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A two compartment storage model with
an underlying seni-Markov process

by

Eric S. Tollar

ABSTRACT

A storage model with an underlying semi-Markov process is proposed to
model the behavior of a two compartment storage system with one way flow.
It is shown that based on first moment assumptions, the divergence or con-
vergence of each compartment is determined. For the eight separate cases
in which at least one compartmenf does not converge, the bivariate asymptotic

behavior of the compartments, when appropriately normalized, is determined

under second moment conditions.
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1. INTRODUCTINN

In this paper, a two compartment storage model based on an underlying
semi-Markov process is examined. This model is an extension of the popular
single compartment model considered initially by Senturia and Puri (1973),
with subsequent research by Senturia and Puri (1974), Puri and Septuria
(1975}, Puri (1978), Balagopal (1979}, Puri and Woolford (1981), and Puri
and Tollar (1585), among others. The extension to a model with an arbi-
trary amount of compartments based on an underlying Markov chain has been
considered in Tollar (1985a, 1985b). For the sake of simplicity, we have
reduced the number of compartments to two in this paper. This retains
the flavor of the multiple compartment model's variety and difficulties,
vhile removing much of the intractability of certain expressions (for
some understanding of both of these features, sce Tollar (1985a, 1985b)).
Of course, all of the difficulties which typically arise from considering
continuous time instead of discrete time are still present.

A1l of the random variables are considered to be defined on a given

underlying probability (2, A, P). Let J be some denumerable set, and
{(Xn, T), n=0, 1, 2, ...} a Markov renewal process with semi-Markov

matrix A(t) = (Aij(t)), (see Cinlar (1969), where for all i, jel, t20,

POX =3, T -T ) StiTg, X5, Ty, X, «ooT

1 0’ ‘1’ v n-1’ xn_lfl) =\A}J(t) (1.1

Ve assume {Xn, n=0, 1, 2, ...} is a positive recurrent, aperiodic, irre-
ducible Markov chain with transition matrix g==(pij) =(Aij(°)). and

stationary measure m= tni). The moments of the sojourn times in a state

i eJ are then given by

S LA R e S Ay e T P R L 050 R



i)j't ZAj(dt),k=1, 7 J i
jeJ _ .

),

vhere for simplicity, we write m, =m

With each i e¢J, we associate a triplet sequence
triplets, independent of {(Xn, Tn), n=0, 1, ...} and of

all i e¢J that F.IUl(i)I <o, Elvl(i)l <w, Elwl(i)l <o,

. . w 7 _
P(Un(1) 20, Vn(l) 20, Nn(l) 20)=0 ¥ n
and

P(U_ (i) <0) =P(V_(i) <0) =P(W_(i) <0) =0.

We then define random variables Z and Z by
1,n 2,n

Z =max(0, Z

I,n * Un(xn))

1,n-1

yA =max(0, Z

2,n 2,n-1

From (1.4) it follows that

Zl,n=max(z +Sn, max (Sn -SJ.))

1,0 1<j<n

z =nax(2 +2

2,n 1,0t % ,0*Ry 2

+ max (S, +R_-R,),
1,0 1<k<n k n ¥k
max (S

‘S.‘*R 'R)]‘Z »
1<j<k<n ik 1,n

k

TP Pp W WV T W B Ba B BT, 0SB,

emin(V, (X)), Z; | g+ U (X)) =W (X)),

{(Un(i), Vn(i), Wn(i)), n=0, 1, ...} where the triplets are i.i.d. random

{ (), vV, (3), W (5), n=1, ...} for j=i. In addition, we assume for

(1.2)

(1.3)

(1.4)

(1.5)

ol
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[l e B ]

» S = - ) =
where n [ui(xi) Vi(Xi)] and Rn

1 i

1o~

[Ui(xi) -wi(xi)]. For details

i 1
of the derivation of (1.5), see Tollar (1985a).
Finally; to introduce continuous time, we define these quantities for

an arbitrary time t by

where

M(t) =sup{n:Tnst}. (1.7

Close examination cf (1.4) yields that (Zl(t), Zz(t)) represent the
amount of material stored in the first and second compartments of a two
compartment storage system with one-way flow. The sequence
{Un(Xn), n=1, 2, ...} represents the flow of material into the first
compartment. The sequence {Vn(xn), n=1, 2, ...} represents the amount
of transfer demanded between the first and second compartment. Finally,
{wn(xn), n=1, 2, ...} represents the amount of output demanded from the

system, via the second compartment. As such at time Tn, if Un(xn)>-0,

Un(xn) is added to compartment one. If Vn(xn) >0, then either Vn(Xn) is

transferred from the first compartment to the second, or all the material
present in compartment one, whichever is smaller. Finally, if Wn(xn) >0,
then we have an output of material via compartment two of either wn(xn)

or all the raterial in compartment two, whichever is smaller, It should

be noted that the assumptions (1.2) and (1.3) are not mathematically
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necessary, but based on the physical model outlined above. These assump-
tions are made so that sinultaneous transfers and negative input/transfer/
outputs are not allowed. The subsequent results in this paper are identi-
cal with or without these assumptions.

