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Abstract

Jointly Constrained Bilinear Programming:
The Linear Complementarity Problem

Faiz A, Al-Khayyal
School of Industrial and Systems Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332-0205

- ' .
; IR TR

4we—investigate&refinements to an existing nonconvex programming

algorithm that exploit the special structure of linear complementarity

problems. W& prove”that the working bases in the linear programming
Rk

] »
subproblems can be reduced from 3nx3n to nxn. In addition, we-show%that

the procedure (in general, infinitely convergent) is finite under a
nondegeneracy assumption. The procedure compares favorably with two
recently proposed algorithms and is competitive with a third related

method.

(\

Key Words: Bilinear Programming, Linear Complementarity Problem,
Quadratic Programming.

Abbreviated Title: Jointly Constrained BLP: The LCP

This work was supported in part by the Office of Naval Research under
Contract No. NOOO14-86-K-0173 and by general research development funds
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Ko . In a recent paper, Al-Khayyal and Falk [l] describe a branch-and-
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- i the intersection of a nonempty, closed, convex set S and a compact hyper- t 1
O L.
! AN
; .\ rectangle Q. For an appropriate choice of @ the above probtlem contains oo _:
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b N as a special case the well-known linear complementarity problem (LCP) of :"_':
’ A eR
E finding a real n-vector x such that P
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NI T
Y Mc+q»0, x>0, x (Mx+q) =0, (2)
=
. where M is a given real square matrix and q is a given real n-vector.
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LY
S subject to -Mx+y = q, x >0, y > 0. (3)
)
A
E ) To solve (3) by the branch—and-bound method in [1] we need a compact
_' ::'..‘ hyperrectangle  that contains at least one complementary solution. Such
! f‘ a set is easy to construct in this case because, when the LCP has a solu- L
Wil

-

» roL
i + tion, at least one complementary solution is a basic feasible solution of R
'
ﬁ N the system -Mx+y = q. Hence an appropriate Q may be constructed by '.'?." :
[+ OAY
Y ," s

bounding all basic solutions using the following result [6, Lemma 2.1].
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-“' . Lemma 1 Let x be a basic solution of the mxn system Ax = b. Then TN
SN E— P
b "x: Y
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4 where ;_;
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a = max”aij” and B = m;\x{lbjl}.
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Tighter bounds can be obtained, in the case when the set D = {x: Mx+q > ,‘:\'_’.:

L F

F 0, x> 0} is bounded, by solving the n linear programs max{xj: xeD} for ;;:r_"
N PN
.t IR
[». j=1,.ee,n. Once upper bounds on x are determined, similar bounds for
"> = ".." :
SERG y = Mx+q are easily computed. BRI
¢~ In this paper we investigate refinements to the method in [1] that N
~ - e
. exploit the structure of problem (3). In particular, we show that the e
.- ‘ A
:. ',: size of the working bases in the linear programming subproblems can be N W

LS 34 .
reduced from 3nx3n to nxn, and that convergence is finite for linear &
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; 7 complementarity problems with nondegenerate complementary solutions. We :‘;\ﬁ
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method of Ramarao and Shetty [7], and can solve more problems than the
plecewise linear equation approach of Solow and Sengupta [8]. Only the
enumeration procedure of Al-Khavyal [3] is potentially faster, but the
two methods appear to give comparable execution times on some problems.
For brevity, we assume knowledge of the algorithm in [1] and will make
reference only to components of the latter procedure that are provably

refined here.

;i'

1. Algorithmic Refinements EEEE\
For the general problem, the algorithm in [1] branches iato four ;ii;i
subproblems at each stage. These problems are defined by partitioning SUF{J
WV

the hyperrectangle @ into four subsets in the following way. Given a ::?;.

LA g
" L]
. 1 3

point (x,y)eQ = {(x,y): ¢_<x<u_, % <y<u_}, we choose an index I to speci- SRS
x x> Ty y A
fy the partition of Q into the four sets al,...,nh. where e
N
, ) _ RN
- . RS
@ = {(y): b 19D by Y19, o
:I.f:
L &x <u , L <Ky <u , 1*1}’ ;' .
*oboxe by S8

2 - -
Q" = {(x,y). xI<xI<uxI, zyI<yI<yI,

L <x <u_, & <y <u_, i#l},
I S 1

3 - -
Q = {(x,y):‘xI<xI<ux , yI<yI<uy .
I I

L<x.<u_, L <y <u , iz2I},
g Loxg oy Loy
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4 - -
a = {(x,y): sz<xI<xI, Y1<y1<uy1.

