
RD-Rl?2 023 DESIGN AND PARTIAL IMPLEMENTATION OF A COMPUITER in#
CONTROLLED DATA COLLECTION SYSTENCU) AIR FORCE INST OF
TECH HRIGHT-PRTTERSON AFD ON SCHOOL OF ENGI.. L E LUTZ

UNCLASSIFIED FEB 86 AFIT/GE/ENG/96N-1 FIG 9/2 ML

EhohhhmhohmhEI
smmhhmhEmhEmhh
-smmhEmhohmhhhh
EEohmhhhhmhhEE
mhohmhhEEmhhEE
smEEshmhhhEEE

l'.. -Il3.

IL

-dv- I'.. 11- w 7 -..

000
N

0OF

NETNADP RIL1T,,FT.J.
OiACMIE

DA-

1)AIAmLN' Ai) FclN F

C.2~ap Ali UVSTY

=. DIFREPARTETUOFTE AIR FORCENLG

Wright-Patterson Air Force Base, Ohio

AFIT/GE/ENG/86M-l

DESIGN AND PARTIAL IMPLEMENTATION

OF A COMPUTER CONTROLLED
DATA COLLECTION SYSTC-1

THESIS

Lloyd E. Lutz Jr.
Captain, USAF

AFIT/GE/ENG/86M-I D T IC

\' ! OCT 1 Z 1986

B

Approved for public release; distribution unliited.

~ AFIT/GEIENG/86M-1

DESIGN & PARTIAL IMPLEMENTATION
OF A COMPUTER CONTROLLED

DATA COLLECTION SYSTEM

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology
Air University

in Partial Fulfillment of the

Requirements for the Degree of
Master of Science in Electrical Engineering

by

Lloyd E. Lutz Jr.

Captain USAF
Graduate Electrical Engineering

February 1986

Approved for public release; distribution unlimited.

Preface

This thesis describes the design and software for a computer con-

trolled data collection system. A MCB Z-80 development system with an A1O

analog input board was both the target hardware for the data collection system

and the computer system the software was developed on. The software des-

cribed in this thesis is a mixture of PLZ, a Pascal like language, and Z-80 assem-

bly language with hooks from both into the development system's RIO Operating

System.

The software doesn't implement the full design and isn't com-

pletely bug free. The difficulties of too little time and too much code to debug took

their toll. I have flagged weak points and logged my suspicions where appropri-

ate in the code descriptions.

Special thanks go to the Apple Computer Company for their

development of the Macintosh, LaserWriter, and MacWrite. Without these

products this thesis would never have been written.

Are • i- '

Lloyd E Lutz Jr

1:,0

L:

A - i

Conte nts-
Preface ... ii

List of Diagrams... v

Abstract... i

I. Introduction ... 1
Requirements of Data Collection System 3
Hardware Used for this Thesis Effort 9
Overview of System Design.............................. 11
Summary... 19
Overview of Rest of Thesis 19

II. Enhancements Module.................20
Description of Internal Routines........................... 28
Description of Output Routines 61
Description of Input Routines............................. 91

S Ill. Utility Module ... 124

IV. Sampler Module... 159

V. Buffers Module ... 208

VI. Collecter Module.. 209

VII. Conclusions ... 274

Bibliography ... 276

Appendix A: Enhancements Module Listings 277

Appendix B: Utility Module Listings 314

Appendix C: Comparison Timing Calculations 333

Appendix E: Buffers Module Usting 367

Appendix D: Sampler Module Listings 335

Appendix F: CollectData Module Listings 369

Appendix G: AIO.PLZ.S Module 390

Appendix H: ScaleFactor Module 416

V ita ... 429

iv
./1...

* ,.

',9.:, ; .< : : ,., ,:- - -, ., -,- -- .--. .- ..- ---,,..,.- . - - . -. ., .,v

?%2yljf trj 11%- %l X'"UPO " -1 -'L

List of Figures

Figure Figure Name Page

Introduction Figures

1 Data Collection System 2

2 Resolution of Least Significant Bit for Various Sized Analog 4
to Digital Converters and Input Signal Ranges

3A Data Flows Between the Major Processes of the Data 13
Collection System, the Operating System, and the User

3B Hierarchical Relationships Between Components of the Data.. 14
Collection System, the Operating System, and the User

Enhancements Module Figures

4 Relationship of Enhancements Module Routines to Calling 22
PLZ Routines and to PLZ STREAM.IO Module Routines

5 Routines and Relationships Used to Read in a Decimal 24
Value and Output a Hexidecimal Value

6 Relationship of ASCII to PLACELOOP 28

7 Relationship of VALUE to Other Routines 31

8 Relationship of VALUELOOP to Other Routines 34

9 Relationship of PUTCH to Other Routines 38

10 Relationship of GETCH to Other Routines 41

V. -... V

S Figure Figure Name Page

11 Relationship of GETASCIICH to Other Routines 45

12 Relationship of PLACELOOP to Other Routines 48

13 Relationship of VALIDBINARYCH to Other Routines ... 51

14 Relationship of VALIDDECIMALCH to Other Routines.. 55

15 Relationship of VALIDHEXCH to Other Routines 58

16 Relationship of WRITE and WRITELN to Calling 61
Routines and PUTSEQ.

17 Relationship of Byte WRITExBYTE and WRITE- 66
LN_xByte Routines to Other Routines.

18 Relationship of Logical-Byte WRITE and WRITELN 70
Routines to Other Routines.

19 Relationship of Decimal-Integer WRITE and WRITELN.... 74
Routines to Other Routines.

20 Relationship of Decimal and Hexidecimal Word WRITE ... 79
and WRITELN Routines to Other Routines.

21 Relationship of Pointer WRITE and WRITELN Routines 83
to Other Routines.

22 Relationship of WRITELNRCODE and WRITERCODE... 87
to Other Routines.

23 Relationship of READLN to Calling PLZ Routines and 91
to GET ASCII CH.

24 Relationship of READ_HBYTE to Other Routines 95

25 Relationship of READBBYTE to Calling PLZ Routine, ... 99
GETASCIICH, and VALUELOOP.

*1 vi

No

F ur Figure Name Page

26 Relationship of READDBYTE to Other Routines 103

27 Relationship of READLBYTE to Calling Routines 107
and to GETASCIICH.

28 Relationship of READDINTEGER to Other Routines 111

29 Relationship of READHWORD to Other Routines 115

30 Relationship of READDWORD to Other Routines 119

Utility Module Figures

31 Relationship Between the Routines of the Utility 125
Module to Calling Routines and System Elements

- 32 Example of PLZ Activation Record -- ALLOCATE 127

33 Relationship of IOOUTto Calling PLZ Routines and 129
the Central Processing Unit

34 Relationship of lOIN to Calling PLZ Routines and the 132
Central Processing Unit.

35 Relationship of MEMSET to Calling PLZ Routines 135

36 Relationship of MEMREAD to Calling PLZ Routines 138

37 Relationship of DISABLEINT to Calling PLZ Routines 141
and the Interrupt Setting of the Central Processing Unit.

38 Relationship of ENABLEINT to Calling PLZ Routines 144
and the Interrupt Setting of the Central Processing Unit.

39 Relationship of DATE to Calling PLZ Routines and 146
Memory Locations of Data Characters.

;: vii

-a

.4

% '

Figure Fiaure Name Page

40 Relationship of ALLOCATE to Calling PLZ Routines 149
and the RIO Operating System.

41 Relationship of DEALLOCATE to Calling PLZ Routines ... 154
and to the RIO Operating System.

Sampler Module Figures

42 Relationship of SAMPLER and its Subordinate 162
Routines, the Interrupt Service Routine, and to the
Calling Routine.

43 Operation States During Subrodinate Routine 163
COLLECTER Including the Interrupt Service Routine

44 Counter/Timer Combinations Used for Real Time Clock.. 165

45 Activation Record for Call of Sampler Module 168

46 Relationship of VALIDATE to SAMPLER and the 173
System Stack.

47 Relationship of ATODINIT to SAMPLER and AIO Board .. 177

48 Relationship of CTCPROGRAM to SAMPLER, the 180
CTC1, and the System Stack.

49 Relationship of INTSETUP to SAMPLER, the 184
System Stack, the Interrupt Jump Table, and the Z-80
CPU Alternate Registers.

50 Relationship of INITCOLLECTER to SAMPLER, the 186
System Stack, and the Primary Registers of the Z-80 CPU,

, . * .- - viii
J

4

• " " .':.'.'', ',", *"',',"-, "." * . * . .z. , .",. ',- "* '."",.,"*,* . .°.,." .",." '.-.. ," ' ''

Figure Figure Name Page

51 Relationship of USERREADY? to SAMPLER, the 189
System Stack, the Z-80 Primary Registers, and the
RIO Operating System.

52 Program Flow Within USERREADY? 190

53 Relationship of STARTTIMER to SAMPLER, CTC 194
and the System Stack.

54 Relationship of COLLECTER to SAMPLER, System 197
Memory, the Z-80 Primary Registers, and the AIO Board.

55 Relationship of CTCOFF to SAMPLER and the CTC 200

56 Relationship of DEALLOCATE to SAMPLER and the 202
System Stack

57 Relationship of TOSAMPLE to CTC Interrupts, the 203
Z-80 Alternate Register A, and the AIO Board.

58 Relationship of TCSAMPLER to CTC Interrupts, the 205
Alternate Registers of the Z-80 CPU, and the AIO Board.

CollectData Module Figures

59 Data Flow for CollectData Module 211

60 Relationship Between STRINGCOPY and 220
CREATEDATAFILE

61 Relationship of ASCII and CREATEDATAFILE 222

62 Relationship of GETDATA to SAMPLEDATA and DATE.. 225

ix

o..

Fiure Figaure Name Page

63 Relationship of FINDTIME CNST to 228

FINDCTCCOMMANDS

64 Counter / Timer Combinations used for Real Time Clock ... 231

65 Relationship Between FINDCTCCOMMANDS and 232
PREPARECOLLECTOR and FINDTIMECNST

66 Relationship Between SIZEDATABUFFER and 235
PREPARECOLLECTOR

67 Relationship of ERRORINPREPARE to Its Calling 238
and Subordinate Routines

68 Relationship of PREPARECOLLECTOR to SAMPLE_ 242
DATA and its Subroutine Routines

69 Relationship of ERRORINCREATE to its Calling 245
Routine and Subrodinate Routines

70 Relationship of VALIDSTRING to CREATEDATAFILE 248

71 Relationships Between CREATEDATAFILE 251

SAMPLEDATA, and Subordinate Routines

72 Relationship of LOADDATAFILE to Other Routines 256

73 Relationship of CLOSEDATAFILE to Other Routines 260

74 Relationship of ERRORINSAMPLER to SAMPLEDATA .. 263
to SAMPLEDATA, CLOSEDATAFILE, and WRITELN

75 Relationship of SAMPLEDATA to its Calling Routines 267
and to its Subordinate Routines

p... x

'p

P.. ' " ' ' °" ° ° • "" ' ° ° ° ""° '""° ' € " " ,' ,° , r I . .

Figre Figure Name Page

AIO.PLZ.S Module Figures

76 Relationship of AIO.PLZ.S Routines to Their Calling 391
Routines, the Routines of the Utility Module, and to
System Elements.

77 Relationship of AIO_INIT to Calling PLZ Routines and 393
the External Routines.

78 Relationship of INCHANSEL to Calling PLZ Routine ... 397
and IOOUT.

79 Relationshipo of INDIGITALP to Calling PLZ Routine ... 400
and lOIN.

, 80 Relationship of INDIGITALT to Calling PLZ Routines, ... 404
INCHANSEL, and INDIGITALP.

81 Relationship of OUTANALOG to Calling PLZ Routines... 407
and IOOUT.

Scale-Factor Module Diagrams

82 Hierarchical Organization of ScaleFactor Module 417

83 Program Execution Flow Within CHANGESCALE 418

xi

4, kx'¢ , 3'.,-.-. - -''' '' '. .--.- . . - . ."""-< ."•" ." ." '

@ Abstract

/ Acomputer controlled data collection system was designed and

partially implemented in software. The design concept is for a data collection unit

to be placed inside the system being tested where it stores the test data in an

internal memory. Post-test this internal unit is connected to and polled by an

external control and data storage unit which archives the data. Both units are

computers. This combination of an internal data collection unit and an external

control and storage unit is intended for testing applications where it is either

undesireable or not possible to connect the sytem being tested to external data

recording devices during the test event.

The partial implementation of this dual unit data collection system

design was performed on a Zilog MCZ Z-80 development system in PLZ, a

Pascal-like language, and Z-80 assembly language. Routines to improve the

input / output and hardware access of PLZ were written and used. The software

to implement the internal data collection unit and portions of the external control

and data storage unit were also written. The internal unit routines employ a Zilog

Counter Timer Circuit to generate sampling period interrupts. The analog to

digital conversion is accomplished via a Zilog Analog Input Output (AIOI) board.

The data collection system is not fully operational.

m

xii

4J

QY 1. Introduction

Whenever a system is tested, a major part of the activity is collection of
performance data. "Did it work ?" is not a question answered by the outcome of

test alone. Rather it is answered by an evaluation based on the information coi-
lected during the test. In the past, this performance data might have been man-
ually collected, notes carefully recorded in an lab book, or as a photographic
image of an oscilloscope trace. Today's technology permits the collection and
storage of performance data in electronic forms, both analog and digital. Besides
automating the data collection process, this electronic collection of data permits

* analysis without having to manually reenter the data into computers.

The automated collection of performance data is accomplished by
attaching sensors to the system under test and then connecting the sensors to
some data recording equipment. The sensors translate the physical responses of
the system being tested into electrical- signals. Examples of sensors include

* strain gages for movement and pressure; current, electric field and magnetic field
sensors for Electromagnetic Pulse testing, and microphones for human speech.
The data collection equipment stores the sensor generated signals. Examples of
recording equipment include tape recorders and transient digitizers like Tektronix
7912s. The connection between the sensor and the data recording equipment
can range from simple twisted pair wiring to multiplexed fiber optic links to the RF
data links from tagged grizzly bears through the TDRSS satellite to NASA's
ground siations. The length and type of connection used is dependent upon the
nature of the system being tested.

There are instances in testing however where it is either physically
impossible or undesirable to connect the item under test with some external data
recording system. For example, the "black boxes" of airplanes, the cockpit voice
recorders and the flight data recorders, are internal to the system. It is not feas-
ible to hard wire aircraft to ground based recorders or squander the RE spectrum
on data links. Another example is Electromagnetic Pulse (EMP) testing. Exter-
nal data recorders can not be wired to sensors in the aircraft undergoing EMP
testing for the presence of these conductors alters the EMP response of the air-
craft. Use of dielectric instrumentation cables, like fiber optics is one solution,
though this tethers the test object. RF links are also possible though complex to
set up and often limited in bandwidth. Another solution exists and is used. The
sensor data is stored within the system being tested and then extracted after the
test event is over. In the first example, the flight recorders are recovered from the
crashed aircraft; the crash being the test event. In the EMP example, an early
procedure was to put oscilloscopes with cameras inside shield boxes (EMP &
noise "proof" enclosures) and place these boxes within the aircraft; the exposed

Introduction1

I,

film was recovered after each EMP exposure (Ref 12). In both cases, the data is
saved in recording equipment placed inside the system being tested and then the
data is retrieved after the test is over.

This thesis investigation considers another version of the internal data
storage approach discussed above. The sensors on the item under test are con-
nected to a data recording unit located inside the test item as shown in Figure 1
below. This internal data collection unit is a microprocessor / memory system that
samples sensor data at a programmable rates and saves the data in random
access memory (RAM). Pretest, the internal data collection unit is programmed
for the desired sampling by the external control and data storage unit. Next, dur-
ing the test, the links between the internal unit and the external unit are severed
or ignored. Post-test, the internal data collection unit is reconnected to the
external control and data storage unit. The data is then transferred out of RAM to
the external unit and saved in some long term storage medium like a floppy disk
or data tape. The external control and data storage unit would also handle
simple data scaling and printing of the data and could be available for User data
manipulations as well.

External Control & ----
Data Storage Unit Sensor

Programming (pretest) ,

Daa(ohs)Data Collection Unit

Data (posttest) -

Item Under Test

Figure 1. Data Collection System

Both the internal data collection unit and the external data storage
system are digital devices, adapted through their software for the specific needs
of each data collection effort. The object code of the collection unit, would likely
be ROM based; for the storage system the object code would probably be called
from disk. The key is that the collection unit and the storage system must com-
municate with each other based on a common understanding of purpose. An
example of this type of system is the Tektronix 7912 and a post test polling com-
puter (Ref 11). This thesis deals with the software required to make such a sys-

Introduction 2

tern work (in conjunction with the hardware of the system), the software of the
internal data collection unit and the external data storage system.

Requiremnents of Data Collection System

While it is simple to state the purpose of a data collection system, "To
Collect Data", it is more important to examine the characteristics or attributes re-
quired of the system. The primary attributes of concern for this data collection
system are accuracy, data integrity, flexibility, and a simple user interface. In
practice, it is vital to quantify the specific requirements for each attribute; to define
exactly what the necessary performance characteristics are. As this thesis is not
tageted to any specific application, the following discussions of accuracy, data
integrity, flexibility, and a simple user interface are general.

Accurac

For a data collection system to have any value, the
data it collects must as accurately as possible represent the original physical

ALIX phenomena or sensor signals that were sampled. There are three facets to this
requirement for accuracy: amplitude fidelity, sampling period, and data scaling.
The need for amplitude fidelity will be discussed first.

The mapping between the amplitude of the analog signal being sam-
pled to the digital values stored has several variables: analog to digital (A/D) con-
version fidelity, linearity, and sensor impacts. First, the analog to digital (AID)
conversion must have as much fidelity as possible. Obviously more bits do yield
greater fidelity. This increased fidelity is paid for in increased hardware costs or
settling times. The objective in selecting the number of bits of the N/D converter is
to match its conversion range to the data signals of interest. This matching has
two aspects, maximum amplitude (or dynamic range) of the input signal and
resolution (units per least significant bit or scaling) required by the test applica-

tion. Any A/D converter can be matched to the maximum expected amplitude of
0 any given signal through the use of attenuators or amplifiers; the resolution of

amplitude is another matter however. Figure 2, below, shows the resolution
variation for a variety of N/D converter sizes and signal dynamic ranges. The
selection of the size of the converter must be based on the expected dynamic
range of the signal and the resolution or scaling required. If there is a mismatch
in dynamic range , the analog signal may overflow the N/D converter or the sig-
nal may register only in the least significant digits. Through correct matching ofI the input signal to a properly sized N/D converter with amplifiers or attenuators,
the amplitude of the analog signal will be accurately represented with the resolu-
tion necessary for the specific signal or sensor of interest.

Introduction 3

Resolution of Least Significant Bit
Total Elements Size of Analog to Digital Converter

4-Bit 8-Bit 12-Bit 16-Bit

Signal Range 16 256 4,096 65,536

0 to 1 .063 .004 .0002 .00002

0 to 10 .625 .039 .0024 .00015

0 to 100 6.25 .391 .0244 .00153

0 to 1,000 62.5 3.91 .2442 .01526

Figure 2. Resolution of Least Significant Bit for Various Sized Analog to
Digital Converters and Input Signal Ranges

A second variable of the mapping between the analog signal's am-
plitude and the digital values is linearity. It is desirable for the bit change to be
the same for a signal amplitude change regardless of where in the dynamic
range the signal change occurs. The delta bits for a 98.7 to 99.0 volt change
should be the same as for a 7.3 to 7.0 volt change. This linearity is a function of
the A/D converter and any signal conditioning equipment (attenuators or ampli-
fiers). Two courses of action are available, get as linear a system as possible or
measure the nonlinearity and extract its effects posts test.

The third variable is the sensor itself. Though sensor concerns are
outside the scope of this thesis, the resolution of the sensor must be matched to
the physical phenomena being measured. As with the A/D converter, dynamic
range and resolution are of concern. Linearity is a concern for the sensor also.

The second facet of the requirement for accuracy centers on the sam-
pling period. Of foremost concern is that the sampling rate be sufficient to cap-
ture the frequencies of interest in the input analog signal. Beyond the sampling
rate, are two aspects of concern for the generation of the sampling period. First,
the sampling period employed must be stable; that is the time between samples
is constant from the beginning of data collection through the end. This is depen-

Introduction 4

,, .;t ;.' ' ;. / .."..;.- ,'. .'.'.'r.. -r.,-_--, --'., ;- .-' -<' .' %;.-,,%,..?.?. ,'.,--..--?- .-., ,,. ,- ,-,v -. , --NO-,'

dent upon the clock used to trigger individual samples. The second aspect of
concern is that the sampling period empoyed should be what was specified.
Few things could distort test findings more than to have the time base unknow-
ingly off. Correct implementation of the specified sampling period is a function of
both the clock used and the routine that translates the specified sampling period
into hardware controls or programming.

The preceding paragraph discusses continuous samplers. Another
type of sampler, event driven, also exist. Event driven samplers collect data only
when something of interest occurs. For this type of sampler, timing accuracy
centers on knowing when the event occurred. Event driven samplers are not
within the scope of this thesis effort. However, for continuous samplers, know-
ledge of when the sampling began, or a time tie between the sampling interval
and some external event is valuable.

The third facet of accuracy requirements is data scaling. Each step
from the actual physical phenomena to the digital data stored alters the represen-
tation of the phenomena. A pressure of 3 KPa is translated by a sensor into a 3
volt signal; an amplifier boosts this to 27.3 volts; a 12 bit A/D converter transforms
it into the binary string 100010111100. Data scaling is the process of convert-
ing this binary string back into physical parameters. The process can be as

~ straight forward as multiplying the digital value by a single scale factor. It could
be a complicated filtering effort involving multiplication by an amplitude depen-
dent scale factor to remove nonlinearities produced by the sensor. In either
case, the scaling process must be uniquely accomplished for each sensor to
satisfy this third facet of accuracy.

Data Integirity

Data integrity is the second attribute required of a
data collection system. Data integrity simply refers to the data being protected
from loss or alteration from improper or inadvertant actions. Tests are not inex-
pensive and to loose test data or have it altered could force a retest or perhaps
acceptance of the loss of unreproducable data (aircraft flight data recorders for
example). Also including in data integrity is data traceability. As files of data are
manipulated, it is vital to know what the original raw data file was and which file
was the immediate parent of the manipulated file.

Introduction 5

Flexibilit

A data collection system having the attribute of flex- J
ibility is a system that can readily adapt to changing data collection efforts. This
attribute can be examined from two perspectives, the flexibility to adapt to differ-
ent systems being tested and the flexibility to adapt to changing needs during the
test of a single system.

It makes sense for a piece of test equipment , such as a data collection
system, not to be tailored to a single specific system under test. If it were tailored
it would have to be developed anew for each new system being tested. Instead,
the data collection system should be sufficiently broad in its capabilities to sup-
port a reasonably wide range of applications. This could mean being able to
withstand both the g-forces of an aircraft and the thermal environment of a tank in
desert testing. This could mean being able to record information from both a cur-
rent transformer hooked to a high voltage line and a strain gage on a tactical
shelter during an overpressure test. This could mean being able to both record
1,000 samples in 10 seconds of transient response measurement or one sam-
ple every 10 seconds of long term stability measurements. In the actual devel-
opment of a data collection system, the scope of application would have to be
clearly defined in order to establish firm design requirements. The following are
examples of the kinds of variations a general purpose data collection system
(intended to be located inside the object under test) would have to accomodate.

Varied Test Environments. The data collection system, particularly the internal
unit, should be able to operate in many environment such as
high and low temperature, electrical noise, RF, salt water at-
mosphere, pressure, dynamic loads, high humidity or wet
environments, and shock or vibration. Producing hardware
that can function in these environments is mostly a constru- .:
ction and packaging problem.

Assorted Sensors. A unit intended for multiple purposes must be able to inter-
face with many different kinds of sensors. The inputs may be
differential or single sided. The sensor output voltages may be
in a millivolts range or 10's of volts. The impedances of the
sensor and the collection unit must be matched.

Range of Sampling Periods. Sampiing periods range from well above 106 sam-
ples per second for nuclear weapon effects (Ref 11) to less
than one sample per hour for thermal drift. The higher sam-
pling rates will force the use of faster analog to digital conver-
ters, processors, and memory.

Introduction 6

Number of Samples. The number of samples needed will vary greatly based on
two factors, the sampling period needed and the frequency
with which the stored data can be extracted. A system requir-
ing only one sample per hour could go nearly a whole year on
8K bytes of memory. On the other hand, at 106 samples per
second, 64K of memory would be filled in less than 100 milli-
seconds. The need for large numbers of samples will rapidly
complicate the internal data collection unit. More memory
means greater power consumption, more complicated ad-
dressing, and larger physical size. The longer the interval
between extraction of stored data, the larger the memory
needs to be.

Frequency of Access. This refers electrical access for retrieval of data or charg-
ing of batteries. If the access is infrequent, then the power sup-
ply will have to sufficiently large to power the unit between ac-
cesses. The frequency of access also impacts the size of the
data storage memory as discussed above.

Physical Dimensions. As the data collection unit will be located within test
objects, It should be as small as possible and be readily
mountable.

In the actual design and implementation of an internal data collection
unit, trade-offs would have to be made between the above capabilities and other
parameters such as cost. For example, one test environment, nuclear radiation
testing, imposes significant problems for electronics. To include this environment
upon a general purpose data collector would impose severe penalties on other
applications. Extremely long sampling periods or very large numbers of samples
are other examples of needs outside the bounds of a "general purpose" data col-
lection system. For these kinds of requirements, specialized units would proba-
bly be created; these special needs just push hardware flexibility too far. The
software however, would be consistent.

The second perspective on the required attribute of flexibility is the
ability of the data collection system to adapt to changing needs during the test of
a single system. Perhaps predictions were off and signals that were expected to
be 10's of volts are actually just a few volts. To have the capability to remotely
adjust the internally mounted data collection unit is quite desirable. With remote
adjustment or programming, the test apparatus wouldn't have to be torn apart to
make adjustments. Perhaps the item under test itself is inaccessible except via
control lines. It is desirable to have the capability to change the following items

%~. remotely.

Introduction 7

-d - - - - - - -

Input Channel/Sensor Selection. With the ability to remotely shift between chan-
nels or sensor, a single internal collection unit could perform the
function of several. This is an advantage only for reproducible
tests.

Attenuator / Amplifier Selection. The ability to change the gain remotely is vital.
The example above of errored predictions shows an application
where remote adjustment of attenuators would be useful.

Sampling Rate. As a unit is switched between sensors or to accommodate dif-
ferent test interests, the sampling period of the unit needs to be
changed. For example, one test run might be made at 1 K samples
per second to measure the initial transient response followed by a
second test with 10 samples per second to examine the long term
response.

Number of Samples. Given the variation in sensors and sampling rates, the num-
ber of samples collected needs to be remotely controlled.

Mode of Operation. Should the test go into a hold, it would be useful to place the
internal data collection units into some standby state to conserve
b-ttery charge. Other states of interest would be battery charge,
programming, off, and ready, self-test/readiness check.

Flexibility is thus a two perspective attribute of the requirements for the
data collection system. The ability to adapt to both varied test requirements and
changes in an ongoing test are needed.

Simple User Interface

The final requirements attribute of the data collec-
tion system is that it have a user interface. This involves four factors, clear
instructions, error diagnostics, operation on the users' terms, and fool tolerance.
The first two factors revolve around the messages passed to the user. Instruc-
tions must clearly spell out what the user is to do and the format it should be done
in. Error messages must tell what went wrong, where it went wrong, and, if possi-
ble, why it went wrong.

