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Abstract

Jointly Constrained Bilinear Programming:
The Linear Complementarity Problem

Faiz A. Al-Khayyal
School of Industrial and Systems Engineering

Georgia Institute of Technology
Atlanta, Georgia 30332-0205

* -4-investigaterefinements to an existing nonconvex programming .

algorithm that exploit the special structure of linear complementarity

problems. WE prove#that the working bases in the linear programming

subproblems can be reduced from 3nx3n to nxn. In addition, we-shownthat

'A the procedure (in general, infinitely convergent) is finite under a % -

% nondegeneracy assumption. The procedure compares favorably with two

recently proposed algorithms and is competitive with a third related

. . method. .
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Jointly Constrained Bilinear Programming:
The Linear Complementarity Problem

Faiz A. Al-Khayyal
School of Industrial and Systems Engineering

Georgia Institute of Technology

Atlanta, Georgia 30332-0205

In a recent paper, Al-Khayyal and Falk [1] describe a branch-and-

bound algorithm for finding a global solution to the nonconvex program

minimize f(x) + x y + g(y) -

~subject to (x,y) E s n a I

..

where f and g are convex over the feasible region, which is defined by

j ' . the intersection of a nonempty, closed, convex set S and a compact hyper- i~i:i
9 rectangle Q. For an appropriate choice of a the above problem contains

as a special case the well-known linear complementarity problem (LCP) of

ffinding a real n-vector x such that

~ T
.. Mx + q > 0, x >0, x Mx+q) 0, (2)

where M is a given real square matrix and q is a given real n-vector.
The relationship of (2) to (1) is apparent from the following indefinite

quadratic programming formulation of (2): VAN

JI

T -minimize x y

..-. .
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*subject to -Mx+y =q, x ;o 0, y > 0. (3)

To solve (3) by the branch-and-bound method in [1] we need a compact .

hyperrectangle a that contains at least one complementary solution. Such

a set is easy to construct in this case because, when the LCP has a solu-

tion, at least one complementary solution is a basic feasible solution of

the system -Mx+y = q. Hence an appropriate a may be constructed by

bounding all basic solutions using the following result [6, Lemma 2.1].

Lemma 1 Let x be a basic solution of the mxn system Ax f b. Then

", M, a'-

" ~where .;!

wr a =maxll aijl and max{Jb.

Tighter bounds can be obtained, in the case when the set D = {x: Mx+q .

0, x > O} is bounded, by solving the n linear programs max{x1 : xeD} for

j - 1,...,n. Once upper bounds on x are determined, similar bounds for

* k y = Mx+q are easily computed.

In this paper we investigate refinements to the method in [1] that

.~-exploit the structure of problem (3). In particular, we show that the

size of the working bases in the linear programming subproblems can be

reduced from 3nx3n to nxn, and that convergence is finite for linear

*.. complementarity problems with nondegenerate complementary solutions. We

also compare the procedure to three recent algorithms. The preliminary

findings are that the proposed procedure is faster than the cutting plane

%"..

.. .5.]
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method of Ramarao and Shetty [71, and can solve more problems than the

piecewise linear equation approach of Solow and Sengupta [8]. Only the

enumeration procedure of Al-Khayyal [3] is potentially faster, but the

, ~.,* two methods appear to give comparable execution times on some problems.

For brevity, we assume knowledge of the algorithm in (I] and will make

reference only to components of the latter procedure that are provably

refined here.

. , r. 1. Algorithmic Refinements

For the general problem, the algorithm in [I] branches into four

subproblems at each stage. These problems are defined by partitioning

.. the hyperrectangle S into four subsets in the following way. Given a

point (x,y)Cn = {(x,y): LxXUx, <yxyUy}, we choose an index I to speci-
x X Iy y1

*1 4
fy the partition of a into the four sets i , ,where

= {(x,y): it <x<x' 1  ,y""y"

xI YI
*£xiX u~ yiu , il

it < I <y< I1
X i ' Y Yi Yi--

42

: = {(x,y): X4x I 4XlU l, <yYl,"

I I

" i Ux Yi x Yi U i*l},

V %°

3a= {(x,y):.x x 1  , Y1(YIUy1 ,

-. 
t x I x, , il}, ".

