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Abstract : Eonsider a graph G = (N,E) and, for each node ie N, let B; be a
subset of {'0,1,...,dG(i)) whére dg(i) denotes the degree of node i in G. The
general factor problem asks whether there exists a subgraph of G, say
H=(N,F) where F ¢ E, §uch that dyy(i) e B; for every i e N. This problem
is NP-complete. A set BI is said to have a gap of Iength. p 2 1 if there
exists an integer k € B; such that k+1,..., k+p ¢ B; and k+p+1 e B;. Lovasz

conjectured that the general factor problem can be solved in polynomial

time when, in each B;, all the gaps (if any) have length one. We prove this
conjecture. In cubic graphs, the result is obtained via a reduction to the :
edge-and-triangle partitiohing problem. In general graphs, the proof uses
an augmenting path theorem and an Edmonds-type algorithm.( \‘:'3';\
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- 1._Introduction ' b
0 fn':,'s
N In this paper, we study a generalization of the classical factor problem. Given ?
‘,“%; ! ‘7‘ y
Ji; a graph G and a nonnegative integer b; for each node i of G, the factor problem asks & ; Y
g » A
By whether there exists a subgraph of G with exactly b; edges incident with node i, for LM
; ) each i. This problem is well-solved. A polynomial algorithm is known (Edmonds and 51‘;
," " ‘;‘n_.-
:,- ‘ Johnson (1970)) as well as a powerful theorem to characterize the existence of :1:‘3»:
! ‘AR
solutions (Tutte (1952)). 2
; The following generalization of the factor problem was studied by Lovasz A
o o oy
5' i _ (1970b,1972). Let G = (N,E) be a graph and, for each node i e N, let B; be a subset of ’%E
& F‘v..
;?{ {0, 1...., dg(i) } where dg (i) denotes the degree of node i in G. The general factor ”
e 2
8 problem asks whether there exists FgE such that, for each node i e N, the number of :::;E
<- edges of F incident with i is an element of B;. Some cases are known to be reducible ;%E
:‘ to the classical factor problem, for example when B; is an interval or a parity condition
w l'
;'5', (Lovasz (1970a,1972)). In section 2, we give conditions on B; under which the general
s: factor problem is reducible to the problem of partitioning the nodes of a graph into
A subsets that induce edges or triangles, a problem known to be polynomially solvable
o)
Zﬁ: (Cornuéjols, Hartvigsen and Pulleyblank (1982) ). As a consequence, we can solve the
>,
.;35: general factor problem in cubic graphs when B; = {0,3} for every i ¢ N.
,- The antifactor problem is the instance of the general factor problem where
X |Bj|= d(i) foreveryie N, i.e. only one value is excluded at each node. The graphs
‘: | that have an antifactor were characterized by Lovasz (1973). These results have been
o _generalized recently by Sebd (1986). R R
i, Lovasz (1970b,1972) pointed out that the gaps in B; play an important role in 1.:2
" Rod
Wy the study of the general factor problem. We say that B; has a gap of length p 2 1if ‘;:.‘:f
[ el
: there exists an integer k € B; such that k+1,..., k+p ¢ B; and k+p+1 € B;. We allow a .
N KV
; 5
;«;s REIT N I N T T 0 O e 3 O B N N I i 30 B N B N N A R B N R N Q-'r":




given set B; to have several gaps. Consider as examples the different instances of the

general factor problem introduced above. If the set B; is a simple factor condition or an
]

interval then it has no gap, if B; is a parity condition then all the gaps have length 1
f and, if B; is an antifactor condition, there is a unique gap of length 1. Lovasz (1970b)

ey characterized the solutions of the general factor problem when the sets B; have no gap

", of length 2 or more. In section 3, we present a polynomial algorithm when this
condition holds.

