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General Factors In Graphs

by G6rard Cornu6jols
GSIA. Carnegle-Mellon University

July,

Abstract: Consider a graph G = N,E) and, for each node i eN, let Bi be a

subset of t,I,...,dG(i)) where dG(i) denotes the degree of node i in G. The

general factor problem asks whether there exists a subgraph of G, say

H = (N,F) where F I E, such that dH(i) e Bi for every i r N. This problem

is NP-complete. A set Bi is said to have a gap of length p > 1 if there

exists an integer k 4 B i such that k+l ,..., k+p e Bi and k+p+l e Bi. Lovksz

conjectured that the general factor problem can be solved in polynomial

time when, in each Bi, all the gaps (if any) have length one. We prove this

conjecture. In cubic graphs, the result is obtained via a reduction to the

edge-and-triangle partitioning problem. In general graphs, the proof uses

an augmenting path theorem and an Edmonds-type algorithm.
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1. Introduction

In this paper, we study a generalization of the classical factor problem. Given
a graph G and a nonnegative integer bi for each node i of G, the factor problem asks

whether there exists a subgraph of G with exactly bi edges incident with node i, for

each i. This problem is well-solved. A polynomial algorithm is known (Edmonds and
Johnson (1970)) as well as a powerful theorem to characterize the existence of
solutions (Tutte (1952)).

The following generalization of the factor problem was studied by Lovtsz

(1 970b,1 972). Let G = (N,E) be a graph and, for each node i e N, let Bi be a subset of ,.-

{0, 1,..., dG(i) I where dG(i) denotes the degree of node i in G. The general factor

problem asks whether there exists F E such that, for each node i e N, the number of

edges of F incident with i is an element of Bi. Some cases are known to be reducible

to the classical factor problem, for example when Bi is an interval or a parity condition

(Lovbsz (1 970a,1972)). In section 2, we give conditions on Bi under which the general

factor problem is reducible to the problem of partitioning the nodes of a graph into
subsets that induce edges or triangles, a problem known to be polynomially solvable
(Cornudjols, Hartvigsen and Pulleyblank (1982)). As a consequence, we can solve the

general factor problem in cubic graphs when Bi {0,31 for every i e N.

The antifactor problem is the instance of the general factor problem where

I Bi= dG(i) for every i e N, i.e. only one value is excluded at each node. The graphs
that have an antifactor were characterized by Lov&sz (1973). These results have been
generalized recently by Sebd (1986).

LovAsz (1970b,1972) pointed out that the gaps in Bi play an important role in

the study of the general factor problem. We say that Bi has a gap of length p k I if

there exists an integer k e Bi such that k+l ,..., k+p e Bi and k+p+l e Bi. We allow a



3
given set Bi to have several gaps. Consider as examples the different instances of the

general factor problem introduced above. If the set Bi is a simple factor condition or an

interval then it has no gap, if Bi is a parity condition then all the gaps have length 1

and, if Bi is an antifactor condition, there is a unique gap of length 1. Lov~sz (1970b)

characterized the solutions of the general factor problem when the sets Bi have no gap

of length 2 or more. In section 3, we present a polynomial algorithm when this

condition holds.

When gaps of length 2 or more are allowed, the general factor problem is
NP-complete. Lovcsz and Plummer (1986) prove it using the NP-completeness of the

-~ 3-colorability of planar graphs. We close the introduction by giving another proof

which also shows that the general factor problem is NP-complete even when G is cubic

and bipartite. The exact 3-cover problem consists of a finite set K and a family

?{Si}i ,,..., m of subsets of K such that ISi 3 for i = 1,..., m. The question is

whether there exists J {1 ,..., m} such that {Sjj cj induces a partition of K. To see

this question as a general factor problem, define a bipartite graph G with a node nk for

each element k e K, a node nS for each set See and, for each S = {p,q,rl e ?,

edges joining nS to the nodes np, nq and nr . In addition, define Bi = {0,31 for the

*. nodes associated with S e r, and Bi - {1 } for the nodes associated with k e K. Now,

G has a general factor if and only if so contains an exact 3-cover. In fact, it is known that

the exact 3-cover problem is NP-complete even when each element of K belongs to

exactly 3 sets of Y? (Garey and Johnson (1979)). This shows that the general factor ,

problem is NP-complete even when the underlying graph G is cubic and bipartite.

