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ABSTRACT 

The partially-parabolic, or parabolised, Navier-Stokes equations for 
laminar flow, and the corresponding Reynolds equations for turbulent flow, are 
coupled with an inviscid-flow solution procedure to develop a viscous-inviscid 
interaction method which can be used in three-dimensional flows which cannot 
be treated by means of the classical boundary-layer equations. Potential 
applications of such a higher-order matching procedure are, for example: thick 
boundary layers on ship stems and bodies at incidence, interacting shear 
layers (wakes, wall jets), solid-solid and solid-fluid corners. 

This report provides a detailed overview of the approach for general' 
three-dimensional flows, and presents the results of applications to some 
simple test cases. The Reynolds equations are derived in nonorthogonal curvi- 
linear coordinates, with velocity components along the coordinate directions, 
using vector techniques. This approach differs from the commonly-used tensor 
methods but serves to establish a connection with the more familiar boundary- 
layer methods. The k-e model is used for turbulent flows. The partially- 
parabolic viscous-flow equations are solved using an implicit finite-differ- 
ence scheme and the SIMPLER algorithm for pressure-velocity coupling. The 
inviscid-flow solutions are obtained with a conforming panel, source-panel 
method. Interaction between the viscous and inviscid regions is accounted for 
using the displacement-body concept. The relative merits of interactive and 
global solution procedures are evaluated by comparing the viscous-inviscid 
interaction solutions with large-domain solutions of only the viscous-flow 
equations. Comparisons are also made with experimental data and other compu- 
tational methods. Although the test cases are restricted to two-dimensional 
and axisymmetric flows, the results clearly demonstrate the feasibility of 
higher-order viscous-inviscid interaction procedures. 
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I.  INTRODUCTION 

The classical boiindary-layer equations, which are based on the assumption 

that the viscous layer is thin relative to the local radii of curvature of the 

surface, are parabolic and neglect all Influences of the downstream flow other 

than those contained in the inviscid-flow pressure field. Also, in the clas- 

sical theory, the inviscid flow is calculated without accounting for the 

boundary-layer displacement effects. In spite of these approximations, there 

would seem to be no question as to the tremendous success of boundaiy-layer 

theory. The requirements of the theory are met in many practical flow situa- 

tions, at least for a portion of the flow domain, and for cases where they are 

not met it provides a formal framework upon which refinements and modifica- 

tions can be applied and understood. The conditions of boundary-layer theory 

are not met in a variety of practical circumstances, for example: in regions 

or in the vicinity of flow separation; near leading and trailing edges; in 

comers; at the juncture of the boundary layer and the free surface for sur- 

face-piercing bodies; in regions of strong mass injection; and in regions of 

strong shock-wave boundary-layer interaction. In these cases, some or all of 

the terms neglected in the Navier-Stokes equations to obtain the boundary- 

layer equations become important and, as a result, the classical approach 

fails to predict such flows. There is, therefore, a need for approaches which 

solve viscous-flow equations which are more general than the boundary-layer 

equations. -  . . . ,   ..• 

There are two possible approaches to the solution of higher-order vis- 

cous-flow equations: a global approach in which one set of governing equations 

that are appropriate for both the inviscid-and viscous-flow regions are solved 

using a large solution domain so as to capture the entire zone of viscous- 



inviscld interaction; and an interactive approach in which different sets of 

governing equations are used for the viscous- and inviscid-flow field regions 

and the complete solution is obtained iteratively and interactively through 

the use of an interaction law, i.e., patching or matching conditions. The 

latter approach is often referred to as a zonal approach. It should be recog- 

nized that the former approach is somewhat more rigorous since it does not 

rely on the patching conditions which are not exact. Nonetheless, for a 

variety of reasons, some of which will be discussed subsequently, both types 

of approaches are of interest. A complete review of the literature is beyond 

the scope of this report. However, an overview is given using selected refer- 

ences as examples for the purpose of putting the present work in perspective. 

Traditionally, interaction studies have coupled the thin-boundary-layer 

equations with inviscid-flow solutions which include viscous-flow effects 

using displacement-body or equivalent-source methods. Usually, only one 

iteration is performed either because sufficient accuracy has been obtained or 

due to slow convergence. Such methods have been successful in predicting 

flows where the boundary-layer equations are, in fact, a good approximation in 

the viscous-flow region, e.g., thin airfoils and wings at sufficiently small 

angles of attack such that there is no flow separation. Extensions for thick- 

er airfoils and wings and/or larger angles of attack, such that only a limited 

separation occurs that is confined to a thin layer adjacent to the surface, 

have also been made. In this case, the singularity of the boundary-layer 

equations at separation is removed by using the inverse mode and single-pass 

solutions can be obtained using the FLARE approximation. Here again, the 

results are very good and under most circumstances the interactive boundary 

layer procedures can predict the flow as well as the global Navier-Stokes or 



partially-parabolic Navier-Stokes solutions (McDonald and Briley, 1983; Mehta 

et al., 1985). The interactive procedures have the advantage of computational 

efficiency over the global methods. 

Applications of either the traditional (direct-mode) or inverse-mode 

interactive procedures to flows in which the boundary-layer equations do not 

represent a good approximation (e.g., axisymmetric bodies and ship hulls) have 

generally had only a limited success. In the case of the traditional proced- 

ures this has been well demonstrated by the extensive experimental and theor- 

etical studies of Huang and associates at the David Taylor Naval Ship Research 

and Development Center (DTNSRDC) (Huang et al., 1978, 1980, 1983). For 

axisymmetric bodies with relatively sharp trailing edges, the viscous-inviscid 

interaction is relatively weak, and the traditional procedures allow the 

boundary-layer calculations to go beyond the premature separation predicted by 

the classical theory and show good agreement wibh the experimental data except 

at the extreme tail region. This improvement over the without interaction 

solutions is no doubt due to the removal of the rear stagnation point in the 

inviscid-flow solution. However, for axisymmetric bodies with blunt trailing 

edges and more complex three-dimensional bodies the viscous-inviscid interac- 

tion is strong and the agreement with the experimental data has not been 

satisfactory. There have, in fact, been only a very limited number of in- 

verse-mode interaction studies for axisymmetric and three-dimensional bod- 

ies. Here again, difficulties have been encountered for strong interaction 

applications (Piquet and Visonneau, 1985).     !>' 

Patel (1982) has reviewed the experimental data for the viscous-flow over 

the stem of axisymmetric bodies and ship hulls, which he refers to as thick- 

boundary-layer flows, and points out the following features: (a) for practical 



body geometries there is an absence of flow separation; (b) a rapid thickening 

of the boundary layer; (c) variation of pressure across the boijndary layer 

implying strong viscous-inviscid interaction; (d) the development of a large 

longitudinal vorticity component which may or may not lead to a free-vortex 

type separation; (e) a general reduction in the level of turbulence. Patel 

concludes that the appropriate governing equations for the viscous-flow region 

are the partially-parabolic Navier-Stokes or Reynolds equations. Thus, high- 

er-order equations must be used in the viscous-flow region for such applica- 

tions. -,    ■ 

Investigations using higher-order equations for axisymmetric and three- 

dimensional bodies have been quite varied in the approximations embodied and 

the turbulence model and numerical procedures utilized. Generally speaking, 

the results from most of these investigations have shown an improvement over 

the traditional interaction procedures; however, they do not show overall good 

agreement with the experimental data. This can be attributed to a variety of 

causes: lack of, incomplete, or incorrect viscous-inviscid interaction proce- 

dures; inconsistent approximations in the equations; velocity-pressure coupl- 

ing procedures; turbulence modeling; and coordinates and grid dependence. For 

axisymmetric bodies, see for example, Brune et al. (1975), Lee (1978), Dietz 

(1980), Muraoka (1980), Markatos (1984-), and Marlin et al. (1985). For three- 

dimensional bodies, see for example, Abdelmeguid et al. (1979), Markatos et 

al. (1980), Muraoka (1980, 1982), Tzabiras and Loukakls (1983), Tzabiras 

(1983), and Hoekstra and Raven (1985). In most of the above references the 

outer boundary was placed at about two boundary-layer thicknesses from the 

body surface where conditions are prescribed based on the potential-flow 

solution without including the viscous-flow displacement effects which are 



presumed to be small at this distance; however, as pointed out by Chen and 

Patel (1985) and also by the present work, viscous-inviscld Interaction is 

lnrportant even at such distances from the body. Thus, these previous solu- 

tions are not complete. Also, in one case (Tzabiras 1983), the use of the 

experimental displacement-body to compute the potential flow actually led to a 

less accurate prediction of the surface pressure distribution, indicating 

other numerical difficulties. 

Qn]y Chen and Patel (1985) and Zhou (1982) have taken a sufficiently 

large solution domain in the solution of the partially-parabolic Reynolds 

equations to capture the entire zone of viscous-inviscid interaction. The two 

methods are very different. Zhou uses a streamline iteration method which may 

not be easily extended to three-dimensional flows. Chen and Patel use the 

novel finite-analytic method to discretize the equations and have presented 

results for both two- and three-dimensional flows. Also, see the recent 

review article by Patel and Chen (1985) of the state-of-the-art for axlsym- 

metric bodies (not including the present work). Thus far, these large domain 

solutions have proven to be the most successful.   '    ' ■- 

In the present investigation, a viscous-inviscid interaction method has 

been developed in which the partially-parabolic, or parabolised, Navier-Stokes 

equations for laminar flow, and the corresponding Reynolds equations for 

turbulent flow, are coupled with a displacement-body inviscid-flow solution 

procedure in an interactive and iterative manner. There are numerous poten- 

tial applications of such a higher-order matching procedure, for example: 

thick-boundary-layers on ship stems and bodies at incidence, interacting 

shear layers, solid-solid and solid-fluid corners. Herein, of particular 

Interest are thick-boundary-layer tralling-edge flows, e.g., ship boundary 



layers. For such applications the Interaction approach has the advantage over 

the global approach in that it is most easily extendable to the calculation of 

ship boundary layers at nonzero Froude numbers. 

This report provides a detailed overview of the approach for general 

three-dimensional flows, and presents the results of applications to some 

simple test cases. The Reynolds equations are derived in nonorthogonal curvi- 

linear coordinates, with velocity components along the coordinate directions, 

using vector techniques. This approach differs from the commonly-used tensor 

methods but serves to establish a connection with the more familiar boundary- 

layer methods. The k-e model is used for turbulent flows. The partially- 

parabolic viscous-flow equations are solved using an implicit finite-differ- 

ence scheme and the SIMPLER algorithm for pressure-velocity coupling. The 

inviscid-flow solutions are obtained with a conforming panel, source-panel 

method. Interaction between the viscous and inviscid regions is accounted for 

using the displacement-body concept. The relative merits of interactive and 

global solution procedures are evaluated by comparing the viscous-inviscid 

interaction solutions with large-domain solutions of only the viscous-flow 

equations. Comparisons are also made with experimental data and other compu- 

tational methods. Although the test cases are restricted to two-dimensional 

and axisymmetric flows, the results clearly demonstrate the feasibility of 

higher-order viscous-inviscid interaction procedures. 

II. METHOD OF APPROACH 

Consider the flow field in the vicinity of a body fixed in a uniform 

stream with velocity U of an incompressible viscous fluid. The body shape is 
o 

6 



assumed to be sufficiently streamlined and the Reynolds number sufficiently 

large such that no flow separation occurs and viscous effects are confined to 

a relatively narrow region adjacent to the body surface and in the wake. As 

depicted in figure 1, the flow field can be divided into three regions. 

Region 1 is the inviscid-flow region. Region 2 is the thln-boundary-layer 

which ends at a station x^ beyond which boundary-layer approximations are no 

longer valid. Region 3 (X > x^) is the thick-boundary-layer and wake region 

in which it is assumed that only streamwise gradients of viscous and turbulent 

stresses can be neglected. The inviscid-flow region extends to a distance yQ 

beyond which uniform stream conditions may be assumed. Appropriate computa- 

tional methods can be used for each of the three regions. They are related 

through their boundary conditions and are not necessarily independent. In 

particular, the flow fields in regions 3 and 1 are interdependent such that a 

complete solution for each region has to be determined iteratively through the 

use of a viscous-lnviscid interaction procedure. Alternatively, the flow 

fields in regions 3 and 1 can be solved simultaneously by simply extending 

region 3 to also include the portion of region 1 influenced by the interac- 

tion. Such a large-domain solution captures the entire zone of viscous- 

inviscid interaction and can be used to assess the accuracy of a small-domain 

interaction solution. Herein, both types of solutions will be obtained in 

order to explicate the nature of an interactive solution. 

III.  VISCOUS-INVISCID INTERACTION 

In an interactive approach to the present problem, the viscous- and 

inviscid-flow regions 3 and 1 are demarcated by the common boundary 6 , as 



shown in figure 1. This boundary must be placed at a sufficient distance from 

the body surface and wake centerplane such that, exterior to 6 (region 1), 

viscous effects can be neglected. Traditionally, this boundary is placed at 

or just beyond the edge of the boundary layer. Note that this should be 

considered as the minimum value for 6 , and it is also possible to place 6 at 

distances greater than the boundary-layer thickness, as has been done by other 

investigators. Herein, the traditional definition is used. The flow-field 

solutions in regions 3 and 1 are obtained separately and by quite different 

means, but they are interdependent through the common boundary condition that 

the two solutions merge smoothly at 6. That is, the viscous-flow solution 

(region 3) is obtained with edge conditions at 6 specified based on the invis- 

cid-flow solution (region 1) which is obtained with recognition of the dis- 

placement effect of the viscous flow. The complete solution is obtained 

iteratively until convergence is achieved. i 

It has long been recognized that the viscous-flow region displaces the 

inviscid-flow streamlines such that the inviscid flow is not the same as that 

about the actual body, but rather that about a surface displaced into the 

fluid a distance 6 referred to as the displacement surface. The displacement 

surface can be defined unambiguously by the following two requirements: (a) 

that it be a stream surface of the inviscid flow continued from outside the 

boundary layer; (b) that the inviscid-flow discharge between this surface and 

any stream surface exterior to the boundary layer be equal to the actual 

discharge between the body and the latter stream surface. The second condi- 

tion implies that the flow reduction inside the viscous flow is compensated by 

* 
an outward displacement of such a stream surface through a distance 6  , i.e. 



/  V . dA - / (V^ - V) . dA (III-l) 
A  —^ A -£■ 

where V is the velocity vector of the outer Invlscid flow analytically con- 

tinued into the viscous-flow region, V is the viscous-flow velocity vector, 

and A^* and A^ are the cross-sectional areas between the actual-body surface 

and the displacement-body surface and the boundary-layer surface respec- 

tively. Thus, the inviscid-flow solution is obtained for the displacement 

body. This solution then provides the boundary conditions for the viscous 

flow 

U(6) = U (5) = U 
P     e 

W(6) = W (5) = W (III-2' 
p      e   ■ . ^ ■-■■■■ ■:■'   •*■. ■   ^     ' 

p(6) = p (6) = p 
p     e 

Since 6 and V (6 ) are not known a priori, an initial guess must be provided 

and the complete solution obtained by iteratively updating the viscous- and 

inviscid-flow solutions until the "patching" conditions (III-l) and (III-2) 

are satisfied. Note that, in the present viscous-inviscid interaction pro- 

cedure, no assumptions have been made with regard to the thickness of the 

boundary layer. The primary assumption is that the invlscid- and viscous-flow 

solutions can be patched together through conditions (III-l) and (III-2). 

Within the context of thin-boundary-layer theory, and for two-dimensional 

flow, equation (III-l) becomes 



where 

5* = ^/ (1 - U/Ug) dy (III-3) 
e o . 

U = U (o) = U (6 ). e   p     p 

Lighthill (1958) refers to this definition of 5 (III-3) as the flow-reduction 

method which he shows, for both two- and (with the appropriate definition) 

three-dimensional flow, is completely equivalent, within the context of thin- 

boundary -layer theory, to three other definitions: equivalent source, velo- 

city comparison, and mean vorticity. The velocity-comparison method was first 

introduced by Moore (1953) and is closely related to the equivalent-source 

method, in which it is shown that the displacement effect of the boundary 

layer on the inviscid flow can be represented by an additional distribution of 

sources on the actual body surface of strength 

^BL=kfl(V*)   ' (I"-^) 

where x is the distance along the body surface in the streamwise direction. 

Landweber (1978) has pointed out that (III-/4) is just the first approximation 

to the solution of the general integral equation for a.,, due to the boundary- 

d    * layer outflow velocity distribution -r- (U 5 ). To the same order of approxima- 

tion, the source distribution for the actual body is given by 

-B-i^Vl^ (III-5) 

where n-^  is the x-component of the unit normal to the body surface.  Based on 

either thin- or thick-boundary-layer order-of-magnitude estimates (see Table 

10 



1) a^^  / U ~ 0 (e) where e Is the nondimensional boundary-layer thickness 
BL   o 

and a^ /U ~ 0(n]_). The equivalent-source method has been used extensively 

and with success in viscous-inviscid interaction procedures for airfoils and 

wings where n^ is small in the region of interaction. However, for the prob- 

lems of present Interest (e.g. axisymmetric bodies and ship hulls), n^ is not 

necessarily small near the trailing edge and the equivalent-source method is 

not useful for representing the viscous-flow displacement effect on the invis- 

cid flow. 

lY.  VISCOUS FLOy 

In the thick boundary layer and wake (region 3 in figure 1) it is assimed 

that only streamwise gradients of viscous and turbulent stresses can be ne- 

glected. Under this assumption, the Reynolds equations are reduced to a 

simplified form referred to as the partially-parabolic (Reynolds) equations. 

In these equations, the velocity field is elliptic in transverse planes and 

parabolic in the streamwise direction while the pressure field is fully ellip- 

tic. Solutions to the partially-parabolic equations can be obtained itera- 

tively by solving the parabolic equations that result when the pressure field 

is specified and subsequently updating the pressure field using the results 

from the latest parabolic solution. Of crucial importance is the manner in 

which the velocity and pressure fields are coupled. Many procedures have been 

tried for this purpose (e.g., Anderson et al. 1984-). In the present work, a 

modified form of the SIN5PLER algorithm (Patanker, 1980) that enhances global 

convergence has been used (Chen and Patel, 1985). Selection of the appropri- 

ate coordinate system and grid generation technique used to obtain the coor- 
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dinates is also important. A streamline coordinate system is the most consis- 

tent with the assumptions of the partially-parabolic equations; however, such 

a coordinate system is difficult to generate. Alternatively, body-fitted 

coordinates can be used in which the axial coordinate should be roughly 

aligned with the streamlines since they are coincident on the body surface 

itself. The partially-parabolic assumptions are made in this preselected 

axial coordinate direction. In the present work, both simplified analytic and 

numerically generated body-fitted coordinate systems have been used. The 

Reynolds stresses are modeled using the k-e turbulence model. A conplete 

transformation of the governing equations is used such that the directions of 

the velocity conponents are along the grid lines. It should be recognized 

that very few investigators have used a complete transformation of the govern- 

ing equations, no doubt due to the couplexity of their derivation as will 

become apparent subsequently. The more common approach is a partial transfor- 

mation in which only the coordinates are transformed and the velocity compon- 

ents are maintained in either cartesian or polar coordinates. The governing 

equations are reduced to algebraic form using finite differences and solved 

implicitly by the method of lines. In the subsections to follow, the details 

of these computational procedures are discussed. 

A. Equations and Cioordlnate %stesa. The partially-parabolic equations 

are solved using a nonorthogonal curvilinear coordinate system In which the x- 

coordlnate Is roughly aligned with the flow direction and the y-coordinate is 

in a plane transverse to the body axis X (see figure la). For three-dimen- 

sional flow, the z-coordinate is also in the transverse plane and in the 

girthwise direction (see figure lb). The Reynolds equations in nonorthogonal 

curvilinear coordinates can be derived either through the use of vector or 
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tensor analysis. Here, a vector approach has been used since it lends itself 

to more physical insight. Recently, Richmond et al. (1986) have provided a 

derivation using tensor analysis. 

The Reynolds, continuity, turbulent-kinetic-energy k, and its dissipa- 

tion-rate e equations for steady incompressible flow can be written in the 

following vector form: 

2 V(V«V) -Vxa)_ = -Vp/p + v{V(V«V) - Vxw} 

-V • V V. + (v ) V«v (IV-1) 

V'V = 0 ■■       (IV-2) 

"t     ^  ■       ■ , 
V;Vk = V« (-^Vk) +G-e   A- (IV-3) 

k 

e 

where_V = (U,V,W) are the mean velocity components, v_ = {u,v,w) are the turbu- 

lent velocity components, p is the mean pressure, w^ = V x V is the mean vorti- 

clty,  v^v are the Reynolds stresses (the overbar denotes time averaging), 

1   ? 
k = p- V'v is the turbulent kinetic energy, v.. = C k /E is the eddy visco- 

sity, and G is the turbulence generation. Since the fluid is assumed to be 

incompressible, the terms involving V • V and V • v in equation (IV-1) are 

identically zero, but have been included since they aid in putting the trans- 

formed equations into a more conpact form. The usual values are used for the 

ooxiatants in the k-e equations, namely, (C , a a , C ,, C „) = (.09 1, 

1.3, 1.44, 1.92). The turbulence generation term is defined by 
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G = V^[2(E^^ + £22 "" ^3^ "■ ^  ^^12 "■ "^23 "■ ^31^'     ^^^"^^ 

where e  Is the rate-of-strain tensor 

^Ij = ^ t^I * ^1*^] (IV-6) 

In (IV-6) VV Is the deforraatlon-rate tensor e^^ and VV its transpose, i.e, 

T 
^1.   ~ ®ii • "^^  Reynolds stresses required in (IV-l) are related to k and e 

through the isotropic eddy viscosity concept: 

2 

where the h^ are the metric! coefficients and g^^. is the inverse metric tensor 

both of which are defined below. 