£x1<xi<ux1, zyi<yi<uy1, i#I}.
Each of the four subsets is a candidate for future partition in the
search for an optimal solution. Without loss of generality, we may
assume that u > L 2 0 and uy > 2y > 0.

A solution to the linear complementarity problem (2) must satisfy
X,y = 0 for all 1. Hence, the index I is chosen such that ;I;I >0 at a
feasible noncomplementary solution (;,;). The set Q chosen for partition
is the one among all candidate subsets that produces the lowest value of
;T;, where each subset has a point (;,;) associated with it. Clearly,
the subset 93 can be eliminated from further search (fathomed) since it

cannot contain a complementary solution. We show in the next section

that the set Q can be fathomed if either zx >0 or zy > 0 together with
I 1

X ; > 0. Thus, I is a partitioning index for Q only if g = ¢ = 0,
*1
I 1 Y

In this way, the active nodes (corresponding to subsets that potentially

contain complementary solutions) are guaranteed to satisfy lx g =0 for
171

all 1.

The greatest computational savings are realized from the refinement
of the subproblem solved at each node. Let Q be the active partition
associated with an arbitrary node. The subproblem solved at that node is

defined as
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minimize  ¢(x,y)
! subject to (x,y)eSnQ (4)
) LY
}
) “’:
Qv where S = {(x,y): -Mx+y = q} and
.
N o
Lo n
' o(x,y) = ) max{e_x, 6+ ¢ y.,u_x +u y -u u_}
. 1=1 yp b U oyt Tl oy :
‘e -
' N is the convex envelope of xTy over Q (see [1]). Note that ¢(x,y) » O on Y;',-‘_
. ole
’ the nonnegative orthant since, by assumption, £ > 0 and £ > 0. The "\\:}.
’ x y AN
P e
! t‘,{ general procedure calls for solving this problem using an equivalent ;:,f*-
| - k..
v linear program involving 3n decision variables (2n are lower and upper RSANAY
» 3 RN
N bounded, and n are unrestricted) and 3n constraints (n are equality and RN
-'J- ",
")
i 2n are inequality). For the LCP, however, we can improve on the linear ::.':
: programming subproblems. To simplify the presentation, assume that 1}2;}
] o :‘4':\':‘\
: .-{ S Q # @, thereby guaranteeing the existence of an optimal solution to :.':-::
. V= o _ _ :\:\::\
i ﬁ problem (4). Let (x,y) denote such a solution and let v = ¢(x,y). ‘:f‘:f.
: f....
; - Consider the linear program N
: L
- '\~ \.l
>‘ g ’.' *
i minimize vix,y) O
] ) - s.
s\ subject to (x,y)eSnC (5)
S
‘. fa where Wx,y) = lTx + lTy,
) y X
.. 5
n’ PN
v C= {(x,y): %22, y>£, (u =2 )x + (u_=¢ )y, <u_u ieN} $g
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?\-; and N = {1,2,...,n}. When SNC # @, let (x,y) denote an optimal solution :f:-;

N

l F to problem (5) and let v = y(x,y). Notice that C<Q and that ¢(x,y) > .
. ’ R ._J\
) ) ¥(x,y) for all (x,y). In addition, P(x,y) » O for (x,y) » (0,0). We E:'_.::
N Ny
oo show the equivalence of problems (4) and (5) for active partitions @, but 'c"\j
N A
i 3 first we prove the following simple Lemma. . :

2 CAR
Y oy
N i
) _-L
:"‘ - - ~ :-"_:J.
DN Lemma 2 If SnQ contains a complementary solution, then v = v = 0. iy
O ENTD.

* %
Proof Suppose (x ,y )eSnQ is a complementary solution. By con-

struction, we have 2’x > 0 and zy » 0 such that L)T(ﬂ,y = 0. It

il
‘ P

* %
follows that (x ,y )eC. Because ¢ is the convex envelope of

xTy over {, we have

0= GHTY > o(x,y) » ¢(KT) > WK > WX, » 0. 1

Theorem 3  Problems (4) and (5) are equivalent in the sense that either

e
ot
3

o
‘I
AN
‘
S
e
i

)
o the optimal solution of one solves the other, or Sn¢Q does
[ i not contain a complementary solution.
“
A
:.: Proof We first show that either the optimal solutions of problem
R
:.: - (4) solve problem (5) or SnQ does not contain a complemen-
A T
A - - - - - -
E . tary solution. If (x,y)eC, then ¢(x,y) = y(x,y). Hence,
-~ 2
S
v -
.;',- N v = min{¢(x,y): (x,y)eSn C} §
\a :J'. .
!3 > min{y(x,y): (x,y)eSnC} 3
J B
ol e -
TR > min{y(x,y): (x,y)eSnq} = v AN
R oy
I\' RASRER:
s S
H ?’: o e
". — and therefore (x,y) solves problem (5). Now suppose that i
v, e
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C b f\-'_..-:
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(E,})gc. Then v > 0 and, by Lemma 2, S nQ does not contain a

JER

complementary solution.