% %%

U :%*S*



2. Reduction to the edoe-and-trlangle partitioning problem

The edge-and-triangle partitioning problem asks the following question.

Given a graph G (N,E) and a family T of triangles of G (complete graphs on 3 nodes),
can the node set N be partitioned into sets of cardinality 2 or 3 so that each set of

cardinality 2 induces an edge of E and each set of cardinality 3 induces a triangle of T.

Of course, when T - 0, this is the classical 1-factor problem, i.e. the factor problem

where bi - 1 for all ie N. Cornudjols, Hartvigsen and Pulleyblank (1982) gave a

polynomial algorithm to solve the edge-and-triangle partitioning problem. (As IT I is

always polynomial in IN 1, the algorithm is polynomial in IN I.)

A seemingly unrelated problem is the following instance of the general factor -

problem. The graph G - (NuN0,E) is bipartite, Bi I 1I for iE N= and

Bi = {0,2,3,...,dG(i)} for i e N*. We call this instance of the general factor problem the

bipaiite 1-factor-antfactor problem. In this paper we denote by SG(i) the set of edges

of G incident with node i. With this notation the bipartite 1-factor-antifactor problem asks Z Z

whether there exists Fc E such that IF n 8G(iY - 1 for every ie N- and IF n 8G(i) 1

for every i e N*. We call such an edge set F a 1-factor-antifactor.

."

Lovisz found a very nice reduction of the edge-and-triangle partitioning
problem to the bipartite 1 -factor-antifactor problem and asked whether, in general, the

bipartite 1-factor-antifactor problem could be solved in polynomial time. Of course this

question is a special case of Lovisz's conjecture on the general factor problem without
gaps of length greater than one. This question was communicated to me by
Pulleyblank (1985). In the next theorem we show that, conversely, the bipartite

1-factor-antifactor problem can be polynomially reduced to the edge-and-triangle

partitioning problem. As a consequence we obtain a positive answer to Lovisz's

question.

X, Ss
,g,_, L "
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T oIr.1. The edge-and-triangle partitioning problem polynomially reduces to the
bipartite 1-factor-antifactor problem (Lovdsz). Conversely, the bipartite 1-factor-
antifactor problem polynomially reduces to the edge-and-triangle partitioning problem.

I
Eo: Consider a graph G - (N,E) and a family T of triangles of G. Lovisz proposed

to construct a bipartite graph H - (NmuN*, D) as follows. Take N= a N and N* as

having a node nt for each triangle t e T and a node ne for each edge e e E which

does not belong to any triangle of T. For each node nt e N* so defined, join nt to the 3

nodes of N which belong to t, and for each ne e NO join ne to the 2 nodes of N=

which belongs to e. This defines the edge set D of the bipartite graph H.

Now H has a 1-factor-antifactor if and only if G has an edge-and-triangle
partition. Specifically, a 1 -factor-antifactor F in H yields the following family P of subsets

of N P N=. Two nodes u, v e N belong to the same subset of P if, in H, the edges of F

incident with u and v have a common endpoint in NO. As Bi = 41 } for E e N*, P is a

partition. As 1 * Bi for i e N9, no set P has cardinality 1. In fact, by construction of H,
the sets of P induce edges or triangles of G. Conversely an edge-and-triangle partition

P yields a 1-factor-antifactor F of H as follows. If {u,v,w }e P, include in F the 3 edges

(u,nt), (v,nt) and (w,nt) where t is the triangle induced by u, v and w. If {u,v} • P, then

either e = (u,v) belongs to no triangle of T ; in this case include in F the edges (u,ne)

and (v,ne) . Or e belongs to at least one triangle of T; choose one, say t E T, and

include in F the edges (u, nt) and (v, nt).

Conversely, we prove that the bipartite 1-factor-antifactor problem can be
polynomially reduced to the edge-and-triangle partitioning problem.

Let H = (NmuN*, D) be a bipartite graph. Construct the graph G = (N,E) as

follows. The node set of G is N * N=. The edge set of G is induced by the pairs of nodes
A..