Finally, we let

B= m.M., (1.8)
igJ 11
and

E U= igjvrirs(ul(i)), (1.9)

with equivalent definitions for EﬂV and E“W. In 1985, Tollar established
that in the discrete time case the moments EWU, E"V and E"W determine the
convergence properties of the amount contained in the compartments as time
increases to infinity. The convergent compartments will be called sub-

critical, while the divergent ones will be called critical or supercritical,

depending upon the rate of divergence. It was also shown that when the
critical or supercritical compartments are appropriately normalized they
converge in distribution, independent of the subcritical compartments.
In this paper it will be shown that all of the results in Tollar
(1985a,b) still hold true in the continuous time case, as long as at
least one compartment requires some normalization. Section 2 is devoted
to the four cascs in which neither compartrent is subcritical, while
section 3 is devoted to the four cases where exactly one compartment is
critical. The remaininé case, where both compartments are subcritical,

is left to a subsecquent paper.

W Wy oy g o T 7 At e e P RN
I O S AN N N A .

v, gy

R L ST
Q{:.o o, .!‘._f:\v_f\@_., 'f\'\- »-‘L I >

L3S




T WY MY G T T M LI W Rt W i w1 WAt w e _‘1

2,  NEITHER COMPARTMENT SUBCRITICAL .

As established in Tollar (1965a,b), the values Zl(t) and Z2(t)
diverge as t approaches infinity if EﬂUaEWVaEﬂw, for E"U, Eﬂv, and E"w
defined as in (1.9). Depending upon whether or not the equality is strict,
there are four distinct cases for the behavior of the process. It is
shown that the limit behavior of all the cases can be represented as func-
tionals of Brownian motion when the contents are appropriately normalized.

For the proof in this and the subsequent section, the following defi-
nitions are needed. For i, eJ, an arbitrary element, let us define

0
tl, t2, tn recursively by to Z0, and

t =min{i>t . :X,=i.}. (2.1)

Let M, (t)=sup{n:T_ <t}. (2.2)
*o t1'1

Further, let us define Yf:‘i by

. )B-l(E"U—E"V), (2.3)
+1 i i-1

t,
. ¢ ;
Y o= tz [ui(xi)-vi(xi)l-('rt.-'r
i-1

u j=

and define Yx(:: and Y‘(,:)‘ analagously. The properties of Y‘(J'B can be found !

in Balagopal (1978), but essentially they are that {Y‘(;_“)’:n= 2, 3, ...} 1s
(i) _

and i.i.d. sequence with E Y oF

0. Let us alsc define {’\(;3 by

AR SR ELRCHIE (2.4)
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As in most proofs for normalized processes defined on Markov renewal
processes, we will show that the process at hand behaves asymptotically
like a functional of i.i.d. random variables by focusing on the return
times to the state iO. The limit results will then follow from the be-
havior of the i.i.d. random variables.

In all four cases, since Zl(t) and Zz(t) will be appropriately nor-
malized, the initial values Zl,c and 22,0 are immaterial, and will be set

to zero. Then (1.5) reduces to the simpler form of

(z,(t), Z,(t))={ max (S -S.),
1 2 pejei(ry ) 3

(2.5)

max (5, -S.+PR -R,)- max (S,,.\-S.)].
osjkan(e) K 3 WO K oiiquey W) 73T

THEOREM 2.1. If EﬂU >E"V>EWW, B <=,

2 1),2 .
01=E[(Y£-3/) |X0=10J <o, °§=E[(Y\(/131)2]x0=i0) <o, then as t+=,

- -1.-%
P(Zl(t) - tB8 1(EWU--E;' V) < x(tm, 026 1) 2,
T 10 1

- -1.-%
Zz(t) -t8 1(E V-E_W) sy(tm, 026 1) H+P(Xsx, YSY)
T m 10 2

where (X,Y)VN(Q,Z), with

L= (; D» and o= ("1"2)—15“5}3"&3“(0 =ig)-

-
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: PROOF. From (2.5), it can be shown that

Z,(t) =S - max (-S.)
! MO ogjaice)
;"': and

Z,(t) =R, -8 + max (-S.+S, -R ) - max (-S.).

