Hackner et al. modeled an existing heating,

ventilating and air conditioning system which consisted of

five water chillers, four constant-volume and two variable

air volume air handling units, and a two-celled cooling

tower, all controlled by an energy management and control

system. Their overall objective was to "determine

operating strategies for heating, ventilating and air

conditioning systems which incorporate system dynamics and

31

% -,

interactions and potentially reduce energy use" (8:788).

Their conclusions are summarized below (8:788):

a. Dynamic HVAC control strategies can be identified

by computer simulation.

b. 3-4% savings result from operating under dynamic

control (approximately 1 control decision per second) as

opposed to making control decisions on an hourly basis.

c. Savings of 19% and 9% are possible (for the system

studied) using optimal control strategies as compared to

fixed set points and the current energy management and

control.

d. Potential energy saving HVAC operating strategies

were identified and reliable equipment models were

developed.

As stated earlier, many (or possibly all) of the

algorithms that TRNSYS uses for the HVAC system components

were dceveloped by Stoecker et al. (17). In developing

*these algorithms, Stoecker et al. intended to standardize

the procedures and equations for representing HVAC system

performance. Stoecker's algorithms consider only steady

state response of the system and were developed using

linear and multiple reqression techniques in conjunction

with manufacturer catalog data. These equations can then

be used for simulating practically every major HVAC system

component and selected systems and subsystems (17:1-3).

Two additional computer-based methods of simulating

32

heating, ventilating and air conditioning system operation

are Building Loads Analysis and System Thermodynamics

(BLAST) and the Elite Software Building Energy Analysis

Program.

BLAST was developed by the US Army Corps of Engineers,

Civil Engineering Research Laboratory during the 1970s and

is somewhat expensive to run, requiring a mainframe

computer. Although detailed study of this program has not

been accomplished under this research effort, in a

telephone interview Mr. Ed Wilson, HQ AFESC/DEMM indicated

BLAST has provisions for limited analysis of varying

control strategies (22).

The Elite Software Building Energy Analysis Program is

a patented proprietary software package that analyzes

entire HVAC systems. Like Blast, the Elite package focuses

on the HVAC system, the building heating and cooling load

computations, and the energy use characteristics of a given

building with given occupants and building-use

characteristics. The Elite package can be considered a

mini, commercially available, version of BLAST designed to

run on small micro computer systems.

Adaptability of Existing Programs

The existing computer analysis packages discussed

above were not analyzed in detail. Instead, these packages

were inspected to see if, in their present form, the

33

packages were compatible with the manual procedures taught

in the HVAC Control Systems course. The researcher found

the packages were not compatible and then considered the

possibility of modifying them so the modified computer

packages could be used to augment the Air Force Institute

of Technology manual method. However, it appeared that the

possibility of modifying any of the existing computer

programs would require more effort than developing a new

program specifically for the intended purpose.

Consequently, this possibility was ruled out by the

research team (the researcher, the advisor and the reader)

for the reasons indicated below.

In a telephone conversation with Dr. Donald R. Clark,

one of the key personnel involved in the development of

MODSIM, the researcher learned that running MODSIM required

a minimum of a 32 bit mini computer with several megabyte

storage capacity (20). These computer requirements far

exceed the capability of the type of computers that the

intended users will have access to. Furthermore, Dr. Clark

advised that MODSIM was intended to be a "research tool"

and the package uses sophisticated computer algorithmns to
'S

solve simultaneous differential equations. Dr. Clark
suggested that attempting to "downgrade" MODSIM to suit the

objectives of this research might prove to be a futile

effort.

The research team also believed that attempting to

34

modify TRNSYS would prove to be nonproductive. This

assumption was made after reviewing the TRNSYS users

manual, which indicated that, like MODSIM, TRNSYS models

transient control system responses. Thus, the TRNSYS

algorithms also solve or approximate simultaneous time-

dependent equations. Base level design engineers typically

have neither the computer resources nor the detailed input

data needed to support this type of computer program, so

modifying TRNSYS did not meet the objectives of this

research.

In contrast to the overly-sophisticated control system

analyses of MODSIM and TRNSYS (from the perspective of this

research effort), BLAST does not consider the HVAC control

systems in sufficient detail to be of any assistance to

this research effort. Mr. Ed Wilson, AFESC/DEMM, Tyndall

AFB, has approximately ten years experience in using BLAST

and can therefore be considered a reliable BLAST authority.

In a telephone conversation with the researcher, Mr.

Wilson stated that BLAST is primarily used to estimate the

overall energy'consumption for specific building/HVAC

system configurations. Although BLAST is capable of

estimating the effects of altering control system

parameters (in terms of building energy consumption), Mr.

Wilson stated that BLAST does not calculate the various

control system component input and output signals (22).

Furthermore, BLAST requires a mainframe computer to run.

35

sensor, a single input controller and a high signal

selector.

These three components are not sufficient to model

even a simple control system, but they are sufficient to

develop and test the basic computer programs needed to

model any control system. This research effort

concentrated on developing the basic modeling programs; the

writing of additional subroutines to model additional

components is a relatively straightfoward task and can be

done at a later date. Nevertheless, due to the modular

structure of the programs, the three components modeled can

be grouped together to form typical subsystems which could

be encountered in modeling an actual control system.

Furthermore, all programs developed under this research

effort can be run using the three components modeled with

outputs obtained similar to those that would result from

modeling an actual control system.

Structure of Computer Programs

Although the general criteria was well established

early in the research effort, the overall structure of the

programs was not established beforehand. Instead, the

structure evolved through continued interaction among the

research group. A discussion of the general underlying

structure will first be presented and will be followed by a

more detailed analysis of the data file manipulation

44

Consequently, modifying BLAST to satisfy the requirements

of this research effort was not attempted.

In studying the user's manual for the Elite package,

the researcher concluded that like BLAST, the Elite package

does not model the HVAC control system in sufficient detail

to be of major assistance in this research effort.

Furthermore, since the Elite package is patented, the

researcher felt that the company would not divulge computer

algorithms they wrote in developing their package. For

these reasons, attempting to adapt Elite Software's package

to meet the objective of this thesis was not given further

consideration.

Based on the above arguments, the research team

elected to develop a new computer program which would be

"custom-designed" to augment the existing manual

procedures. The next chapter discusses the research team's

efforts along these lines.

36

V. Development of New Computer Programs

As discussed in the previous chapters of this thesis,

the Air Force Institute of Technology, School of Civil

Engineering, Mechanical Faculty identified the need for

this research. Both the researcher's advisor and reader

are members of the mechanical faculty; the advisor is the

mechanical department head while the reader is the member

of the current five-man mechanical faculty with the most

tenure. Thus, the advisor and the reader were very

familiar with the problem at the onset of the research

effort and they established the overall requirements for

the computer method. Both the advisor and the reader were

involved with this research effort throughout, and along

with the researcher, the advisor and the reader acted as

members of a research teamr. The relationship between the

three research team members was similar to a

consultant/client relationship with the researcher serving

as a consultant and the other two team members serving as

the clients.

Emphasis on Structure Development.

The research team soon realized that the first and

foremost objective of the programing effort became to

develop an overall programing structure that could be

1,w 37

J* -

universally applied to any conventional HVAC control system

and would permanently store the data. The focus of this

*research, therefore, was on developing a structure that can

be applied universally and expanded in the future rather

than writing a more detailed program that can only be used

to model a few specific control systems. The difference

between these two concepts will become apparent throughout

the remainder of this chapter.

Criteria. Six criteria were established in developing

the computer method in order to make the method useful as a

teaching aid and eventually as a tool for Air Force HVAC

control system design engineers.

The first criterion established by the advisor and the

reader was that the user must be able to permanently store,

retrieve, and use data on demand. If all the data which

represents a particular control system had to be reentered

for each subsequent run as required by an iterative

optimization process, the computer method would be more

cumbersome to use than the existing manual design/analysis

procedures.

The second criterion established for the method was that

it must be compatible with the existing manual method taught

in the HVAC Control Systems course developed at the AFIT

School of Civil Engineering. This method allows the

designer to calculate what the input signal to each

component and the output signal from each component will be

38

[a . . .<... .%. .,.,. -....

for any given control system and set of operating

conditions. As indicated in the previous chapters, the

intent of the researcher's advisor and reader was to develop

a computer program that would perform the same analysis but

require less work. As discussed in previous chapters, none

of the existing computer programs that were analyzed under

this research effort focus on the control system in this

fashion.

The third criterion used in developing this computer

program was that the program be modular to accomodate future

expansions and revisions. At the onset, the research team

recognized that time might preclude the researcher from

modeling all of the standard components which are commonly

used in generic control system designs. Therefore, the goal

was to structure the programing such that the program logic

was complete in itself and would work reqardless of the

number of components in a particular control system. In

other words, in order to "analyze" a particular control

system, each component of the control system would have to

be individually modeled and then a master program would have

to "oversee" the complete run. For instance, the master

program would have to "know" how many and which components

were used in the particular control system, "know" how the

components were connected, select the appropriate computer

model of each component in the required sequence, and then

finally save and update all this information in a data file

39

-VVn- . ~ ~ U-

for this particular control system.

This goal was accomplished primarily through the use

of five main programs which rely on subroutines for nearly

all component-specific computer code. Accordingly, adding

new components will only require writing new component-

specific subroutines which can then be easily integrated

into the programing structure developed under this research

effort. This structure will be described later when the

purpose and logic of each of the five programs is described

in detail.

The fourth criterion was that the computerized method

must be very flexible such that one standardized method

would work for an infinite number of possible control

component configurations. Next to being able to

permanently store and retreive data, this was probably the

most difficult criterion to satisfy. This criterion most

clearly illustrates the difference between the two

programming approaches discissed previously, namely

developing a structure that could be universally applied

versus writing a complete working program for one specific

system.

The universal structure approach is needed because no

two control systems are identical. Even if the same number

of the same components were used in two similar control

systems (an unlike.y event), many variables could still

differ between the two systems and thus require special

40

treatment within a computer program. Such variables

include the component programing instructions (the settings

of the dials and gauges that a technician adjusts) and the

component symbols as shown on the control system schematic

drawing.

Another desired feature regarding the flexibility

criterion is that the method developed through this

research had to allow the user to use the symbol

identifiers directly as they appear on the control system

schematic. This insures that a computer printout of the

modeled control system will directly correlate with the

control system schematic, thus affording the user easy

cross-referencing. Finally, the order of entering

components into the computer is arbitrary. This provides

flexibility by allowing the user to enter the components by

component type, by subsystem or by any other means a

particular user desires. Meeting this criterion also

allows the user to add additional components during

subsequent computer runs without re-entering all existing

components.

The fifth criterion established for the computer

program was that it be interactive. As a rule, the

students who take HVAC Control Systems have little prior

knowledge of HVAC control systems (as was discussed in

background chapter). The course must therefore cover a lot

of material in a relatively short time period.

41

N' %

Consequently, any additional effort required of the

students to learn how to use the computer method would be

unwelcome. By making the program interactive, any required

computer training will be kept to an absolute minimum.

Furthermore, the interactive requirement is important to

the designer; if the computer program is too cumbersome,

the designer will not use it.

The final criterion established for the computer

method was that the computer programing language should

allow maximum use by Air Force engineers.

The major factors used in choosing a language were who

were the intended immediate and eventual users of the

computer method, what computer equipment would most likely

be avialable to them, and what language would the eventual

users likely be most familiar with. It was decided the

BASIC computer language best meet these requirements.

The intended users consisted of two groups.

Initially, the users would be the faculty members currently

teaching HVAC Control Systems at the AFIT School of Civil

Enginering. However, the purpose of this research effort

was to develop a computer method that would assist Air

Force design engineers in the field and thus, the designers

are the intended eventual users of the method.

Regarding the computer equipment available to both

groups, the research team felt that the field engineers

would have the most access to personal or micro computers.

42

Furthermore, the AFIT faculty currently use a micro

computer system regularly. Finally, since BASIC is the

language predominantly available to micro computer users

for their own programing, the research team felt the users

would be most familiar with BASIC.

It could be argued that since there are many different

versions of BASIC currently used in the micro computer

industry, any programs developed through this research

effort might not run on the computer system that a specific

user might have. The researchers concede this point.

However, the researchers contend that any eventual user who

has access to and routinely uses a specific micro computer

system has the ability to make the minor syntax

modifications that would be necessary to run the computer

program on their systems.

The specific version used to develop the method for

this research is SANYO BASIC, or more specifically, BASIC

[MS-DOS] Ver 1.25 developed by the Microsoft Corp. The

method was developed on a Sanyo MBC 550 series micro

computer system. In addition, the computer programs

developed have been entered in GW BASIC and successfully

run on a WANG system at the AFIT School of Civil

Enginering.

Components Modeled. In addition to developing the

overall structure, the researcher modeled three of the most

common electronic control system components: a temperature

43

process used. Finally, the programing logic will be

closely examined for each program of the computer method.

Overview of Structure. The structure of the computer

approach can be best understood when both a functional

context and an operational context are considered

simultaneously.

Functional Context. The functional aspect of the

structure evolved around the realization that there were

essentially four tasks which needed to be accomplished in

order for the method to produce the desired results. As a

result, the method consists of four main programs, each

*providing one essential function.

First a data file had to be created which represented

a snapshot of the control system schematic drawing in terms

the computer could understand. The program written to

accomplish this is CMODCRD (which stands for Control MODel

CReat Data). At this point it is sufficient to understand

that through CMODCRD, the user creates one permanent data

file for each specific control system modeled. In BASIC

jargon, the data file is called a random access data file

and the data files are permanently saved on a floppy

diskette until modified or removed by the user. In the

course of running CMODCRD the user loads each control

system component into the data file one-at-a-time and

inputs all of the programing instructions and other known

information (such as controller setpoint and the space

45

temperature). These files will be referred to as data disk

files.

Once a data disk file (representing a specific control

system) has been created, the user must run an execution

program, which is called CMODEXC (for Control MODel

EXeCution). CMODEXC performs all calculations necessary to

determine the input and output value for each component in

the control system. The CMODEXC program also updates the

data disk file with the results of all computations.

The third program in the CMOD series is CMODPRD (for

S Control MODel PRint Data). CMODPRD prints out the contents

of the data disk file by component type. CMODPRD can be

run at any time as long as a data disk file exists. The

researcher recommends the user runs CMODPRD immediately

after creating a data disk file to insure the data disk

file created contains no errors that may have been

inadvertantly entered when the file was created. Of

course, the user must run CMODPRD after the execution

program has been run to actually see the results of the

computations, i.e., the output values for all control

system components.

The fourth and final working program of the CMOD

*series is CMODEDD (for Control MODel EDit Data). CMODEDD

allows the user to selectively change information stored in

a data disk file. This enables the user to change specific

parameters for any control system component or to modify

46

0 .7

the control system configuration. This is done in order to

be able to predict the effect that any such change would

have on individual control component outputs and on the

overall control system performance as well. Thus, the user

would use CMODEDD to change a specific component parameter,

rerun the execution program, and rerun the print program.

Then by comparing and contrasting the printouts of the

edited data disk file to the original data disk file, the

user can optimize a new control system design or can

recommend improvements to an existing control system.

In addition to the four working programs just

described, the CMOD series contains a fifth documentation

program called CMODDOC (for Control MODel DOCumentation).

CMODDOC briefly explains the purpose of the CMOD series of

computer programs and gives the user basic instruction in

running the programs. However, CMODDOC is not used in

actually modeling a control system.

Operational Context. Although each of the four

working CMOD programs serves a different function, they all

use a similar three-tiered structure.

The first tier is the main program which contains all

computer code that is not specific to any component type.

The main program opens the specific data disk file

requested by the user, orchestrates the transfer of program

control among the appropriate component-specific

subroutines, tracks and advances any counters and closes

47

the data disk file (Refer to Chapter V, Structure of

Computer Programs, Random Access Data Disk Files for

explanations of opening and closing data files).

The second tier contains all the component-specific

subroutines (used in CMODCRD, CMODEXC, and CMODEDD), or

for-next loops (used in CMODPRD). Regardless of a

particular program's function (i.e., create, execute, print

or edit) any time a program manipulates the data from the

data disk file for any component, it does so through a

subroutine written specifically for that type of component.

Thus, each of the four working programs contains one

subroutine (or dedicated for-next loop) for each of the

three component types currently modeled. Note, there may

be additional subroutines nested within a component-

specific subroutine. Furthermore, the program line numbers

for each component type are the same within CMODCRD,

CMODEXC, and CMODEDD. Specifically, the controller

subroutines are found in the 1000 series of program line

numbers, the temperature sensor subroutines are in the 2000

series of numbers and the hi signal selector subroutines

are in the 3000 series numbers. Consequently, adding new

components to the computer method would require writing

three new subroutines (one each for CMODCRD, CMODEXC, and

CMODEDD) and one for-next loop (for CMODPRD) for each new

component type.

The third tier of the operational context refers to

48

the method chosen for transferring data between the actual

CMOD programs and the specific data disk file being used.

The precise programing code is established in the

programing language and must be followed. This procedure

is described in detail in Chapter V, Structure of Computer

Programs, Random Access Data Files. However, the research

team had to decide how often data should be read into the

program from the data disk file and written onto the data

disk file from the program.

The research team considered two options. The first

was to read the entire contents of the data disk file into

the program one time, at the beginning of the program, and

then write the new or updated data onto the data disk file

one time at the end of the program. The second option was

to read from the data disk file and write to the data disk

file each and every time the computer addresses (creates,

executes, edits or prints) a specific component in the

control system.

Without an in-depth analysis, the first option appears

to be more straightfoward and therefore would be the

preferred option. However there are numerous obscure

disadvantages. The first option requires some sort of

array or subscript system be created in the main programs

to correlate with the various (unknown) numbers of various

(unknown) types of components. (Keep the universal

application criterion in mind). Furthermore, in BASIC,

49

- I

subscripts and arrays must be numeric (e.g., TC(1), TC(2),

TC(3), ...) not alpha (e.g., TC(A), TC(B), TC(C), ...)

(7:89). This fact either precludes the use of symbols as

they appear on the schematic drawing or necessitates some

elaborate "behind the scenes" process of converting alpha

symbols into numeric subscripted symbols. Basic data disk

files can only be stored as alpha data so the computer

would have to keep track of all the various subscripted

symbols that are used in the subroutines and main programs

and reconvert them to alpha symbols in order to re-store

them in the data disk files (16: 7 -1 4).

Although a program could be written which would

solve these problems, it would be extremly complicated and

difficult to troubleshoot. Consequently, the researcher

chose the second option, i.e., constantly transferring data

between the data disk files and the programs. This process

is not as cumbersome as it may sound and it lends itself to

the subroutine structure.

Whether the function of the subroutine is to execute,

edit or print, the procedure is the same. Specifically,

the subroutine accepts control from the main program, goes

to the data disk file, locates the specific component it is

looking for, reads the specific piece of data it needs into

the computer's memory, performs its function, writes the

"new" value over the old value in the data disk file and

finally, transfers control back to the main program. The

. 50

procedure for the create subroutines is similar except that

the "search" steps are obviously eliminated.

The second option process may sound cumbersome but it

eliminates the need for arrays, subscripts, converting and

reconverting symbols, and elaborate "bookkeeping".

Therefore, all things considered, the researcher chose the

second option and used the continuous data transfer method

in all four working programs of the computerized method.

Random Access Data Disk Files. Random access data

disk files form the foundation of the computer method.

Mastering the use of these files proved to be the critical

step in developing the four working CMOD programs. In

fact, building the structure around the random access data

disk file technique was the single most important factor

that enabled the researcher to satisfy the three most

important criteria, i.e., permanent storage of data,

universal application and flexibility.

For completeness, this section will provide a brief

overview of the two file-handling techniques (random access

and sequential access) generally available in microcomputer

BASICs. Then, the method of storing and retrieving data

for random access data disk files will be examined.

Finally, a map representing the contents of the data disk

file that was created for an eleven component subsystem

shown in figure 1 will be analyzed.

File Handling Techniques. In his book Secrets of

51

Better Basic, Ernest Mau states that BASIC offers the

programmer a choice between two file-handling technique --

random access and sequential access (14:236). He claims

that each technique has its advantages and disadvantages

and the programmer should choose the technique that is most

appropriate for a particular application. Mau provides
.s . brief yet clear explanations of these two data-handling

techniques and his explanations are quoted below.