Equations (IV-l) - (IV-7) can be transformed into any coordinate system 

through the use of appropriate definitions of the gradient (V), divergence 

(V« ), and curl (Vx) vector operators. The details of this procedure for 

orthogonal curvilinear coordinates are provided by Rouse (1959). For nonorth- 

ogonal curvilinear coordinates the appropriate vector operator definitions are 

not readily available. They were probably first derived by Weatherbum 

(1926). Following Weatherbum, and referring to figures 1 and 2 for the pre- 

sent notation, the unit vectors e. = (e-,,e2,eo) in the directions of the 

nonorthogonal curvilinear coordinates (x,y,z) are defined in terms of the body 

cartesian-coordinate position vector 
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R = X (x,y,z) i + Y (x,y,z) j + Z (x,y,z) k       (IV-8) 

by 

®1 " \/^l' ®2 " ;^/^2' ^3 " ^z/'^3 ^^^""^^ 

where 

\ =  \\\, ^2 ^  \%\' ^3 ^  l^zl (IV-10) 

and a lettered subscript denotes a partial derivative.  The angles (A ,y ,v ) 

between the (x,y,z) coordinate axes are given by 

A        A 

COS X = ep« e^ 

COS u = e^' e^ :^  . *>' •        (IV-11) 

cos V = e, • ep 

and the unit normals to constant x- y- and z-surfaces are given respectively 

-*      '^ n ^ A A 

^2 ^ ^3 = h^ '^1^1 ^ ^2^2 " Gh3e3] 

^3 ^ ^1 = h^ 'V^l " ^V2 " ^3^«3^       ^^^-^2) 

^1 ^ ^2 = I^ [«h^e-^ + Pli2e2    Ch3e3] 
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where s is the triple product 

s = (h^hph^) (e-,* ep x e„) 

[Ah-j^ + Hh^h^ cos v + Qi-^h„ cos u l"*-/^      (IV-13) 

and 

A = hph„ sin X 

2 2   2 
B = h-,h- sin \i 

2 2   2    ■ 
C = h^h2 sin V ' -^       (IV-14) 

2 
F = (h^h^ cos u) (h-,h2 cos v) - h, (hph^ cos X) 

2 
G = (h^h2 cos v) (h^h^ cos X ) - hp (h,h„ cos y) 

2 
H = (hph„ cos X) (h,h^ cos v)  -  h„(h,hp cos v) 

The inverse metric tensor is defined by 

g. . -   (h.e.'h .e .)~ 
ij    1 1 j j' 

,  A H G 

7 I H B F ] (IV-14.1) 
^  G F C 

In terms of the above quantities, the gradient of any scalar Q(x,y,z) and 
^ ^ ^ 

divergence and curl for any vector V(x,y,z) = V^e^ + Y^e^ + Ye    are given by: 

VQ = — { (AQ^ •" % ^ GQ^) \^i-'  (HQ^ + BQy + FQ^) h2e2 

16 



+   (GQ^ + FQy +  CQ^)  h^ey (IV-15) 

19 
'^xl = "i ^3^ [V-^h^ cos y   + V2h^ cos X   + V^h^] .] /' 

8      , - , . ■    , 

1     r9 r 
+ — Ig-^ [V^h^+ V2h-|^cos V   + V^h-j^cos y] 

9 r -   ■-. ^ 

- 3^  [V-j^h^cos y   + V2h^cos A   + VJi„]}  11262 

1  ,3 
+ - {^ [V^h2COS V   + V2h2  + VJTL^  COS X ] 

9     , - 
" 9y   [V^h-L+ V2h-^cos V   + V^h^cos y ]}   h^e^ (IV-17) 

The transformed equations are very lengthy and are provided in Appendix 

I. The equations have been put in a form that is similar to that used by Nash 

and Patel (1972) for orthogonal curvilinear coordinates. By comparison, it is 

seen that, for the present circumstances, the coefficients in the governing 

equations depend on terms related to not only the curvatures of the coordin- 

ates but also their angular orientation. Due to the complexity of the deriva- 

tion of the transformed equations it was desired to check their accuracy; 

however, this was made difficult by the fact that no other presentations of 

the governing equations in nonorthogonal curvilinear coordinates in a format 
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and notation similar to the present one are known to exist. The following 

checks were made: for (A,y,v) ^ 90°, the orthogonal form of the equations was 

recovered; for (A ,v) ■> 90°, and subject to the boundary-layer assumptions the 

boundary-layer equations of Cebeci at al. (1978) were recovered; and some of 

the coefficients were compared with their corresponding counterparts in the 

tensor form of the equations presented by Richmond et al. (1986). 

The partially-parabolic equations are obtained from the complete set of 

equations in Appendix I through the use of the order-of-magnitude estimates 

given in Table 1. 

Table 1:  Order-of-Magnitude Estimates for a Thick Boundary Layer 

Quantity Order-of-Magnitude 

U 1 

1 §■ 

W    _ , . ■■     e    ■''"':.    ,    ": 

9/8x 1 

3/9y e-1 

3 /9 z       •■ e -1        : ' ,.; 

■ .     ,              2 

v.v. • t 
1 J 

Patel (1982) has shown that these order-of-magnitude estimates are consistent 

with the partially-parabolic assumptions.  Also, in obtaining the partially- 
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parabolic equations no assumptions are made with regard to geometrical quanti- 

ties; that Is, all geometrical quantities are considered 0(1). The x-momentum 

equation Is obtained by retaining terms of 0(1) only. All other equations are 

obtained by retaining terms of 0(1) + 0(e). The partially-parabolic equations 

are provided in Appendix II. Lastly, it should be mentioned that, strictly 

speaking, the complete equations can also be rendered partially-parabolic by 

simply only neglecting the viscous- and turbulent-diffusion terms (second- 

order derivatives) in the x direction. 

B. Discretization. The governing equations are reduced to algebraic 

form by approximating all the spatial derivatives by finite differences. A 

staggered-grld system has been used in order to avoid difficulties in the 

velocity-pressure coupling procedure to be discussed subsequently. The grid 

arrangement and notation are as shown in figure 3. An Implicit finite-differ- 

ence scheme Is used which is basically only first-order accurate; however, 

certain derivatives have been evaluated using second-order central differences 

and all terms have been evaluated at the proper grid location by using aver- 

ages of the surrounding values. The detailed finite-difference formulas are 

provided in Appendix III.  The overall procedure is described below. 

The x-momentum equation is dlscretlzed with reference to control volume I 

of figure 3.  Referring to the partially-parabolic form of the x-momentum 

equation (B-1), figure 3, and Appendix III.A:  only the x- and y-derlvatlves 

in the convective acceleration and the y-dlffuslon terms are maintained on the 

left hand side to form the trldiagonal matrix; the remaining terms are grouped 

into a single source term and are put on the right hand side; and all terms 

are evaluated at the location of IT  . 
m,n 
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The y-momentum equation Is dlscretlzed with reference to control volume 

II of figure 3.  Referring to the partially-parabolic form of the y-momentum 

equation (B-2), figure 3, and Appendix III.A: only the x- and y-derivatives in 

the convective acceleration and y-diffuslon terms are maintained on the left 

hand side to form the tridiagonal matrix; the remaining terms are grouped into 

a single source term and are put on the right hand side; and all terms are 

evaluated at the location of v  . 
m,n 

The z-momentum equation is discretlzed with reference to control volume 

III of figure 3. Referring to the partially-parabolic form of the z-momentum 

equation (B-3), figure 3, and Appendix III.A: only the x- and z-derivatives 

in the convective acceleration and z-diffuslon terms are maintained on the 

left hand side to form the tridiagonal matrix; the remaining terms are grouped 

into a single source tenn and are put on the right hand side; and all terms 

are evaluated at the location of w  , 
m,n 

The k-e equations are discretlzed with reference to control volume IV of 

figure 3. Referring to the partially-parabolic form of the k-e equations (B- 

4) and (B-5) respectively, figure 3, and Appendix III.B: only the x- and y- 

derivatives in the convective acceleration and y-diffusion terms are main- 

tained on the left hand side to form the tridiagonal matrix; the remaining 

terms are grouped into a single source term and are put on the right hand 

side; and all terms are evaluated at the location of k   and s 
m,n     m,n 

By means of the above finite difference scheme, the three momentum and 

the k-e turbulence-model equations can be put in the form: 

a,U^ ,  + a„/  + a^l/^,  = Sn        + Pn (IV-18) 1 m-l,n  2 m,n  3 m+l,n    m,n    m,n      ^    ' 
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^1^ 1  + ^o"^       +  b^/^,  = Sv^  + Pv^        (IV-19) 1 m-l,n  2 m,n   3 m+l,n    in,n   m,n ' 

Ci^l ^ T+ c^/ ^ + c^l/  ^-, = Sw^  + Pw^        (IV-20) 1 m,n-l  2 ni,n   3 m,n+l    m,n    m,n 

'^^   d,kj,-  ^ + d„]/  + d„]/^,   = S]/  ■■' (IV-21) 1 m-l,n   2 m,n   3 m+l,n    m,n 

£ £ ? 5 
^T^^ 1 ^ + e„e   + e^e  ,   = Se     ^ ■  ' :   (IV-22)  ■' 1 m-l,n   2 in,n   3 m+l,n    m,n 

where the Sf) terms are the source terms and ?(}> are the pressure-gradient 

terms (<() = (U,V,W,k,e ) ). Note that equations (IV-18) - (IV-22) are nonlinear 

since both the coefficients a^ through e^^ and the source terms are functions 

of the unknovms (U,V,W,k,e ) (see Appendix III). If the pressure field is 

known then equations (IV-18) - (IV-22) can be solved directly for the velocity 

field (U,V,W) and turbulence parameters (k,e); however, since the pressure 

field Is unknown, it must be determined such that the continuity equation is 

also satisfied. The velocity-pressure coupling procedure is the subject of 

the next section. 

C. Velocity-Pressure Coupling. The coupling of the velocity and pres- 

sure fields is accomplished through the use of a two-step iterative procedure 

involving the continuity equation. In the first step, the solution to the mo- 

mentum equations for a guessed pressure field is corrected at each cross sec- 

tion such that continuity is satisfied. However, in general, the corrected 

velocities are no longer a consistent solution to the momentum equations for 

the guessed p. Thus, the pressure field must also be corrected. In the sec- 

ond step, the pressure field is updated again through the use of the continu- 

ity equation.  This is done after a complete solution to the velocity field 
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has been obtained for all cross-sections in a manner that properly accounts 

for the elliptic nature of the pressure field and also accelerates conver- 

gence. Repeated global iterations are thus required in order to obtain the 

converged solution. The details of the derivation of the pressure-correction 

and pressure equations are provided in Appendix III. C. The overall procedure 

is described below. 

Both the pressure-correction and pressure equations have the same form 

and are derived in the same manner from the discretized form of the continuity 

equation, i.e. ^ ''    '-'" 

,1       %,n ~ Vn^ "" ,. ^-1/2       ^ V+l,n V,n^ 
(Ax-) (Ay-) ^, ,„ m,n "^ m+l/2,n 

+  ^-1/9 (W^ r,4.i- wl r,) = 0    '       {IV-26) fA-7 1^-1/2  m,n+l  m,n 
^^^"V,n-M/2 

where 

, .   U^  = (^)^  l/ m,n   h^ m,n m,n 

... if       =  (|_)^  / (IV-27) 
m,n   h^ m,n m,n 

■ ■;.'' t       =  (^)^  l/ m,n   h m,n m,n 

The velocity components (IT  , v  , w  ) required in (IV-27) are obtained ■^   ^ m,n' m,n' m,n 

from the discretized form of the momentum equations (IV-l8)-(IV-20) by putting 

equations (IV-18)-(IV-20) in the form 
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^,n=t,n " Vx ^ Vy ^ Vz ^^^"^^^ - 

W       = W       +  c„p + c-P + c^p m,n   m,n   7^x   8^y   9 z 

where Ul ^ Vl  VT  are referred to as pseudovelocities.      ;, : _• 

Substituting (IV-28) and {IV-27) into (IV-26) and representing the pres- 

sure gradient terms in {IV-28) by finite differences results in the desired 

equation for pressure.  In the iT ^ equation, a forward difference is used for 

p and central differences for p., and p^.  In the /  equation, a backward 
^ j ^ m,n 

difference is used for p.^ and central differences for p^ and p„. In the / 
^ ^    ^ m,n 

equation, a baclcward difference is used for p^ and central differences for p 

and py. All terms are evaluated at the respective velocity component location 

by using averages of the surrounding values.  The resulting equation for 

pressure Involves 20 of the 27 nodes corresponding to x indices (£-1, £, 

£+1) and y and z indices, (m-1, m, m+1) and (n-l, n, n+1), respectively; 

however, only certain terms are maintained on the left hand side to subse- 

quently form the tridiagonal matrix, and all remaining terms are grouped into 

a single source term and put on the right hand side: 

^l%n " f2Pl,n ' h^^'Cn '  ^4Pl^l,n " f/m-l,n 

"^6Pl,n.l ^ Vl,n-1 ^SP   :,     .  (IV-29) 
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It should be recognized that no approximations have been made in deriving (IV- 

29) and as such it is an exact representation of the equation of continuity in 

terms of pressure. • 

Equation (IV-29) is first used to correct the velocity field obtained 

from the solution of the momentum equations for a guessed pressure field.  In 

this case, p is designated as p and both upstream and downstream values of p 

are neglected. The resulting pressure-correction equation is 

Afl AJ Afl An 

^2Pm,n ^ ^4Pmn,n ^ Vm-l,n ^ ^6Pm,n-Hl 

^f7Pm,n-l =SP (IV-30) 

where Sp is obtained by evaluating Sp (C-61) with the current solution to the 

momentum  equations IT  , v , W      substituted  for u ,  T     , W     . The 
m,n' m,n' m,n m,n' m,n' m,n 

pressure-correction equation (IV-30) is approximate since both upstream and 

downstream values of p have been neglected as well as the influence of pres- 

sure corrections on the neighboring velocities. The latter approximation 

neglects the indirect or implicit influence of the pressure correction on 

velocity and is the reason for the words semi-implicit in the name SIMPLER. 

Note that both approximations are justified since the corrected velocity field 

is only an intermediate solution, and when the solution converges, p is zero. 

Equation (IV-30) is solved at each cross-section I using the method of lines 

for two-dimensional and axisymmetric flow applications and an alternating 

direction implicit method (ADD for three-dimensional flow applications. 

Subsequently, the velocity field is corrected using equations (IV-28) with p 

substituted for p and with the current solution to the momentum equations 

U^  , V^  , /  substituted for if  , V^  , W^  . 
m,n' m,n' m,n m,n' m,n' m,n 
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When the exit cross-section i=LL is reached, equation (IV-29) is again 

used to update the pressure field. In this case, no approximations are made. 

The pressure equation is solved by marching from downstream to upstream using 

the method of lines for two-dimensional and axisymmetric flow applications and 

an ADI method for three-dimensional flow applications at each cross-section £ 

with the H+l and Z-1 values considered as known from the previous iteration. 

With a new pressure field thus obtained, the entire process is repeated until 

the results converge; that is, a compatible velocity- and pressure-field 

solution is found, ■ 

D. Boundary Conditions. The partially-parabolic equations require 

boundary conditions for the pressure, either explicit or implicit, on all 

boundaries. Boiindary conditions are required only from upstream and in the 

cross-section for the velocity coirponents and turbulence parameters. Note 

that only three of the unknowns (U,V,W,p) can be specified on each boundary or 

the problem is over specified. The fourth unknown is determined through the 

solution of the governing equations.        . ' 

Referring to figure 4, the bovmdary conditions used in solving the momen- 

tum and k-e equations (IV-l8)-(IV-22), and the pressure (IV-29) and pressure- 

correction (IV-30) equations are as follows: 

Inlet Boundary Sj 

Initial conditions for (U,V,W,k,e) are specified based on simple flat- 

plate solutions.  Initial conditions for p and p are not required. 

Exit Boundary Sg 
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A zero-gradient condition is used for p and p and no conditions are 

required for the velocity components and k-e . 

Outer Boundary Sp 

u = Ug, w = W^, p = p^ 

.     ■     {lV-31) 

91c  9e  ^ 

where (U , W , p ) are specified from the Invlscid-flow solution. Large- 

domain solutions are obtained by placing the outer boundary at a sufficient 

distance from the body surface and simply specifying (Ug, W^, Pg) = (1, 0., 

0. ).    - 

Body Surface Boundary Sg    ■ " 

For laminar flow, the solution is carried out up to the body surface 

where the no-slip condition is applied: U = V = W = 0. For turbulent flow, 

the wall-function approach of Chen and Patel (1985) is used. In this proced- 

ure, the first two grid points are placed in the log-law region. With a 

guessed value of the wall-shear velocity U the required boundary conditions 

at the first grid point for the velocity components (U,V,W) and k and e are 

obtained from the log-law and the assumption of local equilibrium: 

'   ■ ■    +.1/2 

■   ■    t T (1 + A y ) '  + 1 
T 

+ B + 3.7 A (IV-32) 
p .   V . ■;.;-■ 
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T U 

e   =  U^/Kj 

(IV-33) 

where U    is   the  wall-shear velocity  defined by U    = / x   /p ,  y"^  = yU /v   is  the 
T T w T 

dimensionless distance measured in the direction normal to the surface, 

A = —^— is the dimensionless pressure gradient, A is the dimensionless 

shear-stress gradient and is assumed to be 1/2 A , q is the magnitude of the 

velocity, K = 0.4-2 is the von Karman constant, and B = 5.4-5. Since the log- 

law (IV-32) only provides the velocity magnitude, in order to obtain the 

velocity components, it is assumed that the velocity vector in the {x,y) plane 

is parallel to the wall and in the (x,z) plane has the same direction as at 

the second grid point. Since the second grid point is also in the log-law 

region, after a field solution has been obtained, the solution at the second 

grid point can be used to update the guessed value of U and the procedure 

repeated until convergence. Lastly, conditions on p and p are not required on 

Sg. 

Symmetry Plane S^ 

y  (U,W,p,p,k,e) - 0 (IV-34) 

V = 0 
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Symmetry Planes S^^  and Sy 

3^ (U,V,p,p,k,e) =0 (IV-35) 

W = 0 

E. Grid Generation. Grid preneration is an important aspect of the 

overall numerical procedures. This is primarily due to the fact that the 

partially-parabolic assumptions are made with reference to a preselected grid 

coordinate curve which is presumed to be sufficiently close to the streamwise 

direction. Also, grids that are not sufficiently smooth can cause erroneous 

instabilities in the solution. Two body-fitted grid-generation techniques 

have been used. 

For the small-domain interactive calculations a simple analytic grid- 

generation technique has been used In which local expanding grids for each 

cross-section are pieced together in the streamwise direction. That is, the 

nonorthogonal curvilinear coordinates (x,y,z) are defined by    ' 

X = X 

y = Ay--L—6(x,z) (IV-36) 

(y^-l) 
z = Az —^— a{x] 

z 
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where Ay = y v/U^ is the initial y-direction spacing, y is  the  expansion 

ratio in the y-direction, 6(x,z) is the boundary-layer thickness, Az is the 

initial z-dlrection spacing, Y„ is the expansion ratio in the z-direction 

and a(x) is the arclength of the body cross-section. 

For the large-domain solutions it was not possible to use such a simple 

analytic technique as (IV-36). This is due to the fact that, as the outer 

boundary is placed at further distances from the body surface, the piecewise 

local-expansions technique produces a grid in which the coordinates display 

humps and hollows near the body trailing edge and midway across the flow 

domain. Such irregularities cause instability in the solution. Consequently, 

for the large-domain solutions, a more sophisticated body-fitted grid-genera- 

tion technique, developed by Chen and Patel (1985), was used in which the 

coordinates are obtained numerically from the solution of a set of Poisson 

equations for specified boundaries and control functions. 

F. Global Solution Procedure. In the previous subsections (IV.A)-(IV.E) 

the various aspects of the viscous-flow-solution method have been described. 