A OO osjskaM(r) I K " osjM(t) I

O N

R o

bl Since E U>E V>E W, it follows from Tollar (1985a) that lim Om:flx (-S.) =2,
) <jsn

L
|'l'|

where P(Z <») =1, and that

"._‘;'_*:.';,5 v

Py
AL,

P(rlxig max (-S.+S
- Jsi<ksn

k-Rk) <w) =1,

y ".’.
R

l.,‘5

"ol
2 5?‘-

Since both are monotone functions in n, we see that

F)

lim max (-5.) <= a.s., lim max (-S.+Sk—R ) <o a.s..
two 0<jM(t) I tao 0<j<keM(t) n

e
‘, Pt
XL

Say
Lol

As such,

: -1
e lim t "’[zl(t) -S 1=0 a.s.,

t+

M(t)

- ii;'ﬁ t 0z, (t) - (Rugey = Smee))1=0 a-s.
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It is well-known (see Puri and Woolford (1981)) that for sums on

-1 2.%

semi-Markov processes, lim P(S o) ‘)

{0

+- -1 7
-t (R U-E V) sx(tm, 8

M(t) 0

converges to the standard normal cumailative distribution function. A

simple extension to bivariate processes yields thc theorem. [I

- % o 2.. » (1) 2 - q o0
THEOREM 2.2. If E U>E V=EWN, B<=, o] =EL(Y )7IX =i )<=, and

Y2, - ,
E[(Yv_w) IXO—10]< , then as t+=

- - 1,
P(Z, (1) - t8 l(EﬂU -EV) sx(tr, 8 10‘})/2,
0
-1 2.7
Z,(t) Sy(tniOB 02)/‘)
+P(pZ, (1) + 1-32 2,(1) £x, sup (Z,(t)) =y),
0<tsl

where Zl(-), Zz(-) are independent standard Brownian motion processes,

2 _on ()82, L. _ 1 (D) e
°2'E[(‘v-w) IXO-lo), and p= (uloz) E[Yu_VYv_le0-1o].

-4

PROCF. As in theorerm 2.1, it is clear that lim t ‘lZl(t) 'Sb'(t)l =0.
t-»o

From (2.5), it is clear that

max (( -8 Y- (R, -S5.)) - max (-S.)
0<k<M(t) Buee B Bk ocjeM(t) 9

<z,(t)s max ((R -S ) - (R -S.)).
2 ockaM(ry  M(t) MY E T




_Y
Since t ¢

nax

(~-S.) + 0, we have that
osjM(t)

lim t-%[zz(t) - max

LR, .y -S }- (R, -S,)1=0. (2.6)
to o<ker(r)  H(H) MY koTk
From (2.2) and (2.3), we have that
S,.0or -8 Y(E_U-E V)
M{t) T T
Mi (1)
I : M(t) )
=Y.§-3,* g Yl(:‘),+ § (U () -V, (X)) - (£~ T, )8 I(EWU-E"V).
i=2 ty (t)+l Mi (t)
iO

0

By appealing to renewal theory, as in Puri and Woolford (1981), it
is easily seen that

M(t)
lim P( § [Ui(Xi)-Vi(Xi)]:§x)—>F(x), for some cumulative
t-bo t +1

distribution function F. As such,

¢ -1 Mﬁt)
3 D RACR AR
xj Mi {(t)
0
.
.\':
\'
N'
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By a simple renewal result (see Karlin and Taylor (1€75)), it also

follows that

IO ) d 0
t - w—
‘Mi (t)
0
As such,
Mio(t) .
-, 1
Hrz () - 1 Yiiil — 0
i=2

Also,

| max [¢( -S )-(R, -S
okai(t) Rty ~Smeey? - Ry

-

- max [(Rt -st ) -(Rk-sk)]l
OskstM_ (t) Mi (t) Mi (t)
10 0 0

A

M(t)
. § G RN
M ()

and a similar technique yields that

1
-%

M{t) P
t IV, (x,) =W, (X;)] — 0.

tMi 0!
0

Let

U.= max [(R, -S,)-(R,-S))I.
j jISCSt tj tj J AR /

. ~ \ """ \\ .' '
O \‘..'l‘.' RN ‘o X I ""» " » ‘a. e, ¢ 2, ‘QM ¢‘m
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It follows that

Mio(t)

max R A
1sjM, (1) j+l B
0
< max [(R -S - S,)1]
OSkStM t) ™M (t) M. (t) (Rk k
i, 0 o
Mio(t)

sIY‘(,J:&I+ max Z Y\Efl]i' max (U.).

lsjsrslio(t) j+1 lsjsMio(t)

From Karlin and Taylor (1975), there is a net {st:tzo} where

et‘+0, and for all t>0, letting

S :
tl(t) - ‘_"iOB - St)t.]’