As the name implies, a random-access file allows
you to read data from or write data to a file at
random. You can record or retrieve form any numbered
"record" you desire without having to read through all
the data prededing that record. This provides a fast
method of retrieving individual items from large
accumulations of data. Additionally, when a random
file is "opened", you can read from one record, write
to another record, read form another and so on. In
short, you can mix storage and retrieval operations as
you please.

., A sequential-access file may be used to read or
write data only in consecutive order from beginning to
end. When it is opened as in "input" file, data may
be read but not written. When it is opened as an
"output" file, data may be written but not read.
[14:236]

* -:. _; Based on Mau's explanation above and the continuous

data transfer method (the second option discussed in the

previous section), the researcher felt that the random

access technique was clearly the best choice for the

. .computer method developed under this research effort.

- _Data Storage and Retrieval Method. The method of

storing and retrieving data in a random access data disk

file seems awkward at first, but it is really quite

methodical and straightfoward. To fully understand the

52

method, one must ir , generally understand what is going

on "inside" the computer. Mau provides a very good

explanation of microcomputer systems (Mau:Ch 1) and also of

the process of working with random access data disk files

(Mau:Ch 6). Detailed explanations such as Mau's are

outside the scope of this thesis. The reader who desires a

better explanation of the data storage and retrieval

process than the simple explanation provided herein should

consult the above reference.

In order to transfer data between a random access data

disk file and the actual computer program, a single record

of the random access data disk file is transferred as a

unit of data to or from a random-file buffer (herinafter

referred to as the buffer). Thus, when writing to a data

disk file, data is transferred from the computer memory to

the buffer to the data disk file (disk drive). The

sequence of programing steps needed to write a record to

the random access data disk file, along with the associated

computer statement or function (in parentheses) is:

1) open data disk file (OPEN)
2) field buffer (FIELD)
3) convert numeric data to string & (MKI$, MKS$ or MKD$)

write from memory to buffer (LSET)
4) write from buffer to data disk file (PUT)
5) close data disk file (CLOSE)

In order to read the record back, the entire record

must be transmitted to the buffer and the buffer must then

be "decoded" by the program. The sequence of programing

53

steps needed to read the record back, along with the

associated computer statements or functions is:

1) open data disk file (OPEN)
2) field buffer (FIELD)
3) read from data disk file to buffer (GET)
4) decode data & (CVI, CVS or CVD)

read from buffer to memory (equal sign)
5) close data disk file (CLOSE)

Microsoft BASIC stores all data in string (character)

form when using random access files. Consequently, numeric

data has to be converted to strings for storage on the data

disk file and converted back from string to numeric form

upon retrieval. The process of converting from numeric to

string is performed by the MKI$(), MKS$(), and MKD$()

functions for integers, single precision real numbers and

double precision real numbers respectively. (Single

precision real numbers contain 7 or less significant

digits, while double precision contain 8 or more). The

process of converting the strings back to numeric values is

performed by the CVI(), CVS() and CVD() functions for

integers, single precision and double precision numbers

respectively (14:237). The MKx$() functions will always

be used in conjunction with an LSET or RSET function (for

left or right justify) when writing data onto the buffer

from the memory. Note, there is no function opposite of

LSET or RSET when reading from the buffer to memory.

The final nuance to observe in the data transfer

process is that the variable names which represent the

54

"same" piece of data (string or numeric) in both the data

disk file and in the program cannot be the same. For

exmple, if the variable name SP$ is used to represent a

controller set point in the data disk file, then SP (the

same variable name) cannot be used in the program.

However, to establish a one-to-one relationship between

program variable names and data disk file variable names,

the researcher added the letter "I" (for interactive) to

the end of all variable names in the program which

represented the value for the same piece of data in the

data disk file. Thus, SP$ represents the value of a

controller set point in the data disk file while SPI

represents the value of a controller set point in the

program.

At this point an example of some actual computer code

will be analyzed to demonstrate the use of the data storage

.and retrieval process.

Suppose a user wants to add a third record to an

existing data disk file called "CONTROL". CONTROL

currently contains two records. Each record contains only

one user-furnished piece of data, the controller set point

(SP$). The user wants to set the set point of the new

record = 70.0. The computer code to add the third record

would be:

10 OPEN "R", #1, "CONTROL",4
20 FIELD #1, 4 AS SP$
30 SPI = 70.0
40 LSET SP$ = MKS$(SPI)

55

50 PUT #1,3

60 CLOSE #1

Line 10 opens the data disk file with the filename of

"CONTROL". It tells the computer which specific data disk

file to be ready to use to store or retrieve data. The "R"

tells the computer that CONTROL is a random access data

disk file. The #1 tells the computer that CONTROL will

hereinafter be referred to as file #1. The 4 tells the

computer that length of the longest record in file #1 is 4

bytes long. (Integers require 2 bytes, single precision

numbers require 4 bytes and double precision numbers

require 8 bytes).

Line 20 fields the buffer area reserved for file #1.

The buffer area can be thought of as a blank sheet of lined

loose-leaf paper but with variable length and width. Each

line would represent a record. The maximum number of

records (paper length) permitted is 32767 while the maximum

record length (paper width) is 256 bytes. Each record can

be divided into as many groups of bytes (i.e. fields) of

equal or different lengths as the user desires within the

256 byte constraint. Each field must be assigned a valid
string variable name. The field statememt only divides the

buffer into fields, assigns the field names, and determines

the length of each field. Thus, the statement establishes

the fields but it does not write anything into them. Any

number of field statements (up to 32767) can be specified

for any one data disk file. Thus, from line 20, there is

56

only one field, 4 bytes long, named SP$. Since there is

only one field, the record length equals the field length

in this case.

Line 30 sets the program variable SPI equal to 70.0.

Variable names are assumed to represent single precision

numbers unless otherwise specified by attaching a suffix to

the variable name (% = integer, ! = single precision, #

double precision, and $ = string).

Line 40 does two things. First it converts a numeric

value into string form using the MKS$() function. Then,

through the LSET statement, it stores or writes the string

data onto the buffer by assigning the string data to the

variable named SP$.

Line 50 contains the PUT statement that actually

writes the data onto the data disk file (i.e., the disk

drive) from the buffer. Note that the data was put in the

third record of file #1.

Finally, the close statement in line 60 closes the

file so that no more data can be transferred into or out of

the data disk file. If the #1 was omitted, the close

statement would close all data disk files that were open at

that time. The maximum number of data disk files that can

be opened simultaneously is 15. Closing a data disk file

provides an element of safety since the data file could be

ruined by an abnormal program termination such as a power

interruption, system reset, disk drive malfunction and so

57

on (14 :2 43).

The computer code needed to retrieve the data just

entered uses identical OPEN, FIELD and CLOSE statements but

the inverse of the PUT statement and the MKS$() function.

The computer code to retrieve the third record would be:

10 OPEN "R", #1, "CONTROL", 4
20 FIELD #1, 4 AS SP$
30 GET #1,3
40 SPI = CVS(SP$)
50 PRINT SPI
60 CLOSE #1

The GET statement in line 30 reads the third record of

the data file CONTROL onto the buffer from the data disk

file (disk drive).

Line 40 converts the string data in the buffer to

numeric data and the numeric variable (SPI) is set to the

single precision numeric value in the program. Thus the

value was converted then read from the buffer into the

memory.

When line 50 is executed, the value of 70.0 will be

printed out.

Data Disk File of Subsystem Analyzed. Figure 1 is a

schematic drawing of an eleven component subsystem that was

analyzed using the CMOD computer programs developed under

this research effort. This is not a typical subsystem that

would be encountered in an actual control system in the

field. However, it uses all three of the components

modeled and contains a sufficient number of components to

58

L=M*

SP7

.54-
ATD

TIN-706

Figre Scemaic r SbsytemModle

A9

provide enough complexity to sufficiently test the CMOD

programs and demonstrate the utility of the method.

The schematic drawing shown in figure 1 furnishes a

trained control system engineer or technician with all the

information needed to analyze the control subsystem

represented. However, the information contained on the

schematic drawing must be "translated" into computer data

in order for the computer to analyze the control system.

* . The random access data disk file created specifically for

the subsystem shown in figure 1 provides this translation.

Thus, the data disk file furnishes the computer with all

the information the computer needs to analyze the control

system.

Description of Subsystem. The subsystem shown in

V.] the schematic contains four temperature sensors (SA, SB,

SC, and SD), four single-input controllers (TCA, TCB, TCZ,

and TCD) and three hi-signal selectors (HIA, HIB, and HIC).

Each of the four controllers will produce an output voltage

based on the controllers preset programing instructions

(set point, throttling range and action) and the input

temperature the controller is "reading" from its respective

temperature sensor. The output voltages from TCA and TCB

serve as the two input signals to HIA while the output

voltages from TCZ and TCD serve as the two input signals to

HIB. Both HIA and HIB select the higher of their

respective two input signals and pass the higher signal on

60

as their respective output signals. Thus, the outputs of

HIA and HIB serve as the two input signals to HIC.

Finally, HIC selects the higher of its two input signals

and passes the higher signal on as it output signal. The

output signal of HIC is the output value of the overall

subsystem. The computer printout generated from modeling

this subsystem using the CMOD method is included as

Appendix C.

Representation of Data Disk File. Figure 2 is a

representation of the random access data disk file for the

subsystem shown in figure 1. The information stored in the

computer or on the floppy disk is not actually stored in

tabular form as shown in figure 2, however, the information

can be best understood by a human if it is shown in tabular

form. Figure 2 represents the data disk file as it exists

immediately after being created by CMODCRD but before being

executed and updated by CMODEXC.

Several key features of the data disk file

representation will now be explained. First note that each

"record" actually consists of two lines. The first line of

each record results from the FIELD statement as discussed

in the previous section. Specifically, the record is

divided into fields of length specified in the statement

and the fields are given field names of string form. In

short, the FIELD statement reserved blocks where future

data will be stored. The second line of each record

61

RHO CNPCS

12 11

NS TYPS SYS OTPTS SPS TRS ACTS INSYS TINS

2 1 TCA 999 71 6 DA SA*** 70

NS TYPS SYS OTPTS STINS

3 2 . SA** 70 70

NS TYPO SYS OTPTS _STINS

4 2 SB*** 72 72

NO TYPO SYS OTPTS INY10 MINIS INY20 HIN26

5 3 MIA** 999 TCA** 999 TCB** 999

NS TYPS SYS OTPTS INYIS 4IN1S INY2S HIN2S

6 3 HIC** 999 -- A- 999 NIB-, 999

NS TYPS SYS OTPTS SPS TRS ACTS INSYS TINS

7 1 TC** 999 72 9 RA SB*** 72

NS TYPS SYS OTPTS SPS TRS ACTS INSYS TINS

e 1 TCZ** 999 73 10 DA SC*** 74

NS TYPS SYS OTPTS SPS TRS ACTS INSYS TINS

9 1 TCDI4 999 74 10 RA SD*** 76

NS TYPS SYS OTPTS STINS

10 2 SD***- 76 76

NS TYPS SYS OTPT$ STINS

it'. 11 2 SC*4* 74 74

NS TYPS SYS OTPTS INY1S HINIS INY2_ HIN2S

-- -- -- -- -- -- -- -- --- -- -- -- -- -- -- - -- - -- - ---- ------------------- --------
12 3 HB** 919 TC 999 TCD** 999

Figure 2. Representation of Random Access Data Disk File

62

U - - , , .*..

reflects the actual data that was written onto the record

via the LSET and PUT statements. Recall however, that any

numeric values stored in the data disk file are actually

converted and stored in their string form in the data disk

file.

Careful observation of figure 2 will reveal that the

data disk file contains twelve records but there are

actually only four different record configurations in this

data disk file. Each record configuration was custom

designed for either the record and component counters or

one of the three components that were modeled under this

research effort. Note however, that the first four fields

for each component-specific record configuration (i.e.,

records 2 through 12) are identical.

The first record of every data disk file created in

the CMOD system contains two fields, RN$ and CMPC$. RN$

stores the number of records the data disk file contains at

any point in time. CMPC$ contains the number of components

the data disk file contains. Since there is one record per

component and the first record always contains the

counters, CMPC$ will always be equal to RN$ - 1. These

counters must be tracked in order to be able to tell the

computer how many records it must search through while

searching for specific data in the data disk file.

The four fields common to all component-specific

records will now be described.

63

The N$ represents the record number for each specific

field. Although the computer tracks record numbers

internally, the user can not "see" the computer's internal

tracking numbers. However, the programing logic required

for the search routines in the CMOD programs required that

the record numbers be "visible" and these numbers be used

to locate specific pieces of data. Consequently, the

computer's internal tracking numbers were duplicated in the

data disk file.

The TYP$ represents the particular component's type.

This number is used to select the appropriate subroutine in

the CMOD programs based on the component type. Currently,

single input controllers are type 1, temperature sensors

are type 2, and hi signal selectors are type 3. As new

components are added, the type numbers should continue with

type 4 and so on.

The SY$ represents the specific component's symbol as

taken from the control system schematic drawing. In

establishing the field length of SY$, the researcher

allowed five character spaces for any symbol. However, the

schematic drawing symbols can vary from one to as many as

five symbols. This presents a problem when "searching" for

specific component symbols in the edit program because the

computer recognizes blank spaces as characters. For

example, if the user forgets to insert two blanks after

entering the three-character long symbol TCA, the computer

64

will not "find" TCA because it will be looking for "T C A

blank blank". This problem was overcome by instructing the

user to add asterisks (*) to the end of all symbols entered

such that all character symbols will be five characters

long. The user could opt to not add *s and use blanks

where appropriate. However, the user must be extremely

careful to consistently use the blanks throughout all four

CMOD programs.

OTPT$ is the final field name common to all records.

OTPT$ represents the output signal of the specific

component modeled on each specific record. Note that the

data file creation program (CMODCRD) inserts 999 as the

output for all components except temperature sensors when

the component is first modeled. Once the execution program

(CMODEXC) is run, the value for OTPT$ is updated.

Record 2 represents a single input controller.

Records 3 and 4 represent temperature sensors. Record 5

represents a hi signal selector. The order in which these

records are listed is entirely arbitrary. The order in

which the user entered the components while running CMODCRD

determines the order of records in the final data disk

file. The same system could therefore be represented by

numerous data disk files depending on the order in which

the individual components were entered.

The remaining five fields of the "controller" record

will now be explained. SP$, TR$ and ACT$ represent the

65

programing instructions for the controller. These symbols

* represent the controller set point, throttling range and

action respectively. The next field, INSY$, stores the

symbol of the component from which the controller receives

it input signal. The final field, TIN$, records the

controller's input temperature, i.e., the output signal of

the temperature sensor identified in INSY$.

For the temperature sensor record, the only remaining

field is STIN$. STIN$ stores the value of the temperature

being read by the temperature sensor. In the mathematical

model, the value is passed directly to the controller.

Consequently, no calculation is needed to determine the

sensor output as the input equals the output. For this

reason, the output value is entered in the sensor record

for OTPT$ when the user creates the sensor record under

CMODCRD.

Finally, the remaining fields of the hi signal

selector record are as follows. INY1$ and INY2$ store the

symbols of the two components which provide the input

signals to the hi signal selector. HIN1$ and HIN2$ store

the values of the two input signals to the hi selector,

,4 i.e., the output values from INY1$ and INY2$ respectively.

At this point the relationship between the schematic

drawing and the random access data disk file should be

clear. The data disk file duplicates the schematic but in

terms the computer can understand. When looking at a

66

A V

schematic, an engineer or technician can determine how tha

control system components are connected by following the

lines which connect the components on the shcematic

drawing. He also knows that the output value of one

component is the input value to another component.

The computer knows how the components are connected

through the disk file fields which store the symbols of the

input components. Furthermore, the computer knows what the

actual output values and corresponding input values are

through the appropriate data disk file input value and

output value fields.

However, there is still one critical ingredient needed

to analyze a control system. The "analyzer" must determine

the overall order in which the calculations must be made or

he will not have all information needed to make all

calculations necessary. For instance, in the system shown

in figure 1, the designer could not calculate what the

output value of HIA would be unless he first knew the

output values of both TCA and TCB. This "order-of-

calculation" requirement is intuitive and poses no real

problem to the designer. However, the computer has no

intuition and this requirement poses a significant problem,

especially in the context of the universal application

criterion. It is not possible to establish a standard

order-of-calculation rule for the purposes of a computer

method, since the very nature of designing control systems

67

mandates that the designer be able to choose which type of

component is used to provide an input signal to another

type of component.

After carefully considering the order-of-calculation

problem a "sophisticated" logic-based solution was not

obvious. Consequently, the researcher relied on an

exhaustive numerical procedure suggested by the

researcher's advisor. This procedure will be analyzed when

the computer code for each of the four CMOD programs is

discussed in the next section.

Analysis of Computer Code Logic

The actual computer code will now be reviewed for each

of the four CMOD working programs along with the associated

logic. Each program is fully flow charted to assist the

reader in following this discussion. The actual computer

code is included in this document as Appendix A while the

flow charts are included as Appendix B.

The Data Creation Program, CMODCRD. This program

'_ serves two purposes. First it is used to create a new

random access data disk file. CMODCRD is also used to add

new components to an existing data disk file.

Lines 120 through 170 set some of the phrases that are

frequently repeated throughout the interactive part of this

program equal to short string variables. This speeds up

the overall execution of the program and shortens the time

required to type in the computer code. The GOTO statement

68

in line 180 bypasses lines 190 - 230. These lines are only

used the first time a particular data disk file is

established to initially set the record counter (RN$) equal

to 1 and the component counter (CMPC$) equal to 0. Thus,

lines 190 - 240 create the first record of every new data

disk file which contains the two counters. These counters

are used as the upper limit in the numerous FOR/NEXT loops

that are used throughout all four CMOD programs.

Lines 240 - 290 print out a short statement for the

user's convenience which verifies which program the user is

running. This feature is especially nice when the user is

reviewing the printouts of the computer runs for a typical

"modeling session" which may be over 20 pages long.

Lines 300 - 340 ask the user to type in the filename

of the data disk file for the particular control system

being modeled and then give the user a chance to correct

any typos.

In lines 350 - 380 the user tells the computer whether

the data disk file he specified is for a new or an existing

system. If the user is creating a new data disk file, then

program control is passed back up to line 190 in order to

establish the record and component counter records as

discussed above.

At this point (line 400) the computer prints out a

menu with instructions and prompts the user to select the

type of component he wishes to enter. After the user types

69

~:

in the appropriate number line 450 passes control to the

appropriate component-specific subroutine. Since all three

subroutines use essentially the same logic, only the single

input controller subroutine will be analyzed.

Upon entering the subroutine, the first step

accomplished is printing out the subroutine verification.

Next, the data disk file is reopened (line 1020) and the

buffer is fielded for both the counter record (line 1030)

and the controller (line 1040). Line 1050 reads the

counter record into the buffer from the disk file and line

1060 sets the current record and component counters in the

computer memory.

The computer then tells the user the number of

components currently stored in the data disk file and asks

the user if he wants enter another controller (lines 1070 -

1110). Lines 1390 1110 give the user a chance to exit

the controller subroutine if he mistakingly typed in the

wrong number from the menu or it allows the user to enter

another controller if the user elects to enter all of the

same type of components at the same time.

If the user typed in "NO", the data disk file is

*} closed and control is passed back to the main program. If

the user typed in "YES" the computer increments both

counters by 1 (line 1120) and then proceeds to prompt the

user to furnish the input data as described in the previous

section.

70

" - , , " ' ' -. , ': " ' < .- "- ,.. ', - .', " ,,'- - "-..*. - -... . .''

After the user types in all requested information, the

computer repeats it all and asks the user to verify the

input data for the controller is correct (lines 1210 -

1250). If the user indicated the data was not correct the

computer prompts the user to retype in the correct data.

If the user indicated the data was correct, the computer

then updates both the counter record and the controller

record using the LSET and PUT statements as described in

the previous section (lines 1300 - 1350).

The GOTO statement in line 1360 then directs control

back to line 1070 which once again, gives the user the

option of entering another controller or exiting the

controller subroutine and reentering the main program at

line 480. Lines 480 - 490 ask the user if he wants to

enter another component then transfers control back to line

400 on a affirmative response or to line 500 on a negative

response.

Lines 501 - 505 print out a confirmation that the

Create program is complete and prompt the user to select

another CMOD program.

