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A two compartment storage model with
an underlying sevai-Markov process

by

Eric S. Tollar

ABSTRACT

A storage model with an underlying semi-Markov process is proposed to

model the behavior of a two compartment storage system with one way flow.

It is shown that based an first moment assumptions, the divergence or con-

vergence of each compartment is determined. For the eight separate cases

in which at least one compartment does not converge, the bivariate asymptotic

behavior of the compartments, when appropriately normalized, is determined

under second moment conditions.
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I. INTRODUCTION

In this paper, a two compartment storage model based on an underlying

semi-Markov process is examined. This model is an extension of the popular

single compartment model considered initially by Senturia and Puri (1973),

with subsequent research by Senturia and Puri (1974), Puri and Senturia

(1975), Puri (1978), Balagopal (1979., Puri and Woolford (1981), and Puri

and Tollar (1985), among others. The extension to a model with an arbi-

trary amount of compartments based on an underlying Markov chain has been

considered in Tollar (1985a, 1985b). For the sake of simplicity, we have

reduced the number of compartments to two in this paper. This retains

the flavor of the multiple compartment model's variety and difficulties,

while removing much of the intractability of certain expressions (for

some understanding of both of these features, see Tollar (198Sa, 1985b)).

Of course, all of the difficulties which typically arise from considering

continuous time instead of discrete time are still present.

All of the random variables are considered to be defined on a given

underlying probability (Q, A, P). Let J be some denumerable set, and

{(X n Tn ), n =0, 1, 2, ...} a Markov renewal process with semi-Markov

matrix A(t) = (A. (t)), (see Cinlar (1969), where for all i, j e J, t 0,
1j

P(Xn = j, Tn - Tn _ !5tiT0 ,  X0 ) T I,  X 1,  ... Tn l  -n_--,) ,A . (t).1 (1.1)

W e assume {Xn , n =0, 1, 2, ...) is a positive recurrent, aperiodic, irre-

ducible Markov chain with transition matrix P= (pij) = (Aij(-)), and

stationary measure n= (ir). The moments of the sojourn times in a state

i c J are then given by
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(k)l
.)f-tk IA (dt), k= 1, 2,

where for simplicity, we write m.= )

With each iE J, we associate a triplet sequence

{(U n(i), V n(i), Wn (i)), n=0, 1, ...) where the triplets are i.i.d. random

triplets, independent of {(X n , T n), n=0, 1, ...} and of

{(U n(j), Vn (j), Wn (j), n=l, ...} for j si. In addition, we assume for

all iEJ that EILJI(i)I <a, EIVI(i)I <-, EIWl(i)I < ,

P(U ni) 0, V nCi) 0, W (i) s0) =0 V n (1.2)

and

P(Un (i) < 0) = P(Vn(i) < O) = P(Wn i) < 0) = 0. (1.3)

We then define random variables Zl,n and Z2, n by

Z, n = max(O, Zl,n I + Un(Xn))

(1.4)
Z2,n = max(O, Z 2,n. I + min(Vn(Xn), Zl,n + U n(X n)) -Wn(Xn)).

From (1.4) it follows that

Z, n =max(Z l O +Sn, max (-S))

(1.5)

Z2, =ax[Z 0 +Z2,0 +Rn , Z 10 +max (Sk+ Rn -R),

max (Sk - S.+R -Rk)]zn
I.j -Ak <n A n -Zl.n

........... u' ,] ,r &- ' ' - . ' .W., ,, ', ," ,,. ". '-% ," ' -- -- ". ." "'-"-€= -"="C"'"..'e " i j%-% r
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n n
where S n [Ui(Xi) -Vi(Xi] and R = a ( w( For detailsi=l~11 i=l1

of the derivation of (1.S), see Tollar (1985a).