2(t) = [, 87 1¢1,
1o

NOE [(nios‘l +etl,

we have that

P(ll(t) sMio(t) slz(t)) >1 - €,

(2.7) -

(2.8)

(2.9)
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Therefore,
£,(t)
y 2 5
P( max (U,)>et?)s J P(Ui>et2)+et
1sj<M, (t) J i=1

0

=2, (t)P %
= z(t) (U1>€L )*Et.

. $(1),2 s o 1im n _
Since E[(Yv-w) IX0-10) <w, rl‘m n P(Ul 2en) =0,

which implies

L
lim P( max (U.,) >et?)=0.
tro  1<iM, (1)
i,

- P
Clearly t %IY‘(,H'I-—-b 0. Therfore, it follows from (2.6) and (2.7) that

My (0
.y P
¥z, (- max (] vE@h1—o. (2.10)
1sjsM, (t) i=j+l v
0

Clearly,

Mio(t) MiO(t) —
) Y(f‘),, max ) Y(i)
is2 Y 1jsM, (£){ j+1 vew
0

Mio(t) j i)

d (i) max [ R H

[ .2 Yo-v’ 1sjsM, (t) 'i=2 v-v B
0

i=2

L L

0

B TN e, ; DN et DTN AN T e 0 e RS R R
DR D R AR LN b T MO MR 3O o TR T G A A TR Sh B D




T T T ]
- 13 -
From Kolmogorov's inequality and (2.9) we have that
Mio(t) 2(t)
. t) . .
POl ) v ) v 15 et
2,(t)
£(t) . y 2 .
<P( max | Y(l) | > et'i) +P( max | Y(f)l > etli) te,
£ (D)sjs(e) £ (5)e1 Y 2(t)sj<e, (1) £(t)+1 "7V

< (208 - £, ()03 (e7) 7T (2, (0) - ()R (P re

= [ﬂz(t) -Zl(t)]o“;(ezt)'l ‘e,
o' From (2.8) we see that
..j Mi (t) 2
[ 0 . t . 1
b 112 P(l g Y‘(:‘),- g Y§f3,|>et‘)=o. (2.11)
At
)

Similarly,
b
» & J - . . 1
S P(l max (ZY&&) - max (%Y‘(lf))l > et/"’)
g 155, (t) 2 1<j<l(e) 2 V0

\ 0

i
h (2.12)
i 2,2 -1 i 2,251,
i < (2(t) - £, (1))os(e7t) "+ (£,(t) - £(1))o,(e7t) " +ey
Y
s
u From (2.6), (2.10), (2.11) and (2.12) it follows that
%
f~‘.-
N
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- 1 - 1
lin P(z) (1) - 187 (B U-E V) sx(tr, 8710%)%, Z,(0) <y(er; 87'05))
te Yo 0
(2.13)
£(t) . _ _ y
= lim P( { Yl(jf‘)’sx(tni B lof)lé max ( i (1)) <y(t17i 8 1<J§)/2).
too 2 0 lej<b(t) i=2 0
[ns] i [nt] ()
Since (n~ Z Y n*y Y,_,) converges uniformly to bivariate Brownian
5

motion, and the maximum is a continuous functional on C[0,1], it follows
from results of Donsker (1951) and Rillingsley (1968). that

2(t) .. L
1im P({ Y‘gf%sx(tni B_lui)2 max (% (1)) y(tw B 1 ).)

tro 2 0 1<j<l(t) i=2

-P(pZ (1) + V1- o yA (1) £x, Sup (Z (t))=y),
0<t<]
for Zl(') and 22(') independent standard Brownian motion, which from (2.13) ~

completes the proof. [

It should be noted that the above theorem is just the continuous
time analog to the theorems proven in Tollar (1985b) for the discrete
time case. The techniques used to reduce from continuous time to a fixed
number of i.i.d. random couplets are similar to those used in the above
and analogous to those in Tollar (1985b). As such, the following proofs

will be less detailed in this reduction.
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s ‘ = © ~(1) 2 =i o
THEOREM 2.3. If E U=E V>EN, B<w=, EL(Y  )"IX;=i,) <=, and

2 .
02=E[(Yf‘2)2|x0=10) <w, then as t+>o

P(zZ,(1) sx(tnios")", Z,(t) - tB-l(E”U - E_W) sy(tﬂioB-l)%)

+ P(a, sup (Z,(t)) <x, 0,(pZ, (1) + /1-p> 2,(1)) - 0. sup (Z,(t)) €¥),
o loceeg ! 27 2 locter !

where Zl(°), Zz(-) are independent standard Brownian motion processes,

o =L ({2 1x =103, and 0= (0,0 TEY YD x oy ).