The Data Print Program, CMODPRD. Unlike the other

three working CMOD programs, CMODPRD employs FOR/NEXT loops

instead of subroutines for all of its component-specific

computer code. The reason for using FOR/NEXT loops lies in

a combination of the desired format of the printouts and

the fact that "forcing" the use of subroutines would have

71

*.. '

only required extra lines of computer code but would have

produced no tangible benefits.

It is desirable to have all components of the same
't

printed back in the order in which they were entered into• . type printed out together rather than have the components

the data disk file. The logic required to produce this

like-component format mandates inspecting the entire data

disk file and only printing out a record when the desired

component type is found. FOR/NEXT loops are very well

suited for this task. For example, in the three-component

subsystem shown in figure 1, three passes through the data

disk file were made using a FOR/NEXT loop for each pass.

All component-specific records (records 2 - 12) were

inspected on each pass. On the first pass, only the

controllers were printed out. On the second pass, only the

'-, temperature sensors were printed out and it follows that on

the third pass, only the hi signal selectors were printed

out.

The FOR/NEXT loops indicated above could have been

embedded in subroutines in order to make the print program

fit the structure of the other three CMOD programs

identically. However, the researcher felt the extra

programing steps required would have slightly lengthened

the execution time of the print program. Consequently, the

subroutine structure was not used in this case. Neverthe-

less, the logic used in the print program is rather

72

I.,

NA

straightfoward. Lines 100 - 220 print out the program

verification and prompt for the user to furnish the data

disk file name.

Lines 240 - 280 open the data disk file and field

buffer for all four record configurations. Line 380 gets

the counter record to use the total number of records as

the upper limit for the FOR/NEXT loop search.

All three FOR/NEXT loops use the same procedure. The

controller loop resides in lines 390 - 440, the temperature

sensor loop is contained in lines 500 - 550, and lines 620

- 670 make up the hi selector loop. Within each loop, the

counter variable, C, varies from C = 2 to C = the last

record number. Then the C'th record of the data disk file

is read using a GET statement. If the component type

indicated in the TYP$ field of the C'th record matches the

particular value sought for in the particular loop, the

contents of that record is printed. This procedure is

repeated by incrementing C by 1 until all records

(excluding the first, counter record) of the data disk file

are searched one time per FOR/NEXT loop.

Each loop is preceded by the statements to print out

the headers for the specific type of component (i.e., lines

310 -360 for the controllers, lines 460 - 490 for the

temperature sensors, and lines 570 - 600 for the hi signal

selectors).

The Execution Program, CMODEXC. As indicated earlier

73

in this chapter, the logic employed in CMODEXC relies on an

iterative "brute force" approach. This approach makes the

order in which the component outputs are calculated

irrelevent because eventually, all the required input

values will be computed if the calculations are repeated

often enough. Consequently, the program was developed such

that the program iterates as many times as there are

components in the control system being modeled and each

component's output value is computed one time per

iteration. For example, in a 10-component system, 10

iterations will be made and each component will have its

J* Voutput value computed one time per iteration. In all, 100

*calculations will be made. This procedure is needed in

order to insure that by the last iteration, all components

that pass on their output values as input values to other

components have their "correct" output value stored in the

component's OTPT$ field. Nevertheless, CMODEXC runs rather

quickly (approximately 2 - 3 seconds per component) since

the program does not consider transient responses and high-

level mathematics are not used.

CMODEXC follows the same initial steps as the print

program. Specifically, it prints out the program

verification (lines 100 - 140), prompts for and verifies

the data disk file name (lines 160 - 240), opens the data

disk file and fields all records (lines 250 - 290), reads

the counter record data from the disk file and sets the

74

last record number and component count into memory (lines

300 - 320).

At this point, an iteration counter (ITER) is set

equal to 0 (line 320) and a FOR/NEXT loop using the

variable, I, and an upper limit equal to the number of

records in the data disk file is used to start the

iteration process (line 330). The computer reads the I'th

record from the data disk file (line 340), sets the

component type value from the record in memory (line 350),

and selects the appropriate component subroutine based on

the type value (line 360).

At this point, control is transferred to the

appropriate component subroutine where the component's

output value is computed and then stored in the output

field in the data disk file record. Each component-

specific subroutine computes the component's output value

based on a mathematical model for that component. The

equations used in the subroutines were taken directly from

the manual procedure taught at the HVAC Control Systems

course at the AFIT School of Civil Engineering. The

computer code for each subroutine will be analyzed after

the discussion of the main program logic is completed.

Control is transferred back into the FOR/NEXT loop in

the main program and the counter, I, is incremented by 1

(line 370). The next record is read from the data disk

file (line 340, again), the new component type is reset in

7,5

memory (line 350) and the appropriate computation

subroutine is once again selected and executed and the

output value for that component is updated on the data disk

file from within the subroutine. This process continues

until the output values for all components in the control

system have been calculated one time, thus completing the

first iteration.

Line 380 then increments the iteration counter, ITER,

by 1 and a short message is printed out informing the user

that the ITER'th iteration is complete. The value of ITER

is compared to the number of components in the system (line

410) and if ITER is less than the number of components,

control is passed back to the FOR/NEXT loop for the next

iteration. This iterative process continues until such

time as ITER equals the number of components in the system.

Thus, for an N component system, each component will have

it's output computed N times and the logic insures that all

components will have their "correct" output values stored

in their respective output fields of the data disk file.

The data disk file is then closed in line 460 and a program

complete message is printed out in lines 480 - 530.

Only two components are modeled in the execution

prcgram subroutines; a single input controller and a hi

sigial selector. In the HVAC Control System equations, the

temperature sensor simply passes the temperature it senses

as its output value and consequently, no subroutine is

76

needed.

Recall that before calling a particular subroutine,

the component record has already been read into the buffer

and the value of the component's type field has been set in

the computer memory. Thus the first step in both

subroutines is setting the appropriate input data in the

computer memory. This task is accomplished via line 1010

in the controller subroutine and in line 3010 in the hi

selector subroutine.

The remainder of the controller subroutine will now be

analyzed. Lines 1020 - 1080 contain a FOR/NEXT loop which

tells the computer to search through the data disk file

until the record containing the controller's input

component is located. Specifically, line 1020 varies the

counter for this loop (J) between 2 and the last record in

the file (K). Line 1040 reads the Jth record into the

buffer and the IF statement in line 1050 checks to see if

the symbol of the specific component being "searched" is in

fact the symbol of the controller's input component. The

IF statement in line 1030 is used to prevent the computer

from re-reading the same record that the computer read

prior to entering the subroutine.

If the symbols do not match in line 1050, J is

incremented by 1 and the data disk file is searched record-

by-record until the input component is found. Once the

input component is "found", control exits the lo-op and line

77

1060 sets the input component's output value equal to T in

the computer memory. Recalling that the controller's set

point, throttling range and action were read into memory

upon entering the subroutine, line 1090 directs control to

either of two equations (lines 1100 or 1120) based on the

controller's action. At this point all information

required to compute the controller's output value is known

and the equations assign the variable V equal to the

computed output.

It is now necessary to read the controller's record

back into the buffer from the data disk file (line 1140)

because the information stored in that record was "lost"

during the search for the input component. The final steps

of the controller subroutine involve writing both the

controller's output value and the value of the input

component into the appropriate fields of the controller

record. Lines 1150 and 1160 accomplish this task.

The hi signal selector subroutine uses the same

general logic as the controller subroutine and therefore,

the hi selector subroutine will be only briefly described.

A FOR/NEXT loop is used to search the data disk file for the

input components in order to obtain the value of the input

components. These values are then used in the component

equation which really does nothing more than select the

greater of the two values. Both the two input values and

the output value are updated in the hi selector data disk

78

WkM !

file record in the same manner as in the controller

subroutine.

The Data Edit Program, CMODEDD. The data edit program

allows the user to change the contents of any field in any

record in the data disk file. The logic behind this

program is rather straightfoward. After printing out the

program verification, lines 140 - 270 print out a menu and

prompt the user to select one of three choices; editing,

adding components to, or removing components from an

existing data disk file.

Although the menu appears to give the user three

choices, the only task that the user can appomplish through

CMODEDD is to edit an existing data disk file. Neverthe-

less, the three-choice menu is included in CMODEDD for the

user's convenience. If the user attempts to add a new

component to an existing data disk file under CMODEDD (line

290), the IF statement in line 300 passes control to lines

630 - 650 which ask the user to run the data creation

program (QMODCRD) and CMODEDD is aborted. If the user

attempts to remove a component from an existing data disk

file, the IF statement in line 305 passes control to lines

660 - 710 which tell the user that he must create a new

data disk file while omitting the undesired components from

the new file. This method of "removing" components by

creating a new data disk file is necessary because the

researcher has not been able to locate or develop a method

79

of removing individual records from a random access data

disk file.

Assuming the user wants to edit an existing component,

the computer follows the standard procedure of asking for

the data disk file name and verifying (lines 310 - 380).

In lines 400 - 440, the file is opened and the buffer is

fielded. After reminding the user to use 5-character

symbols, the computer prompts the user to enter the symbol

of the component the user wishes to edit (lines 460 -480).

Lines 490 - 500 read the counter record into the buffer and

set the variable K equal to the number of records in the

data disk file.

The FOR/NEXT loop in lines 510 - 550 is used to search

through the data disk file, find the appropriate record,

and set the value stored in the type field equal to the

variable TYN. Program control is then passed on to the

appropriate component-specific subroutine based on the

value of TYN (line 560).

All three subroutines use the same logic so only the

controller subroutine will be examined. Lines 1001 - 1010

print out the subroutine verification and then the values

stored in the data disk file fields are real into the

computer memory in lines 1020 - 1030. Lines 1040 - 1110

prints out all data currently stored in the data disk file

for the controller being edited and then the computer

prompts the user to select the specific piece of data that

80

he wishes to change from a menu (lines 1140 - 1370). Note

that in line 1320, the computer instructs the user that he

must "edit" the input component (rather than the

controller) in order to change the value of the input

component.

The user then selects one of the four possible choices

(indicated below) and the program control is passed on to

the appropriate subroutine written specifically for each of

the four data fields. These subroutines are contained in

lines 1400 - 1430, 1440 - 1470, 1480 - 1510, and 1520 -

1550 for the set point, throttling range, action and input

symbol respectively. Within each subroutine, the computer

prompts for the new value, writes the new value to the

buffer using an LSET statement, and then writes the new

value to the data disk file using a PUT statement.

Upon exiting either of the three component

subroutines, the user is given the option to edit another

component (lines 570 -600). If the user answers

affirmatively, control is passed back to line 460 and the

processs is repeated. If not, the data disk file is closed

(line 610), the "add" and "remove" instructions are

bypassed (line 620) and the run-complete message is printed

(line 730 - 790).

81

VI. Conclusions and Recommendations

Significant progress has been made toward meeting the

overall objective of this research. This objective was to

"computerize" the manual process of designing and analyzing

HVAC control systems and thus speed up the cumbersome

design/analysis process. As a result of this research,

prototype of a computerized method to assist Air Force

engineers design and analyze proportional electronic HVAC

control systems has been developed.

The method developed contains four working programs

and a documentation program. In order to demonstrate the

utility of the method and the operation of the four working

programs, an eleven-component control subsystem (built up

from three different component types) was analyzed using

the prototype. A sample run of this analysis appears as

Appendix C.

The remainder of this chapter will focus on the

practical implications of the prototype computer method

developed through this research effort and the researcher's

recommendations for future wo- k needed to expand the

prototype so that it is fully capable of analyzing any new

or existing control system of the type specified above.

82

Practical Implications of Results

The objective of this research effort dictated that

any progress made would be of practical rather than

theoretical benefit. Although the work was based upon

teaching methods used at the AFIT School of Civil

Engineering, this research could have much wider

application. Once expanded, the programs developed through

this research could potentially be usec by all Air Force

and private sector HVAC engineers who design or analyze

conventional control systems.

If these designers use the CMOD programs in

conjunction with the School of Civil Engineering, HVAC

Control Systems design procedures, several significant

benefits should result. The computer method will enable

the control system engineers to analyze complete control

systems in a fraction of the time required to perform the

same task manually, as is currently done.

However, the real goal is to do a better job of

optimizing control system designs in order to achieve

energy conservation, maintainability, and all the

associated benefits discussed in the background chapter of

this document. Since the computer programs will enable the

designer to analyze many variations of a proposed control

system in a short time, the programs will significantly

help the designers to achieve this goal.

Finally, the computer method has the potential to

83

enhance the learning process which occurs in the HVAC

Control Systems course. Once the students understand the

manual method, they can save an enormous amount of time by

using the computer method and thus leave more class hours

available for "learning" as opposed to .umber crunching".

Recommendations for Future Work

The prototype developed through this research is fully

operational as it currently exists; however, the work is

incomplete in that additional control system components

need to be modeled and integrated into the computer

programs. As described in Chapter V, only three control

system components were modeled through this research while

there are between ten to twenty "standard" components which

are commonly used in conventional electronic control

systems. Obviously, the remaining components need to be

modeled before the programs developed through this research

could be used in practice for virtually any conventional

electronic proportional control system.

However, while modeling an additional fifteen or so

control system components would make this method

universally applicable, incorporating only five addidional

components into the programs will enable the School of

Civil Engineering faculty to use the programs to model two

of the control systems which are analyzed in the HVAC

Control Systems course. These systems are an electronic

84

single zone system with mixed air reset and an electronic

single zone system with space temperature control of the

mixed air section. The additional five components which

need to be modeled in order to analyze both systems include

a two-input electronic proportional controller, an

electronic signal sequencer, a temperature sensitive switch

(commonly used as a high-limit switch), an electronic

adapter that passes on the greater of a preset signal or

the input signal (commonly used as a minimum position

damper control) and finally, a low signal selector that

passes on the lower of two signals (opposite of the high

signal selector already modeled).

As discussed in the previous chapter, modeling each

new component would require three subroutines and one

FOR/NEXT loop. However, the computer programing logic

needed to model the five new components will essentially

follow the logic established in this research.

Furthermore, the components can be modeled using elementry

algebraic equations previously developed for the manual

method. Consequently, the additional work needed can

easily be accomplished by the School of Civil Engineering

faculty or anyone who is familiar with the HVAC Control

Systems course subject matter.

The computer programs developed through this research

can also be expanded to facilttate modeling pneumatic HVAC

control systems. Accomplithing this task will require both

85

writing component-specific subroutines and slightly

modifying the main programs.

Writing the pneumatic component subroutines will

require the same amount of effort as writing the additional

subroutines for electronic components because the AFIT

manual procedures were developed for both pneumatic and

electronic control systems. Consequently, the algebraic

equations needed to write the subroutines for both types of

components already exist.

The main programs will also have to be modified to let

the user select either an electronic or a pneumatic system.

In addition to prompting for the appropriate system type,

these main-program modifications must incorporate provisions

for passing program control to the appropriate set of

subroutines (pneumatic or electronic) once the user selects

either type.

In addition to incorporating additional component-

specific subroutines into the CMOD programs and expanding

the programs to model pneumatic systems, the research team

believes it may be possible to improve one limiting feature

of the CMODEDD program. ks it currently exists, the user

can not remove individual components from an existing data

*disk file using CMODEDD. Instead, the user must create a

new file using CMODCRD with the desired components omitted.

Clearly, it would be beneficial to be able to remove

components (i.e., individual records of the data disk file)

86

*6N

AD-AI74 617 PROTOTYPE OF A COMPUTER METHOD FOR DESIGNING AND 2/2
ANALYZING HEATING VENTIL (U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON RFB OH SCHOOL OF SYST S J BARLON

UNCLASSIFIED SEP 86 AFIT/GEMDET/86S-1 F/G 13/1 NL

EhEEEEEEEEnhEIEhEmhmnEEmnmhE
IEEnnEEEEEEnnE

-10 I 1112.

jjj .2.5 11111JU4 6

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS 1963-A

qmpI.

r A.

from an existing control system (file) rather than have to

create a new system (file). Although none of the BASIC

references studied by the researcher addressed how to

accomplish this removal task, the researcher has not

concluded that this task is impossible. The possibility of

developing the appropriate computer code to remove

individual records is one of the areas that any future

researchers should investigate further.

87

Appendix A. Printout of CMOD Programs

Appendix A contains printouts of the four working

computer programs and the documentation program developed

under this research effort. The programs are written in

the BASIC programming language. The programs appear in the

following order:

CMODCRD Create Data File Program

CMODPRD Print Data File Program

CMODEXC Execute Program

CMODEDD Edit Data File Program

CMODDOC Documentation Program

'8

88

CMODCMD

100 PRINT: LPRINT
110 PRINT: LPRINT
120 FEWS-'THE FILENAME ENTERED WAS
130 EACS-'DO YOU WANT TO ENTER ANOTHER
140 ITC*-'IS THIS CORRECT
150 YN.- (YES OR NO) I
160 MNPsl"ENTER NUMBER FOR APPROPRIATE COMPONENT TYPE*
170 PSTR*'PRESENTLY STORED IN THIS DATA FILE"
10 GOTO 240
190 OPEN "R',#1,RAFNt,32
200 FIELD *1,2 AS RNS,2 AS CMPCS
210 LSET RNS-MKIs(1): LSET CMPCS=MKIS(O)
220 PUT 01,1: CLOSE 01
230 GOTO 400
240 PRINT 'CREATE DATA FILE PROGRAM'
250 LPRINT 'CREATE DATA FILE PROGRAM'
260 PRINT .':u .:: :: = V NNN§.
270 LPRINT . I
290 PRINT: LPRINT
290 PRINT: LPRINT
300 INPUT "ENTER THE DATA FILE NAME (UP TO 9 LETTERS) FOR THIS SYSTEM*;RAFNS
310 LPRINT 'ENTER THE DATA FILE NAME (UP TO 8 LETTERS) FOR THIS SYSTEM'
320 PRINT: LPRINT: PRINT FEWS! RAFNS: LPRINT FEWS; RAFNZ: PRINT: LPRINT
330 PRINT 'IS FILE NAME CORRECT 'IYNS: LPRINT:IS FILE NAME CORRECT "IYNS
335 INPUT ANSS
340 PRINT: LPRINT: IF ANSS-'YES" THEN 350 ELSE 300
350 PRINT 'IS "IRAFNSI; A NEW OR EXISTING DATA FILENAME (NEW OR EXIST)'
360 LPRINT -IS "IRAFN*;' A NEW OR EXISTING DATA FILENAME (NEW OR EXIST)-
370 INPUT ANSS: PRINT: LPRINT
380 IF ANSS-'NEW* THEN 190 ELSE 400
390 PRINT: LPRINT: PRINT: LPRINT
393 PRINT 'TO LOAD COMPONENTS INTO DATA DISK FILE'
3P4 LPRINT 'TO LOAD COMPONENTS INTO DATA DISK FILE'
395 PRINT 'SELECT COMPONENTS FORM MENU BY TYPING IN APPROPRIATE NUMBER"
396 LPRINT 'SELECT COMPONENTS FROM MENU BY TYPING IN APPROPRIATE NUMBER"
397 PRINT: LPRINT
400 PRINT 'COMPONENT MENU': PRINT: LPRINT 'COMPONENT MENU': LPRINT
410 PRINT "1 - SINGLE INPUT CONTROLLER':LPRINT'1 m SINGLE INPUT CONTROLLER'
420 PRINT '2 - TEMPERATURE SENSOR': LPRINT '2 - TEMPERATURE SENSOR'
430 PRINT '3 a HI SELECTOR*: LPRINT '3 - HI SELECTOR"
440 PRINT: LPRINT
450 PRINT MNPS: INPUT X: LPRINT MNP6: PRINT: LPRINT
460 ON X GOSUB 1000,2000,3000
470 PRINT: LPRINT
480 PRINT EACSI'COMPONENT'-YNO: LPRINT EACS;'COMPONENT'IYNO: INPUT ANSS
490 IF ANSS*YES* THEN 400 ELSE 500
500 PRINT: LPRINT
501 PRINT ***CREATE* DATA FILE PROGRAM COMPLETE': PRINT
502 LPRINT *4*CREATE* DATA FILE PROGRAM COMPLETE': LPRINT
503 PRINT 'SELECT ANOTHER PROGRAM BY TYPING 'RUN proramnam.'"
504 LPRINT 'SELECT ANOTHER PROGRAM BY TYPING 'RUN prografnamel"