Finally, to introduce continuous time, we define these quantities for

an arbitrary time t by

(Zl(t), Z2(t)) = (ZlM(t), Z2 ,M(t)) (1.6)

where

M(t) =sup{n:T 5<t}. (1.7)
n

7", Close examination cf (1.4) yields that (Zl(t), Z2 (t)) represent the

amount of material stored in the first and second compartments of a two

compartment storage system with one-way flow. The sequence

{Un(Xn), n=, 2, ...) represents the flow of material into the first

compartment. The sequence {Vn(Xn), n-I, 2, ...} represents the amount

of transfer demanded between the first and second compartment. Finally,

{W (X ), n=1, 2, ...) represents the amount of output demanded from then n

system, via the second compartment. As such at time Tn , if U 
(X ) > 0,

n n n

U n(X n) is added to compartment one. If V n(X n) >0, then either V n(X n) is

transferred from the first compartment to the second, or all the material

present in compartment one, whichever is smaller. Finally, if W n(X n ) >0,

then we have an output of material via compartment two of either Wn (Xn)

or all the iraterial in compartment two, whichever is smaller. It should

be noted that the assumptions (1.2) and (1.3) are not mathematically
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necessary, but based on the physical model outlined above. These assump-

tions are made so that simultaneous transfers and negative input/transfer/

outputs are not allowed. The subsequent results in this paper are identi-

cal with or without these assumptions.

Finally, we let

and

E 7TU ri i (u i ( i ) ) '  19

ie.1

with equivalent definitions for E V and E W. In 1985, Tollar established

that in the discrete time case the moments ErU, E V and E i determine the

convergence properties of the amount contained in the compartments as time

increases to infinity. The convergent compartments will be called sub-

critical, while the divergent ones will be called critical or supercritical,

depending upon the rate of divergence. It was also shown that when the

critical or supercritical compartments are appropriately normalized they

converge in distribution, independent of the subcritical compartments.

In this paper it will be shown that all of the results in Tollar

(1985a,b) still hold true in the continuous time case, as long as at

least one compartment requires some normalization. Section 2 is devoted

to the four cases in which neither compartment is subcritical, while

section 3 is devoted to the four cases where exactly one compartment is

critical. The remaining case, where both compartments are subcritical,

is left to a subsequent paper.
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2. NEITHER COMPARTMENT SUBCRITICAL,.

As established in Tollar (1965a,b), the values Zl (t) and Z 2(t)

diverge as t approaches infinity if E7r U E 9 V>ErW, for ET U, E itV, and E fW

defined as in (1.9). Depending upon whether or not the equality is strict,

there are four distinct cases for the behavior of the process. It is

shown that the limit behavior of all the cases can be represented as func-

tionals of Brownian motion when the contents are appropriately normalized.

For the proof in this and the subsequent section, the following defi-

nitions are needed. For i0 e J, an arbitrary element, let us define

t1, t2, ... t recursively by t0o 0 , and

Ii"nlin
t n = min{i > t n-1: xi -- iO}0 (21)

Let Mi (t) =sup{n:Tt -t). (2.2)
10 n

Further, let us define Y) by
U-v

t.

y~) = [ [U (X.)-Vi(X )]- (Tt  Tt. )8-1(E U -E V), (2.3)u-v * 1i 1~ 1 . t. t -i

and define Y U) and Y(1) analagously. The properties of YU-v can be foundu-w v-u-

(n).in Balagopal (1978), but essentially they are that {Y n):n= 2, 3, ...) is

and i.i.d. sequence with E Y M). 0. Let us also define y(i) byU-V U-V

t.

I Ju(x)- vi(x) (2.4)u-v J=t +1
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As in most proofs for normalized processes defined on Markov renewal

processes, we will show that the process at hand behaves asymptotically

like a functional of i.i.d. random variables by focusing on the return

times to the state iO. The limit results will then follow from the be-

havior of the i.i.d. random variables.