"U.

'4 . . . .. .. .-. .- '.' .t 4
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of N= which have a common neighbor in N*. Define the family T as containing the

triplets of nodes of N" which have a common neighbor in NO. We claim that G has an

edge-and-triangle partition relative to the family T if and only if H has a

1-factor-antifactor F. Consider F. As earlier, define the family P as comprising those

subsets of N N= that are joined by edges of F to a common neighbor in NO. As F is a .

1 -factor-antifactor, P is a partition which does not contain sets of cardinality 1. If every

set of P has cardinality 2 or 3, P is an edge-and-triangle partition. Now consider S e P

of cardinality greater than 3. Any partition of S into sets of cardinality 2 or 3 can be

used in P instead of S, as these sets induce edges of E or triangles of T by
construction of G. So again we obtain an edge-and-triangle partition of G. Conversely,

assume that we have an edge-and-triangle partition P of G. Consider S e P. By

definition of G, there exists in H a node n e NO adjacent to each node of S. Define F to

include the edges (i,n) for i e S. The resulting edge set F induces a 1 -factor-antifactor
in H.

The reduction of Theorem 1 provides a curious relationship between the
1-factor-antifactor problem and the edge-and-triangle partitioning problem. The next

theorem shows that other instances of the general factor problem can also be reduced ..-

to edge-and-triangle partitioning. The proof involves a different type of reduction,

defined locally at each node.

A gadget consists of a graph H = ( Vu{u 1 ,...,uk}, Lu{e 1 ,...,ekI ) such that

8H(uj) = {ei ) for j = 1,...,k, and of a family T of triangles of H. Some examples will be
given in Figure 1. Let G = (N,E) be a graph where the general factor problem must be

solved. Given a node i e N, the gadget (H,T) is said to represent the general factor %

condition Bi if, with the above notation,

(2.1) k = dG(i) and
.1'=

(2.2) for Jc I,..., k}, the graph ( Vu{uj}j j , Lu{ej}1j 6 ) has an edge-and-triangle
'

partition relative to the family T if and only if I J I e Bi.

% ?% .



Given a gadget representing Bi, one can perform the following construction.

L 8G(i) = e1,..., Ok}. Replace the node i of G by a new graph (V,L) so that, after

construction, the graph induced by LW{e 1 ,...,ek) is the graph H of the gadget. Using this

construction one can transform an instance of the general factor problem into an edge-

and-triangle partitioning problem if, for each node i e N, there exists a gadget that %

represents the condition Bi. In the next theorem, we construct gadgets that represent

various conditions Bi. Some of these statements are already known, but we include
them here for completeness. .. ,.

Theorem 2 Each of the following general factor conditions can be represented by a

gadget:

(2.3) Bi is an interval, i.e. Bi = {p,..., p+r} for r k 0,

(2.4) Bi is the intersection of an interval with a parity condition,

iLe. Bi = {p, p+2,...,p+2r} for r > 1,

(2.5) Bi1 {p, p+2, p+3, p+r } for r > 3,

(2.6) Bi ={p, p+1, p+r-2, p+r} for r > 3.

Proof: Let Gi {eI ,...,ek}. The gadgets for (2.3)-(2.6) are based on the classical

transformation of a b-factor node into 1-factor nodes. Lot ej = (uj,vj) for j = 1 k,

V -{vjlj~l,...,k ufntjt~l ,...,k-p and L - {(vj,nt): l~gjsk and l!gt:k-p 1, i.e. the graph !
(V,L) is a complete bipartite graph. Using the notation introduced earlier, the gadget

(H,O) represents the condition Bi - {p}.

To obtain (2.3), it suffices to attach r triangles (nt,xt,yt) where xt and Yt are

new nodes, for t - 1,..., r (see Figure la). If H1 denotes this new graph and T1

comprises these r triangles, then the gadget (H1 ,T1 ) represents (2.3).