505 PRINT: LPRINT: PRINT: LPRINT
510 END
1000 PRINT 'SINGLE INPUT CONTROLLER DATA ENTRY SUBROUTINE': PRINT
1010 LPRINT 'SINGLE INPUT CONTROLLER DATA ENTRY SUBROUTINE': LPRINT
1020 OPEN 'R',V1,RAFNM,32
1030 FIELD #1,2 AS RN6,2 AS CMPCS

1040 FIELD 01,2 AS M,2 AS TYP%,5 AS SYs,4 AS OTPTS,4 AS SPS,4 AS TRS,2 AS ACTS,
5 AS INSYS,4 AS TING
1050 GET 51,1
1060 NRCVI(RmNl: NCCVI (CmPCo)
1070 PRINT NC;" COMPONENTS 'IPSTRO: PRINT
100 LPRINT NCI* COMPONENTS 'IPSTRS: LPRINT
1090 INPUT 'ENTER ANOTHER CONTROLLER (YES OR NO)'; ANSS
1100 LPRINT *ENTER ANOTHER CONTROLLER ?'
1110 IF ANSS - 'YES' THEN 1120 ELSE 1370
1120 NC-NC*1: NR-NR1

89

1121 PRINT: LPRINT
1130 PRINT *(FOR COMPONENT SYMBOLS, USE $-CHARACTER SYMBOLS)*
1131 PRINT '(ADD *9 AS NEEDED TO GET 5-CHARACTER SYMBOLS)': PRINT
1140 LPRINT *(FOR COMPONENT SYMBOLS, USE 5-CHARACTER SYMBOLS)*
1141 LPRINT *(ADD *% AS NEEDED TO GET 5-CHARACTER SYMBOLS)': LPRINT
1150 INPUT 'CONTROLLER SYMBOL a *;SYIS: LPRINT *CONTROLLER SYMBOL-
1160 INPUT *SET POINT - *ISPI: LPRINT 'SET POINT - ?
1170 INPUT 'THROT RANGE - IsTRI: LPRINT *THROT RANGE - ?
1160 INPUT *ACTION - IDA OR RA)*IACTIM: LPRINT 'ACTION - (DA OR RA) ?"
1190 INPUT *SYMBOL OF INPUT COMPONENT = ;INSYIS: LPRINT "SYMBOL OF INPUT COMPON
ENT -"
1200 PRINT: LPRINT
1210 PRINT *FOR CONTROLLER *SSYIS" - LPRINT 'FOR CONTROLLER *ISYI*I"-
1220 PRINT 'SP - "SPI: LPRINT *SP a "ISPI
1230 PRINT *TR - *ITRI: LPRINT *TR a*I"TRI
1240 PRINT "ACT - *IACTIO: LPRINT *ACT - *IACTIG
1250 PRINT "INPUT COMPONENT - *;INSYIO: LPRINT *INPUT COMPONENT -"tINSYIO
1260 PRINT: LPRINT:
1270 INPUT "IS THIS CORRECT (YES OR NO) ';ANSS: LPRINT 'IS THIS CORRECT ?"
1260 IF ANS - *YES' THEN 1300
1290 PRINT 'INPUT CORRECT DATA*: COTO 1130: LPRINT 'INPUT CORRECT DATA"
1300 LSET NO-MKIS(NR): LSET TYPOSMKIS(11: LSET SYS-SYIS: LSET SPS-MKSOISPI)
1310 LSET TRS=MKSS(TRI): LSET ACTS-ACTIS: LSET INSYSOINSYIS
1320 LSET OTPT.-MKSsI999): LSET TIN.-MKSS(999)
1330 PUT *I,NR

1340 LSET RNS-MKIS(NR): LSXT CMPCS-MKIS(NC)

1350 PUT 01,1
1360 COTO 1070
1370 CLOSE O1
1360 RETURN
2000 PRINT "TEMP SENSOR DATA ENTRY SUBROUTINE": PRINT
2010 LPRINT 'TEMP SENSOR DATA ENTRY SUBROUTINE": LPRINT
2020 OPEN -R",V1,RAFNS,32
2030 FIELD 01,2 AS RNS,2 AS CMPCS
2040 FIELD 01,2 AS N6,2 AS TYPO, 5 AS SYS,4 AS OTPTS, 4 AS STINS
2050 GET 01,1
2060 NR-CVI(RNG): NC-CVI(CMPC*S
2070 PRINT NCI" COMPONENTS 'IPSTRO: PRINT
2060 LPRZNT NC;l COMPONENTS *;PSTRS: LPXINT
2090 PRINT EACS;"SENSOR*;YNO: LPRINT EACG;"SENSOR*;YN6: INPUT ANSS
2100 IF ANSS-*YES" THEN 2110 ELSE 2270
2110 NC-NC.1: NR-NR+1: PRINT: LPRINT
2120 PRINT * (FOR COMPONENT SYMBOLS, USE 5-CHARACTER SYMBOLS)-
2121 PRINT "(ADD *s AS NEEDED TO GET 5-CHARACTER SYMBOLS)*: PRINT
2122 LPRINT ' (FOR COMPONENT SYMBOLS, USE 5-CHARACTER SYMBOLS)"
2123 LPRINT "(ADD *% AS NEEDED TO GET 5-CHARACTER SYMBOLS)": LPRINT
2130 INPUT "SENSOR SYMBOL - "ISYIS: LPRINT "SENSOR SYMBOL
2140 INPUT "TEMP IN - ";STINI: LPRINT "TEMP IN
2150 STOUTI-STINI: PRINT: LPRINT
2160 PRINT *FOR SENSOR 11SYIS;" TEMP IN = ;STINZ
2170 LPRINT 'FOR SENSOR ,;SYIS;" TEMP IN * "STINI
21S0 INPUT 'IS THIS CORRECT (YES OR NO)*;ANSO: LPRINT 'IS THIS CORRECT"
2190 PRINT: LPRINT: IF ANSS-*YES' THEN 2210
2200 PRINT 'INPUT CORRECT DATA": LPRI14T "INPUT CORRECT DATA": GOTO 2120
2210 LSET NO-MKIS(NRl): LSET TYPO-MKI.(2): LSET SYO-SYIS:LSET OTPTS-MKSOISTOUTI)
2220 LSET STINS-MKSO(STINI)
2230 PUT #1,NR
2240 LSET RNS-MKININR: LSET CMPCSMKISINC)
2250 PUT 01,1
2260 PRINT: LPRINT: COTO 2070
2270 CLOSE 01
2280 RETURN
3000 PRINT "HI SELECTOR DATA ENTRY SUBROUTINE": PRINT
3010 LPRINT "HI SELECTOR DATA ENTRY SUBROUTINE": LPRINT
3020 OPEN -R',VI,RAFN*,32
3030 FIELD 01,2 AS PNS,2 AS CMPCO
3040 FIELD 61,2.AS M6,2 AS TYPS,5 AS SY6,4 AS OTPTS,5 AS INY19,4 AS HINIS,5 AS I
NY2*,4 AS HIN26
3050 SIT 01,1
3060 MR-CVIIRNS): NC-CVI(CMPC*.
3070 PRINT NC;" COMPONENTS ';PSTRO: PRINT

go

V '.'M

3060 LPRINT NCI* COMPONENTS *|PSTRS: LPRINT
3090 INPUT *ENTER ANOTHER HI SELECTOR (YES OR NO)'IANSS
3100 LPRINT *ENTER ANOTHER HI SELECTOR'
3110 IF ANSS'YES' THEN 3120 ELSE 3410
3120 NC-MNC : NR-NR*I
3130 PRINT: LPRINT
3140 PRINT "4FOR COMPONENT SYMBOLS, USE 5-CHARACTER SYMBOLS)-

3150 LPRINT "(FOR COMPONENT SYMBOLS, USE 5-CHARACTER SYMBOLS).

3160 PRINT 14ADD *s AS NEEDED TO GET 5-CHARACTER SYMBOLS)"
3170 LPRINT *(ADD *s AS NEEDED TO GET 5-CHARACTER SYMBOLS)'

3160 PRINT: LPRINT
3190 INPUT *HI SELECTOR SYMBOL - *;SYI*: LPRINT 'HI SELECTOR SYMBOL -
3200 INPUT *SYMBOL OF 1ST INPUT COMPONENT - *IINYIIS:
3210 LPRINT 'SYMBOL OF 1ST INPUT COMPONENT -'
3220 INPUT 'SYMBOL OF 2ND INPUT COMPONENT - *IINY2IS

3230 LPRINT "SYMBOL OF 2ND INPUT COMPONENT -"
3240 PRINT: LPRINT

3250 PRINT 'FOR HI SELECTOR *ISYISI - : LPRINT *FOR HI SELECTOR |SYII" -

3260 PRINT *SYMBOL OF 1ST INPUT COMPONENT - "|INYIIU
3270 LPRINT *SYMBOL OF 1ST INPUT COMPONENT - SINYIIS
3260 PRINT *SYMBOL OF 2ND INPUT COMPONENT - "IXNY215
3290 LPRINT "SYMBOL OF 2ND INPUT COMPONENT = "IINY210
3300 PRINT: LPRINT
3310 INPUT "IS THIS CORRECT (YES OR NO) -JANS: LPRINT 'IS THIS CORRECT-

3320 IF ANSSiYES* THEN 3340
3330 PRINT "INPUT CORRECT DATA': GOTO 3190: LPRINT "INPUT CORRECT DATA'

3340 LSET NS-NKIS(NR): LSET TYP-MNKIS(3): LSET SYS-SYIS: LSET INYIS-INYIIS

3350 LSET INY2S-INY2IS
3360 LSET OTPTSMKSO(999): LSET HINIOMKSO(999): LSET HIN2$MKS(999)

3370 PUT 01,NR
3380 LSET RNS-MKIS(NR): LSET CMPCS-MNKIS(NC)
3390 PUT 01,1
3400 GOTO 3070
3410 CLOSE 61

3420 RETURN

CMO]flI D

100 PRINT: LPRINT

110 PRINT *PRINT CONTENTS OF DATA FILE PROGRAM*
120 PRINT *:
130 LPRINT 'PRINT CONTENTS OF DATA FILE PROGRAM.
140 LPRINT "N1111111111 ------
150 PRINT: LPRINT
160 INPUT *ENTER DATA FILE NAME (UP TO S LETTERS) FOR THIS SYSTEM*;RAFNS
170 LPRINT "ENTER DATA FILE NAME (UP TO 9 LETTERS) FOR THIS SYSTEM'
180 PRINT *THE FILENAME ENTERED WAS "|RAFNS: INPUT -IS THIS CORRECT-IANS$
190 LPRINT 'THE FILENAME ENTERED WAS SiRAFNS
200 LPRINT '18 THIS CORRECT (YES OR NO)'
210 PRINT: LPRINT
220 IF ANSS-YES" THEN 230 ELSE 160
230 PRINT: LPRINT

240 OPEN "R-,*1,RAFN$,32
250 FIELD 01,2 AS RNS,2 AS CMPCS
260 FIELD #1,2 AS NO,2 AS TYPS,5 AS SYS,4 AS OTPTS,4 AS SPS,4 AS TRS,2 AS ACTS,5
AS INSY6,4 AS TING

270 FIELD 01,2 AS NSM,2 AS TYP0,5 AS SYS,4 AS OTPTS,4 AS STINS
280 FIELD #1,2 AS N,2 AS TYPS,5 AS SYS,4 AS OTPTO,5 AS INYIS,4 AS HINIS,5 AS IN
Y2*,4' AS HIN20

290 REN
300 PRINT: PRINT: LPRINT: LPRINT

310 PRINT "DATA FOR CONTROLLERS*: LPRINT *DATA FOR CONTROLLERS'

320 PRINT: LPRINT
330 PRINT 'SYMBOL ACTION THROT RANGE SET POINT INPUT COMPONENT'!

340 PRINT * TEMP IN VOLT OUT"
350 LPRINT 'SYMBOL ACTION THROT RANGE SET POINT INPUT CONPONENT'i

91

4 ~~ N'

360 LPRINT * TEMP IN VOLT OUT'
370 PRINT: LPRINT
380 GET *1,1

390 FOR C-2 TO CVIIRNO)
400 GET 01,C
410 IF CVI(TYPS)-l THEN 420 ELSE 440
420 PRINT SY01" *IACTS;" "|CVS(TR;I) *CVS(SPS)f" "I
NSYSI| "jCVS(TINm);* *;CVS(OTPTS)
430 LPRINT SYSI" ";ACTSI" "ICVS(TRO) "iCVS(SPe)l .1
INSYm;- "|CVS(TINs); *"CVS(OTPTO)
440 NEXT C
450 PRINT: PRINT: LPRINT: LPRINT
460 PRINT *DATA FOR SENSORS*: LPRINT oDATA FOR SENSORS*
470 PRINT: LPRINT
480 PRINT -SYMSOL TEMP IN OUTPUT*: PRINT
490 LPRINT *SYMBOL TEMP IN OUTPUT*: LPRINT
500 FOR C-2 TO CVI(RNS)
510 GET #1,C

520 IF CVI(TYPO)-2 THEN 530 ELSE 550
530 PRINT SYS;" ";CVS(STIN*)|" "ICVS(OTPTS)
540 LPRINT SYS|, "|CVS(STINS)" ICVS(OTPTS)
550 NEXT C
560 PRINT: PRINT: LPRINT: LPRINT
570 PRINT *DATA FOR HI SELECTORS': LPRINT *DATA FOR HI SELECTORS"
580 PRINT: LPRINT
590 PRINT "SYMBOL 1ST INPUT SYMBOL SYMBOL I IN 2ND INPUT SYMBOL SYMBOL 2
IN OUTPUT*
600 LPRINT 'SYMBOL 1ST INPUT SYMBOL SYMBOL I IN 2ND INPUT SYMBOL SYMBOL 2
IN OUTPUT'

610 PRINT: LPRINT

620 FOR C-2 TO CVI(RN*)
630 GET 01,C
640 IF CVI(TYPS)-3 THEN 650 ELSE 670
650 PRINT SYI| "l1NY161

=
"|CVS(HINIO)| "INY2*1|

"ICVSCfHIN2*)l= *;CVS(OTPTS)
660 LPRINT SYSI| "IINYISI" "ICVS(HIN1S); ";INY2*1i

"tCVSIHXN2S) #" "ICVSIOTPTS)
670 NEXT C
600 CLOSE 01
690 PRINT: LPRINT
700 PRINT *+*PRINT** PROGRAM RUN COMPLETE'
710 LPRINT *+*PRINT** PROGRAM RUN COMPLETE.

720 PRINT: LPRINT
730 PRINT "SELECT ANOTHER PROGRAM BY TYPING RUN '' pogramnaume'" (DOUBLE QUOTES)*
740 LPRINT *SELECT ANOTHER PROGRAM BY TYPING RUN '' pror9ha.' (DOUBLE QUOTES)*
750 PRINT: LPRINT
760 PRINT: LPRINT
770 END

CMOC33DXC

100 PRINT: PRINT: LPRINT: LPRINT
110 PRINT *EXECUTION MODE PROGRAM*

120 PRINT :::iiiu~:u~:
130 LPRINT 'EXECUTION MODE PROGRAM'
140 LPRINT-------
150 PRINT: LPRINT
160 INPUT *ENTER THE DATA FILE NAME (UP TO S LETTERS)-$ RAFNS
170 LPRINT 'ENTER THE DATA FILE NAME (UP TO 8 LETTERS)'
10 PRINT: LPRINT
190 PRINT *THE FILE NAME ENTERED WAS "|RAFN

92

200 LPRINT *THE FILE NAME ENTERED WAS "IRAFNS

210 INPUT "IS FILE NAME CORRECT (YES OR NO) 'IANSS

220 LPRINT "IS FILE NAME CORRECT (YES OR NO) ?*
230 PRINT: LPRZNT
240 IF ANSS-'YES THEN 250 ELSE 160
250 OPEN "R-,*IRAFNS,32

260 FIELD 01,2 AS RNS,2 AS CNPCS
270 FIELD 01,2 AS NS,2 AS TYPS,5 AS SY*,4 AS OTPTO,4 AS SPO,4 AS TRS,2 AS ACTS,5

AS INSYS,4 AS TINS

280 FIELD 01,2 AS Ns,2 AS TYPS,5 AS SYS,4 AS OTPTS,4 AS STINS

290 FIELD 01,2 AS NS,2 AS TYPS,5 AS SYS,4 AS OTPTS,5 AS INYlS,4 AS HINI*,5 AS IN
Y26,4 AS HIN2$
300 GET 01,1

310 K-CVI(RNS): L-CVItCMPCO)

320 ITER-O
330 FOR 1-2 TO K
340 GET 41,1
350 TYN-CVI(TYPS)
360 ON TYN GOSUB 1000,2000,3000
370 NEXT I
380 ITER-ITER 4 1

390 PRINT ITERI* ITERATION(S) COMPLETE
400 LPRINT ITER;| ITERATION(S) COMPLETE

410 IF ITER (L THEN 330 ELSE 420
420 PRINT *FOR THIS *L|" COMPONENT SYSTEM

430 LPRINT *FOR THIS S;L;* COMPONENT SYSTEM
440 PRINT: LPRINT
450 PRINT: LPRINT
460 CLOSE #1
470 PRINT: LPRINT
480 PRINT *+*EXECUTION+-* PROGRAM RUN COMPLETE*
490 LPRINT *+EXECUTION * PROGRAM RUN COMPLETE"

500 PRINT: LPRINT
510 PRINT "RUN CMODPRD TO SEE RESULTS OF EXECUTION"

520 LPRINT 'RUN CMODPRD TO SEE RESULTS OF EXECUTION"

530 PRINT: LPRINT: PRINT: LPRINT
540 END
1000 REM 14 SINGLE INPUT CONTROLLER EXECUTION SU3ROUTINE 14
1010 SPT-CVS(SPO): TRG-CVS(TRS): ACS-ACTI: SYS-INSY*

1020 FOR 3-2 TO K
1030 IF 3<>I THEN 1040 ELSE 1080
1040 GET *1,3
1050 IF SYS-SYM THEN 1060 ELSE 1080

1060 T-CVS(OTPTS)
1070 GOTO 1090
1080 NEXT 3
1090 IF ACO-IDA" THEN 1100 ELSE 1120
1100 V-7.5 + 3*((T-SPT)/TRG)

1110 GOTO 1130
1120 V-7.5 - 3*((T-SPT)/TRG)
1130 REM
1140 GET 01,1
1150 LSET TIN$-MKSS(T): LSET OTPTS-NKSS(V)

1160 PUT 01,I
1170 RETURN
2000 REM 4- TEMPERATURE SENSOR EXECUTION SUBROUTINE 14
2010 REM NO CALCULATIONS NEEDED
2020 RETURN
O00 REM 14 HI SELECTOR EXECUTION SUBROUTINE 14

3010 INSYNIS-INYIS: INSYM2S-INY2*
3020 FOR 3-2 TO K

3030 GET #1,3
3040 IF SYO-INSYMIS THEN 3050 ELSE 3070
3050 HINPICVS(OTPTO)

3060 GOTO 3090
3070 IF SYS-INSYM2s THEN 3080 ELSE 3090

3090 HINP2-CVSi(OTPTs)

93

7 ~*?I

3090 NEXT 3
3100 GET 01,1
3110 LSET HMNIMKS0(HINP): LSET HIN2*-MKSO(HINP2)
3120 IF HINPI) HINP2 THEN 3130 ELSE 3140
3130 LSET OTPTS-MKSHI(MNPI): GOTO 3150

3140 LSET OTPTO*MKSS(HINP2)
3150 PUT *1,1
3160 RETURN

100 PRINT: PRINT: LPRINT: LPRINT
110 PRINT "DATA EDIT PROGRAM*: LPRINT "DATA EDIT PROGRAM"
120 PRINT ": ::: K I 1"lll: LPRINT "R::::.------------.
130 PRINT: LPRINT
140 PRINT "SELECT OPTION BY TYPING IN NUMBER INDICATED ON MENU"
150 LPRINT "SELECT OPTION BY TYPING IN THE NUMBER INDICATED ON MENU"
160 PRINT * MENU"
170 LPRINT MENU"
190 PRINT: LPRINT
190 PRINT * OPTION NUMBER"
200 LPRINT OPTION NUMBER"
210 PRINT: LPRINT
220 PRINT "EDIT CONTENTS OF EXISTING DATA FILE 1"
230 LPRINT "EDIT CONTENTS OF EXISTING DATA FILE 1"
240 PRINT "ADD ADDITIONAL COMPONENTS TO EXISTING DATA FILE 2"
250 LPRINT "ADD ADDITIONAL COMPONENTS TO EXISTING DATA FILE 2"
260 PRINT "REMOVE COMPONENTS FROM EXISTING DATA FILE 3"