P

To complete the proof, we now show that either the opti-

e
e,
e s

mal solutions of problem (5) solve problem (4) or S nQ does

K- not contain a complementary solution. The latter holds when

SNnC = @, since every complementary solution in S nQ must

U TG R PN
LS,

. necessarily be in C. Now assume that SNC # ). We consider

(S
RN

'l

two cases: when v = O and when v > O, First assume that v =

CZHN Y Yy Y YE
r
L)

W o~
Ui r". ~ A S
O 0 and recall that (x,y) is feasible to problem (4). We have .;:~.';\"
» :'.'_‘_..:'
- ~ e
" ;:‘ :.:':\
d 0 =7 = ¢(%,3) > o(x,y) =V >0, P
\ .'- -
' T

E:‘t' 2 B
!' ~ A~ ~ ~ .;“ ‘: -
LI Hence ¢(x,y) = 0 and (x,y) solves problem (4). Finally, Ce
assume that v > 0. We now prove that v > 0 and invoke Lemma gi"i

-

v

- 2 to claim that S 7 Q does not contain a complementary solu- :.'{f:

RS 2

] ~ - "‘LF‘
tion. By contradiction, assume that v > 0 and v = 0. Then "4{"_

#
X

of T

Rt

0 = ¢(x,y) » W(x,y) » 0

)

-
.

DAAIS AR LY 77 L

- and (E,;) is feasible to problem (5); otherwise, (:-c,;)gc and

r.

#(x,y)>0. Hence,

0 = y(x,y) » UX,y) =V >0

which is a contradiction. Thus we conclude that v > 0. : {
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! [1] involves linear programming subproblems with working bases of order b I
Lol A
n. This is achieved by scaling the variables in problem (5). Specifi- _‘,.':-;::
) POy
) AR
" cally, for each 1eN, let LA
r’.w"a".'
= v
-,
o u_ -4 u, -4
g y y X X ‘
' x--_-_i._i.x and yv=_i__i.y . (6) 4
- i ux u i i u . u i :
N UL 171 i
e d
. o
'_;: In terms of the new variables, problem (5) becomes S
e
p min ch' + dTy' i . .g
S
5 R
= ;ii-f{'i
subject to Ax' + By' = q 7) :ji
i DN
'+ oy b TS
- x y. < 'i-i'.‘.%
L) ‘-‘ L]
. x' > 2, NG
¥ o B
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where the parameters c,d,A,B,b,zx, and zy, are easily derived from the ERARAN
. R
- coordinate transformation (6). Problem (7) need not be solved to comple- ROROAY
- RN
. tion if a complementary solution is uncovered. It is easy to recognize \ |
b
!.J
hY when such a solution is encountered because xTy = 0 if and only if .
g (x')Ty' = 0. :::
Y
The linear program (7) has n equality costraints, n generalized P
o NG
:\' upper bounding (GUB) constraints, and 2n lower bound (LB) restrictions on ".
,~ .-“.:‘...'
the decision variables. Recall that both GUB and LB constraints can be 3-‘.-\:
A NG
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pivot computations can be performed using only an nxn basis matrix, which
is a considerable improvement on the 3nx3n basis that arises in the gene-

ral case.

2. Finite Convergence

For the general problem (1), the branch~and-bound algorithm [1] can
only be guaranteed to converge in the limit. In this section we prove
that the process is finite for linear complementarity problems whose
solutions are nondegenerate extreme points of SNQ. We first show that
the procedure always branches into three subproblems and then argue that
all paths in the branch—and-bound tree are fathomed after a finite number
of branches under the nondegeneracy assumption.

Let Q represent the initial hyperrectangle and let C be the associ-

ated set in problem (5). Thus, lx = zy = 0 and Y(x,y) = 0 for all (x,y).

Suppose (;,;)es NC such that x Yi > 0. Note that (;,;) solves problem

1
(5). Let Ql,...,n4 be the partition of @ defined above, and let

4 4
Cl,...,C and wl,...,w be the associated sets and objective functions,

respectively, in problem (5). For j = 1l,...,4, let (Qi,zi) and (ui,u;)

denote the lower bound and upper bound vectors in Qj.