't
5
% When gaps of length 2 or more are allowed, the general factor problem is
<
NP-complete. Lovasz and Plummer (1986) prove it using the NP-completeness of the —
:{ 3-colorability of planar graphs. We close the introduction by giving another proof _EZ:
N> which also shows that the general factor problem is NP-complete even when G is cubic E
D ot
e and bipartite. The exact 3-cover problem consists of a finite set K and a family -'~’
§ :fa{Si}i;1 ey M of subsets of K such that |S;|=3 fori = 1,..., m. The question is
o<
i whether there exists J <{1,..., m} such that {Sj}j cJ induces a partition of K. To see
this question as a general factor problem, define a bipartite graph G with a node ny _for
X
' each element k e K, a node ng for each set Se¥ and , for each S = {p,q,r} € ¥,
| edges joining ng to the nodes Nos Ng and n, . In addition, define B; = {0,3} for the
X nodes associated with S e ¥, and B; = {1} for the nodes associated with k e K. Now,
"' G has a general factor if and only if ¥ contains an exact 3-cover. In fact, it is known that
e the exact 3-cover problem is NP-complete even when each element of K belongs to
':' exactly 3 sets of ¥ (Garey and Johnson (1979)). This shows that the general factor
' problem is NP-complete even when the underlying graph G is cubic and bipartite.
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The edge-and-triangle partitioning problem asks the following question.
Given a graph G = (N,E) and a family T of triangles of G (complete graphs on 3 nodes),
can the node set N be partitioned into sets of cardinality 2 or 3 so that each set of
cardinality 2 induces an edge of E and each set of cardinality 3 induces a triangle of T.

Of course, when T = &, this is the classical 1-factor problem, i.e. the factor problem
where b;= 1 foralli e N. Cornuéjols, Hartvigsen and Pulleyblank (1982) gave a

polynomial algorithm to solve the edge-and-triangle partitioning problem. (As | T|is

always polynomial in | N|, the algorithm is polynomial in|N.)

A seemingly unrelated problem is the following instance of the general factor

problem. The graph G = (N=UN?*,E) is bipartite, Bj={1} fori e N= and
Bj = {0,2,3,....dg(i)} forie N*. We call this instance of the general factor problem the

bipartite 1-factor-antifactor problem. In this paper we denote by (i) the set of edges

of G incident with node i. With this notation the bipartite 1-factor-antifactor problem asks

whether there exists FSE such that [F ~ 3g(i) =1 for everyie N= and F dg (i) =1

for every i e N*. We call such an edge set F a 1-factor-antifactor.

Lovasz found a very nice reduction of the edge-and-triangle partitioning
problem to the bipartite 1-factor-antifactor problem and asked whether, in general, the
bipartite 1-factor-antifactor problem could be solved in polynomial time. Of course this
question is a special case of Lovasz's conjecture on the general factor problem without
gaps of length greater than one. This question was communicated to me by
Pulleyblank (1985). In the next theorem we show that, conversely, the bipartite
1-factor-antifactor problem can be polynomially reduced to the edge-and-triangle

partitioning problem. As a consequence we obtain a positive answer to Lovasz's
question.
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Iheorem 1 The edge-and-triangle partitioning problem polynomially reduces to the 71
bipartite 1-factor-antifactor problem (Lovasz). Conversely, the bipartite 1-factor- e
antifactor problem polynomially reduces to the edge-and-triangle partitioning problem.

£,V ¥, VR _ N R Sy " U TU ™S "YW .
'b‘\‘n P
R
ks

-

Proof : Consider a graph G = (N,E) and a family T of triangles of G. Lovasz proposed _ "»;?.g
to construct a bipartite graph H = (N*UN¥, D) as follows. Take N= = N and N* as '
having a node ny for each triangle t € T and a node ng for each edge e € E which ,-3-_
N does not belong to any triangle of T. For each node n; € N* so defined, join ny to the 3 \’é
nodes of N= which belong to t, and for each ng € N* join ng to the 2 nodes of N= -.d_ ‘
which belongs to e. This defines the edge set D of the bipartite graph H. ‘3:;;'
o
Now H has a 1-factor-antifactor if and only if G has an edge-and-triangle :::
partition. Specifically, a 1-factor-antifactor F in H yields the following family P of subsets \
of N=N=. Two nodes u, v € N belong to the same subset of P if, in H, the edges of F _
incident with u and v have a common endpoint in N*. As B; ={1} forie N* Pis a ,\,
partition. As 1 ¢ B; fori e N*, no set P has cardinality 1. In fact, by construction of H, \5‘?
the sets of P induce edges or triangles of G. Conversely an edge-and-triangle partition ::I{-:
P yields a 1-factor-antifactor F of H as follows. If {u,v,w }e P, include in F the 3 edges EE"
(u,ny), (v,y) and (w,n;) where tis the triangle induced by u, vand w. If {u,v} € P, then ::
A

either e = (u,v) belongs to no triangle of T ; in this case include in F the edges (u,ng)

and (v,ng) . Or e belongs to at least one triangle of T ; choose one, sayte T, and