PROOF. From (3.5), we can show that

Z,(t) = + max (-S5.+S, -R ) - max (S -S.)).
2 () ocjsksM(r) J K * 0.<.§SM(t) M(t) 7

21
Again, from Tollar (1985b), we have that t % max (-5, ~*Sk - Rk) +0.
0<j<kaM(t) I

By arguments similar to those of theorem 2.2, it can be shown that for

£ty =, 8 1]
0

L Lty . P
t ’IZl(t) - max ( { Y(_l_z,)l — 0,
l<j<l(t) i=je1 ¥

and

T ) ) .'(.«~,‘\¢".-N<’ \/ ‘: M:c&‘.l " '.!
305 A AT RN SN NI A B
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B ) ) 2(t) . £(t) .. 14
e t !‘lz,(t) - tw, 8 1(l.’."U-EﬂW) - § Yf:z_*' max  ( { Y\(,i\),)' — 0
'.;: ‘ 0 2 1<j<(t) i=j+l

AX Again, by uniform convergence, we can establish that

1

o 2ty . .

\ lim PU max § Yy cxqen, 87H%

: too  1<jel(t) i=j+l 0

R/

. L(t) .. 2(t) . 13

b § Y\(xizv- max  ( § Yl(:‘)’) <y(tm; 8 1)/’]

4 2 1<j<R(t) i=j+l 0

4

s =P(o, sup (Z,(t) £x, 0,(pZ,(1) + N-p? 2,(1)-0, sup (Z,(t)) <y). U
N 0<t<1 0<ts1

[l

\

%

)

o THEOREM 2.4. If E U=E V=E K, 8<», ELAF1)2X =i <o, and
:‘ —_— = n I ’ u-v 0 0 P —
5

; (1),2

“Y < - s ©

B E[(Yv-w) |xo-10]< , then as t-»w

"

<

: 4 ~1 ’/‘ -1 '/2 b
. P(Z,(t) <x(tr, B8 )7, Z,(t) <y(tn, B ")%)—> P(o, sup (z,(t)) =x,
v : 0 0 0<t<1

l'.

3 — -

n [sup (o,(0Z(t) + h-o Z,(t)) +0,2,(s)) - o) sup (Z,(t))]=y),
3 Ost<s<l : O<t<1

'

Wy

:,§ where Z,(), Z5(¢), Oi, Gg, and p are as in theorem 3.2.
1.‘

.'|'

&
O

[\

-

"
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PROOF. As in theorem 2.3, it can be established that

_ £(t) P
£z ()= max (] vy —o,
1<j<(t) i=j+1

B k . £(t) £2(t)
zk and t 4(Z2(t) -  max « Y Y(l)'* Yy (i)) + max () Y(i))) — 0.
;& 1<j<k<l(t) i=j+1 " f=k+1 ¥ 1<j<l(t) i=j+1

'! .
:§ Again by the i.i.d. nature of {(Y(l), stz)}, we have that
4
1

N

e £(t) 1

| 1im P( max (Z Y(l))<xu’.(t)) 2,
" tre  1<j<l(t) i
.

1Y

»
W k £¢t)

i t

B max  ( 2 51& ) it))- max () Y(l))<y(£(t)))
g 1gi<k<l(t) i=2 i=j+1 1<i<l(t) i=2
J

)
X
)
N =P(c!l sup (Zl(t) <x,

‘ 0<t<1

.l
K

! { sup (o (pZ () + f1-p2 Z, (t))+o l(s))—al sup (Zl(t))lsy)- 0
L 0<tgs<1 0<t<l

%
K}

; It should be pointed out that the Brownian motion function expressions of
.
% theorems 2.2 and 2.2 can be expressed in an integral form instead of the
A form given. However, the expression of theorem 2.4 seems not to have a
i form simpler than given.
I
"
v

?a,

&
4

R

&)
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In the next section, we examine the four cases in which one compart-

ment is subcritical, and the other is either critical or supercritical.

3. ONE COMPARTMENT SUBCRITICAL.

Again, there are four separate cases to be considered. In all four
cases, it will be shown that the suberitical compartment is asymptotically
independent of the suitably normalized critical or supercritical compart-
ment. The marginal behavior of the two compartments then completes the
results.