In all four cases, since Z1 (t) and Z2 (t) will be appropriately nor-

malized, the initial values Z, 0 and Z2,0 are immaterial, and will be set

to zero. Then (1.5) reduces to the sirpler form of

[Z1(t), Z2 (t)] = C max (S -S(t) ,

0_j <(t)

(2.5)

max R- j + P 1(t) - R max (S -(t) ]O _<_!(t) 0:5k - <A (a ))]

THEOREM 2.1. If E U >E V>EW, <

S=E(Y ()2IX =i J a2 =ErY(1) 2 X i < , then as t- ,
1 U-v 0 0 2 v-w 0 0

P(Zl(t) -tO (E U- E V) <x(tioa 2 -l -

Z2()- ta-l(E irV - E !5 y (t Trio 8-1)-+P(X!5x, Yaxy)00
Z2 (t)-t +(~,Yy

where (X,Y),fN(0,.), with

I ) n P( 1 2  -EcyVY1)y1X 0 =~(' 0), jd p = u-.v-w = io-
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PROOF. From (2.5), it can be shown that

Z(t)=S - max (-S.)

and

Z2(t) = (t) + max (-Si+Sk-R.k)- max (-S.).
A~ k V (t) 0<O~j <N (t)

Since E U>E V>E I, it follows from Tollar (198Sa) that lim max (-S.) Z,

where P(Z <) = 1, and that

k P(lir max (-S + S Rk<) = 1.

"* Q~j-<k!n k k

Since both are monotone functions in n, we see that

Iim max (-S.)<- a.s., lim max (-S. +S k  R < a.s.t-'.- 0-<Jg'(t) -S )t-). 0_<j!5k_<M t) J "R ) "

As such,

4

lir [Zl(t) - =(t)= a.s.,

Sira t- [Z2 (t) - (R'(t) -~I(t))J=0 a.s..

dF %,u*
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It is well-known (see Puri and f'oolford (1981)) that for sums on-1 .

semi-Markov processes, lira P(SM(t) - t-(E U- EV)) -x(t~i7r P -

converges to the standard normal cur"ulative distribution function. A

sinple extension to bivariate processes yields the theorem. U

THEOREM 2.2. If E U > E rV = Eo 2 EE(Y1 ) 2  =iI<-, and
it 11 7T1 -

E[ (y (1)) 21 X = , then as tv-w 0u ___

P(Zl(t) - ts (EIU - EV) < x(tior I-0 2 a

z Z(t ) _!9y ( t fi 0 -1a2). -12

P(PZ2 () + Z1 (1l) -<x, sup (Z2(t)) <Y),
0<t:l

where Z1 (-), Z2 (-) are independent standard Brownian motion processes,

2 (7 1) 2 1x
0  i and p = (cya 0 Fly(1Y(I =02 = E  v'w)  0i) 1 2" u-v v-wl 0 i

PROOF. As in theorem 2.1, it is clear that lim t-"Zl(t) -S9(t)1 =0.

From (2.5), it is clear that

max ((R,1(t) " S (t)) - m- Sk)) - rax (-Sj)

Z2!5-(t ) <5s Wa

" 2(t) !5 max ((Rm(t) - SM(t)) - (R 1  Sk))

0A.t
-I% %-
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Since t-!, max (-S)-+0, we have that
O:j I(t) -

rn t2[Z (t) - max I(RY(t) -SM(t)) (Rk - Sk)] 0 . (2.6)
,0 k: (t)

From (2.2) and (2.3), we have that

S t (-1EU- EV):-'. St.I(t) - (E U-E V

*%1

M. (t)
,, =Y1)+ + G) [U( i  Vi(i] (t -T t  8 I V

1 .(t)+
" ~ ~~u-v i2 uvt.()l i

4
) ( -

10 10

By appealing to renewal theory, as in Puri and Woolford (1981), it

is easily seen that

lir P( f [U. (X) -Vi(Xi)] x) -F(x), for some cumulative
t- tM (t)+ 1 1 "

distribution function F. As such,

t tMt) I [Ui (X i ) -Vi(Xi)]--* 0.

tM. (t)+1

%10

4,.

%"

4. .,

*., . -4 * 4 .4 .!p.4 - - *4* - . 4 ~::~ l-



By a simple renewal result (see Karlin and Taylor (1975)), it also

follows that

t- it - T p-. 0.tM. t)

0

As such, M. (t)
[0p

t rz (t) - Y Y +0..,i= 2 u -v .