] v"r": "- ','
e =g
i":";::'i,:?:}‘-“'v .’

include in F the edges (u, ny) and (v, ny). -
B
Conversely, we prove that the bipartite 1-factor-antifactor problem can be AT
polynomially reduced to the edge-and-triangle partitioning problem. Z
Let H = (N=UN¥, D) be a bipartite graph. Construct the graph G = (N,E) as ;\
follows. The node set of G is N = N=. The edge set of G is induced by the pairs of nodes ;
iy
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of N® which have a common neighbor in N*. Define the family T as containing the _

AT

triplets of nodes of N™ which have a common neighbor in N*. We claim that G has an ﬁs
edge-and-triangle partition relative to the family T if and only if H has a ! "
1-factor-antifactor F. Consider F. As earlier, define the family P as comprising those "

¥

subsets of N = N= that are joined by edges of F to a common neighbor in N*. AsFis a §:”' '

; 1-factor-antifactor, P is a partition which does not contain sets of cardinality 1. If every :::::;
E set of P has cardinality 2 or 3, P is an edge-and-triangle partition. Now consider S € P o
% of cardinality greater than 3. Any partition of S into sets of cardinality 2 or 3 can be R
E: used in P instead of S, as these sets induce edges of E or triangles of T by ‘__.'-_i_
i construction of G. So again we obtain an edge-and-triangle partition of G. Conversely, T
N assume that we have an edge-and-triangle partition P of G. Consider S € P. By ::
- oY
: definition of G, there exists in H a node n e N* adjacent to each node of S. Define F to :ﬁi.’.
. AN
ii include the edges (i,n) fori € S. The resulting edge set F induces a 1-factor-antifactor 5
\ . 5o
;‘:-5 in H. . .-E.;
: S
The reduction of Theorem 1 provides a curious relationship between the

M 1-factor-antifactor problem and the edge-and-triangle partitioning problem. The next }';:Z:..
: o
& theorem shows that other instances of the general factor problem can also be reduced -._-:.; ,
?\ d

ﬁ to edge-and-triangle partitioning. The proof involves a different type of reduction, 'f‘c’
2 defined locally at each node. ."1-.
'.j,': A gadget consists of a graph H = ( VU{uq,...,ux}, Lufeq,...,ex} ) such that ,:,:
-:: ;'::::\
E Sp(uj) = {ej} forj = 1,...k, and of a family T of triangles of H. Some examples will be 7
$ given in Figure 1. Let G = (N,E) be a graph where the general factor problem must be :E
Dﬁ solved. Given a node i € N, the gadget (H,T) is said to represent the general factor :*- A
' condition B; if, with the above notation,
- e
b (2.1) k = dg(i) and I
" ;
E (2.2) for Jg{1,..., k}, the graph ( Vu{uj}‘-e Jr Lu{ej}je J ) has an edge-and-triangle ; g
;:{2'- partition relative to the family T it and only if |J|e By, N
’. e
25