The inviscid-flow-solution method is described in section V. In this section, 

the global and interactive solution procedures are outlined. The main steps 

are as follows: 

1) Specify all boundary and initial conditions, including an initial 

guess for the entire pressure field and, for the interaction solu- 

tions, the boundary-layer thickness. 

2) Construct the grid and calculate all the required geometric data. 
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3) Evaluate all the coefficients in the momentum, pressure-correction, 

and pressure equations. 

4) Solve the momentum equations. An under-relaxation factor a is used. 

5) Solve the pressure-correction equation and correct the velocities. 

An under-relaxation factor a* is used.   '    ^^ 
p 

6) Calculate the pseudovelocities and store for use in solving the 

pressure equation. 

7) Evaluate all the coefficients in the k-e equations and solve the 

k-e equations. 

8) Repeat steps 3) - 7) for each cross-section until the exit plane is 

reached. 

9) Calculate the displacement body and for the interaction solution the 

new inviscid-flow solution. 

10) Solve the pressure equation elliptically.  For the interaction solu- 

tion the edge conditions are updated based on the new inviscid-flow 

solution. An imder-relaxation factor a is used. 
P 

11) Repeat steps 3) - 10) until convergence is reached within a specified 

tolerance.  Actually, the convergence criterion used for the results 
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to be presented was simply that there was no noticeable change in the 

body surface and wake centerllne pressure distribution when viewed on 

the plotting device. Below, the notation IT is used to refer to the 

global Iteration number. 

V.  INVISCID FLOW 

A« Source-Panel Method.  In the invlscid-flow region (region 1 in figure 

1), the flow is assumed to be irrotational. A velocity potential $ is defined 

such that V$ is the perturbation velocity field, i.e. 

V = U 1 + V$ (V-1) 

The perturbation potential must satisfy the Laplace equation 

V^$ =0 (V-2) 

subject to the boundary condition 

$  = - U n,    on S^ (V-3) n    o 1       B     . 

on the body,and the condition :    -   •  . 

v$ ■> o : '-^ ;;-v {Y-A) 

at Infinity.  The boundary-value problem (V-2) - (V-4) for the perturbation- 

potential can be solved by the source-distribution method.  The conforming 
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panel, source-panel method of voa Kerczek et al. (1983) has been used here. 

The perturbation potential is expressed by 

$ = / a GdS (V-5) 

where a  is the source streng^th and G is the Green function 

G = 1/R .  • . 

(V-6) - 

R = |x - L| V. 

with X = (x,y,z) the field point and ?_ = (C ,u ,C ) the source point. Note that 

equation (V-5) automatically satisfies condition (V-4). Substitution of (V-5) 

into (V-3) results in the integral equation for the source strength a, i.e. 

- 2Tra + / a 1^ dS = - U^n^ (V-7) 

Equation (V-7) is solved by discretizing the body surface into a number of 

conforming surface panels, on each of which the source strength is assumed 

constant, and evaluating the integral in (V-7) over each panel approximately 

by using Gauss quadrature. 

This procedure is facilitated through the use of a parametric surface 

equation representation for the body surface: 

Rg = X 1 + Y (X,a) j + Z (X,a) k (V-8) 
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where Rg is a position vector which describes the body surface. Here X is the 

usual lengthwise coordinate and a is a parameter which varies along the girth 

of each section. The following procedures are Implemented. First, the body 

offsets for one side are mapped into the X-a plane. That is, corresponding 

(X,a) pairs are assigned for each given offset R3. Second, the derivatives, 

R^, R^, and R^, are obtained by three-point finite-difference approxima- 

tions. Third, the offsets and derivatives are interpolated using cubic- 

Hermite splines onto a uniform {X^, a^} grid chosen so as to provide a good 

surface coverage with regard to surface features. With the surface vector, 

RB, and its derivatives, R^, R^ and R^, known at each gridpoint, their values 

at any arbitrary point (X,a) on the grid can easily be obtained by reinterpo- 

lation, again using cubic-Hermite splines. Lastly, (X,a) are specified to 

form the input needed for the evaluation of the integral in (V-7). That is 

/ ^dSj =AXjA«j E  w^lf (Xj^, a^)      :  (V-9) 

B ^-1 
J 

where W], is the weighting factor and (X^,, a^)  are the nodes of the Gauss 

quadrature formula.  The resulting system of linear equations is solved for a 

by Gauss-Seidel iteration. With a  known, the surface and field point veloci- 

ties are readily calculated, again using Gauss quadrature, from 

V = U i + / a  VG dS 

^B 

and the pressure is obtained from the Bernoulli equat 

% = ^ -(^ • j^^^i 
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where C = p-p /V2PU  is the pressure coefficient. 

B. Displacement Bo^. As explained previously, in the interaction 

calculation, the body boundary condition (V-3) Is applied not on the actual- 

body surface but on the displacement-body surface. In terms of the present 

nonorthogonal curvilinear coordinate system the displacement body is defined 

- :-. / V • dA = /  (V - V) . dA (V-10) ' 

where V is the velocity vector of the outer potential flow analytically 

continued into the viscous-flow region, V_Is the viscous-flow velocity vector, 

A^^ and A are the cross-sectional areas between the actual-body surface and 

the displacement-body surface and the boundary-layer surface respectively, 

and dA = 62 X e- h2h^dydz . In evaluating (V-10), for axisymmetric flow 

applications, the approximation was used that V is constant across A *, i.e. 

/ 1     * -^ 
/  hh dy = rr—:r   j     (V^ - V) • 1 h^h^ dy     (V-11) 
o .   ^     V (6 )-i o  ^  ~     ^ ^ 

This approximation can be removed by analytically continuing the displacement- 

body potential-flow solution inside the displacement body; however, this 

requires an inviscid-flow solution method based on the symmetric form of 

Green's theorem (i.e. source and dipole distributions) which is continuous 

across the body surface whereas the present source-panel method is not. 

Lastly, some comments should be made with regard to the evaluation of (V-10) 

for three-dimensional flow applications.  A straightforward but approximate 

34 



procedure is to again assume V^ is constant across A^ ^ and make the addition- 

al approximation that 6*{x,z) can be defined in terms of a local flux balance, 

i.e. 

«* .       z  S 
/ h h dy =— /^ / (V^ - V).lh„h„dydz 

: ■■ ■'..   :   '^^ . :       ::./ :'''^ 

Landweber (1986) has pointed out that such an approximation does not guarantee 

that 6* is a stream surface of the continued potential flow and suggests an 

alternative method for evaluating (V-10) subject to an explicit condition 

that 6* is a stream surface. 

C. Equivalent-Source Method. For the flat-plate boundary-layer and wake 

test case (see Section VI.A.) the displacement effect of the boundary layer 

was included through the use of the equivalent-source method. In this case, 

such a method is acceptable since the body surface is flat. A two-dimensional 

potential function is defined by 

$ = UX + / aGdX (V-12) 
X :: ■ 

where '■    .- . 

G = £nR . ~ 

d    * 
a = -r- (U 6 ) 

dx  e 
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YI. APPLICATIONS FOR TWO-DIilENSIONAL AND AXISYMMETHIC FLOWS 

Results are now presented from the application of the computational 

procedures described in Sections II - V for two-dimensional and axlsymmetrlc 

flows. The two-dimensional-flow application is a simple flat-plate boundary 

layer and wake. Results are presented for both laminar and turbulent flow. 

For the axisymmetric-flow applications, resiilts are presented for turbulent 

flow only, and for two of the family of afterbodies for which experimental 

data have been obtained by Huang and associates at DTNSRDC. The two after- 

bodies investigated represent examples of medium and strong viscous-inviscid 

interaction. In the discussions to follow, all coordinates are nondimension- 

alized using the body length L, with X = 0 at the body leading edge (nose), 

and velocities and pressure are normalized using the free-stream velocity U 

and the fluid density. ;, 

A. Flat Plate Boundary Layer and Wake. The simple case of a flat-plate 

boundary layer and wake has been the subject of many previous investigations. 

For laminar flow, solutions have been obtained using a variety of approaches: 

thin-boundary-layer; thin-boundary-layer including vlscous-inviscid interac- 

tion; triple-deck theory; partially-parabolic Navier-Stokes; and Navier- 

Stokes. Recently, Chen and Patel (1986) have performed a comprehensive inves- 

tigation in order to establish the capabilities of their partially-parabolic 

method, extended for complete Navier-Stokes solutions, by comparing their 

results with the solutions obtained using alternative approaches and systema- 

tically studying the influence of the boandary conditions, the size of the 

solution domain, and the grid resolution. A direct comparison will be made 

between results using the present approach and that of Chen and Patel. For 

turbulent flow, results have also been obtained using a variety of approaches; 
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however, in this case, a direct conparison is made more difficult by the fact 

that the results additionally depend upon the turbulence model utilized and 

the numerical details of its implementation. Patel and Chen (1986) have also 

performed turbulent flow calculations using the complete Reynolds equations 

and the k-e turbulence model with two different treatments of the flow close 

to the wall: wall-function approach; and an eddy-viscosity distribution. The 

present turbulent-flow results are compared with both the results of Patel and 

Chen and the near-wake experimental data of Pot (1979). 

i: laminar Flow.  The laminar-flow calculations were performed for a 

plate Reynolds number Rn = -^ = 10^ (where L is the plate length) which is 

the value used by Chen and Patel and others.  Typical large- and small-domain 

grids used for the calculations are shown in figures 5 and 6, respectively. 

Referring to figures 5 and 1 for notation: the number of axial grid points is 

40; the number of transverse grid points is 15; the inlet boundary Sj is at 

x^=.A;   the exit boundary S^ is at x^=2.5; and the outer boundary S^ is at 

yo=12.  Referring to figures 6 and 1 for notation: the number of axial grid 

points is 40; the number of transverse grid points is 11; the inlet and exit 

boundaries have the same values as the large-domain grid; and the outer bound- 

ary is at yo=1.26 6 where 6(x) is the boundary-layer thickness which was 

specified based on the Blasius solution.  The y-direction grid expansion for 

the grids shown was specified based on the turbulent flow conditions since 

these grids were actually used for the turbulent-flow calculations to be 

discussed subsequently. The y-direction expansion for the laminar-flow calcu- 

lations was more gradual.  The Blasius solution was used to specify the ini- 

tial streamwise profile and a zero-gradient condition was used for the normal 

velocity conponent on the inlet boundary in both the large-domain and small- 
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domain calculations.  All other boundary conditions are prescribed as dis- 

cussed in Section IV.D. 

Figure 7 shows the pressure distribution on the surface of the plate and 

along the wake centerline. Results are shown from the present methods both 

for a large solution domain and a small solution domain, including viscous- 

inviscid interaction (interaction solution). Also shown for comparison are 

results from the Navier-Stokes calculations of Chen and Patel (1986), triple- 

deck theory (Melnik and Chow, 1975), and interactive thin-boundary-layer 

theory (Veldman, 1979). It is seen that the agreement between both the pre- 

sent solutions and the solution of Chen and Patel for x = .54-21 is excel- 
u 

lent. The reason that the partially parabolic and Navier-Stokes solutions are 

in such a close agreement is that, at this high Ra, the influence of stream- 

wise diffusion is important only in a region very close to the plate trailing 

edge and not resolvable with the present grid. In fact, the Interactive thih- 

boundary-layer results are also in good agreement, indicating that, for this 

very simple trailing-edge flow, the influence of the pressure variation within 

the boundary layer is also small. As explained by Chen and Patel, the solu- 

tion is very dependent on the location of the upstream boundary. Thus, their 

solution for x = .13'+9, which has also been included on figure 7 for compari- 

son, shows large differences.  Note that the triple-deck solution for which 

X = .1 is consistent with the solution of Chen and Patel for x = .134-9 on 
u u 

the plate but not in the wake.  In the wake, the triple-deck solution is more 

consistent with the other solutions obtained using larger values of x ~ .5. 

Apparently, this is due to the treatment of the downstream boundary in the 

triple-deck solution which is matched to the 1/3 power law solution at too 

great a distance. 
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The skin-friction coefficient and the wake-centerline velocity are shown 

in figures 8 and 9, respectively. As seen from figure 8, all the solutions 

for the skin-friction coefficient are in close agreement and show about the 

same deviation from the Blasius solution. This Indicates that the prediction 

of the skin-friction coefficient is not very sensitive to the details of the 

numerical procedures employed. As seen from figure 9, the differences between 

the solutions for the wake-centerline velocity are also not large except for 

the triple-deck solution which shows larger values than the the other solu- 

tions for X > 1.3 for the reason discussed previously. The close agreement 

among all but the triple-deck solutions for the wake-centerline velocity 

indicates that the prediction of the wake properties is not sensitive to 

upstream conditions beyond x ~ .5. 

Figures 10 and 11 show the converged values for the displacement thick- 

ness emd edge velocity, respectively, used in the interaction solution. 

Referring to figures 10 and 11, it is seen that the magnitude of the viscous- 

inviscid interaction for the flat-plate boundary layer and wake is weak; 

however, its features are characteristic of more conplex traillng-edge 

flows. Note that for the flat plate test case the equivalent-source method is 

used (see Section V.C.) to represent the displacement effect of the boundary 

leiyer in the interaction solution. 

The interaction calculations were started with free-stream edge condi- 

tions (U^ = 1., and p = 0.) which were subsequently updated after each global 

iteration. The large-domain solution converged in 60 global iterations and 

the interaction solution in AO. In both solutions, the relaxation factors 

used were (a, a , a^) = (.5, .7, 1.). Also, both solutions required about 5 

minutes cpu on a Prime 9950 minicomputer.       :- 
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2. Turbulent Flow. The turbulent flow calculations were performed for a 

plate Reynolds number Rn = 1.2 x 10^ which results in a momentum-thickness 

Reynolds number at the plate trailing edge of Rn^ = 3000. This corresponds 

fairly closely to the experimental condition of the wake measurements of Pot 

(1979) for which RUg = 29-40. The large- and small-domain grids used in the 

calculations are shown in figures 5 and 6 respectively. Referring to figures 

5 and 1 for notation: the number of axial grid points is 56; the number of 

transverse grid points is 15; the inlet boundary Sj is at x^ = .4; the exit 

boundary Sg is at x^ = 16.25; the outer boundary S^ is at y^ = 1; and the 

first grid point off the body surface was located at y-t~/40 . Referring to 

figures 6 and 1 for notation: the number of axial grid points is 56; the 

number of transverse grid points is 15; the inlet and exit boundaries as well 

as the first grid point off the body surface have the same values as the 

large-domain grid; and the outer boundary is at y^ = 1.26 5 for X _<_ 1. and 

varied linearly to y^ = .25 at the exit. 

Figures 12 and 13 show the pressure distribution on the surface of the 

plate and along the wake centerline and the skin-friction coefficient respec- 

tively. It is seen that the large-domain and interaction solutions are in 

excellent agreement. By comparing figures 7 and 12 it is seen that, for 

turbulent flow, the extent of the region of pressure variation is reduced for 

the boundary-layer region upstream of the trailing edge and Increased for the 

wake region downstream of the trailing edge. Also, the pressure recovery in 

the wake occurs with a favorable pressure gradient for laminar flow and an 

adverse pressure gradient for turbulent flow. Also shown for conparison on 

figures 12 and 13 are the results from Patel and Chen (1986) using the k-e 

turbulence model with wall functions.  Note that their results are for a 
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slightly different Reynolds number (Rn = 2.4-8 x 10^) and that their grid 

resolution was similar to the present one except the first grid point off the 

body surface was located at y+~100 . The conparison between the pressure 

distributions is excellent for X >.9. For X <.9 the solution of Patel and 

Chen shows lower pressures. This is due to the initial conditions used in 

their calculations. In order to conpare skin-friction coefficients the re- 

sults of Patel and Chen were Rn scaled. Referring to figure 13, it is seen 

that although the trends are identical their result is slightly lower than the 

present one. This is due to the larger value of y+ for the first grid point 

off the body surface used by Patel and Chen. 

Figure 14 shows the usual overall parameters for describing the near 

wake, the half-width b, the centerline velocity defect w^ = I-UQ^, and also 

the shape parameter H = 6*/e. Also shown for comparison is Pot's experimental 

data and the results of Patel and Chen for w^. It is seen that the agreement 

between the large-domain and interaction solutions for WQ and H is very good; 

however, both solutions deviate from the experimental data for 100 _< X/9 < 

600. A similar deviation from the experimental data is seen for the large- 

domain solution for b. The interaction solution for b agrees with the large- 

domain solution only in the very near wake and elsewhere shows larger val- 

ues. In general, the calculations show larger values for b, w^ and H indicat- 

ing a thicker wake region. The agreement between the present results for WQ 

and Patel and Chen is quite good with the differences being attributable to 

the different values of y+ used for the first grid point off the body sur- 

face. Patel and Scheuerer (1982) have compared results from wake calculations 

uaiilg thin-boundary-layer equations and the k-€ turbulence model with ttl^ge 

same experimental data.  Their results show better agreement in the near 
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wake (X/0 < 350) but poorer agreement in the far wake. The differences be- 

tween the partially-parabolic calculations and the results from thin-boundary- 

layer theory are consistent; that is, the influence of the adverse pressure 

gradient in the near wake results in a thicker wake region in the partially- 

parabolic solutions. The reason for the poorer agreement of the partially- 

parabolic solution than the thln-boundary-layer solution with the experimental 

data in the near wake is not known. The reason for the discrepancy between the 

large-domain and interaction solutions for b is due to the width of the inter- 

action solution domain in the wake (see figure 6). Further calculations using 

a larger growth rate for 5 in the wake region indicate a closer agreement of b 

with the large-domain solution. 

. Figures 15 and 16 show the wake momentum thickness and centerline eddy 

viscosity respectively. Referring to figure 15, it is seen that the present 

results from both the large-domain and interaction solutions indicate larger 

values of 9 than the experimental data. This is probably due to the differ- 

ence in the trailing edge values of Rn. .  Referring to figure 16, it is seen 

that the present results indicate a larger value for v^ than the calculations 
t 

of Patel and Chen.  From the results for v and 8 it was determined that the 

asymptotic value of v^/U 9 for the large-domain solution is .0333 and for the 
t o 

interaction solution is .04-06. The value from the experimental data for the 

range 400 <_ X/9 <_ 1000 is .035. Patel and Scheuerer and Patel and Chen ob- 

tained values of .024 and .022 respectively. Figures 17 and 18 show the 

asymptotic (velocity-defect w = 1-U and stress T = -uv ) profiles for the 

large-domain and Interaction solutions. Also shown for comparison is Pot's 

experimental data. Both solutions for the velocity-defect profile show excel- 

lent agreement with the experimental data.  Both solutions for the stress 
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profile are in agreement and show a peak value of about .029. The experimen- 

tal stress profile indicates larger values with a peak value of about .051. 

Patel and Scheuerer and Patel and Chen also obtained lower values for the 

stress profile than the experimental data. Their peak values are about .033 

and .03 respectively. One of the conclusions of Patel and Scheuerer is that 

the k-£ model does not adequately predict the observed asymptotic behavior. 

This was confirmed in the present investigation.      ■ -  -.. 

Figures 19 and 20 show the converged values for the displacement thick- 

ness and edge velocity, respectively, predicted in the interaction solution. 

By comparing these figures with figures 10 and 11 it is seen that the influ- 

ence of turbulence is to reduce the extent of the viscous-invlscld interac- 

tion. ■   , ,.;: ■      . ^ - 

The interaction calculations were started with edge conditions (Ug = 1, 

Pg = 0.) which were subsequently updated after each global iteration.  The 

large-domain solution converged in 4-0 global iterations and the interaction 

solution In 25.   In both solutions, the relaxation factors used were 

(a, a , a" ) = (.5, .4-5, 1.). Also, both solutions required about 5 minutes of 
p  p 

cpu on a Prime 9950 minicomputer. 

B. Ailsymmetrlc Bodies. For axisymmetric flow, calculations have been 

performed for DTNSRDC afterbodies 1 (Huang et al., 1978) and 5 (Huang et al., 

1980). Afterbody 1 is the parent form of a family of three-dimensional bodies 

with elliptical cross-sections (Huang et al., 1983). Referring to figure 21, 

which shows a comparison of afterbodies 1 and 5, it is seen that both bodies 

have similar length/diameter ratios but very different tail forms. In parti- 

cular, afterbody 5 (Lg/D = 2.04) is blunter than afterbody 1 (Lg/D = 4.3) and 

has greater curvature with an inflection point.  Note that afterbody 5 is 
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almost as blunt as afterbody 3 (^^/D = 1.5) which exhibited a small region of 

flow separation near the tail (.92 _^ X <_ .97) in the experiments. As will be 

discussed next, these differences in body geometry result in both a larger 

extent and magnitude of vlscous-inviscid interaction for afterbody 5 than 

afterbody 1. ' ^ 

The calculations were performed for afterbody 1 for a body-length Rey- 

nolds number Rn = 6.6 x 10° which corresponds to the experimental condition. 