Also,

I max E(RM(t) - SM(t)) -(R k - Sk)]

0 .k (t)

- max [(Rt -St ( - S 011O iM.t 0t) M. (t)

5 JA~M t) 1 1 X -Wi(

1 0 (0

" and a similar technique yields that

t- ? Fft) IV Np -

M.. (t))

0 0

Let

U max (R. -t . (Rt - st)].

j .



It follows that

i 1(t) •

max I YM(i
l <Ij! io t)1 j+l V

max [(RtM - StM ) (-k  SO ] (2.7)
OC~M t) 10( t) tM0(t)

1 0 0x0

1y(1) I + max f 0 max (U
-w :IJa.li 0t) j+1 15j0I. M(t)

From Karlin and Taylor (1975), there is a net {t :t2!} where

Ct +0, and for all t>0, letting

Zl(t) =F io8 -1 -Ct)t],

V(t) [W a- 1 t], (2.8)

12(t) = [(fio0 - 1 + e t )t],

we have that

P(,e(t) Mi(t) <e 2 (t)) > 1 - t. (2.9)
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Therefore,

P( max (U.) >et ) 1 2 P(U. Et ) + tl<J Mio(t) i-I

= t2(t)P(Ul > ctkf t

Since E -(1)2) 1X0 i n 2 n (U en ) 20

V- 0 )<o nPU En)0

which implies

lim P( max (U.) >Ct) = .
t 1 esj <1 (t')I

p0

Clearly t IYv 1 l-1-._ 0. Therfore, it follows from (2.6) and (2.7) that

M0 (t)

t " LZ 2 (t) - max ( .. yV2))] -. (2.10)
lj .i (t) i=j+l

Clearly,

0. t max . v
i=2 u- v t) j+l

%0

S (i) max
i=2 u-v' l<J Mio( i I

, -, -0.. . . .. ma.. -(, , , ,) ' ,V i . ,
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From Kolmogorov's inequality and (2.9) we have that

M'. (t)
P(I I y i)_ Y Ui) I > Et)

2 2 u-v

z: f t) M T C,2 (t )  )

PC max I y~i)I>Ct )+P( max I I YvI> t ) t
zl(t) j(t) zl(t)+1 f L(t)j<-t 2 (t) t(t)+l u-v

2 2 -1 2 2 -1!5 Mtt) - (lt)a1 (c t)- + (t 2(t ) - t (t) )a 1(c t) - +c t ,

=1 [t(t ) t l(t) ]a 2( 2t)l 1 + t .
22 2 -l t

From (2.8) we see that

M. (t)
10 M t)y(i)I t1 2) 0lir PCI y -i)_ >Et 1 )=0 (2.11)

limpo YU-V - U-V (-1

t) 2 2

Similarly,

j 1

P(C max (y - max (Y (i)w)I >et2 )
l!j!m O(t) 2 l-j-a(t) 2

(2.12)

(t) (t))o2 (c 2t) - + (e12 (t) - (t))a 2c2t) - I + t

From (2.6), (2.10), (2.11) and (2.12) it follows that

of
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1im P(Zl(t)- t (EU - E V) 5 x(tIr 2 Z (t -1 2
-1O 11rTri0 1u 2 (t ti (2.1

(2.13)

= lim P(ft)Y(i) x(tr 0- io 2 max (i M ) y y(t a 2
t-0 2 u-v 0 1 1 jt(t) i=2 V-W 10

,k ns) n-1[[t] (i)

Since (n-  I  i )  Y ) converges uniformly to bivariate Brownian2 2

motion, and the maximum is a continuous functional on C[0,1], it follows

from results of Donsker (1951) and Billingsley (1968). that

t t)y M -1 2. M v10) )
-rn P( Y i:) x(tn 6aaio , max ( Y 5) y(t io1a 2))

tr 2 u-v 10 1 l-j<Z(t) i=2 0

P( 2 (1))+T 2 Zl.( 1) -x, sup (Z 2 (t))y'-:-),
O!ts1

for Z (') and Z2 () independent standard Brownian motion, which from (2.13)

completes the proof. 0

It should be noted that the above theorem is just the continuous

time analog to the theorems proven in Tollar (198Sb) for the discrete

time case. The techniques used to reduce from continuous time to a fixed

number of i.i.d. random couplets are similar to those used in the above

and analogous to those in Tollar (1985b). As such, the following proofs

will be less detailed in this reduction.