270 LPRINT "REMOVE COMPONENTS FROM EXISTING DATA FILE 3-
280 PRINT: LPRINT

290 INPUT NUN
300 IF NUN - 2 THEN 630 ELSE 305

305 IF NUM - 3 THEN 660 ELSE 310
310 INPUT "ENTER THE DATA FILE NAME (UP TO 8 LETTERS)-$ RAFNS
320 LPRINT "ENTER THE DATA FILE NAME (UP TO S LETTERS)"
330 PRINT "THE FILE NAME ENTERED WAS "RAFN"

340 LPRINT "THE FILE NAME ENTERED WAS "|RAFNS
350 INPUT "IS FILE NAME CORRECT (YES OR NO) ";ANS*
360 LPRINT *IS FILE NAME CORRECT (YES OR NO) ?"
370 PRINT: LPRINT
380 IF ANS*-'YES" THEN 390 ELSE 310
390 1
400 OPEN -R-,LRAFNS,32

410 FIELD 01,2 AS RNG,2 AS CMPCS
420 FIELD 01,2 AS NS,2 AS TYPO,5 AS SYS,4 AS OTPTS,4 AS SPI,4 AS TRS,2 AS ACTS,5
AS INSYS,4 AS TINS

430 FIELD #1,2 AS N6,2 AS TYPS,5 AS SYS,4 AS OTPTS,4 AS STIN$
440 FIELD 01,2 AS NS,2 AS TYP$,5 AS SYS,4 AS OTPTS,5 AS INY1s,4 AS HIN16,5 AS IN

Y21,4 AS HIN20
450 '
460 PRINT "(REMEMBER TO USE *s AS NEEDED TO GET 5-CHARACTER SYMBOLS)"

470 LPRINT "(REMEMBER TO USE * AS NEEDED TO GET 5-CHARACTER SYMBOLS)"
480 INPUT "ENTER SYMBOL OF COMPONENT YOU WISH TO EDIT-ISYIS
490 GET 01,1

500 K-CVI(RNS)
510 FOR 1-2 TO K
520 GET 01,1
530 IF SYSSYIS THEN 550 ELSE 540

S540 NEXT I

550 TYN-CVI(TYPS)
560 ON TYN GOSUB 1000,2000,3000

570 PRINT: INPUT "DO YOU WANT TO EDIT ANOTHER COMPONENT (YES OR NO)";ANS*

94

580 LPRINT: LPRINT "DO YOU WANT TO EDIT ANBOTHER COMPONENT (YES OR NO) ?"
590 PRINT: LPRINT
600 IF ANSSI"YES" GOTO 460
610 CLOSE 01
620 GOTO 720
630 PRINT "TO ADD NEW COMPONENTS TO DATA FILE, RUN 'CMODCRD"
640 LPRINT "TO ADD NEW COMPONENTS TO DATA FILE, RUN 'CMODCRDO"
650 PRINT: LPRINT: GOTO 720
660 PRINT "TO REMOVE COMPONENTS FROM EXISTING DATA FILE"
670 PRINT *THE USER MUST CREATE A NEW DATA FILE WITH THE UNDESIRED"
680 PRINT 'COMPONENTS OMITTED"
690 LPRINT "TO REMOVE COMPONENTS FROM EXISTING DATA FILE"
700 LPRINT "THE USER MUST CREATE A NEW DATA FILE WITH THE UNDESIRED"
710 LPRINT *COMPONENTS OMITTED*
720 PRINT: LPRINT
730 PRINT "*-EDIT** PROGRAM RUN COMPLETE"
740 LPRINT "**EDIT** PROGRAM RUN COMPLETE"
750 PRINT: LPRINT
760 PRINT 'RUN CMODEXC TO UPDATE DATA FILE TO REFLECT NEW OUTPUTS"
770 LPRINT "RUN CMODEXC TO UPDATE DATA FILE TO REFLECT NEW OUTPUTS"
790 PRINT: LPRINT: PRINT: LPRINT
790 END
1000 PRINT: PRINT: LPRINT: LPRINT
1001 PRINT "SINGLE INPUT CONTROLLER *EDIT* SUBROUTINE*: PRINT
1010 LPRINT "SINGLE INPUT CONTROLLER +*EDIT** SUBROUTINE": LPRINT
1020 OUTS-CVS(OTPTS): SPI-CVS(SPS): TRI-CVS(TRS): ACTIO-ACTO
1030 INSYIS-INSYO: TINI-CVS(TINI)
1040 PRINT "THE DATA PRESENTLY STORED FOR "ISYIS;" IS ": PRINT
1050 LPRINT "THE DATA PRESENTLY STORED FOR "ISYIS;" IS 1: LPRINT
1060 PRINT "SP - "ISPI: LPRINT "SP a "ISPI
1070 PRINT *TR - ";TRI: LPRINT *TR - ";TRI
1090 PRINT "ACT - ";ACTIS: LPRINT 'ACT - "IACTIS
1090 PRINT *INPUT COMPONENT - "IINSYIS: LPRINT "INPUT COMPONENT 1 "INSYIS
1100 PRINT "TEMP IN 1 "iTINI: LPRINT *TEMP IN - ";TINI
1110 PRINT "OUTPUT ";OUTS: LPRINT "OUTPUT - "lOUTS
1120 PRINT: LPRINT
1130 PRINT: LPRINT
1140 PRINT "SELECT ITEM YOU WISH TO CHANGE FROM MENU"
1150 LPRINT "SELECT ITEM YOU WISH TO CHANGE FROM MENU"
1160 PRINT
1170 LPRINT
1180 PRINT * MENU"
1190 LPRINT" MENU"
1200 PRINT"TO CHANGE : TYPE IN
1210 LPRINT*TO CHANGE : TYPE IN :"
1220 PRINT " SET POINT 1"

1230 LPRINT ' SET POINT 1"

1240 PRINT " THROT RANGE 2"
1250 LPRINT " THROT RANGE 2"
1260 PRINT * ACTION 3"

1270 LPRINT " ACTION 3"

1260 PRINT " INPUT SYMBOL 4"
1290 LPRINT " INPUT SYMBOL 4"
1300 PRINT
1310 LPRINT

S" 1320 PRINT "TO CHANGE THE VALUE OF 'TEMP IN', YOU MUST 'EDIT' -|INSYIS
1330 LPRINT "TO CHANGE THE VALUE OF 'TEMP IN', YOU MUST 'EDIT' ";INSYIS

1340 PRINT
1350 LPRINT
1360 INPUT "TYPE IN APPROPRIATE NUMBER';T
1370 LPRINT "TYPE IN APPROPRIATE NUMBER"
1380 ON T GOSUB 1400,1440,1480,1520
1390 GOTO 1560
1400 INPUT "NEW SET POINT - =ISPI: LPRINT "NEW SET POINT -"

1410 LSET SPS-MKSS(SPI)
1420 PUT #1,1
1430 RETURN
1440 INPUT "NEW THROT RANGE - *|TRI: LPRINT "NEW THROT RANGE -

95

,,*

1450 LSET TR.-MKSS(TRI)
1460 PUT 0I,1
1470 RETURN

1480 INPUT "NEW ACTION - ";ACTIO: LPRINT 'NEW ACTION -

1490 LSET ACT*ACTIS
1500 PUT 01,I
1510 RETURN
1520 INPUT -NEW INPUT SYMBOL - 'IINSYIS: LPRINT 'NEW INPUT SYMBOL -"

1530 LSET INSYS-INSYIS

1540 PUT 01,I

1550 RETURN
1560 RETURN

2000 PRINT: PRINT: LPRINT: LPRINT

2001 PRINT *TEMPERATURE SENSOR **EDIT** SUBROUTINE': PRINT

2010 LPRINT "TEMPERATURE SENSOR **EDIT+* SUBROUTINE': LPRINT

2020 OUTS-CVS(OTPTS): STINI-CVS(STINS)
2030 PRINT "THE DATA PRESENTLY STORED FOR "ISYIOI; IS : PRINT
2040 LPRINT "THE DATA PRESENTLY STORED FOR "ISYIS;* IS ": LPRINT
2050 PRINT 'TEMP IN - "ISTINI
2060 LPRINT "TEMP IN - 'ISTINI
2070 PRINT *OUTPUT - "lOUTS
2080 LPRINT "OUTPUT - "lOUTS
2090 PRINT: LPRINT
2100 PRINT 'TtE ONLY ITEM YOU CAN CHANGE IS 'TEMP IN"
2110 LPRINT "THE ONLY ITEM YOU CAN CHANGE IS 'TEMP IN'"

2120 PRINT: LPRINT
2130 INPUT "NEW VALUE FOR TEMP IN - "iSTINI
2140 LPRINT *NEW VALUE FOR TEMP IN "

2150 OUTS - STINI
2160 LSET STING-MKSG(STINZ): LSET OTPTS-MKSS(OUTS)
2170 PUT #1,1

2180 RETURN
3000 PRINT: PRINT: LPRINT: LPRINT
3010 PRINT "HI SELECTOR *EDIT+* SUBROUTINE': PRINT
3020 LPRINT "HI SELECTOR **EDIT+* SUBROUTINE-: LPRINT
3030 OUTS-CVS(OTPTS): INYIIS-INYlS: HINII-CVS(HINIO)
3040 INY2I-INY26: HIN2I-CVS(HIN2S)
3050 PRINT "THE DATA PRESENTLY STORED FOR "|SYIS;" IS : PRINT
3060 LPRINT *THE DATA PRESENTLY STORED FOR 'ISYISI' IS ': LPRINT
3070 PRINT "1ST INPUT COMPONENT ";INYIIS
3080 LPRINT '1ST INPUT COMPONENT ' "IINYtII
3090 PRINT 'INPUT SIGNAL FROM *IINYIIS;" - 61HINII
3100 LPRINT "INPUT SIGNAL FROM 'IINYIIS;' - "IHINII
3110 PRINT "2ND INPUT COMPONENT "IINY2I
3120 LPRINT "2ND INPUT COMPONENT * 'gINY2IS
3130 PRINT "INPUT SIGNAL FROM "-INY2101 1 "IHIN2I
3140 LPRINT "INPUT SIGNAL FROM ";INY2IS|" - "IHIN2I
3150 PRINT "OUTPUT SIGNAL * ;OUTS
3160 LPRINT "OUTPUT SIGNAL "lOUTS
3170 PRINT: PRINT
3180 LPRINT: LPRINT
3190 PRINT "SELECT ITEM YOU WISH TO CHANGE FROM MENU"
3200 LPRINT "SELECT ITEM YOU WISH TO CHANGE FROM MENU"
a210 PRINT: LPRINT
3220 PRINT " MENU"
3230 LPRINT * MENU"
3240 PRINT * TO CHANGE I TYPE IN :'
3250 LPRINT * TO CHANGE : TYPE IN :1
3260 PRINT "1ST INPUT COMPONENT SYMBOL 1"

3270 LPRINT "1ST INPUT COMPONENT SYMBOL 1"

3280 PRINT "2ND INPUT COMPONENT SYMBOL 2"
3290 LPRINT "2ND INPUT COMPONENT SYMBOL 2-

3300 PRINT: LPRINT
3310 PRINT 'TO CHANGE THE VALUE OF "IINYII*;" YOU MUST 'EDIT' ",INYIIs
3320 LPRINT "TO CHANGE THE VALUE OF "iINYIISI" YOU MUST 'EDIT' "IINYIIS
3330 PRINT: LPRINT
3340 PRINT "TO CHANGE THE VALUE OF 'IINY2I*I" YOU MUST 'EDIT' *IINY2IS

3350 LPRINT "TO CHANGE THE VALUE OF ";INY2100 YOU MUST 'EDIT' *IINY2IS

96

.0,
A6

3360 PRINT: LPRINT

3370 PRINT: LPRINT
330 INPUT "TYPE IN APPROPRIATE NUMER"T
3390 LPRUNT 'TYPE IN APPROPRIATE NUMBER"

3400 ON T GOSUB 3420,3470
3410 GOTO 3520
3420 INPUT 'NEW SYMBOL OF 1ST INPUT COMPONENT - *IINYII$
3430 LPRINT "NEW SYMBOL OF 1ST INPUT COMPONENT -

3440 LSET INYI-INYIIS
3450 PUT 01,1
3460 RETURN
3470 INPUT "NEW SYMBOL OF 2ND INPUT COMPONENT - "IINY2IS
3460 LPRINT "NEW SYMBOL OF 2ND INPUT COMPONENT "ijINY2IS
3490 LSET INY2S*INY2IS
3500 PUT 61,1

3510 RETURN
3520 RETURN

C MO3DDOC

100 PRINT" WELCOME TO CONTROL MODEL (CMOD)'
110 PRINT
120 PRINT'INTRODUCTION"
130 PRINT" :.. N"

140 PRINT"CMOD IS A PROTOTYPE OF A SERIES OF 5 PROGRAMS, A DOCUMENTATION"
150 PRINT'PROGRAM AND 4 WORKING PROGRAMS, WRITTEN IN BASIC." THE PURPOSE"
160 PRINT*OF CMOD IS TO MODEL EXISTING CONVENTIONAL HVAC PROPORTIONAL CONTROL"
170 PRINT*SYSTEMS THAT ARE CURRENTLY USED IN NEARLY ALL AIR FORCE FACILITIES"
180 PRINT*AND AN OVERWHELMING NUMBER OF PRIVATE SECTOR FACILITIES AS WELL"
190 PRINT
200 PRINT*THROUGH THE CMOD PROGRAMS, THE USER 'LOADS' A CONTROL SYSTEM INTO"
210 PRINT*THE COMPUTER AND SPECIFIES THE SYSTEM INPUTS. THE COMPUTER THEN"
220 PRINT'CALCULATES OUTPUTS FOR EACH COMPONENT OF THE CONTROL SYSTEM. THUS"
230 PRINT*THE USER CAN SEE IF A CONTROL SYSTEM IS OPERATING AS INTENDED OR"

240 PRINT*HE CAN PREDICT HOW ALL COMPONENTS OF A CONTROL SYSTEM SHOULD"
250 PRINT"RESPOND UNDER THE FULL RANGE OF OPERATING CONDITIONS IN A FRAC-"
260 PRINT'TION OF THE TIME IT WOULD TAKE TO PERFORM THIS PROCESS MANUALLY."
270 PRINT: PRINT
280 INPUT" TYPE IN ANY NUMBER, THEN HIT RETURN, TO CONTINUE";N
290 ON N GOTO 300
300 PRINT
310 PRINT"MOTIVATION"
320 PRINT**rHHI'-::**

330 PRINT"THE MOTIVATION FOR THE CMOD SERIES WAS TO DEVELOP A COMPUTERIZED"
340 PRINT"METHODOLOGY TO ENHANCE THE GENERIC, HVAC CONTROL SYSTEM MANUAL"
350 PRINT'DESIGN/ANALYSIS METHODOLOGY DEVELOPED AT THE AIR FORCE INSTITUTE"
360 PRINT"OF TECHNOLOGY, SCHOOL OF CIVIL ENGINEERING, WRIGHT PATTERSON AFB,"
$70 PRINT'OHIO."

380 PRINT
390 PRINT*OVERVIEW"

400 PRINT "**"
410 PRINT"THE FIVE PROGRAMS OF CMOD AND THEIR FUNCTIONS ARE AS FOLLOWS:"
420 PRINT
430 PRINT*CMODDOC (4or Control MODel DOCumentation)"
440 PRINT": ;
450 PRINT"THIS IS THE INSTRUCTIONAL/DOCUMENTATION PROGRAM WHICH YOU'RE"
460 PRINT"PRESENTLY RUNNING. IT EXPLAINS THE OVERALL SYSTEM ARCHITECTURE
470 PRINT AND MORE SPECIFICALLY, THE PURPOSE AND FUNCTION OF EACH OF THE FOUR"
480 PRINT*WORKING PROGRAMS: CMODCRD, CMODPRD, CMODEXC, AND CMODEDD."
490 PRINT: PRINT
500 INPUT " TYPE IN ANY NUMBER, THEN HIT RETURN, TO CONTINUE-;N
510 ON N GOTO 520

97

520 PRINT
530 PRINT-CMODCRD (+or Control MODel CReate Data)"

540 PRINT=":::.. m***....
550 PRINT"THIS PROGRAM IS USED TO CREATE A PERMANENT DATA FILE ON A FLOPPY
560 PRINT'DISK WHICH CONTAINS ALL INFORMATION ABOUT THE SPECIFIC CONTROL *
570 PRINT*SYSTEM MODELLED. IT IS ALSO USED TO ADD ADDITIONAL COMPONENTS TO"
580 PRINTIAN EXISTING DATA FILE."
590 PRINT
600 PRINT*CMODEXC (+or Control MODel EXeCute)"
610 PRINT'"** * w =* ** "
620 PRINT"THIS PROGRAM USES THE PROGRAMMING INSTRUCTIONS SPECIFIED IN CMODCRD,"
630 PRINT*COMPUTES AS NECESSARY TO PROVIDE THE INPUT AND OUTPUT SIGNAL OF"
640 PRINT*EACH CONTROL COMPONENT AND UPDATES THE DATA DISK FILE ACCORDINGLY."
650 PRINT
660 PRINT"CMODPRD (for Control MODel PRint Data)"
670 PRINT"-------
680 PRINT*THIS PROGRAM PRINTS THE CONTENTS OF THE DATA DISK FILE ON THE SCREEN"
690 PRINT"AND ON THE PRINTER."
700 PRINT: PRINT
710 INPUT" TYPE IN ANY NUMBER, THEN HIT RETURN, TO CONTINUE';N
720 ON N GOTO 730
730 PRINT
740 PRINT"CMODEDD (+or Control MODel EDit Data)"
750 PRINT ----- ------

760 PRINT*THIS PROGRAM EDITS THE CONTENTS OF AN EXISTING DATA DISK FILE. IT"
770 PRINT*IS GENERALLY USED IN CONJUNCTION WITH CMODEXC TO OPTIMIZE A CONTROLS"
780 PRINT"SYSTEM DESIGN BY ALLOWING THE USER TO CHANGE SPECIFIC SYSTEM *
790 PRINT"PARAMETERS (SUCH AS A CONTROLLER ACTION) AND THEN RE-EXECUTING"
800 PRINT*AND OBSERVING THE NEW INPUTS/OUTPUTS."