. .*



To obtain (2.4), we add edges (n2t.1 ,n2t) for t = 1,..., r, to the bipartite graph H

(see Figure 1 b). If H2 denotes this new graph, the gadget (H2 ,0) represents (2.4). "

To obtain (2.5), we join the nodes n1 ,...,nr by edges so that they form a clique ,.

of size r (see Figure 1c). If H3 denotes this new graph and T3 comprizes all the

triangles of the clique {nI ,..., nr}, the gadget (H3 ,T3 ) represents (2.5).

To obtain (2.6), it suffices to insert a node of degree 2 on each of the edges .

e 1,.... ek in the gadget (H3 ,T3), with the appropriate choice of p and r.

O M , | , ..-.

(a) H1  (b) H2

i-..

(c) H3 .-.- "
Figure 1 Gadgets representing conditions (2.3), (2.4) and (2.5). .:'.

A question posed by Pulleyblank is whether there exist conditions Bi that .-

cannot be represented by a gadget. We do not consider this question here but simply ".-'

mention that we could not find a gadget representing Bi - {,1 ,3,4} where i is a node I--,

of degree 4. 
..-. .'
* ',. '

i a.)., , (b H

r . , , . " -- . " " - - " -" . " " " -" , " " . . + - " , " - " -' . .. - - + " " " -" +" -" " " " ' " . -" " -' -
e" 

-,- " "
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Next we consider the consequences of Theorem 2 for the general factor

problem in cubic graphs. As noted in the introduction, this question is NP-complete if

the set Bi = {0,3} occurs for some of the nodes. In the next theorem we show that, in a
sense, this is the only bad case for cubic graphs.

Theorem 3 The general factor problem in cubic graphs can be solved in

polynomial time if Bi * {0,3} for every node of the graph.

Proof' In addition to the trivial factor condition Bi =0 and to the excluded condition

Bi - {0,3}, there remain 14 possibilities:

(i) 10 interval conditions of type (2.3),
(ii) 2 parity conditions of type (2.4), .

(iii) one condition of type (2.5), and

(iv) one condition of type (2.6).

So Theorem 3 follows as a corollary of Theorem 2.

• °°= '

"'....

',,p
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3. Solution of the general factor problem when there Is no gap of length 2

5--

A general factor F in a graph G must satisfy

(3.1) jFr 8G(i)I e Bi for every node I of G. :',

An algorithmic approach for finding a general factor might be to relax the

node requirements (3.1) and to construct a sequence of edge sets that approachs

these conditions, in some defined sense. In this paper, we take a dual approach. The

conditions (3.1) will be satisfied throughout the algorithm, but we relax "edge

requirements", i.e. we allow that an edge e (u,v) belongs to F at one end, say u, but

does not belong to F at the other end v. The algorithm resolves these infeasibilities one

at a time or shows that no general factor exists. To make this approach precise, we

construct a graph H from G as follows. On each edge of G we insert two new nodes,

each of degree 2, so that each edge of G is split into three edges of H. *:..

We denote by NG the nodes of G, by NF the new nodes, called feasibility

nodes and by N = NGuNF the nodes of H. The general factor problem. in G is

equivalent to the general factor problem in H where the conditions Bi are kept

unchanged for i e NG and Bi {11 for every node i e NF. Let E be the edge set of H. A

general matching of H is an edge set Mc E such that

(3.2) IM Cn 8H(i) Ie Bi  for every I e NG,

and I M n1-1(i) I= 0 or 1 for every I e NF.

Since no two nodes of NG are adjacent, it is easy to construct a general
'I *. .5

matqhing of H. A node I e NF is infeasible if I M r 8H(1 ) I = 0. The infeasibility of a

general matching M is the number of infeasible nodes of M. A general matching of H

with an infeasibility equal to 0 corresponds to a general factor of G. In this section we

present an algorithm which finds a general matching of H with smallest infeasibility.

Before stating the algorithm, we give a characterization of the general

* ~...d 5 .P
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matchings with smallest Infeasibility. Let M be a general matching which does not have

smallest Infeasibility. We will show the existence of a certain type of path, called
M-augmenting path, that yields an improvement of M by interchanging the edges in
and out of M on the path. In this paper, paths may have repeated nodes but no

repeated edges. Consider any path starting at a node uI e NF such that

IM r 8H(ul) =0, say P - (u1, u2 ,..., up). For each node ui of P, i k 2, define

(3.3) Pi=- I M nH(Ui)1 +1PiI- IMi4 

where Mi denotes the set of edges (uj.1, uj) e M that are incident with ui, for j< i, and "-'..

where Pi denotes the edges (uji1 , uj) g M incident with ui for j < i. In other words, Ii
-,...:

is the number of edges of M incident with ui that would result if we interchanged the

edges in and out of M on the subpath of P joining uI to ui.