aA



- 15 -

THEOPEM 2.3. If E U=E V>E W, 8<-, EE(Y 1 ))2 jX0 =
i  < -, and

2  EECY()1X X <-, then as t '02 =  -u-w- 0 io

P (ZI(t) -x (tro-l, az2(t) -to'I(E U - E Iq; _<y (tyioa-l )

.p (a1 sup CZ lt)) !x, a2Cpz 10) + 0 z 20)) -o1 sup (Z ICM)!5-Y),
a 0!ME1 0 !t 1

where Z1 (*), Z2(-) are independent standard Brownian motion processes,

; 2 = E [ (Y (1 ) ) 2 X i) and p=( (a 2 ) u-1 EY uwY1 JX = )

PROOF. From (3.5), we can show that

2 (t) RM(t) + max (-s + S k -R) - max (S M(t) - S)).
O-j<_k:4(t) O14jM(t)

Again, from Tollar (1985b), we have that t=4 max (-SJ + Sk -Rk)+O0.
0 j!Ek!N(t)

By arguments similar to those of theorem 2.2, it can be shown that for

t(t) = [ri a- 1 t]

I tft)y(i)) p

t 1ZI(t)- max ( ) I - 0,
l:jZ(t) i=j+l u-v

and

r '
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tOIZ (t) -tw 0- CEU - EW) - t Y+ Tax ( t YM )I P+ 0.
2 1i0 7 IT 2 U 1! j .e(t) i=ji -IV

Again, by uniform convergence, we can establish that

lrn PC max ( Y') :xt. 5
t-*c- 1!5j (t) i=j+1 u-v 10

2 UW- 15ja(t) yji - ti~ 0~

=PGsup (Z (t):5x,a a2 ( ) * /1-P2  or sup (Z1() )
01 0: ~ 0:t5 1

THEOREM 2.4. If E U=E V=E W, a'~ < E =i )",and

- ?r n t Tu-v 00

*- [(, 1 )I X0 = j 0 1<oo then as t~o

P'1' (t 5x(tr~ ~ z (t) ~y(tiTr ) -. P(a 1 sup (Z (t)) 5x,

sup Cr p () +/1-p2 Z Mt) + a Z '(s)) a1 sup(ZMil)

whee Z.) .~ 2 2
weeZ1() Z2(-) al , and p are as in theorem 3.2.
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PROOF. As in theorem 2.3, it can be established that

ma f (t)yM pt- (ZlI(t) - max ( I Y",) 0,

ij _L(t) i=j+l

an k i (t)yM £(t) ( ) p
and t (Z2(M)- max ( X + I V + max ( X u-V))  01:_j<ka-ft) i=j+l '-v v-w Ljf) ~~

(i) y(i)),whaett
Again by the i.i.d. nature of Y' ), we have that

t(t)yM i))

nm P( max ( X X(t(t)) - ,

t-1- l!_ja(t) i2 u-v

3 M(1 k MZ(t) (i)

max (I + Yi)_ max ( ! )Y(t(t))2 )

kt(ti=2 v-w ,--j+l maxu-v l2 u-v

NO 1 sup (Z1(t) !x,

[ sup (o 2 (PZl(t)+ -17 2 (t))+ oZ (s))-C sup (Z(t))]-y). 0
o t<_s~l 0o_ t 1

It should be pointed out that the Brownian motion function expressions of

theorems 2.2 and 2.3 can be expressed in an integral form instead of the

form given. However, the expression of theorem 2.4 seems not to have a

form simpler than given.
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In the next section, we examine the four cases in which one compart-

ment is subcritical, and the other is either critical or supercritical.

3. ONE COMPARTMENT SUBCRITICAL.

Again, there are four separate cases to be considered. In all four

cases, it will be shown that the subcritical compartment is asymptotically

independent of the suitably normalized critical or supercritical compart-

ment. The marginal behavior of the two compartments then completes the

results.

