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ABSTRACT - '

This paper presents an analytical solution to the operator alge-

braic Riccati equation (ARE) for selfadjoint parabolic systems. J
N .

The solution to the operator AE is important in the design of the

steady-state, on-line filter for estimating the system's states. This

analytical solution is derived by considering the operator analog of

Potter's method of using the Hamiltonian system's eigenvectors .. * ..-

and eigenvalues to solve a finite-dimensional ARE. As an example
%.* 4,

of using this analytical solution, the steady-state filtering error ___

covariance for the 2-D heat equation is studied. / q
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1. Introduction

In this paper, we derive an analytical solution to the operator algebraic

Riccati equation (ARE) on a Hilbert space H:

AP+PA +Q PaP (1.1)

when -A is a strongly positive (coercive) selfadjoint operator that generates a ... ,.

continuous semigroup, Q is positive-definite, bounded and commutes with A,
%.%_ SO

and R is bounded and nonnegative-definite. We also assume that the domain

of A 2 is dense in H, and is contained in the domain of A, and that the positive --%

square root of Q commutes with A. In the context of distributed parameter
% e

filtering and control, one needs a solution to Eq. (1.1) that is bounded, nonnega-

tive, selfadjoint and that maps the domain of A into itself. Gibson [3] has

shown that under the above assumptions, Eq. (1.1) has a unique solution with

these properties.

An example where one would solve Eq.(1.1) with the above assumptions on

A, Q and R is the design of a steady-state filter to estimate a process governed

by the heat equation:

a .

u(x,t) =V 2u(x,t)+E(x,t) ,x Efl C R 3 t>O (1.2)
at

a % %-
u(x,t) = 0 , x E 0. -

an

where - denotes the outward normal derivative, and the observations are
an

yj(t) = f C(x)u(x,t)dx+w,(t) , j 1, ,N

In Eq (1.2), E(x,t) is a random process that is white in space and time with -

•. '. s
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constant intensity Q, wi(t) is a scalar white noise process with intensity R 1 ,

and A = V2 . Several applications using this model to describe the tempera-

ture distribution of heated metals have been reported [1],[91. Numerical exam-

pies of calculating the steady-state filtering error covariance P for this model .

are given in [11].

2. Solving the ARE

In this section we will solve Eq. (1.1) by using the operator analog to the

Potter method [10] of solving the ARE in finite dimensions. The Potter method

of solving the ARE is summarized as follows: let the Hamiltonian matrix L be

defined as

L=[ -A']

,~. .:.-...