Operation on the'users' terms refers to two efforts. First, all commands
need to be in "real world" terms, not values selected for ease of programming.
For example sampling periods should be specified in seconds, not clock cycles.
By requesting and expressing information in terms readily understood by the

Introduction 8

.. ',,' ,
'
. ' ."L." "--' "o'- -_" ",-.'- ", - '- % " .'- ".j- " ". ' . '-.' . - "- ,',. .' ".' " ." .'' '- ' ' ..." "'', -. ' ',.. .'- * '14

users, the ease of use of the system is greatly enhanced. The second portion of
operation on the users' terms is for the computer to do the work, If translations
between units are required, the routine should perform the translation rather than
forcing the users to do so. Also included is telling the users what is happening.
Nothing disturbs a person more than sitting by a computer which hasn't "said" a
thing for several minutes. Status feed back is important.

The final factor of a simple user interface is fool tolerance. While no
system can be made totally fool proof, reasonable steps can be taken to avoid
problems. The factors already discussed go a long way towards fool tolerance;
the remaining step is error checking on the user input. Are the users' input com-
mands in range, consistant, of the proper format, and complete? If not tell the
users what is wrong and remind them of the allowable inputs. These steps will
not fool proof the system (the reset switch will still get bumped) but they will

* greatly reduce the occurrence of inadvertant errors.

In summary, the data collection system must be accurate, must
ensure data integrity, must have sufficient flexibility, and must present a simple
interface to the users of the system. Though there are design trade-offs within
and among these requirements, a reasonable general purpose data collection
system design can be derived from them.

Hardware Used for this Thesis Effort

Were this thesis effort an actual development of a data collection sys-
tem, a substantial portion of the effort would center on the selection or design of

* the hardware which implements the collection system. For this thesis effort, the
hardware was a given. The thesis effort focused 'on the design and implemen-
tation of the software needed to make the data collection system functional.

The hardware used for this thesis effort was a Zilog MCZ-80 develop-
ment system. It was used for several reasons. It was available, it had an analog
to digital (AID) converter board, timing chips for generating sampling intervals
were present, a high level language similar to Pascal was available, and exten-
sive assembly language programming tools were available. Thus the MCZ sys-

* tem met many of the requirements. for the data collection system discussed in the
previous section and provided the software development tools needed to carry
out the thesis effort. The following is an overview of the MCZ system used as
both the software development system and as the target hardware for the data
collection system (Refs 1 through 9).

*Introduction 9

J,- = - .F , I.V . - . - ,. , % X,

The MCZ development system consisted of

1. Equipment chassis with power supply and card cage
2. Two 8 inch floppy disk drives.
3. A Zilog MCB Microcomputer board. This board held:

Z-80 microprocessor
3K ROM with monitor routine
System Clock
16K of RAM
Z-80 CTC (Counter Timer Circuit)
Z-80 PIO (Parallel Input Output)
USART (Universal Synchronous Asynchronous Receiver

Transmitter)
4. A Zilog MCD Board (memory & disk controller) 48K RAM
5. A Zilog SIB Board (serial interface board, has three CTCs)
6. A Zilog AIO Board (analog input output card) which has a 12 bit

analog to digital converters.
7. RIO Operating System which includes disk operating system.
8. An ADAM-3 terminal.
9. A NEC Spinwriter Printer.

To prepare the MCZ system for this thesis effort, the AIO board had to
be integrated into the system (Ref 8:Sec 2, Sec 3:5); it had never been installed.
Installing the AIO board required minor rewiring of the motherboard of the card
cage, addition of backplane connecters for the AIO board's interfaces, and the
fabrication of connection board to permit easy hookup to tha AIO board's inter-
faces. Once the AIO board was installed, its disk based diagnostics were run and
the board's alignment was checked and adjusted as required (Ref 8: Sec 5).

As target hardware for the data colection system, the MCZ hardware
met several of the data system requirements discussed in the previous section.
The system possessed accuracy with both a 12 bit analog to digital converter and
ample hardware for generating accurate sampling periods (Ref 2, 7, and 8). The
RIO operating system supported disk file operations permitting protection of data
integrity (Ref 4). The system was relative flexible having sixteen input channels
for the analog to digital converter (Ref 8:1) and sufficient memory for both the pro-
grams and data sample storage. The Adam-3 terminal would serve as the user
interface; the bulk of the simple user interface up to the software.

While the MCZ system met many of the requirements for the data col-
lection system, it did not mesh well with the hardware concept of the data collec-
tion system. The MCZ system is a single system; the data collection system con-
cept calls for two distinct hardware units, the internal data collection / temporary -
storage unit and the external control /archival storage unit. This mismatch be-

Introduction 10

<o

N-. W1_ % TT

tween the realities of the MCZ hardware and the hardware concept of the data
collection system is largely resolved in software.

The focus of this thesis effort is the software required to make the data
collection system work. Thus the reality that a single set of hardware was being
used could be masked, in part, by making the software of the two data collection
units separate and distinct. As will be shown, the software developed for this
thesis effort maintains this division. The software of the internal unit does not talk
directly to the user except for a trigger signal. The software of the external unit f

does not have direct access to the analog to digital conversion. The program-
ming the external unit provides to the internal unit is represented by the para-
meters passed between the software of the external unit and the software of the
internal unit. Thus, while a single set of hardware is used, the software of the
data collection system is separated into internal and external units.

Overview of System Design

In designing the software of the data collection system software, the
first question was "What tasks will the user need to accomplish ?" The principal
task is to collect the data, but what else would the user need to do. Three specific
tasks and one general activity area were fidentified. The data read in frrm the
internal unit and stored in the external unit is raw data. It is in the digital form
received from the N/D converter. Thus, an important task is to translate this raw
data into data set in real world terms; the raw data needs to be scaled. To main-
tain data integrity, this scaled data should be written into a new file leaving the
original raw data file unchanged. To accomplish the scaling, the user must
specify the scale factor to be used; a unique scale factor for each input channel.
Thus a third type of file is needed, a file of scale factors. Having translated the
information of the raw data file into the information of the scaled data file, the
users would probably want to print out the data or perform further manipulations
of their design or choice. The printing out of data is the third specific task of the
data collection system and the user defined manipulations are the general
activity area. One final feature of the data collection system is a common user
interface so all the the tasks can be invoked in a consistent fashion. Thus the five
tasks the data collection system must accomplish are

Collection and Storage of Data
Setup of Scale Factors in a File
Produce a File of Scaled Data from the Raw Data and Scale Factors
Output of Data Files (Both Raw and Scaled)
Support User Manipulations of Data

Introduction 1

all with a consistent user interface.

Figure 3A below shows how these five tasks or processes interact with
each oth.r, the operating system, and the user. The common user interface is
present as an interface or interpreter between the operating system and the pro-
cesses of the data collection system. Though the figure implies that all operating
system calls would go through the user interface, this is not necessarly the case.
Once a process begins its execution, standard operating system calls and mes-
sages to the user would go directly to the operating system rather than through
the interface. Thus elements of the common user interface are implemented
through out the processes of the data collection system.

Figure 3B shows the elements used to implement the data collection
system shown in Figure 3A and shows the hierarchy of these elements. The pro-

L cess of Collect and Store Data of Figure 3A is implemented by CollectData
Module and Sampler Module along with the hardware elements and calls to the
operating system. The Set Up Scale Factor Filed process is implemented by the
Scale_-Factor Module of Figure 313, again assisted by operating system calls.
The Figure 3A processes of Scale Data, Output Data, and User Data Manipula-
tions, were not implemented. Shown in Figure 3B as portions of the operating
system are three modules of general support software which were implemented
as software development aids. The common user interface of Figure 3A is par-
tially implemented and is represented in Figure 3B by some of the calls to the
operating system from CollectData Module and ScaleFactor Module.

In the following paragraphs, the activities performed by each process
of the data collection system and, when appropriate, an overview of how the pro-
cess was implemented the will be presented. The purpose and design of the
general support software will also be presented. Information of greater detail on

* design and implementation for each module is presented in later sections of this
thesis for each software module. Please note that the software developed for this
thesis effort addresses only the Data Collection and Storage process and the Set
Up Scale Factor File process. These processes were implemented since their
output is required as input to the remaining processes. Also, the remaining
processes are simpler to implement and can be, in part, built from the routines of
the implemented processes.

Introduction 12

User Inputs

Keyboard Monitor Screen Printer

Common User Interface

AaoDaaCollect & Raw,
Analog Data Store Data Data

% ! " -- Fils Files

Set Up Scale ScaleE I Factor
~Factor File

Output DataScale Data Scaled'

" • Data
~Files

U'ser Data

Manipulations I

Figure 3A. Data Flows Between the Major Processes of the Data Collection
System, the Operating System, and the User.

Introduction 13

User
~\R outine Invocation

Moul MdueData Data Support

DaatU e & Syste m
Commands Reson~se s

cSmmpl e~~ OpeatianSste

Enhnceent Module

Commands Dat

Screen eKeybartsk Printer
I Utiity odull ~ Fies odl

SFigure 3Boiearchca Rel atiosus Betee Copoetafh Data

Collrec3.HeachclRltionshp Systemn Componentso the OprtigSstmtadteasr
ColcinSse opnns h prtn ytm n h sr

Introduction 14

Jv, General Support Software

Early in the design process one of the questions
raised was which language should this data collection system be implemented
in, PLZ, Zilog's Pascal like language, or Z-80 assembly language. PLZ offered
some of the benefits of a high level language such as mathematical operations.
PLZ however was quite cumbersome in the string input and output which would
be required for the user interface. Assembly language would be fast and offered
direct access to input output ports,memory, and the Z-80 registers. On the other
hand, Z-80 assembly language was unfamiliar, 10 was even harder than PLZ,
and math operations would be far more difficult. The selected approach was to
use the best qualities of both PLZ and Z-80 assembly language plus providing
some software "improvements" to PLZ. The software improvements focused on
two areas, string input and output, and on access to system hardware. The string
input and output improvements became the Enhancements Module; the hard-
ware access routines became the Utility Module.

The PLZ Language routines of the Enhancements Module were writ-
ten to make string input and output easier in PLZ. The routines were written to
approximate the standard Pascal read and write statements (Ref 10: Sec 7.2).
The major difference is that the Enhancements Module routines all have in input
parameter for the logical unit number, where Pascal handles device specification
as an optional parameter with the compiler sorting things out. The PLZ compiler
was not capable of this. The choice for the Enhancements Module was to use a
mandatory logical unit parameter or add new routines and global variables to
switch between logical units. The logical unit parameter approach was selected
as it is closer to the Pascal implementation and would yield far more readable
code. The Enhancements Module routines were fully developed and tested.

The Utility Module assembly language routines were initially written to
give PLZ language programs access to the AIO board. This purpose was expan-
ded to give PLZ language routines access to other portions of the system not nor-
mally accessible to PLZ. The module ultimately contained nine assembly lan-
guage routines. They provide access to input/output ports, individual memory lo-
cations, the system date, the operating system memory manager, and the enabl-
ing / disabling of the Z-80 CPU interrupts. The nine assembly language routines
of the Utility Module were completely developed and tested.

With the "improvements" provided by the Enhancements Module and
the Utility Module, development of the data collection system software could
begin.

Introduction 15

Collect and Store Data

This process is the heart of the data collection system
for it is in this process that the analog data is collected, converted to digital data,
placed in temporary storage, transferred to the external data storage unit, and
archived on magnetic media. The design of this process and its implementation
in software focussed on two competing sets of constraints. First, the design
looked the requirements for the data collection system discussed in the previous
section. Second, the design had to live within the constraints of the Zilog MCZ
development system. In addition, the software of the internal data collection /
temporary storage unit and the software of the external control / archival storage
unit had to be separate and distinct to keep faith with the hardware concept of the
data collection system. The design process for the Collect and Store data pro-
cess looked at three basic areas, the analog to digital conversion, the timing of
the sampling periods, and the archival storage of the converted data.

Analog to Digital Conversion. The design of the analog to digital
conversion portion of the Collect and Store Data process was based on the capa-
bilities of the AIO (Analog Input Output board). This board satisfies many of the
requirements outlined in the opening section. The board has a 12 bit analog to
digital (A/D) converter; this meets the needs for accuracy. Via programming, the
board can address any one of sixteen input channels; this meets the flexibility
need for in place adaptability. The A/D converter settles in about 20 micro-
seconds (Ref 8: Sec 3.5.5). Giving a liberal allowance for program overhead this
permits a minimum sampling period of about 50 microseconds, a reasonable
minimum for a general purpose data collection system. The board is hardwired
for +/- 10 volt full scale inputs and coding the output in two's complement format
(Ref 8: Sec 3.5.1).

Given the capability of the AIO board, the method of employment was
determined. The AIO board would be programmed into a polled input mode (Ref
8: Sec 4). Then, upon receipt of a timing signal, the desired input channel num-
ber would be written to the board; this initiates an A/D conversion. The control-
ling program then goes into a loop, polling the AIO board's status register until

the data ready flag is raised. The controlling routine then reads the data from the
AIO board and stores it in memory. This sequence is repeated for each timing
pulse. Initial design of the software was accomplished in PLZ. This initial soft-
ware is the AIO.PLZ.S Module. For the final program, assembly language was
selected for reduced overhead and simpler handling of the timing pulses. The
assembly language program which, among other things, implements this process
is the Sampler Module, the software of the internal unit of the data colection
system.

Introduction 16

Timing of Sampling Periods. The second general area of the
Collect and Store Data process is the selection and generation of the sampling
periods. The implementation of this timing is based on the timing capabilities of
the CTCs (Counter Timer Circuit) of the MCZ Development System's SIB. The
CTC can be easily programmed to generate periodic interrupts with intervals of
6.515 microseconds to 26.68 milliseconds (Ref 7: Sec 3.7). This timing capability
meets the needs of accuracy and begins to satisfy the requirement for flexibility
discussed in the opening section. The 26.68 millisecond maximum however is
not sufficiently long for a general purpose data collection system. So, a sixteen
bit counter was added. The combination of the CTC timer and a sixteen bit coun-
ter yields a maximum timing period of 29.14 minutes; this meets the needs of
flexibility.

Building upon the capabilities of the CTC, the sample period timing
software of the Collect and Store Data process was designed. The software had
four purposes, calculating the CTC programming values, initializing the CTC
interrupts for the sampling periods, determining the interrupt service routine para-
meters, and shut down of the CTC interrupts. Since the calculation of CTC pro-
gramming values is a math intensive effort, this task is accomplished by a PLZ
routine in the CollectData Module (external unit). These values are passed to
the Sampler Module (internal unit) where the CTC is programmed. Also inside
the Sampler Module are the interrupt service routines. The interrupt service rou-

S tine used for short sampling periods employes the CTC exclusively. The routine
for longer timing periods uses a sixteen bit counter in addition to the CTC timing.
In both routines, a channel selection byte is written to the AIO board to initiate
each analog to digital conversion. The final CTC related software accomplishes
the shut down of the interrupts. These shut down activities are also in the Sam-
pler Module portion of the software.

This division of activity between the CollectData Module and the
Sampler Module tracks with the division of function between the internal data
collection/storage unit and the external control/long term storage unit. The pro-
gramming values needed by the internal unit (Sampler Module) are developed in
the external unit (Collect_Data Module) and passed to the internal unit (Sampler
Module) to program the data collection. Thus the software developed in PLZ for
the CollectData Module and in assembly language for the Sampler Module
reflects the dual-unit hardware concept of the data collection system.

Archival Storage of Data The final purpose of the Collect and
Store Data process is the transfer of data from its temporary storage in memory
into a more permanent storage. As with the previous two discussions, the capa-
bilities available in the MCZ development system formed the basis for the design.
The Zilog system's RIO Operating System supports disk file operations. It was
pointless to reinvent the wheel so the RIO disk fle opcr,.isns b.cam, the basis

Introduction 17

J.................................,.

Yri)LF-w7 Ar VM P"W
-
1j VW .

for the long term data storage. In the PLZ language CollectData Module, a disk
file is created, filled with the data from memory, and then closed. To satisfy the
requirements for data integrity, a block of header information is loaded into the
beginning of the raw data file. This header information holds a test identifier, a
tag which all subsequent files based on this original file will also have. This tag is
ment to ensure data traceability.

The activities of the Collect and Store Data process are thus imple-
mented by the CollectData Module and the subordinate Sampler Module. The
combination of the two modules represents the full implementation of the Collect
and Store Data process, a process that involves both the internal and external
units of the target data collection system. Though the CollectData Module is
subordinate to the common user interface process, some portions of the common
user interface are implemented in CollectData Module. Co!lectData Module
sends messages to the user and performs error checking on the user supplied
input parameters. Sampler Module also has one direct tie to the user, a request
for a begin data collection. This was ment to simulate a trigger signal.

Set Uo Scale Factor File

This process precedes the scaling of the raw data
and focuses on user input of the needed scale factors. Though interaction with
the user via prompts for information on the system screen and keyboard input of
data, a file of scale factors is created. The scale factor file holds sixteen records,
one for each of the input channels of the AIO board. The user interface is menu
driven, offering the user a choice of six activities associated with editing the
sixteen records of the scale factor file. The process was implemented in the
ScaleFactor Module. This PLZ software was successfully complied but due to
time constraints it was not integrated in with the other software. The listing of
ScaleFactor Module is in Appendix B.

Scale Data

The purpose of this process is to translate the twelve bit,
two's complement representations of the raw data file into scaled data. In its
simplest form this would be accomplished by multiplying each channel's data by
the appropriate scale factor from a scale factor file. This process was not
implemented.

Introduction 18

... -.- -. : _. :.. ., ,• .

' , Out out Data

This process simply prints out the contents of a data file.
The header information in each file would give full identification of the original
test from which the data was collected. Similarly the channel number, sampling
period, number of samples, and user comments would be displayed along with
the data. This process was not implemented.

User Data Manipulations

The final process is left up to the user's needs. However,
to maintain data integrity, file access routines which included the necessary
checks and prohibitions would be provided to the user. With these routines, the

header information maintained in each file would also be maintained in any files
created by user activities. These process support routines were not implemen-
ted.

ISummary

In summary, the data collection system was partially implemented on
a Zilog MCZ Z-80 development system. The data collection system was design-
ed around five processes and a common user interface. The functions of the in-
ternal data storage unit were implemented in the assembly language Sampler
Module. Some of the functions of the external data storage and control unit were
implemented in the PLZ language CollectData Module and its subordinate
Sampler Module. These implementations focus on the Collect and Store Data
process. Of the remaining processes, only Set Up Scale Factor File was worked
on, it being implemented in the ScaleFactor Module.

Overview of the Rest of the Thesis

The remainder of this thesis is devoted to describing the software
modules. The modules are presented in a bottom up order. The modules'
names and purposes are listed below along with the page numbers for the
beginning of their descriptions. The listings of module software are in the
appendices.

Introduction 19

Module Name EM DescriDtion & Purpose

Enhancements 20 Enhancements Module is a set of PLZ language rou-
tines which make input and output in PLZ programs
easier. The 38 routines are divided into three groups.
There are 20 "write" routines, 8 "read" routines, and 10
internal support routines. Enhancements Module calls
routines of the PLZ.STREAM.I0 Module.

Utility 124 Utility Module is a collection nine assembly language
routines which give PLZ language routines direct ac-
cess to 10 ports, memory locations, the Z-80 interrupts,
the system data, and the operating system memory
manager. To the calling PLZ program, these assembly
language routines look just like PLZ subroutines.

Sampler 159 Sampler Module is a single assembly language pro-
gram which sets up and executes an interrupt paced
analog to digital conversion data collection system.
Sampler Module supports the PLZ subroutine call
structures.

m , Buffers 208 Buffers Module contains no code. It defines a 2,000
byte memory buffer used by the data collection system.

CollectData 209 CollectData Module is a PLZ language program that
controls Sampler Module's collection of data and then
loads that data into a disk file. CollectData must be
linked with the Enhancements, Sampler, and PLZ.-
STREAM.IO Modules. CollectData Module has not
been compiled.

AIO.PLZ.S 390 AIO.PLZ.S Module is a collection of PLZ language rou-
tines which, through Utility Module routines, control the
AIO analog input output board of the MCZ development
system. These routines were written principally as de-
sign routines; assembly language versions are in
Sampler Module.

ScaleFactor 416 ScaleFactor Module is a PLZ language program
through which the user would set up or edit a file of
scale factors. The scale factors are used to convert raw
data files into scaled data files.

Introduction 19A

II. Enhancements Module

Introduction to Enhancements Module

Enhancements Module is a collection of 38 PLZ language routines
whose purpose is to make PLZ input/output more Pascal-like. The 20 "Write"
routines and the 8 "Read" routines were written to emulate their Pascal name-
sakes. Internal to the module are 10 support routines used for data formating,
translation, and error checking. The routines are:

Internal Procedures Write Procedures Read Procedures

ASCII WRITE READLN
VALUE WRITELN READ_HBYTE
VALUELOOP WRITEDBYTE READDBYTE
PUTCH WRITELN_DBYTE READBBYTE
GETCH WRITE_HBYTE READLBYTE
GETASCIICH WRITELN_HBYTE READDINTEGER
PLACELOOP WRITEBBYTE READ_HWORD
VALIDBINARYCH WRITELNBBYTE READDWORD
VALIDDECIMALCH WRITELBYTE
VALIDHEXCH WRITELNLBYTE

WRITE DINTEGER
WRITELNDINTEGER
WRITEDWORD
WRITELN_DWORD
WRITE_HWORD
WRITELN_HWORD
WRITE_POINTER
WRITELN_POINTER
WRITE_RCODE
WRITELN_RCODE

The Enhancements Module routines were written to speed up devel-
opment of other PLZ software, to make PLZ a slightly higher level language.
Input/output (10) in PLZ is somewhat cumbersome. For example, to output the
string "I Like Pascal Best" using PLZ 10 the statement would be:

RETURNBYTES, RETURNCODE :=
PUTSEQ(LOGICALUNIT, ^STRING, LENGTH)

where LOGICAL UNIT is the logical unit number of the desired output device,
-STRING is a pointer to the string "I Like Pascal Best" ("#'I Like Pascal Best %R'"

Enhancements Module 20

Iar,

A could also be used in place of "ASTRING'), and LENGTH is the number of chara-
cters to be output. Thus, unlike Pascal's single input parameter for WRITELN,
PUTSEQ requires three input parameters. Also unlike the Pascal WRITELN
statement, this PLZ output has two output parameters. RETURNBYTES is the
number of character actually output and RETURN_ CODE is the operating system
condition or error code. In contrast, using the Enhancements Module WRITELN
procedure the line is:

WRITELN(LOGICALUNIT, #' Like Pascal Best %R')

which has only two input parameters and no output parameters. This is possible
because the Enhancements Module includes the procedures necessary to check
and format the input, eliminating the need for the extra parameters. The key dif-
ference between Pascal's WRITELN and the Enhancement's Module WRITELN is
the manditory inclusion of the logical unit input parameter. In Pascal, the output
device number is an optional parameter.

The logical unit parameter was incluced for three principal reasons.

First, the Enhancements routines are compiled appendages to the PLZ language,
not extensions to it. Within these constraints, it simply wasn't possible to imple-
ment an optional parameter. An alternative to an optional parameter would be a
output device selection function. This was rejected in lue of the logical unit para-
meter since one, Pascal doesn't have such a function, and two, it would increase
the overhead of the Enhancements Module, including the addition of module
level variables. The third reason for the inclusion of the logical unit parameter
was the anticipation that many devices would be used rendering the parameter
particularly useful. For these reasons, the routines of the Enhancements Module
include the logical unit parameter.

The other major deviation from Pascal is the use of many read and
write statements rather than just four. This was forced by the appendage nature
of the Enhancements Module routines, the limitations of PLZ, and a desire to
reduce the overhead for calling routines. In Pascal, the output string is parsed
during compillation; PLZ does not support such actions during compiling. In
Pascal, variables are converted to or from ASCII by the read and write state-
ments; PLZ does not support such conversions. In Pascal, all output is either
decimal representations or strings of ASCII characters. To input or output values
in other than decimal representations requires the Pascal program to perform the
conversion. By having separate routines already set up for 10 in, character hexi-
decimal, decimal, binary, and logical formats, the burden on the calling PLZ rou-

40 tine is reduced. Given the nature of the Enhancements Module, the restrictions of
PLZ, and the desire to reduce the overhead of calling routines, separate routines
were written for each type of PLZ variable.

The Enhancements Module routines, as appendages to PLZ, do use
two of the PLZ input output routines of the PLZ STREAM.IO Module (Ref 6: Sec

Enhancements Module 21

6). These routines, PUTSEQ and GETSEQ, are the primitive input and output
routines upon which the Enhancements Module routines are built. PUTSEQ and
GETSEQ are declaired external to the Enhancements Module. Their relationship
to the Enhancements Module routines is shown in Figure 4.

Any PLZ Routines Needing Input/Output Support

-"-Enhancements

WRITE & WRITELN READ Routines
Routines T .OM lon

T h Internal Routines

tTeTLQ PLZ STREAM. t fargetn
E mM

odule

Figure 4. Relationship of Enhancements Module Routines to Calling PLZ
Routines and to PLZ STREAM.I Module Routines.

To show how the Enhancements Module routines can be used, the
following are some examples of Pascal 10 statements and their PLZ/Enhance-
ments Module parallels. Carriage returns in the output are shown by ",,". "%R" is
the PLZ constant for a carriage return.

Example 1

Pascal: WRITELN(This is a Text String Output'R);
Output: This is a Text String Output-
PLZ: WRITELN(PRINTER, #'This is a Text String Output %R')
Output: This is a Text String Output-,

E s'l

Enhancements Module 22 ",

-]

Example 2
Pascal: WRITE(CURRENTCOUNT, 'items have been sorted.');
Output: 27 items have been sorted.
PLZ: WRITE DBYTE(PRINTER, CURRENT COUNT)

WRITE(PRINTER, #' items have been sorted. %R')
Output: 27. items have been sorted.

Example 3
Pascal:

WRITELN(DIMES, 'dimes plus', NICKELS,' nickels totals ',TOTAL);
Output: 17 dimes plus 8 nickels totals 25,
PLZ: WRITEDBYTE(PRINTER, DIMES)

WRITE(PRINTER, #' dimes plus %R')
WRITEDBYTE(PRINTER, NICKELS)
WRITE(PRINTER, V' nickels totals %R')
WRITELNDBYTE(PRINTER, TOTAL)

Output: 17. dimes plus 8. nickels totals 25.,

Example 4
Pascal: This would require a 25+ line routine, including a 16 item case

statement, to translate the decimal variables into hex.
PLZ: WRITELNHWORD(PRINTER, ADDRESS1)
Output: 2FC7h

Error checking is both accomplished and ignored in Enhancements
Module routines. The error checking that is performed is distributed among the
routines. Gross errors, like an operating system return code for an 10 error, are
not passed back. Errors like these are ignored or "patched" to permit continued
program operation. This approach was selected to permit the programs to stum-
ble along rather than fatally fail during debugging. This way debugging can pro-
ceed more readily using the expected output and the debugging aid of WRITE_
RCODE to figure out what went wrong. This approach is based on the belief that
once final version software was reached it would be error free and diagnostic
error checking would not be needed. Defensive error checking, such as GET_
ASCIICH's acceptance of only ASCII characters, remains in place.

To give an example of the distributed error checking, the figure and
text below describethe process of reading in a decimal value and then outputing
it as a hexidecimal value. This process involves thirteen routines, seven for input
and six for output. The routines involved and their relationship is shown in Figure .
5 . Error checking and ignoring is scattered throughout the thirteen routines.
The following is a list of the error related actions.

4... .