D -

S o
A~ o
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Given a gadget representing B;, one can perform the following construction. P
o
Nl
Let 5g(i) = {eq...., e}. Replace the node i of G by a new graph (V,L) so that, after -v}\ L
PR
o
| construction, the graph induced by Ly {eq....,e} is the graph H of the gadget. Using this RY
: construction one can transform an instance of the general factor problem into an edge- f.‘jf,;
| ':-""I‘
; and-triangle partitioning problem if, for each node i € N, there exists a gadget that 2:;"%;
hiv '~
i represents the condition B;. In the next theorem, we construct gadgets that represent : .' :
F_’f.r
| various conditions B;. Some of these statements are already known, but we include 2:-’;2:5
: . J‘:d‘::d‘
them here for completeness. ik
i D
§ Theorem 2 Each of the following general factor conditions can be represented by a ‘-._::‘_‘.::
E gadget: S
h:f,:i"' f
i (2.3) By is aninterval, i.e. B;={p,..., p+1} for r20, """
ne3T
: (2.4) B; is the intersection of an interval with a parity condition, R
ie. Bj={p,p+2,...p+2r} for r21, ;’::;3.
! (2.5) By={p, p+2, p+3, ..., p+r} for r23, N
: R
: (2.6) B;={p, p+1, ..., p+r-2, p+r} for r23. NP
. N '_-.&
- S
! e
y Proot: Let 3g(i) = {ey,...,e¢}. The gadgets for (2.3)-(2.6) are based on the classical ;E'_C:;Z
\ Fa g
) Nov.
: transformation of a b-factor node into 1-factor nodes. Let e; = (ujvj) for j=1,..., k, 22;7:1
i . . . "‘
: V= {Vi}i=1.---.k Uinghi_1q kP andL = {(Vj-"t)1 1sj<k and 1st<k-p }, i.e. the graph ;::Ef- {
N I
. (V,L) is a complete bipartite graph. Using the notation introduced earlier, the gadget \f_’.-?
b &:\ N
X (H,Q) represents the condition B; = {p}. o
: RSO,
i: To obtain (2.3), it suffices to attach r triangles (ny,x,y;) where x; and y; are :;E;;::
“ .-_::‘(
. new nodes, for t = 1,.., r (see Figure 1a). If H{ denotes this new graph and T4 f-:;‘.-'z'.’-
3 Lot
o) me
! comprises these r triangles, then the gadget (H1,T4) represents (2.3). S
N D .‘
\ P
N !
E R
: 2
) . .. o P o R L S TR S ML WS PR N N S S N "o
A S TN TR L D B B o R A R Aty St R AR (B
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To obtain (2.4), we add edges (ng.1.nz4) fort = 1,..., 1, to the bipartite graph H r

ey

(see Figure 1b). If H denotes this new graph, the gadget (Ho,2) represents (2.4). Eﬁ}

ALY

To obtain (2.5), we join the nodes nq,...,n, by edges so that they form a clique ;flf ’

of size r (see Figure 1c). If H3 denotes this new graph and T3 comprizes all the o ;
triangles of the clique {nq,..., n;}, the gadget (H3,T3) represents (2.5). '

To obtain (2.6), it suffices to insert a node of degree 2 on each of the edges Y op

e4..... 8 in the gadget (H3,T3), with the appropriate choice of p and r. . -"E“
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Figure 1 Gadgets representing conditions (2.3), (2.4) and (2.5).
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A question posed by Pulleyblank is whether there exist conditions B; that

s
‘f'..f".'
‘1"".‘1
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cannot be represented by a gadget. We do not consider this question here but simply
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mention that we could not find a gadget representing B; = {0,1,3,4} where i is a node
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Next we consider the consequences of Theorem 2 for the general factor
problem in cubic graphs. As noted in the introduction, this question is NP-complete if

the set B; = {0,3} occurs for some of the nodes. In the next theorem we show that, in a

v,
B

sense, this is the only bad case for cubic graphs.
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Thecrem 3 The general factor problem in cubic graphs can be solved in

(3
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12

A 4
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polynomial time if B; = {0,3} for every node of the graph.
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Broof: In addition to the trivial factor condition B, = @ and to the excluded condition

« THEEL S

B; = {0,3}, there remain 14 possibilities:
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(i) 10 interval conditions of type (2.3),

(i) 2 parity conditions of type (2.4),

(iii) one condition of type (2.5), and

(iv) one condition of type (2.6). -
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So Theorem 3 follows as a corollary of Theorem 2. )
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A general factor F in a graph G must satisfy
(3.1) |Fn 8g(i)| e B; for every node i of G.