The independence is established by appealing to theorem 5.2 of Purn

I.
and Tollar (1985), which essentially states that for two processes Z(t)

and Y(t) where

a) for each c>0 there is a t>0, a T> 0, and a process
4: ZT(t) where for t>T, P(IZ (t)-Z(t)> ) <c,

- p
b) t-h(Y(t-T)-Y(t))--+ 0, (3.1)

c) Y(t-r) and ZT(t) are conditionally independent
given XM(t-)+l? TM(t-T)+l

then

lim P(Z(t)!x, Y(t) yt )Zlim P(Z(t) x)lim P(Y(t)!yt ) (3.2)t. t-),w t-K

Lerma 5.1 of Puri and Tollar (1985) observes that for Z(t) of the form,

"M(t) ', M(t)

Z(t)=max[Z0 + Ui(X.), max ( i i(XiM))] (3.3). 1 1~ I M(t) i=j~l
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where E U<O, then

M(t)
Z (t) max I U. i(X.)) (3.4)

M(t-T)_gj!_M(t) i=j+l

will have the property of (3.1a).

In the following theorems we define for -0 <y <.,

0,(y) = f- (2w) "exp(-u 2 /2)du,

and

II (y) = Ee(y) - 1]I(y 0).

THeOREM 3.1. If E U<E V, E U>E IN, 8<", 2c=E[(Y(l)) 2JXo =i )<-,
0U-W

then for all continuity points x of P(Z1  x),

lim P(Z (t) x, Zt)-t(E U-E W)
-1 !YC0 2t lO

V00 1 2 liTr1

P(z I 1 x)4'(y),

where Z1 is a random variable such that P(ZII <0):l .

PROOM. From (1.5), since E (U-V)<0, it is clear that Z (t) is of the

desired form of (3.3). From Puri and Tollar (1985), Z(t) -A Z, and

there exists a Z (t) of the form (3.4).T

From (1.5), we have that

=illm,~ -
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Z2(t) M(t) + max[Zl'o + Z2 , 0, ZI, + max (Sk -Rk),
l1,j0lj_(t)

max (Sk -Sj Rk)] - 71(t).
l-!j -: k M( t)

* Since ET W -E U<O, E W -E V<0, we have from Tollar (1985a) that as t-*,

max[Z ,0+Z 2,0 zIO+ max (Sk-R) ,  max (-S -Sk-%)]+Z <- a.s..l k_<M~t) l<_j_<kM(t)

Therefore, as t-*o

p"'t-" Pz2W-P1t3 0

Let

Y(t) =RM(t) - t(E - E W) -

As established in Puri and Tollar (1985), for any fixed T,

'P.

- 11 p
t R (t) R ] ---- + O.

As such, it is clear that Y(t) fulfill- (3.1b). It is equally clear from

the strong Markov property that (3.1c) is met by Z T(t) and Y(t-T). As such,

.since

lm P(RMt)-t(E rU-E TW)8-  2 . -!] )=O(y)

.(see Puri and Woolford (1981)), (3.1) completes the theorem 0

* a ' " D' % % " ' %
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The proofs of the suLsequent theorems will be essentially the same as

the previous theorem. It will be sho-in that the suhcritical compartrent

is asymptotically equivalent to a form like (3.3). Therefore a 2 Tti willT

exist. Y(t-T) will be essentially the supcrcritical or critical compart-

ment, therefore (3.1) will be satisfied. The arguments of Puri and Tollar

(1985) give us the marginal behavior of the subcritical compartment, and

* arguments entirely analagous to the discrete time arguments of Tollar

(1985b) can be extended as was done in theorem 2.2 to deal with the con-

tinuous time behavior of the critical or supercritical compartment. As

such, in the following theorems, we will only show that the subcritical

cell can be reduced to the form of (3.3), then simply state the desired

Y(t) and its convergence properties.