The large- and small-domain grids used in the calculations are shown in figure 

22 and 23 respectively. Referring to figures 22 and 1 for notation: the 

number of axial grid points is 60; the number of transverse grid points is 19; 

the inlet boundary Sj is at x = .5; the exit boundary Sg is at x = 16.25; 

the outer boundary is at y^ = .8137; and the first grid point off the body 

surface was located in the range 100 < y < 160 . Referring to figure 23 and 

1 for notation; the number of axial grid points is 60; the number of trans- 

verse grid points is 11; the inlet and exit boundaries have the same values as 

the large-domain grid; the outer boundary is at yg =6 where 6(x) is the 

boundary-layer thickness which was specified based on the experimental re- 

sults; and the first grid point off the surface was located in the range 

80 < y < 130 . The y-direction grid expansion was specified such that the 

first two grid nodes are within the log-law region. Simple turbulent flat- 

plate profiles were used to specify the initial conditions in both the large 

and small domain solutions. All other boundary conditions are prescribed as 

discussed in Section IV.D. 

Figure 24- shows the pressure distribution on the surface of the body and 

along the wake centerline. Results are shown from the present methods both 

for a large solution domain and a small solution domain, Including viscous-in- 
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viscid interaction. Also shovm for comparison are the experimental results 

and the inviscid-flow solution without interaction. It is seen that both of 

the present methods are in good agreement with the experimental results. 

Actually, the interaction solution appears to be slightly in better agreement. 

This is probably due to the influence of the initial conditions which, in the 

case of the Interaction solution, include a more proper matching with the 

external flow. Also, the grid resolution within the boundary-layer region is 

better for the interaction solution. Note the large gradients in pressure 

exhibited in both solutions in the immediate vicinity of the trailing edge (X 

= 1). A part of this behavior is no doubt a result of the rapid change in 

curvature of the streamlines associated with the closing of the body and 

transition into the wake. However, it was also found that the solution in 

this vicinity is sensitive to the grid and detailed numerical treatments at 

the trailing edge. A comparison of the present results with the inviscid-flow 

solution without interaction provides one indication of the magnitude of the 

vlscous-invlscid interaction {^1% reduction in the maximum value of Cp at x = 

.975). This comparison is made somewhat difficult by the inaccuracy of the 

inviscid-flow solution very near the trailing edge. In the present inviscid- 

flow method, as is the case with most other singularity-distribution methods, 

the solutions are not accurate in regions where the angles between adjacent 

panels are small. This inaccuracy is well known and was not removed since the 

inviscid-flow solution without interaction is not used in the present viscous- 

inviscid interaction approach. 

Figure 25 shows the wall-shear velocity U^ and is of similar format as 

the previous one. The experimental values were obtained from Preston tube 

measurements.  In this case, the comparison between the calculations and the 
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experimental values Is not quite as good. For .9 < X < 1. the calculations 

show larger values than the experiment. This discrepancy is attributed to the 

well l<Tiowa deficiencies of the k-e turbulence model for thick-boundary-layer 

flow as will be discussed further subsequently. Also, the large-domain solu- 

tion predicts slightly higher values for U than the Interaction solution for 

X < '9. This is no doubt due to the influence of the initial conditions. 

Figure 26 shows the wake-centerline velocity U  and is of similar format 
C/L) 

as the previous ones. The agreement between both the calculation methods and 

the limited experimental data is again quite good; however, the calculations 

show a slower recovery than that indicated by the limited near-wake experimen- 

tal data. The largest differences between the large domain and interaction 

solutions are in the intermediate-wake region 2. ^ X^ 5. and are consistent 

with differences in pressure as shown in figure 24-. 

Figures 27 and 28 show the convergence history (pressure distribution on 

the surface of the body and along the wake centerline and the displacement 

thickness) for the large-domain and interaction solutions respectively. 

Values are shown for every five global iterations. The planar definition of 

displacement thickness has been used for the large-domain solution. The 

interaction calculations were started with free-stream edge conditions (Ug = 

l«j Pe ~ '^•^' After twenty iterations, the edge conditions were updated using 

the latest value of displacement thickness. Subsequently, the edge conditions 

were updated every five global iterations until convergence was achieved. A 

comparison of figures 27 and 28 shows that the convergence characteristics of 

the two solutions are quite different. The large-domain solution converges 

monotonically in 50 iterations. The Interaction solutions converge with 

oscillations In 4-0 iterations.  Basically the interaction solution converges 
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In two stages. The first stage is with free-stream edge conditions and leads 

to an underpredlction of both Cp and 6 . The second stage is with the dis- 

placement-body edge conditions and the solution converges quite rapidly. 

Figure 29 shows the iteration history of the edge velocity. The small changes 

in the displacement-body shape after 20 global iterations lead to impercep- 

tible changes in Ug. Figure 30 shows a comparison between the converged edge 

pressure obtained from the displacement body with that obtained from the 

actual body, and the actual body including the equivalent-source method to 

represent the displacement effect of the boundary layer. It is seen that the 

displacement-body edge-pressure maximum is shifted upstream as compared to the 

actual-body edge pressure which results in greater edge pressures for X < .95 

and lower values f or X > .95. Note that the equivalent-source method edge 

pressure shows the correct tendency but with only a minimal modification to 

the actual-body result. This clearly demonstrates, as was discussed pre- 

viously, that the equivalent-source method is inaccurate for bodies with 

noncusped trailing edges. Figure 31 shows a comparison of the experimental 

and interaction solution displacement thickness. The calculated values are 

slightly below the experimental values. 

Lastly,  for afterbody 1,  figure 32 shows the solution profiles 

(U,V,p,k,£) for a number of X-stations between the inlet and the outlet. 
Y-R 

Note that in these figures the radial coordinate has been defined as Y =  ° 
R max 

Where RQ(X) IS the local body radius and B^^^   is the maximum body radius. 

Wherever possible, a comparison has been made with the experimental data.  In 

general the agreement between the large-domain and interaction solutions is 

very good and consistent with the previous discussions.  Also, both solutioi^s 

show good agreement with the experimental data.  However, note the fact that 
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while both solutions indicate similar transverse pressure gradients p there 

is a systematic difference in pressure magnitude. The large-domain solution 

predicts lower pressures than the Interaction solution which in general shows 

better agreement with the experimental data. The reason for this difference 

is not known. It may be related to the outer boundary conditions in the 

large-domain solution since its characteristics are similar to a blockage 

effect. The principal differences between the calculations and the experi- 

ments is that the calculations tend to overpredlct the velocity and turbulent 

kinetic-energy profiles. This result is due to deficiencies of the standard 

turbulence model which Is known to overpredlct the level of turbulence in 

thick boimdary layers, presumably caused by the use of an isotropic eddy 

viscosity and the neglection of curvature effects. Another cause may be the 

use of wall functions. Note the significant variation in pressure across the 

boundary layer In the vicinity of the trailing edge .95 < ^ ± 1*05 indicating 

the necessity of including such effects in modeling the present flow. 

The calculations were performed for afterbody 5 for a body-length Rey- 

nolds number En = 9.3 x 10°, which corresponds to the experimental condi- 

tion. The large- and small-domain grids used in the calculations are shown in 

figures 33 and 3A respectively. Referring to figures 33 and 1 for notation: 

the n\mber of axial grid points Is 60; the number of transverse grid points is 

19; the inlet boundary Sj Is at x = .5; the exit boundary Sg is at x^ = 16.25; 

the outer boundary is at y^ = .8137; and the first grid point off the body 

surface was located in the range 120 < y < 200 . Referring to figures 34 and 

1 for notation: the number of axial grid points is 60; the number of trans- 

verse grid points is 11; the inlet and exit boundaries have the same values as 

the large-domain grid; the outer boundary is at y =5  where 6 (x)  is the 
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boiindary layer thickness which was specified based on the experimental re- 

sults; and the first grid point off the body surface was located in the range 

100 < j+ < 160 . The y-directlon grid expansion was specified such that the 

first two grid points are within the log-law region. Simple turbulent flat- 

plate profiles were used again to specify the initial conditions in both the 

large- and small-domain solutions. All other boundary conditions are pre- 

scribed as discussed In Section IV. D. In the discussion to follow, all 

figures for afterbody 5 are of a similar format as that described earlier for 

afterbody 1. 

Figure 35 shows the pressure distribution on the surface of the body and 

along the wake centerline. Comparing figures 35 and 24, it is seen that the 

pressure distribution in the tail region of afterbody 5 shows even more radi- 

cal variations than on afterbody 1. This includes both a lower minimum pres- 

sure upstream of the trailing edge and a higher maximum pressure at the trail- 

ing edge. It is seen that both the large-domain and interaction solutions are 

in good agreement with each other and the experimental data. The level of 

agreement is about the same as that obtained for afterbody 1. The magnitude 

of the viscous-invlscid interaction is larger for afterbody 5 than for after- 

body 1 (50% reduction in the maximum value of Cp at X = .975). 

Figure 36 shows the wall shear velocity U and figure 3? the wake center- 

line velocity U^ The level of agreement is not as good as that obtained for 

afterbody 1. Figure 38 shows the converged value of displacement thickness 

and figure 39 the resulting edge velocity. A comparison of figures 38 and 28 

shows that the viscous-invlscid interaction is larger for afterbody 5 than 

afterbody 1, resulting in an increased displacement thickness for afterbody 

5. The displacement thickness is also shown in figure 4.O where it is con5)ared 
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with the experimental data. The agreement is very good. Lastly, the detailed 

solution profiles at various X-stations are shown in figure ^1. The results 

are similar and consistent with those described earlier and do not require 

further elaboration. However, note the increase in pressure variation across 

the boundary layer as compared to afterbody 1, again indicating the larger 

viscous-inviscid interaction and thick-boundary-layer effects for afterbody 5 

than 1.    . 

For both afterbodies 1 and 5, the large-domain solutions converged in 50 

global iterations and the interaction solutions in 40. For afterbody 1, the 

relaxation factors were (a, a a^) = (1., .2-.5, 1.) for the large-domain 

solution and (a, a ot^) = (.6, .2-.5, 1.) for the interaction solution. For 

afterbody 5, the relaxation factors were (a, a , a" ) = (.6, .2-.5,1.) for the 
XT X^ 

large-domain solution and  (a, a      aM = (.5, .2-.5, 1.) for the interaction 

solution.  In all cases, in the wake a  = .05 for IT < 10 and a  = .1 - .2 for 
P P 

IT >_ 10. Also, in all cases, the solutions required about 10 minutes of cpu 

on a Prime 9950 minicoiiputer. ,        , 

VII,  CONCLUDING REMARKS 

It has been shown that trailing-edge flows with thick boundary layers can 

be modeled using viscous-inviscid interaction procedures if all the Important 

aspects of the flow, namely the pressure variation across the boundary layer 

and the displacement effect of the viscous flow on the external inviscid flow, 

are taken into account. The validation of the present interaction procedures 

has been accomplished by comparing the results for two-dimensional and axisym- 

metric flows with large-domain solutions, in which the entire zone of viscous- 

inviscid interaction is captured, obtained using the same numerical proced- 
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ures. Also, a direct conparlson has been made with other methods, including 

the finite-analytic method of Chen and Patel (1985), and with available exper- 

imental data. '■ 

In general, the coraparlson between the present interaction and large- 

domain solutions is very satisfactory for all the cases investigated. Some 

small differences are evident, as might be expected. The direct comparison 

between the present methods and other methods and also the experimental data 

shows excellent agreement. Of particular interest is the comparison with the 

method of Chen and Patel; since, their method and the present ones have cer- 

tain features in common and are quite different in other respects. Specifi- 

cally, the velocity-pressure coupling procedures as well as the turbulence 

model are identical; however, the coordinate systems used in solving the 

governing equations, the discretization procedures employed, as well as other 

numerical treatments are very different. Chen and Patel (1985) and Patel and 

Chen (1985) also present results for afterbodies 1 and 5, including a compari- 

son with the same experimental data. The level of agreement is very similar 

to that shown with the present methods. Thus, It would seem that the most 

critical aspect of computational methods for thick-boundary-layer trailing- 

edge flows is the velocity-pressure coupling rather than the discretization 

procedure (finite analytic vs. finite difference) and other numerical proced- 

ures employed. 

As to the relative advantages of the Interaction vs. large-domain solu- 

tions, the latter does not require any approximations with regard to the 

vlscous-invlscid interaction as does the former; however, the interaction 

solution was shown to be Just as accurate as the large-domain solution, indi- 

cating that the present vlscous-invlscid interaction procedures can capture 
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this important influence on the flow. With regard to computational effici- 

ency, when the equivalent-source method is used the interaction solution is 

more efficient; however, when the displacement-body method is used, which is 

the case for bodies of interest, then the large-domain solution is more effi- 

cient. This is because of the additional computational effort in calculating 

the inviscid flow. The prescription of the Inviscid flow at the boundary- 

layer edge does speed up the convergence rate of the viscous-flow solution but 

not enough to offset the increase pointed out above. Note that we have used a 

three-dimensional source-panel method for the Inviscid-flow solution. For 

three-dimensional applications, it is expected that the interactive solution 

will be more attractive since the saving in computational effort in the vis- 

cous-flow solution will have a more substantial effect on the overall computa- 

tional efficiency. Calculations for three-dimensional body geometries are now 

in progress and will be reported on in the future. Lastly, it should be 

mentioned that, besides the academic interest in the nature of an interaction 

solution, it also has a practical value. For example, the modification of the 

external inviscid-flow solution due to the thick boundary layer and wake is 

obtained as part of the solution, and for applications to ship boundary lay- 

ers, it is readily extendable to nonzero-Froude-number calculations. 
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Figure 22.  Large-Domain Grid for Afterbody 1 
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Figure 35.  Pressure Distribution on the Surface of the Body 
and Along the Wake Centerline 
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APPENDIX I: Equatlone in Mfonorthogonal CttPvllinear Coordinates 

In Section IV.A the procedures for obtaining the governing equations in 

nonorthogonal curvilinear coordinates have been discussed. Since the result- 

ing equations are quite lengthy they are provided in this Appendix. First, 

the continuity and momentum equations are presented. Subsequently, the equa- 

tions of turbulent-kinetic-energy k and its dissipation-rate e, which are used 

to model the Reynolds stresses in the momentum equations, are presented. The 

partially-parabolic forms of the Reynolds and turbulence-model equations are 

provided in Appendix II. 

A. Continuity Equation 

where 

1    3U      1    9V      1    8W 
h^8l^h^37^h^8¥^u^ ^^^*° = 0 (^-i: 

. _   1    ^^2 ^_i_!^^   1   as 

(A-2) 

with 

h^h^ ax        h h    8x        h S 9x 

-i_!^,.j_!ii,^is 
h^h^ ay       h^h^ ay       ^^3 ay 

h^h   az       h h   az       h s az 

S = s/h^h^h^ ,     ^ ■ (A-3) 

and s is the triple product defined by  (IV-13). 

B.    Reynolds Equations 

1.     x-Momentum Equation 

u   au    V   au    w   au     i   au^ _ i   auv     i   auw 
+ R,UV +   (R + b)  uv h^^^hjay^h^a^^h^air-^h^^^h:^" V " ^h 
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+ R„(V^+ v^)   + R„   (W^+ w^)   + R.U^  +  (R.   + a)u^  + R^(VW + vw) 
<^ i 4 4 5 

+ R,UW +   (R.  +  c)  uw =  - -^  [sin^X ^|^+y^i2 + 3l|P] 

^     ,„2^,      n    9U      ^    aU      ^    9U      ^    9V 9V 9V 9W 9W 

9W 
" S 97 " ^10^ " C^lV ^ C^s^l      , (A-4) 

where  (a,b,c) and S are given by  (A-2)  and (A-3),  respectively,  and 

a  =  cos V   cos u - cos \ 

3   = cos X  cos V - cos u (A-5) 

Y   = cos u   cos X - cos V 

with  (X,M,v)  defined   by    (IV-11).       The   Laplacian   operator   in   nonorthogonal 

curvilinear coordinates is defined by  (where Q is a scalar variable) 

2 19 9Q 9Q 9Q 1 9 9Q 8Q 3Q 
.^   "^ - ¥ 97  '^11 97 ^ ^12 97 ^ ^13 97^   ^ 7 37  f^21 97 ^ ^22 97 ^ ^23 97' 

^ 7 97 '^31 87 ^ ^32 97 ^33 37^ ^^-^^ 

where 

2 2      2 2 2 
h2h„sin X h-j^h2h^Y h^hph^ 

^11 "        i '        ^12 "      s        '        ^13 "        i 

9$ 



2 2       2 2 ?  ?       ? 
h h sin V h h h a h h^sin v 

^22  = —i ' ^23 == ■—r^' ^33  ^ ^i^  ^^-'^^ 

and a-j^j-   =  a^j^   for  ±  ^  j.     The  R^^   (1   =  1,6)   and  C^   (i   =  1,   12)   coefficients 

are: 

n-^rl^/i- , 18,, ,       cosv       1 19 
\  - ^ 'h^ ay (h3 cos y )   - h^ ^ (hgcos v )   _ — ^-- + _ _ (h^cos X ) 

, .  2, .  3h„       ,   .   2, , 3h, 
.   (Y   - cos V  sm A )  2   ,   (sm A   -y   cosv)       1 ,.   ^, 

2 9lc~      ^ ai;~ (A-8) 

Q           8 (h„cos A)      8h_ .  2,       3h^ 
R 3 f       3  2,       sm A     ,23,^ ,, ,.   ^, 
^2-      ,      Pt       3y -37"'   -—-2   '3ir-37 (^  =°^^)^ ^^-9) 

n2n„S h-,hpS "^ 

sin^A     .9     ,^ ,       ^, V        ,^^3      3 ■    ' •  ■• 
«3 = -7T2 '3i (^1^°^ ^) -?r] - —^ [^r -^ '^2 =°^ ^)i      (A-10) 

hjh b h h S        "^ 

S 3 ^^1 ^^1 
^A = —-T2 ^37 (i^3 '^^^ ^ ) - 3^1 - -7-;2 '37- - 37 (^2 «°^ ^ ) ] (A-11) 

-n-j^J^o^ n, n„S 

fi ^^-3 ^K -2, 3h^ 2 

'5 °^'^-°°'* 5/1-f^ 1-3* air-^ <V-"'i *^^ 
^2^3^ ^1^2^ h,h^S l'^3^ 

[g^ (h^ cos V )   - gj (h3 cos A ) ]   -  ^ [eos A ^ - 3^1 (A-12) 
3h^      3h^ 

h^h^S 
^2'^3 

p sin^A       'h 3h ^_  ^ '\      9h 3h 

- 9^ {h2 cos V ) ]   +      "^    g   [gY (h2Cos A )   - ly (h-^cos v ) ] (A-13) 
h-^h2S 

1 ,3       hl^^/^^^\       9     ,^lV3\       3     ,^V|^,, -' 
^ " - ih^ '37 (      s        ) -^ 97 (—1—^ ^ ^ (—i—)] 

2 2       2 
^l'^2^3^^^ ^3       g h-j^h2hoCOS v     g 9h^ 

'  ^3 97^h7^"  ^2   [97 (V°^ ^ )   - JT' 
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h h h COS V    ^ 8h- h,h„ ^       h^h.cos y 

+ 2 'ay (^3°°" ^ ^ - 9^' ^ ~i~ '°°^ ^ §7 ^ i ^ 
S 

h h cos V          h h                          h h„cos v        ^      h-h„cos u 

- 3? ^S ) 1   ' "i—  [«°-^ ^   9^ ( ^ )   - 9^ ( ^i ) ] 

(A-14) 

2 '" ' ' ' 
2h-,h-cos iJ ■ h, h„h„cos X 

^2 2  'a^ (^2«°s V )   - g- (h3 cos y ) ]   +  2  
s s 

g ah-j^      '^i'^3   a 3 
[g-^ (h,cos y)   - g-^]   + —2~ [9^ (h-jhpcos X)   - cos y  g-r (h-jhpCos v)] 

s 

h-j^h g g h^h cos y  ^ 

- —2   '^3 aT ^^2^°^ ^' "*" ^1 a¥ '^2°°^ ^) ] + —2 aV (i^i^^cos y ) 

3     9x ^h,^ - s ax '      s      ^ ^^-^5) 
si 

h^i^g h^h2   a    ,, ,        ,, a    ,, , 
Co  =  o  g-^ (—)   + —2~  'aY (h-|^hoCos X )   - cos V g— (h-j^hocos y ) ] 

S X s 

2                                                                                        2 
^1^2                a                             a                              h-jhpcos V    g 

+ —2~ icos V g— (h-cos y )   - g— (hocos X ) ]   +  -^  [g— (h^cos y ) 

2 2 
a     ,^ ,,   ^ V2   ,       2    ^^1      a     ,, ,,19     }±±±, 

- TE ^^2^^°^ ^ " ^ ^ f^°^ ^ a7" - a^ (^3^°^ ^^ ^' - s al ^—i—^ 
s 

h h h cos X    ^ ah 

2 
s 

k (V^^^')   -9^] (A-16) 

2  2       2 
VgV^a    ,s ,     '^i^ ,      , a    ,V3!!li,     a    ,^3,,   ' 

^4 = —^3 W%^ ^~^ '^°^ ^ a7 ^—^ ^ - 37 ^^^ ^ 

^ -7- '^°^ ' a¥ ^T-^ - a¥ < i ^ ^ ^ 2  'ay (^3°°^ ^ ^ 
s     _        ■ , 

ah h h h ah 

- T^J ^ -H^ fc (^2-^ ^) - aF^ ■      "      - ^""-^'^ 
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2       2 2       2 2 
p     _ 1  3 2 12  3     rj^ 3_ , s_    _ 1 2,   _    1  T   2 
^5  ~  " 2 9x 2 ^s 3y  ^h_^       v,2 9y 2      3z 

S S •c JIQ S 

h h cos U    h^  , ^      h h cos X h    8h h h cos X 
i-   J ,1a, .        a      ,   X   j , 1        <;i -L   j>  

--^   [— 37 (h3COS X)   + g^  ( ^ )-i-3^^-—i  

r'^Sa      ,, ,''2 3      ,, ,,,       V3   ,^''^2      ^3      . [— gy  (h^cos V)   -~^ (h3COsX)]   -^  [_^_-___  (h^cosv) 

2 
^       h^h^cos V h-,h^ 3ho » 
3 ,     1    3 >  ,       . 1    3     r  3 1      ° /I, \  1 

- g-T ( ^ ) ]   + —2~ ''^°^ ^ aY" ~ '^°^ ^  3^ (h^cos u ) ] 
s 

h,h„                „      h-h„cos X                            h^h„cos v 

+ -7-  '°°^ ^   37 ( 1 ^   -  °°^ ^   37 ^ i ^ ' ,. 