An algorithmic approach for finding a general factor might be to relax the
node requirements (3.1) and to construct a sequence of edge sets that approachs
these conditions, in some defined sense. In this paper, we take a dual approach. The
conditions (3.1) will be satisfied throughout the algorithm, but we relax "edge
requirements”, i.e. we allow that an edge e = {u,v) belongs to F at one end, say u, but
does not belong to F at the other end v. The algorithm resolves these infeasibilities one
at a time or shows that no general factor exists. To make this approach precise, we
construct a graph H from G as follows. On each edge of G we insert two new nodes,
each of degree 2, so that each edge of G is split into three edges of H.

We denote by N the nodes of G, by Nr the new nodes, called feasibility

nodes and by N = NgUNg the nodes of H. The general factor problem.in G is

equivalent to the general factor problem in H where the conditions B; are kept

unchanged fori € Ng and B; = {1} for every node i € Nf. Let E be the edge set of H. A
general matching of H is an edge set MG E such that

(3.2) |M nSH(i)Ie B; forevery ie Ng,
and |[M N 3y(i)|=0or1forevery ie Nf.

Since no two nodes of N are adjacent, it is easy to construct a general

matghing of H. A node i e N is infeasible if| M N 8p4(i) | = 0. The infeasibility of a

general matching M is the number of infeasible nodes of M. A general matching of H

with an infeasibility equal to 0 corresponds to a general factor of G. In this section we

present an algorithm which finds a general matching of H with smallest infeasibility.
Before stating the algorithm, we give a characterization of the general
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matchings with smallest infeasibility. Let M be a general matching which does not have

]

<]

‘ smallest infeasibility. We will show the existence of a certain type of path, called .-;i'.:'\-
B M-augmenting path, that yields an improvement of M by interchanging the edges in E-"i
Y and out of M on the path. In this paper, paths may have repeated nodes but no Pk :
2 ' repeated edges. Consider any path starting at a node uq e N such that r::"
Q' »

" . ""
L %%

b M~ 84(uq)| =0, say P =(uy, u,..., Up). For each node u; of P, i2 2, define

¥

o, ¢
N
v,

AT
Yy

Y,
K
8 4

where M; denotes the set of edges (ui-1. uj) € M that are incident with u;, forj<i, and

/.
%

v

where P; denotes the edges (uj_1. uj) ¢ M incident with u; for j<i. In other words, B;

v e v
R
[ARAAS
l%.

is thé number of edges of M incident with u; that would result if we interchanged the

RN
AN N

* FGAUE NN NTRTY
)
P »

BT A o S
s
7

edges in and out of M on the subpath of P joining uq to u; .

y-

: Let I; = min {b: be B;} and m; = max {b: be B; }. In the remainder, we will

N write B;, |; and m; instead of B, |,;; and m; for notational simplicity. |
» An M-augmenting path P = (u4, us,..., up) is defined by the following :"
properties. R
A (3.4) uq € N and |M N §4(uq)| =0. R
o Forevery node u;, 1<i<p, .:?(
" R
A (35) ) S PBj+g S m where g =-1if (ujuj,1)eM, 1 otherwise, 52
o RN
. (3.6) B, ¢ B; \(
b, ..:::
2 (3.7) ﬁp € Bp. . ;

JTheorem 4 Let M be a general matching of H. The matching M has smallest s

2 infeasibility if and only if there exists no M-augmenting path. =
; Proof: Given an M-augmenting path P, the generai matching M can be improved into a AN
(] TN
. general matching having a smaller infeasibility by interchanging the edges in and out :Ef:';:
R o
; Wy
R L
N '.".c\'h'
7 N Y BT 3 et :- .;:: ;;‘,'-...: RS
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of M on the path P. For every node u; of P that belongs to Ng. condition (3.2) still holds

after ti\e interchange as a consequencs of (3.5), (3.6) and the fact that the gaps of B;

have length 1. In addition, every node of P that belongs to N is feasible after the

interchange.
Conversely, assume that M does not have smallest infeasibility and, among
the general matchings with a smaller infeasibility than M, choose one, say M', with the

minimum number of nodes u e Ng such that |[M n §4(u)| =1and |M' n Sy(u)| =0.
As M' has a smaller infeasibility than M, there exists u; € Ng such that