The independence is established by appealing to theorem 5.2 of Puri
and Tollar (1985), which essentially states that for two processes Z(t)

and Y(t) where

a) for each €¢>0 there is a >0, a T>0, and a process
Z (t) where for t>T, P(lZ.r (t) -2(t)l >€) <ke,

- L P
b) t *(Y(t-1t) -Y(t))— O, (3.1)

¢) Y(t-1) and Z (t) are conditionally independent
given Xy o _ r)+1’ Ta(e-1)+1°

then

1im P(Z2(t) <%, Y(t) Syt,/"*’) = 1lim P(Z2(t) <x)1lim P(Y(t) Syt!‘) (3.2)

£ Vol 1o

Lerma 5.1 of Puri and Tollar (1985) observes that for Z(t) of the form,

‘Me) © M)
2(t) =max(zy+ § U.(X), max ( 2 U(xi))] (3.3)
. i=1 1<3<M(t) i=j+1

DA OSDD ‘
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iy

-“ where E"U <0, then

‘\

. _ M(t)

R z (¢)= max ( ) U (X)) (3.4)

M(t-T)<i<M(t) i=j+1

f

) will have the property of (3.1a).

[}

Ly

" In the following theorems we define for -« <y<w,

g ,

b o(y)=f5_'w (2ﬂ)-"exp(-u2/2)du’

' and

. 101(y) = [26(y) - 11I(y 2 0).

| THEOREM 3.1. 1f E.U<EV, EU>E¥, 8<m, o2=E0(t3)21x =1 ) <o
3 —_—— e = " ™ Fn T2 * ] u-w 0 0 ’

. then for all continuity points x of P(Z:L <x),

. : =1 _ .2 -1

. lim P(Zl(t)SX, ZQ(t)—t(EnU-E"W)B s;[oltni g 1%

3 Tt

R = P(Zl ix)@(y),

)

X where Zl is a random variable such that P( lle <w) =1,

-

3 PROOT. From (1.5), since E"(U—V) <0, it is clear that Zl(t) is of the
‘\r.’

desired form of (3.3). From Puri and Tollar (1985), Zl(t) 4, Zl, and

’Q there exists a Zr(t) of the form (3.4).

¥ From (1.5), we have that

OO
o g

: . . - oo Y .y . . A
cpn AL 0 b 45 Y SOuhd ; S OCAN AR AR IR AN N
The, n’.‘\'gu! N, l'e.ll r n."‘ 9,"(“'5}","",03 ?':‘:'A‘..(‘.-.l AN ) "9"\'3‘.0‘[‘ "-i“’%"ﬁl‘d"lf -“A”v U LR L S R AN U U U L
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by 2. (t)= tmax{2, +Z, ., 2, -+ max (S, _-R),

vt max (S )] - 7 (£).
' 1<i<k<M(t) R"

ﬂj

-'-.

\ ot Since EﬂW-—E"U~<O, Eﬂw-E"V'<O, we have from Tollar (1985a) that as t -+,
't

max[Z max (Sk-Rk), max (-S.—Sk-Rk)]¢Z* <® g.s8..

y/
2
20 1,0 1<ksM(t) 1<i<k<M(t)

Therefore, as t+«

> 1 P

&) 7%
,::"; [z (t) -~ (t)J 0.

Let

N Y(t) =RM(t)—t(E“U—E“W)B-l

5&' As established in Puri and Tollar (1985), for any fixed t,

Y -y ] P
A t [Rn(t) - RM('c-r)‘ 9.

bl As such, it is clear that Y(t) fulfilks (3.1b). It is equally clear from
the strong Markov property that (3.lc) is met by Zr(t) and Y(t-t). As such,

S since

2 -1.%
lim P( t(E U-E W)B <y[o tn, B ~1°) = &(y)
o PRy~ 1%"1

uya (see Puri and Woolford (1981)), (3.1) completes the theorem [J

] 2 - - » .
.’.!:‘\.,h; -f’*":‘\.!'-"’ﬂ% h‘i "0 ﬁt X H“. N

, ~ 09 O, s
ARG ?aft’:t"cfi.‘ufi‘anl%fu,"t-l 'f .
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The procfs of the sul'sequent theorems will be essentially the same as l
the previous theorem. It will be showm that the subcritical corpartrment
is asymptotically equivalent tc a form like (3.3). Therefore a Zfltﬂ will
exist., Y(t-t) will be essentially the supercritical or critical compart- !
ment, therefore (3.1) will be satisfied. The arguments of Puri and Tollar
(1985) give us the marginal behavior of the subcritical compartment, and
arguments entirely analagous to the discrete time arguments of Tollar
(1985b) can be extended as was done in theorem 2.2 to deal with the con-
tinuous time behavior of the critical or supercritical compartment. As
such, in the following theorems, we will only show that the subcritical

cell can be reduced to the form of (3.3), then simply state the desired

Y(t) and its convergence properties.