Enhancements Module 23

V.

rVALUELO
* WRITEHWORD

VALUE

IVALIDDECIMALCH PAELO

GETASCIICHAS I

* GETCH 1PUTCH I

P IZTREM. I GETSE PUTSEQ

.A dul
M l

Operating System

Figure 5. Routines and Relationships Used to Read in a Decimal Value and
Output a Hexidecimal Value.

1. GETSEQ This is an external routine of the P12 STREAM.IO Module. It
returns to a calling routine the RIO operating system error code,
RETURNCODE and the number of characters actually read in,
LENGTH.

2. GETCH This routine calls GETSEQ to read in only one character.
GETCH then ignores the return parameter LENGTH since only

Enhancements Module 24

VALU*ELOP.

.5.4* ~ ~. VALUE~ - *5 -.-. ' .

** '

-7, W.-.

.1 :: 3. GETASCII_OH Only ASCII characters are returned to the calling routine
by GET ASCII OH. It checks the character it gets from GETCH
to see whether it is a valid ASCII character. If it is, the character
is returned to the calling routine. If not, GETASCIICH calls
GETCH for another character and keeps checking and callin
GETCH until a valid ASCII character is read.

4. READDWORD This routine does no error checking itself. It depends upon
GET_ ASCII_CH to pass only valid ASCII characters and upon
VALIDDECIMALCH to ok only "0" through "9". READ_
DWORD sits in a loop, calling GETASCII_CH and VALID_
DECIMALCH until sufficient characters are input. Then READ_
DWORD depends upon VALUE_ LOOP to correctly translate the
characters, all already verified as decimal, into the NUMBER
passed back to the calling routine.

5. VALIDDECIMALCH VALIDDECIMALCH examines the characters
passed to it. If the character is a "0" through "9" VALID_
DECIMALCH returns as TRUE, otherwise it returns as FALSE.

6. VALUE This routine is used by VALUELOOP to translate a character
into the MAGNITUDE it represents. VALUE will translate the
characters "0" through "F" into values of 0 through 16. If VALUE
does receive a character other than these defined, it returns a
MAGNITUDE of zero.

7. VALUELOOP With the MAGNITUDEs returned from VALUE, VALUE_
LOOP translates the string of characters into a single
MAGNITUDE. VALUE_ LOOP checks for overflow with the
addition of each characters contribution to the total value. If
overflow is detected, the output MAGNITUDE is set to the
maximum possible for a PLZ word, 65535 decimal.

At this point, READDWORD returns NUMBER to its calling routine. For this
example, NUMBER is immediately passed to WRITELNHWORD.

8. WRITELNHWORD This routine depends upon WRITEHWORD and
PUTCH to handle errors and expects its calling routine to pass
only valid NUMBERs to be output.

9. WRITEHWORD This routine does no error checking. It depends upon
PLACE_ LOOP to translate NUMBER into ASCII characters and
PUTCH to output the "h". It also expects its calling routine to
pass only valid NUMBERs.

10. PLACELOOP This routine also does no error checking. It breaks down

Enhancements Module 25

-s . o. ., . ,., , , .-. -. : . .:-. ;... ,:

the NUMBER, from most significant place to the ones place,
determining the VALUE of each place. PLACELOOP depends
upon ASCII to correctly translate the VALUEs into ASCII
characters and upon PUTCH to output those characters.

11. ASCII Through the use of a case statement ASCII translates VALUEs
into CHARACTERs. If the value passed exceeds 16 decimal,
ASCII returns a blank. Thus if any of the higher lever routines
errored, ASCII will return either a blank or an erroneous
character between "0" and "F". Thus, the program will continue
to execute though flawed output may occur.

12. PUTCH This routine ignores all errors returned by PUTSEQ. PUTCH

calls PUTSEQ to output only one character. PUTCH assumes
that the single character is successfully output. PUTCH also
ignores the PUTSEQ output parameter RETURNCODE
assuming that the output was successful. This permits the
program to continue execution.

13. PUTSEQ This is an external routine of the PLZ STREAM.IO Module. Its
error checking has two return parameters, the RIO operating
system RETURNCODE, and the number of characters actually
output, LENGTH.

While Enhancements Module is a complete set of 10 support routines
intended to ease the 10 programming in PLZ, not all PLZ applications will require
all of the routines. In these cases, a new module, containing only the needed
routines could be formed and linked in with the application program. An example
of such a module, DEBUGS, is listed in Appendix A. Alternatively, the Enhance-
ments routines needed could be part of the calling routine's module. An example
of this approach is ScaleFactor Module (Appendix H). In either case, the PLZ
STREAM.IO must be linked in for access to PITSEQ and GETSEQ.

If speed of execution is of concern, the overhead of the Enhancements
Module routines could be reduced by combining the code of several routines into
one larger routine. This would eliminate the overhead and delay of subroutine
calls present in the current set of routines. For example the six routines used in
the example above to read in a decimal value could be combined into a single
routine version of READDWORD. The negative impact of this approach would
be the duplication of many lines of code in the combined routines.

In conclusion, the 38 PLZ routines of the Enhancements Module were
written to make 10 in PLZ a little easier, in effect to make PLZ a slightly higher
level language. These routines have defensive error checking distributed

Enhancements Module 26

4," V.

throughout the routines but patch or ignore fatal errors in the belief that a routine
that stumbles along is easier to debug than one which fails completely. Though
the Enhancements Module is a complete set of 10 routines, not all applications
will require all 38 routines. In these cases, a module of selected routines could
be used or the routines needed could be put into the application program's mod-
ule. In either case the PLZ STREAM.I0 Module must be linked in.

The following pages detail the 38 Enhancements Module routines.
For each routine the documentation includes:

1 . Name of the routine or routines,
2. Name of module,
3. Language routine is witten in and number of lines of code,
4. A synopsis of the routine or routines,
5. A data flow diagram showing the relationship of the routine to its

calling routines and to routines it calls,
6. How the routine is invoked including the input parameter passing

schema and a list of the routines which call,
7. The variables and constants used by the routine at the global,

module, and routine level,
8. The names, purpose, invocation, and parameter passing of any

other routines called by the routine,
9.The output of the routine and any system configuration changes

produced by the routine,
10. The testing of the routine and the results of the testing, and
11. The location of the program listing.

The program listings for Enhancements Module and the various test
routines are in Appendix A. Further information on the PLZ language can be
found in references five and six.

Enhancements Module 27

.- , , , . , = W.1 , v. W.7.. .,: , - 4. A. . ,: .. ; , '7 ' , ILI i -C' _, -- I ; 'K.- . ,

1. Name of Routine: ASCII

2. Internal routine of Enhancements Module.

3. Written in PLZ; 22 lines of executable code.

4. Synopsis of Routine

ASCII is an internal support routine of the Enhancements Module. It trans-
lates a hexadecimal value (0 through F) into the ASCII character which repre-
sents that value ("O" through "F"). To facilitate the use of leading blanks in stings
of values, ASCII will return a blank (ASCII 20 hex) rather than a zero (ASCII 30
hex) if blanking is selected.

%'

5. Routine Relationship Diagram

PLACELOOP

ASCII .
Figure 6. Relationship of ASCII to PLACELOOP.

6. Invocation

a. Invocation Statement

ASCII is invoked by:

OUT BLANKING, CHARACTER := ASCII (VALUE, INBLANKING)

b. Parameter Passing Schema _

ASCII has two input parameters, VALUE, type Word, and IN BLANK-
ING, type Byte. VALUE is the hexadecimal quantity that is to be translated into
the correct ASCII character. INBLANKING is a logical parameter which indi-
cates wether values of zero should be returned as a "0", when INBLANKING is

Enhancements Module 28

~ :~*.-v.~-.-~ . K-

false, or as a blank, when INBLANKING is true. The output parameters are
discussed below.

c. Routines Which Call ASCII

ASCII is an internal support routine for Enhancements Module was
written to be called only by PLACE-..LOOP, another internal routine of Enhance-
ments Module.

7. Variables and Constants

a. Global

ASCII uses no globally defined constants or variables.

P b. Module

ASCII uses three Enhancements Module constants:
TRUE: Value of 1, logical true,
FALSE: Value of 0, logical false, and
BLANK: Value 20 hex, ASCII blank character.

8. Other Routines Called

00 ASCII calls no other routines.

9. Output of Routine

a. Parameter Passing Schema_

ASCII has two output parameters, CHARACTER and OUT_ BLANK-
ING, both of type Byte. CHARACTER is returned as the ASCII character which
represents the VALUE input to the routine. However, if INBLANKING was True
and VALUE was zero, CHARACTER will be returned as a blank (ASCII 20 Hex).
OUT_-BLANKING is a logical parameter, true if CHARACTER is returned as a
blank, false otherwise. OUTBLANKING is a flag to the calling routine that a
blank was returned.

Enhancements Module 29

b. System Configuration Changes

ASCII causes no system changes.

10. Routine Testing

a. Description of Test

ASCII was tested in combination with its calling routine (PLACE_
LOOP) and the hexidecimal output routines WRITE HBYTE and WRITELN_
HBYTE. The PLZ program output hexadecimal characters to the system console.
Out of range and undefined values were used in addition to a range of valid
values. Unless all routines were working, no output would occur.

b. Results of Test

The proper characters were output to the system console for all casestested.

11. Reference to Listing

ASCII's listing is on page 280 in Appendix A.

'4

Enhancements Module 30

1. Routine Name: VALUE

2. Part of Enhancements Module

3. Written in PLZ. 19 lines of executable code.

4. Synoosis of Routine

VALUE is an internal support routine of the Enhancements Module. It
is used to convert from ASCII characters (0 to 9 and A to F) into their hexadeci-
mal values. If an undefined character is passed, a value of 0 hex is returned.
VALUE supports some of the READ statements of the Enhancements Module.

5. Routine Relationships Diagram

VALUELOOP READ HBYTE READ_DBYTE

Figure 7. Relationship of VALUE to Other Routines.

6. Invocation

a. Invocation Statement

VALUE is invoked via:

MAGNITUDE := VALUE(CHARACTER)

where CHARACTER and MAGNITUDE are both of type Byte.

b. Parameter Passing Schema

VALUE has one input parameter, CHARACTER, the ASCII character
that is to be translated into a hexidecimal value.

Enhancements Module 31

Ni5.

c. Routines Which Call VALUE.

VALUE is an internal support routine of the Enhancements Module. It
was written to be called only by VALUELOOP, READ_HBYTE, and READ_
DBYTE.

7. Variables and Constants

VALUE uses no constants or variables outside of its input and output
parameters.

8. Other Routines Called

VALUE calls no other routines.

9. Output of Routine

a. Parameter Passing Schema

VALUE has a single output parameter, MAGNITUDE, the hexidecimal
value represented by the input parameter CHARACTER.

b. System Configuration Changes

VALUE causes no system configuration changes.

10. Routine Testing

a. Description of Test

VALUE was tested in concert with VALUELOOP, READHBYTE, and
READ_DBYTE. A short PLZ program read in values from the keyboard and out-
put their value to the system console. Out of range and undefined values were

also input. Unless all the routines worked, proper output would not occur.

b. Results of Test

The correct values were output including when improper values were
input.

Enhancements Module 32

1 ~~~~ ~ ~ ~ ~ ~ ~ ;'V..l: -,%:- e~*-.,.

11. Reference to Listing

VALUE's listing is on page 281 in Appendix A.

Enhancements Module 33

1. Routine Name: VALUELOOP

2. Internal routine of Enhancements Module.

3. Written in PLZ; 11 lines of executable code.

4. Synopsis of Routine

VALUELOOP is an internal support routine of the Enhancements
Module; it is used by some of the READ routines. VALUELOOP translates a
string of ASCII characters into the value they represent. The string of ASCII
characters (1 to 8 characters) can be in any base as the base is input to
VALUELOOP. The routine translates each character into a value (via routine
VALUE), multiplies that value by the base factor for that characters position, and
then adds the characters full value to the cumulative value. This process begins
with the least significant bit and proceeds through the higher significence bits. If
the translated value exceeds the maximum value for a PLZ word (65535 decimal)
the output value is set to the maximum. The routine ends when a blank is
detected or when eight characters have been translated.

5. Routine Relationship Diagram

READ HWORD READDWORD

READBBYTE READ_DINTEGER

V ALUE-LOOP

VALUEj-I'I

Figure 8. Relationship of VALUELOOP to Other Routines.

6. Invocation

a. Invocation Statement

VALUELOOP is called via:

Enhancements Module 34

-.5 ,.., o : 'V .
- . " ' ., . ',. - . . '''' . ..- ' '''' . ""- "" ""' "" , . ' , • -"-"-. -"""""" " . - , "" , . - "-

W. P. F .- ;

MAGNITUDE := VALUELOOP(INPUTSTRING, MULTIPLIER)

where MAGNITUDE and MULTIPLER are of type Word and INPUTSTRING is a
pointer to an ASCII string.

b. Input Parameter Passing Schema

VALUELOOP has two input parameters. INPUTSTRING is a pointer
to the string of ASCII characters to be translated. MULTIPLER is the base of the
number represented by the string of characters. As it is type Word it has a de-
fined range of 0 to 65535 decimal though its useful range is 2 to 16 decimal.

c. Routines Which Call VALUELOOP

VALUELOOP is an internal support routine of the Enhancements
Module. It was written to be called only by READBBYTE, READDINTEGER,
READHWORD, and READDWORD. This is important as error checking is
distributed among the routines.

* 7. Variables and Constants

a. Global

VALUELOOP uses no module level variables or constants.

b. Module

VALUELOOP uses one module level constant, BLANK: The ASCII
value 20 hex for a blank. VALUELOOP uses no module level variables.

c. Routine

VALUELOOP uses two routine level variables, INDEX and FACTOR.
INDEX, type byte, is used to advance through the input character string. Its initial
value is zero. FACTOR, type word, holds the base value of the current character
position. It is the base (MAGNITUDE) raised to the INDEX power. Its initial value
is one.

Enhancements Module 35

W 8. Other Routines Called by VALUE LOOP

VALUE_-LOOP calls procedure VALUE to translate each character into
the value it represents. VALUE is also an internal support routine of Enhance-
ments Module. VALUE is invoked via:

MAGNITUDE := VALUE(CHARACTER)

where CHARACTER is the ASCII character to be converted into the MAGNITUDE
it represents. Both CHARACTER and MAGNITUDE are of type Byte.

9. Output of Routine

a. Output Parameter Passing Schema

VALUELOOP has one output parameter, MAGNITUDE, of type Word.
It is the value represented by the input character string of the input base. MAGNI-
TUDE can take on a value of 0 to 65535 decimal. If the value of the input string
exceeds the maximum value, the maximum value will be returned.

* b. System Configuration Changes-

VALUELOOP causes no system configuration changes.

10. Routine Testing

a. Description of Test

VALUELOOP was tested along with other Enhancements Module
routines. The complete set of routines are necessary for correct function. The
integrating P12 program read in character strings from the keyboard, translated
their value (using VALUE_-LOOP and VALUE), and then output the value to the
system console. Various valid character strings and several out of range and
invalid strings were input.

b. Results of Test

The correct value was output to the console for all cases tested.

Enhancements Module 36

.11. Reference to Listing

The listing of VALUELOOP is on page 282 in Appendix A.

Enacmns oue3

1. Routine Name: PUTCH

2. Internal routine of Enhancements Module.

3. Written in PLZ; three executable lines of code.

4. Svnopsis of Routine

PUTCH is an extremely short routine which interfaces the output routines of
Enhancements Module with the output routine of the PLZ Stream 10 Module,
PUTSEQ. Where PUTSEQ has five parameters (three input and two output),
PUTCH as only two input parameters. PUTCH thus insulates the output rou-
tines of the Enhancements Module from the added complexities of PUTSEQ.
PUTCH is based on a sample routine given the the PLZ Documentation (Ref 6:
6-5).

5. Routine Relationships Diagram

Enhancements Module Routines
WRITEXXXX & WRITELNXXXX

~PUTCH

EUTSEQ PLZ STREAM.1OP Module

Figure 9. Relationship of PUTCH to Other Routines.

6. Invocation

a. Invocation Statement

PUTSEQ is invoked as follows.

PUTCH(LOGICALUNIT, CHARACTER)

where both input parameters are of type Byte.

Enhancements Module 38

_A-0

b. Parameter Passing Schema

PUTCH has two input parameters. LOGICALUNIT is the number of
the device the output is to be routed to. CHARACTER is the value to be output to
the desired LOGICALUNIT. Though its name implies ASCII data, any eight bit
hexidecimal value can be passed though CHARACTER.

c. Routines Which Call PUTCH.

PUTCH is an internal support routine of the Enhancements Module. It
was written to be called only by Enhancement Module routines. PUTCH is called
by PLACELOOP, WRITELN, WRITEDBYTE, WRITELN_DBYTE, WRITE_
HBYTE, WRITELNHBYTE, WRITE_BBYTE, WRITELNBBYTE, WRITELN_
LBYTE, WRITEDINTEGER, WRITELNDINTEGER, WRITEDWORD, WRITELN_
DWORD, WRITEHWORD, WRITELNHWORD, and WRITELNPOINTER.

7. Variables and Constants

a. Global

PUTCH uses no global variables or constants.

b. Module Level

PUTCH uses no module level variables or constants.

c. Routine Level

Within the routine are two variables, LENGTH (type Word) and
RETURNCODE (type Byte). LENGTH is used as both for input and output
parameters to the external routine PUTSEQ. For input it is set to one as PUTCH
outputs only one byte to PUTSEQ. LENGTH is used as a place keeper output
variable - there only to keep the subroutine calling syntax correct. RETURN_
CODE is similarly used as a place keeper output parameter.

8. Other Routines Called

PUTCH calls PUTSEQ, an external routine of the PLZ STREAM 10
Module. PUTSEQ outputs a known length sequence of values to the specified
logical unit. PUTSEQ is invoked by:

Enhancements Module 39

.. ".

N- .% , - - , ",. ,. k % .. "t " .% '. ' 't " . ". , ' ' '. , • ". ." ' ' ' *- ' " '.

,Lb, -,.,. ,, i'.; o ', i :, , ' - . . , " . L I....'-.p , ~ i ". . -', ,, ; , - ' , -. , q".-, " - . -"

LENGTH, RETURNCODE
PUTSEQ(LOGICALUNIT, BUFFERPTR, LENGTH)

PUTSEQ has three input parameters, LOGICALUNIT, BUFFERPTR,
and LENGTH. LOGICALUNIT (type Byte) is the number of the device to which
data is to be output. BUFFERPTR (type Pointer to Byte) is a pointer to the string
of characters (or values) to be output to the designated logical unit. Note that as
PUTCH outputs only single characters, BUFFERPTR is passed as pointer to the
PUTCH input parameter CHARACTER. Thus, in the call to PUTSEQ,
CHARACTER undergoes a type conversion from Byte to Pointer-to-Byte. The
third input parameter, LENGTH (type Word), is the number of characters (values)
to be output; the length of the string pointed to by BUFFERPTR. The PUTSEQ
call in PUTCH uses the constant one for LENGTH as only a single character is
output.

PUTSEQ returns two parameters, LENGTH and RETURNCODE.
LENGTH (type Word) is the number of bytes actually output. RETURNCODE is
the operating system error code.

9. Output of Routine

PUTCH has no output parameters. Beyond writing a value to a logical
unit, PUTCH has no impact on system configuration.

10. Routine Testing

PUTCH was not specifically tested. Rather, it was tested along with
the other routines of the Enhancements Module. Most of the "write" and "writeln"
routines use PUTCH, directly or indirectly. These routines worked, thus PUTCH
worked.

11. Reference to Listina

The listing for PUTCH is on page 283 in Appendix A.

Enhancements Module 40

, , ° o . " ° ,. .o -o- .o - . , o ° .•° o . • * • o. - . , , . • - . . % % , • ° ,, ,. . - .° % - . • °. I

1. Routine Name: GETCH

2. Internal routine of Enhancements Module.

3. Written in PLZ; four lines of executable code.

4. Synopsis of Routine

GETCH is a very simple routine which interfaces the PLZ STREAM 10
Module routine GETSEQ to the "read" routines of the Enhancements Module.
Where GETSEQ has three input parameters and two output paramenters,
GETCH presents its calling PLZ routine with one input and one output para-
meter. The key difference is that GETSEQ can read in a string of arbitrary length
while GETCH reads in a single value. GETCH is based on a sample routine
given the the PLZ Documentation. (Ref 6: 6-5)

5. Routine Relationships Diagram

READ DINTEGER READ HWORD
READ BBYTE READ DWORD

GETCH

PLZ STREAM.IO

GETSEQModule

Figure 10. Relationship of GETCH to Other Routines

6. Invocation

a. Invocation Statement
GETCH is invoked by:

CHARACTER := GETCH(LOGICALUNIT)

where both CHARACTER and LOGICALUNIT are of type Byte.

Enhancements Module 41

-o .

b. Parameter Passing Schema

GETCH uses the input parameter LOGICALUNIT to select the device
from which a value is to be read. The value read is output via parameter
CHARACTER. Despite its name, CHARACTER could output any eight bit value.

c. Routines Which Call GETCH.

GETCH is an internal routine of the Enhancements Module and was
written to be called only by other Enhancements Module routines. GETCH is
called by GETASCIICH.

7. Variables and Constants

a. Global Level

GETCH uses no global variables or constants.

b. Module Level

GETCH uses no module level variables. It does use two module level

constants, OPERATIONOK and BLANK. OPERATIONOK is the operating sys-
tem return code for a successful 10 action; its value is 80 hexidecimal. BLANK is
the ASCII blank, value 20 hexidecimal.

c. Variables and Constants internal to GETCH

GETCH has two internal variables and one internal constant. The
internal variables, RETURNCODE (type Byte) and LENGTH (type Word), are
used in calling GETSEQ. The constant used, 1, is explicit (not a named con-
stant) and is also used in calling GETSEQ.

8. Other Routines Called

GETCH calls a single routine, GETSEQ, an external routine of the PLZ
STREAM.IO Module. GETCH uses GETSEQ to read a single character from a
designated logical unit. GETSEQ has one input parameter, LOGICALUNIT(type Byte); one return parameter, RETURN-CODE (type Byte); and two bidirec-

tional parameters, BUFFERPTR (type Pointer-to-Byte) and LENGTH (type
Word). LOGICALUNIT passes the number of the device driver from which the

4 "character will be taken. This is the same as the LOGICALUNIT passed into

Enhancements Module 42

";"" = " ° -" % ". -" " - '" ",-" "- - , " ''- ", ' "- ',,-,I,> ..- 2'., ."," .","

GETCH. RETURNCODE carries back the operating system code indicating
whether the input was successful or not. If RETURNCODE does not pass back
the OPERATIONOK code, GETCH returns to its calling routine a blank.

BUFFERPTR points the the memory location where the first character
of the string will be stored. Thus, it is similar in function but different in type from
the GETCH input parameter CHARACTER. In the invocation of of GETSEQ,
BUFFERPTR is passed ACHARACTER or pointer to the variable CHARACTER,
type Pointer-to-Byte. In this way the type conversion occurs.

LENGTH serves two purposes. On the call to GETSEQ, LENGTH
gives the number of characters which are supposed to be read in. Upon return to
GETCH, LENGTH passes back the number of characters actually read. For
GETCH, LENGTH is passed to GETSEQ with the constant value of 1 as a single
character is to be output; the return value of LENGTH is ignored.

GETSEQ is invoked via:

LENGTH, RETURNCODE :=
GETSEQ(LOGICALUNIT, CHARACTER, LENGTH)

9. Output of Routine

GETCH returns to its calling routine a single ASCII character in the
output parameter CHARACTER (type Byte). If the reading operation was unsuc-
cessful for any reason, a blank is returned to the calling routine. Beyond reading
a character in from a logical unit, GETCH causes no system configuration
changes.

10. Routine Testing

a. Description of Test

GETCH was tested with the rest of the Enhancements Module
routines.

b. Results of Test

GETCH worked properly.

Enhancements Module 43

' ,I

NA11. Reference to Listin

The listing of GETCH is on page 283 in Appendix A.

Enacmns oue4

*9%M LjvUVU#UPVrUFr ~~ .V~~jrW ' -r *,l- .1xx

1. Routine Name: GETASCII_CH

2. Internal routine of Enhancements Module.

3. Written in PLZ; three lines of executable code.

4. Synopsis of Routine

GETASCIICH reads in values from a designated logical unit and
checks that the value read in is a valid ASCII character. If the value is valid, the
character is returned to the calling PLZ routine. Otherwise, GETASCIICH
keeps reading in values until a valid character is read. The values GET_
ASCIICH considers valid are:

All printing characters: 0-9, a-z, A-Z, and punctuation,
Control-G, the aural tone,
Control-I, horizonal tab,
Control-J, line feed,
Control-M, carriage return,
Control-[, escape, and
blank.

5. Routine Relationships Diagram

Enhancements Module
READ Routines

IGE

Figure 11. Relationship of GETASCIICH to Other Routines.

a. Invocation Statement

GETASCIICH is invoked via:

Enhancements Module 45

,=..,_,Z_% , "t, ,Z .'' .', J " " """, ; ,,4 - .£ . " " ",", ," ".", .- ".'.,"".., . ."" ." . ..-.''

where both CHARACTER:= GETASClICH(LOGICALUNIT)

where both CHARACTER and LOGICAL-UNIT are of type Byte.

b. Parameter Passing Schema

The input parameter LOGICALUNIT is used to designate which
device the value is to be read from.

c. Routines Which Call GETASCII_CH.

GET._ASCII_CH is an internal routine of Enhancements Module and
was written to be called only by other Enhancements Module routines. GET_
ASCII_CH is called by READLN, READHBYTE, READDBYTE, READBBYTE,
READLBYTE, READDINTEGER, READHWORD, and READDWORD.

7. Variables and Constants

a. Global

Aside for the definitions for ASCII characters, GET ASCIICH uses no
gloal variables or constants.

b. Module Level

Within the Enhancements Module, a number of constants are used to
represent nonprinting ASCII characters. GETASCIICH uses:

BELL: ASCII Control-G, the aural tone,
TAB: ASCII Control-I, horizonal tab,
LINEFEED: ASCII Control-J,
CARRIAGERETURN: ASCII Control-M,
ESCAPE: ASCII Control-[, and
BLANK: ASCII for a space.

GETASCIICH uses no module level variables.

c. Routine Level

GETASCIICH has no routine level variables or constants.

Enhancements Module 46

a ..
." " "" t","..",,.- ."' "-".. ".:.";'. "."'","" . "-".".'-"."."."-". • -"- .-.'-,'" '. ." " ". .-. ".".-.".".- -". ".

8. Other Routines Called

GETASCIICH uses another Enhancements Module routine,
GETCH, to read a character from the device designated by the input parameter
LOGICALUNIT (type Byte). If the reading operation was successful, GETCH
re-turns the ASCII character in return parameter CHARACTER (type Byte). If the
reading operation was unsuccessful, GETCH returns a blank. GETCH is invoked
via:

CHARACTER := GETCH(LOGICALUNIT).

9. Outout of Routine

a. Parameter Passing Schema

GETASCIICH has one output parameter, CHARACTER (type Byte)
which returns an ASCII character to the calling routine.

b. System Configuration Changes

Beyond reading in one or more values from the designated logical
unit, GETASCIICCH causes no system configuration changes.

10. Routine Testing

a. Description of Test

GETASCIICH was not tested independently. It was tested in con-
cert with the "read" routines of the Enhancements Module. All of the read rou-
tines use GETASCIICH to input characters. Thus, any test of these read rou-
tines tests GETASCIICH.

b. Results of Test

The "read" routines of the Enhancements Module functioned properly.
Thus GETASCIICH works properly.