IM A 3gy(uq)l=0 and |M' 3 (uq)|= 1. Let D = M A M', where A denotes the
symmetric difference of two sets. We use the edges of D to construct a path

P = (u4, ua,..., uk) that satisfies conditions (3.5) and (3.6) for every 1< i < k. Now

consider the different cases that may prevent us from pursuing the construction of P.
The first case is by violation of the lower bound in (3.5). This will occur when

(Uk-1. uk) € M, B, = -1 and, in D, every edge of M' already belongs to P. But this
implies that | M' n 8(uk) |< Ik . Note that ux € Ng would be a contradiction to the fact

that M’ is a general matching of H. Soux e Npand |[M' ~ 8y(uk) |= 0. By interchanging
the ;dges in and out of M on the path P, we get a general matching M" with the same
infeasibility as M', but with fewer nodes u such that M A §y(u)| =1 and |[M" N Sy(u)|
=0, a contradiction to the choice of M'. Similarly, a violation of the upper bound in (3.5)
would occur when (ug_q4, Uk) € M, Bk = mk+1 and, in D, every edge of M already
belongs to P. This implies that |M' S(uk) |> my , a contradiction.

So eventually the construction of P must be stopped because a node Up

satistying (3.7) is found. ¢

Given a general matching M, the search for M-augmenting paths is done by
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‘-;-‘; PR
% N o
A ]

o %
Pl
-“

s
B FORA

- N ;"f,-
° S YUY

£y, St P
o 4k S

...,
SR

Fd
YYYYNX}

A D LY
'.. } .
‘fJ‘b“

., '. n'.'g.
ah




ho i AATh B A AF S A Ll CRLAT SRR
!

» A itk o ' ) .

ﬂ 13 l‘ 1y

5, e iz
& growing an alternating forest. Some nodes of the forest may be shrunk critical _
subgraphs of H. A critical subgraph C is defined by the property that no general '\_’

" &+ o

. matching M of H satisfies '3?_-?
e

—

S (3.8) IM N 8a(i)| e B; for every node i of C,
; but, for any node i* of C, there exists a general matching M such that (3.8) holds for

every node i #i* and, in addition, |M " 85(i*) | + 1€ Bj+. It follows from the definition of

”—'-'-Tbxcb >
-, &7 T * J L e &
%‘
i N
4

2 C that, it M is a general factor of H, then there is at least one edge of M with one end in
. C and the other outside C.
1
h — ]
’ In the course of the algorithm, it must be decided whether certain subgraphs ;?IEZ'.E
W, a® hl;.
A of H are critical. When such a subgraph C is encountered, it already has the property :l-::'-lj
r-"-_“\
» that, for every node i* of C, there exists a general matching such that (3.8) holds for 03!?-{
,‘ 353
< every i #i* and|M sc(i*) | +1 € Bj*. In addition, an edge set M is available with 3;;?
RN
this property for some given i *. So the criticality of C actually reduces to the question of ;EZ'F:
! Roplt
> whether there exists an M-augmenting path in C, say P = (u=i*, u,..., up). Given up, mj_
ads
T this question can itself be reduced to two simple factor problems as explained below. .:f:;
2% Wiy
D Then, considering each node upeNg in C as the potential final node of P, we can 5«523
answer whether C is critical in polynomial time. Now assume that u; and up are given, ?‘:f
.
3 and consider any node u; of P such that 1< i < p. Conditions (3.5) and (3.6) imply the ::.-‘E'.;',
PN
vah
following relationships. Let b =|M n 4(u;)|. Consider the largest j<b such that e
N
j*1,j € B; or, if such a value j does not exist, such that j-2, j-1 e B;. Let s =(b-j)2. "\3
SONN
W
Note that s is an integer since all gaps have length one. The inequality p; +¢2b-2s i :‘2
. must hold as a consequence of (3.5) and (3.6). Similarly, consider the smallest k 2 b 2;:'-:;
: Y
: such that k, k+1 e B; or, if such k does not exist, such that k+1, k+2 ¢ B;. Let E::::é
L. ais)
9 B
) t = (k-b)/2. Again t is integer and (3.5), (3.6) imply that B; + & < b+2t. In other words, R
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after the augmentation, the new general matching M' must have the property that