Let Ii = min {b: be Bi } and mi = max {b: be Bi 1. In the remainder, we will

write Bi, Ii and mi instead of Bui, lui and mul for notational simplicity.

An M-augmenting path P - (uI , u2 ,..., up) is defined by the following

properties.

(3.4) u1 e NF and IM n 8H(ul)j =0.

For every node ui , 1< i < p,

(3.5) Ii :5 Di + Ei mi where Ei -1 if (ui,ui+1)e M, 1 otherwise,

(3.6)" Oi e Bi.

(3.7) pB. .

-ONO

Therem Let M be a general matching of H. The matching M has smallest
infeasibility if and only if there exists no M-augmenting path.

Proof: Given an M-augmenting path P, the general matching M can be improved into a
general matching having a smaller infeasibility by interchanging the edges in and out

'%,."%

! - ,.



12

of M on the path P. For every node ui of P that belongs to NG, condition (3.2) still holds

after the interchange as a consequence of (3.5), (3.6) and the fact that the gaps of Bi

have length 1. In addition, every node of P that belongs to NF is feasible after the

Interchange.

Conversely, assume that M does not have smallest Infeasibility and, among
the general matchings with a smaller infeasibility than M, choose one, say M', with the

minimum number of nodes u e NF such that I M 1 8H(u) I1 and I r 8H(u)I =0.
IQ%

As M' has a smaller infeasibility than M, there exists u1 e NF such that ..

IM 81H(Ul)I =0 and I M'rl 8H(ul)I- 1. Let D - M A M', where A denotes the

symmetric difference of two sets. We use the edges of D to construct a path

P - (uI , u2 ,..., uk) that satisfies conditions (3.5) and (3.6) for every 1< i < k. Now

consider the different cases that may prevent us from pursuing the construction of P.
The first case is by violation of the lower bound in (3.5). This will occur when

(uk. 1, uk) E M, Ok - Ik'1 and, in D, every edge of M' already belongs to P. But this

implies that I M' n 8H(uk) I< Ik. Note that uk e NG would be a contradiction to the fact

that M' is a general matching of H. So uk e NF and I MI' 8H(uk) I 0. By interchanging a?',

the edges in and out of M on the path P, we get a general matching M" with the same

infeasibility as M', but with fewer nodes u such that I M r SH(U) I =1 and I " SH(U) I '.

= 0, a contradiction to the choice of M'. Similarly, a violation of the upper bound in (3.5)

would occur when (Uk.1, uk) 9 M, Ok - mk+l and, in D, every edge of M already

belongs to P. This implies that I M' ri H(uk) I> mk, a contradiction. ,

So eventually the construction of P must be stopped because a node up

satisfying (3.7) is found. .

Given a general matching M, the search for M-augmenting paths is done by

I .41
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growing an alternating forest. Some nodes of the forest may be shrunk critical
subgraphs of H. A critical subgraph C is defined by the property that no general
matching M of H satisfies

(3.8) IM r 8c(i) I c Bi for every nodei of C,

but, for any node i* of C, there exists a general matching M such that (3.8) holds for

every node i * i* and, in addition, I M r Sc(i*)I + le Bi*. It follows from the definition of

C that, if M is a general factor of H, then there is at least one edge of M with one end in
C and the other outside C.

In the course of the algorithm, it must be decided whether certain subgraphs
of H are critical. When such a subgraph C is encountered, it already has the property

that, for every node i* of C, there exists a general matching such that (3.8) holds for

every i * i* and I M n SC(i*) 1 +1 e Bi*. In addition, an edge set M is available with

this property for some given i *. So the criticality of C actually reduces to the question of

whether there exists an M-augmenting path in C, say P = (u1 =i*, u2 ,..., up). Given up,

this question can itself be reduced to two simple factor problems as explained below.