11. Reference to Listing

S,.GETASCIICH's program listing is on page 284 in Appendix A.

Enhancements Module 47

' : *%*" . " r " ." .° *. q - - ,' 2.-o- . -".',- °. . - *-- '.,' '= . **.. .° ' **,--. -.

1. Routine Name: PLACE LOOP

2. Internal routine of Enhancements Module.

3. Written in PLZ; seven lines of executable code.

4. Synoosis of Routine

PLACELOOP is an internal support routine of the Enhancements
Module. It outputs to the designate device a string of ASCII characters repre-
senting the value NUMBER. The base of the output representation (defined
range 2 to 16) and the number of characters output is selectable. Blanking of
leading zeros is also selectable.

PLACELOOP works its way down from the most significant place to
the least significant. At each place, (base)P , the contribution of NUMBER to the
mantissa is found and translated into a character representing the mantissa. For
example, if the base is 16 and the contribution is 11, the character would be B.
NUMBER is reduced by the mantissa contribution and PLACELOOP proceeds
to the next lower significance place. This process continues until NUMBER is
completely represented.

I5. Routine Relationships Diagram

Enhancements Module WRITE X Routines
(DBYTE, HBYTE, BBYTE, DINTEGER, DWORD, HWORD, POINTER)

PLACE-LOOP

FASCII PLACE_LOOP

Figure 12. Relationship of PLACELOOP to Other Routines.

6. Invocation

a. Invocation Statement

PLACELOOP is invoked by:

Enhancements Module 48

* _~"

77 W 7 7 P 1 - - - - - 7 - . . 1 N-

PLACELOOP(LOGICALUNIT, BLANKING, NUMBER, INDEX, DIVISOR)

where LOGICALUNIT and BLANKING are of type Byte and NUMBER, INDEX,
and DIVISOR are of type Word.

b. Parameter Passing Schema

PLACELOOP has five input parameters. Their definitions and uses
follow.

LOGICALUNIT: The number of the device to which characters will be written.
Type Byte.

BLANKING: A logical flag which, if true, indicates that leading zeros are to

be suppressed. Type Byte.

NUMBER: The value which will be output. Type Word.

INDEX: The base value of the most significant character of the
output. For example, if the output is decimal with four digits,
INDEX would be 1,000 or 104. INDEX is of type Word.

DIVISOR: The base of the output. Type Word.

c. Routines Which Call PLACELOOP

PLACELOOP is an internal routine of the Enhancements Module and
was written to be called only by other Enhancements Module routines. PLACE_
LOOP is called by WRITEDBYTE, WRITEHBYTE, WRITE_BBYTE, WRITE_
DINTEGER, WRITEDWORD, WRITEHWORD, and WRITEPOINTER.

7. Variables and Constants

a. Global

PLACELOOP uses no global variables or constants.

b. Module

PLACELOOP uses no module level variables or constants.
Sc. Routine

Enhancements Module 49

II

PLACELOOP has two routine level variables, VALUE (type Word)
and CHARACTER (type Byte) in addition to the input parameters NUMBER and
INDEX. The following shows how the variables of PLACELOOP function to
resolve the characters which represent NUMBER. Once VALUE is resolved it is
translated into a CHARACTER by routine ASCII.

mantissa3 X base3 = VALUE(3) X INDEX(3)
mantissa2 X base2 - VALUE(2) X INDEX(3)
mantissa, X base 2 - VALUE(2) X INDEX(2)

mantissa 0 X base =+ VALUE(0) X INDEX(0)

= NUMER - NUMBER

where

VALUE(n) = NUMBER(n) / INDEX(n),

NUMBER(n.1) = NUMBER(n) MOD INDEX(n) , and

INDEX(n.. 1) = INDEX(n) / DIVISIOR.

The calculation of VALUE and translation of the VALUEs into characters begins
with the most significant position and proceeds to the least significant.

8. Other Routines Called

PLACELOOP calls two Enhancement Module routines ASCII and
PUTCH. ASCII is used to translate the VALUEs into CHARACTERs. ASCII
receives VALUE and BLANKING (passed into PLACELOOP by the calling
routine) as input parameters and returns to PLACELOOP BLANKING and
CHARACTER. If VALUE is zero and BLANKING is true, CHARACTER will be
returned as a blank and BLANKING as turn. Otherwise, CHARACTER will be the
ASCII character which represents VALUE and BLANKING will be returned as
false.

PLACELOOP uses PUTCH to output each CHARACTER. PUTCH
receives LOGICALUNIT (passed into PLACELOOP by the calling routine) and
CHARACTER. PUTCH outputs the character to the desired device. PUTCH has
no return parameters.

9. Output of Routine

Enhancements Module 50

a. Parameter Passing Schema

PLACELOOP has no output parameters.

b. System Configuration Changes

Other than the outputing of a string of characters to a device, PLACE_
LOOP causes no system configuration changes.

10. Routine Testino

a. Description of Test

PLACELOOP was not individually tested. Instead it was included in
a test of all the Enhancement Module routines. As many of the "write" and
"writeln" routines depend upon PLACE_LOOP, if PLACELOOP didn't work, they
wouldn't work.

b. Results of Test

The "write" routines functioned properly, thus PLACELOOP func-
tioned properly.

11. Reference to Listing

The listing of PLACELOOP is on page 285 in Appendix A

4

Enhancements Module 51

"N N

1. Routine Name: VALIDBINARYCH

2. Internal routine of Ehancements Module.

3. Written in PLZ; four lines of executable code.

4. Synoosis of Routine

VALIDBINARYCH a simple internal support routine of the Enhancements
Module. It examines an input character and determines whether it is a "0" or a
"1". If it is, VALIDBINARYCH returns the flag VALIDITY as true; otherwise
VALIDITY is false.

5. Routine Relationships Diagram

READHBYTE READHWORD

I VALIDHEXOH

Figure 13. Relationship of VALIDBINARYCH to Calling Routines.

6. Invocation

a. Invocation Statement

VALIDBINARYCH is invoked via:

VALIDITY := VALIDBINARYCH(CHARACTER)

where both VALIDITY and CHARACTER are of type Byte.

b. Parameter Passing Schema

VALIDBINARYCH has one input and one output parameter.
CHARACTER is passed into the routine and is checked against "1" and "0".
VALIDITY is returned as either true if CHARACTER checks out. Otherwise
VALIDITY is returned as false.

Enhancements Module 52

..-Lt' S . .*.. .* _

c. Routines Which Call

VALIDBINARYCH is an internal routine of Enhancements Module.
It was written to be called only by other Enhancements Module routines. As it
turns out, VALID_ BINARYCH is not called by any routines of the Enhancements
Module. In writing the other routines, an IF statement was used to determine
whether the input character was a "1" or a "0" rather than calling VALID_
BINARYCH.

7. Variables and Constants

a. Global

VALIDBINARYCH uses no global constants or variables.

b. Module Level

VALIDBINARYCH uses two module constants: TRUE - value 1 hex,
and logical true, and FALSE - value 0 hex, logical false. VALID_BINARYCH
uses no module level variables.

c. Routine

VALIDBINARYCH hs no routine level constants or variables.

8. Other Routines Called

VALID_BINARYCH calls no other routines

9. Output of Routine

a. Parameter Passing Schema

VALIDBINARYCH has a single output parameter, VALIDITY, of type
Byte. It is returned with the logical value true if the input CHARACTER is either a
"1" or a "0". Otherwise VALIDITY is returned with the logical value false.

b. System Configuration Changes

VALID BINARY CH causes no configuration changes.

Enhancements Module 53

' - .o

10. Routine Testing

VALIDBINARYCH was not tested since it isn't used. However, this
routine is vary similar to VALIDDECIMALCH and VALIDHEXCH. These
routines performed properly. Based on their similarity, it is likely that
VALIDBINARYCH would perform properly.

11. Reference to Listing

VALIDBINARYCH's listing is on page 286 in Appendix A.

14

Enhancements Module 54
I

* ,.*4i'~. J 4 ~4 .

a - - . e97

1. Routine Name: VALID DECIMALCH

2. Internal routine of Ehancements Module.

3. Written in PLZ; four lines of executable code.

4. Synopsis of Routine

VALIDDECIMALCH a simple internal support routine of the En-
hancements Module. It examines an input character and determines whether it is
a "0" through "9". If it is one of these characters, VALIDDECIMALCH returns
the flag VALIDITY as true; otherwise VALIDITY is false.

5. Routine Relationships Diagram

READDINTEGER
READDBYTE I READDWORD

I VALID DECIMAL CH

Figure 14. Relationship of VALID DECIMAL CH to Other Routines

a. Invocation Statement

VALIDDECIMALCH is invoked via:

VALIDITY := VALIDDECIMALCH(CHARACTER)

where both VALIDITY and CHARACTER are of type Byte.

b. Parameter Passing Schema

VALIDDECIMALCH has one input and one output parameter.
CHARACTER is passed into the routine and is checked against characters "0"
through "9". VALIDITY is returned as either true if CHARACTER checks out.
Otherwise VALIDITY is returned as false.

Enhancements Module 55

:4

P, c. Routines Which Call

VALIDDECIMAL CH is an internal routine of Enhancements Module.
It was written to be called onlyby other Enhancements Module routines. VALID_
DECIMALCH is called by READDBYTE, READDINTEGER, and READ_
DWORD.

7. Variables and Constants

a. Global

VALIDDECIMALCH uses no global constants or variables.

b. Module Level

VALIDDECIMALCH uses two module constants: TRUE - value 1
hex, logical true, and FALSE - value 0 hex, logical false.

c. Routine

IVALIDDECIMALCH hs no routine level constants or variables.

8. Other Routines Called

VALIDDECIMALCH calls no other routines.

9. Output of Routine

a. Parameter Passing Schema

VALIDDECIMALCH has a single output parameter, VALIDITY, of
type Byte. It is returned with the logical value true if the input CHARACTER is a
"0" through "9". Otherwise VALIDITY is returned with the logical value false.

b. System Configuration Changes

VALIDDECIMALCH causes no configuration changes.

4

Enhancements Module 56

;
• ;

10. Routine Testing

a. Description of Test

VALIDDECIMALCH was tested in conjunction with the rest of the
Enhancements Module.

b. Results of Test

VALID_DECIMALCH works.

11. Reference to Listina

The listing for VALIDDECIMALCH is on page 286 in Appendix A.

Enhancements Module 57

,,..; , ,. , . - __. ".; .,. ..'.': . ,.: ,-., . , , ,, ,,,,,..,., .. , ,,,-..-...;...,,,..,.:, ...,:. ..'.. .o . ..-- . .

1. Routine Name: VALIDHEXCH

2. Internal routine of Ehancements Module.

3. Written in PLZ; four lines of executable code.

4. Synopsis of Routine

VALIDHEXCH a simple internal support routine of the Enhance-
ments Module. It examines an input character and determines whether it is a "0"
through "9" or "A" through "F" (note upper case only). If it is one of these chara-
cters, VALIDHEXCH returns the flag VALIDITY as true; otherwise VALIDITY is
false.

5. Routine Relationships Diagram

READHBYTE READHWORD

E VALID HEX H

Figure 15. Relationship of VALIDHEXCH to Other Routines.

a. Invocation Statement

VALIDHEXCH is invoked via:

VALIDITY := VALIDHEXCH(CHARACTER)

where both VALIDITY and CHARACTER are of type Byte.

b. Parameter Passing Schema

VALIDHEXCH has one input and one output parameter. CHARA-
CTER is passed into the routine and is checked against characters "0" through
"9" and "A" though "F". VALIDITY is returned as either true if CHARACTER

.: checks out. Otherwise VALIDITY is returned as false.

Enhancements Module 58

AP , " , , % "% "% , """ """ " . . ", % ".".°. " . . " . " .. " ,'. . . °~ . . • . . " , " . . ".

c. Routines Which Call

VALIDHEXCH is an internal routine of Enhancements Module. It
was written to be called only by other Enhancements Module routines. VALID_
HEXCH is called by READHBYTE and READHWORD.

7: Variables and Constants

a. Global

VALIDHEXCH uses no global constants or variables.

b. Module Level

VALIDHEXCH uses two module constants: TRUE - value 1 hex,
logical true; FALSE - value 0 hex, logical false.

c. Routine

VALIDHEXCH hs no routine level constants or variables.

8. Other Routines Called

VALIDHEXCH calls no other routines

9. Output of Routine

a. Parameter Passing Schema

VALIDHEXCH has a single output parameter, VALIDITY, of type
Byte. It is returned with the logical value true if the input CHARACTER is a "0"
through "9" or "A" through "F". Otherwise VALIDITY is returned with the logical
value false.

b. System Configuration Changes

VALIDHEXCH causes no configuration changes.

Enhancements Module 59

FA 7 - *--- 7 -J 1J - VWr rwr r -. WI --- -- _W L P- V-K .7- -W . 7.,%'.r-

10. Routine Testing

a. Description of Test

VALIDHEXCH was tested in conjunction with the rest of the En-
hancements Module rather than being individually tested.

b. Results of Test

VALIDHEXCH works.

11. Reference to Listing

The listing of VALIDHEXCH is on page 287 in Appendix A.

.-

'-,7

E m o

1. Routine Names: WRITE and WRITELN

2. Output routine of Enhancements Module.

3. Written in PLZ.
WRITE: eight lines of executable code.
WRITELN: three lines of executable code.

4. Synoosis of Routine

WRITE and WRITELN emulate their Pascal namesakes; they output
strings of characters to the device designated by LOGICALUNIT. WRITE and
WRITELN both use the PLZ STREAM.IO Module routine PUTSEQ to perform the
actual output. The difference between the two routines is WRITELN outputs a
carrage return at the end of the sequence of characters; WRITE doesn't.
WRITELN calls WRITE to output the string and then adds the carriage return via
PUTSEQ.

5. Routine Relationships Diagram

* Any PLZ Routine

Enhancements W TEModul WRITELN
ModuleM

Figure 16. Relationship of WRITE and WRITELN to Calling

Routines and PUTSEQ.

Enhancements Module 61

.,IV 6. Invocation

a. Invocation Statement

WRITE and WRITELN are invoked with:

WRITE(LOGICALUNIT, BUFFERPTR) and

WRITELN(LOGICALUNIT, BUFFERPTR)

where LOGICALUNIT is type Byte and BUFFERPTR is of type Pointer-to-Byte.

b. Input Parameter Passing Schema

Both WRITE and WRITELN have two input parameters, LOGICAL_
UNIT and BUFFERPTR. LOGICALUNIT brings in the number of the device the
output is to go to. BUFFERPTR points to the memory location where the first
character of string to be output is located.

c. Routines Which Call

As global routines of the Ehancements module, WRITE & WRITELN
can be called by any PLZ routine which is linked in with Enhancements module.
In addition to this purpose, WRITE is used by some other routines in Enhance-
ments Module. Specifically, WRITE is called by WRITELBYTE and WRITE_
RCODE.

7. Variables and Constants

a. Global

Neither WRITE nor WRITELN use any global variables or constants.

b. Module

Neither routine uses any module level variables. WRITE uses the
Enhancements Module constant CARRIAGE_RETURN.

Enhancements Module 62
p

7;- . ,.-. 6V ,5FF .%A -. 7. J".. P , ',.WnpF F; ' .F..W ,'.W-A % . ,.;=. ,rrb i1: v. = .T .-P . . , A .J

c. Routine

WRITE uses three routine level variables, LENGTH (type Word),
RETURNCODE (type Byte), and PINDEX (type Pointer-To-Byte). LENGTH is
used to pass the length of the output character string to the external routine
PUTSEQ. RETURNCODE receives the system completion code sent back from
PUTSEQ. PINDEX is a place keeper pointer for the string to be output. WRITELN
uses no module level variables. Neither routine uses any routine level constants.

8. Other Routines Called

In addition to WRITELN's calling of WRITE, WRITE calls the external
routine PUTSEQ to output strings characters and WRITELN calls PUTCH to out-
put the carriage return.

4i a. PUTSEQ

This PLZ STREAM.IO Module routine is declaired external to the
Enhancements Module. WRITE uses PUTSEQ to output the string of characters
to the desinated device driver. PUTSEQ has three input parameters, LOGICAL_
UNIT (type Byte), BUFFERPTR (type Pointer-to-Byte), and LENGTH (type Word),
and has two return parameters, LENGTH (type Word) and RETURNCODE (type
Byte). LOGICALUNIT is the same as the input parameter to WRITE and
WRITELN, the number of the device driver to which the output will be directed.
BUFFERPTR points to the first character of the string to be output. LENGTH is
the number of characters (Bytes) to be output. The return parameter LENGTH
carries the number of characters which were output by PUTSEQ. RETURN_
CODE returns the operating system completion code or error code for the output
operation. PUTSEQ is invoked via:

LENGTH, RETURNCODE:=
PUTSEQ(LOGICALUNIT, BUFFERPTR, LENGTH).

b. PUTCH

PUTCH is an internal support routine of the Enhancements Module. It
has two input parameters, LOGICAL-UNIT and CHARACTER, both of type Byte.
LOGICAL_ UNIT holds the number of the device driver to which the character is
to be output. CHARACTER passes the character to be output. PUTCH is invoked
with:

PUTCH(LOGICALUNIT, CHARACTER).

Enhancements Module 63

From WRITELN, CHARACTER passes "%R", the RIO constant for a carriage re-
turn. PUTCH has no return parameters.

9. Output of Routine

Neither WRITE or WRITELN have output parameters. Nor does either
routine affect the system configuration beyond writing characters to some logical
unit.

10. Routine Testing

a. Description of Test

WRITE and WRITELN were tested along with the rest of the Enhance-
ments module routines. A module of test routines called TESTIT was used to
out- put strings to the system console via WRITE and WRITELN.

b. Results of Test

IWRITE and WRITELN performed properly.

11. Reference to Listina

The listing of WRITE and WRITELN are on page 288 in Appendix A.

Enhancements Module 64

- ft .]f

1. Routine Names:
WRITEDBYTE, WRITEHBYTE, WRITEBBYTE,
WRITELN_DBYTE, WRITELN HBYTE, and WRITELN_BBYTE

2. Output routines of Enhancements Module.

3. Written in PLZ.

WRITEDBYTE: five lines of executable code.
WRITEHBYTE: five lines of executable code.
WRITEBBYTE: five lines of executable code.
WRITELNDBYTE: three lines of executable code.
WRITELNHBYTE: three lines of executable code.
WRITELNBBYTE: three lines of executable code.

4. Synopsis of Routines

These six routines take a single byte value and output the ASCII
characters which represent it. The DBYTE routines output the value in base 10
as a decimal value, one to three characters (0 through 9 or space) followed by a
decimal point. The DBYTE routines blank leading zeros in the 100's and 10's
places. The HBYTE routines output the value in hexidecimal form, two characters
(0 to 9 and A to F) followed by an H. The BBYTE routines output a binary repre-
sentation of the value, eight chararcters (0 & 1) followed by a B. The WRITE form
of the routines does not output a carriage return at the end of the string; the
WRITELN forms do. It is up to the calling routine to put CHARACTER in the
proper form prior to calling any of the WRITE or WRITELN routines. For example,
a number stored in complements form would have to be transformed before
WRITEDBYTE was called. The WRITELN forms function by calling the WRITE
version to output the character strings and then call another routine to output the
carriage return.

All three WRITE routines function identically; the only difference be-
tween them is the values assigned to the internal variables BLANKING and
INDEX and the output base value (10, 16, or 2) passed to routine PLACE_
LOOP. PLACELOOP performs the actual conversion of the byte value into the

dcharacter string given the base desired and the order or INDEX of the most
significant output character. The values for the three routines are:

Enhancements Module 65

2

Routine BLANKING INQEX Base

WRITEDBYTE TRUE 100 10

WRITE_HBYTE FALSE 16 16

WRITEBBYTE FALSE 128 2

5. Routine Relationships Diagram

Any PLZ Routine

DBYTEWRITELN-.YE
BBYTE

DBYTEWRITE -BYTE
_BBYTE

PLACE LOOP PUTCH

Figure 17. Relationship of Byte WRITExBYTE and
WRITELNxBYTE Routines to Other Routines

6. Invocation

a. Invocation Statement

The routings are invoked from calling PLZ routines via:

WRITEDBYTE(LOGICALUNIT, NUMBER)
WRITELNDBYTE(LOGICALUNIT, NUMBER)
WRITE_HBYTE(LOGICAL_UNIT, NUMBER)
WRITELNHBYTE(LOGICALUNIT, NUMBER)
WRITE_BBYTE(LOGICALUNIT, NUMBER)
WRITELNBBYTE(LOGICALUNIT, NUMBER)

where LOGICALUNIT and NUMBER are of type Byte.
b. Parameter Passing Schema

Enhancements Module 66

................................. .]9

All six routines have the same two input parameters, LOGICALUNIT
and NUMBER, both of type Byte. LOGICALUNIT is the number of the device the

characters are to be output to. NUMBER is the value to be translated into deci-
mal, hexidecimal, or binary character representations.

c. Routines Which Call

These six routines can be called by any PLZ program. The Enhance-
ments Module and the PLZ Stream.IO Module must be linked in with the calling
programs' module.

7. Variables and Constants

a. Global

None of the routines use any global variables or constants aside from
the definitions of ASCII characters.

b. Module

None of the routines use any module level variables; The WRITE form
routines use no module level constants. The WRITELN forms use the PLZ con-
stant %R to represent a carrage retum.

c. Routine

The WRITELN form routines use no routine level constants or vari-
ables. The WRITE forms use two variables, BLANKING of type Byte and INDEX
of type Word. BLANKING is used as a logical flag to indicate to routine PLACE_
LOOP whether leading zeros are to be blanked. INDEX is used to pass the value
of the most significarnt place of the output string to routine PLACELOOP. Neither
of these variables are necessary, they are present solely to aid the readability of
the routines.

8. Other Routines Called

The WRITE and WRITELN routines call two internal routines of the En-
hancements Module, PUTCH and PLACELOOP.

a. PUTCH

Enhancements Module 67

",p "..:",C,' , , , " "....,,.- .. ,. ,'., ., ;,. '":' ,-'." ,.'. --. . .;".'-'- ,. ':-"' . , .,'t.. .

All six routines call PUTCH to output single characters to the desired
logical unit. WRITEDBYTE outputs a decimal point, WRITE_HBYTE outputs an
H, WRITE_ BBYTE outputs a B, and the WRITELN's output a carriage return. In
all cases PUTCH is invoked via:

PUTCH(LOGICALUNIT, CHARACTER)

where both LOGICALUNIT and CHARACTER are of type Byte. LOGICALUNIT
is the same as the input parameter to the WRITE and WRITELN routines, the
number of the device to which the CHARACTER is to be written. CHARACTER is
the hex value of the ASCII character to be output. PUTCH does not check to see
if the CHARACTER is valid ASCII. As the WRITE and WRITELN routines use
PUTCH to output constants no error checking is needed. PUTCH has no return
parameters.

b. PLACELOOP

PLACELOOP is called by the three WRITE form routines to translate
a value into a string of characters which represent that value and to output those
characters to a designated device. PLACELOOP is invoked in the three Write
routines with:

PLACELOOP(LOGICALUNIT, BLANKING,
WORD(NUMBER), INDEX, BASE)

where INDEX is of type Word, NUMBER is of type Byte converted to type Word,
and the other three input parameters are of type Byte. LOGICALUNIT is the
same as the input parameter to the WRITE and WRITELN routines, the number of
the device to which the string of characters is to be written. BLANKING is a logi-
cal flag indicating whether leading zeros are to be blanked. NUMBER is the
value to be translated into a string of characters. Note that the input parameter to
the WRITE and WRITELN routines NUMBER is of type Byte and the input to
PLACELOOP is of type Word. Thus the type conversion in the invocation of
PLACELOOP. INDEX is the value of the most significant character to be output.
BASE is the base in which the character representation is to be made. PLACE_
LOOP has no output parameters.II

PLACELOOP does no range checking on its inputs. This is not a
problem as the WRITE routines pass BLANKING, INDEX, and BASE as con-
stants. With the constants passed and the input NUMBER limited to a single byte
range, the inputs to PLACELOOP cannot be out side defined ranges. It is
assumed that the correct LOGICALUNIT number is passed into the WRITE and
WRITELN routines.

Enhancements Module 68II
r*

9. Output of Routines

The six routines have no output parameters. The only effect they have on
the configuration of the system is the writing of a number characters (two to ten) to
some logical unit.

10. Routine Testing

a. Description of Test

These six routines were tested in conjunction with the rest of the En-
hancements module routines. Each routine was given a number of values to
output.

b. Results of Test

Each routine output its test values in the proper formats.

11. Reference to Listing

The listings for these routines are found on the following pages.

Routine Page
WRITEDBYTE 289 in Appendix A
WRITELNDBYTE 289 in Appendix A
WRITEHBYTE 290 in Appendix AWRITELNHBYTE 290 in Appendix A
WRITELNBYTE 291 in Appendix A
WRITELNBBYTE 291 in Appendix A

Enhancements Module 69 "

R%"TENT 2 in Appendix A

1. Routine Name: WRITELBYTE and WRITELNLBYTE

2. Output routines of Enhancements Module.

3. Written in PLZ.
WRITELBYTE: six lines of executable code.
WRITELN_LBYTE: three lines of executable code.

4. Synopsis of Routines

These two routines take a single byte defined as a logical value and
output the text string equivillent of the byte's value. Three string outputs are pos-
sible. If the value of the byte is uniary, "TRUE " is output. If the value is zero,
"FALSE" is output. If the byte has any other value, the output is "UNDF ". Note
that all three output strings are five characters long. The difference between

WRITELBYTE and WRITELNBYTE is the same as in Pascal; WRITELBYTE
does not output a carriage return and WRITELN_ LBYTE does. WRITELN_
LBYTE calls WRITELBYTE to perform the five character string output and then
calls PUTCH to output the cariage return.

5. Routine Relationshios Diagram

Any PLZ Routine

L

WRITELN-LBYTE

WRITELBYTE

r WRITE [PUTCH]

Figure 18. Relationship of Logical-Byte Write and Writeln
Routines to Other Routines

Enhancements Module 70

i ' -. =o ----- *= " °.°° . .4 , - • • 1

6. Invocation

a. Invocation Statement.

The routines are invoked from a calling PLZ routine by:

WRITE LBYTE(LOGICALUNIT, FLAG)
WRITELNLBYTE(LOGICAL,_UNIT, FLAG)

where LOGICALUNIT and FLAG are both of type Byte.

b. Parameter Passing Schema

Both routines have two input parameters, LOGICALUNIT and FLAG.
LOGICALUNIT is the number of the device the character string is to be written to.
FLAG holds the logical variable to be translated into text.

c. Routines Which Call

Both routines can be used by any PLZ language program with which
the Enhancements Module and the PLZ Stream.IO Module have been linked.
The routines, like the rest of the global Enhancements module routines, are
Pascal-like 10 subroutines intended to reduce the difficulty of 10 in PLZ.

7. Variables and Constants

a. Global

. No global variables are used by either routine. Both routines require
logical true to be defined as 01 hex and logical false to be defined as 00 hex.
Both routines also follow the PLZ convention of "%R" representing a carriage
return.

b. Module

Neither routine uses any module level variables. Within the Enhance-
ments Module, TRUE is a constant of value 01 hex representing logical true and
FALSE is a constant of value 00 hex representing logical false.

Enhancements Module 71

- % = - - .. ,% * . , - . , .•... . ". %- o - . - -- °.:., -°-.. -,.. . - •.".- - - - * . * * * - -.. 1

c. Routine

Routine level variables and constants are not used by either routine.