b-2ss|M' S (uy) | < b+2t. Since P has an even number of edges incident with u;, the

condition at node u; is the intersection of an interval with a parity condition. We have

seen earlier how this can be polynomially transformed into 1-factor conditions (see
Figure 1b). Note that no triangle is needed in this transformation. For the last node of

the path P, say Up, there are only two possibilities, namely | M' A 8y(u;) | = b-2s-1
where s = (b-j)/2 and j is the largest integer such that j s b and j-1,je Bj. Or
IM' N Spy(uy) |=b+2t+1 where t = (k-b)/2 and k is the smallest integer such thatk 2 b

and k, k+1 € B; . Each of these two factor conditions can be checked in turn and the

question of the existence of an augmenting path P joining uq4 to Up is therefore

solvable in polynomial time.

We are now ready to state the algorithm for finding a general matching with
minimum infeasibility in the graph H. Relative to any general matching M, the algorithm
constructs a forest whose edges are alternately in and out of M (except possibly for
pendant edges). The nodes of the alternating forest are either real nodes of H or
shrunk critical subgraphs of H. Each tree of the forest has a root which is either an

infeasible node of Ng or a shrunk node that contains an infeasible node of Ng. The

nodes of the forest are called alternately odd and even on any path originating at the
root, with the root node being even. Shrunk nodes of the alternating forest are always

even. Every real even node i of the forest which is not a root satisfies | M N §4(i) [ = ;.

Every odd node i of the forest satisfies |M N Sy () |= m;. Every edge of M incident

with a node of the forest belongs to the forest.
Algorithm

Step @ (Initialization) Start with any general matching M. Go to Step 1.
Step 1 (Optimality test) If M is a general factor, stop. Otherwise, start with the
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infeasible nodes of Ng as the roots of the alternating forest. These nodes are even E‘F .
A

A A

nodes of the forest. Go to Step 2. N
Pﬁf"v‘

. ?,;;’.‘{ !

Step 2 (Edge selection) Look for an edge which does not belong to the alternating r"‘:
forest and joins an even node of the forest to a node which is not an odd node of the A
forest. It no such edge exists, stop: there is no general factor (this claim will be proved e
£k

later). Otherwise let e be an edge joining an even node u to a node v, where v is not I

%

an odd node of the forest.

Y,
~
>

K

Case 1 vis notin the forest, ve N and the node w defined by (v,w) € M is such that

. .
l"’l-

b 3 iR F I
L}_.."._l'_ rE0
1N “

A

w e Ng.(Note that the edge (v,w) e M exists as v is a feasible node of H.)Go to Step 3a.

<l
4

LA
Case 2 vis notin the forest, ve Ng and the node w defined by (v,w) € M s such that ;“J-.:-_}_';:
[YASKN
.'-'.'.'\.
we Ng. f|Mn §y(w) | = Iy, go to Step 3b. If |[M A S(w) |-1 € By, go to Step 4a. y "'-':".
. b &
Finally, if |M A 84(w) |> Iy and| M n §y(w)|-1 & By, go to Step 3c. :_::53
2034
Case3 vis notin the forest and v e Ng. If|M N 3y(v) |= my, go to Step 3d. If ié:f
IM A 8y(v) |+1 € By, go to Step 4a. Finally, if |[M n §(v) |< m, and N
Do
VAT
DAY
M~ 8(v)|+1 ¢ By, go to Step 3e. ’:E:E
Case 4 v is an even node of the forest and belongs to a different tree than u. Go to ;,.(,
O ND
Step 4b. R
Case 5 v is an even node of the forest and belong to the same tree as u. Consider AR
e

the cycle closed by adding the edge e to the tree and define C to be the subgraph of H S
. SN .<
induced by the nodes of G in the cycle or within shrunk nodes of the cycle. Go to NS
Step 5. R
M
Step 3 _ (Growing the forest) ??!
(a) Grow the alternating forest by adding the edges e and (v,w) to the forest, making v 2'-;-'_:
an odd node and w an even node. Go to Step 2. OO
v
(b) Let x4...., X be the endpoints of the edges of M incident with w, other than the node ._,‘_:g
v. Grow the alternating forest by adding the edges e, (v,w) and (w,x1),..., (W,x) to the E
L] :-"!
~;:::.‘: ............................ .'\'..;:'.




i

I\I [

N
).‘sa’ Fq

R

1y
- - ’

SARAIPNS

Prreeee,

--------- e e A MR T W Y e L T M e e e e WS A S AR TSI S RN
A S G G A N G R LA LA WS, (O A LS (O LS N CURSRNY Ul g tatel .