Then, considering each node upe NG in C as the potential final node of P, we can

answer whether C is critical in polynomial time. Now assume that u1 and up are given,

and consider any node ui of P such that 1< i < p. Conditions (3.5) and (3.6) imply the
-'.% **_

following relationships. Let b - I M n 8H(Ui) I. Consider the largest j < b such that

j-1, j e Bi or, if such a value j does not exist, such that j-2, j-1 e Bi. Let s = (b-j)/2. -

Note that s is an integer since all gaps have length one. The inequality Pi + ei > b-2s '

must hold as a consequence of (3.5) and (3.6). Similarly, consider the smallest k a b .5-.,

such that k, k+1 e Bi or, If such k does not exist, such that k+1, k+2 E Bi. Let

t = (k-b)/2. Again t is integer and (3.5), (3.6) imply that 01 + ei < b+2t. In other words,
'..

,5.,.4

.?%..P

, 
%*.5PS.

.5 . . ~ *-.- . . . . .*S * - ....................... 5
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after the augmentation, the new general matching M' must have the property that

b-2s <I M' r ,H(ul) 1: b+2t. Since P has an even number of edges incident with ui, the .,
A.% L

condition at node ui is the intersection of an interval with a parity condition. We have %.

seen earlier how this can be polynomially transformed into 1-factor conditions (see
Figure 1b). Note that no triangle is needed in this transformation. For the last node of..

the path P, say Up, there are only two possibilities, namely j M' r 8H(Ui) j - b-2s-1

where s - (b-j)/2 and j is the largest integer such that j S b and j-1, j e Bi. Or

M' n 8H OUi) . b+2t+1 where t = (k-b)/2 and k is the smallest integer such that k > b

and k, k+1 e Bi . Each of these two factor conditions can be checked in turn and the

queqtion of the existence of an augmenting path P joining u1 to up is therefore

solvable in polynomial time.

We are now ready to state the algorithm for finding a general matching with
minimum infeasibility in the graph H. Relative to any general matching M, the algorithm
constructs a forest whose edges are alternately in and out of M (except possibly for 4

pendant edges). The nodes of the alternating forest are either real nodes of H or

shrunk critical subgraphs of H. Each tree of the forest has a root which is either an 6

infeasible node of NF or a shrunk node that contains an infeasible node of NF. The

nodes of the forest are called alternately odd and even on any path originating at the
root, with the root node being even. Shrunk nodes of the alternating forest are always

even. Every real even node i of the forest which is not a root satisfies I M r 81H(i) 1= li.

Every odd node i of the forest satisfies I M rn 8H(i 1= mi.Every edge of M incident ,'

with a node of the forest belongs to the forest. .

Stag (Initialization) Start with any general matching M. Go to Step 1.

Step (Optimality test) If M is a general factor, stop. Otherwise, start with the

.41
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infeasible nodes of NF as the roots of the alternating forest. These nodes are even

nodes of the forest. Go to Step 2. 
i P

Sltp2 (Edge selection) Look for an edge which does not belong to the alternating

forest and joins an even node of the forest to a node which is not an odd node of the

forest. If no such edge exists, stop: there is no general factor (this claim will be proved

later). Otherwise let e be an edge joining an even node u to a node v, where v is not
%.k

an odd node of the forest.

Case1 v is not in the forest, v e NF and the node w defined by (v,w) e M is such that '.-.,

w e NF.(Note that the edge (v,w) e M exists as v is a feasible node of H.)Go to Step 3a.

Case2 v is not in the forest, v e NF and the node w defined by (v,w) e M is such that
....

w e NG. If I M r-1 8H(W) I=w, go to Step 3b. If I M r 8H(W) I-1 e Bw , go to Step 4a.

Finally, if I M 8HW) I > lw and I M n 8H(w) I-1 e Bw , go to Step 3c. -NO

Case3 v is not in the forest and v e NG . If IM r) 8HlV) = mv, go to Step 3d. If

IM r SH(v) +1 e Bv, go to Step 4a. Finally, if I M 8H(v) I < mv and..

I M r1 8H(v) I+1 0 Bv, go to Step 3e.