and diagonalize L via
.. ' .-.-

LM MA

where

Afdiag(X,) , ,X >0

and

"Then M= [ " M.,

~~~~is a nonnegative symmetric solution to the ARE , assuming M21 is invertible. ;. ."

11 12

MI

iM

Then

* ,.,,"*,*i-",'...: '. . ....€,':,,:'. "'. • • ,',".:. " ". "- .. . .". .. .. .. -.. .-.....'. -' **. - . *"-' .',' , .'- . -'v . " ..., .. : .'.'-".'-'.'-" ,P, ,- M
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Using this approach in an operator setting, we will consider first a formal

solution to the operator ARE. Let Q =I and consider the following operator

equation:

= -Atm 2  [m(2.1)rR A 2  m 2

where m 1,m 2 and X are operators. It is easy to verify that the choices

2m = I, m = -A +(A +R)

2, -( + R )/,a: -/:,

satisfy Eq. (2.1) and thus " -'-"-.

P= (-A +(A2+RV)Y)- (2.2)

satisfies Eq. (1.1) in a formal sense. If Q#I then

P = S(-A +(A 2+R)')-'S (2.3)

satisfies Eq. (1.1), where S2  Q and S is positive-definite.

To justify the formal solution given by Eq. (2.3) we need to show that P is

bounded, nonnegative, selfadjoint, and maps the domain of A into itself. Since

24-A > 0 it follows that A +R has a unique positive square root that is selfad-

2 2joint and that the domain of A is dense in the domain of (A 2+R)'[7, p. 281].

Therefore -A +(A 2+R ) is strongly positive and selfadjoint with dense domain:

D(-A+(A2 +R) )=D(-A) fD((A2 +R) )CD(A 2 )CD(A) (2.4)

where D(.) denotes domain; so that P1 as defined in Eq. (2.2) is bounded [4, p.
2 .VA

209 ]. Furthermore, P1 is selfadjoint and nonnegative because (-A +(A 2 +R)

is [7, p. 272]. We will prove that Pt maps the domain of A into the domain of

5-. Z'j
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A.

The range of Pi is contained in the domain of A by Eq. (2.4), and so it is

sufficient to show that the domain of P1 contains the domain of A. Since P1 is

bounded and necessarily closed (being selfadjoint), it follows [7, p. 2691 that the

domain of P1 is H, and hence contains the domain of A. .

Since we have assumed that the operator S commutes with A, if x E D(A)

then Sz E D(A), hence P in Eq. (2.3) also maps D(A) into D(A). We have

thus shown that the operator defined in Eq. (2.3) is the correct solution to Eq.

(1.1) needed for filtering and control applications.

3. Numerical Considerations and Example

The analytical approach to solving the operator ARE presented in this

chapter provides a computationally faster way of implementing the optimal

gain for filtering and control applications. In our approach, finite-dimensional

approximations to the operators in Eq (1.1) are done after the analytical solu- .%

tion has been obtained, resulting in a computational complexity of O(6n ), ..

where n is the size of the matrix that approximates the operator A, whereas in

other techniques [2] one approximates Eq (1.1) by a matrix ARE and then solves

this equation using algorithms developed for the finite-dimensional case which

require approximately O(75n3 ) operations [8]. We remark that a similar

approach (with the same computational complexity O(6n3 ) ) to the finite-

'5. dimensional ARE has been considered [5J,[6].

Another important difference between the analytical approach used in this

chapter and those using a high order finite-dimensional approximation to Eq.

N.

-j " . --' -- - ." . '. ' ' -.- .'-¢ ' '.'".." " " -'. ."- -.".". ."- .'.. " °% % =k '
N. 
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(1.1), is that the implementation of Eq. (2.3) calls for approximations of A and ,.

2 2 4.
A separately, whereas in approximating Eq. (1.1) one is implicitly using X ,

where X is a finite-dimensional approximation to A, as an approximation to A 2 .

2 2
The fact that X may not be a good approximation to A suggests that our -'.

approach may be more accurate.

The steady-state filtering error covariance for estimating the temperature .

profile of a heated square aluminum slab was calculated using the results

obtained in the previous section. These calculations were based on the follow-

ing model for the variation in temperature u(X,y,t) above an assumed known

ambient temperature To:

-u(X,Y,t) = aV2 u(x,y,t)+f(x,y,t) 0 < _ .x.y-L

with boundary conditions

u(O,y,t) = u(L,y,t) = u(x,O,t)ff u(x,L,t) .0

where

L = imeter , a = 5 X 10- meter2 /second

and the observations are

y(t) = u(.5,.5,t)+w(t)

The input c(x,y,t) is assumed to be white in space and time with intensity

Q 1(degreeC) /(meter2 ) second

and the observation noise w(t) is white with intensity

R 1 10- 2(degreeC)2/second

In Eq. (2.3) ,a 10 X 10 finite-difference approximation to the operators A and

• dP
%

: ... ,:..::j
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2

A 2 was used. Figure 1 shows a cross-section of the variances of the tempera-

ture variations u(x,.5,t) and the filtering error ti(x,.5,t). It is evident from Fig-

ure 1 that the unobserved temperatures more that 10 cm away from the sensor :

are not being estimated very effectively. This result places some doubt on the

possibility of estimating, with few sensors, the unobserved temperature distribu-

tion of heated metals in the presence of spatially white process noise.
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