# £xl£Yl &i &Uy

I I ""

,. C-)-9,1

-:.V:
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= a {(x,y): I'" 2:2:I;Uy , ," 4

Each of the four subsets is a candidate for future partition in the

'search for an optimal solution. Without loss of generality, we may

:: "- assume that u > x 0 andUy >9 £y)0.

£ "A solution to the linear complementarity problem (2) must satisfy -

|~ %_

...'" xl~ i = 0 for all i. Hence, the index I is chosen such that xiY I > 0 at a .'-:

_ .:-.:
feasible noncomplementary solution (x,y). The set chosen for partition

i is the oeangall candidate subsets that prdcsthe lowest value of

-T-..Sx y, where each subset has a point (x,y) associated with it. Clearly,

the subset s can be eliminated from further search (fathomed) since it

cannot contain a complementary solution. We show in the next section

that the set u can be fathomed if either > 0 or Y > 0 together with

.~. x~y1 > 0. Thus, I is a partitioning index for Rj only if 9.l 9.y1

In this way, the active nodes (corresponding to subsets that potentially .
contain complementary solutions) are guaranteed to satisfy 9. ffi 0 for

•all i. "

is The greatest computational savings are realized from the refinement
of the subproblem solved at each node. Let s be the active partition

associated with an arbitrary node. The subproblem solved at that node is

> defne hs , I: isapriinn•nexfraol ft0

' . ".. ' I

Inti-ay.h'ctv:oes(orspnigtosbes htptetal

conai coplmntr souios..egarnee o..ifyt t o

x %""y

[-:( ,. £ al i...,..., [:; '".,,:_)."_-_,z_.'',_,,.c ._ _,_.2 .
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minimize *(xy)

subject to (x,y)eS nn (4)

where S = {(xy): -Mx+y = q} and

+ Yi + -u u
*(x,y) I max{ y xi +x Uxy X + UxY i x yi-

t nngi ot T
is the convex envelope of x y over a (see [1]). Note that ¢(x,y) > 0 on

the nonnegative orthant since, by assumption, Lx > 0-ndX> . h

I ~ general procedure calls for solving this problem using an equivalent

linear program involving 3n decision variables (2n are lower and upper

bounded, and n are unrestricted) and 3n constraints (n are equality and

2n are inequality). For the LCP, however, we can improve on the linear

programming subproblems. To simplify the presentation, assume that

'-' S S1 * 0 , thereby guaranteeing the existence of an optimal solution to. .'

problem (4). Let (x,y) denote such a solution and let v = *(x,y).

-- Consider the linear program

4 ,. .. . .

minimize 4(x, y)

" subject to (x,y)cSn C (5)

where 4(x,y) = x + Tx
y ."qr

C {(x,y): x , Y)Ly, (uy- X )x + (u-i )y  u , icN},

- WO

."* 5:.

.. ...t.
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and N (1,2,...,n}. When S nC * ,let (y)denote an optimal solution .

to problem (5) and let = - xy) Notice that C ca and that O(x,y) >

+(x,y) for all (x,y). In addition, *(x,y) > 0 for (x,y) > (0,0). We

show the equivalence of problems (4) and (5) for active partitions a, but

first we prove the following simple Lemma.

Lemma 2 If Sn S contains a complementary solution, then v=v=0.

IProof Suppose (x ,y )CS nSI is a complementary solution. By con-
T

struction, we have LX>0 and 9L y 0 such that L. t. = 0. I t

follows that (x ,y )sC. Because *is the convex envelope of

T 'X y over 9i, we have

0 (X*) T y* (x*,y* > *(x-y) *j(X,-Y) > 0.