8. Other Routines Called

Both WRITELBYTE and WRITELNLBYTE use other Enhancements
Module routines to output characters. WRITELBYTE uses the global routine
WRITE and WRITELNLBYTE uses the internal routine PUTCH.

a. WRITE

WRITE is very similar to its Pascal namesake. It outputs a designated
string of characters. WRITELBYTE uses WRITE to output "TRUE ", "FALSE", or
"UNDF" to the designated logical unit. WRITE has two input parameters
LOGICAL-UNIT, ot type Byte, and TEXTPOINTER, of type pointer-to-byte or
Pbyte. WRITE's LOGICALUNIT services the same function as WRITELBYTE's
input parameter LOGICALUNIT. It is the name of the device to which the chara-
cters will be written. TEXTPOINTER is a pointer (two bytes) to a specific memory
location, the location of the string to be output. For WRITE_ LBYTE, the string is
entered as a constant in the invocations of WRITE. PLZ translates this into a
pointer to the first character of the string. The "%R" (carriage return) is used by
PLZ to denote end-of-string. Thus the invocation of WRITE from WRITELBYTE
looks like the following.

WRITE (LOGICALUNIT, 'string to be output%R')

WRITE has no return parameters.

b. PUTCH

WRITELNLBYTE uses PUTCH to output a carriage_return to the
designated logical unit. PUTCH has two input parameters, LOGICALUNIT and
CHARACTER. As with WRITE, LOGICALUNIT is the Byte parameter indicating
which device the output is to go to. CHARACTER, also of type Byte, holds the
ASCII character to be output. For WRITELNLBYTE, PUTCH is invoked by:

PUTCH(LOGICALUNIT, '%R')

where '%R' denotes a carnage return. PUTCH has no return parameters.

• "; 9. Output of Routine

Enhancements Module 72

L 4', ,1 t .,..-'i.',.. ;,-.. • ,- , _ . -'. --.-, :.,.-.. -,- , ,

Neither routine has any output parameters. The sole effect of the
routines upon the system is the writing of five characters and, if WRITELN_
LBYTE, a carriage return to the designated logical unit.

10. Routine Testing

a. Description of Test

WRITELBYTE AND WRITELNLBYTE were tested along with the rest
of Enhancements Module. This test was accomplished by linking with Enhance-
ments Module and the PLZ STREAM.IO Module with a module of test routines.

b. Results of Test

WRITELBYTE and WRITELBYTE output the correct text strings to
the correct logical units.

11. Reference to Listing

The listings of WRITELBYTE and WRITELNLBYTE are on page 292
in Appendix A.

Enhancements Module 73

1. Routine Names: WRITEDINTEGER and WRITELNDINTEGER

2. Output routines of Enhancements Module.

3. Written in PLZ. WRITEDINTEGER: 11 lines of executable code.
WRITELNDINTEGER: 3 lines of executable code.

4. Synopsis of Routine

WRITEDINTEGER and WRITELNDINTEGER take a PLZ Integer
type value, translate it into the ASCII characters that represent the base 10 mag-
nitude of the value, and then output the characters to a specified logical unit.
Since Integer type values have sign, WRITEDINTEGER and WRITELN_
DINTEGER put a blank or a "-" ahead of the character string to indicate the sign of
the value. After the last character, the routines output a decimal point. Then,
WRITELNDINTEGER only outputs a carriagereturn. Both routines blank lead-
ing zeros.

WRITEDINTEGER does most of the work for both routines as
WRITELNDINTEGER's first statement is a call of WRITEDINTEGER. WRITE_
DINTEGER first determines the sign of the value and outputs a blank for positive
or a "-" for negative via routine PUTCH. If the value was negative, it is converted
to a positive value, the sign already output. WRITEDINTEGER then calls
PLACELOOP to perform the actual translation of value to characters. WRITE_
DINTEGER ends by outputting a decimal point via PUTCH. WRITELN_
DINTEGER ends by outputting a carriage return.

5. Routine Relationshios Diagram

Any PLZ Routine

rPLACE-LOOP PUTCH

Figure 19. Relationship of WRITEDINTEGER and
WRITELNDINTEGER to Other Routines.

Enhancements Module 74

ii

.Inlvocation

a. Invocation Statement

The routines are invoked from calling PLZ programs via:

WRITEDINTEGER(LOGICALUNIT, ININTEGER)
WRITELNDINTEGER(LOGICALUNIT, ININTEGER)

where LOGICALUNIT is type Byte and ININTEGER is type Integer.

b. Parameter Passing Schema

Both routines have two input parameters, LOGICALUNIT and IN_
INTEGER. LOGICALUNIT is the number of the device the output characters are
to go to. ININTEGER is the value to be output in character form.

c. Routines Which Call

WRITEDINTEGER and WRITELNDINTEGER can be called by any
PLZ program that has been linked with the Enhancements and PLZ STREAM.IO
modules.

7. Variables and Constants

a. Global

Neither routine uses any global variables. WRITEDINTEGER uses
no global constants. WRITELNDINTEGER follows the PLZ convention of %R
representing a carriage return.

b. Module

Neither routine uses any module level variables and WRITELN_
DINTEGER uses no module level constants. WRITEDINTEGER uses the
Enhancements Module constant TRUE which -epresents logical true.

c. Routine

WRITELNDINTEGER uses no routine level variables or constants.

Enhancements Module 75

• . • .A ..

WRITE_ DINTEGER does have three variables, BLANKING (type Byte), INDEX
(tyne Word), and NUMBER (type Word). BLANKING is a logical flag to routine
PLACE_ LOOP to indicate whether leading zeros are to be blanked. It is set to
TRUE. INDEX passes the place value of the most significant character of the out-
put string to PLACE_ LOOP; INDEX is set to 10000 decimal. Neither of these
variable are necessary though, constants could have been used. These vari-
ables are present only to aid routine documentation. NUMBER on the other
hand, is used to pass the input Integer value to PLACELOOP which uses a
Word type input.

8. Other Routines Called

WRITEDINTEGER and WRITELNDINTEGER call two internal
routines of the Enhnancements module, PUTCH and PLACELOOP.

a. PUTCH

Both routines call PUTCH to output single characters. WRITE_
DINTEGER uses PUTCH to output the sign of the value, a blank or a "-", and to
output the decimal point. WRITELNDINTEGER uses PUTCH to putput its
carriage return. PUTCH is invoked via:

PUTCH(LOGICALUNIT, CHARACTER)

where both input parameter are type Byte. LOGICALUNIT is the same as the
input parameter parameter LOGICALUNIT for WRITEDINTEGER and
WRITELNDINTEGER. CHARACTER holds the ASCII character to be output.
PUTCH has no return parameters.

b. PLACELOOP

PLACELOOP translates an input value into the characters that
represent that value. PLACELOOP is called by:

PLACELOOP(LOGICALUNIT, BLANKING, NUMBER, INDEX, BASE)

where INDEX and NUMBER are type WORD and LOGICALUNIT, BLANKING,
and BASE are type Byte. LOGICALUNIT is the device number for output.
BLANKING is a logical flag indicating whether leading zeros are to be blanked.
NUMBER is the value to be converted to text representation. INDEX is the place-
value of the most significant character to be output. BASE is the base the output
string is to be in. PLACELOOP has no return parameters.

Enhancements Module 76

,,,

9. Output of Routine

WRITEDINTEGER and WRITELNDINTEGER have no output
parameter and only effect the system by outputing seven characters, and a
carriage return if WRITELN_ DINTEGER, to some logical unit.

10. Routine Testing

a. Description of Test

WRITEDINTEGER and WRITELNDINTEGER were tested along with
the other Enhancements Module routines though the module TESTIT. TESTIT
routines exercised WRITEDINTEGER and WRITELNDINTEGER.

b. Results of Test

Both routines performed properly.

11. Reference to Listina

The program listings for WRITE DINTEGER and WRITELN_
DINTEGER can be found on pages 293 in Appendix A.

E'°e d

Enhancements Module 77

dA1%J. 1. Routine Names:
WRITEDWORD, WRITEHWORD,
WRITELN_DWORD, and WRITELN_HWORD

2. Output routines of Enhancements Module.

3. Written in PLZ.

WRITEDWORD: five lines of executable code.
WRITEHWORD: five lines of executable code.
WRITELNDWORD: three lines of executable code.
WRITELN_HWORD: three lines of executable code.

4. Synopsis of Routines

These four routines take a Word value and output the ASCII chara-
cters which represent it. The DWORD routines output the value in base 10 as a
decimal value, one to five characters (0 through 9 or space) followed by a deci-
mal point. The DWORD routines blank leading zeros in the 10,000s, 1 ,000s,
1OOs, and 1Os places. The HWORD routines output the value in hexidecimal
form, four characters (0 to 9 and A to F) followed by an H. The WRITE form of
the routines does not output a carriage return at the end of the string; the
WRITELN forms do. The WRITELN forms function by calling the WRITE version
to output the character strings and then call PUTCH to output the carriage return.

Both WRITE routines function identically; the only difference between
them is the values assigned to the internal variables BLANKING and INDEX and
the output base value (10 or 16) passed to routine PLACELOOP. PLACE_
LOOP performs the actual conversion of the WORD value into the character string
given the base desired and the order or INDEX of the most significant output
character. The values for the routines are:

Routine I INDEX Base

WRITEDWORD TRUE 10,000 10

WRITEHWORD FALSE 4,096 16
(1000 hex)

Enhancements Module 78

...- . -.-...............-o.................

5. Routine Relationships Diagram

Any PLZ Routine
WRITELN HwoRD

DW-HWOR

PLACE LOOP UTCH

Figure 20. Relationship of Decimal and Hexidecimal Word
Write and Writeln Routines to Other Routines.

6. Invocation

a. Invocation Statement

The routines are invoked from calling PLZ routines via:

WRITEDWORD(LOGICALUNIT, NUMBER)
WRITELNDWORD(LOGICAL_UNIT, NUMBER)
WRITEHWORD(LOGICALUNIT, NUMBER)
WRITELNHWORD(LOGICALUNIT, NUMBER)

where LOGICALUNIT is type Byte and NUMBER is type Word.

b. Parameter Passing Schema

All four routines have the same two input parameters, LOGICAL_
UNIT, type Byte, and NUMBER, type Word. LOGICALUNIT is the number of the
device the characters are to be output to. NUMBER is the value to be translated
into decimal or hexidecimal character representations.

Enhancements Module 79

x.' c. Routines Which Call

These routines can be called by any PLZ program. The Enhance-
ments Module and the PLZ Stream.IO Module must be linked in with the calling
programs' module.

7. Variables and Constants

a. Global

None of the routines use any global variables or constants aside from
the definitions of ASCII characters.

b. Module

None of the routines use any module level variables; The WRITE form
routines use no module level constants. The WRITELN forms use the PLZ con-
stant %R to represent a carrage return.

c. Routine

The WRITELN form routines use no routine level constants or vari-
ables. The WRITE forms use two variables, BLANKING of type WORD and
INDEX of type Word. BLANKING is used as a logical flag to indicate to routine
PLACELOOP whether leading zeros are to be blanked. INDEX is used to pass
the value of the most significant place of the output string to routine PLACE_
LOOP. These variables could have been constants; they are present solely to aid
the readability of the routines.

8. Other Routines Called

The WRITE and WRITELN routines call two internal routines of the
Enhancements Module, PUTCH and PLACELOOP.

a. PUTCH

All four routines call PUTCH to output single characters to the desired
logical unit. WRITEDWORD outputs a decimal point, WRITEHWORD outputs
an H, and the WRITELN's output a carriage return. In all cases PUTCH is in-
voked via:

Enhancements Module 80

C rj1 n' m

PUTCH(LOGICALUNIT, CHARACTER)

where both LOGICALUNIT and CHARACTER are type Byte. LOGICALUNIT is
the same as the input parameter to the WRITE and WRITELN routines, the num-
ber of the device to which the CHARACTER is to be written. CHARACTER is the
hex value of the ASCII character to be output. PUTCH does not check to see if
the CHARACTER is valid ASCII. As the WRITE and WRITELN routines use
PUTCH to output constants no error checking is needed. PUTCH has no return
parameters.

b. PLACELOOP

PLACELOOP is called by the WRITE form routines to translate a
value into a string of characters which represent that value and to output those
characters to a designated device. PLACELOOP is invoked by:

PLACELOOP(LOGICALUNIT, BLANKING, NUMBER, INDEX, BASE)

where INDEX is of type Word, NUMBER is of type WORD converted to type Word,
and the other three input parameters are of type WORD. LOGICALUNIT is the
same as the input parameter to the WRITE and WRITELN routines, the number of
the device to which the string of characters is to be written. BLANKING is a logi-
cal flag indicating whether leading zeros are to be blanked. NUMBER is the
value to be translated into a string of characters. Note that the input parameter to
the WRITE and WRITELN routines NUMBER is of type WORD and the input to
PLACELOOP is of type Word. Thus the type conversion in the invocation of
PLACELOOP. INDEX is the value of the most significant character to be out-
put. BASE is the base in which the character representation is to be made.
PLACELOOP has no output parameters.

PLACELOOP does no range checking on its inputs. This is not a
problem as the WRITE routines pass BLANKING, INDEX, and BASE as con-
stants. With the constants passed and the input NUMBER limited to a single
WORD range, the inputs to PLACELOOP cannot be out side defined ranges. It
is assumed that the correct LOGICALUNIT number is passed into the WRITE
and WRITELN routines.

9. Output of Routines

The routines have no output parameters. The only effect they have on
the configuration of the system is the writing of a number characters (six to seven)
to some logical unit.

Enhancements Module 81

-,,''-'.,,. .-- , . .% F "--.". -" .5 -, . . ' - , ,.',-'F . -. . " .-. ". - -° " . ..- . " -' - . . .-. •

AD-AV72 823 DESIGN MUD PARTIAL IMPLENENTATION OF R COMPUTER21
CONTROLLED DATA COLLECTION SYSTEM(U) MIR FORCE INST OF
TECH RAIGHT-PATTERSON AFD OH SCHOOL OF ENGI.. L E LUTZ

UNLSIIDFEB 86 AFIT/GE/ENGi86N-l F/6 9/2 M

m~~~EhhhEhE

4IL

A L

1.25 LA1.1.6

10. Routine Testing

a. Description of Test

These routines were tested in conjunction with the rest of the Enhance
ments Module routines via the TESTIT Module. Each Enhancements Module
routines was given a number of values to output.

b. Results of Test

Each routine output its input values in the proper formats.

11. Reference to Listing

The listings of WRITEDWORD, WRITELNDWORD, WRITEHWORD,
and WRITELNHWORD are on pages 294 in Appendix A and 295 in Appendix A.

E

,-. Enhancements Module 82

:.:.... . '.:. . - , -. ,. ,., ,, , , , .. ,,.. .. , .. ,. .. , . . . -, ... ,, , .

1. Routine Name: WRITEPOINTER and WRITELNPOINTER

2. Output routines of Enhancements Module.

3. Written in PLZ.
WRITEPOINTER: five lines of executable code.
WRITELNPOINTER: three lines of executable code.

4. Synopsis of Routines

These two routines take a memory address and output its text string
equivalent. The output text string consists of a "A" followed by four hexidecimal
characters (0 to 9 and A to F). WRITEPOINTER does not output a carriage
return and WRITELN_ POINTER does. WRITELNPOINTER calls WRITE_
POINTER to perform the character string output and then calls PUTCH to output
the cariage return.

5. Routine Relationshios Diagram

Any PLZ Routine

WRITE-POINTERE

Figure 21. Relationship of Pointer Write and Writeln Routines
to Other Routines.

Enhancements Module 83

' ' 6. Invocation

a. Invocation Statement

The routines are invoked from a calling PLZ routine by:

WRITEPOINTER(LOGICALUNIT, LOCATION)
WRITELNPOINTER(LOGICALUNIT, LOCATION)

where LOGICALUNIT is of type Byte and LOCATION is of type Word.

b. Parameter Passing Schema

Both routines have two input parameters, LOGICALUNIT and LOCA-
TION. LOGICALUNIT is the number of the device the character string is to be
written to. LOCATION holds the address to be translated into text.

c. Routines Which Call

Both routines can be used by any PLZ language program with which
the Enhancements Module and the PLZ Stream.IO module have been linked.
The routines, like the rest of the global Enhancements module routines, are
Pascal-like 10 subroutines intended to reduce the difficulty of 10 in PLZ.

7. Variables and Constants

a. Global

No global variables are used by either routine. WRITEPOINTER
users no global constants. WRITELNPOINTER follows the PLZ convention of
"%R" representing a carriage return.

b. Module

Neither routine uses any module level variables. Within the Enhance-
ments Module, TRUE is a constant of value 01 hex representing logical true and
FALSE is a constant of value 00 hex representing logical false.

Enhancements Module 84

Ai

c. Routine

Routine level constants are not used by either routine. WRITELN_
POINTER has no routine level variables. WRITEPOINTER has two routine level
variables, BLANKING (type Byte) and INDEX (type Word). BLANKING is a logical
flag to routine PLACELOOP to indicate whether leading zeros are to be blank-
ed. INDEX passes to PLACELOOP the place-value of the most significant
character of the output text string. These two variables exist only to aid the
readability of the code.

8. Other Routines Called

Both WRITEPOINTER and WRITELNPOINTER use other Enhance-
ments Module routines to output characters. WRITEPOINTER uses the internal
routine PLACELOOP to perform the actual value to character string conversion.
Both routines use the internal routine PUTCH to output single characters.

a. PLACELOOP

PLACELOOP translates a value into a string of characters that repre-
sents the value and then outputs the characters to a designated logical unit.
PLACELOOP is invoked with:

PLACELOOP(LOGICALUNIT, BLANKING, NUMBER, INDEX, BASE)

where NUMBER and INDEX are type Word and LOGICALUNIT, BLANKING,
and BASE are type Byte. The parameter LOGICALUNIT for PLACELOOP is
the same as the LOGICALUNIT input to WRITEPOINTER and WRITELN_
POINTER. It is the number of the device to which the output will go. BLANKING
is a logical flag indicating whether leaing zeros are to be blanked. NUMBER is
the value to be translated into a string of ASCII characters. INDEX hold the
place-value of the most significant character of the output string. BASE is the
desired base of the character representation. PLACELOOP has no return
parameters.

b. PUTCH

PUTCH outputs single characters to the designated logical unit.
PUTCH has two input parameters, LOGICALUNIT and CHARACTER. As with
WRITE, LOGICAL_ UNIT is the Byte parameter indicating which device the output
is to go to. CHARACTER, also of type Byte, holds the ASCII character to be out-
put. PUTCH is invoked by:

Enhancements Module 85

PUTCH(LOGICALUNIT, CHARACTER)

WRITE-POINTER uses PUTCH to output the "A" and WRITELN_POIINTER uses
PUTCH to output its carriage return. PUTCH has no return parameters.

9. Outpjut of Routine

Neither routine has any output parameters. The sole effect of the
routines upon the system is the writing of five characters and, if WRITELN_
POINTER, a carriage return to the designated logical unit.

10. Routine Testing

a. Description of Test

WRITEPOINTER AND WRITELNPOINTER were tested along with
the rest of Enhancements module. This test was accomplished by linking with
Enhancements module and the PLZ STREAM.IO module a module of test
routines.

b. Results of Test

WRITEPOINTER and WRITELNPOINTER output the correct text
strings to the correct logical units.

11. Reference to Listina

The listings of WRITEPOINTER and WRITELNPOINTER are on
page 296 in Appendix A.

Enhancements Module 86

1. Routine Names: WRITERCODE and WRITELNRCODE

2. Output routines of Enhancements Module.

3. Written in PLZ.
WRITERCODE: 45 lines of executable code.
WRITELNRCODE: 3 lines of executable code.

4. Synopsis of Routines

WRITERCODE and WRITELNRCODE are PLZ routines which trans-
late the RIO (operating system) hexadecimal error codes into their text definitions
and outputs the text to the system console. WRITERCODE is just one big case
statement with 43 cases, one case for each RIO return code. WRITE_RCODE is
intended to be linked in during program checkout for rapid diagnosis of operating
system problems. WRITERCODE does not send a carriage return to the con-
sole. In contrast, WRITELNRCODE consists of two subroutine calls and does
send a carrage return to the console at the end of the text string.

5. Routine Relationships Diagram

Any PLZ Routine

WRITERCODE

RITE---

Figure 22. Relationship of WRITERCODE and
WRITELNRCODE to Other Routines

Es,1

,#

Enhancements Module 87

6. Invocation

a. Invocation Statement

WRITERCODE and WRITELNRCODE are invoked from another
PLZ routine via:

WRITE_RCODE (RETURN-CODE) and

WRITELNRCODE(RETURNCODE)

where RETURNCODE is the RIO code in question. WRITE_RCODE and
WRITELNRCODE must either be linked in and declaired as an external
procedure or be compiled with the calling PLZ routine.

b. Parameter Passing Schema

WRITERCODE and WRITELNRCODE both have one input para-
meter, RETURNCODE, of type Byte. If either routine is passed an undefined
RETURNCODE, the routine executes without taking any action. See the routine
listing for the defined return codes and their text definitions.

c. Routines Which Call WRITERCODE and WRITELNRCODE

WRITERCODE and WRITELNRCODE can be called by any PLZ
program they are linked with or compiled with. WRITE_RCODE is called by
WRITELNRCODE to translate the RETURNCODE into text.

7. Variables and Constants

a. Global

Both routines use the constant "%R", the PLZ representation for a
carriage return. %R indicates to routines WRITE and WRITELN the end of the
string to be output. Neither routine uses any global variables.

b. Internal to the Module

CONSOLEOUT, a constant of value two, is used by both WRITE_
RCODE and WRITELNRCODE. It is the logical unit number for the system

.'" *console. Neither routine uses any module level variables.

Enhancements Module 88

a = w . 0 ' " = ', ' .' " q , m , " " " o * = . .'•" % '% * ' ° " . % q°.- ' - " . " • " . •

c. Internal to the Routine

Neither WRITERCODE nor WRITELNRCODE use any routine level
variables or constants.

8. Other Routines Called

WRITERCODE calls the routine WRITE and WRITELN_RCODE calls
WRITELN to output the text translation of the return codes to the system console.
WRITE and WRITELN are also part of Enhancements Module.

WRITE and WRITELN have two input parameters, LOGICALUNIT,
type byte, and TEXTPOINTER, type PByte for pointer to byte. For both routines,
LOGICALUNIT is always CONSOLEOUT or 2. TEXTPOINTER points to the
first character of the text string listed in each case of WRITERCODE and the
carriage return, %R, for WRITELNRCODE. WRITE and WRITELN are invoked
via:

WRITE (LOGICAL-UNIT, #'text string %R') and

WRITELN(LOGICALUNIT, #text string %R')

where %R indicates the end of the string and the # is the PLZ indicator for a
pointer to a string delimited by single quotes.

9. Output of Routine

WRITERCODE and WRITELNRCODE have no output parameters
as such though it does output text to the system console. Neither routine alters
the configuration of the system.

10. Routine Testing

No specific tests were created for WRITERCODE and WRITELN_
RCODE. Rather, they were used as designed, linked in with other PLZ programs
for diagnosis. When errors occured and RIO codes were received, the routiness
translated the codes and output the text to the system console. Not only did both
routines work, they proved to be a valuable debugging aids.

.M

- Enhancements Module 89

4.

"*' " • '*=f 'd l . . . -'. '. "' . f *" " " "' - r w - ?/ I" J€ _/ 't "o- .' ° . * . ,- ;'- .

>4r 11. Reference to Listing

The listing of WRITERCODE can be found on pages 297-298 in
Appendix A. WRITELN_ RCODE's listing is on page 298 in Appendix A.

E c s u

i.

.',

Enhancements Module 90

1. Routine Name: READLN

2. Output routine of Enhancements Module.

3. Written in PLZ; six lines of executable code.

4. Synopsis of Routine

READLN is input Enhancement Module routine for the PLZ language;
its purpose is input of text strings. READLN reads in ASCII character and places
them in a buffer. This continues until a carriage return is read. At that point,
READLN returns to the calling routine a pointer to the last character in the buffer,
the carriage return.

This READLN is ment to approximate the function of the Pascal
Readln command. Unlike the Pascal command, this READLN has two input
parameters to indicate from which logical unit the text is to be read from and to
provide a pointer to the memory location where the string will be put. To let the
calling routine know how long a text string was read in, this READLN returns a
pointer to the end of the string. Again, unlike Pascal, the calling routine must
ensure sufficent buffer space to accomodate the input string. By using this
READLN, a PLZ program can read in text string far more easily than would be
possible with the GETSEQ routine of the PLZ STREAM.IO module, though still not
as easy as with the Pascal Readln.

5. Routine Relationships Diagram

Any PLZ Routine

READLN
a-I

GETASCIIICH

Figure 23. Relationship of READLN to Calling PLZ Routines and to
GETASCIICH.

Enhancements Module 91

6. Invocation

a. Invocation Statement

READLN is invoked from a calling PLZ routine with:

OUTPOINTER := READLN(LOGICALUNIT, TEXTPOINTER)

where all OUTPOINTER and TEXTPOINTER are of type PByte (for pointer to
byte) and LOGICALUNIT is of type Byte. The calling program must ensure the
buffer pointed to by TEXTPONTER is large enough to accomodate the input text
string.

b. Parameter Passing Schema

READLN has two input parameters, LOGICALUNIT and TEXT_
POINTER. LOGICALUNIT passes the number of the device the text is to read in
from. TEXT_ POINTER holds the beginning address of the buffer into which the
input text will be copied.

c. Routines Which Call READLN

READLN can be used by any PLZ program linked with the Enhance-
ments Module and the PLZ STREAM.IO Module. Alternately, READLN, along
with the internal routines GETASCIICH and GETCH, could be part of the
calling program's module. PLZ STREAM.IO will still have to be linked in.

7. Variables and Constants

a. Global

READLN uses no declaired global constants or variables. However,
the buffer into which the text string is in a sense a global buffer.

b. Module

No module level variables are used by READLN. The module
constant CARRIAGERETURN, valued at 0D hex, is used by READLN.

Enhancements Module 92

I... ' q

c. Routine

READLN has no constants; it uses one variable, PINDEX, of type
PByte for Pointer-to-Byte. PINDEX is used as a place keeper, pointing to the
current position in the buffer.

8. Other Routines Called

READLN uses GETASCII CH, and internal routine of Enhancements
mod- ule, to read in each character. GETASCIICH is invoked from GET_
ASCII_CH by:

PINDEXA := GETASCIICH(LOGICALUNIT)

where PINDEXA is the byte pointed to by PINDEX (and thus is of type Byte) and
LOGICALUNIT is of type Byte. PINDEXA is the memory location into which the
charac- ter reterived by GETASCICH is placed. LOGICALUNIT is the device
number the character is read from.

9. Outout of Routine

READLN returns a single parameter to the calling routine, OUT_
POINTER, of type PByte. OUTPOINTER points to the last character placed in the
buffer, the carriage return. Thus, having passed to READLN TEXTPOINTER,
pointing to be beginning of the buffer, and having received back OUTPOINTER,
the calling routine can determine the length of the string in the buffer. READLN
does not alter the configuration of the system beyond changing a number of
memory locations to the values read in from the logical unit.

10. Routine Testing

a. Description of Test

READLN and the rest of the read routines of the Enhancements
Module were tested with a special module of test routines. One of these routines
used READLN to get text in from the keyboard and then displayed it to the system
console.

b. Results of Test

READLN performed properly.

Enhancements Module 93

I~I

1~.

I,-.

11. Reference to Listing

READLN's program listing is on page 299 in Appendix A.

4j~'

d

.4

0*

.4

.4-

-. 4

0~
.4,

4

'I

I-

4~~

0.