13 3 3 
+ —p"  !°°s X  g—■ (hpcos v)   -  cos V r—■ (hpcos X)] (A-I8) 

s 

2  2 

^6  =  3 W^h-^ s       '°°' '  3? ^^"^   - °°^ ^   37 ( i ^ 1 
S *i 

2 2 
h-ihp    g g h,h2COS v    3hp      » 

+ -^ [gy (h3Cos y )   - g^ (h2Cos V ) ]   +  2  ^3^ " 37 ^^3^°^ ^ ^ ' 
s s 

h-^h^cos V    h^ 3 h^3h2      g       h^h^ V2A9     ,, 

g       h^h^cos V h^ 3 h^h^h cos >^    ^\      g 

* 3¥ ( i '  - ^ 37 (^3°°^ ^ ^ '  ^  2  'sTT" - 37 (^1°°^ ^ ) 1 

{A-19) 

2 2      2 
h-,h^ „       hJi^cos X        ^       h^h--, hTh^h^sln X  „ 

C7 = ^ [cos X  3^ ( ^ )   - 3^ (-^)]   .  3 ^ (^) 
s 3 

^1^2^3 3 ^^2 
+  2—  '°°^ '*' Fz   (^2°°^ ''^   ~ 37~^ (A-20) 

s ,  •. 

2       2 : " 2 
^^3^^  3       s h^h2h cos X 9h h^h 

^8 =  J— 37 ^Yr>   -  2   [37 ^^°°'^ ^^   -JT^   -—2- 
s 3 s s 
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3 3 ^^1^2 3       \^3 3 
...       [^ (h2C0S M   - ay (hicos M) ]   + -g— [cos V ^ (-^—)   - cos A gj 

2 
h^h_cos M h, h„    - ' "' 3h„ 
(-^ )]   + -^ [^ (h2Cos v)   - cos y  g-^] ^        (A-21) 

s ^ 

2 
^1^2   ,^     .   2    9^3 3h        h^h28  3h h^h^a 

Cg =  - -2-  [h2Sin X  33^ + h^y  g^ . -^-- ^]   .  ^— - (^) 
s 3 s 3 

h-,h,                .       h-h^cos X                             hTh^cos \i          h,h^cos v    3h„ 
.     -I-  3   ,             o      ,   -I- '^            X                    3          12            , ,          12 ,3 
+ "i— [cos y  gj ( ^ ■)   - cos X  gy ( ^ )]   +  2  ^W 

s 

9 ^1^2       3 3 
- g^ (h2Cos X ) ] + —2~ [cos X g— (h^cos y ) - cos y g— (h-cos X ) 

s 

2 

- cos X g^ (h2COS V ) + cos y g^] + -y- [g^ (h^cos V )   - ^] 
s 

h h      h^h cos y        .   h-,h-cos X 
1 <: f d   , i <c    , d   , 1 <c      , , 

^"i— l3¥^ i ^--^"^^S^^ i )J 

h h h cos X 
+     2  fc (h2Cos ^) - I7 (h^cos y)] ■.       (A-22) 

s . ■  ' 

n 123     n_i.        .2,     3        rl9 /■S,i ,, 3        rl3 /S,T,,,-3 
^10 = —2   [^2^33111 A  g^ {- 9^ (^)}   -V h2h3T  ay {3 37 (jr-)>   ^ h^h23  ^ 

s 1 "^ 1 

13s              ^13      ^1^3^08 y    g g 

^¥ 37 ^h^^^ '  * ~ '37 ^ i  '3^ ^^2°°^ "^ ^  - 3? ^^3^°^ '^ ^ ^^ 

2 
^       h„h^cos X    . 3h, .       ho    3h-,       ^ 

^   37   ^ i    <3l    (h3COSy )     -   g^)}     +   g^  {—    (gy-   -   g^    (h2COS   V ) )}      ^ 

2 
.       h-,h„cos V ^ -,       h„    3h-, 

^ 37 ^ i  (37 ^^3°°^ ^ '   - 37  (V°^ ^ ) )>   ^ 37 ^i- ^3^ 

h h„cos X 3h 
- a^ (h3COS y ) )}   . 1^ {-^-^^  (|^ (h2COS V )   - g^)} ] (A-23) 
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_ 123   f-u-u-   2,   9,13/3,,       1,       9,18,SM 

^11 = —^ ' V3^^" ^ 17 ^¥ 97 t^^   ' \^3^ 97 ^ s 93F t^>   " 

2 
g      h h cosA h,, gh^ 

- ay ^—i  (a7 (^3^°^ ' ^ " 9i ^^1^°^ ^ ^ '> ^§7^7^% ^^1=°^ ^ ^ - 9ir» 

2    ' ' ■ 
5 h-,h„cos V    . 3h,, »       ho    ,> 

^ a¥ ^ —i  (97 (^3^°^ ^^ : 9^-^^ ^ 9^ ^^ '9¥ 'V°^ ^) 

9 9      h h cos X    9h        a 
- 33^ (h3Cos X ) )}   +97{—^^  (3/-!^ (h^cosv))}] (A-2^) 

C.p  = -^-^  Ih^h^sin^X f- {7 |- (|-)}   + h,h_ Y |- {i |- (^)}     ■ J-2 2 23 9xs9zh„ 13      9ys9zh,, 
J 3 

a       1  a      o ^1    a      h h cos v dh 

^ V2^ h^ih (S;'> ^ * ^ t|7 ^-^^— ^h (^2-^ ^) - 97^)> 
2 

g       hph,,cos X    9h„      . »       h„    » 

- 97 ^—i  ^FT - 97 (^1^°^ ^ ) )>   ^ 97 ^ s     'I7  ^^1°°^ ^ ^  ll  ^^2°°^ ^ ) )> 

h h cos V    9h hi 9h. 

^9i^—^ (97^ - k (V°^ ^) )> ^k^/'k^V"^^' -^)>    . 

h h cos X 
* az ^"^  (|^ (h2Cos X )   - ly (h^cos M ) )} ] y (A-25) 
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2.    y-iiomentum Equation 

U9V      V3V      W3V      13 uv       13 v^       13vw      ^ ,„„       , ^       ,  — 
r— T— + T— X— + r— T— + T— T:  + r— i:  + r— x  +  S^VW  +   (S   +C     VW 
h    3x      ^^2    "^      h    3z      h    3x        ^p ^        h    9z 1 1 

+ S^[V^  + w^)  + S^{U^  + u^)   + S,V^  +  (S,+b)  v^  + S^(UW + ^)   + S^UV 

/o       ^ — 1   ,   ,   2     1    3p 1    3p  ^      1    9Pi   X     rn2Tr ^  n    3V 

po <d 3 1 

^    3V      ^    3V      ^    3W      ^    3W      ^    3W      ^    3U      ^    3U      ^    3U 
"  ^2 3l " ^3 37 * ^ i? "  ^ ^ " °6 37 " ^ 37 *  ^8 37 " ^9 FI 

+ D^QV + D^^W + D^^Ul (A-26) 

where (a,b,c), S, (a,B,Y), and V^V are given by (A-2), {A-3), (A-5) and (A-6) 

respectively.  The Sj^ (i = 1, 6) and the D^ (i = 1,12) coefficients are given 

'■   toy 

^1 - ;2 ^hir 37 ^^1°°^ ^ ^ - or 37 ^^3°°^ ^ ^ - hXr air ^ hir 37 (^1°°^ ^) ^ 
0X3 .13 1<C i^J 

,                  ,    .  2   ,  3h         /   .   2                         , 3h„ 
(g   - cos Xsin y)       3 +  (sin u   - a   cos X )    2 (A-27) 

a                              3h 2 3h 
Sp  =  ^ [f- (hTCOS M ) - ~-^] - -^iS-li- [—1 _ 1- (h    cos X ) ]             {A-28) 

^      h^h3s2   ^^      ^                 ^"^ h2h3S^ ^^       ^^      ^ 

.  2        -                              3hT 3hT       - 
_,        slnp.d,,              ,           1, ct ,13,, ,,                ^Aorv\ 
^3 = 7772 [37 (^2°°^ ^^ - STT' ^2 137- - 3T (^3°°^ ^ ^' ^^-29) 

hph,S hJi,S 

S    =  ^ [|- (h.cos V ) - 3-^] - -^-^ [^ - |- (h^cos X ) ]                (A-30) 
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9h 3h ^^2 9h        g 

h„h-S n, n„S 
2 1 ^  ^ (A-31) 
^  2        9h_ 3h, 9h        9h 

sin v     ,    2 1, Y f  2       1 
S,   =  =^ k-r- - cos V v—- - —' o cos V 5- r—- 

[cos V 9^ - ^ (h^cos X)]   +      °    2   'ay ^^3°°^ ^'   - 97 ^V°^ ^^^   ^^'^^^ 

222                     22 22                       222 
.       hjcijx^  sin li - h^h„h^a h h h y          h h h sin y 

r,    _      _i^ ri_ /_2_Xi V .  9_ ,   2  3 1   > 9_ (_i_3_i_)i +    ^  -^  -^             1_ 
°1 - - sh^ ^9y ^           s             ^ * 9z ^       s       ^ ^ 8x ^     s         ^^ ^          ^3            9y 

h^h^h^cos X 3h h h h cos v 
(^)  .-^  [|3^(h3Cosu) -3^]  .^-^^  [|^(h,cos,) 

2 s s 

3h_        h^h^ »      h^h-cos v h,h-cos X 

- ar' ^ "i~ '°°^ ^ 9i ^    1—' - 9^ ^   1    ^ ^ 

h_h„                .      h h cos X                h h cos v 
*-P I=os . |j (^^5 '-b'^^i " '*-33' 

2h|h^osv ,,      3     ,, „      "AV"""   ,3     ,^ ,      ">2 
2  ~  2  ^dx  ^^3°°^ ^  ~ 9z" (^1^^°^ V ) ]   +  2  137 (^i^os V )  - 3Y~ 

s s 

^1^2    9 9 ^^1^2 9 
+ —2~ 'aT (hp^ocos u)  - cos V g— (hph^cos X ) ] g" t^^ 3^ (^3^08 X )   + 

s s 

2      2 
„ h,h^cos V „ h^h-hia „ 

+ h2 3^ (h3COS y)]   +  2  97 (^2°°^ ^^   ^  3  9^ t^ 
s s ^ 

2 

2 2 
hph-h^Y . ^2^^?    9 9 

^3 = -T— 97 (hT^ * ^ '9I ^^^2*^°^ ^ ^ - -^ ^ i7 ^\^°°^ ^ ^' 
S <c S 

2 2 
hph-cos X    j.                             »                              hph^          2    ahp      ^ 

+  =^2  '37 (hj^cos V)   - 37 (h^cos X ) ]   + —2~ Icos X ^-^^ ^ (h^cos v ) ] 
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2 ■ ■ 
h h h Y        h h h cos \i 8h„      ■ 

\ -3  3¥ ^h^'   " -^ t^°^ ^  8^ ( i )   - 9T (-7-^ ] 

s 

h h cos u h h h cos u 9h 

■ - 97 (-^-^i—' J ^ -H^ ^h (V°^ ^) - 9irJ (A-36) 
s 

2       2 2       2 2 
h h sin u  9h        h h h a     -,   .       ^ i     ^^ h„h y  9h- 

5 2 3y 2 ^s 3z   ^h^'   ~ ^,2 3z   ^ T~ SlT s s 3        h s 

h h cosv    h h h cos p        h    9h, 
• -^-^  [~f- (h^cos y)   +|- {^^ )   --^^] s sdzl 9z s s9x 

h h h COS V h h      h    9h        h 
- ^-^4   [f- (h cos A )   - f- (h^cos y ) ]   - -f^ ^T^^ -T^h (^^cos X ) ^<i d z       <i dy      1 s s    9y s    dz       2 

. 9       \^2'o^\ 4\   . ,   ^^ 9      ,^ ,,       V3   , ,   9 
- 9¥ ' s ) ^   ^ ~2~~  '°°s ^  9^" -  °°^ ^  97 ^^1°°^ ^ ) '   ^ ~i~ '°°^ ^  97 

2 
hph^cos y g       hph^cos X ^p^i a 

( ^ )  - cos y  g-^ ( )]   + —2~  [cos y  g— (h«cos X) 
s 

9 
- cos X  g^ (h^cos y)] (A-37) 

_4^g h^h^ 9 h^h 3 h^h 
^6 3 8^ ^h")  ^ -7— [«°^ ^ 97 ^~^) - <^°s 1^ 97 (~7~ cos X ) ] 

2 . 2 
hph^    . h„h„cos X    9h„      „ 

^-V[97(V-^' -|7<V°^^" ^-^^2— f9ir-k(V°^^)i  ■ s s 

' —^  '-^ 97 '^1^°^ ^ '   - ^ 97- - 97 (     s   ) 1   "  2  '9/ 
s 
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h h      h                                            h h cos X h 
-^^(h^cosX)]   . —^ [-i I- (h^cos X )   ^Iji^ )   -^|^(h,coau 

P P      P . (A-38) 

s 1 

+  2—  ''^°^ ^^  37 (h^cos M)   - j^] (A-39) 

% - —^  8Y (h-) 5   [97 {h2C0S V)   - g—]   - -^  [^ (h cos y ) 

3                                hph„                -       h, hp                             h„h^cos v 
-3^(h2COSv)]   .-^[cosx|3^(-l^)   -cosy  |^(-2J:^ )] 

2  1    3 3 h, 
"^ —2~  'sx   ^^3°°^ ^^   - cos V  g^] . (A-40) 

9 _2 3 3y 2    3z h^       9x  ^ 3        3x  ^h/ 
'^ 1 s 1 

2 ■ 
hph„cos X     8h-, h-,h„ -       h„h„cos y 

2 
j,      hph^cos V hph^    . dh^ 

_ eos y ^ (-^J )]   , ^ [|_ (^^,,3 ,)   _ ^, 
s "^ 

2 ■ ' ^"■'"" ■"■■"■ 

"" —2~ '°°^ ^  dz  (^1^°^ ^'   " ^°^ ^ 3^ (h-j^cos y)   - cos y  |- (h^cos X) 

3h          h h              h h cos v                             h^h^cos y 
. eo. V 53^1   . 4^ ,|_ ,^X ,   - cos X 1^ <^X „ 

h^h^h cos u       g g '       „ 
+  2     '37 (^3^03 IJ)   - g-^ (h^cos v)] (A-^1) 

3       13s               ^23       hph cos v 

" ^2^3^ 97 ^¥ 3^ ^h^'> '  " ^ '37 ^ i  (97 ^^3^°^ ^^ -h '^1^°^ ^ ) )> 
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' 3^ ^^4   ^37  ^^1^°^ ^ '   - 33r)>   ^ 37 ^-  ^3^ - 37  ^"^3"°' " ^^    " 3lF 

2 

{-^-^^^  (3^ (h.cos V)   - 93^  (h3Cos X ) )}   . ^ (^ (^ - ^ (h^cos v ) )} 

.       h,h„cos U     ~ .     ■• ■     -       9h 

V\   V»    Vi 

^11 = -^ [h3h,sln2u 1^ {1 1^ (f-)}   . h^h^a |^ {^ |^ (f-)}   . 
s JJ J ■ 

h h h cos V    3h 
,,        3     rl3      /S,ii 2,3     r21 ,     3      3      i-u \\i.  3  
^2^3^  37 ^¥ 3^ (h^'> ]   " ¥-  ^3^ ^ i  <3ir - 3¥ ^^1^^°^ ^ ) )>   ^ 3¥ 

2        ■ ■ 
hJi-jCos u ' » ,       h,     j^ 3h„ 

{^-i^  (fy (h^eos . )   - f^ (h^cos X ) )}   - 1^ {^ (f^ (h2Cos X)   - ^)} 

2 
h„h„cos X 3h„ „       h^    » 

+ |- {-^-^  (^ (h, cos y )   - r-^)}   + ^ {-^ (f- (h^cos X ) 3x s 3zl 3x dxs3x2 

h h cos u    3h„      - ,  I 
- ly (h.cos ,))}   . 1^ {^-^-^  ij/ - 1^ (h2COS X ) )} ] U-A3) 

^1^2^3   ru  u     •   2    3     ,1 3      ,s   >,   ^ ,   ,       3     ,1 3      ,s   >, 
%2 =. 2       th3h^sin y  gy {3 3^ (jT^   ^ ^2V 3^ ^ s 3l t^^ 

s i 1        . 

2       1  !i       c ^0    a       h h COS V 3h 

2 
j.       hJi-|Cos y     9h-,       j, -       h-,     j, ^ 

^ 3¥ ^-^  'S^r - 37  (h2COS V ) )} + 3^ {— (g^  ^3008 v )   - 9^  (h3COS y ) )} 

2 
„       h„h„cos X    3h-,       5 „       h„    . 3h-, 

+ I- i^-^  (7-^ - IT (hocos u ))}   + fr {7^ (T7 (hpcos V )   - r-i)} 3x s 3z 3x       3 3x    s      3x      2 3y 

h h cos y 
+ f-{^-^^  (^ (h„cos y)   - f- (h„cos V))} ] (A-U)    . 
3xs 3y3 3z2 
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3«    z-itomentum Equatlcaa 

U_8W      V_3W      W    3W      18^      1    3W      1    9 w^ 2    " 
h^ 3x -^ h^ 8y ^ hj 9T ^ h^ 9ir ^ hi 33r ^ TT 9Y- ^ T^™ -^ T2(U + u 2) 

+ (T + a) uw + T (v2+ v^) + T^ + (T + c) w^ + T (UV + w) + T W 
-> 4     4 5 6 

„9W^9W     9U     9U     9U     9V     av     air 

lo" 

^1 =7'E^IT <V-^>-5^1^ <V-"'-gff 37^*HV|J <v°-' 2 3  -^   ^'2^3 

where (a,b,c), S, (a,8,Y), and V^W are given by (A-2), (A-3), (A-5) and (A-6) 

respectively.  The T^ (1 = 1, 6) and the E_. (1 ^ 1,12) coefficients are given 

by 

T    - a     ,_1  9     ,, , > 1      9 --0 ,.  ^^ 

+  (S   - cos u  sin V )  1      (sin v  - 3  cos y ) ^^3 

2   i ^   ]^ 

rp    _ sin^v      3     , ^^2 6 ^^2      a 
^ ^ ^^/ '^ ^^3-^ ^) - 9^J - ~2 [fir - ly (^-^ -) 1    :    (A-^S) 

''^  ^ V^ ^^ ^"^2-°' ' ^  - 97^^   - rtT2   t^ - 1^ (^1°°-^' ) 1 (A-49) 
2 3 n^n-|^t> 

a ^^2 ^N 2 3h 

'^' ;;;;^'5^ ■ °°=" ST'- ^ I--'3^ - ii < V-»" 

2 ..'   ' 
sin V     ,9     , 3 o 3h        9h 

^ r~T2 [gy (v°^^^ - R (V°^ ^^^ - -^-2 '-^"^ ^ air - ^^   (A-50) 
^ 21 
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.   2        3h„ 8h_ ah        3h 

h„h2S        "^ ^23 h-|^h2S 

9h ft 3 3 
[cos ^ 3^ - I7 (h^^cos y ) ]   + -^—^  'a^ (^-^cos v)   - g^ (h^cos X ) ] 

h„h, S 
^ ^ (A-51) 

1   ,3    , VH   ■ 2'        3    ,4^4,     3    ,4^,,   , Vi4^a 
3 ^ . 

h h„h„GOS v                                   ah,        h h„h„cos X    . 3h 
(|_)   , _A^J  [|_ (h.cos V)   - 33^]   . -i-^-^  [|^ (h2COS V)   - ^] 

h„h„ .       h„h^cos X h^h cos y hh „       h„h cos y 

.      h„h,cos X 
_ 3_ (_2J: )] (A-52) 

ay  ^ s ^' 

2h^h„cos X . h h^h^cos v    »       ■ 9h^ 
E2  = -^"i  [fy (h^cos y )   - f^^ (h2COS X ) ]   .  ^  [g^ (h2COS X )   - 3^! 