810 PRINT
820 PRINT"GETTING STARTED"

830 PRINT":::.---*"

840 PRINT"EACH OF THE CMOD PROGRAMS IS INDEPENDENT AND CAN BE RUN ALONE OR IN"
850 PRINT"CONJUNCTION WITH ANY OF THE OTHER PROGRAMS. ALL OF THE CMOD"
860 PRINT"PROGRAMS ARE INTERACTIVE. ONCE THE USER SELECTS THE PROGRAM AND
870 PRINT'TYPES RUN ''programnameo', THE COMPUTER VERIFIES WHICH PROGRAM IT IS"
880 PRINT*RUNNING AND THEN BEGINS WITH A QUESTION/ANSWER SESSION. THE USER"
890 PRINT"SIMPLY ANSWERS THE COMPUTERS PROMPTS UNTIL HE OBTAINS THE DESIRED"
900 PRINT"RESULTS."
910 PRINT: PRINT

* 920 INPUT" TYPE IN ANY NUMBER, THEN HIT RETURN, TO CONTINUEI;N
930 ON N GOTO 940
940 PRINT

950 PRINT'TYPICAL SESSION"
960 PRINT"::NN"
970 PRINT" 1. CREATE A DATA FILE"
980 PRINT*TYPICALLY, THE FIRST THING A USER MUST DO IS CREATE A DATA DISK"
990 PRINT*FILE OF A HVAC CONTROL SYSTEM USING CMODCRD.
1000 1
1010 PRINT
1020 PRINT"HAVING SELECTED CMODCRD BY TYPING ''RUN CMODCRD'', THE USER FOLLOWS"
1030 PRINT"THE COMPUTER PROMPTS AND TYPES IN SHORT, ONE OR TWO-WORD ANSWERS"
1040 PRINT"OR TYPES IN A NUMBER SELECTED FROM A SCREEN-DISPLAYED MENU. THUS"
1050 PRINT'THE USER WOULD LAY OUT A SCHEMATIC OF THE HVAC CONTROL SYSTEM TO"
1060 PRINT BE MODELLED, PROVIDE A UN-GUE NAME FOR THIS SPECIFIC SYSTEM (FILE),"
1070 PRINT"AND ENTER EACH COMPONENT AND ALL ITS ASSOCIATED PROGRAMMING
1080 PRINT*INSTRUCTIONS ONE-AT-A-TIME, COMPONENT-BY-COMPONENT."
1090 PRINT
1100 PRINT"THE USER IS ENCOURAGED TO USE COMPONENT SYMBOLS DIRECTLY AS THEY"
1110 PRINT"APPEAR ON THE SCHEMATIC AND THEN ADD ASTERISKS TO THE END SUCH"
1120 PRINT*THAT ALL COMPONENT SYMBOLS ARE FIVE (5) CHARACTERS IN LENGTH."
1130 PRINT
1140 PRINT"FOR EXAMPLE, THE COMPUTER WILL ASK:"

1150 PRINT
1160 PRINT" CONTROLLER SYMBOL = ?I
1170 PRINT: PRINT
1180 INPUT " TYPE IN ANY NUMBER, THEN HIT RETURN, TO CONTINUE";N
1190 ON N GOTO 1200

98

1200 PRINT
1210 PRINT"AND THE USER WILL RESPOND BY CHOOSING A CONTROLLER FROM THE"
1220 PRINT*SCHEMATIC AND TYPING IN ITS SYMBOL (ADDING *s AS NECESSARY TO"
1225 PRINT*MAKE 5-CHARACTER SYMBOLS)"
1230 PRINT
1240 PRINT-THUS, THE USER WILL TYPE IN:"
1250 PRINT
1260 PRINT" TCA**"
1270 PRINT
1280 PRINT"THE COMPUTER WILL THEN PROCEED TO ASK FOR THE APPROPRIATE*
1290 PRINT'CONTROLLER PROGRAMMING INSTRUCTIONS AND ANY OTHER INFORMATION"
1300 PRINT"NEEDED TO RUN THE EXECUTION PROGRAM, SUCH AS THE INPUT COMPONENT"
1310 PRINT'TO THE CONTROLLER."
1320 PRINT
1330 PRINT" 2. PRINT CONTENTS OF DATA DISK FILE"
1340 PRINT*BEFORE PROCEEDING, IT IS HIGHLY RECOMMENDED TO PRINT OUT THE"
1350 PRINT*CONTENTS OF THE DATA DISK FILE TO BE SURE THAT THE DATA FILE WAS"
1360 PRINT'IN FACT CREATED AND THE INFORMATION THAT WILL SUBSEQUENTLY BE FED"
1370 PRINT'TO THE EXECUTION PROGRAM IS ERROR FREE. TO DO THIS, THE USER TYPES"
1380 PRINT*RUN ''CMODPRD'* (is. DOUBLE QUOTES)."
1390 PRINT:PRINT
1400 INPUT * TYPE IN ANY NUMBER, THEN HIT RETURN, TO CONTINUE*IN

1410 ON N GOTO 1420
1420 PRINT
1430 PRINT"THE COMPUTER THEN ASKS FOR THE NAME OF THE DATA DISK FILE WHICH"
1440 PRINT'THE USED TYPES IN. AS STATED EARLIER, THIS NAME IS UNIQUE, SUCH"
1450 PRINT'THAT EACH HVAC CONTROL SYSTEM MODELLED WILL BE REPRESENTED BY *
1460 PRINT'IT'S OWN DATA DISK FILE. ONCE A DATA DISK FILE HAS BEEN CREATED,"
1470 PRINT"IT CAN BE SAVED, EXECUTED, OR MODIFIED AND REEXECUTED AT ANY TIME"
1480 PRINT'IN THE FUTURE."
1490 PRINT
1500 PRINT*WHEN CMODPRD IS RUN USING A DATA DISK FILE THAT HAS NOT YET BEEN"
1510 PRINT"EXECUTED (VIA CMODEXC), THE RESULT IS A PRINTOUT OF ALL COMPONENTS"
1520 PRINT*BY COMPONENT TYPE AND ALL INFORMATION NEEDED (PROGRAMMING INSTRUCT-"

1530 PRINT-IONS, INPUT COMPONENTS, ETC) TO MAKE THE COMPUTATIONS WHICH WILL"
1540 PRINT"PREDICT THE CONTROLS SYSTEM'S OUTPUTS. THE OUTPUT VALUES WILL BE"
1550 PRINT*SHOWN AS 999 UNTIL THE EXECUTION PROGRAM HAS BEEN RUN."
1560 PRINT

1570 PRINT
1580 INPUT" TYPE IN ANY NUMBER, THEN HIT RETURN, TO CONTINUE-;N
1590 ON N GOTO 1600
1600 PRINT
1610 PRINT" 3. MAKE COMPUTATIONS"
1620 PRINT*AT THIS POINT THE USER RUNS THE EXECUTION PRGORAM, CMODEXC."
1630 PRINT*CMODEXC USES AN ITERATIVE PROCESS AND HAS TWO MAIN FUNCTIONS."
1640 PRINT
1650 PRINT-FIRST, IT USES THE INFORMATION PROVIDED IN THE DATA DISK FILE"
1660 PRINT*CREATED IN CMODCRD AND PERFORMS ALL COMPUTATIONS NEEDED TO *

1670 PRINT'DETERMINE THE OUTPUT OF ALL COMPONENTS OF A HVAC CONTROL SYSTEM"
1680 PRINT'SEING MODELLED. SECOND, IT UPDATES THE DATA DISK FILE SUCH THAT"
1690 PRINT"UPON TERMINATION, THE OUTPUT VALUE FOR THE SYSTEM AS WELL AS THE"
1700 PRINT'OUTPUTS OF ALL INTERMEDIATE COMPONENTS ARE CALCULATED AND UPDATED"

1710 PRINT"ON THE DATA DISK FILE."
1720 PRINT
1730 PRINT'CODEXC EMPLOYS THE 'BRUTE FORCE METHOD', A WELL KNOWN TERM IN THE"
1740 PRINT"COMPUTER PROGRAMMING ARENA. THE PROGRAM ITERATES AS MANY TIMES AS"
1750 PRINT"THERE ARE COMPONENTS IN THE HVAC CONTROL SYSTEM BEING MODELLED, AND"
1760 PRINT*EACH COMPONENT'S OUTPUT VALUE IS CALCULATED ONCE PER ITERATION."
1770 PRINT"NEVERTHELESS, CMOCEXC RUNS RATHER QUICKLY (APPROXIMATELY 2-3
1780 PRINT*SECONDS PER COMPONENT), SINCE CMODEXC DOES NOT CONSIDER

"

1790 PRINT"TRANSIENT RESPONSES AND HIGH-LEVEL MATHEMATICS IS NOT USED."

1800 PRINT
1810 PRINT
1820 INPUT" TYPE IN ANY NUMBER, THEN HIT RETURN, TO CONTINUE-IN
1830 ON N GOTO 1840
1840 PRINT
1850 PRINT" 4. REPRINT CONTENTS OF DATA DISK FILE"
1860 PRINT'THIS STEP IS NECESSARY TO OBTAIN A PRINTOUT OF THE REVISED DATA"

99

1670 PRINT'DISK FILE, WHICH INCLUDES ALL COMPONENT OUTPUT VALUES AS CALCULATED*
1880 PRINT*AND UPDATED IN CMODEXC."
1890 PRINT
1900 PRINT* 5. EDIT DATA DISK FILE*
1910 PRINT*THE EDITING PROGRAM, CMODEDD, IS USED TO ALLOW THE USER TO CHANGE
1920 PRZNT*ANY OR ALL OF THE INPUT VALUES (SUCH AS A CONTROLLER SET POINT) ON*
1930 PRINT*AN EXISTING DATA DISK FILE. THIS IS DONE IN ORDER TO BE ABLE TO'
1940 PRINT*PREDICT THE EFFECT THAT ANY SUCH CHANGES WOULD HAVE ON INDIVIDUAL'
1950 PRINT*CONTROLS COMPONENT OUTPUTS AND THE OVERALL CONTROL SYSTEM PERFORM-,
1960 PRINT*ANCE AS WELL.'
1970 PRINT
1980 PRINT*IN PRACTICE, THE USER WOULD EDIT AN EXISTING DATA DISK FILE, RERUN-
1990 PRINT'CMODEXC USING THE EDITED DATA DISK FILE, AND THEN RERUN CMODPRD TO-
2000 PRINT*OBTAIN A NEW PRINTOUT. THEN BY COMPARING AND CONTRASTING THE

"

2010 PRINT"PRINTOUTS OF THE EDITED DATA DISK FILE TO THE ORIGINAL DATA DISK*
2020 PRINT-FILE, THE USER CAN OPTIMIZE EITHER A NEW OR EXISTING HVAC "
2030 PRINT'RECOMMEND IMPROVEMENTS TO AN EXISTING HVAC CONTROL SYSTEM.*
2040 PRINT
2050 PRINT
2060 INPUT* TYPE IN ANY NUMBER, THEN HIT RETURN, TO CONTINUE-IN
2070 ON N GOTO 2080
2080 PRINT
2090 PRINT*DUE TO THE MODULARITY AND RUN-ALONE CAPABILITY OF THE CMOD"
2100 PRINT'PROGRAMS, THE EDIT/REEXECUTE/REPRINT CYCLE CAN BE REPEATED AS-
2110 PRINT'OFTEN AS THE USER DESIRES AT A FRACTION OF THE TIME REQUIRED TO'
2120 PRINT'DO THE SAME PROCESS MANUALLY.'
2130 PRINT
2140 PRINT*TO GET A PRINTOUT OF CMODDOC"
2150 PRINT'*w-NNi4:::-------------*NN---
2160 PRINT*TO GET A PRINTOUT (HARD COPY) OF THESE INSTRUCTIONS* YOU MUST'
2170 PRINT'LIST' THE ACTUAL PROGRAM. TO DO THIS, TURN ON YOUR PRINTER-

2180 PRINT"AND TYPE:*
2190 PRINT
2200 PRINT- LOAD 'CMODDOC-
2210 PRINT
2220 PRINT41.*.. DOUBLE QUOTES AROUND CMODDOC)
2230 PRINT*THEN TYPE:'
2240 PRINT
2250 PRINT" LLIST*

100

Appendix B. Flowcharts of CMOD Programs

Appendix B contains flow charts of the four working

programs listed in Appendix A. The numbers which appear to

the immediate right of the flow chart symbols refer to the

program line numbers represented by the flow chart symbols.

This feature facilitates easy cross-referencing between the

computer programs and the flow charts.

101

0f

CMODCRD
Flow Chart

Define 120A

Variables

GOTO 240 180

{pnDaaPrinit .400

Lset RN$ 210 Prompt for 450
& CMPC$ Select

Type

Put RN$ & 220 On Type 460
CMPC$ and GOSUB
Close
Data File

GOTO 40042 20__ to00 Z000 3000

Print 1240 Return Sl
Program o j290
Verificati-

yes Enter g80
Another 490

Prompt for 300
File Name 340 no

Print 501
Program 505
Message

End 510

102

CMODCRD
Flow Chart Cont'd

Print 1000 Increment 1120
Subroutine 1010 Counters
Verificat-
ion

pen Data 1020 Prompt for 1130
ile and 1040 Input Data 1190
ield
u er

Get 1050 Print Back 1210
Counter and 1250
Record Verify

Set Count- 1060 12T0
ers in ret18
Memory P3.

rltl#Print I 41290 Iyes

' [Reenter [
rint 0 Instructio Lset 1300

Components Controller 1320Stored I0I
- 1080 , 1 Data

Put 1350Controller
Data

yes Close 1370~~Data File 16

A 1360

(Return s1 1350

310

l- 103

CMODCRD

Flow. Chart Cont'd

[Print 2000 Increment 2110

Subroutine 2010 Counters
Verificat-

Open Data 2020 C> Prompt for 2120
File 1Input 2140
;.J Data

I .

2030 Set 2150
Field 2040 Output -

Buffer Input

Get 2050 Print 2160

Counter Back to 2170

Record Verify

Print 0 if07

ComponyentsCorc
Stored 2080 Pit20

e ~ ~Reenter 20
Instruct- Lset 2210

r no ion Sensor 2220
notherData

. i Data ClseGOTO 2120)

A File 2270

2280

104

CMODCRD
Flow Chart Cont'd

Put 2230
Sensor
Data

Lset 2240
Counters

Put 2250
Counters

GOTO

20O02260
R3

105

CMODCRD
Flow Chart Cont'd

SPrint 3000 t>Prompt for 3140
Subroutine 3010 Input 3230
Verificat- Data
ion

Open Data 3020 Print 3250
File and 040 Back to 3290

BufferI

I Get 3050 310
Counter
_Record C

,]Print 3330 lyesReenter 30e

Set 3060 Instruct-3340
Counters inn i Let 3360
in Memory Da t

Print 0 Put Hi 3370
Components Selector
Stored 070 Data3080

3090 noLset 3380

yes 3120 Close 3410Data

Increment File Put 3390
Counters ICounters

(R e t r n S 3 4 2 L -- --- G O T O 3 0 7 0 3 4 0 0

106

... ,

CkODPRD
Flow Chart

Print 100
Program 140
Verificat-
ion

For C j3.90

Prompt for 160 2 to RN$
Data 170
File Name I

I Get C'th 400 1
Record

Verify 180
Data 200
File Name

no if 410
Open Data 240 t - +
File & 280
Field yesBuffer Ies

Bue
Print 420
Controller 430

Print 310 Data
Controller 360 1
Headers,

_I

L Next '4C
Get 380
Counter
Record

107

- CMODPRD
Flow Chart Cont'd

ForC 620

Print 460 2 to RN$
Sensor 4901
Headers I

Get Cth 630

For C 5 Record

I IrItt R6N$

.1 Record51 IYe

Print 650
v : Hi Selecto7660

0 no 2 520 Data

Type I

Ss I It Next C 670_
Print 530 1
Sensor 540 1
Data

Close 680
Data

Next C 0 File

Print 700
Closing 740

Print 570 Messages
Hi Selector 600
Headers

End 770

A

108

CMODEXC Flow Chart

Print 100 P1 A
Program 140VerificaL

For 1 330
r ~2 t6 K

Prompt for 160
Data File 170
Name j----

Get I'th 340Record

Verify
190

Data File 240
Name I

Set Type 350
in

Open Data 250 Memory
File & 290
Field I
Buffer

I On Type 360
I GOSUB

Get Count-
300

er30

Record

I 000 loco 3oo

Set Last 310
Record 0 310
& CMPC$ Return Sl

in memory

Set Iter- Next 1 370

ation 320 .
Counter

P2

109

CMODEXC
Flow.Chart Cont'd

P2 1000

Increment 380 Set Input 1010
Iteration Data in
Counter Memory

I
Print Iter-390 For J 1020
ation Com- 400 2 to K
plete
Message o 1

410 e
Iter- 4oR 1030

r- 108n

t16n < f sP
Co PiI

no Iyes

Print Last 420 Get J'th 1040
Iteration 430 _ Record
Message

Close 40 Is 1050
Data File

this Inpu

I CnMeor

Ii00

no 1080

Print Pro- 48Next
gram Com- -30
plete 50L---
Message

C D 540 Set Output <
in Memory

110

CMODEXC
Flow .Chart Cont'd

if 1090Set Input 3010
Act -Data in.
DA noMemory

Calclate Calclate3020
I$+"For J

Equation Equation F2 to K

IGet J'th 3030
RecordRecord

RsetunS 1170

305
In

Return 51s 200o
-

Put 116 In~11 i

* CMODEXC

* Flow Chart Cont'd

Get I'th 3100

Record

Lset Input 3110
V's 1 & 2

1120

pu 13 a 3140 *p

Inu #1 Inu #2

Put Input

CMODEDD
Flow Chart

Print 100A
Instruct. 280
& Menu

Set Last 500
Record 0

Input 0 290 to K

For I 510
300- - 2 to K --

Get I'th 520I 0 Record

syee

30
:Enter Data 31SYFile Name 380&Verify

480 no 0
I o 540

L Uj N e x t I I
Open Data 400 - - -

SFile and 440

Field

I P3Set TYN$=
PCVI(TYP$) 550Input48
Symbol

On TYN$ 560
(type)
GOSUB

113

CMODEDD

Flow. Chart Cont'd

550Print 1000
00 yes Subroutine 1010
nothr VVerificat -

no GOTO 460 600 I

Cls Set 1020
Variables 1030
in Memory

I 620
GOTO 720 Print Data 1040

Pifrom 1120
Memory

Print Run

CMODCRD Print 1130
Message 640 Menu and 1340~Instruct-

i2 650 ions i
P2Prompt 1360

for 1370
Print jChoice

Component 71

Message On T 1380
GOSUB

Close 780I
rMessage

T
SP T

114

CMODEDD
Flow Chart Cont'd

SPTR ACT INS

Prompt 1400o Prompt 144C Prompt 148C Prompt 1520
For For For ForNew Value New Value New Value New Value

Lset SP 1411 Lset TR 1451 Lset ACT 1149(Lset INSY 1530

Put SP 142 Put TR 146C Put ACT 150 Put INSY 1540

~470 110550
RetunS13 Return S2 Retur S2rnS

Return S2

GOTO 1560 1390

Return Si 1560

115

CMODEDD
Flow Chart Cont'd

Print 2000 Set 2150
Subroutine 2010 Temp In -
Veritficat- Output
ion

Set 2020 Lset 2160
Variables Temp In &
in Memory Output

Print 2030 Put 2170
Data From 2080 Temp In &
Memory Output

__ _ I I
Print 2100 Rtr512180

Instruct- 2110
ions

Prompt For 2120
New 2140
Temp In

116

-- *v .%

CMODEDD

Flow Chart Cont'd

3000 Return S3

Print 3010 GOTO 3490 3410
Subroutine 3020
Verificat-

Return SI 3520

Set 3030
Variables 3040
in Memory

Print 3050 1st n

Data 3160
From
Memory

Prompt For 3420 Prompt For 3470
New Ist 3430 New 2nd 3480

Print 3190 Input Input

Menu and 3350 Symbol Symbol
Instruct-
ions

I Lset 1st 3440 Lset 2nd 3490

Prompt 3380 Input' Input

For 3390 Symbol Symbol

Choice I I

I Put 1st 3450 Put 2nd 3500
O3400 Input Input
On T3 Symbol Symbol
GOSUB

Seturn S3 3460 Return S3 510

117

Appendix C. Sample Run of CMOD Programs

The eleven-component subsystem shown in Figure 1 of

this thesis was modeled using the CMOD programs developed

under this research effort. Appendix C contains the

printouts that were produced in the modeling process. The

handwritten text represents the responses typed in by the

user during the "interactive" session while the typed text

represents the information or prompts printed out via the

CMOD programs.

Appendix C is subdivided into four "runs" in order to

demonstrate the use of the CMOD programs and to show how

the programs facilitate the optimization process described

in the first two chapters of this thesis. Each run is

described below.

The first run modeled the subsystem as it appears in

Figure 1. First, a data disk file of subsystem was created

using CMODCRD. Next, the contents of the data file were

printed out using CMODPRD. Then the component output

values were computed using CMODEXC and the results were

printed out by running CMODPRD a second time.

In the second run, the input value of temperature

sensor SA was changed from 70 to 74 degrees Farenheit using

the program CMODEDD and the sensor edit subroutine. Next,

118

the contents of the data file was printed out to insure the

values for SA were properly edited. Finally, the execution

program (CMODEXC) was run and the new output values were

once again printed out using CMODPRD.

The CMODEDD hi signal selector edit subroutine was

tested in the third run. Specifically, the first input

value for HIA was changed from TCA to TCZ and the first

input value for HIB was changed from TCZ to TCA. After

these changes were made, the print-execute-print sequence

was once again used.

In the fourth run, the CMODEDD controller edit

subroutine was tested by changing the set point (SP) of TCB

from 72 to 80 degrees fahrenheit and once again, using the

print-execute-print sequence.