Enhancements Module 94

.4-

E 2J.., U. J - 7A . .: V,. , . . , -. " * , W1, -,,.* '. ~-V . - ,~ ,.' r I- 4. * ,. _ ;,"' -n IL

1. Routine Name: READ HBYTE

2. Output routine of Enhancements Module.

3. Written in PLZ; seven lines of executable code.

4. Synopsis of Routine

READHBYTE reads in from a designated logical unit two characters repre-
senting a 8 bit value in hexidecimal form. The routine translates the characters
into the value and returns that value to the calling routine. In reading in the
character, READHBYTE accepts only valid hexidecimal characters (0 - 9 and A
- F) rejecting all other characters. READHBYTE will keep reading in characters
until it has read two valid hexidecimal characters.

5. Routine Relationships Diagram

Any PLZ Routine

READ_HBYTE

F GET_ASCIII_CH VALIDHEX_CH

VALUED

Figure 24. Relationship of READHBYTE to Other Routines.

6. Invocation

a. Invocation Statement

READ_HBYTE is invoked from a calling PLZ language routine by:

NUMBER := READHBYTE(LOGICAL__UNIT)

Enhancements Module 95

• * ".',' " % 'P . %. d -' *- -' % \ • "- .- -" %%",", ',-.¢ " % " . " """° " " - ' ''.'& ", '

t,- where both NUMBER and LOGICALUNIT are of type Byte.

b. Parameter Passing Schema

READ_HBYTE has a single input parameter, LOGICALUNIT, which
holds the number of the device from which the hexidecimal characters are to be
read.

c. Routines Which Call

READHBYTE can be called by any PLZ routine that is linked with the
En- hancements Module and the PLZ STREAM.IO module. Alternately, this rou-
tine (and the internal routines GETASCIICH, GETCH, and VALIDHEXCH)
could be part of the calling routine's module. The STREAM.IO module is still
required.

7. Variables and Constants

a. Global

No global level variables or constants are used by READ_HBYTE.

b. Module

READ_HBYTE uses no module level variables or constants.

c. Routine

Two local variables are used by READHBYTE. FIRSTTERM is the
first valid hexidecimal character read in and SECONDTERM is the second.
Both of these variables are of type Byte. READHBYTE uses no routine level
constants.

8. Other Routines Called

READ_HBYTE calls three internal routines of the Enhancements
Module, GETASCIICH, VALIDHEXCH, and VALUE.

Enhancements Module 96

a. GETASCIICH

This routine reads individual ASCII characters in from a designated
logical unit. It is invoked by:

CHARACTER := GETASCILCH(LOGICALUNIT)

where both CHARACTER and LOGICALUNIT are of type Byte. READHBYTE
uses GETASCIILCH to get FIRSTTERM and SECONDTERM.

b. VALIDHEXCH

This function determines whether its input character is a valid hexi-
decimal character (0 - 9 or A - F). If it is valid, a logical TRUE is returned, other-
wise a FALSE is returned. VALID_HEXCH is invoked with:

VALIDHEXCH(CHARACTER)

where CHARACTER is of type Byte and VALIDHEXCH returns as a logical
Byte.

c. VALUE

This internal function of the Enhancements module translates a deci-
mal or hexidecimal ASCII character (0 - 9 and A - F) into the value it represents
and returns that value. If VALUE receives an invalid character, a value of zero is
returned. The function VALUE is invoked by its name as follows.

VALUE(CHARACTER)

Both CHARACTER and the return VALUE are of type Byte.

9. Outout of Routine

READ_HBYTE has a single return parameter and produces no
changes in the system configruation. The return parameter, NUMBER, is the
hexidecimal (8 bit) value derrived from the two characters read in.

Enhancements Module 97

17 Z Ii WT- TjWWV TVM~ WV W7

10, Routine Testino

a. Description of Test

READHBYTE was tested along with the rest of the Enhancements
Module routines. In this test READ HBYTE read in some values from the
keyboard; the values were then output to the screen.

b. Results of Test

READHBYTE properly input hexidecimal values and performed as
expected for all input data.

11. Reference to Listing

The listing for READHBYTE is on page 300 in Appendix A.

Ehn M

Enhancements Module 98

1. Routine Name: READDBYTE

2. Part of Enhancements Module

3. Written in PLZ; ten lines of executable code.

4. Synopsis of Routine

READ_DBYTE reads three characters in from a specified logical unit
and translates these characters into the decimal value represented by the chara-
cters. The internal Enhancements Module routine GETASCIICH is used for the
character input. The first character read in must be valid decimal character, that
is 0 through 9. For the first character, all nonvalid decimal characters will be re-
jected. Character validity is checked by the intemal Enhancements Module rou-
tine VALIDDECIMALCH. If the second or third character read in are invalid
they will be accepted but will not be included in the value calculation. The actual
conversion of character to value is accom- plished by VALUE, an internal routine
of the Enhancements Module.

As a single byte has a maximum value of 255, if the decimal chara-
cters represent a value greater than this overflow will occur. The calling routine
must guard against this condition as READ_DBYTE does no range checking.

5. Routine Relationships Diagram

Any PLZ Routine
EREAD DBYTE

GETASCIII_CH VALIDDECIMAL_CH

V A LU EI

Figure 25. Relationship of READ_DBYTE to Other Routines.

Enhancements Module 99

''U1;I \

,.' 6. Invocation :

a. Invocation Statement

READDBYTE is invoked through the following statement.

NUMBER:= READDBYTE(LOGICALUNIT)

NUMBER and LOGICALUNIT are both of type Byte.

b. Parameter Passing Schema

READ DBYTE has a single input parameter, LOGICALUNIT, the
number of the device from which the characters will be read.

c. Routines Which Call

READDBYTE can be called by any PLZ routine.

7. Variables and Constants

a. Global

READDBYTE uses no global variables or constants.

b. Module

READDBYTE uses no module level variables. The module constant
TRUE for logical true is used.

c. Routine

READDBYTE uses three internal variables, FIRSTTERM,
SECONDTERM, and THIRDTERM, all of type Byte. These three variables are
used to hold the validated characters prior to calculating the decimal value they
represent. READDBYTE uses no routine level constants.

Enhancements Module 100

8. Other Routines Called

READDBYTE uses three internal routines of the Enhancements
module, GET_ASCII_CH, VALIDDECIMALCH, and VALUE.

a. GETASCIICH

This routine reads single characters in from a specified logical unit.
GETASCIICH returns only valid ASCII characters. The routine is invoked by:

CHARACTER:= GETASCIICH(LOGICALUNIT)

where both CHARACTER, and LOGICALUNIT are of type Byte.

b. VALIDDECIMALCH

This function checks a character to determine whether it is a 0 through
9. If the input character is a valid decimal character, VALIDDECIMALCH re-
turns a value of TRUE. Otherwise, a value of FALSE is returned. VALID_
DECIMALCH is invoked with:

VALIDDECIMALCH(CHARACTER)

where CHARACTER and the return VALIDDECIMALCH are type Byte.

c. VALUE

This internal function of the Enhancements module translates a deci-
Smal or hexidecimal ASCII character (0 - 9 and A - F) into the value it represents

and returns that value. If VALUE receives an invalid character, a value of zero is
returned. The function VALUE is invoked by its name as follows.

VALUE(CHARACTER)

Both CHARACTER and the return VALUE are of type Byte.

9. Output of Routine

READDBYTE returns to its calling routine a single parameter,
NUMBER, which holds value translated from the characters. NUMBER is of type
Byte. Other than reading in a number of characters, READDBYTE causes no

Enhancements Module 101

* ".••5 •5°• ="o " = ° + - . ° + , °'. • - • ' =° ° '•° -% +=• ° o

-- *--system configuration changes.

10. Routine Testino

a. Description of Test

READDBYTE was tested with the rest of the Enhancements module
routines via a version of the test module TESTIT. In this test values were output
though READDBYTE to the system console.

b. Results of Test

READDBYTE performed properly.

11. Reference to Listing

The program listing of READDBYTE can be found on page 301 in
Appendix A.

Enhancements Module 102

4

4" " "'" P" " '"" ", "" ' """" - - """" , - "" *% - - ."•""" "". "% -"•"-"- ""-",

1. Routine Name: READBBYTE

2. Output routine of Enhancements Module.

3. Written in PLZ; thirteen lines of executable code.

4, Synopsis of Routine

READBBYTE reads in from a designated logical unit one to eight
characters representing a 8 bit value in binary form. The routine translates the
characters into the value and returns that value to the calling routine. In reading
in the first character, READBBYTE accepts only valid binary characters (0 and
1) rejecting all other characters. READBBYTE will keep reading in characters
until it has a 1 or 0. Subsequent ls and Os will be read in and included for the
value calculation. However, as soon as a character other than a 1 or 0 is read,
character input ceases. The character reading is accomplished through routine
GETASCIICH.

READBBYTE stores the ls and Os in a text string which it passes to
routine VALUE_LOOP for translation into a value. READBBYTE then returns
this value to its calling routine.

5. Routine Relationships Diaaram

Any PLZ RoutineI

READBBYTE

IGETASCIIICH ['VALUE_LOOP

Figure 26. Relationship of READBBYTE to Calling PLZ Routine,
GETASCIICH, and VALUELOOP.

Enhancements Module 103

I,. A . .

W6. Invocation

a. Invocation Statement

READBBYTE is invoked from a calling PLZ language routine by:

NUMBER := READBBYTE(LOGICALUNIT)

where both NUMBER and LOGICALUNIT are of type Byte.

b. Parameter Passing Schema

READBBYTE has a single input parameter, LOGICALUNIT, which
holds the number of the device from which the hexidecimal characters are to be
read.

c. Routines Which Call

READBBYTE can be called by any PLZ routine that is linked with the
Enhancements Module and the PLZ STREAM.10 Module. Alternately, this routine
(and the internal routines GETASCIICH, GETCH, and VALIDHEXCH) could
be part of the calling routine's module. The STREAM.IO Module is still required.

7. Variables and Constants

a. Global

No global level variables or constants are used by READBBYTE.

b. Module

READ_BBYTE uses no module level variables. The Enhancements
Module constant BLANK (ASCII for 20 hex) is used by READBBYTE.

c. Routine

Three local variables are used by READBBYTE. INPUTSTRING, of
type ASCIISTR, an array of eight Bytes, is used to store the is and Os. INDEX,
of type Byte, is a placekeeper for the array INPUTSTRING. The third variable,
CHARACTER, is used to hold each character as it is read in.

Enhancements Module 104

.

8. Other Routines Called

READBBYTE calls two internal routines of the Enhancements
Module, GETASCII_OH and VALUE_LOOP.

a. GETASCIICH

This routine reads individual ASCII characters in from a designated
logical unit. It is invoked by:

CHARACTER := GETASCIICH(LOGICALUNIT)

where both CHARACTER and LOGICALUNIT are of type Byte. READBBYTE
uses GETASCIICH to read in the characters.

b. VALUELOOP

This routine translates a string of ASCII characters into the value they
repre- sent. VALUELOOP is invoked though:

MAGNITUDE := VALUELOOP(INPUTSTRING, MULTIPLIER).

VALUELOOP has two input parameters, INPUTSTRING (type PByte), a pointer
to the string of ASCII characters, and MULTIPLIER (type Word) the base of the
number represented by the string of characters. Starting from the least significant
character VALUE_ LOOP calculates the value contributed by each character to
the total MAGNITUDE represented by the string. The routine ends when a blank
is found in the INPUTSTRING or when eight characters have been translated.
VALUELOOP has a single return parameter, MAGNITUDE, of type Word.

9. Output of Routine

READBBYTE has a single return parameter and produces no
changes in the system configuration. The return parameter, NUMBER, is the
hexidecimal (8 bit) value derrived from the ls and Os read in.

Enhancements Module 105
.9

J

10. RotnTesting

a. Description of Test

READ_-BBYTE was tested along with the rest of the Enhancements
Module routines. In this test READTBBYTE read in some values from the key-
board; the values were then output to the screen.

b. Results of Test

READ_-BBYTE property read in binary values and converted them to
the proper values.

11. Reference toJ jijf.

The listing of READBBYTE is on page 302 in Appendix A.

Enhancements Module 106

1. Routine Name: READLBYTE

2. Output routine of Enhancements Module

3. Written in PLZ; seven lines of executable code.

4. Synopsis of Routine

This simple routine reads in characters, on at a time, from a desig-
nated logical unit. It the character is a T, t, or 1, a value of logical true is returned
to the calling routine. If the character is a F, f, or 0 a value of logical false is re-
turned to the calling routine. If any other character input, the routine loops and
another character is read in. READLBYTE uses the internal Enhancements
module routine GETASCIICH to read in the character(s).

5. Routine Relationships Diagram

Any PLZ Routine

READLBYTE

GETASCIIICH

Figure 27. Relationship of READLBYTE to Calling Routines
and to GETASCIICH.

6. Invocation

a. Invocation Statement

READLBYTE is invoked by the following statement.

TRUTH := READLBYTE(LOGICALUNIT)

Both the input and return parameters are of type Byte.

Enhancements Module 107

-- -Z In - ' %7 .-

b. Parameter Passing Schema

READLBYTE has one input parameter, LOGICALUNIT, the device
number from which the character will be read.

c. Routines Which Call

READLBYTE, like the rest of the global routines of the Enhance-
ments Module, are ment to be called from any PLZ routine that needs 10
assistance.

7. Variables and Constants

a. Global

READLBYTE uses no global constants or variables.

b. Module

READLBYTE uses the module constants TRUE and FALSE for
logical true and false. The routine uses no module level variables.

c. Routine

READLBYTE employes the local variable CHARACTER, of type Byte,
to hold the character read in. The routine has no locally defined constants.

8. Other Routines Called

READLBYTE calls GET.ASCIICH, an internal routine of the
Enhancements module, to read in the character input. GETASCIICH is
invoked by:

CHARACTER := GETASCII CH(LOGICALUNIT)

where both the input parameter LOGICALUNIT and the return character
CHARACTER are of type Byte. LOGICALUNIT holds the input device number.
CHARACTER holds the character input. GET ASCII CH returns only valid ASCII

Enhancements Module 108

o * L.TJ " =4 ;J,- . : -, ' - - w ,- v w --. u-w j. , = -r ,- u* w u'1 .p - =,m -i w .. wJ -. Pl* LI .l Jt -AW. l':

characters.

9. Outout of Routine

a. Parameter Passing Schema

READLBYTE has a single return parameter, TRUTH, of type Byte.
TRUTH returns the logical value derived from the read character. TRUTH can
take on only the values TRUE or FALSE.

b. System Configuration Changes

The routine causes no system configuration changes aside from
reading in a character.

10. Routine Testing

a. Description of Test

READLBYTE was tested in the same fashion as the rest of the En-
hancements Module routines.

b. Results of Test

The routine performed properly.

11. Reference to Listing

The program listing of READLBYTE is on page 303 in Appendix A.

Enhancements Module 109

4q

1. Routine Name: READ DINTEGER

2. Output routine of Enhancements Module.

3. Written in PLZ; 22 lines of executable code.

4. Synopsis of Routine

READDINTEGER reads in a string of characters from the designated
logical unit and translates that string into a signed value. The routine begins by
calling GETASCIICH to read in the sign character. Characters are read in from
the desired logical unit until a blank, "+", or "-w is read in, these three being the
valid sign characters. The sign character read is saved in the local variable
SIGN.

The routine continues reading in individual characters until a valid

decimal character (0 through 9) is read. the validity of characters is checked by
the function routine VALIDDECIMALCH. The first valid decimal character
received becomes the first character stored in the local array INPUTSTRING.
READDINTEGER continues reading in characters. The reading process stops
with the first invalid decimal character or when a total of five decimal charactes
have been read. When an invalid character is read or after five valid characters
have been read, a blank is inserted into INPUT_ STRING. The valid decimal
charactes are insterted into INPUTSTRING in the order they are received.

READDINTEGER then enters its third phase, the translation of SIGN
and INPUTSTRING into the return parameter NUMBER, of type Integer. The
bulk of the work is done by general routine VALUELOOP which translates the
characters of INPUTSTRING into the base ten value they represent. This value
is checked for over- flow and then, if SIGN is "-", the value is negated. NUMBER
is then returned to the calling routine.

Enhancements Module 110

5. Routine Relationshios Diagram

Any PLZ Routine

READDINTEGER

GETASCIIICH VALID DECIMALCH

-VALUELOOP

Figure 28. Relationship of READDINTEGER to Other
Routines.

6. Invocation

Ua. Invocation Statement

READDINTEGER is invoked from a calling PLZ program through:

NUMBER := READDINTEGER(LOGI CALUNIT)

where LOGICALUNIT is of type Byte and NUMBER is type Integer.

b. Parameter Passing Schema

LOGICALUNIT is READDINTEGER's only input parameter. It holds
the number of the device the characters are input from.

c. Routines Which Call

READDINTEGER can be employed by any PLZ program linked with
the Enhancements Module and the PLZ STREAM.10 Module.

Enhancements Module 111

7. Varables and Constants

a. Global

No global variables or constants are used by READDINTEGER.

b. Module

READDINTEGER uses the Enhancements Module constants BLANK,
TRUE, and FALSE. No module level variables are used.

c. Routine

READDINTEGER has four internal variables. INPUTSTRING, type
ASCIISTR (a string of 8 bytes) is used to hold the input characters. INDEX, type
Byte, is a placekeeper for the array INPUTSTRING. CHARACTER, type Byte,
hold each character as they are read in. Lastly, SIGN, type Byte, holds the chara-
cter representing the sign of the input string. READDINTEGER uses no locally
defined constants.

8. Other Routines Called

READDINTEGER employes three internal routines from the
Enhancements Module, GETASCIICH, VALIDDECIMALCH, and
VALUELOOP.

a. GETASCIICH

This routine reads single characters in from a specified logical unit

and returns them to the calling routine. GETASCIICH returns only valid ASCII
characters. The routine is invoked by:

CHARACTERS := GETASCIICH(LOGICALUNIT)

where both CHARACTER and LOGICALUNIT are of type Byte.

b. VALIDDECIMALCH

This function routine determines whether a character is a 0 though 9.
If yes, VALIDDECIMALCH returns with a value of TRUE. Otherwise VALID_

.c e

Enhancements Module 112

*'5**** ,. **.'**a*a.*~- * *..-. R

DECIMALCH returns with a value of FALSE. The routine is invoked with:

VALIDDECIMALCH(CHARACTER)

where both CHARACTER and the returning VALIDEDECIMALCH are type
Byte.

c. VALUELOOP

VALUELOOP translates a string of ASCII characters into the value
they represent and returns that value to the calling routine. Being a general
purpose routine, VALUELOOP must be told what base the representation is in.
In general, VALUE_ LOOP is invoked by:

MAGNITUDE := VALUELOOP(INPUTSTRING, MULTIPLIER)

where NUMBER is type Word, INPUTSTRING is type pointer-to-Byte, and
MULTIPLIER is type Word. As the output of READDINTEGER is of type Integer,

for READ_ DINTEGER, VALUELOOP is invoked with a type conversion. As
READDINTEGER is converting a decimal string, MULTIPLER is passed in as 10
for the base.

9. Outout of Routine

a. Parameter Passing Schema

READDINTEGER has a single return parameter, NUMBER (type
Integer), which holds the value translated from the string of input characters.

,.

b. System Configuration Changes

No system configuration changes are caused by READDINTEGER.

10. Routine Testino

a. Description of Test

READDINTEGER was tested with a version of TESTIT module. In
this version, READDINTEGER was called from TESTIT to read an decimal
integer in from the system keyboard. The return from READDINTEGER was
then output to the system console. Thus the operator could input a variety of

Enhancements Module 113

characters and observe the response of READDINTEGER.

b. Results of Test

READDINTEGER performed as expected.

11. Reference to Listing

The listing of READDINTEGER is on pages 304 - 305 in Appendix A.

E M -
C..

Enhancements Module 114

" t% _.,%<, -- :+. -:.-;.-4..Cf4:::.::;.:.:.-:;-: . ;.,.:.._C..':;:::

1. Routine Name: READHWORD

2. Output routine of Enhancements Module.

3. Written in PLZ; 14 lines of executable code.

4. Synopsis of Routine

READHWORD is an Enhancements module routine whose function
is to input a sequence of characters and translate that that sequence into the
hexidecimal value it represents. The routine begins by reading in characters,
one by one, until a valid hexidecimal character is received. The input is handled
by the routine GETASCIICH. The characters are checked by VALIDHEXCH
to determine whether the character is a o to9 or A to F. Once a valid hexidecimal
is received, it is the first character stored in the internal array INPUT_STRINT.
READHWORD then continues reading in chracters, one by one. Each succes-
sive valid hexidecimal character is stored in INPUTSTRING until four character
are stored. If a nonvalid character is read, a blank is placed in INPUT_STRING
and input is ended.

READHWORD next proceeds to translating the characters stored in
INPUTSTRING into the hexidecimal value they represent. The work is done by
routine VALUE_LOOP. The derived 16 bit value is returned to the calling routine
in the output parameter NUMBER, type Word.

5. Routine Relationships Diagram

Any PLZ Routine

READ_HWORD]

GETASCIIICH VALIDHEX CH

VALUELOOPI

Figure 29. Relationship of READHWORD to Other Routines.

Enhancements Module 115

6. Invocation

a. Invocation Statement

From a PLZ program, READHWORD is invoked by:

NUMBER := READHWORD(LOGICALUNIT)

where NUMBER is type Word and LOGICALUNIT is type Byte.

b. Parameter Passing Schema

READHWORD has a single input parameter, LOGICALUNIT.
LOGICAL_ UNIT, type Byte, holds the number of the device from which the
characters are read.

c. Routines Which Call

Like the rest of the Enhancements Module routines, READHWORD is
an supplement routine ment to ease the 10 burden on PLZ programmers. READ_
HWORD can be called from any PLZ program linked with the Enhancements

*, Module and the PLS STREAM.IO Module.

7. Variables and Constants

a. Global

No global variables or constants are used by READHWORD.

b. Module

READHWORD uses the Enhancements moudle constants TRUE and
FALSE for logical true and false. No module level variables are used.

4c. Routine

Three variables are local to READHWORD, INPUTSTRING (type
*ASCII_ STRing), INDEX (type Byte), and CHARACTER (type Byte). INPUT_

STRING is an eight Byte array used to hold the up to five characters (four hex
.. *. characters and a blank) read in. INDEX is a place keeper for the current location

Enhancements Module 116

", . .K , .,.- . *r*.i.'-.._, ... ,=,..' .', ~.\..., -. **. . ,. . .:r t, .,;-. ,. ;-.-.-...

being used in INPUTSTRING. CHARACTER receives the individual characters
read in via GETASCIICH. READHWORD uses no locally defined constants.

8. Other Routines Called

READHWORD uses three internal routines of the Enhancements
Module: GETASCIICH, VALIDHEXCH, and VALUELOOP.

a. GETASCIICH

This routine reads in a single character from a specified logical unit,
checks to ensure the character is valid ASCII, and returns the character to the
calling routine. GETASCIICH keeps reading in data until a valid ASCII chara-
cter is received. GETASCIICH is invoked with:

CHARACTER:. GETASCII CH(LOGICALUNIT)

where CHARACTER and LOGICALUNIT are both type Byte. The input para-
meter, LOGICALUNIT, indicates the device to be used for input. CHARACTER,

* the return parameter, holds the valid ASCII character read in from the LOGICAL_
UNIT.

b. VALIDHEXCH

This Enhancements module internal function format routine, checks
whether a character is a 0 to 9 or A to F. If yes, VALIDHEXCH returns to the
calling routine with a value of TRUE. If the character passed to VALIDHEXCH
is not a valid hexidecimal character, VALIDHEXCH returns to the calling rou-
tine as FALSE. VALIDHEXCH is invoked through:

VALIDHEXCH(LOGICAL.-UNIT)

where LOGICAL-UNIT, type Byte, identifies the device from which data is to be
read.

c. VALUELOOP

VALUELOOP is a general purpose translation routine. It takes a
string of characters, in any base from 2 to 16, and translates the string into the
value they represent. VALUELOOP is invoked by:

MAGNITUDE := VALUELOOP(INPUTSTRING, MULTIPLER)

Enhancements Module 117

jl %

where MAGNITUDE (type Word) is the value represented by the characters,
INPUT_ STRING (type pointer-to-string) is the string of characters, and
MULTIPLIER (type Word) is the base of the character representation.

9. Output of Routine

READHWORD has a single output parameter, NUMBER, of type
Word. NUMBER holds value translated from the input characters. The defined
range of NUMBER is 0000 to FFFF hexidecimal. READHWORD causes no
configuration changes.

10. Routine Testing

a. Description of Test

READHWORD was tested through a routine in version of TESTIT
Module which uses READHWORD to read in characters from the keyboard and
translate them into a value. This value is then displayed to the system console.
This way, the function of READHWORD can be immediately observed.

b. Results of Test

READHWORD worked properly.

11. Reference to Listinag"

READ HWORD's program listing is on page 306 in Appendix A.

E..-n

Enhancements Module 118

1. Routine Name: READDWORD

2. Output routine of Enhancements Module.

3. Written in PLZ; 14 lines of executable code.

4. Synopsis of Routine

READDWORD is an Enhancements Module routine whose function
is to input a sequence of characters and translate that that sequence into the
decimal value it represents. The routine begins by reading in characters, one by
one, until a valid decimal character is received. The input is handled by the rou-
tine GETASCIICH. The characters are checked by VALIDDECIMALCH to
determine whether the character is a 0 to9. Once a valid decimal is received, it is
the first character stored in the internal array INPUTSTRING. READDWORD
then continues reading in chracters, one by one. Each successive valid decimal
character is stored in INPUTSTRING until six character are stored. If a nonvalid
character is read, a blank is placed in INPUTSTRING and input is ended.

READDWORD next proceeds to translating the characters stored in
INPUT STRING into the decimal value they represent. The work is done by rou-
tine VALUELOOP. The derived 16 bit value is returned to the calling routine in
the output parameter NUMBER, type Word.

5. Routine Relationships Diagram

Any PLZ Routine

READ DWORD

ETASCIIICH I VALID DECIMALCH

VALUELOOP1

Figure 30. Relationship of READDWORD with Other Routines

Enhancements Module 119

%q 'I]

• ° " lP" "
° °

' "" /" "" ' " ° " " " ,t " ° P . , , o o .. = .P , i
=

" . o" ,=- o - ". •" =• . • .* •4 . • - " .

6. Invocation

a. Invocation Statement

From a PLZ program, READDWORD is invoked by:

NUMBER := READDWORD(LOGICALUNIT)

where NUMBER is type Word and LOGICALUNIT is type Byte.

b. Parameter Passing Schema

READDWORD has a single input parameter, LOGICALUNIT.
LOGICAL_ UNIT, type Byte, holds the number of the device from which the
characters are read.

c. Routines Which Call
q

Uke the rest of the Enhancements module routines, READDWORD is
a supplement routine ment to ease the 10 burden during PLZ programming.
READ_ DWORD can be called from any PLZ program linked with the
Enhancements module and the PLS STREAM.IO module.

7. Variables and Constants

a. Global

No global variables or constants are used by READDWORD.

b. Module

READDWORD uses the Enhancements module constants TRUE,
FALSE, and BLANK. No module level variables are used.

c. Routine

Three variables are local to READDWORD, INPUTSTRING (type
ASCII_ STRing), INDEX (type Byte), and CHARACTER (type Byte). INPUT_
STRING is an eight Byte array used to hold the up to seven characters (six deci-
mal characters and a blank) read in. INDEX is a place keeper for the current

Enhancements Module 120

location being used in INPUTSTRING. CHARACTER receives the individual
characters read in via GETASCIICH. READ_ DWORD uses no locally defined
constants.