Case4 v is an even node of the forest and belongs to a different tree than u. Go to M

Step 4b.

Case5 v is an even node of the forest and belong to the same tree as u. Consider .

the cycle closed by adding the edge e to the tree and define C to be the subgraph of H

induced by the nodes of G in the cycle or within shrunk nodes of the cycle. Go to

Step 5.

Stop (Growing the forest)

(a) Grow the alternating forest by adding the edges e and (v,w) to the forest, making v
an odd node and w an even node. Go to Step 2.

(b) Let x1 ,..., xk be the endpoints of the edges of M incident with w, other than the node

v. Grow the alternating forest by adding the edges e, (v,w) and (w,x 1 ),..., (w,xk) to the

=.4
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forest, making v, x1,..., xk odd nodes of the forest and w an even node. Go to Step 2.

(c) Let x1 ,..., xk be the endpoints of the edges of M incident with w, other than the node %1

v. Grow the alternating forest by adding the edges e and (v,w), making v an odd node

of the forest and shrinking the nodes w, x,..., xk into an even node of the forest.

Go to Step 2.

(d) Let w1 ,...,wk be the endpoints of the edges of M incident with v, where k = mv. Grow

the alternating forest by adding the edges e, (v,w1 ),..., (v,wk) to the forest, making v an

odd node of the forest and making the nodes w ,.. .,wk even nodes of the forest. I
(e) Let wI ,...,wk be the endpoints of the edges of M incident with v. Shrink u, v, w1 ....

wk into an even node the forest. Go to Step 2.

Steg 4 (Augmentation)
(a) Augment the general matching M by interchanging the edges in M and out of M on
the path from v to the root of the tree containing v. Go to Step 1. ..

(b) Augment M by adding the edge e to M and by interchanging the edges in and out
of M on the paths from u to the root of the tree containing u and from v to the root of the
tree containing v. Go to Step 1.

Note that M can always be modified appropriatly within the shrunk nodes

since they are critical.

SItop (Augmentation or shrinking) Look for an augmenting path joining the root of

the tree containing u and v to a node up e NG in the set C. This can be performed in

polynomial time as explained above. If such a path exists, augment M by interchanging

the edges in and out of M on the path. Go to Step 1. If, for every up 6 NG in C, no

augmenting path exists, then shrink C into an even node of the alternating forest. Also
shrink into the same even node every even node of the forest which is incident with a
node of C and every odd node of degree 1 in the forest which is incident with a node of
C. Go to Step 2. End of Algorithm *-1,

,.. ._
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The algorithm terminates after at most 2 I NF I augmentations. Between

augmentations, Steps 3 and 5 are visited at most I N I times. So the algorithm is

polynomial. If the algorithm stops in Step 1, a general factor has been found. In order to

prove the validity of the algorithm, we only have to show that, when it stops in Step 2,

no general factor exists. Consider the set S comprising the odd nodes of the

alternating forest at termination of the algorithm. A general factor can have at most

1lmv: ve S1 edges joining nodes of S to nodes of N-S and the current M has just that

many. In any general factor, at least one edge from S is required for each even node of

the forest which is shrunk, and Ii such edges are required for each even node i which is

a real node of H. The difference between the requirements from even nodes and the

availability from the odd nodes is equal to the number of roots in the forest. Thus M

leaves the smallest number of infeasible nodes in NF. In particular, this shows that no .. -.

general factor exists. Therefore, we get the following theorem.

Theorem 5 The graph H has a general factor if an only if, for any S c N,

1{mv: ve S1 2t,% + -llv:v LS}, .-

where "S is the number of connected components of H(N-S) which are critical, and LS

is the set of isolated nodes of H(N-S).

*" This result is closely related to Theorem 4.3 of Lov~sz (1972). Extensions to

a weighted version of the general factor problem are left for future research. - -
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general factor probem can be soved in polynomial timne when, in each B., all the .* '

gaps (if any) have length one. We prove this conjecture. In cubic grahs, the " ,

result is obtained via a reduction to the edge-and-triangle partitioning problem.

U In general graphs, the proof uses an augmenting path and an Edmonds-type algorithm. _
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