.      s s 

h„h g h h g 
+ -^  [|- (h^h-j^cos v)  - cos X  g— (h^-LCOS y)]   - —2"^ [h2 g-^ (h^cos y ) 

s s 

2      2 ■■   ■ 
g h2h-3Cos X  g hJi-j^h23  g       ^ 

+ h3 gy  (h^cos V ) ]   +  2  3l^ (h2h3COS X )   +  — ^ ij^) 
s . s ^ 

2 
T  -       h^h^h^g ., 

_ 19     (312 (j^_53) 
s 3z s 

2  2 
h^h h„a h„h g 

s 3 s 

hJi-,cos y    g g ^3^1 2    ^^3      3 
+ -^-^2  fc (V°^ ^^   - 3? (V°^ ^^^   *      2     '°°^ ^  3F - ^ (h2Cos X)] 

. s ■ S 

2 «i^ ^  „       h„h-,h„a h,h„h„cos v 9h^ 
. 1 |_ (^AA_)   , J_1J  [9     (j, ) 3] (A-5-4) 
s3zs <C dZl oX 

■S 
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2 2      2 ■'    ■ ' 
h„h, h^sin v h„h„ .       h„h,cos v        .       h„h, 

\ = 3 3T ^h") ^ ^— f«°^ ^ 37 (—i -^ - 37 ^^-) ^ s 1 

.       h hpCos V hJi h„cos v 3h 

- h  ^       s )'   ^ ^^   f|7  (V°^ ^^   - 3^^ ^^-^5) 
s 

2       2 2      2 2 
■r.    ^  _    J 2 1 3 12     .J^ 3_    s_.       1 1, 3 2     1 

5 ^2 3z 2 ^s 3x  *h/   ~ , 2 3x   ^   ~      2      3y s s 1        h s "^ 

h h cos >^    h h h cos v h    3h^ h h h cos v 
_ -J-±  f_J. ±_ (V,   „og „)   + 9_ (_2_J ,   _ _J_ 1,   _    12  3 

s ^s    3x  ^V°^ ''^       3z   ^ s ^       s    3y  ^ 2 
s.. 

[3^(h3COSM)   -|^(h2COSv)]   _^t/3^-/|7(h3COsy)   -| 
X 

( ^ ) ]   + -^ [cos IJ  97- - COS V g^ (h2Cos X ) ]   + -f- [cos y  9- 
s "^ 

h^^2^o^.                    3     ,^3^2^°^ ^ . ,       ^3^2   , 3      ,, , 3 
( ^ )   - cos V g— ( ^ )]   + —^ [cos V g— (h^cos y)   - cos y  g— 

(h^ cos v)] {A-56) 

4h^g       . V2,_^      3       hh g       hh^cosy 

si 

x-2^. 2 
3 1    3 3 hJi-,cos y    3h-,       g 

^-2- [37 (V°^^^   -37 (V°^^^)^   ^-^—2  '3/-^ (h2Cosv)] 
s . s 

h h cosy     h h    3h hh^ h h.h.cos v 3h 
+ -^-1   r-J. 9_ ,, ,   _ _1 —1      3_ ,_3_l.^ 1   .     12   3 , 1 

s ^s    3x   1^2°°^''^       s    3y        3y   ^   s     ^J   ^ 2 'sz 
s 

3                                ^'^^    \  a                              a      hJi cos y h 
__(h^,osy)]   . ^  [-_ (h^cos y )   - fy ("^"^^ )   - ^ |^  (h^cos v ) 

(A-57) 
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2 2      2 
h„h-, -       h„h-,cos V        ^      h„h, hJi,h„sin v - 

•tr ->   -*-    r °       (    ^   ^ \ 9       ^"=^141 J12 d.S, 
Ey = -^ t<^°^ ^ ay ( i '   - 97 (■^)]   ^  3 37 ^hT^ 

S «c 

+  5-^  [cos V r— (h-,cos v)   - KTT-] (A-58) 

2       2 2 

H - —3— 97 ^hj> ^2  ^97 ^^3°°^ ^ ^ - 3T-' ~ "72- fg^ ^^1°°^ ^ ^ 

- 9^ (h3Cos X ) ]   + -^  [cos y  3y (-^f - cos v gy ( ^ ) ]   + —2- 

9 ^^2 
[g— (h-j^cos y)   - cos X ^^"1 (A-59) 

i^h, „    9h„ 9h„      h„h,a  9h„        hlh-,h„a  . YQ: 
j>  1   ,,       .^ "S-.i-n        2.31 2, fl23,S, 3 -'V-   [h-,Sin V  r-— +  h„e   •r-—  + -^  r-—]   + -^ r  r—  (r—")   + --^ -^9 g2     '-'r^''      9z        ^T  9x ^2      9y  ' ^3      3y  'h^' s 

3h        3                                h h                           h h cos v                              h h cos X 
[3/-f^(h,cosv)]   . -p [COS X §3^ (-^^ )   _ eos V 1^^ (-^-^^ )] 

2 2 ' 

+ —2—  Ivr:  (hocos X )   - g—]   + —2~  f^°^ ^  9T (^2008 X )   -  cos X  g— (hpCOS v ) 
s "^ s 

„ 9h ^o^i    a       h h COS X 
- cos V g^ (h^cos y )   + COS X  3^]   + -f~ [:^ (-^ ) 

h h cos V h h h cos v 
- cos y ly (^-± ) ]   +        ^ I  [|^ (h^cos V )   - |j (h^cos X ) ] 

{A-60) 

ho =  2-  [h-^h2Sin V 3^ {- 3^ (^)}   + h^h2S  97 (^ 9^ i^r^}   + h3h^a gy { g 9- 

h^    ^       h_h„cos X    ^ „ „       h, h^cosy 
■^ •)} 1 + -^ fl- 1^-^  (^ (h,P.oR ,n - I- fh„nn.q X) n  +1— f-^^  (I 

'3 
^V^ 1 ^ s   [97 ^--'-^^i— (97 (^1^°^ ^) -17 (^2-°- ^ ) ^> ^ IT ^      s     (97 

2 
9h„ h      9h„ h„h-,cos y 

(h^cos X )   - ^)} . - {- (^ _ - (h^cos y ))} . 9^ i-^  (9^^ (h2Cos X ) 
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2 

-j^))\ (A-61) 

\\     \\     \\ 
12  3   ,^ ^     .23     ,13     ,s   ,,       ^  V- «   9     rl 3      ,s   ,,       ^  ^      3     ,13 

^11  =  2       thih2Sin V  3^ {- 93^ (j-)}   + Y^Y.^  a^ ^ s 3^ t^^   " ^3^1^  37^1^ 
s 1 2 "^ 

's   ,, ,    ^3   ,3       h3h2°osX    3h^      3     ,      '         ,\,     3       hiV°^ ^   ,3    ', 
^h^^^ '■'1-^37 ^ i  (37- - 37 ^^2°°^ ^ ^ )> ^ 37 ^ 5  '3^ (^2°°^ ^ ) 

2 "" ' 3h h h cos y 
- 3^ {h3Cos u ))}   -^ 97 {— (^ {h3COs M )  - ^} . ^ {-^-^  (^ (h2Cos v ) 

2        • ■ ■■ • ■• 
3h, h,     . h,h2C0S v    3h, 

- W^^ " 37 ^i~ ^8y ^^3°°' ^ ^ - 3¥ ^^2^°^ ^)» "37 ^ i (37- 

- 1^ (h^ cos u))} ] (A-62) 

^12 = ^4"^ [hih2Sin2v 1^ {^ ly (f^)}   + h3h23 f^ (^ |y (^)}   + h3h^a L_ 

^¥ 37 ^h^^^ 1 ^ i" '37 ^-^— (37 ^^1^°^ ^) - 3ir^^ ^ 37 ^—i— (37- 

2 

fy (h3COS X))}   +t7{— (t7 (h3CosX)  -f^ (h^^cos v))}+fy{-^^-^^  (9^ 
^ -,       h,,    ,^ » „       h^h, cos u     3 h,, 

2 
3 g       h      ~ 3h h h cos v 

3y (h.cos V ))}   - 97 ^i^ % (^3°°^ ^ )   - 37^   * I7 ^-^  'b (^1-°^ - ) 

|j (h3Cos X))} ] (A-63) 
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C.    Turbulence Equations. 

U    8k ^ V   3k ^ W    3k      1,3    /t    ,,3k^„3k      „ 3k„       3     ,^t 
h^ 57 "" h^ 3y "" h^ 3z = s   ^3x ^5^ ^^ 3T "" " 37 "■ ^ 37^>   ■" 37 ^^ 

^^ 37 ^ ^ 3y ^ ^ 3¥^^   ^37 ^TTE ^^ 37 * ^ 37 ^ ^ 37^> ]   ^ ^^        ^^-^^^^ 

ILi£.]Li£     l_i£ _ i  r§_/!^ ^A i£      u 9^       p9e.-        3     /t     ,„ 3e 
h^ 3x ^ h2 3y "" h^ 3z - s   hx ^a^s   ^^ 3x * " 3y " ^ 37'^   * 37 ^5^ ^^ 37 '  ■ 

e 
(A-65) 

where s and the coefficients (A,B,C,F,G,H) are given by (IV-13) and (IV-14.) 

respectively. The turbulence generation term is defined by  . 

~       2   2    2      2    2    2 
G = v^[2(e^-|^+ £22 + £00) + 4(e^2 * ^23 ^ ^31^^    (A-66) 

where e^i Is the rate-of-strain tensor 
J ' : ■■■■   }■ 

< e..   =j[VV+vr]       ,   . {A-67) 

T 
In    (A-67) VV is   the   deformation-rate   tensor   ej^^    and VV    its   transpose,    i.e., 

T 
VV    = e...    The coniponents of e . . are defined by: 

^1 = ^1 ; 

= ^ (h^AA^^+ hj^HA23^+ h^i^GAo^) _ (A-68) 

1   , , 
^12  " 2   ^^12"" ®2l'   " ^21 

.    h h {A-69) 

= 2   [^ (^12* H^2" ^^32^   ' -2  (%l" B^l  ' ^^31' ^ 
s s 
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^13  2 '^13^ ^31^ " ^31 

1 ,^1 , ^3 (A-'70) 
" 2 '~2 ^-^13 "" ^3 "" ^^33) ^ "i" (GA-^i+ FA2-[^+ CA,,)] 

s s 

^22 =-2 (%2-' ^^2^ ^^32^ (A-71) 
S       . ■',■..' 

^23 " 2 ^^23"^ ^32^ " ^32 

1 ^2 ^3 (A-72) 
= 2 [— (HA-L3+ BA23+ FA33) + — (GA^2"^ ^^^22"*" ^^32 ^ ^ 
_ s s 

33 " ^33 
^3 V .  .    '-      (A-73) 

= -^ (GA^3+ FA20+ CA^o) 

where " .   r ■'■' - 

^2= ^11^ ^1^ ^21^ ^31 

h3- "^11^ ^<^2i^ ^^ ^«3i 

^21= V "^2" ^^22" ^^32 . \  "  (A-'^^) 

^22= "^12* ^2^ ^22^ ^32 

^23= "^2^ ^^22^ ^2* ^^32 

Sl= ^^ "^3^ ^"23^ ^^33 

V ^13^ V ^23^ ^^33 

^3= "^3^ ^^23^ V ^^33 

and the notation 

^^i' ^i' ^i^ = ^JIT'  alT' 3ir^ 
111 

has been used. The coefficients (a^j, b^j, c^) in {A-74) are the components of 

the vectors representing the derivatives of the unit vectors e. in the (x,y,z) 

coordinate directions, i.e. \ 
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8 
-i,J    8x 

J 
(e^)  = a^je^^ b_^^e2-H 0.^63 {A-75) 

where 

hi'- ̂ ^lr^,i^/^i ^l = ^ll/^l °11 = 4l/^l 
\2  '- ^2-^,2^/^1 ^2 = 42/^1 °12 = 42/^1 

\3~- 
(a.3- h^^3)/h^ \f ^3/^1 V 43/^1 

^21 ~- 4l/^2 ^21 = (4r ^2,1^^2 °21 = 4l/^2 

^22  = 42/^2 ^22 = ^^22-^2,2^/^2 «22 = °22/^2 
(A-76) 

^23 " 
a'3/h2 ^23= (b^3- h2^3)/h2 •^23= ^23/^2 

^3l~- 
a-,/h3 

^1= ^31/^3 °31= ^°3r \i )/h3 

^32- a'2/h3 ^2= ^32/^3 °32= ^°32- ^3,2 )/h3 

^33"- "33/^3 ^3= ^33/^3 •^33= 
(c-3- h3^3 )/h3 

and the notation 

ilT^^i^ =^i,j 

has been used with 

(4P 4P 4I^ - ^' ^ 

^^22'  ^22'   °22^ 

33'     33'     33 

\\,1 

Kl 

,1 

^1^,2   I 

W,3 

JV2,2 1 
Yr'U\2  -^2^2,3   f 

';2-v2,i_^ 

JV3,3 1 
D   ^ y;3 -h3h3^^   I. 

';3- V3,2 

{A-77) 

(A-78) 

(A-79) 
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and 

r 
-1 

^^12'  ^12'   °i2^   ^ ^     ■< ^2,1 
1 j (u'o- v'o+ A'J 

(a ^-1 1 ^^,3 
•3, 43, 43) = D j ^ (^;i-^';2-^^;3> 

^^3' ^23' °23^ = ^ 
-1 

^3,1 

o   (v'o- X',+ y'    ) 2 ^^3 

^2,3 

V3,2 

,2^ 

-1 

2 
1121138 In X      h,h-Y ^1^2^ 

1 
^^2^3^ 

^2V 

2 
h,h„sin u 

h h a 
h^h2h3S^ 2 

h^hpSln V 

A' = h-h„cos X , 

M ' = h-.h^cos M 
' . ' -..i^' 

v = h hpCos V 

(A-80) 

(A-Sl) 

(A-82; 

(A-83) 

(A-84) 

Note that the coefficients  (a^j, b^., c'   ) are synunetric,   i.e.,   (a.!, b   '    c'   ) 

^^jl' ^ji>  °ji^ ^°^ ^*  J- 
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APPENDIX II:    Partially-Parabolic Equations 

In Section IV-A the procedures for obtaining the partially-parabolic form of 

the governing equations have been discussed. The resulting equations are 

provided in this Appendix. The definitions of the various coefficients appearing 

in the equations are given in Appendix I. 

i-liomentum Eqiiation 

U    3U      V    3IJ      W    3U 2  ?       1    3uv       1    3uw 1     ,   ,  2,   1    3p 1    3p 

12 3 2 3 pb 1 2 

„   1    3p,       V   .3      , 3U,       9      , 3U,       9      , 3U,       3      , 9U, , 
" ^   hT 97'   ^ s   ^37 ^^22 37>   " 3^ ^^23 3^^   ^ 3¥ ^^32 3?>   ^ 3^ ^^33 ^' ' 

(B-1) 

y-jylomentum Equation 

U3V      V3V      W9V      19v^       1    3vw ^    ^V n    9U   .   ,<.   .^N  T=- 
h^3T^h^3y^h^37^h^3F-^h-9T--^D7 9?-^°8 3¥"   ^^l"-^^   ^ 

+ S^w^  + S^   (U^  + u^)   +   (S,   + b)  v^  + S.   (UW + uw)   + S,UV +  (S,+a)  uv 

1     ,   .   2     1    9:^ ^      1    9£ ^      1    iJEi   ^ V   ,3      . 3V,   _^ 3      , 9V.   ^ 
=  - -2   '^^^ ^  hT 3? ^ «  hi 3^ " ^  hT 9^]   ^3^97 ^^22 9^^   ^ 3^  '^23 3^^   ^ 

po 2 3 i 

z^tomentum Equation 

U    3W      V    3W      W    3W       1    9w^       1    9vw ^    3U ^    3U ^^ ' 1^^ " ^^ ^ h^97- ^ h^ 37" - ^   ^6 37 - ^^4 37 ^ T,UW 

115 



+ T^   (U^  + u^)   +  (T,   + a)  uw + T^v^  +  (T,   + c)  w^  + T^(UV + uv] 2. 1 3 4 5 

,„      ^, — 1     ,   .   2     1    9p      „   1    3p 1    3p,       V   ,9      , 3W- 
+   (T^+ b)   vw =  - —2   [sm V IT 9t ^ ^ E: at " «  h7 3f ]   ^^% ^^22 9^^ 

po i L . <i 

■^ aT^ ^0-3 a";r"   "^ TiT (a-30 ^ '^ T;r (^-3-3 r;r' 1 (B-3) 3y       23 9z 3z       32 3y 3z       33 3z 

k-Equation 

vB vF vF vC 
]Lik^V_9k_^W_3k^l ,3_ .__t_ 9k ^ _t_ 9k,   ^ 3_ ,_L. iiL + _L_ lX^ 
h    9x      h    9y      h    3z       s   ^9y  ^a  s 9y      as 9z^      9z  'as 3y      as 9z' 

+ G - e :■.,.■■, -.   • (B-^) 

e  - Eqiiatlop 

U_9E_^V_9£^W_3£^^  .9_ /t^ 3^ ^ ^ ^^^   + 9_ ,!_t!^ 3e_ + ^ 9e_, 
h^   9x'*"h^3y"^h„3z      s   ^3y  'a  s3y"^a   s9z'   '^3z   'a   s9y'^a   s3z^' 
123 ee se 

The Reynolds stress terms required In equations (B-1) - {B-3) are related 

to k-e through the Isotroplc eddy viscosity concept: 

Vj =-2Vi.1 ^3^ ^Vj^iJ^ (^-^^ 

2 
where v. = C k /e is the eddy viscosity, E  is the rate-of-strain tensor {A-68)- 

x   M ij 

(A-73), hj^ are the metric coefficients (IV-10), and g^^ is the inverse metric 

tensor (IV-14-.1).  Note that equations (B-l)-(B-3) were derived tinder the assump- 
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tion that v.v. ~ 0(G). Thus, the order-of-magnitude of v.e.. ~ 0(G);  however, 

the order-of-magnitude of v is difficult to assign emd should be 0(e) <v 
t — t 

2 -1 
£ 0 (e ).  For this reason terms of 0(e  ) and 0(1) have been retained in the 

partially-parabolic  form  of e... Note  that e  is  also  required  for  the 

evaluation of the turblence generation term G (A-66).  The terms (A-7/i) simplify 

to   ■ , ■-:.   '■''        '   ■:    ■ 

hi - h ^ ^11 

^2 = ^11 

A^3 = u«n ■• ^ . ^^-'^ 

.  ^21 = "2^"^2    .  . . 

^22 = ^12^^2 

^23 = '^12^ ^2  ^  ^ 

^1 = "3^^^3 

.   .      ^2 = ^13^^3 
A33=Uc^3.W3 

£ind the components of e . .   (A-68)  -  (A-78) become 

^11  "    2 ^''^^^l* ^^11^   ■" ^^^2"" ^^12^   * ^^^3* Ua-^o)} (B-8) 
s 

1    ^1 
^12  " t '"i" ^-^U^ii^ H(Ub^2'' ^2'   ^ G(Ub^3+ V3)}   + 

s 

^2 
+ -|{H(U^+ Ua^^)   + B(U2+ Ua-^2 ^   * ^^^3'' "^13^^ ' ^^"^^ 

s 

1   ^1 
^13  " 2   '  2 ^^Uc^^+ H(Uc^2^ ^2^   * G(Uc-^3+ W3) 

s 

+ -f{G(U-^+ Ua^^)   + F(U2+ Ua^2 ^   ■*" ^^^3+ Ua-1^3)} ] (B-10) 
s 
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'22  " ~2 ^HUb^-^+ B(Ub^2+ ^2^   "" ^^"^13+ V^)} (B-11) 

_ 1    ^2 h 
^23  ^ 2   ^-2 {HUc^i^ B(Uc^2-' ^2^   ^ F(Uc-^3+ ^3^   ^ "T ^^"^11^ ^^"^12^ ^2^ 

s 

+ C(Ub^^+ V^)}] 
(B-12) 

,s 
33  = — {GUc3^^+ F(Uc-|^2'' ^2^   "" C(Ue^3+ ^3^^ (B-13) 
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APPENDIX III: Equations in Discretized Form 

This appendix provides the details of the finite-difference procedures 

used to put the partially-parabolic Reynolds and Turbulence equations, as well 

as the pressure-correction and pressure equations, into discretized form. A 

written description has already been provided in Section IV. B and IV.C. and 

will not be repeated here. As shown below, various terms in the equations 

have been grouped for convenience. Ml differences are labeled as to forward 

(FD), backward (BD), or central (CD). Lastly, the terms are collected and the 

coefficients in equations (IV-18) - (IV-22) and (IV-29) - (IV-30) are 

defined. The following definitions are used for the distances between nodes 

(see figure 3):      . 