8. Other Routines Called

READ DWORD uses three internal routines of the Enhancements
Module: GETASCII CH, VALIDDECIMALCH, and VALUELOOP.

a. GETASCII_CH

This routine reads in a single character from a specified logical unit,
checks to ensure the character is valid ASCII, and returns the character to the
calling routine. GET._ASCII_CH keeps reading in data until a valid ASCII chara-
cter is received. GET_ ASCIICH is invoked with:

CHARACTER := GETASCIICH(LOGICALUNIT)

where CHARACTER and LOGICALUNIT are both type Byte. The input para-
meter, LOGICALUNIT, indicates the device to be used for input. CHARACTER,
the return parameter, holds the valid ASCII character read in from the LOGICAL_
UNIT.

b. VALIDDECIMALCH

This Enhancements Module internal function format routine, checks
whether a character is a 0 to 9. If yes, VALIDDECIMALCH returns to the
calling routine with a value of TRUE. If the character passed to VALIDDECI-
MALCH is not a valid decimal character, VALIDDECIMALCH returns to the
calling routine as FALSE. VALIDDECIMALCH is invoked through:

VALIDDECIMALCH(LOGICALUNIT)

where LOGICALUNIT, type Byte, identifies the device from which data is to be
read.

c. VALUELOOP

This Enhancements Module routine is a general purpose translation
routine. It takes a string of characters, in any base from 2 to 16, and translates the
string into the value they represent. VALUELOOP is invoked by:

Enhancements Module 121

": " "': " "' . . . , i lG ,, .J:, , , " , ' "''"'" "' "' " " "' '". . '"- " ".. . .•-.- *' ' . . . '. .. ."" ' -- t'.-.'-'""'- '".-.-""''...'-.'.'''-... '

MAGNITUDE:= VALUE_LOOP(INPUTSTRING, MULTIPLER) P

where MAGNITUDE (type Word) is the value represented by the characters,
INPUT_ STRING (type pointer-to-string) is the string of characters, and MULTI-
PLIER (type Word) is the base of the character representation. VAUELOOP
performs a crude overflow checking and returns the maximum 16 bit value
(65,535 decimal) if overflow is detected.

9. Output of Routine

READDWORD has a single output parameter, NUMBER, of type
Word. NUMBER holds value translated from the input characters. The defined
range of NUMBER is 0 to 65,535 decimal. READDWORD causes no config-
uration changes.

10. Routine Testing

a. Description of Test

READDWORD was tested through a routine which used READ
DWORD to read decimal characters in from the keyboard and translate them into
a value. This value was then displayed to the system console. Thus, the function
of READDWORD was immediately observed.

b. Results of Test

READDWORD worked properly.

11. Reference to Listing

The listing of routine READDWORD is on page 307 in Appendix A.

E.
.5..-

-. p*,

a..oEnhancements Module 122

.t. ..- ''' . " ' . ' ," '.."' ." . .".".. J ." ",' ,". . -"-".- . . . "-" .•• •-•- . ."

p.

~
This page is intentionally blank

.4

-U

'U

'U
'U

U'

d

.% ~.*'U*

'U

'U

Enhancements Module 123
'p.

III.__Utility Module

Introduction to Utility Module

Utility Module is a collection of nine Z-80 assembly language routines
designed to give PLZ language programs direct access to input/output ports, spe-
cific memory locations, the CPU interrupt enable/disable, the system date, and
the RIO Operating System memory manager. These assembly language routines
are called as subroutines from PLZ programs. The routines of the Utility Module
and their functions are:

IOOUT: Outputs desired value to desired 10 port.
lOIN: Reads input from desired 10 port.
MEMSET: Writes a desired value to a specific memory cell.
MEMREAD: Reads the value stored in a specific memory cell.
DISABLEINT: Disables the CPU maskable interupts
ENABLEINT: Enables the CPU maskable interupts
DATE: Reads the six characters of the system date.
ALLOCATE: Calls the memory manager for allocation of

a specific sized block of memory.
DEALLOCATE: Calls the memory manager for the deallocation

of a specific block of memory.

Figure 31 below shows how these nine routines relate to the their calling PLZ
routines and to elements of the development system.

Seven of the nine Utility Module routines share several common
features mandated by the PLZ subroutine call and parameter passing procedures
(Ref 6:Sec 7). These features are:

1. Saving the current IX register value,
2. Placing the stack pointer value in the IX register and using

offsets for access to input and output parameters,

3. Code to accomplish the routine's specific task,

4. Restoring of calling routine's IX register value,
5. Deallocating of input parameter space on the stack, and
6. Returning to the calling PLZ routine.

The program listings for the seven routines are organized like the above feature
listing with blank lines setting off the PLZ overhead from the routine's function

Utility Module 124

,.,,,: ' .V : ,' ' .).., . ,, , '- , : . ,. .. ,...,. - ., , . .. - . ,,,. , , . . , .. . - . ,

code. Two routines of the Utility Module, ENABLEINT and DISABLEINT do notshare the common fea- tures listed above. This is due to their lack of input and

output parameters and their sim- plicty; they just do not require the overhead of
the other seven routines. The reasons for and the form of this overhead of the
other seven routines is detailed below.

Any PLZ Language Routines

UTILITY Module
Routines

UpRIO Operating Systemstb

lALLOCATE iMemory Manager

4System~Memory
(,I ~DATE -- * y

IOOUT

Figure 31. Relationship Between the Routines of the Utility Module to
Calling Routines and System Elements.

The first action of the seven routines is to save the current value of the
IX register by pushing it onto the stack This is vital. The IX, upon entry to the
Utility Module routine, points to the calling routine's parameters and must be
restored if the overall pro- gram is to properly execute upon return from the Utility
Module routine. ENABLEINT and DISABLEINT do use the IX register and thus
do not have to save its contents.

,..,Next, the current stack pointer value is placed in the IX register. Off-

. Utility Module 125

sets from IX will be used throughout the routines to access and save input and
output parameters respectively. PIZ uses a table called an Activation Record
(AREC) to pass parameters between calling routines and subroutines. The
AREC is placed on the system stack by the calling routine. The AREC contains
(from high address to low address):

1. Output or Return Parameters,
2. Input Parameters,
3. Local Parameters (of the called routine), and
4. A Mark-Stack Record (MREC) consisting of the return address of the

calling routine and the IX register value of the calling routine.

For the Utility Module routines, there are no local parameters. Upon entry to the
called routine, the stack pointer will point to the low memory boundry of the
AREC. Thus by loading it into the IX register, offsets can be easily used.

The amount of offset from the IX depends upon the number and size
of values present in the AREC (Ref 6:7-2). For example, variables of PLZ type
Byte require only one location (one byte) in the AREC while variables of type
Word require two locations. Return parameters however, are always passed in
sixteen bit forms, reguardless of type. Strings are handled by passing pointers
(sixteen bits) to the beginning of the string. Figure 32 below gives an example of
the AREC for ALLOCATE, the Utility Module routine having the most complex set
of parameters. Note that the return parameter RETURN_ CODE is passed in a
sixteen bit space dispite it being of type byte and requiring only eight bits.

The third section of the seven Utility Module routines is the unique
code of each routine uses to accomplish its function. While different in purpose,
the code of the seven Utility Module routines share the use of offsets from the IX
register to access input parameters and to load output parameters.

The fourth common feature of the seven routines is the restoration of
the calling routine's IX register through a POP IX instruction. This instruction flags
the end of the routine function code and the beginning of the final three PLZ over-
head management steps.

The next to last step is the deallocation of input parameter (in PLZ
parlance these are out parameters) storage space on the stack. As with saving
the IX value, this action is vital. Upon retum to the calling routine, PLZ expects
to find the return, local, and all other parameters needed by the calling routine as
off sets from the stack pointer. It the dealllocation of input parameters isn't ac-
complished, all the stack pointer offsets will be invalid. ENABLEINT and DIS-
ABLEINT do not go through this step as they do not have input parameters. How-
ever, all the routines do pop into the HL register the return address of the calling
routine.

Utility Module 126

The sixth and final step, common to all nine Utility Module routines, is
the return to the calling PLZ routine. This is accomplished simply by a JP (HL) for
jump to the address in the HL register instruction, the return address having al-
ready been popped into the HL register. With that action, the Utility Module rou-
tine ends.

PLZ Activation Record (AREC) for
Utility Module Routine ALLOCATE N

Output Parameters Higher Memory."

Beginning_Address -
- Stack Pointer + OF Hex

EndingAddress --

Available Block Size-

Return-Code Input Parameters

Block Size Requested

i - Lower Memory Bound

MakSakRcr Upper Memory Bound .

Return Address - ",

Calling Routine's IX - i,.STACK POINTER

Figure 32. Example of PLZ Activation Record - ALLOCATE.

Thus, the nine assembly language routines of the Utility Module give
PLZ language routines direct access to input/output port, system memory, the
system date, the Z-80 interrupt enable/disable, and the RIO operating system

Utility Module 127

..............................

memory management routine. The following pages detail the nine routines. For
each routine the following information will be presented.

1. The name of the routine.
2. The name of the routine's module.
3. The language the routine is written in and the number of lines of

code in the routine.
4. A synopsis of the routine.
5. A Routine Relationship Diagram showing the relationship of the

routine to the PLZ routines that call it and the elements of the system
that it calls.

6. The invocation statement for the routine, its input parameter passing
schema, and the routines called by the routine.

7. A description of the global, module, and local level constants used
by the routine.

8. Descriptions, including parameter passing, of all routines called by
the routine.

9. A discussion of the output of the routine, both output parameters and
effect on system configuration.

10. The testing of the routine.
11. A reference to the pages of the routine code listing.

The code listing of the routines of Utility Module are in Appendix B.

U M. .

S°

Utility Module 128

1. Name: IOOUT

2. Part of Utility Module

3. Written in Z-80 Assembly Language; 22 bytes.

4. Synopsis of Routine

IOOUT is an assembly language routine which gives PLZ language
routines direct access to the input/output ports of the system. Through IOOUT a
PLZ program can write directly to the output registers. IOOUT has three sections
of code, AREC save, write to 10 port, and return to calling routine.

5. Routine Relationshio Diagram

Any PLZ Language Routine

256 10 Ports".
1 0 0 U T 26Oot

FFh

Address& Data -
80h

Z-80 CPU
-00h

Figure 33. Relationship of IOOUT to Calling PLZ Routines and the
Central Processing Unit

6. Invocation

a. Invocation Statement

IOOUT is invoked in a PLZ routine via:

Utility Module 129

10 - i n-. SP S.w-i .

I-,

.,.-IOOUT(IOPORT, VALUE)

where both 10_PORT and VALUE are of type BYTE.

b. Input Parameter Passing Schema

IOOUT has two input parameters, 10_PORT and VALUE, both of type
Byte. 10_PORT is the number of the input/output port to which the data will be
output. The defined rage of IO_PORT is 0 to 255. VALUE is the quantity to be
output to the designated 10_PORT.

c. Routines Which Call

Though IOOUT call be called by any PLZ routine, it is not used by any
of the final software in this thesis effort.

7. Variables and Constants

a. Global

IOOUT uses no global constants or variables outside the defined uses
of the IX and HL registers for subroutine entry / exit.

b. Internal to the Module

IOOUT uses the module constant ZERO, value 0000 hex. IOOUT
uses no module level variables.

c. Internal to the Routine

None

8. Other Routines Called

IOOUT calls no other routines.

Utility Module 130

.5 .. *.

."

9. Outgut of Routine

The output of IOOUT is the writing of the desired VALUE to the desired
10_PORT. There are no other effects. IOQUT has no output parameters.

10. Routine Testing

a. Description of Test

10_OUT was tested with a simple PLZ routine which writes predeter-
mined values to predetermined 10 Ports. The ports were monitored with a logic
analyzer.

b. Results of Test ,

The desired values were written to the proper ports. Conclusion:
IQOUT works.

11. Reference to Listing

The listing of IQOUT is on page 317 in Appendix B.

Utt M

Utility Module 1 31

,:.' 1. Routine Name: lOIN

2. Part of Utility Module

3. Written in Z-80 Assembly Language; 25 bytes.

4. Synopsis of Routine

IlOIN is an assembly language routine which gives a PLZ language routine
direct access to the input/output ports of the system. Through lOIN a PLZ pro-
gram can directly read from the 10 ports. lOIN has three subdivisions, AREC
save, 10 port read, and return to calling routine.

5. Routine Relationship Diagram

Any PLZ Language Routine

10 1 N256 10 Ports

C- FFh

Address

Data

Figure 34. Relationship of lOIN to Calling PLZ Routines and the
Central Processing Unit.

6. Invocation

a. Invocation Statement

lOIN is invoked in a PLZ routine via:

VALUE:= IOIN(IOPORT)

Utility Module 132

where both 10_PORT and VALUE are of type BYTE.

b. Input Parameter Passing Schema.

lOIN has one input parameter, 10_PORT, the number of the input / out-
put port data is to be read from.

c. Routines Which Call lOIN

lOIN can be called by any PLZ routine. In this thesis effort lOIN was
not used in the final software.

7. Variables and Constants

a. Global

lOIN uses no global constants or variables outside the defined uses of
the IX and HL registers for subroutine entry/exit.

b. Internal to the Module

The module constant ZERO, value 0000 hex, is used by lOIN; there
are no module level variables.

c. Internal to the Routine

None

8. Other Routines Called

lOIN calls no other routines.

9. Output of Routine

a. Output Parameter Passing Schema.

lOIN has one output parameter, VALUE (type Byte), which holds the

Utility Module 133

data read in from the 10 port indicated by the input parameter 10_PORT.

b. System Configuration Changes

Beyond the impact of the read upon the 10 port's status, lOIN causes
no system changes.

10. Routine Testing

a. Description of Test

lOIN was tested with a simple P1Z routine which read (via lOIN) from a
serial 10 port which was connected to a terminal. Characters were typed in at the
terminal. The characters (VALUEs) read were then displayed to the system con-
sole.

b. Results of Test

The characters typed in at the terminal appeared on the system con-
sole. Conclusion: JOIN works.

11. Reference to Listing

The program listing for lOIN is located on page 318 in Appendix B.

Utility Module 134

V. ~** ... P * ~~* ~K-- - -... *-.

1. Name: MEMSET

2. Part of Utility Module

3. Written in Z-80 Assembly Language; 24 bytes.

4. Synopsis of Routine

MEMSET is an assembly language routine which permits PLZ lan-
guage routines to write to or set specific random access memory (RAM) locations
to specific values. MEMSETs code has three major subdivisions: AREC save,
write to a memory location, and return to calling routine.

5. Routine Relationship Diagram

Any PLZ Language
Routine System Memory

M EM S E T

8000h
N61 K fRAM -4£ h

Memory Locations L..0000£h

Figure 35. Relationship of MEMSET to Calling PLZ Routines.

6. Invocation

a. Invocation Statement

MEMSET is invoked in a PLZ program via:

MEMSET(LOCATION, VALUE)

where LOCATION is type Word and VALUE is type byte.

Utility Module 135

. . . -- .

b. Input Parameter Passing Schema

MEMSET has two input parameters, LOCATION (type Word), the ad-
dress of specific memory location, and VALUE (type Byte), the quantity to be
stored in the location. These parameters are passed via standard PLZ methods.

c. Routines Which Call MEMSET

MEMSET can be used by any PLZ routine needing direct access to
memory locations. MEMSET was not used by the final routines of this thesis
effort.

7. Variables and Constants

a. Global

No internal module variables or constants besides the registers used
by PLZ subroutine calls.

b. Internal to the Module

MEMSET uses the constant ZERO of value 0000 Hex; no module
level variables are used.

c. Internal to the Routine

MEMSET uses two of the CPU registers to hold variables. The HL reg-
ister holds the address of memory location to be read and the A register holds the
value read from memory location. No routine level constants are used.

8. Other Routines Called

MEMSET calls no other routines.

9. Output of Routine

a. Output Parameter Passing Schema
MEMSET has no output parameters.

Utility Module 136

... ,-......... .. . -,-,

b. System Configuration Changes

MEMSET changes the quantity stored in the desired memory location
to the specified value.

10. Routine Testing

a. Description of Test

MEMSET was tested by having a simple PLZ routine setting specific
memory locations to know values via MEMSET. Then the debugger was used to
display the same memory locations.

b. Results of Test

MEMSET set the proper memory locations to the proper values. Con-
clusion: MEMSET works.

11. Reference to Listina

The program listing of MEMSET is on page 319 in Appendix B.

Utility Module 137

~ *..?

P

1. Name: MEMREAD

2. Part of Utility Module

3. Written in Z-80Assembly Lanugage; 27 bytes.

4. Synopsis of Routine

MEMREAD is an assembly language routine which permits PLZ lan-
guage routines to read specific memory locations, RAM OR ROM. MEMREAD
has three major subdivisions: AREC save, read of memory location, return to
calling routine.

5. Routine Relationship Diagram

Any PLZ Language
ou neSystem Memory

--FFFFh ..

M EM R E A-- Dco ."

Any of the 4000h
64 K RAM and
ROM Memory Locations

Figure 36. Relationship of MEMREAD to Calling PLZ Routines.

6. Invocation

a. Invocation Statement

MEMREAD is invoked in the calling PLZ routine via:

VALUE := MEMREAD(LOCATION)

Utility Module 138

-. 5. .d I..

4 -. . .7 .- P .. W J .F..; r7,,f ., -,I P . ,

where VALUE is of type Byte and LOCATION is of type Word.

b. Input Parameter Passing Schema

MEMREAD has one input parameter, LOCATION (type Word), the ad-
dress of specific memory location to be read. LOCATION has a defined range of
0 to 65535 decimal.

c. Routines Which Call MEMREAD

MEMREAD was not used by any of the final data collection routines of
this thesis effort. However, it can be used by any PLZ language routine needing
direct access to memory.

7. Variables and Constants

a. Global

MEMREAD uses no global constants or variables.

b. Internal to the Module

Besides the registers used by PLZ subroutine calls, MEMREAD uses
no module level variables. The module constant ZERO, value 0000 hex, is
used by MEMREAD.

c. Internal to the Routine

MEMREAD employs two CPU registers to hold variables. The HL
register holds the address of memory location to be read and the A register holds
the value read from memory location. There are no routine level constants.

8. Other Routines Called

MEMREAD calls no other routines.

Utility Module 139

,N ,% 9. Output of Routine

a. Output Parameter Passing Schema

MEMREAD has one output parameter, VALUE, which is the quantity
stored in the memory location specified by the input parameter LOCATION.

b. System Configuration Changes

MEMREAD causes no system changes.

10. Routine Testing

a. Description of Test

MEMREAD was tested by setting memory locations to know values
with the debugger. Then a simple PLZ routine, which reads the same memory
locations (via MEMREAD) and displays them on the console, was run.

b. Results of Test

The values stored in the memory locations were properly displayed.
Conclusion: MEMREAD works.

11. Reference to Listing

MEMREAD's program listing is on page 320 in Appendix B.

Utility Module 140

• % o . , = - • 9 , ,i o = ,o• - . - ° ° " , " o. "

1. Name: DISABLEINT

2. Part of Utility Module

3. Written in Z-80 Assembly Language. Three bytes.

4. Synopsis of Routine

DISABLEINT is a very simple assembly language routine which enables a
PLZ routine to disable the Z-80 interrupts. This routine is a companion to
ENABLEINT.

5. Routine Relationship Diagram

Any PLZ Language Routine

DISABLEINT
DI Instruction

Z,80 CPU

Figure 37. Relationship of DISABLEINT to Calling P1Z Routines
and the Interrupt Setting of the Central Processing Unit.

6. Invocation

a. Invocation Statement

DISABLEINT is called from a P.Z program via:

DISABLEINT

Utility Module 141

IF-T .. La rig -j - -j -. -W S 'I-

"" b. Parameter Passing Schema

DISABLEINT has no parameters.

c. Routines Which Call DISABLEINT

DISABLEINT was used by the AIO.PLZ.S Module routines which
served as precursors for the Sampler Module assembly language routines.

7. Variables and Constants

The only "variable" used by DISABLEINT is the HL register which
stores the address of the calling routine.

8. Other Routines Called

DISABLEINT calls no other routines.

9. Output of Routine

The result of DISABLEINT is the disabling of the Z-80 interrupts.

10. Routine Testing

a. Description of Test

DISABLEINT is called by another routine which causes interrupts.
With that routine running, a logic analyzer was used to monitor the CPU lines.

b. Results of Test

Before the invocation of DISABLEINT the CPU responded to the
interrupt signals. After the invocation of DISABLEINT the CPU ignored the
interrupt signals. Conclusion: DISABLEINT works.

11. Reference to Listing

. The program listing for DISABLEINT is on page 321 in Appendix B.

Utility Module 142

1. Name: ENABLEINT

2. Part of Utility Module

3. Written in Z-80 Assembly Language, three bytes.

4. Synopsis of Routine

ENABLEINT is a very simple assembly language routine which en-
ables a PLZ routine to enable the Z-80 interrupts. ENABLEINT is a companion to
routine DISABLEINT.

5. Routine Relationship Diagram

Any PLZ Language Routine

J.

~ENABLEINT

El Instruction.-

Z-80 CPUE:

Figure 38. Relationship of ENABLEINT to Calling PLZ Routines
and the Interrupt Setting of the Central Processing Unit.

A

6. Invocation

a. Invocation Statement

ENABLEINT is invoked from the calling PLZ routine via:

ENABLEINT.

Utility Module 143

b. Parameter Passing Schema

ENABLEINT has no parameters.

c. Routines Which Call ENABLEINT

This routine was not used by any of the final version routines of the
data collection system. However, ENABLEINT was used by the AIO.PLZ.S
Module during initial software design.

7. Variables and Constants

The only "variable" used by ENABLEINT is the HL register which
stores the address of the calling routine.

8. Other Routines Called

ENABLEINT calls no other routines.

9. Output of Routine

The result of ENABLEINT is the enabling of the Z-80 interrupts.

10. Routine Testing

a. Description of Test

ENABLEINT is called by another routine which uses interrupts. With
that routine running, a logic analyzer was used to monitor the CPU lines.

b. Results of Test

Prior to the invocation of ENABLEINT the CPU ignored the interrupt
signals; afer invocation, the interrupts were acknowledged. Conclusion:
ENABLEINT works.

Utility Module 144

= . ;;.': : , , , .,. , -. ,. . , . . ,

11. Reference to Listing

The listing of ENABLEINT is on page 322 in Appendix B.

!

4,00 d

Utility Module 145

1. Routine Name: DATE

2. Part of Utility Module

3. Written in Z-80 Assembly Language; 33 bytes.

4. Synopsis of Routine

Procedure DATE is an assembly language routine which permits a
PLZ language routine to call the operating system an obtain the current system
date. DATE has four major subdivisions.

First, DATE saves the IX register for later restoration.

Second, DATE prepairs pointers to both the stack and the memory
locations where the date is stored.

Third, DATE copies the six characters from the date storage locations to
the stack.

Fourth, DATE restores the IX register, gets the return address, and returns
control to the calling PLZ routine.

5. Routine Relationship Diagram

Any PLZ Language Routine

System Memory

-2000Oh

13B1h
' 3ABh

0000h

.-. Figure 39. Relationship of DATE to Calling PLZ Routines and
Memory Locations of Date Characters.

Utility Module 146

S.'4= . ..q-
:% -.,,... •,,,, . . "." ,'"''" "." '" "- ', .% - "", ,',', ".'.- ,"-''.'-.. ",- " - - - "- "-','''-." '.'," "-'" -.

6. Invocation

a. Invocation Statement

DATE is invoked in the calling PLZ routine by:

YEAR1, YEARO, MONTH1, MONTHO, DAY1, DAYO:= DATE

where these return parameters are of single character type.

b. Input Parameter Passing Schema

DATE has no input parameters; it uses the six system date characters
stored in memory locations 13AB -1 3CO.

c. Routines Which Call DATE

Any PLZ program which has been linked with the Utility Module can
call DATE. For this thesis effort, DATE is called by GETDATE of the
CollectData Module.

7. Variables and Constants

a. Global Constants

ZERO: 0000 Hex, just a constant for zero
DATEADDRESS: 13AB Hex, the first of six system date memory

locations

b. Variables Internal to the Module

Named module variables per say are not used, however, some regis-
ters of the Z-80 are used by the subroutine call schema. The return address is on
the top of the stack at the onset of the called subroutine. The IX register is used
by PLZ to point to the Activation Record (AREC), a table of pointers created for
subroutine calls. Thus, it is important to save and restore the IX register.

c. Variables Internal to the Routine

Though no named variables are used, several of the Z-80 CPU regis-

Utility Module 147

A., , ters are used to hold variables. The C register is used to count down the 6 chara-
cter-transfers. The HL register points to the system date storage location for each
character. The DE register points to the output storage location for each chara-
cter, the destination location.

8. Routines Called by DATE

DATE calls no other routines.

9. Output of Routine

a. Output Parameter Passing Schema

DATE outputs six parameters, the six ASCII characters of the system
date. These six parameters, YEAR1, YEARO, MONTH1, MONTHO, DAY1, and
DAYO, are all of type Byte.

b. System Configuration Changes

DATE does not modify any system configurations.

10. Routine Testing

a. Description of Test

DATE was tested by loading the system date (via RIO routine DATE
with known values and then running a simple PLZ routine which called DATE
and output the returned values to the screen.

b. Results of Test

It worked properly.

11. Reference to Listing

The listing of DATE can be found on page 323 in Appendix B.

Utility Module 148

*.. .- . •. 4 - .. * . * * .• . . . ,. 4 .

1. Name: ALLOCATE

2. Part of Utility Module

3. Written in Z-80 Assembly Language; 82 bytes.

4. Synopsis of Routine

ALLOCATE is an assembly language routine which permits PLZ
language routines access to the system memory manager. The specific purpose
of ALLOCATE is memory allocation; DEALLOCATE is a companion routine.
ALLOCATE has seven subdivisions.

a. AREC save
b. Load of input parameters into Registers for OS call.
c. Call to memory manager to allocate memory.
d. Load of two OS response parameters into subroutine return

locations.
e. Error Code evaluation.
f. Load of remaining OS response parameters into subroutine return

locations.
g. Return to calling routine.

5. Routine Relationship Diagram

Any PLZ Language Routine
System Memory

"CE ' FFFFh

SOperating000h

. ,, Figure 40. Relationship of ALLOCATE to Calling PLZ Routines and
,-',.-the RIO Operating System.

Utility Module 149

-..:,.'.-,:.,',.,.....,..., -..., ,, .,..- .,. ., ,.. -, ,.. . ,,. . _ ...

* , 6. Invocation

a. Invocation Statement

ALLOCATE is invoked in a PLZ program as follows.

RETURNCODE, AVAILABLEBLOCK SIZE,
BEGINNING_ADDRESS, ENDINGADDRESS

ALLOCATE(BLOCKSIZEREQUESTED,
LOWERMEMORYBOUND,
UPPER MEMORY BOUND

where RETURNCODE is type Byte, and the remaining parameters are type
Word.

b. Input Parameter Passing Schema

ALLOCATE uses three input parameters and follows the standard
subroutine parameter passing methods. The input parameters are:

BLOCKSIZEREQUESTED: This is the size of memory block, in bytes, for
which memory allocation is being requested.
As this is is of type Word, its defined range is 0

to 65,536 (64K). Type Word.

LOWERMEMORYBOUND: The memory location that allocation must be
above. Defined range 0 to 64K. This para-
meter is used to fence out areas of memory for
other use. Type Word.