Since (1i1,£31) > (0,0), the set Q3 cannot contain a complementary
solution; therefore, we fathom that subset. For j = 1,2,4, if sncl = )
then by Theorem 3 the set Qj also does not contain a complementary solu-
tion and is consequently fathomed. Otherwise, let (xj,yj) denote an
optimal solution to problem (5) with ¢ = wj and C = Cj. For conveni-

ence, we shall henceforth designate such problems as (5-j). Now, for j =

2,4, 1if wj(xj,yj) > 0 then the subset ¢ is fathomed by Lemma 2. Hence,
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- set nj is a candidate for further partition only if q;j(xj,yJ) = 0, In

AN
[ 4
"

4o,

particular, for j = 2 and j = 4 we must have yi = 0 and X;

A"

\ 2 4

) respectively. Consequently, all subsequent subdivisions of Q@ and Q must
S

\ : involve an index different from I. Otherwise, an optimal solution to (5)

L with anj (j=2,4) would have both Xy and yy components positive, and by ‘ )
T 2 v
A, g

« " Lemma 2 this means that Q is fathomed. Therefore, any path in the -':::
.- o
’. 4 n
oo branch—and-bound tree that only involves subsets of the form 02 and Q “-.‘:.»
YR e

can have at most n branches. o

':; - So long as 'Q’x = g =0, the index 1 can conceivably arise repeat- :t:::-_:
SN 1 i o
- - edly for partitioning a sequence of nested subsets. We argue below that A
L% ~ SR,

T
. b the sequence is finite under the nondegeneracy assumption. Suppose the .._.,.\'
LN
S - PN
o, - index I is used, in accordance with the algorithm, to repeatedly parti- r:':‘-

<", P .
. Ik o]
‘e - tion the set Qj. For k=1,2,..., let @ =~ denote the subsets of Qj that NI
_ i e . Ik
have lower bounds of zero for both x, and y,; that is, ¢ = 2 = 0.

- I I X y

NI 1 I

£Y C.

~ e jk jk RN
~ Similarly, let C and ¢y  be the associated sets and objective functions -.‘;x"
\ \-\-
. (: in problem (S-jk). Further assume that a nondegenerate complementary ;-e:_-.;
' * % jk
CC N solution, say (x ,y ), is in C for all k. Thus, we assume that the et
ol RO
..' _.c % % Jk ..:..: )

algorithm is converging to the point (x ,y ) by partitioning Q@ , for el

R I
.Y a0 jk j k ‘.."_\"
'\- N each k, into four subsets using the same index I. With (x ,y ) denot- :.-}‘.-_
- RN
A ing an optimal solution to problem (5-j ), we have A
S k AN
‘A “a . VU RA
\' N ] 3 \}\:.
N doclsc?s.l, S
"« o
- N
" QP':

. x" v = Cjk ;-;
¢ X ,y )en ’ s
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and Y

. A
jk jk *k % 1

(x T,y ) »(&x,y),

A

o

.:-

Qe

where we assume for the moment that the sequence {(x k,y k)} converges to P,
* * x % Y

(x ,y ) in the limit. We also have, by construction, that (x ,y ) is a o

. IR

Jk x % -‘.:":-"

nondegenerate extreme point of SNC  for every k whenever (x ,y ) is a :_';

.',;.'.:.-

nondegenerate extreme point of SN Q. Tl
)

* & Svevs

Under the nondegeneracy assumption, (x ,y ) is a locally unique e

el

global solution to the problem \t::

s
ol

.
RO

minimize xTy

AR RSN

3 ,
.'-Jl Jk -:
subject to (x,y)eS0C g

P
P
ASEET
k “k * * ,\‘:::-_
Mg for every k. Since {(x »¥ )} converges to (x ,y ), then for suffi- .:::\-_J-..-
A x N
ciently large k the point (x ,y ) uniquely solves the linear program S
RO

e P
- 3 3 i
kT kT et
- minimize (y D'x+(x )y \:'.:'_;-f
& I e
subject to (x,y)eSNC . (8) NG
:‘: '-;-
. e
i
- Thus, convergence is achieved finitely when a linear program is solved at ;'}‘:'_'
- q\-n‘.‘-
-‘-' -,
. a point in the converging sequence which is sufficiently close to the ': ;*
.;; nondegenerate limit point (x ,y ). This, in fact, is already a feature '.;:._
-, RN
of the general algorithm in (1]. ;’\):
N
< o)
L The following scheme is implemented in the algorithm and was origi- &}'4
- ‘-__’
nally intended to accelerate convergence to nonextreme point global solu- {_::::