£    ^+1   <L       2   /+1  Jl  2        Ji^l _    <i     ,2 1/2 

(AX )'     = [(X^  - /-^)2 . (Y^  - Y^-^)2 . ^     -Z^-1)2]V2 
^ - m,n    m,n  m,n     m,n  m,n     m,n m,n 

,4y ,«  = „Y*  _ Y«   ,2 MZ*  - Z' ,  )2lV2 
'^- m,n    m,n  m-l,n     ra,n  m-l,n 

(Az.) I ,       = [(/  ,-/  )2. (Z^  ^,-Z^  )2]V2 
+ m,n m,n+l  m,n     m,n+l  m,n 

(AZ )'     - [(/  -/   n)'^/  -<,,)']^/' - m,n m,n  m,n-l     m,n  m,n-l 

(Ay  )^  = (Ay )^"^                    - ^— m,n ■'- m,n                       ,,, 

(Az  )^  = (Az )^"^ — m,n - m,n              . , .  ,, 

(^y-H.^m,n= ''y^^m,n 
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Q Z+1 
(Az   r   = (Az,);: ^ ++ m,n    + m,n 

where (il,in,n) are the Indices in the (x,y,z) coordinate directions and {X,Y,Z) 

are the Cartesian coordinates.   Note that in the present staggered grid 

arrangement the streamwise velocity component U is located at the grid node 

(il,m,n) whereas  the  transverse  velocity  component  V  is  located  at 

(il-1/2, m-1/2, n), the  glrthwise  velocity  component  W  is  located  at 

(£-1/2, m, n-1/2), and the remaining variables (p,p,k,e) are located at 

{Jl-1/2, m, n). All the required geometrical quantities are first evaluated at 

the grid nodes (£,m,n) using a backward difference for x-derivatives and 

central differences for y- and z-derlvatlves.  Subsequently, when the dlscre- 

tized equations are formed, all geometric quantities are evaluated at the 

location of the variable under consideration by taking the appropriate average 

of the neighboring values which is the reason that the notation Z  + 1/2, m ± 

1/2, n ± 1/2 has been Introduced below. 

A. Beynolds Eqimtlcns 

1. x-Momentum Equation 

a) 

U_lU__m,n  ,.Ji       _ u^-1) = xa.(ui „ - Ui"^ (BD) (C-D 

b) 

^\n      %,n'  ^^l^Xn   m,n' 

fh - ^!'%*l' Cl,n- ^♦An^ '%-" t-l,n' = ^^t^Ln'  ^^a^.n ^2^7      Ay^ 

^7^ (C-21 
3 m-i,n 

where 

V* = i (<n^ C ^ 4l,n ^ Cl,n) 

Re^= R^ V*(Ay^. ^J_i^^/2 
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R^  = l/(v^. 1/R^), 

$     = - 1 and Ay^ = 2(Ay_)^ ^ if    Re^ > 2   (BD) 

*y = 0 and Ay^ =  (Ay^ + Ay_)^ ^ if   |Re^| <  2  (CD) 

<}.y = 1 and Ay^ = 2(Ay^)^^^ if Re^ < - 2   (FD) 

0) ■■   ^  ■—      -   .   ■ 

3 w ' 

where ' ' ^     - 

W* =   (/       +/       .   + /""-^ + /""^ J4 r 
in,n        m,n+l        in,n        m,n+l 

Re  = W* Re   (Az + Az   )^    /2 ' 
c +        - m,n 

$^ = - 1 and Az    = 2(Az   }"'       if Re    > 2   (BD) z w - m,n c 

(ji^ = 0 and Az    =  (Az^+ Az   )"'      if   JRe   | <  2   (CD) 

<t.^ = 1 and Az^ = 2(Az^)^^^ if Re^ < -2   (FD) 

«/ ^ 2 ^ (v,s,2- ^ k,2)   - 2 ^ (v,s,3- ik^3)   = R/. 2(^ (v/^^" 

1 T:    >   ^    8  , 1 r    , 9  / 9U  u     ' ' 
3 ^12^ * ty^ (^^13-3 ^13' - iyy ^myy^^ 

1   V      ^^ 1    . _1     r ,,.   „ 1 TT     >i^ ,..   _ 1 ^     .A 
(^t^l2- 3 ^12V-l,n ^   ^ A^ ^ ^^^13- 3 ^13V,n.l- (^1^13" 3 ^134,n-l> ^ 

xd^  (CD) (0-4) 
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(v. ). 

+        - ni,n        + in,n 

,^     .1 m,n      m-l,n 2    m+l,n 3    ni,n 4   m-l,n 

-"''^ (C-5) 

where 

£-1^ = £- 
8U 

12      "12      2h29y 

Ay,   =   (Ay, . Ay_)^;^/2 

Az     =   (Az^+ Az   ) e +        - m,n 

e) 

1  ,sln X    8p       x_   3P    ^ L_   9P  X  _      1 r ,sin~A_.£      ^m.n~ -^m.n      ,y 
P S 

£ 
2      h^3x      g2 h23y      g2 h^9z'  " " p ^ ^  ^2    'm,n Ax^        ^ ^g2Xn 

1     , ^+1      ^    ^ £+1 £ ,       ,0   ,Jl 1     , £+1 £ 
Ay    ^Pm+l,n * Pm+l,n" Pm-l,n ~ Pm-l,n^  *  V ^^^n ^^ ^Pni,n+l'' Pin,n+1 

X ox 

-Plli-1-Pl,n-1»   = -^^1   (™)'   (CD),   (CD) (C-6) 

where 

Ax^ = {(Ax.)^    +   (Ax   )i    >/2 X + in,n - in,n 

Ay^ - (Ay^+AyJ^^^ 

Az     =   (Az   + Az   f 

f) 
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M3 dU 3 dU, d, du, 0       , O^M 

=   (I)   +   (II)   +   (III)   +   (IV) 

"        V 9     ,         aU,               V             ,(V22d/2,n ..1             Ji     ,       ^^22^-1/2,11 
(I)= s 3? (^22 ay)   =   .   ^ s)^                (Ay   )^ ^"^'^"    '"'^                  (Ay   )' 

^V3    m,n          ^''•^ + 'm,n - m,n 

(U^      _ /         )}               ^  = xf,   Z  , - xf„ if       + xf./   ,  ^   (CD) 
%,n      Vl,n'^                         )^               1    m+l,n 2    m,n          3 m-l,n 

•y.        •^+ m,n (C_7) 

■^ ' m+l,n 

.  ( b ^23  )' (/ u^ -,)}   = xf,   (CD),   (CD) (C-8) 
^Az + Az  ^    ,       ^  m-l,n+l        m-l,n-l 4 

+        - m-l,n 

^"^)" s 1^ ^^32 ay)   ^ ^h,h„s(Az^+Az   ))■     ^ ^Ay_+Ay_^)m,n+1   ^  ni+l,n+l-    m-l,n+l) 

^-    ^^      ^ " _ U* J}   = xf.   (CD),   (CD)    ■    ' (C-9) 

■^-        ''+m,n-l        ' 

(h, a,   ^^ 
V a     , aU, 2v iH       .^"3 "33'm.n+l/2     -^ _ u^     ) 

(IV)=   ¥¥¥^^33 3^)   ^ ^hh.S  (Az  ^Az^)^ \       .£ ^V,n^l      in^n 

• ■  . i * ■• . 

^^3^33)m,n-l/2   (^     _^       ,)}   = xf,   (CD),   (CD) (C-10) 
"      ,       ,£ ^  in,n      m,n-l 6 

(Az   )„ „ - m,n 

Collecting all terms (C-1) - (C-10): 

xa l/       - xa l/"""^  + xb.l/'   ,     - xb„U^     + xb„U^ + xc    + xd^ 1 m,n 1 m,n 1 m+l,n        2 m,n        3 m-l,n 1 l 

- -^2 d,n ^ ^^3"^,n- ^^4"^-l,n ^ ^^1 " ^f/m^l,n ^ ^^2<n " -^3"'m-l,n 
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or 

(xb^ - xd,  - xf-)  Ul 1  ^ +  (xa,  - xb^ + xd„ + xf,,)  IT „ +  (xb,  - xd^ - xf, ) 3 A j     in-l,n i d J d      ia,n id 1 

IT,,       = xaTir"    - xc,   - xd^   + xf,   + xf^  + xf,  - xe^ m+l,n 1 in,n 1 1 4 5 6 1 

Finally,  the coefficients in equation  (IV-18)  are: 

a    = xb    - xd    - xf       ■ ,,■ - '   ■ 

a^ = xa^ - xb^ + xd    + xf^ (C-11) 

a    = xb^ - xd^ - xf^ 

Su = xaTlT"    - XCT   - xd-,   + xf,   + xf^ + xf, 
1 in,n 1 1 A 5 6 

Pu = - xe 

2.    y-4toii>entuiii Equation 

U3V 

- in-l/<i,n 

where 

71172- (^m,E ^;'A = y-l(<n- tt^   (BD) (C-12) 

m,n      m,n      ni-l,n      m-l,n ' 

b) 
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Kk -^^^V^  Cl,n-2V<,A  (%-l)d,n>   = ^\ d,n-y^2<n^ yb3/,.,^^ 

ttl^i«e 
$,   = - 1 and Ay,^ = 2{Ay)^"J-/2      if Re    > 2   (BD) 

£-1/2 I        I 
$y = 0 and Ay^ =  (Ay^+ ^^Jm-1/2 n ^^   l^c' - ^  ^^^^ 

2,-1/2 
$y = 1 and Ay^ = 2(AyJ^_3^/2,n ^^ ^^ < - ^  (FD)     , 

c) 

* 
W8V        W 
hjz      Az 

3 w 

where 

(CD) 

(C-13) 

^^K\ ^'<n.l- 2*/,,n ^  (*z-l) <n-l>   = ^^1 (^-1^^ 

Ji-1/2 
$^    = - 1 and Az^ = 2(Az_)^_,;2^„_,/2 if Re, > 2   (BD) 

*^    = 0 and Az^ =  (AZ,. ^--)l:i/2,n-l/2 ^'  l^J '  ^ 
1-1/2 i?       = 1 and Az    = 2(Az^)     ^',t      ^ ,„ if Re < - 2   (FD) ^z w + m-l/2,n-l/2 c 

W*    =  (/    + /    ^T   + /  ,       + /  T       , )A. m,n      m,n+l        m-l,n        m-l,n-l 

Re    = ReW*   (Az,+ Az_)    ^    /2. 
in^,n 

a) 

2{t-:;— (v,e^^)   + ^-^ (v^e^o" o" i:oo »   - o" TTT;:;^ = 2{ - -r-^- (v .-^r-^-)   + h^ay ^ t 22'     h 3z ^^t^23    3   23'^      3 h^ay       "'    h^Sy ^n 2h23y' h^Sy 

a 1 — ?    ^^?? 
h 9z ^''t^23     3 ^23"      3 h^ay 
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h 3z - 3 h^ay ■"       h^Sy      " Az^ ^ ^''t^23 7   23^m,n+l'' ^''t^23" 

1 r:    a-1 .,  .        i V     ^^ / iv     A^-1    1       2   ^^22m.n~ •'^22m-l.n^ 
T ^23 in,n+l'  ^ t 23" 3 ^23V,n-l"  ^^t^23" 3 ^23V,n-r   "3 Ay + 

.,,     -•^+SooL„'^  ^^+^-?oL r,-  (^+^ooL 1  ^-  <^+EooL 1   J   =yd-,(CD),   (BD),   (BD) Ay t dd. m,n        t <i2 m,n        t <i2 m-l,n        t 22 ni-l,n 1        ' ' 

.£-1/2 

"+      "_ m-l/2,n + m-l/2,n 

^ •'^- m-l/2,n 

where , 

Az     =   (Az  + Az   )^"^/2 
e +        - in,n 

Ay    =   (Ay   )^"^/2 

-      ^ _i_^ 
^22      ^22 " 2h    9y 

e) 

P    g2j^    9x      g2^      8y      ^2^    3z'   "  " p ^ ^g2'in-l/2,n Ax    ^Pm,n Pm-l,n" Pm,n 

2 
£-1     ,        ,sln_jJ_,£-l/2       1   ,  £            £          ,   ^   ,cx   >£-l/2       1 ,  £          ^ £ 

Pin-l,n^  *  ^    2    'm-l/2,n Ay    ^Pm,n- Pin-l,n^       ^  2V-l/2,n Ai~ ^Pin,n+l'' ^m-l. 

4n-l-Vl,n-l»   =-y«l  (C'^^   ™'   (^I^) /       ;" ^^     (^-17) 
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where 

Ax    = {Ax +   (Ax  + Ax     )/2}^ 
y + -        ++ '    ni,n 

Ay    =    Ay 
''y •'- ni,n 

£-1/2 
Az     =   (Az^+ Az   )     , ,„ 

y +        - m-l/2,n 

f) 

.  V  ,9     , 9V.       9      , 3V.       9      , 9V.       9      , 9V,- 
? ^97  (^22 97)   "- 97  (^23 9^^   ^ 9^  '^32 97^   ^ Fi  ^^33 9^^^   =   ^^' 

+   (II)   +   (III)   +   (IV) 
. 

fT^=^^f«      ^V=  2i?  f  "2^22V.n .,± ,Jt     > 
^^^      s 9y  ^^22 9y^      ,^ ^ ^,, ,     >ii-l/2      ^   ,.     ,£-1/2      ^ Vl,n      m,n' 

^V3^('y-^^y.W2,n       (^y.W2,n 
(h a     )^~^/2 
 ^ ^? ?^o'^   (V^     - V^  ,      )}   = yf-,   V^.     - yfo V^     + yfo /   T     (CD) ,       <£-l/2 ni,n      m-l,n "^   1    m+l,n    "^   2    m,n    "^   3    m-l,n 

y- ni-l/2,n (^_^gj 

fTTl   = ^ ^ f        ^1   = V 1_ r ^   3 23 m.n 1 J 
^^^^   ~ s 9y  ^^23 9z'        .,   ,   „,£-l/2      Ay    \^     ^^      .£-1/2       ^V+l,n+l" %+l,n-l^ 

h^h_S       ., ,„ "'a     (Az^+Az   )  ^^' 
1  3    iD-l/2,n +      - m+l/2,n 

(h a     )^"^/^ 
 ^ 23 m-l.n ^y£ / )}   = yf     (CD),   (CD) (C-19) 

lA     .A     \^-l/2 m-l.n+l      m-l.n-l 4 
(Az^+Az   )     T ,„ ' ' 

+      - m-l/2,n 

where 

Ay,  = {Ay_  . I  (Ay,^Ay__)}^^;y2 

1/ ,^,       .        ^J^-l/2 
(Til)   = ^ ^ (a      ^)   =  ^  .^^2 ^32V-l/2,n^l  ,/ 
^^^^>       s 9z   ^^32 9y'       .^ ^  ^.^     ^ ^      n^-1/2 Ay, ^ Vl,n+1 

{hhS(Az_. Az_)} b 
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(h, a,,)'-l''2 

- <-X,nn'  -      '    '\r'''"-' 'Cl,n.r <-l,n-l»   = ^^5'™'.   'O"' 
(0-20) 

where 

Ay, = {Ay_.J(Ay,.Ay_)}^;^/2 ,^ 

,, .)!,-l/2 
(IV)=^i-(a      ^)  = ^ I  f     3^33Vl/2.n^l/2 

h-ih^S)     ,'    ^    Az +Az^)     /,„ ^        Az^      , ,0 1 2    m-l/2,n        -      + m-l/2,n + m-l/2,n 

, .£-1/2 '"■ 
•      (/        - /     )  -      3^?rm-l/2.n-l/2  ,/    _ / ,, .     ,.0)     (CD) 

-'"-^/^'V. (C-21) 

g) 

{(S-,^+c)(-2v^e23+|l5:23)   + ^2^^^^^- ^X^-^-T)  * S^(U^-2v^e^^ "^ f ^11^ 

+  (S^+b)   (|k22- 2v^e22^   ^ ^^^ - 2Vt^i3^ f ^^^3)  ^ S^UV - 2(S6+a) ^^£3^2 " 

1 r-    ..1-1/2 
-l\2^K-l/2,n^H 

(C-22) 

h) 

V 9y 8 3z "ni-1/2 n        '"^      m-l,n      "m,n        m-l,n^/ 

m-1/2 n      ™>^*^      m,n+l        m-l,n+l        in-l,n+l 
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-l/       ,-U^^,-l/,       ,- U^~J      ,)/8 = yh,   (BD),   (CD) (C-23) ni,n-l      m,n-l        m-l,n-l        m-l,n-l J   -j^   >     / >   v     / 

Collecting all terms   (C-12)   -  (C-23) 

y^l^^,n- Cn^   " ^h d,n " y^2^,n " ^^Cl,!! ^ ^^1  ^ ^^1 

y<^2 <.l,n ^ y^3<,n - ^^<-l,n ^ ^^1 " yf'i<.l,n ^ yf'2<n 

^^3 ^m-l,n - ^^4 " ^^5 " ^^6 ^ ^^1 " ^^ = ^ 

OI" 

- (ybi- yd2- yf^) /,i^^= y^^^n" ^^i" ^^^i^ ^U^ ^S" ^^6" ^^i" ^^i^ ^^i 

Finally, the coefficients in equation (IV-19) are: 

^1 = y^3 - y^4 - yf"3 

^2 " "^^1 " -^^2 "" -^^3 "*" ^^2 ^   ■ (C-24) 

b^ = yb^ - yd^ - yf^ 

^^ = y^i ^;i- y°r y^i" y'^" ^'■5' ^^6- y%" y^i 

Pv = - ye^ 
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3. z-Momentum Equation 

a) 

S- =  ^0   1 /o—  (wi    - ^i~h   =  za.   (/  ^- l/"i)   (BD) (C-25) h dx £-1/2 ni,n      in,n 1      m,n      m,n 
- m,n-l/2 

where •■ . 

m,n      m,n      m,n      m,n-l '^ 

W^ = I— {((|>   +1)  v/^i       - 24) 1/       +   (<}.   -1) /   -,    }   H   zb, (C-26) h„9y      Ay       '^y m+l,n        ^y m,n       ^y m-l,n 1 * 

where 

£-1/2 
*y = - 1 and Ay^= SlAyJ^^^/^/^ ^^^^0^2   (BD) .■ ^    - 

*y = 0 and Ay^ =   (Ay^-^ AyJ^^^/^^^  ^^   1^%!  ^   2   (CD) 

^y = 1 and Ay^ = SlAyJ^^J/^^^ If Re^  < - 2   (FD) 

«-C = ^<n   (^y-* ^^.C-?/2/2- 

* 
(/       + /..       +/,,+ / ^ m,n        m+l,n        m,n+l      m+l,n+l'^^ 

c) 

/ 

fh-xt^^^K^^^ <n.l - 2*/n>,n ^   (^z'^^ <,n-l> 
3 w ' ' ' 

= zc,l/     ^T   - zc-/       + zc„/       , (C-27) 1 m,n+l 2 m,n 3 m,n-l > ^ \^ <-ii 

where 
£-1/2 

^^ = - 1 and Az^ = 2(Az_)^^/_^/2 ^' ^^c > ^   (BD) 

4.^ = 0 and Az^ =   (Az^+ ^^fm,n-l/2 ^^   \^%\  '  ^   (CD) 

130 



<t,^ = 1 and Az^ = ^^^'^.i'n.l/2 ^^ ««c < "^  (^D) 

Ite    = Re /     (Az + Az  )^"""■/?-o c ]n,n      -        + m,n-l/2 

g 1   2    9 2 33 9 1   
^ h^ ^''t^23" 3 ^23^ "■ hr9z ^''t^33^ " 3 Oz~ " ^ h^ ^"t^23" I ^23^ "" 

P J  ,     , 9     , 9W  .       2 ^^33 
"^ h 9z  ^^t^33'  ' h 9z  ^^t h 9z'  " 3 h 9z 

29 k 

^ ^h^ ^^t^23" 3 ^23^  ■" hT7 ^^t^33^^   " 3h 9z " A^ ^ ^''t^23" 3 ^23'm+l,n 

*   ^^t^23" 3 ^23 W,n"^^t^23" 3 ^23 Vl,n"  ^''t^23" 3 ^23 Wl,n^   " 3 

—   i       —   z 
^^33m.n- ^33m.n-l^^ _1_ .    ^—,£    /,    r")^-^-  (v F")^ -  (v i")^"^    } 

,^     .^-1 Az   ^'^t^33V,n    ^'^t^33V,n    ^"^1^33^,11-1    ^"1^33^,11-1^ 

= zd     (CD),   (BD),   (BD) (C-28) 

where 

Az^  =   (Az_  . Azj'^;y2   /2 

-      _ 1    9W 
^33     ""33 " 2h^ 9z 

£ -1/2 

^^l h,9z^  " " ,,     ^ ,    ,)i-l/2      \,„   ,£-1/2      ^%,n+l" Vn' h„9z      t h„9z j-.     ^  .     ..A.-j./t. ,       ., 
3 3 {Az^^AzJ (^^Jm,n-l/2 

m,n-l/2 ' 
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Sk- <,n- <n-l)>   = - -^2<,n.l^ ^^An' Vm,n-1   ^^D)       (C-29) 
t mji-l 

(Az   ) , ,„ 
- m,n-l/2 

e) 

2 
1 (J ^ ^    a9p      ^ sin v 3p    ^  _ i , z^,)^-V2      1  ,1+1        £ +1 £ -1 

£-1 a   ,£-1/2       1 
(P 'm,n-l^   ^   '   2V,n-l/2 Ay     'Pm+l,n'' Pm+l,n-l" Pm-l,n" Pm-l,n-l^ 

.   2    £-1/2 

'  ^^V,n-l/2A^<n-pl,n-l)>   =^^1   ^^^^   ^^D),   (BD) :c-30) 

where 

Ax 

Ay. 