Theorem 3 Problems (4) and (5) are equivalent in the sense that either

P~' r**~the optimal solution of one solves the other, or S n does

~I2 not contain a complementary solution.

Proof We first show that either the optimal solutions of problem

(4) solve problem (5) or S nil does not contain a complemen-.

tary solution. If (x,y)PeC, then *(x'y) = (,x,y). Hence,

v =min{O(x, y): (x, y)eS n C

min{4*(x, y) : (x, y)eS n C

>minj4,(x, y): (x, y) cSfn j v

and therefore (;,y) solves problem (5). Now suppose that
16

~ I,,
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(x,y)%C. Then v > 0 and, by Lemma 2, S n a does not contain a

complementary solution.

To complete the proof, we now show that either the opti-

mal solutions of problem (5) solve problem (4) or S n does

not contain a complementary solution. The latter holds when

S nC 0, since every complementary solution in S no must

necessarily be in C. Now assume that S n C 0. We consider

two cases: when v =0 and when v > 0. First assume that v =
0 and recall that ( is feasible to problem (4). We have

0= = *(iy) , (,y) = v , 0.

%

Hence 0(x) = 0 and (x,y) solves problem (4). Finally,

assume that > 0. We now prove that v > 0 and invoke Lemma

2 to claim that S nl does not contain a complementary solu-

tion. By contradiction, assume that v > 0 and v = 0. Then

0 = O(X,y) ,(x,y) > 0

and (x,y) is feasible to problem (5); otherwise, (x,y)gC and %

'(x,y)>O. Hence,

4. 
4 '.. m

:,o ( x y ,( ,)0 > 0 ..

which is a contradiction. Thus we conclude that v > 0. a

,4,

... .. .. .. .. .. .. .. .. .. .. .. "

. -

"0 - • {•
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By exploiting the foregoing theorem, the branch-and-bound algorithm

ill involves linear programming subproblems with working bases of order

n. This is achieved by scaling the variables in problem (5). Specifi-
IJ.

cally, for each ieN, let

x - (d y) (ux-x) (6)

' :: xi Ui~yi  - "-Y-"-(6

In terms of the new variables, problem (5) becomes "

min c x + dTy '

* .-,. '.-

subject to Ax' + By' f q (7)

x' + y' ( b

'. y,. ..yxf >x

S ". ,

where the parameters c,d,A,B,b,, and Iy, are easily derived from the
x

coordinate transformation (6). Problem (7) need not be solved to comple-

tion if a complementary solution is uncovered. It is easy to recognize

when such a solution is encountered because x y = 0 if and only if

T
x') y' 0.

The linear program (7) has n equality costraints, n generalized V
V upper bounding (GUB) constraints, and 2n lower bound (LB) restrictions on

the decision variables. Recall that both GUB and LB constraints can be

handled separately (see, e.g., Chapter 6 in Lasdon [41). Therefore, all

- .. "

gZ

, .:,/. . . . , -. , .-..- - - ,.., ".
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S pivot computations can be performed using only an nxn basis matrix, which

is a considerable improvement on the 3nx3n basis that arises in the gene-

ral case.

2. Finite Convergence

For the general problem (1), the branch-and-bound algorithm [1] can

only be guaranteed to converge in the limit. In this section we prove

that the process is finite for linear complementarity problems whose

solutions are nondegenerate extreme points of S nQ. We first show that

the procedure always branches into three subproblems and then argue that

S-- . all paths in the branch-and-bound tree are fathomed after a finite number

of branches under the nondegeneracy assumption.

Let Q represent the initial hyperrectangle and let C be the associ-

ated set in problem (5). Thus, . = x = 0 and t(x,y) = 0 for all (x,y).