™ X

2 oA
.I”n.
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i) j
tions to jointly constrained bilinear programs. Before partitioning Q

b 3 3

4

A
g
rIx

P
l.‘
s

Y
I

- using the solution (x k,y k) of problem (5-jk), we solve the linear pro- NN
s
- s
n gram P
R
e
by j h| t'v-:
. e
‘:. minimize (y k)Tx + (x k)Ty ':'{.:J.
A
- jk ':::"'\"
g subject to (x,y)eSngQ (9) i
L 203}
V.
W IR
N, PO A
e ~ k ~ k T -’:1’_.4
< and let (x ,y ) denote an optimal solution. Finally, we minimize x y N
. K Ik k ATk e
‘Eg._ over the line segment connecting (x ,y ) and (x ,y ), and use the :.y;'-:
Iy E‘i,'.‘
,e minimizing point to define the parctiton of Q@ . Notice that the only f_\d".":
> I I ey
difference between problems (8) and (9) is 1in the sets C = and @ = which ,f,:.-'t.
P A
W G
. ‘intersect with S. In general, we would expect the optimal objective [‘
o value of (9) to be less than or equal to that of (8) because C <@ . g
. 3 Iy 0N

However, because every complementary solution in Q k must also be in C ,

for k sufficiently large and assuming nondegeneracy of the limit point

* x g .,
¢ (x ,vy ), we have that (x k,y k) also solves problem (8). Therefore, our
\: ‘ ‘...-.."

algorithm converges finitely for linear complementarity problems that ‘i- i

o Rt

- have at least one complementary solution, each one being a nondegenerate ._-:S_-:.

) W,

. extreme point of the associated polyhedral set. %::,

s o

o N

| e

" -"'

“ 3. Concluding Remarks e

~ \:."

A related enumeration procedure [3] always branches into two nodes \;_

LAY

L f..n'

P and solves the subproblems of minimizing Xy and minimizing yp over a face s

+
. (specified by the parent node) of the set S = {(x,y)eS: x>0, y>0), where
';«.
»
P
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the index I and the branching node are selected in the same way as in our
algorithm above. If the minimum value of Xy or yy is zero, then the
associated node represents a face of S+ having a lower dimension than the
face of the parent node; otherwise, the corresponding node is fathomed.

A comparison between the bilinear programming approach above and the
enumeration procedure in [3] reveals that minimizing x, over the face
defined by the branching node is roughly equivalent to minimizing ¢a(x,y)
over S n(C1 UCA). Analogously, minimizing yp over the branching node's
face in [3] corresponds to minimizing wz(x,y) over S n(C1 uCz) in our
procedure. Another difference between the two strategies is that the
branching variable is fixed to zero in descendant nodes (thus defining
the faces of the offspring) in [3], whereas the branching variable in our
procedure can conceivably take on nonzero optimal values in descendant
subproblems, although this is discouraged by our construction which main-
tains a positive objective function coefficient for the branching vari-
ables in all offspring subproblens.

An implementation of the bilinear programming procedure, which does
not exploit the refinements described herein, was tested against the
enumeration procedure in a preliminary experiment reported in [2]. The
enumeration procedure solved all seven problems faster, but only two
problems ran faster by one order of magnitude and the methods had run
times within 25% of each other on another two problems. This suggests
that the two methods are comparable on some problems.

Despite the poor implementation of the bilinear procedure, it never-

theless outperformed the cutting-plane method of Ramarao and Shetty ([7]

on the only two problems in common among the test problems solved; speci-
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fically, problems 5 and 6 in [2] correspond to problems PB-20-02 and
PB~20-05 in [7], respectively. These problems were solved on the same
machine (a CDC Cyber 170/730) and produced run times favoring our
procedure of 6.7 seconds versus 27.57 seconds for problem 5 (PB-20-02)
and 12.7 seconds versus 25.85 seconds for problem 6 (PB-20-05). Our code
was unable to solve problems with more than twenty variables because of
core memory limitations. However, the memory size burden can be con-
siderably reduced by the refinements to the procedure presented above.
Another novel approach to solving the linear complementarity problem
is the method proposed by Solow and Sengupta [8] which involves finding
roots of a piecewise linear convex function. They prove their algorithm
to be finite when all of the principal minors of M are positive (i.e.,
when M is a P-matrix). While their approach is interesting, the computa-
tional results they reported using positive definite matrices still give
Lemke's method [5]) an edge. By contrast, our approach is finite for

arbitrary matrices and can solve problems on which Lemke's method fails.
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