THEOREM 3.2. If E U<E V, E U=F W, 8<-, ENyC-) 2 1X0= i )<W,-- iT "iT T iT U-v 0

then for all continuity points x of P(Z !x),

lim P(Z (t) _ x, z2(t) Y(2t7T08-1)- PCz l -5 x ) 41 (Y

1 ~~ Z2 t ~ 1ti 0 ~(~~)$~)

-: where 2 = E (  )2 x
1 u-w 0 0

PROOF. Since Z (t) is clearly of the form (3.3), letting

Y(t) max (Sk-Sj+RM(t)-Rk),

I
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by argurents identical to the discrete time arguments of Tollar (1985b),

it can be shown that

t-[Y(t)- max (R R )J 0,

and from Puri and Woolford (1981), it follows that

lir P(Z (t)-y( 2 t . : I 1(y). 0
2 1yatr

THEOREM 3.3. If E U=E V, E V<EW, a<o, E[(y(1)) - IX0 = i0 )<-, then for

all continuity points y of P(Z2 ! y),

£ lir F(Z (t) <-x(r 0aa t) Z2 (t) !5y) (x)P(Z2 -< y ),

whr =EY(1) ) x= io)
where 02= ~ )2(Yuxv) i)o

1 u-v 00

PROOF. Let Y(t)= max (S -S.). It can be shown by renewal argu-
O:j _M(t) $M(t) p

- ments as in Puri and Tollar (1985) that t-" (Y(t)-Y(t-t))-- 0, and we

have from Puri and Woolford (1981) that

lim P(ZIt)!-X( E 1a2 t) = (x).
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Therefore, to complete the proof via (3.1) we need to find an appropriate

, ... ,-.,-Z (t).

Let Q = R -Sn n *

V and

Z (t) max (Q -O (3.9)
2K: t-t j 4(T M(t) j

I (t- T)-5j
M ( t )

To shcw that for each E> 0, there is a T> 0 and a T>0 where for t>T,

P(IZ (t)-Z 2(t)I >E) <E,T 2

, .*

we define three sets for specified T and t;

A(t)- { R: RM(t)+ Z O + 1< 0},

B (t) ={w: max (Qt-Q max (QM(t)Q -QJT Wt-T ) <-j5 -0 (t) 1-<15-V.C t )

CT(t) = (W. max (S -S ) max (S - (3.6)
1_j M(t-) M(t) l1j_ (t)($ I(t)

Since ETU-E W <0, it is clear that

lir P(A(t)) 1 (3.7)

~. tp
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Also, from lemma 5.1 of Puri and Tollar (1985), it follows for all c> 0,

there is a T1 and a T 2 where for all t >T1 , T >T 2,

P(BT(t)) > - (3.8)

To examine C T(t), we observe from Puri and Woolford (1981), that for

6 >0 such that IMI(6) <e,

lim P( max (S -S 6 6( aO-1 at)) 1 - 1 (6) > I - C. (3.9)
t 1 j<M(t) 1(t) j 0  1

From Puri and Tollar (1985) we observe that for fixed T, as t--,

1- ( ,t) "

max (S -s )S JM- IUi(X) -V i(X1 ) -- 0. (3.10)

Therefore,

P(C(t)) 2PE max (S -S ) 6(t0"la2t)4> max (S

1j-M(t) Ss(t) 0 (t-T)-5j M(t) M(t)

which, when coupled with (3.9) and (3.10) yields that for fixed T,

lira P(C (t)) > I - C. (3.11)

t-

From (3.7), (3.8) and (3.11), let us select a T and a T such that for

t>T,



-25-

P(A(t) n B C t) nOC (t)) > 1 - 3Ez.

Then, for w cA(t) nB T(t) nC T(t), we have from (1.5) and (3.5) that

Z (t)(w) =max[Z +Z +- , R a RMt+kR)2 1,0 2,0 '(t), Z1,0 + kmx( t)S-R

max (S k-S.± RM, -R k)'-max (Z1,0 +S (t)' Tax (S -st _S
1 5j:!k:M(t) k )rit<im(Z +

=max(,z 1 0 +-S M~)+ max QMtQj

max < (S M(t)_S .+Q M(t)Q k )] -maxrZ ,0 S M(t), max (S M~)-S.)]
l!:j:k I4(t) 1,0 1j!9(t) Mt

=max[Z 1,0 S M~+ max Qt)k
1,0 ~t)Mft-T): k: 14t)

max (S -~)s )+ max Qt)k].