Suppose (x,y)ES nC such that xlY I > 0. Note that (x,y) solves problem

(5). Let ai . ,Q be the partition of Q defined above, and let

1 4 1 4
_ I C ,...,C and ,..., be the associated sets and objective functions,

respectively, in problem (5). For j = 1,...,4, let (Z zJ) and (ux ,uy)
xy xy

denote the lower bound and upper bound vectors in .
"- 3 3 f3"

Since (U. ,i ) > (0,0), the set Q2 cannot contain a complementary
X. y-

jsolution; therefore, we fathom that subset. For j = 1,2,4, if S n C "

then by Theorem 3 the set QJ also does not contain a complementary solu-

tion and is consequently fathomed. Otherwise, let (xJ,y j) denote an

optimal solution to problem (5) with , i and C = C For conveni-

ence, we shall henceforth designate such problems as (5-j). Now, for j - .I
01

2,4, if 4(xJ,y) > 0 then the subset W is fathomed by Lemma 2. Hence,

• I . .

.5i 
'
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set Sl is a candidate for further partition only if 0J(xJ,yj ) - 0. In

2 4
particular, for j = 2 and j = 4 we must have yl = 0 and xI = 0,

2 4respectively. Consequently, all subsequent subdivisions of 2 and S must

involve an index different from I. Otherwise an optimal solution to (5)

with a cJ (j-2,4) would have both xI and y, components positive, and by

Lemma 2 this means that a is fathomed. Therefore, any path in the

branch-and-bound tree that only involves subsets of the form Q2 and 4

can have at most n branches.

So long as 2X 2 0, the index i can conceivably arise repeat-

edly for partitioning a sequence of nested subsets. We argue below that

the sequence is finite under the nondegeneracy assumption. Suppose the

index I is used, in accordance with the algorithm, to repeatedly parti-

iktion the set Q For k=l,2,..., let a denote the subsets of Q that

Jk Jk

have lower bounds of zero for both xI and Y; that is, o= 0.
I y1

Similarly, let C and 41 be the associated sets and objective functions

in problem (5-J Further assume that a nondegenerate complementary
./ ~~* * J ' ' I

• . solution, say (x ,y ), is in C for all k. Thus, we assume that the
'" ~ ~* *Jk,,- i

algorithm is converging to the point (x ,y ) by partitioning Qk , for

-k Jk
each k, into four subsets using the same index I. With (x ,y denot-

d , " ing an optimal solution to problem (5-J), we have
.-

"" Cj I CJ

A. ., j == . .

"" * * Jk

k-I ^. 1, k~l ..- '

.i _
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and

Jk yk * *

(x ,y (x

where we assume for the moment that the sequence (x k yk)} converges to

(x ,y ) in the limit. We also have, by construction, that (x ,y ) is a

-; nondegenerate extreme point of Sn C for every k whenever (x ,y ) is a

nondegenerate extreme point of Sn SI.

Under the nondegeneracy assumption, (x ,y ) is a locally unique

global solution to the problem

T."
- minimize x y

subject to (x,y)CS n C """.

-Is f e ,S (k ik* *for every k. Since (x ,y )I converges to.(x ,y ) then for suffi-

ciently large k the point (x ,y ) uniquely solves the linear program

, minimize (y ) + (x y

subject to (x,y)eSfnC . (8)

Thus, convergence is achieved finitely when a linear program is solved at

a point in the converging sequence which is sufficiently close to the

. nondegenerate limit point (x ,y ). This, in fact, is already a feature

of the general algorithm in (1].S.

The following scheme is implemented in the algorithm and was origi-

nally intended to accelerate convergence to nonextreme point global solu-

,. 

a--:

, .o-* " ," "" "".-.•." •" -"" Z"- .''' ..',o 
' , ' -""',.-',, ." 

","- . -".., , '." e ." L-' "'".% 
"'• ".

. . .-p. 