‘at Yot Bat Faf At S Pat Gt b @t Pt fat E RN A PN RN AN NANRN A X! D et Pt B4 B Y b a® A s SV M L]

16
forest, making v, x4...., X 0dd nodes of the forest and w an even node. Go to Step 2.
(c) Let x4,..., Xk be the endpoints of the edges of M incident with w, other than the node
v. Grow the alternating forest by adding the edges e and (v,w), making v an odd node
of the forest and shrinking the nodes w, x4,..., Xk into an even node of the forest.
Go to Step 2.
(d) Let wy,...,wy be the endpoints of the edges of M incident with v, where k = m,,. Grow

the alternating forest by adding the edges e, (v,w1)...., (v.wi) to the forest, making v an

odd node of the forest and making the nodes wy,...,wy even nodes of the forest.
Go to Step 2.
(e) Let wy....,w); be the endpoints of the edges of M incident with v. Shrink u, v, wy....,

wy into an even node the forest. Go to Step 2.

Step 4 (Augmentation)

(a) Augment the general matching M by interchanging the edges in M and out of M on
the path from v to the root of the tree containing v. Go to Step 1.

(b) Augment M by adding the edge e to M and by interchanging the edges in and out
of M on the paths from u to the root of the tree containing u and from v to the root of the
tree containing v. Go to Step 1.

Note that M can always be modified appropriatly within the shrunk nodes
since they are critical.

Step § (Augmentation or shrinking) Look for an augmenting path joining the root of
the tree containing u and v to a node u, € Ng in the set C. This can be performed in
polynomial time as explained above. If such a path exists, augment M by interchanging
the edges in and out of M on the path. Go to Step 1. If, for every up € Ng in C, no

augmenting path exists, then shrink C into an even node of the alternating forest. Also
shrink into the same even node every even node of the forest which is incident with a
node of C and every odd node of degree 1 in the forest which is incident with a node of

C. Go to Step 2. End of Algorithm
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The algorithm terminates after at most 2 | Ng | augmentations. Between

augmentations, Steps 3 and 5 are visited at most | N| times. So the algorithm is
polynomial. If the algorithm stops in Step 1, a general factor has been found. In order to
prove the validity of the algorithm, we only have to show that, when it stops in Step 2,
no general factor exists. Consider the set S comprising the odd nodes of the

alternating forest at termination of the algorithm. A general factor can have at most
Z{m,: ve S} edges joining nodes of S to nodes of N-S and the current M has just that

many. In any general factor, at least one edge from S is required for each even node of

the forest which is shrunk, and |; such edges are required for each even node i which is

a real node of H. The difference between the requirements from even nodes and the
availability from the odd nodes is equal to the number of roots in the forest. Thus M

leaves the smallest number of infeasible nodes in Ng. In particular, this shows that no

general factor exists. Therefore, we get the following theorem.
Theorem 5 The graph H has a general factor if an only if, forany S N,

Z{m,: ve S} 2 1 + Z{ly: ve Lg},

where 1g is the number of connected components of H(N-S) which are critical, and Lg

is the set of isolated nodes of H(N-S).

This result is closely related to Theorem 4.3 of Lovasz (1972). Extensions to
a weighted version of the general factor problem are left for future research.

Acknowledgments : | would like to thank Bill Pulleyblank for introducing me to this
problem and for generously providing suggestions at various stages of this research.
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N general factor problem can be solved in polynomial time when, in each B,, all the N
Y gaps (if any) have length one. We prove this conjecture. In cubic graphs, the :f-;-f
N result is obtained via a reduction to the edge-and-triangle partitioning problem. —

In general graphs, the proof uses an augmenting path and an Edmonds-type algorithm. XAt
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