119

FIR=SMT mUm

CREATE DATA FILE PROGRAM

ENTER THE DATA FILE NAME 4UP TO 6 LETTERS) FOR THIS SYSTEM COODRU4

THE FILENAME ENTERED WAS CMODRUN

IS FILENAME CORRECT 16.6

IS CMODRUN A NEW OR EXISTING DATA FILENAME (NEW OR EXIST) MCLU

COMPONENT MENU

I - SINGLE INPUT CONTROLLER

2 - TEMPERATURE SENSOR
3 - HI SELECTOR

ENTER NUMBER FOR APPROPRIATE COMPONENT TYPE

SINGLE INPUT CONTROLLER DATA ENTRY SUBROUTINE

0 COMPONENTS PRESENTLY STORED IN THIS DATA FILE

ENTER ANOTHER CONTROLLER ? YeS

(FOR COMPONENT SYMBOLS, USE 5-CHARACTER SYMBOLS)
(ADD *s AS NEEDED TO GET 5-CHARACTER SYMBOLS)

CONTROLLER SYMBOL - 7 T *
SET POINT = - 1
THROT RANGE - ?
ACTION - (DA OR RA) ? DA
SYMBOL OF INPUT COMPONENT "- 46 4*

FOR CONTROLLER TCAI* -
SP - 71
TR - 6
ACT f DA
INPUT COMPONENT -SAI-!

IS THIS CORRECT ? 'E4,
I COMPONENTS PRESENTLY STORED IN THIS DATA FILE

ENTER ANOTHER CONTROLLER ? AO

DO YOU WANT TO ENTER ANOTHER COMPONENT (YES OR NO) e

COMPONENT MENU

I - SINGLE INPUT CONTROLLER
2 - TEMPERATURE SENSOR
3 - HI SELECTOR

ENTER NUMBER FOR APPROPRIATE COMPONENT TYPE

TEMP SENSOR DATA ENTRY SUBROUTINE

I COMPONENTS PRESENTLY STORED IN THIS DATA FILE

120

-s -%

DO YOU WANT TO ENTER ANOTHER SENSOR AYES OR NO) YES

(FOR COMPONENT SYMBOLS, USE 5-CHARACTER SYMBOLS)
(ADD *6 AS NEEDED TO GET 5-CHARACTER SYMBOLS)

SENSOR SYMBOL - SA IF*
TEMP IN a 10

FOR SENSOR SAI*- TEMP IN - 70
IS THIS CORRECT \JE5

2 COMPONENTS PRESENTLY STORED IN THIS DATA FILE

DO YOU WANT TO ENTER ANOTHER SENSOR (YES OR NO) Vf$

(FOR COMPONENT SYMBOLS, USE 5-CHARACTER SYMBOLS)
(ADD *0 AS NEEDED TO GET 5-CHARACTER SYMBOLS)

SENSOR SYMBOL W VA 1 4
TEMP IN - 7Z

FOR SENSOR SBD*E- TEMP IN - 72
IS THIS CORRECT -E

3 COMPONENTS PRESENTLY STORED IN THIS DATA FILE

DO YOU WANT TO ENTER ANOTHER SENSOR (YES OR NO) AJO

DO YOU WANT TO ENTER ANOTHER COMPONENT (YES OR NO) "fE
COMPONENT MENU

I - SINGLE INPUT CONTROLLER
2 - TEMPERATURE SENSOR
3 - HI SELECTOR

ENTER NUM3ER FOR APPROPRIATE COMPONENT TYPE 3

HI SELECTOR DATA ENTRY SUBROUTINE

3 COMPONENTS PRESENTLY STORED IN THIS DATA FILE

ENTER ANOTHER HI SELECTOR '/eS

fFOR COMPONENT SYMBOLS, USE 5-CHARACTER SYMBOLS)
(ADD *s AS NEEDED TO GET 5-CHARACTER SYMBOLS)

HI SELECTOR SYMBOL - -iA
SYMBOL OF 1ST INPUT COMPONENT - TA* *
SYMBOL OF 2ND INPUT COMPONENT - TM NW

FOR HI SELECTOR HIA -

SYMBOL OF 1ST INPUT COMPONENT - TCA+*
SYMBOL OF 2ND INPUT COMPONENT - TCB**

IS THIS CORRECT A10
NI SELECTOR SYMBOL a HrAt*
SYMBOL OF IST INPUT COMPONENT - rcA
SYMBOL OF 2ND INPUT COMPONENT - 7T(.al

FOR HI SELECTOR HIA+* -
SYMBOL OF IST INPUT COMPONENT - TCA.**
SYMBOL OF 2ND INPUT COMPONENT - TCB'*

IS THIS CORRECT N
4 COMPONENTS PRESENTLY STORED IN THIS DATA FILE

ENTER ANOTHER HI SELECTOR \/$

121

alid,

IFOR COMPONENT SYMBOLS, USE 5-CHARACTER SYMBOLS)

(ADD *S AS NEEDED TO GET 5-CHARACTER SYMBOLS)

HI SELECTOR SYMBOL - HI C
SYMBOL OF 1ST INPUT COMPONENT - PA* A(

SYMBOL OF 2ND INPUT COMPONENT - HT -

FOR HI SELECTOR HIC** -

SYMBOL OF 1ST INPUT COMPONENT - HIA**

SYMBOL OF 2ND INPUT COMPONENT - HIB**

IS THIS CORRECT Y65
5 COMPONENTS PRESENTLY STORED IN THIS DATA FILE

ENTER ANOTHER HI SELECTOR .JO

DO YOU WANT TO ENTER ANOTHER COMPONENT (YES OR NO) 6

COMPONENT MENU

I - SINGLE INPUT CONTROLLER

2 - TEMPERATURE SENSOR

3 a HI SELECTOR

ENTER NUMBER FOR APPROPRIATE COMPONENT TYPE

SINGLE INPUT CONTROLLER DATA ENTRY SUBROUTINE

5 COMPONENTS PRESENTLY STORED IN THIS DATA FILE

ENTER ANOTHER CONTROLLER ?

(FOR COMPONENT SYMBOLS, USE 5-CHARACTER SYMBOLS)

(ADD *s AS NEEDED TO GET S-CHARACTER SYMBOLS)

CONTROLLER SYMBOL - ? TC 1-V
SET POINT = ' 72
THROT RANGE - ?

*ACTION - IDA OR RA) ? RA
SYMBOL OF INPUT COMPONENT -

FOR CONTROLLER TCB** -

SP - 72
TR - S

ACT a RA
INPUT COMPONENT oSB**

IS THIS CORRECT ? YE5

6 COMPONENTS PRESENTLY STORED IN THIS DATA FILE

ENTER ANOTHER CONTROLLER ? E

tFOR COMPONENT SYMBOLS, USE 5-CHARACTER SYMBOLS)

(ADD *s AS NEEDED TO GET 5-CHARACTER SYMBOLS)

CONTROLLER SYMBOL - ? " *

SET POINT - ? 13
THROT RANGE - ? 10
ACTION - (DA OR RA) ? DA
SYMBOL OF INPUT COMPONENT -

FOR CONTROLLER TCZ*-* -

SP - 73

TR - 10

ACT - DA

INPUT COMPONENT -SCI-4

IS THIS CORRECT '

122

41

7 COMPONENTS PRESENTLY STORED IN THIS DATA FILE

ENTER ANOTHER CONTROLLER ? Y65

(FOR COMPONENT SYMBOLS, USE 5-CHARACTER SYMBOLS)
(ADD *a AS NEEDED TO GET 5-CHARACTER SYMBOLS)

CONTROLLER SYMBOL - ? T(*
SET POINT - ? 1

THROT RANGE - 7 10
ACTION - (DA OR RA) ? R
SYMBOL OF INPUT COMPONENT m

FOR CONTROLLER TCD** -

SP - 74

TR - 10

ACT - RA

INPUT COMPONENT -SD"*

IS THIS CORRECT ? Ye5
S COMPONENTS PRESENTLY STORED IN THIS DATA FILE

ENTER ANOTHER CONTROLLER 7 AI

DO YOU WANT TO ENTER ANOTHER COMPONENT (YES OR NO)
COMPONENT MENU

I - SINGLE INPUT CONTROLLER
2 - TEMPERATURE SENSOR
3 - HI SELECTOR

ENTER NUMBER FOR APPROPRIATE COMPONENT TYPE 2

TEMP SENSOR DATA ENTRY SUBROUTINE

S COMPONENTS PRESENTLY STORED IN THIS DATA FILE

DO YOU WANT TO ENTER ANOTHER SENSOR (YES OR NO) YC

(FOR COMPONENT SYMBOLS, USE 5-CHARACTER SYMBOLS)
(ADD *s AS NEEDED TO GET 5-CHARACTER SYMBOLS)

SENSOR SYMBOL - 40 % *
TEMP IN = *(j

POR SENSOR SD+-* TEMP IN - 76
IS THIS CORRECT

9 COMPONENTS PRESENTLY STORED IN THIS DATA FILE

DO YOU WANT TO ENTER ANOTHER SENSOR (YES OR NO) y

(FOR COMPONENT SYMBOLS, USE 5-CHARACTER SYMBOLS)
(ADD *0 AS NEEDED TO GET 5-CHARACTER SYMBOLS)

SENSOR SYMBOL - $
TEMP IN

FOR SENSOR SC4* TEMP IN - 74
IS THIS CORRECT YL-5

10 COMPONENTS PRESENTLY STORED IN THIS DATA FILE

DO YOU WANT TO ENTER ANOTHER SENSOR (YES OR NO) No

DO YOU WANT TO ENTER ANOTHER COMPONENT (YES OR NO)
COMPONENT MENU

123

I - SINGLE INPUT CONTROLLER

2 - TEMPERATURE SENSOR

3 - HI SELECTOR

ENTER NUMBER FOR APPROPRIATE COMPONENT TYPE

A HI SELECTOR DATA ENTRY SUBROUTINE

10 COMPONENTS PRESENTLY STORED IN THIS DATA FILE

ENTER ANOTHER HI SELECTOR 465

(FOR COMPONENT SYMBOLS, USE 5-CHARACTER SYMBOLS)
(ADD *s AS NEEDED TO GET 5-CHARACTER SYMBOLS)

HI SELECTOR SYMBOL - HI.
SYMBOL OF 1ST INPUT COMPONENT -

SYMBOL OF 2ND INPUT COMPONENT - TCb*

FOR HI SELECTOR HIB* -

SYMBOL OF 1ST INPUT COMPONENT - TCZ**

SYMBOL OF 2ND INPUT COMPONENT - TCD**

IS THIS CORRECT Y
11 COMPONENTS PRESENTLY STORED IN THIS DATA FILE

ENTER ANOTHER HI SELECTOR NO

DO YOU'WANT TO ENTER ANOTHER COMPONENT (YES OR NO) NO

**CREATE* DATA FILE PROGRAM COMPLETE

SELECT ANOTHER PROGRAM BY TYPING 'RUN programname'

PRINT CONTENTS OF DATA FILE PROGRAM

ENTER DATA FILE NAME (UP TO 8 LETTERS) FOR THIS SYSTEM Cff)t,[>tJ
TWE FILENAME ENTERED WAS CMODRUN

IS THIS CORRECT (YES OR NO) E

DATA FOR CONTROLLERS

SYMBOL ACTION THROT RANGE SET POINT INPUT COMPONENT TEMP IN VOLT OUT

TCA-I DA 6 71 SA*** 999 999

TCB44 RA a 72 SB1-1- 999 999

TCZ* DA 10 73 SC+** 999 999

TCD14 RA 10 74 SDH-* 999 999

DATA FOR SENSORS

SYMBOL TEMP IN OUTPUT

SA**H- 70 70

s524 72 72

SD** 76 76

SC++I* 74 74

124

III

DATA FOR 41 SELECTORS

SYMBOL 1ST INPUT SYMBOL SYMBOL I IN 2ND INPUT SYMBOL SYMBOL 2 IN OUTPUT

HIA** TCA** 999 TCD** 999 999

HIC*- HIA** 999 HID** 999 999

HIB** TCZ** 999 TCDI** 999 999

4-*PRINT** PROGRAM RUN COMPLETE

SELECT ANOTHER PROGRAM BY TYPING RUN "programname' (DOUBLE QUOTES)

EXECUTION MODE PROGRAM

ENTER THE DATA FILE NAME (UP TO 8 LETTERS) CMflODRUAJ

THE FILE NAME ENTERED WAS CMODRUN

IS FILE NAME CORRECT (YES OR NO) ? M

1ITERATION(S) COMPLETE

2 ITERATION(S) COMPLETE

3 ITERATION(S) COMPLETE

4 ITERATION(S) COMPLETE

5 ITERATIONtS) COMPLETE

6 ITERATION(S) COMPLETE

7 ITERATION(S) COMPLETE

S ITERATION(S) COMPLETE
9 ITERATION(S) COMPLETE

10 ITERATION(S) COMPLETE
11 ITERATION(S) COMPLETE

FOR THIS 11 COMPONENT SYSTEM

**EXECUTION4 PROGRAM RUN COMPLETE

RUN CMODPRD TO SEE RESULTS OF EXECUTION

fZuO "CMoDPKV"

PRINY CONTENTS OF DATA FILE PROGRAM

ENTER DATA FILE NAME (UP TO 8 LETTERS) FOR THIS SYSTEM CMODRUt)
THE FILENAME ENTERED WAS CMODRUN
IS THIS CORRECT (YES OR NO) 'fe,

DATA FOR CONTROLLERS

SYMBOL ACTION THROT RANGE SET POINT INPUT COMPONENT TEMP IN VOLT OUT

TCA** DA 6 71 SA4*- 70 7
TCB4*- RA a 72 S3l-K4 72 7.5
TCZ** DA 10 73 SC+** 74 7.8
TCDW' RA 10 74 SD*H1* 76 6.9

125

.

DATA FOR SENSORS

SYMBOL TEMP IN OUTPUT

SA+*4 70 70

SB*** 72 72

SD*** 76 76

SC* - 74 74

DATA FOR HI SELECTORS

SYMBOL 1ST INPUT SYMBOL SYMBOL I IN 2ND INPUT SYMBOL SYMBOL 2 IN OUTPUT

HIA*-* TCA4* 7 TC*44 7.5 7.5

HIC* HIA** 7.5 HIB** 7.8 7.8

HIB** TCZ*4 7.8 TCD** 6.9 7.8

*PRINT** PROGRAM RUN COMPLETE

SELECT ANOTHER PROGRAM BY TYPING RUN 'programname (DOUBLE QUOTES)

%SECON'D RU3N

DATA EDIT PROGRAM

SELECT OPTION BY TYPING IN THE NUMBER INDICATED ON MENU

MENU

OPTION NUMBER

EDIT CONTENTS OF EXISTING DATA FILE I
ADD ADDITIONAL COMPONENTS TO EXISTING DATA FILE 2

REMOVE COMPONENTS FROM EXISTING DATA FILE 3

ENTER THE DATA FILE NAME (UP TO 8 LETTERS) CMODR4JJ
THE FILE NAME ENTERED WAS CMODRUN

IS FILE NAME CORRECT (YES OR NO) ? ye"5

-% IREMEMBER TO USE * AS NEEDED TO GET 5-CHARACTER SYMBOLS)

TEMPERATURE SENSOR +*EDIT** SUBROUTINE

THE DATA PRESENTLY STORED FOR SA++- IS

TEMP IN - 70

OUTPUT - 70

THE ONLY ITEM YOU CAN CHANGE IS 'TEMP IN'

NEW VALUE FOR TEMP IN - -7

DO YOU WANT TO EDIT ANBOTHER COMPONENT (YES OR NO) '

EDIT+ PROGRAM RUN COMPLETE

* RJN CMODEXC TO UPDATE DATA FILE TO REFLECT NEW OUTPUTS

126

*/**.*~~*,?~-''*'* P ? .p'~ *.~.

PRINT CONTENTS OF DATA FILE PROGRAM

ENTER DATA FILE NAME (UP TO 9 LETTERS) FOR THIS SYSTEM </V7O DkU.J

THE FILENAME ENTERED WAS CMODRUN
IS THIS CORRECT (YES OR NO) %W,

DATA FOR CONTROLLERS

SYMBOL ACTION THROT RANGE SET POINT INPUT COMPONENT TEMP IN VOLT OUT

TCA** DA 6 71 SA*-* 70 7
TCB+* RA 9 72 SU*+* 72 7.5
TCZ** DA 10 73 SC*** 74 7.8
TCD" RA 10 74 D9*+* 76 6.9

DATA FOR SENSORS

SYMBOL TEMP IN OUTPUT

SAN-1- 74 74
S.*.* 72 72
SD*+* 76 76

ASC** 74 74

DATA FOR HI SELECTORS

SYMBOL 1ST INPUT SYMBOL SYMBOL I IN 2ND INPUT SYMBOL SYMBOL 2 IN OUTPUT

HIA* TCA** 7 TCB4* 7.5 7.5
HIC** MIA* 7.5 HIS** 7.8 7.9
His** TCZ** 7.8 TCD+I 6.9 7.9

+*PRINT"* PROGRAM RUN COMPLETE

SELECT ANOTHER PROGRAM BY TYPING RUN "'proSanname'(DOUBLE QUOTES)

EXECUTION MODE PROGRAM

ENTER THE DATA FILE NAME (UP TO 6 LETTERS)

THE FILE NAME ENTERED WAS CMODRUN
IS FILE NAME CORRECT (YES OR NO) ?