-max[Z 10+S MWt) 1,max (S M~t) _ max (Q M(t)_Qk)=Z T(t).
1,0 1 jM(t-T) Mtj M(t-T) gk:M(t)

Therefore, we have that for any c > 0,

urn P(Z 2(t) =zT (t)) >1- 3c,
2 tW

which from (3.2) implies the theorem. 0
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THEOREM 3.4. If E U>E V, E W, <=, and r2 =E((Y ( )) IX=i)< ,

then for all continuity points y of P(Z2 -!y)

lim P(Zl(t)-t -(E U-E V)x(tit 0-1 12)

71 i 0

2 (t) -5 y) = #(x)P (Z2  :5-y).

PROOF. Letting

Y(t) = SM(t) - to-l(E ITU - E

EV).

it can be easily established that t 
2 Y(t)-Z (t)i-*- 0, and that

t- IY(t-T) -Y(t)l -- 0.

Define Z (t) as in (3.5).

As in the proof of theorem 3.3, for T r0, t>0, define

A(t) = {w: Z1 , + 2 ,O +R W t ) -S K t ) <0),

B T(t) = {2: max (Q M(t)-Q max (QM(t)-Q)

M(t-a)j-M(t) Q l -j -Mat)

C (: max (-Sj )=  max (-S )}
I_5j:KM(t) l-5j -M(t-T)

Since E 7V< E W, it follows that
i lira P(A(t)) = 1.

Imam
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Again, from Puri and Tollar (1985) we know for all c >0, there is a T

and a T 2where for all t> Tl T rT 2,

Since E 7r U>E nV'- S n-I,- a.s., and thus for any fixed T,

lim P(C T(t))i .

Again choosing a T and a T where for all t> T,

P(A(t) nB T Wn CT (0) > I- 3e,

we have for all w eA(t) nB T(t) nC (t),

2 (t)(w) *max[Z 1 0 + Z 2 0 + RM(t)z *1 0 ~+ max (R M(t) +S k Rk)'
<k M( t)

max (S k-SRMt)k3
* l~~:j:Kk<M(t) k jRi tR)

maxZ ,0 S MI max (S -S ))S

max[Z 1 ,0 +Z 2 , o+RMt -SM(t), Zl1 0 + max ( ~) k)
l1M(t)

max (-S j+Qm(t)-Q k)]-max(Zl ,01 max (-S..

1!9 ~ ~ ~ j -e -M
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By arguments identical to those of theorem 3.3, we find for

weA(t) nB (t) nC (t),

2 (t)(W)= max (QM(t)-Qj)=Z (t)(W),
M(t-T)S<jM(t)

which completed the proof. 0

This concludes the examination of the cases where one compartment is

subcritical, and the other is either critical or supercritical. It is of

interest to note that when one compartment is subcritical, its limit be-

havior does not depend on whether the other compartment was critical or

supercritical.

4. CONCLUSION

In this two compartment model, eight cases have been examined. The

remaining case, where both compartments are subcritical, is left to a sub-

sequent paper since the present techniques seem to be insufficient to estab-

lish the results. There are of course a variety of generalizations possible.

The most obvious is to examine the arbitrary k compartment model in con-

tinuous time, analagous to the discrete time behavior of Tollar (1985a,b).

Clearly, the critical and supercritical compartments pose no problem, and

results analagous to the previous results will still hold. However, the

subcritical compartments pose substantial problems. In the case of exactly
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one subcritical compartment, results similar to those of section 3 can

be established. Ilouever, when two or more compartments are subcritical,

the techniques in this paper do not seem directly applicable.

There are of course a myriad of other directions for generalization.

We will only mention two. One that appears useful would be to define Z 1(t)

and Z 2(t) in such a way that two-way flow would be allowed, so assumption

(1.3) could be eliminated. Unfortunately, two-way flow does not appear to

allow a closed form expression for Z 1(t) and Z 2(t), so the techniques here

offer little hope of success. Another area of interest would be to eliminate

the assumption of moments, and determine limit behavior in this case. This

is left for subsequent work.

,

+ ***:i:.
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