2

= ® (l) i Y
THECREM 3.2. lf_E"U‘<E"V, EnU-'EnW, B<w, Er(Y ) IX 10)< ’

then for all continuity points x of P(Z1 <x),

. 2 -1
lim P(Zl(t) <x, ZQ(t) fy(oltni ]

) = Bz, €0 181(3),
1+ 0

. 2 _ny(1),2
where 01"E(Yu-w) o~ g

PROOF. Since Zl(t) is clearly of the form (3.3), letting

Y(t) = max (S, -S.+R -R ),
0<d ek eM(t) k m(t) R

.
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5 by arguments identical to the discrete time arguments of Tollar (1985b),
)

:: it can be shown that

b‘

i < . p

o t [Y(t) - max (RI\'(*) ~R},)J — 0,

R o<ksM(t) ¢ ‘

~

i and from Puri and Woolford (1981), it follows that

- 0e]

. " - L

03 Lin B(Z,(t) <yloitr, 8% = lel(y). O

¥ e *0

A,

- (1),

b THEOREM 3.3. If E U=EV, EV<EW, B<w=, E[(Y )'|x i,) <=, then for
. all continuity points y of P(Z? <y),

5

. 2,-1_\%

- lim P(Z (t) <x(m, 0 8 )%, 2.(t) <y) = 1ol (x)P(Z, <y),
- 1 1.1 2 2

v e G

“

o where o) ‘E[(Y(l))Ql =i).

- _— O 0

* PROOF.  Let Y(t)= nax (Sb‘l(t) ~S.). It can be shown by renewal argu-
o 0<j<M(t) J

B~ p

K- L

::; ments as in Puri and Tollar (1985) that t “(Y(t) - Y(t-1))—* 0, and we
b have from Puri and Woolford (1981) that

ht ™

g 2,1 %

b lim P(Z,(t) <x(m; 0B "1)7) = [0} (x).

’ toreo *o

f.

"

)

)

[/

"
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Therefore, to complete the proof via (3.1) we nced to

z (t).
Let Qn =Rn-sn’
and
Z_(t)= max Q. \=Q.).
i M(t-T)<ia(e) M) 73

To shcw that for each € » 0, there is a T>0 and a T> 0 where for

P( IZT(t) -Z2(t)| >g)<e,

we define three sets for specified T and tj

£(t) = {wr Ry gt zl,0+zz’o<o},

B_(t) = {uw: max Q -Q.)= max (Q -Q.)},
' Me-Dga(e) T T 1egeaney WO
C_(t) = {w: max (s,, -S.)= max (s -S.)}.
T 1<5<M(t-r) H(E) 1oy e

Since EWU— E"W <0, it is clear that

1lim P(A(%)) =1

t-+o

.

RIS )

PN
'.»'r oy

s
X

AR RIE O A ST AR U, P o <
g N

- D T N N T R P T I e ) A N .
SCCCERTAC PIrt
ROLITAINY > n"'{:ﬂ

ot

2N Y ~ R
Lu_mwmﬂ

find an appropriate

(3.9)

t>T,

(3.6)

(3.7)

R A
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W
X Also, from lemma 5.1 of Puri and Tollar (1985), it follows for all €>0,
AN
v )
N there is a Tl and a 'I'2 where for all t >Tl, T> T2,
W
[ P(B (t))>1-¢ (2.8)
“ To examine Cr(t)’ we observe from Puri and Woolford (1981), that for
§ >0 such that {¢|(8) <e¢,
N
K lim P( max (SM(t) -sj)z‘S(w]1 B'lait)”) =1-|¢l(6)>1-k€. (3.9)
tao  1<§<SM(t) 0
:* From Puri and Tollar (1985) we observe that for fixed t, as t+«,
. B2 g M) P
e t max (s -8.)<t U (X, )-V.(X.)| — 0, (3.10)
% M(t-T)<jam(r) (B fsm(r-r)er + ¢ 1E
i
3
¥ Therefore,
3 12,4
B P(C(t)) 2P max (SM(t)-S )2 6(m, olt)6> max (SM(t)-Sj)],
. 1<i=M(t) 1y M(t-t)<j<M(t)
K
t
- which, when coupled with (3.9) and (3.10) yields that for fixed T,
3 lim P(C_(t))>1-e¢. (3.11)
tow T
A‘-
i
"Q
5 From (3.7), (3.8) and (3.11), let us select a T and a T such that for
i t>T,
P
Y
¢

) v »
o of) AR A 184
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P(A(t) nBT(t) nCr(t))> 1-3e.

Then, for weA(t)nBT(t)nCT(t), we have from (1.5) and (3.5) that

Z (t)(m) max[Z 2 ot Ruce)s Z 1,0 1522!}4((t)(RM(t)+Sk-Rk),
B R I )
= mz-.uz[O,zl,0 + SM(t) + lr;}a(:;“(t)(QM(t)-Qk),
Lermrancey 0S5 ey G T Ey o Syeys ) B Gugey Sy
=maxlZy o+ Syey * M(t-r?iiﬂvﬁ(t)(qmt)—qk)’
PPN LN S
-max[Zl *Syg)e. max (SM(t) -8.)])= max (QM(t)—Qk)=ZT(t).