.; %, ,% ,., 
. .. ,_ . ._. 
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tions to jointly constrained bilinear programs. Before partitioning

using the solution (x ,y ) of problem (5-jk) we solve the linear pro- N k"

gram

minimize ( X+ (
. Jk

subject to (x,y) S n 1 (9)

and let (X y denote an optimal solution. Finally, we minimize x y
Jk y~k -Jk k z~e'p.".. "

over the line segment connecting (x and (and use the..

minimizing point to define the partiton of a Notice that the only

difference between problems (8) and (9) is in the sets C and 2 which
c_4

S intersect with S. In general, we would expect the optimal objective

Jk k .

value of (9) to be less than or equal to that of (8) because C co

However, because every complementary solution in Q must also be in C

for k sufficiently large and assuming nondegeneracy of the limit point

(X ,y ), we have that (x y also solves problem (8). Therefore, our

algorithm converges finitely for linear complementarity problems that

have at least one complementary solution, each one being a nondegenerate ..

extreme point of the associated polyhedral set.

." 3. Concluding RemarksS"..

A related enumeration procedure [3] always branches into two nodes

and solves the subproblems of minimizing x1 and minimizing y, over a face

(specified by the parent node) of the set S+  {(x,y)eS: x0O, y0O), where

4



13

:%e%

the index I and the branching node are selected in the same way as in our

algorithm above. If the minimum value of xI or yl is zero, then the

associated node represents a face of S+ having a lower dimension than the

face of the parent node; otherwise, the corresponding node is fathomed.

A comparison between the bilinear programming approach above and the

enumeration procedure in [3] reveals that minimizing xI over the face

4
defined by the branching node is roughly equivalent to minimizing 41 (x,y)

over S n(CI uC 4). Analogously, minimizing yl over the branching node's

2 1 2face in [3] corresponds to minimizing * (x,y) over S n (C u C ) in our

procedure. Another difference between the two strategies is that the

branching variable is fixed to zero in descendant nodes (thus defining

the faces of the offspring) in [31, whereas the branching variable in our

procedure can conceivably take on nonzero optimal values in descendant

subproblems, although this is discouraged by our construction which main-

tains a positive objective function coefficient for the branching vari-

ables in all offspring subproblems.

II An implementation of the bilinear programming procedure, which does

d not exploit the refinements described herein, was tested against the

S enumeration procedure in a preliminary experiment reported in [2]. The

enumeration procedure solved all seven problems faster, but only two

problems ran faster by one order of magnitude and the methods had run

times within 25% of each other on another two problems. This suggests

that the two methods are comparable on some problems. Val

Despite the poor implementation of the bilinear procedure, it never-

theless outperformed the cutting-plane method of Ramarao and Shetty [7] X%,%

on the only two problems in common among the test problems solved; speci-

.-,...

%F

".'' ''' '.". . . .," " " '"e " 
"  

"" " " "" " " " " " "" "" " .' " - " " . . . ." "'" ",' ... . . , . . . ".'
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fically, problems 5 and 6 in [2] correspond to problems PB-20-02 and

PB-20-05 in [7], respectively. These problems were solved on the same

machine (a CDC Cyber 170/730)and produced run times favoring our

procedure of 6.7 seconds versus 27.57 seconds for problem 5 (PB-20-02)

and 12.7 seconds versus 25.85 seconds for problem 6 (PB-20-05). Our code

was unable to solve problems with more than twenty variables because of

*J core memory limitations. However, the memory size burden can be con-
•.

siderably reduced by the refinements to the procedure presented above.

:. Another novel approach to solving the linear complementarity problem

. is the method proposed by Solow and Sengupta (8] which involves finding

roots of a piecewise linear convex function. They prove their algorithm

. .. to be finite when all of the principal minors of M are positive (i.e.,

when M is a P-matrix). While their approach is interesting, the computa-

tional results they reported using positive definite matrices still give ..

Lemke's method [5] an edge. By contrast, our approach is finite for

arbitrary matrices and can solve problems on which Lemke's method fails. .'.:

.4 4 -.

.06 .--.

Z N N -. ei .,

.4c *4.
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