I ITERATION(S) COMPLETE
2 ITERATION(S) COMPLETE
3 ITERATION(S) COMPLETE
4 ITERATION(S) COMPLETE
5 ITERATION(S) COMPLETE
6 ITERATION(S) COMPLETE
7 ITERATIONIS) COMPLETE
8 ITERATION(S) COMPLETE
9 ITERATION4S) COMPLETE
10 ITERATION(S) COMPLETE
11 ITERATION(S) COMPLETE

FOR THIS 11 COMPONENT SYSTEM

*HEXECUTION** PROGRAM RUN COMPLETE

RUN CMODPRD TO SEE RESULTS OF EXECUTION

127

PRINT CONTENTS OF DATA FILE PROGRAM

ENTER DATA FILE NAME (UP TO B LETTERS) FOR THIS SYSTEM CMfZ kut
THE FILENAME ENTERED WAS CHODRUN

IS THIS CORRECT (YES OR NO) yeS

DATA FOR CONTROLLERS

SYMBOL ACTION THROT RANGE SET POINT INPUT COMPONENT TEMP IN VOLT OUT

TCA** DA 6 71 SAhi' 74 9

TCB** RA 8 72 Ss4Hl* 72 7.5

TCZ** DA 10 73 SC*** 74 7.9

TCD** RA 10 74 SD*114 76 6.9

DATA FOR SENSORS

SYMBOL TEMP IN OUTPUT

SA*** 74 74

SB** 72 72

SD*1 76 76

SC*** 74 74

DATA FOR HI SELECTORS

SYMBOL LST INPUT SYMBOL SYMBOL I IN 2ND INPUT SYMBOL SYMBOL 2 IN OUTPUT

HIA** TCA*) 9 TCB** 7.5 9

HIC** HIA14 9 His** 7.9 9

His** TCZ*II 7.9 TCD** 6.9 7.9

PRINT PROGRAM RUN COMPLETE

SELECT ANOTHER PROGRAM DY TYPING RUN 'proramnaue'' (DOUBLE QUOTES)

"-4X IR) IL'4

DATA EDIT PROGRAM

SELECT OPTION BY TYPING IN THE NUMBER INDICATED ON MENU

MENU

OPTION NUMBER

EDIT CONTENTS OF EXISTING DATA FILE

ADD ADDITIONAL COMPONENTS TO EXISTING DATA FILE 2
REMOVE COMPONENTS FROM EXISTING DATA FILE 3

ENTER THE DATA FILE NAME (UP TO S LETTERS) C10OODOUA)
THE FILE NAME ENTERED WAS CMODRUN

IS FILE NAME CORRECT (YES OR NO) 7 N

(REMEMBER TO USE *s AS NEEDED TO GET 5-CHARACTER SYMBOLS)

128

1111.'i k 11 C

HI SELECTOR 4EDIT** SUBROUTINE

THE DATA PRESENTLY STORED FOR HIA** IS

1ST INPUT COMPONENT - TCA*i
INPUT SIGNAL FROM TCA** - 9
2ND INPUT COMPONENT - TCB**
INPUT SIGNAL FROM TCB*- - 7.5

OUTPUT SIGNAL - 9

SELECT ITEM YOU WISH TO CHANGE FROM MENU

MENU

TO CHANGE TYPE IN
1ST INPUT COMPONENT SYMBOL I
2ND INPUT COMPONENT SYMBOL 2

TO CHANGE THE VALUE OF TCA114 YOU MUST 'EDIT' TCAI-

TO CHANGE THE VALUE OF TCDI- YOU MUST 'EDIT' TCB4-

TYPE IN APPROPRIATE NUMBER I

HEW SYMBOL OF 1ST INPUT COMPONENT - TC ZIM

DO YOU WANT TO EDIT ANDOTHER COMPONENT (YES OR NO) ? YES

(REMEMBER TO USE *t AS NEEDED TO GET S-CHARACTER SYMBOLS)

HI SELECTOR *EDIT * SUBROUTINE

THE DATA PRESENTLY STORED FOR HIS** IS

IST INPUT COMPONENT - TCA**
INPUT SIGNAL FROM TCZ-* - 7.8
2ND INPUT COMPONENT - TCD*
INPUT SIGNAL FROM TCD** - 6.9
OUTPUT SIGNAL - 7.8

SELECT ITEM YOU WISH TO CHANGE FROM MENU

MENU
TO CHANGE TYPE IN

1ST INPUT COMPONENT SYMBOL 1

2ND INPUT COMPONENT SYMBOL 2

TO CHANGE THE VALUE OF TCZ*-* YOU MUST 'EDIT' TCZ*"

TO CHANGE THE VALUE OF TCD** YOU MUST 'EDIT' TCD4I-

TYPE IN APPROPRIATE NUMBER 1

NEW SYMBOL OF 1ST INPUT COMPONENT -

DO YOU WANT TO EDIT ANBOTHER COMPONENT IYES OR NO) 7 NO

IEDIT** PROGRAM RUN COMPLETE

RUN CMODEXC TO UPDATE DATA FILE TO REFLECT HEW OUTPUTS

129

PRINT CONTENTS OF DATA FILE PROGRAM

ENTER DATA FILE NAME (UP TO 8 LETTERS) FOR THIS SYSTEM C/i0 A
THE FILENAME ENTERED WAS CMODRUN
IS THIS CORRECT (YES OR NO) Y

DATA FOR CONTROLLERS

SYMBOL ACTION THROT RANGE SET POINT INPUT COMPONENT TEMP IN VOLT OUT

TCA*4 DA 6 71 SA*H* 74 9

TCB** RA a 72 SIHi-I 72 7.5

TCZ** DA 10 73 SC*41 74 7.9
TCD+* RA 10 74 SD44 76 6.9

DATA FOR SENSORS

SYMBOL TEMP IN OUTPUT

SA*** 74 74
SB+* 72 72

S I4 76 76
SC**- 74 74

DATA FOR HI SELECTORS

SYMBOL 1ST INPUT SYMBOL SYMBOL 1 IN 2ND INPUT S'MBOL SYMBOL 2 IN OUTPUT

HIA44 TCZ* 9 TCD** 7.5 9
HIC44 HIA+* 9 Hi** 7.6 9

HIS** TCAi* 7.9 TCD** 6.9 7.8

*PRINT4 PROGRAM RUN COMPLETE

SELECT ANOTHER PROGRAM BY TYPING RUN "programnsoeo(DOUBLE QUOTES)

RU) tc l Cmpeyc.",

EXECUTION MODE PROGRAM

ENTER THE DATA FILE NAME (UP TO S LETTERS) CMODUA)

THE FILE NAME ENTERED WAS CMODRUN
IS FILE NAME CORRECT (YES OR NO) ? e7

1 ITERATION(S) COMPLETE
2 ITERATION(S) COMPLETE
3 ITERATION(S) COMPLETE
4 ITERATION(S) COMPLETE

5 ITERATION(S) COMPLETE
6 ITERATION(S) COMPLETE

7 ITERATION(S) COMPLETE
- ITERATION(S) COMPLETE
9 ITERATION(S) COMPLETE
10 ITERATION(S) COMPLETE
11 ITERATION(S) COMPLETE

FOR THIS 1l COMPONENT SYSTEM

130

EXECUTION PROGRAM RUN COMPLETE

RUN CMODPRD TO SEE RESULTS OF EXECUTION

PRINT CONTENTS OF DATA FILE PROGRAM

ENTER DATA FILE NAME (UP TO S LETTERS) FOR THIS SYSTEM CMVODkLIAJ
THE FILENAME ENTERED WAS CMODRUM
IS THIS CORRECT (YES OR NO)'41E5

DATA FOR CONTROLLERS

SYMBOL ACTION THROT RANGE SET POINT INPUT COMPONENT TEMP IN VOLT OUT

TCA44 DA 6 71 SA*** 74 9
TCB** RA 8 72 SN** 72 7.5
TCZ** DA 10 73 SC**I* 74 7.8
TCD** RA 10 74 SD*** 76 6.9

DATA FOR SENSORS

SYMBOL TEMP IN OUTPUT

SA*** 74 74
SB*** 72 72
SD*"* 76 76
SC*"* 74 74

DATA FOR HI SELECTORS

SYMBOL 1ST INPUT SYMBOL SYMBOL I IN 2ND INPUT SYMBOL SYMBOL 2 IN OUTPUT

HIA** TCZ** 7.8 TCB** 7.5 7.9
HIC** MIA** 7.8 HIS** 9 9
His" TCA** 9 TCD** 6.9 9

**PRINT+.* PROGRAM RUN COMPLETE

SELECT ANOTHER PROGRAM BY TYPING RUN 'p'ogvanan'lDOUBLE QUOTES)

RUN"~ CI1ODEDD~"

131

FOURT-H MUN

DATA EDIT PROGRAM

SELECT OPTION BY TYPING IN THE NUMBER INDICATED ON MENU
MENU

OPTION NUMBER

EDIT CONTENTS OF EXISTING DATA FILE I
ADD ADDITIONAL COMPONENTS TO EXISTING DATA FILE 2
REMOVE COMPONENTS FROM EXISTING DATA FILE 3

ENTER THE DATA FILE NAME (UP TO S LETTERS) CflODlZUAJ
THE FILE NAME ENTERED WAS CMODRUN

IS FILE NAME CORRECT (YES OR NO) ? VV>

(REMEMBER TO USE * AS NEEDED TO GET 5-CHARACTER SYMBOLS)

SINGLE INPUT CONTROLLER *REDIT** SUBROUTINE

THE DATA PRESENTLY STORED FOR TCB41 IS

SP - 72
TR - 8
ACT - RA
INPUT COMPONENT - SB34*
TEMP IN - 72

OUTPUT = 7.5

SELECT ITEM YOU WISH TO CHANGE FROM MENU

MENU
TO CHANGE: TYPE IN:

SET POINT 1

THROT RANGE 2
ACTION 3
3MPUT SYMBOL 4

TO CHANGE THE VALUE -F -TEMP IN', YOU MUST 'EDIT' SS4i-

TYPE IN APPROPRIATE NUMBER I
NEW SET POINT a so

DO YOU WANT TO EDIT ANBOTHER COMPONENT (YES OR NO) ? Wto

*EDIT** PROGRAM RUN COMPLETE

RUN CMODEXC TO UPDATE DATA FILE TO REFLECT NEW OUTPUTS

... uoc mo D PR L"

132

I'

PRINT CONTENTS OF DATA FILE PROGRAM

ENTER DATA FILE NAME (UP TO 9 LETTERS) FOR THIS SYSTEM
THE FILENAME ENTERED WAS CMODRUN
IS THIS CORRECT (YES OR NO)

DATA FOR CONTROLLERS

SYMBOL ACTION THROT RANGE SET POINT INPUT COMPONENT TEMP IN VOLT OUT

TCA - DA 6 71 S4*11* 74 9
TCB" RA S SO 51*11 72 7.5
TCZ** DA 10 73 SC*** 74 7.6
TCD** RA 10 74 SD*4* 76 6.9

DATA FOR SENSORS

SYMBOL TEMP IN OUTPUT

SA*** 74 74
SPANN1 72 72
SD***- 76 76
SCI** 74 74

DATA FOR HI SELECTORS

SYMBOL 1ST INPUT SYMBOL SYMBOL I IN 2ND INPUT SYMBOL SYMBOL 2 IN OUTPUT

MIA** TCZ** 7.6 TCB** 7.5 7.6
HIC** HIA** 7.9 His** 9 9
HIB** TCAI- 9 TCD*4 6.9 9

PRINTI PROGRAM RUN COMPLETE

SELECT ANOTHER PROGRAM BY TYPING RUN " programnama' (DOUBLE QUOTES)

EXECUTION NODE PROGRAM

ENTER THE DATA FILE NAME (UP TO S LETTERS) C#tOD(JA)

THE FILE NAME ENTERED WAS CMODRUN
IS FILE NAME CORRECT EYES OR NO) ? Y

i ITERATION(S) COMPLETE
2 ITERATION(S) COMPLETE
3 ITERATION(S) COMPLETE
4 ITERATION(S) COMPLETE
S ITERATION(S) COMPLETE
6 ITERATION(S) COMPLETE
7 ITERATION(S) COMPLETE
S ITERATION(S) COMPLETE

9 ITERATION(S) COMPLETE
10 ITERATION(S) COMPLETE
11 ITERATION(S) COMPLETE

FOR THIS IL COMPONENT SYSTEM

133

K~m~m mubi b~ii~lllll7.

EXECUTION PROGRAM RUN COMPLETE

RUN CMODPRD TO SEE RESULTS OF EXECUTION

RUOU "CA00DPRO"

PRINT CONTENTS OF DATA FILE PROGRAM

ENTER DATA FILE NAME (UP TO S LETTERS) FOR THIS SYSTEM C'oDl~.uAJ
TH4E FILENAME ENTERED WAS CMODRUN
IS THIS CORRECT (YES OR NO) lf!5

DATA FOR CONTROLLERS

SYMBOL ACTION THROT RANGE SET POINT INPUT COMPONENT TEMP IN VOLT OUT

TCA*U* DA 6 71 SAI-14 74 9

TCB** RA a so SS*** 72 10.54TCZ** DA 1 73 SC*** 74 7.8
TCD** RA 10 74 SD*4HI 76 6.9

DATA FOR SENSORS

SYMBOL TEMP IN OUTPUT

56414* 74 74
S3*** 72 72
SD+*-* 76 76
SCU** 74 74

DATA FOR HI SELECTORS

SYMBOL 1ST INPUT SYMBOL SYMBOL I IN 2ND 1INPUT SYMBOL SYMBOL 2 IN OUTPUT

MIA** TCZ** 7.8 TCU** 10.5 10.5

NIC** MIA** 10.5 HIS** 9 10.5

HIS** TCA**I 9 TCD1 6.9 9

**PRINT+* PROGRAM RUN COMPLETE

SELECT ANOTHER PROGRAM BY TYPING RUM ''programname''(DOUBLE QUOTES)

134

Bibliography

1. Building Energy Analysis Users Manual. Users Manual.
Elite Software Development Inc., Bryan, 1983.

2. Clark, D. R., Hurley, C. W., and Hill, C. R. Ph.D.
"Dynamic Models for HVAC System Components," ASHRAE
Transactions, 91 IB: 737-751 (1985).

3. Department of the Air Force. Engineering Technical
Letter 83-1: Design of Control Systems for Heating,
Ventilating and Air Co'nditioning Systems-HVAC-T. ETL
83-1. Washington: HQ USAF, 16 February O8TT

4. Department of the Air Force. Heating, Ventilating, and
Air Conditioning Systems: OPERATIONS AND MAINTENANCE.
AFR 91-39 Draft. Washington: HQ USAF, Not yet released.

5. Department of the Air Force. Direct Digital Control of
Heating, Ventilating, and Air Conditioning Equipment.
Policy Letter. Tyndall AFB: HQ AFESC, 21 March'ig65.

6. Direct Digital Control of Heating, Ventilating, & Air
Conditioning Stystem. Brochure. Computer Controls
Corporation, Wilmington MA, undated.

7. Gottfried, Byron S. Schaum's Outline Series of Theory
and Problems: Programming with BASIC. New York:
McGraw Hill Book Company, 192.

8. Hackner, R. J., Mitchell, P. E. Ph.D, and Beckman, W.
A. Ph.D., "HVAC Systems Dynamics and Energy Use in
Buildings--Part II," ASHRAE Transactions, 91 IB: 781-
795 (1985).

9. Haines, R. W. Control Systems for Heating,
Ventilating, and Air Conditionin (Second Edition).
Albany: Delmar Publishers, 1978.

10. Hill, C. R. Ph.D. "Simulation of a Multizone Air
Handler." ASHRAE Transactions, 91 IB: 752-765 (1985).

11. HVAC Basics: Fundamentals of Control. Company
Training Manual. Johnson Controls, Inc. Milwaukee WI,
1980 edition.

12. Jakobczyr, Jack S. "Direct Digital Control for VAV

135

6k,& &I

Terminals," Heating Piping and Air Conditioning, 54 2:
77-81 (February 19d2).

13. Lau, A. S et al. "Development of Computerized Control
Strategies for a Large Chilled Water Plant," ASHRAE Trans-
actions, 91 IB: 766-780 (1985).

14. Mau, Ernest E. Secrets of Better Basic. Rochelle Park
NJ: Hayden Book Co., 1983.

15. Research Report

Schultz, Maj Robert J., Kenna, Maj Thomas M. and Kapka, Capt
Larraine A. An Investigation into the Operation and
Maintenance oilH~ea~tng, Ventila-ng and Air Condi-t-ioning
Systems in the United States Air Force: Final Report,
School of Civil Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, 18 November 1982.

16. Sanyo Basic Reference Manual. Users Manual. Sanyo

Business Systems Corp., Computer Divisin, Moonachie NJ,
undated.

17. Stoecker, W.F. ed. Procedures for Simulating the
Performance of Components and Systems for Energy
Calculations, (Third Edition). New York: ASHRAE Task
Group, 1975.

18. Tom, Maj Steven T. "Maintainable Control Systems,"
ASHRAE Journal, 27 9: 38-40 (September 1985).

19. Seminar Abstract
Urbanczyk, James M. "A Manufacturer's Perspective",
Direct Digital Control--Opportunities for Standardiza-
tion. ASHRAE Transactions. 91 IB: x I985.

20. Telephone Interview
Clark, Dr Donald R. US National Bureau of Standards.
Personal Interview. US National Bureau of Standards,
Gaithersburg MD, 3 February 1986.

21. Telephone Interview
Struthers, Larry. HQ AFESC/DEMM. Personal Interview.
HQ AFESC, Tyndall AFB Florida, 29 August 1986.

22. Telephone Interview
Wilson, Edward E. HQ AFESC/DEMM. Personal Interview.
HQ AFESC, Tyndall AFB Florida, 26 November 1985 and 29
August 1986.

136

VITA

Captain Steven J. Barlow was born on 21 February 1956

in Jersey City, New Jersey. He graduated from high school

in North Arlington, New Jersey, in 1974 and attended the

New Jersey Institute of Technology from which he received

the degree of Bachelor of Science in Mechanical Engineering

in May 1979. He received a commission in the USAF through

the ROTC program in December, 1978. He was called to

active duty in January, 1979 and served as design engineer

and subsequently as the Chief, Contract Management at Shaw

AFB, South Carolina. He then served as a Red Horse project

engineer with the 554 CES(HR), at Osan AB, Korea from

December, 1981 until December, 1982. Upon returning from

Korea, he served as an industrial facilities engineer with

the R&D, Civil Engineering Directorate, Aeronautical

Systems Division at Wright-Patterson AFB. While serving at

ASD, he received his registration as a Professional

Engineer in the State of Ohio and served in this capacity

until entering the Graduate Engineering Management Program

of the School of Systems and Logistics, Air Force Institute

of Technology in May, 1985.

Permanent address: 5 Foothill Drive

Kinnelon, New Jersey 07405

137

J~~~~W U.*T.C*4~.

UNCLASSIFIED
SECURITY CLASSIFICATION4 OF THIS P-AGE 7
I REPORT DOCUMENTATION PAGE

REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2. SECURITY CLASSIFICATION AUTHORITY 3. OISTHI BUTIONAVAILABILITY OF REPORT

2b. OECLASSIF ICATION/OWNGRAOING D Approved for public release;
di stritut ion unlimit ed.

4. PERFORMING ORGANIZATION REPORT NUMBEM(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GEM/DET/86S-1

4& NAME OF PERFORMING ORGANIZATION tL. OFFICE SYMBOL 7. NAME OF MONITORING ORGANIZATION
School of 1.6ppumble
Systems and Logistics AFIT/DET

e. ADORESS (City. Stafe Mid ziP Code) 7b. ADOR.SS (City. State and ZIP Codu)

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

GIL NAME OF FUNDINGJSPONSORING 8b. OFFICE SYMBOL S. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION &Pl'kbk)

&6. ADDRESS 101n.gre md ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNI1
ELEMENT NO. NO. NO. NO.

11. TITLE (Incude Security Clauificationj

See Box 19
"2. PERSONAL AUTHOR(S)

Steven J. Barlow, B.S., P.E., Capt, USAF
13a. TYPE OF REPORT 13L TIME COVERED 14. DATE OF REPORT Yr.. Mo.. Day) 15. PAGE COUNT

MS Thesis FROM ___ To_- 1986 September 145
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 16. SUBJECT TERMS (Continue On IVorwee If neej erd Wntify by bJock number)

IEL GROUP SU.G. Computer Program, Control Systems, Heating,
1 Ventilating, Air Conditioning

19. ABSTRACT (Continue on mn if nmer and ide"tIfy by biDck number)

Title: PROTOTYPE OF A COMPUTER METHOD FOR DESIGNING AND
ANALYZING HEATING, VENTILATING AND AIR CONDITIONINGPROPORTIONAL, ELECTRONIC CONTROL SYSTEMS

Thesis Advisor: Steven T. Tom, Ph.D., Major, USAF

Assistant Professor of Mechanical Engineering

for Resecxch and Prohuuloma De,,opo
Air Force inmulte of Tachnolog T (M-

Nda-patena iF4 514 4sm3
20. DISTRISUTION/AVAILASILITY OF ABSTRACT 21. ABSTRACT SECURITY C1LASSIFICATION

- CLASSIFIEO/UNLIMITED W SAME AS RPT. 0 OTIC USERS 0 UNCLASSIFIED
22L. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL

Steven T. Tom, Ph.D., Major, USAF 5 AFIT/DET

DO FORM 1473.83 APR EDITION OF I JAN 73 IS OBSOLETE. UNCLASSIFIED
46' q . .SECURITY CLASSIFICATION OF THIS

UNCLASSIFIED
SCURITY CLASSIFICATION OF THIS PAGE

* The Air Force needs a better method of designing new
and retrofit heating, ventilating and air conditioning
(HVAC) control systems. Air Force engineers currently
use manual design/predict/verify procedures taught at
the Air Force Institute of Technology, School of Civil
Engineering, HVAC Control Systems course. These
existing manual procedures are iterative and time-
consuming. The objectives of this research were to:
(1) Locate and, if necessary, modify an existing
computer-based method for designing and analyzing HVAC
control systems that is compatible with the HVAC
Control Systems manual procedures, or (2) Develop a new
computer-based method of designing and analyzing HVAC
control systems that is compatible with the existing
manual procedures. Five existing computer packages
were investigated in accordance with the first
objective: MODSIM (for modular simulation), HVACSIM
(for HVAC simulation), TRNSYS (for transient system
simulation), BLAST (for building load and system
thermodynamics) and Elite Building Energy Analysis
Program. None were found to be compatible or adaptable
to the existing manual procedures, and consequently, a
prototype of a new computer method was developed in
accordance with the second research objective. The
prototype method developed the architecture needed to
meet the manual procedure compatibility requirement and
modeled three electronic components: a sensor,
controller, and hi signal selector. The method
incorporates four programs, written in BASIC, and
copies of the programs, flowcharts, and sample runs are
'included.-..The method was developed to be easily
expandable *nd recommendations for further development
are given.

UNCLASSIFIED
%~ 4 ,

moo*1