5" {Ax   + -^  (Ax^+ Ax   )} 2        -    2        +        - ' iii,n 
,, ,      ,Ji-l/2 
'^y-^ ^y-V,n-l/2 

Az     =   (Az) 
£-1/2 

'in,n 

f) 

s ^9y  ^^22 8y'   * 3y  ^^23 3z^   ^ 3^  ^^32 37^   "^ 3T  ^^33 3^^ 

(I)   +   (II)   +   (III)   +   (IV) 

,T-,   ^ V  3_ , 9Wi   _ 
^^'       s 3y  ^^22 3y^   ~ 

. /-1/2 
 2  ^V22Vl/2.n-l/2  ,Ji J,     . 

(h 1^-1/2 
^"2 ^22V-l/2,n-l/2   ,„1 ,.1 ,, ,     ^ 

•^- m,n-l/2 
(C-31) 

m\   - V 9     / 3W, 
,, ,)i-l/2 

 -i     '   3^23Vl,n-l/2      II 
(h,h3S(Ay_.AyJ>-V2^, ^a ^-^>-l 
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./ )  _ rf32Vl,n-V2   (/ _^ )}=zf(CD)     (CD) 

(C-32) 

where 

,        A2^ = (AZ.4 (Az,. Az__)}^:^/2 

Az^={Az_.i(Az,.Az__)}^:J/2 

. .)l-l/2 
(III)  = 1 9- (a      ^)  = L^ /V22V,n^l/2    ^ !i 
^-'^'■'      s 8z  ^^32 9y'       .^ ^ „^     ,£-1/2 \^ ^     ,£-1/2  ^Vl,n+1- Vl,n+1^ (h,lv,SAz„)  (Ay + Ay. ) ' ' ' 

(h.a..)^-^/2 

(h,lv,SAz   )       '        (Ay + Ay   )       ' 1^      c m,n •'-      •'+ ra,n+l 

(^y.^ ^y.):„.l,n-l/2 

where 

Az^   = {Az   + 3- (Az   + Az     )}t~y^ c -    <J        +        —   in,n 

, /-1/2 
(IV)  =^ (a      ^)  = —^ /V^rm.n      ^ <l 
^^^^      9z  ^^33 az'       .,   .   _  .      .£-1/2      \^     ,£-1/2      ^Vn+l- Vn^ 

^^V^\^m,n-l/2    ^'^^in,n-l/2 
(h a     )^-^/2 

-      -^ ^? ?'/?"'''   (Wi ^- / ^  T )}   = zf ,/ „^,- zf./ ^ + zf,/ „  ,   (CD) /.     >£-l/2 iii,n      m,n-l 4 in,n+l 5 m,n 6 m,n-l 

" "''''"^/^ (C-34) 

where 

1  ,,        ,     >il-l/2 
Az^ = 2   (^^^^ ^^-)m,n-l/2 

g) 

{T^IM . T2(U2.|I^^- 2v^.^^)   .  (Va)(-2v^e^3.f k^3)  . 13(1^22- 2v^e22^ 

+   (T^+ c)   (§^33- 2v^e33)   + T5(UV - 2v^e-^2"' f ^12 ^   "^  ^'^6'' ^^ 

(-2-t^23*f^23»l:i-?/2=^^l ^^-35) 
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X.    9U        ^    aU        ^ £-1/2       ,J .1-1 ,1 
^^6 3? " ^^4 3l = ^^6m,n-l/2   ^ Vl,n" Vl,n " Vl,n-1 

m+l,n-l      in-l,n       m-l,n       in-l,n-l      m-l,n-l 

+ VE/"^/?,„   (U^     + U^"^  - U^  ^  ,- if-'l T)/2  = zh,   (CD),   (BD) (C-36) 4jn,n-l/2      m,n      m,n        m,n-l      m,n-l 1 ' 

Collecting all the terms   (C-25)   -  (C-36): r 

za^ (W      - w ~  )  + zb,   + zc^liv        ,- zc-W      + zc_w        . 
1    m,n     m,n 1 1 m,n+l        2 m,n        3 m,n-l 

+ zd,   - zd^/     ^,+ zd^v/    - zd,/       T+ ze^- zf^   - zf„- zf^ 
1 2 m,n+l 3 ni,n 4 m,n-l 11 2 3; 

zf,/       ,+ zf./       - zf./ + zg^   - zh^   = 0 
4- m,n+l        5 m,n 6 m,n-l      ''I 1 

or 

(zc„- zd,  - zf,)lir ^  T   +   (za^   - zc„ + zd„ + zf.) IT ^ 
3        4 6    m,n-l 12 3 5      m,n 

+  (zc,   - zd^  - zf J /      ,   = za,  /"-'• - zb,   - zd,   + zf    + zf^  + zf, 
12 4      m,n+l 1    m,n 1112; 

- zg^  - ze^  - zh^ 

Finally,  the coefficients in equation  (IV-20)  are: 

c,   = zc„ - zd,  - zf. - 
13 4 6 

c    = za    - zc    + zd    + zf . !* 
2 1^35 

c    = zc^ - zd^ - zf (C-37) 

Pw = - ze 

Sw = za,  Vr~    - zb,   - zd,   + zf,   + zf^  + zf^  - zg,   + zh, 
1    m,n 1 1 1 2 3 1 1 

134 



B.    Turbulence-Model Equations 

f stahde for k or e 

uaF   ^ m_ 
h 8x      Ax 

(F^     - F^"^)   = Fa^   (F^     - F^'^)   (BD) ■ (C-381 
m,n     m,n 1      m,n      ni,n 

where 

U*  =   (l/     +  l/   ''")/Ax m,n      m,n 

1     r .H- Ax  = -x (Ax  + Ax    }„ ^ 2        -        — ni,n 

_9F_ ^ jn^ 
h29y        Ay 

(F^^,     - F^   ,      )   =  Fb,   (F^^,  „- Fi 1  r,'   (CD) (C-39) m+l,n      ni-l,n 1      m+l,n      m-l,n 

where 

,1-1/2 
Ay  =   (Ay^^ AyJ^^^ 

^   c) 

* 
|1 = ^{(<1,   +1)  / - 2<|.     F^     +   (<^   -1)   F^       ,}   = Fc^ ,v- (C-^0) 
9z      Az z m,n+l        z    m,n        z m,n-l 1 W 0 z      a! 

w 

where 
£-1/2 

(J.     = - 1 and Az„ = 2{Az   )„ /     If Re„ > 2   (BD) ^z w - m,n c 

2,-1/2 I        I 
4=0 and Az    =   (Az^+ Az   )     ^     if    Re      <  2   (CD) ^z w +        - ni,n I     c' 
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1-1/2 
<^^ = 1 and Az^ = 2(Az,)^^/     if Re^ < - 2   (FD) 

Re    = ReAzW 
c 

W =   {/     + /     ^, )/2 m,n      m,n+l 

.      Ji-\/2 
Az  =   (Az  + Az + - m,n 

? ^ay (^v  ^22 9y)   "^ 87 (^v  ^23 8^' ^ 97 (Cva32 97^   ^ 97 <^v^33 37'^ 

=   (I)   +   (II)   +   (III)   +   (IV) 

C = v^/a,   for k 
V t    k 

C = v^/a     for e 
V t    e 

<I)   = siy^^v  ^22 9?) £-1/2 

£-1/2 
2 r     2 v^22V+l/2.n 

£-1/2 ^ £-1/2 

. vJl-1/2 
'F^'       - F*     )   -  ^   2V22V-l/2.n   ^       _ ^ )}   = Fd F^ - Fd / 
^ m+l,n      m,n^       ,^     )A-l/2 ^  m,n        m-l,n'^       ^°riii+l,n    ^°2 m,n 

- m,n 

+ Fd„F^   ,        (CD) 
3 m-l,n 

(C-41) 

(II)   =7 1^(^23 If) 
h^a^^C    £-1/2 

{h^h^S(Ay_+Ay^)}jjj^^' -      + m+l,n 

-  (P^^lr^)"'  r"   (F^  1     .1- f^  1       n)>   = Fd,   (CD),   (CD) Az +Az_^ m-l,n     m-l,n+l      in-l,n-l K 

A 

h^a„_C    £-1/2 

m+l,n-l 

(C-42) 

(III) =ik(V32lf) 
 1 ^2^32^v ^-1/2 
/v, V, c^rA.  . A,   u^-1/2 ^^Ay  +Ay   )m,n+l {h,h<,S(Az + Az   )} -      + i <i        -        +    m,n 
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/ m+l,n+l"    ni-l,n+l'       ^Ay_+Ay^'m,n-1   ^ m+l,n-l"    m-l,n-l'^ 

= Fd^  (CD),   (CD) (C-43) 

{h, lx,S(Az +Az^)}  +      m,n+l/2       ' ' 1 /i        -      +    m,n ' 

h„a  „C    £-1/2 
-  (    A^      ) (F; ^- r ^  , )}   = Fd.   (CD) (C-44) 

^^-      m,n-l/2      °^'^      '"'^-^ ^ 

G - e   = Sk 

le  k 2e  k 

C • ■     C k £ 
i)  For k,  G - e  = G - -^ k'^=   (G)~,    -  (-^)      k~, ^= Fe,- Fe^k^ ^ (C-45) ' V. m.n      V. m,n        1        d m.n 

t ' t    m,n    ' ' 
■t 

2 
ii)  For e,  C,    f: G - C-, - f- =   (C,    |r G)^    -  (C^    f:)^    e^    = Fe,- Fe^ e* *     le  k 2e    k le  k      m,n        2e  k m,n m,n        1        2    m,n 

(C-46) 

Collecting all terms (C-38) - (C-46) 

Fa, (F^     - F^"-"-)   + Fb,(F^^,     - F^   ,     )   + Fc,   - Fd,   F^^, 1    m,n      m,n 1    m+l,n      m-l,n 1 1    m+l,n 

+ Fd^/       - Fd^/   ,     - Fd,- Fd.- Fd,- Fe,   + Fe^/     = 0 2 m,n 3 m-l,n        4-561 2 ni,n 

or, .     ■ . 

-(FbT+ Fd^)  F^ T  „+   (FaT+ Fd5+ Fe^)   F^    +   (Fb.- Fd, )   F*^,  „ 1        3      m-l,n 1        <i        2      ni,n 1        1      m+l,n 

= - Fc  + Fd,   + Fd^ + Fd,  + Fe    ' 
14 5 6 1 
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Finally, the coefficients in equations IV-21 and (IV-22) are: 

(d,e)^ = - Fb^ - Fd^ - 

(d,e)2 = Fa^+ Fd^ + Fe^ . ■. •   ' (C-47) 

(d,e)^ = Fb^- Fd^   ^ 

SF = - Fc, + Fd, + Fd, + Fd, + Fe, 

C.  Pressure-Correetion and Pressure Equations  The dlscretlzed form of 

the momentum equations {IV-l8)-(IV-20) can be put in the form 

l/  =0^  + — Pu^ (C-48) m,n   m,n  a^  m,n 

/   = V^   + :i- Pv^ (C-49) 
m,n   m,n  b^  m,n 

/  = W^  + ~ Pw^ _ (C-50) m,n   m,n  c„  m,n 

where the pseudovelocltles are defined as 

U*"       = - — (aV  T     -^ a-^U^^i       - Su^     ) (C-51) m,n a        1 m-l,n      3 m+l,n m,n        - 

V^       = -^ (b,/  ,     + b^/^,     - s/     )  . .    (C-52) m,n b^      1 m-l,n      3 in+l,n        m,n 

W^       =-— (c,/       1+ cV     ^n- Sw^     ) (C-53) m,n Cp      1 m,n-l      3 m,n+l        m,n ^ 

and the pressure-gradient term can be expeinded to yield 

I^ P^m,n = ^7  (Pm^n- Pm,n^  ^ ^8  ^Plll,n^ Pm^l,n- Pm-l,n- pLl,n^ 

' ^9  <n.l^ Pl,n.r Pm!n-1 " Pl,n-l)   (™'   ^^^^^   ^'^D' (C-54) 

b^ P^m,n = ^7^Pm,n * Pm-l,n- Pm,n- Pm-l,n'   ^ ^8(Pm,n- Pm-l,n^ 

' \  (Pl,n.l^ Pm-l,n.l- Pl,n-1- Pm-l,n-l'   ^^''^'   ^^^'^   ^^^^ ^^-55) 
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1     „ £ ,  i+1 £+1 i-1 i-l     , , i £ 
^ %,n = °7<Pm,n * Pm,n-1- Pin,n " Pm,n-l'  ^ °8 (Pm+l,n^ Pin+l,n-l 

-Pm-l,n-pLl,n-lJ  "°9^Pl,n-Pl,n-l^   ^^^^   ('^^^   (^D) (C-56) 

in which the [B.^,  b^, cj^, i = 7,8,9) coefficients are defined by 

•  2, 
a    fl    fi                         ^^^^ ^                 Y                 g 

7 ^8 ^9 ~2 ' "2 ' ~~2  
^"V2    ^^1^2      S^V2 

^7 ^8 ^9 =       -2^ ' ^2"'    > -IT  (C-57) 
SAXyb^     SAy^b^       S^AZyb^ ' 

e    c^ c -^^        « sin v 
°7 °8 °9 2 '2 ' 2 

S Ax„c^    S Ay„Co S Az GT z 2          •'z 2 z 2 

and evaluated at the grid node   (£,m,n)   . 

Substituting    (C-/i8)-(C-50)    and    (IV-27)    into    (IV-26)    results    in   the 

desired equation for pressure: 

 T— t('^2^3S)ra,n^Um,n-   <^7'm,n  ^Pm^ pl,n^   "   (^84,n(pi+l,n"' Pm+l,n 
(Ax   ) - m,n 

£ +1 £ £ £ +1 I £ +1 £ 
■ Pm-l,n" Pm-l,n^  "   ^^9^m,n  ^Pin,n+l'' Pm,n+l" Pm,n-l" Pin,n-1^^ 

2 3    ni,n      m,n        7 m,n      m,n    •^in,n 8 m,n   •^m+l,n    *^m+l,n 

- Pm-l,n- Pm-l,n^  "  ^^9'm,n  ^Pin,n+1^ Pm,n+1- Pm,n-r Pin,n-1^^ ' 

1 £ ~JZ. £ £ £ £ 
""7      £-1/2       ^^^1^3^^m+l/2,n^ Vl,n~  ^^8'm+l/2,n^Pm+l,n"Pm,n^  "  ^^7V+l/2,n 

^^-Vl/2,n 
,   £+1 £+l_    £-1       £-1     ,   _   ,      ,£ ,   £ £ £ £ ., 
^Pm+l,n   Pm,n    Pm,n~ Pm+l,n'       ^  9 m+l/2,n^Pm,n+l    Pm+l,n+l" Pm,n-l' Pm+l,n-l'^ 

-    (h,h„S)^    ,,„   ^{V^       -    (b^)^    I/O   „(pi   r,-   P1    1    r,)     -    ^N^l    1/5   « 1 3    m-l/2,n    ni,n        o in-l/2,n    m,n      in-l,n 7 ni-i/2,n 

,  £+1       £+1 £-1       £-1     ,        ,,    ,£ ,  £ £ £ £ ,, , 
^Pni,n^ Pm-l,n- Pm,n- Pm-l,n^  "  ^^9^m-l/2,n^Pm,n+l^ Pm-l,n+r Pin,n-r Pm-l,n-l^^ ' 

*~     ,£-1/2       '^^lV^m,n+l^^,n+l-  ^°94,n+l/2^pl,n+l- Pm,n)  "  ^°84,n+l/2 
^'^^-)iii,n^l/2 
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^Pm+l,n+l Pm+l,n" Pm-l,n+l Pm-l,nV " ^°7^in,n+l/2 ^Pm,n Pm,n+l" Pni,n" Pm,n+1 ^^ 

- PLl,n- Pm-l,n-l) " (°7^1,n-l/2(<n^ PI^LI" Pl:n- Pl:i-l )> ^ = ^    ^^-58) 

Through the use of the following definitions 

"■ - o^lt.n- ='^2°J,;n* =yit*l,n- =y2'i,n* '=='X,nn- =^2*1,1, 

a^ - (a„) ,  a„^ = (aj,   , a„ = a_) 2x    7 m,n'  2y    8 m,n'  2z    9 m,n 

^3x ^ ^^7^m+l/2,n' ^3y ^ ^^8 W2,n' ^3z ^ ^^9^in-H/2,n 

\x ^ ^^7^in-l/2,n' %y ^ ^^8^m-l/2,n' ^4z ^ ^^9^-1/2,n 

^5x " ^°7^m,n+l/2' ^5y " ^°8^m,n+l/2' ^5z " ^''9^in,n+l/2 

£ £ £ 

% ^ ^°7^m,n-l/2' % " ^''8V,n-l/2' ^6z " '''9 m,n-l/2 

the pressure equation csm be put in the form 

^iPl'n '  Vl,n^ ^3Pl"n ^ f4Pm.l,n" ^5Pl-l,n^ Vl,n.l^ Vl,n-1 = ^  (^-59) 

where 
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f^ = - a_ ex - a„ cy + a. cy„+ a. cz„- a^ cz. 
1 Ix 1   3x 1  4x 2  6x 2  5x 1 

f„ = a ox + a ex + a cy + a cy-+ a cz + a, cz^ 
2 Ix 1  2x 2  3y 1  4-y 2  5z 1  6z 2 

f = - a ex + a cy - a cy + a cz - a, cz 
3 2x 2  3x "^1  4x "^2  5x 1  6x 2 

f . = - a^ ex + a„ cx_- a_ cy.- a^ cz + a. cz_ 
4 ly 1  2y 2  3y 1  5y 1  6y 2 

f^. = a, cx^- a^ cx„- a, cy„+ a- cz^- a. cz_ 
5 ly 1  2y 2  4y •'2  5y 1  6y 2 

f. = -a^ CXT+ a„ cx„- a„ cy + a, cy„- a^ cz^ 
6 Iz 1  2z 2  3z 1  4z 2  5z 1 

(C-60) 

fr, = a, ex,- a„ cx^+ a„ cy.,- a, cy„- a^ cz„ 
7   Iz 1  2z 2  3z "^ 1  4-z "^ 2  6z 2 

and 

Sp = - m + (a-,^yCx^+ a^^ey-^ 

- (^lz°^l* ^6x°^2 

+ {a« cy,+ a^ cz, 3z •'I  5y 1 

^^4z"y2^ ^5y°^l 

^^2y°^2" ^3x°yi 

+ a„ cx„+ a. cz„ 
2z 2  6x 2 

l+l £+1 
p ,,  + (a, cx,+ a^ cz,) p  ., 
^m+l,n   Iz 1  5x 1 -^mjn+l 

i+1 , , £+1 
Pm,n-1- (^ly^^l* \x''^2^  Pm-l,n 

Pl+l,n+l - ^^3z'^yi" ^6y^^2^ pl-l,n-l 

pLl,n.l^ (^4z°y2^ ^6y°^2) pLl,n-l 

l-l , ,  £-1 
p ^,  - (a„ cx„+ a^ cz,) p  ^^ ^m+l,n   2z 2  5x 1 -^nijn+l 

p    + (a„ cx^+ a. cy^) p , ■^in,n-l   2y 2  4x "'2 -^m-l,]! 

(C-61) 
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