1<isM(t-1) M(t-1)<ksM(t)

Therefore, we have that for any €>0,

1lim P(Zz(t) = ZT(t)) >1- 3¢,
-0

which from (3.2) implies the theorem. [J
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. 2_ (1)\2,, _;
T@OREM 3.4. If EU>EV, EV<ENW, B<=, and cl-z((Yu v) 'xo'lo)“”

then for all continuity points y of P(Z2 <vy)

- - 1
1im P(Zl(t) - tB l(E U-E V) <x(tm, B 102)/2,

ki hid i 1
topoo 0

Z,(t) <y) = o(x)P(2, <y).

PROOF. Letting

- -1 '1 ’
Y(t)-SM(t)-tB (B"U—E"_\;),

-1 P
it can be easily established that t /2|Y(t) - Zl(t)l-—* 0, and that

- p
t 2)Y(t-1) ~Y(t)] — 0.

Define Zr(t) as in (3.5).
As in the proof of theorem 3.3, for t>0, t>0, define
At) = dw: 2) o+ 2y o+ Rycey = Syyy <0
B (t)={w: max Q -Q.)= max (Q -Q.)},
T M(t-1)<i<M(t) M(t) 73 1<3<M(t) (e ]
CT(t)={w: max (-Sj)= max (-Sj)}.
1<y<M(t) 1<i<M(t-1)

Since EﬂV <E"w, it follows that

lim P(A(t)) =1,

trw
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Again, from Puri and Tollar (1985) we know for all € >0, there is a Tl

and a T2 where for all t>Tl, T >T2,
P(Bt(t))>l-e.

Since E"U >EﬂV, - Sn+-°° a.s., and thus for any fixed =,

1lim P(c_(t)) =1.
o T

Again choosing a T and a T where for all t> T,
P(A(t)nBT(t)nCT(t))>l-3e,
we have for all we A(t) nBT(t) nCT(t),

Z2(t)(¢u):max[Zl,0+Zz’o+RM(t),_zl,o+ max (RM(t)*'Sk-Bk)’

1<gk<M(t)
max (s, -S.+ -R )]
1sjskem(t) K 3 (e
’maX(zl,0+SM(t)’ lsx;uz;;(t)(smt)-sj))

=max{2, . +2. .+ -S s 2. .+ max (Q ~-Q.),
1,0% 22,0 " Fuee) “Sueey® Pri0t 1 e T

max (-S,.4Q -Q, )] - max(2z
1sjskai(e) 3 M) K :

max (-S.)).
1<jsM(t) 3

»0°

= :.I‘.I;‘ o

&A \1} q?}n’
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f . .
; By arguments identical to those of theorem 3.3, we find for
) el )
b we a(t) nB (t)nC (t),
by
! (t)(w)
[)
D Z (t)Xw) = max Q -Q.)=2_(t)(w),
* 2 M(t-T)siM(e) OO 10T
[
"
¥,
Q which completed the proof. 0
¥
"
Y
:: This concludes the examination of the cases where one compartment is
e suberitical, and the other is either critical or supercritical. It is of
k)
k. interest to note that when one compartment is subcritical, its limit be-
l
" havior does not depend on whether the other compartment was critical or
. supercritical.
¥ )
s
L 4, CONCLUSION
.
[ In this two compartment model, eight cases have been examined. The
2- remaining case, where both compartments are subcritical, is left to a sub-
'\
sequent paper since the present techniques seem to be insufficient to estab-
&
:: 1ish the results. There are of course a variety of generalizations possible.
Ay
N The most obvious is to examine the arbitrary k compartment model ir con-
i
N tinuous time, analagous to the discrete time behavior of Tollar (1985a,b).
h
a Clearly, the critical and supercritical compartments pose no problem, and
D)
“‘
g results analagous to the previous results will still hold. However, the
h

suberitical compartments pose substantial problems. In the case of exactly

di
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one subcritical compartment, results similar to those of section 3 can
be established. However, when two or more compartments are subcritical,
the techniques in this paper do not seem directly applicable.

There are cf course a myriad of other directions for generalization.
We will only menticn two. One that appears useful would be to define Zl(t)
and 22(t) in such a way that two-way flow would be allowed, so assumption
(1.3) could be eliminated. Unfortunately, two-way flow does not appear to
allow a closed form expression for Zl(t) and Zz(t), so the techniques here
offer little hope of success. Another area of interest would be to eliminate
the assumpticn of moments, and determine limit behavior in this case. This

is left for subsequent work.
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