UPPERMEMORYBOUND: The memory location that the allocation must be
below. Defined range 0 to 64K. This para-
meter is used to fence out areas of memory.
Type Word.

c. Routines Which Call ALLOCATE

The current versions of the data collection software do not use ALLO-
CATE. However, ALLOCATE would be used by an improved SIZEDATBUF-
FER (Collect_ Data Module) to provide direct access to the RIO Operating System
Memory Manager.

Utility Module 150

40

7. Variables and Constants

a. Global

There are no true global variables or constants used by ALLOCATE.

b. Constants Internal to the Module

ZERO: 0000 Hex
ALCTMEMORY: 00 Hex, the code for allocate memory passed

to the memory manager.
MEMORYMANAGER: 1409 Hex, the address of the memory manager

entry point.
OPERATIONCOMPLETE: 80 Hex, the return code for successful memory

allocation.

c. Internal to the Routine

Besides the use of the CPU registers to hold parameters (see below),
ALLOCATE has no internal constants or variables.

8. Other Routines Called

ALLOCATE calls the RIO Operating System Memory Manager. The
CPU registers are used to pass parameters between ALLOCATE and the Mem-
ory Manager. For the call to the Memory Manager:

BC holds the BLOCK_SIZEREQUESTED in bytes;
HL holds the LOWERMEMORYBOUND address;
DE holds the UPPERMEMORYBOUND address;
A holds the request code for memory allocation, 00 hex.

The Memory Manager returns:

BC holds the AVAILABLEBLOCKSIZE (which may be that
requested);

HL holds the BEGINNINGADDRESS of the allocated or available
block;

DE holds the ENDINGADDRESS of the allocated or available block;
A holds the RETURNCODE.

The values placed in the registers and returned by the memory manager are

Utility Module 151

functionally the same as the input and output parameters of ALLOCATE.

9. Outout of Routine

a. Output Parameter Passing Schema

The four parameters returned by ALLOCATE to the calling PLZ routine
are:

RETURNCODE: Type Byte. The return code is the operating system's
message on its success in allocating the desired block
of memory. If a block of memory was successfully allo-
cated the RETURN_ CODE will be zero. On the other
hand, if a contiguous block of the desired size could not
be found, RETURNCODE will have the value 4A hex
which means insufficient memory.

AVAILABLEBLOCKSIZE: Type Word. The value returned in this parameter
depends upon whether the BLOCKSIZEREQUES-
TED was available. If it was, then AVAILABLE
BLOCKSIZE is the number of bytes requested. If
however the BLOCKSIZEREQUESTED was not
available, AVAILABLEBLOCKSIZE will be the num-
ber of bytes of the largest available block in system
memory.

BEGINNINGADDRESS: Type Word. This parameter has three possible values.
If memory is successfully allocated, BEGINNINGAD-
DRESS will be the memory address of the beginning of
the allocated block. If sufficient memory is not avail-
able, BEGINNINGADDRESS will be the memory ad-
dress of the beginning of the largest block of memory
that is available. If not even one single byte of memory
is available, BEGINNINGADDRESS will be zero.

ENDINGADDRESS: Type Word. This parameter has two possible values. If
memory allocation was successful, ENDINGAD-
DRESS will be the memory address of the allocated
block. If there was insufficient memory for the BLOCK-
SIZEREQUESTED then ENDINGADDRESS will be
zero.

Utility Module 152

A- A F

b. System Configuration Changes

If memory allocation was successful, the Operating system will have
the requested block of memory reserved. If allocation was not successful, no
system configuration changes will have occured.

10. Routine Testing

a. Description of Test

A simple PLZ program which calls the memory manager via allocated
was written. This program outputs to the console the return code from the call to
the memory manager and the other output parameters of AOLLCATE. The pro-
gram was run a number of times with different input parameters. Between runs,
the operating system memory status display was displayed to see the current
memory allocation. DEALLOCATE was tested concurrently.

b. Results of Test

When the request was valid, ALLOCATE successfully conveyed the
requests to the memory manager; memory was allocated. When unsatisfiable
requests were made, ALLOCATE received and correctly interperted the respon-
ses from the memory manager. Conclusion: ALLOCATE works.

11. Reference to Listin

The program listing for ALLOCATE is on pages 324 - 325 in Appendix
B.

Utility Module 153

-S -. . .- :::.::: :.-.-.-.-.-- : :.:;::::: ,- .. +-: ... :.::.::>-.-...-.- :: ... :. -.-.. ::: :. .. : -;..-..:

.' , 1. Name: DEALLOCATE

2. Part of Utility Module

3. Written in Z-80 Assembly Language; 38 bytes.

4. Synopsis of Routine

DEALLOCATE is an assembly language routine which permits a PLZ
program access to the operating system memory manager for deallocation of
specific blocks of memory. DEALLOCATE has four major sections of code:

a. AREC save
b. Call of Memory Manager
c. Output Parameter setup
d. Stack clean up and return to calling routine.

5. Routine Relationship Diagram

Any PLZ Language Routine
System Memory

-FFFFh

IEALLOCATE 0h

8000h
E~eoryManager

..RIO Operating System---_ h

Figure 41. Relations of DEALOCATE to Calling PLZ Routines and
to RIO Operating System.

Utility Module 154
* £' .

",4. ,' ... Z """-',. """""""": . . """-""""""", , "'"""-"""-"- ". ' ' ' ".". " •, " . "" ,. ''' .,-,

0a,.

6. Invocation

a. Invocation Statement

DEALLOCATE is invoked in a PLZ routine via:

RETURNCODE:= DEALLOCATE(BLOCKSIZE, BEGINNINGADDRESS)

where RETURNCODE is of type Byte and BLOCKSIZE and BEGINNINGAD-
DRESS are of type Word. The Utility Module must be linked in will the calling
program.

b. Input Parameter Passing Schema

DEALLOCATE has two input parameters, BLOCKSIZE and BEGIN-
NING_ ADDRESS. BLOCKSIZE is the number of memory locations to be de-
allocated. BEGINNINGADDRESS is the address of the first memory location of
the block to be deallocated. The block to be deallocated must be fully allocated
at the onset of this routine.

c. Routines Which Call

DEALLOCATE can be called by any PLZ program linked with the
Utility Module. Though it is not used in any of the current data collection software.
An improved SIZEDATABUFFER that uses ALLOCATE would force the use of
DEALLOCATE near the end of module execution to free up memory.

7. Variables and Constants

a. Global

There are no true global variables or constants.

b. Constants Internal to the Module

ZERO: 00 hex
DEALCT_MEMORY: 01 Hex, the code for deallocation of memory

passed to the memory manager.
MEMORYMANAGER: 1409 Hex, the address of the memory

manager entry point.

,

Utility Module 155

c. Internal to the Routine

Besides the CPU registers used to hold parameters (see below), DE-
ALLOCATE has no internal variables or constants.

8. Other Routines Called

DEALLOCATE uses the system Memory Manager routine. CPU regis-
ters are used to pass parameters between DEALLOCATE and the Memory Man-
ager. When DEALLOCATE calles memory manager:

BC holds the BLOCKSIZE to be deallocated;
HL holds the BEGINNINGADDRESS of the block;
A holds the request code for memory deallocation, 01 hex.

The Memory Manager returns to DEALLOCATE register A holding the RETURN
CODE, 80 hex for successful deallocation or 43 hex for memory protect violation.
Memory protect violation occurs when the block identified for deallocation is not
completely and continuously allocated. Note that these register stored values are
the input and output parameters of DEALLOCATE.

9. Output of Routine

a. Output Parameter Passing Schema

DEALLOCATE returns a single parameter, RETURNCODE, which
indicates whether the deallocation was successful. If the deallocation was suc-
cessful, RETURN_ CODE will have a value of 80 hex. If the deallocation is un-
successful the RETURN_ CODE will have a value of 43 hex.

b. System Configuration Changes

If memory deallocation was successful, the block of memory specified
by the input parameters will no longer be allocated. If deallocation was unsuc-
cessful, no configuration changes will have occured.

Utility Module 156

. .N[-., :,' '. . eZ-'_,', .-', '.'._ -".-_-, , ' ,Z'. .-.
,.
-,-..-,',- ,- .-_-.._< - ...-.- . .-... .- . .._.-_ ., -_ " - - .- '..

10, Routine Testing

a. Description of Test

DEALLOCATE was tested in conjunction with ALLOCATE through a
simple PLZ routine. This routine used ALLOCATE and DEALLOCATE to alter the
system memory allocation. In between calls, the status of the system memory
was checked via an operating system utility.

b. Results of Test

Whenever the deallocation request was valid, DEALLOCATE suc-
cessfully deallocated the specified block of memory and returned the successful
operation return code. When invalid deallocation requests were made, DEALLO-
CATE was unable to deallocate memory (as it shouldn't) and returned the proper
return code for memory protect violation. Conclusion: DEALLOCATE works.

11. Reference to Listing

DEALLOCATE's listing can be found on pages 326 - 327 in Appendix
B.

Utility Module 157

, ," q 9 # . " °- • " . " ° • " " , ° . " ° . ° ° ,• . ° , " . - ° * " " • . p "
•

-. * " - . .• "•
•

. - *

Y!7Y irii.1 'f~ V~ C7 V~W.D~ '.J 'A"'7 ~ -~ ~'3 ~ ~.W".NMW h~ It ~!Y ~ ~T~p.~X9c, ~ ri.~ .. U.. ~ qj- ~, ~ -. ~-, ~ ~ ~Ju r~r~.

I

This page is intentionally blank.

4

'I.

U.

.4.

4.

.4
4%

I

4%

4

A
* 'ti'

Utility Module 158

I

~ ~,4,4~9*S~ 4
S. . .4 .. Pp 4 5 5'..

IV. Sampler Module

Introduction to Sampler Module

The Sampler Module is a collection of twelve assembly language
routines which implement a real-time clock paced data collection system. The
module uses periodic interrupts from the CTC (counter/timer chip) of the MCB
Board to initiate analog to digital conversions by the AIO (analog input output)
board. When each conversion is complete, the digital data is read from the AlO
board and placed in a buffer. The process continues until a specified number of
samples has been input and stored in the buffer. This interrupt / convert / store
process is preceeded by a series of initilization steps and is followed by a set of
shut down and deallocation routines.

In the following paragraphs, the organization, program flow, interrupt
routine selection, invocation, language, call overhead, testing, and known pro-
blems of Sampler Module are discussed. Following these discussions are the
detailed descriptions of the twelve routines of the module.

Organization and Function of Samoler Module Routines

Sampler Module is organized into an executive rouine, nine subor-
dinate routines, and two interrupt service routines. Sampler Module could have
been written as a single sequence of assembly code plus the two interrupt ser-
vice routines. This approach was rejected in favor of the executive / subordinate
organization for three reasons. First, the executive/subordinate structure is far
more readable and maintainable than a long single string of code. The executive
clearly shows the high level program flow and all the module control branching;
this detail would have been obscured in a large single string of code. Second, a
number of the subordinate routines are complete functions developed originally
in PLZ (AIO.PLZ.S Module) or used elsewhere; these routines were already func-
tionally separate routines. Third, the functions needed in the module logically
follow a building block organization, particularly the interrupt service routines.
For these reasons, Sampler Module is organized into an executive routine, nine
subordinate routines, and two interrupt service routines.

The twelve routines of Sampler Module and and a description of their
their functions fpllows.

Sampler Module 159

... Ip. .

Routine Name Function of Routine

SAMPLER Executive routine of Samper Module. Calls routines
VALIDATE through DEALLOCATE in turn.

VALIDATE Verifies the correctness of the module input parameters.

ATODINIT Initializes the AIO Board by putting the board Into polled
mode and clears the analog to digital input registers.

CTCPROGRAM Initializes the CTC timer chip by loading the desired
prescaller for the timing count and the interrupt vector.

INTSETUP Establishes the parameters for the interrupt service
routine including selection of TOSAMPLE or
TCSAMPLE for the interrupt service routine.

INITCOLLECTOR Loads control parameters in to the CPU registers.

USERREADY? Querries the user via the system console and keyboard for
a signal to begin data collection.

STARTTIMER Loads the CTC timer with the selected time constant
which complets its programming and initiates the real time
clock.

COLLECTER Loops, polling the AIO board status register and reads In
converted data when an analog to digital conversion is
complete. Counts the collections and ends, exiting loop,
when last sample has been read.

CTCOFF Deactivates the interrupts and timing of the CTC.

DEALLOCATE Loads the output parameters and deallocates stack space
of the input parameters.

TOSAMPLER Interrupt service routine for sample periods of 0.01
seconds or less. No counter is used. Initiates an analog
to digital conversion each time called.

TCSAMPLER Interrupt service routine for sample periods greater than

0.01 seconds. Decrements a counter each time called.
When counter reaches zero, initiates an analog to digital
conversion and resets the counter.

Sampler Module 160

*'7 e F T 7 1. -T

Execution Flow within Sampler Module

The flow of program execution between the executive routine SAM-
PLER and its nine subordinate routines is shown by Figure 42 below. SAMPLER
calls its nine subordinate routines in succession with two possible branches.
These branchs occur within SAMPLER and are based on the output (state of the
CPU zero flag) of subordinate routines VALIDATE and USERREADY?. In both
cases the branching is to abort the execution of the remaining module steps.
From VALIDATE, Sampler Module execution is aborted if the input parameters
supplied by the calling PLZ program are invalid. From USERREADY? execu-
tion is aborted if the User signals to abort data collection. Abortion of execution
from USERREADY? requires a call to CTCOFF to disable CTC timing and
interruptions. DEALLOCATE is called from both execution abortion paths to pre-
pare for the return to the calling PLZ routine. For more information on the internal
execution and interfaces of the Sampler Module routines, please consult the de-
tailed routine descriptions.

The interrupt service routine, either TOSAMPLE and TCSAMPLE, is
not called by SAMPLER. Instead, the interrupt service routine executes out of
routine COLLECTER. INTSETUP selects which interrupt service routine will
be used and loads the address of the selected routine into the interrupt vector
location. When a CTC issued interrupt occurs, program execution jumps to the
selected interrupt service routine. When interrupts are not being serviced, the
-code of COLLECTER is being executed. The logic states of COLLECTER, in-
cluding the jumps to the interrupt service routine, are shown in Figure 43 below.
COLLECTER primarly sits in READY? checking whether an analog to digital con-
version has been completed and data is ready. It is during this READY? state
that interrupts will occur. The interrupt service routine, either TOSAMPLE or
TCSAMPLE, initiates the analog to digital conversion. When data is ready from
the AIO board, COLLECTER shifts to the DATAREADY state. There, COL-
LECTER reads in and stores the data. COLLECTER then checks to see how
many samples have been read in. If there are more samples to be collected,
execution shifts back to state READY?. If all the samples have been collected,
execution shifts to the FINISHED state. FINISHED corrects all pointers and
returns program execution to SAMPLER.

Interrupt Routine Selection

Which interrupt service routine is used depends upon the sampling
period required. The CTC timer alone can generate periodic interrupts every
6.515 microseconds to 26.58 miliseconds (Ref 7: Sec 3.7). The interval between
the interrupts is determined by the prescale factor (16 or 256) and the time con-
stant given to the CTC during programming. For sampling periods within the
above range, the interrupt service routine simply writes to the AIO channel select

Sampler Module 161

.. *.

register each time an interrupt occurs. This is the procedure used by TOSAM-
PLER, the "TO" standing for "Timer Only."

Calling PLZ Routine

SAMPLER VALIDATE

:'; ATODINIT

Invalid JCTCPROGRAMInput

Parameters
INTSETUP

CIO USER READY?

UsrSTART TIMER " ::
Aborts- Inerp

Data Interrupt
Collection CLETR€iRoutine

CTCOFF

Figure 42. Relationship of SAMPLER and its Subordir 'a Routines, the
Interrupt Service Routine, and to the Calling houtine.

Sampler Module 162

.".

Calling Routine (SAMPLER)

Interupt from CTCData
IsINot Interupt

Ready READY? Return from Service
,! #Interupt Routin

Data

Isi:Ready Not
) Finished

DATA Collecting
~READ;

/ ,._.. All Data Collected

FINISHED!

~~COLLECTER =

Figure 43. Operation States During Subordinate Routine COLLECTER Including
the Interrupt Service Routine.

To obtain longer sampling periods, a counter must be added to the
interrupt service routine. Each time the CTC issues an interrupt, the interrupt

.i..,service routine decrements a counter. When the counter reaches zero, the
service routine writes to the AIO channel select register and resets the counter.

Sampler Module 163

..,[,, .,., ..- - - ,,,,,... .,.. , .. ., ..,. ., , ,...,- ... ,... .,... ,.. ., ... •.,.,. ,.. ,

r ; .-- .,f~a_, r, . ;a.. .. n,.., l, , ,lk:. n -, .- ..- ...- . ,-£. ,. - , .- . , -. ,. ,.. ..- . . I

k .

For this method of generating sampling periods, three parameters are required,
the CTC prescale factor, the CTC time constant, and the counter value. This
method is used by TC SAMPLER, where "TC" stands for "Timer & Counter."
Given a sixteen bit counter in addition to the CTC timer, sampling periods of
1.688 miliseconds to 29.3 minutes are possible with the timer and counter
combination.

Figure 44 below shows the sampling period ranges of the various
combinations of CTC timers and sixteen bit counters. Slow Timer refers to a CTC
timer using a prescale factor of 256. Fast Timer refers to a CTC timer using a
prescale factor of 16. As shown in the figure, the sampling period ranges of the
timers and the timer/counter combinations overlap.

For this thesis effort, aribritrary break points to choose between the
four different timing methods were selected. For sample periods below 0.01
seconds, the CTC timer only (interrupt service routine TOSAMPLE) is used. For
periods less than 0.001 seconds a prescale factor of 16 is loaded into the CTC;
for periods 0.001 seconds to 0.01 seconds , the prescale facter is 256. The
timer counter combination (interrupt service routine TCSAMPLE) is used for
sampling periods 0.01 seconds and above. For periods from 0.01 seconds up
to 1.0 second, a fast timer (prescale factor of 16) is used with the 16 bit counter.
For periods from 1.0 second to the maximum time possible of 29.3 minutes, the
slow timer (prescale of 256) is used. The shaded areas on Figure 44 show the
employed ranges for each timer/counter combination.

The parameters which program the CTC and the sixteen bit timer are
input parameters to Sampler Module. The calling PLZ routine establishes these

values based on the user's desired sampling period and the routine break points
discussed above. Routine INTSETUP looks at the input parameter COUNT,
the sixteen bit down counter value. If COUNT is zero, INTSETUP selectes
TOSAMPLE as the interrupt service routine. If COUNT is nonzero, TCSAMPLE
is used. Please note that the calling PLZ routine does not use the full range of
the fast timer only combination. To allow sufficient time for the analog to digital
conversion to take place, the shortest sampling period actually employed is 50.0
microseconds.

Invocation of Sampler Module

As shown by Figure 42 above, Sampler Module is called from a PLZ
program. The PLZ program supplies the three values needed to program the real
time clock , specifies how many samples are to be collected, and names the

. -, analog input channel is to be used. The executive routine SAMPLER is the
program interface between the calling PLZ routine and all of Sampler Module.

Sampler Module 164

&2 . *. -

°+I',

Counter/Timer Combinations Used for Real Time Clock

Timing Period in Seconds

10-6 10 10- 10 3 10 2 10 1 10 10 +1 10 +2 10+3 10 +4

Slo Tier 16BitCounter
(TC-SAMPLE)

2668rSec 593 inte

Fast Timer & 16 Bit Counter
'2

(TCLSAMPLE) ="-.

1.688 rnSeci 109.3 Seconds ,

Slow Timer Only
(TO_SAMPLE)

104.2 ec 26,'68 mSecAzSc, Full Range of .

Fas Timer Combination
Fast Timer Only -

(TOSAMPLE) Employed Range of

Timer Combination
6.515 iSec 1.688 mSec

Figure 44. Counter/Timer Combinations Used for Real Time Clock

SAMPLER, and hence all of Sampler Module, is invoked from a PLZ routine with

ERRORCODE, LASTDATA:=
SAMPLER(10_CHANNEL, CTCMODE,

TIMECNST, COUNT,
NUMSAMPLES, FIRSTDATA) ,

The purpose and type of the input and output parameters is:

Parameter Name Tye Parameter Purpose

10_CHANNEL Byte Selects which one of the 16 possible AIO
board analog input channels is to be used.

Sampler Module 165

..,' +: ,- " . ' .' . . .- . , - . .. -. a . '-' -.. : . ,' - •. . , . . ' ' . . . - . .' . . -

Parameter Name Tvoe Parameter Purpose

CTCMODE Byte Passes the first half of the command used to
program the CTC to issue interrupts at the
desired rate.

TIME_CNST Byte Passes the second half of the CTC
programming command.

COUNT Word The number of CTC interrupts required
between data collections. This parameter is
used only for long timer periods.

NUMSAMPLES Word The number of data samples to be read in.

FIRSTDATA Pointer- A pointer to the first memory location for the
to-Byte stroage of the data read in.

LASTDATA Pointer- Outputs the pointer to the last memory
to-Byte location that data was stored in.

ERRORCODE Byte Passes back to the calling routine an error
message if the calling routine's inputs were
improper.

Although the executive routine SAMPLER is the sole program exe-
cution interface to the calling PLZ routine, SAMPLER does not use any of the
subroutine call parameters. Instead, the input and output parameters are em-
ployed only by the subordinate routines which need them. From the calling PLZ
routine's perspective, Sampler Module is simply a single subroutine; the exe-
cutive/subordinate organization of these assembly language routines is neither
visible nor important.

Selection of Assembly Language for Sampler Module

The routines of Sampler Module were written in assembly language
primarly to gain a speed of execution advantage. Given the access to the system
provided by the Utility Module routines, Sampler Module could have been written
in PLZ. In fact, some of the PLZ language routines of the AIO.PLZ.S Module are
precursors of some of the assembly language routines in Sampler Module. The
only problem with PLZ is speed. The overhead required by a PLZ routine would
have precluded the shorter sampling periods achieved by using assembly

Sampler Module 166

language routines. With PLZ and the Utility Module routines, the polling of the
AIO status register would have required a PLZ call to lOIN, execution of lOIN (11
instructions), and the return to the PLZ routine. This sequence would have
required approximately 200 microseconds to execute (see Appendix C). With
assembly language the whole loop is just four instructions requiring about 16
microseconds to execute. Another example is the calculation of the CTC timer
and sixteen bit counter values for the sampling period. These could have been
done in assembly language with the addition of some math utilities. However, in
PLZ the math and high level logical branching instructions were already present.
By having the assembly language Sampler Module interface with a PLZ parent
routine the best of both worlds was obtained, the speed and direct hardware
access of assembly language coupled with the higher level programming of PLZ.

Overhead for PLZ Subroutine Call of Sampler Module

The overhead for an assembly language routine to be called by a PLZ
routine was extensively discussed in the introduction to the Utility Module. Rather
than repeate that discussion here, please refer to the Utility Module discussion
and sample AREC for more information of PLZ parameter passing schema. The
figure below shows the PLZ Activation Record (AREC) for the parent routine's call

* of Sampler Module.

External Calls of the Sampler Module

The routines of Sampler Module use no other subroutines. However
the RIO Operating System and several hardware elements of the MCB develop-
ment system are called. The items called, the calling routine, and the purpose of
the calls are fully detailed in the routine descriptions.

Testing of Sampler Module

Three types of tests were perforrmed on the routines of Sampler
Module. First, one of the routines, ATODINIT, was individually tested. Second,
portions of Sampler Module were tested using the RIO debugger. Third, a short
PLZ module was written solely to call and test Sampler Module. ATODINIT was
an established routine which functioned properly. Its individual testing was its
prior use. The rest of the testing was far more involved.

The testing with the debugging routine was limited in application and

Sampler Module 167

', F /..=,.' ... ',., '... '... '. ,." . :.¢_: :....' ,,.' ,.,'.':'.''-'.,'','',,. ,/ . "..',-.'.- .",, .. ,' "y .,

PLZ Activation Record (AREC)
for Sampler Module

_u t
Output Parameters Higher Memory

Mark-Stac RecordMmor

A ST-Di T

ERROR CODE Input Parameters

.Stack.Grows.Down

"10IOCHANNEL

iCTC MODE

TIME CNST
.. COUNT

. -.. ... NUM_SAMPLES

Figuark-Ste .cornl FIRSTDATA

Return Address

Calling Routine's IX - TC ONE

i,, - =Stack Grows Down

Figure 45. Activation Record for Call of Sampler Module.

somewhat cumbersome to accomplish. The debugging routine is interrupt dri-
ven; Sampler Module is interrupt driven. Thus, the debugger could not be readily
used to test the interrupting portion of Sampler Module. The debugger was used
in conjunction with a logic analyzer to examine the Sampler Module routines
which set the Z-80 registers and worked with the AIO board. The CTC related
routines which delt with interrupts were not tested with the debugger. The logic
analyzer was used to trap the input/output port calls. One of the more difficult
actions was to manually insert the parameters that a calling PLZ would normaly
have placed in the system stack. This action was aided by the symbolic capa-

- --bilitites of debugger which allowed access by name rather than hexidecimal
addressses. The debugger testing showed that the tested protions were func-

Sampler Module 168

tioning properly. The A10 board was receiving the proper commands and infor-
mation could be obtained from it.

Things didn't go as well with the P12 routine testing. For this test, a
short P12 routine was written for the sole purpose of calling Sampler Module.
The routine consisted of the necessary variable definitions, a call of SAMPLER,
and screen output of the return parameters. Post-test, system memory was then
examined with the ROM monitor routine to see that data had been loaded into
memory. During the test a slowly varying square wave was fed into the analog
input. A square wave was used so that only two digital values should appear in
the memory. Well, the program executed, Sampler Module requested a go
signal, interrupts began, data was collected in memory. However, program
execution never left Sampler Module to return to the P12 routine. A whole
bunch of time was spent trying to find out why this occured. No answer was
found.

Known Problems in Sampler Module

As discussed in the testing section above, Sampler Module never
properly interfaced with a calling P12 routine. The cause of this problemn is still
unknown.

Content of Detailed Routine Descriptions

Following are detailed descriptions of the twelve assembly language
routines of the Sampler Module. With a few exceptions, the following items will
be presented for each of the routines.

1 . Routine Name

2. Module Name and Role of Routine

*3. Language and Length of Routine

4. Synopsis of Routine

5. Routine Relationship Diagram

6. Invocation of Routine
7. Variables and Constants Used by Routine

8. Discussion of Other Routines Called

Sampler Module 169

A' _ Ii A r

4:~F M-~' -- - .. TW -w , w vIwl-

9. Output of Routine

10. Routine Testing

11. Reference to Routine Listing

The routine testing discussions are limited to activities beyond those addressed
in the module testing discussion above. The listing of routines of Sampler Mod-
ule are in Appendix D.

.4,

o4

Sampler Module 170

.. *P,

1. Routine Name: SAMPLER

2. Executive Routine of Sampler Module

3. Written in Z-80 assembly language; 16 lines (42 bytes) of code.

4. Synopsis of Routing

SAMPLER is the executive routine of Sampler Module. This assembly
language routine is the entry routine of the module and is in effect the routine
called by the PLZ program. It manages overall program flow within the module
by calling nine subordinate routines an by using conditional branching based on
error checking and user readiness checks. SAMPLER also handles a portion of
the PLZ subroutine call overhead and performs the jump back to the calling PLZ
routine. Figure 42, in the introduction to Sampler Module, shows the flow of
SAMLER, the conditional branches, and the routines called by SAMPLER.

The following discussions are specifically restricted to the 16 lines of
code which are called SAMPLER. This is a rather arbitriary distinction. While
SAMPLER does little more than call nine other routines, without SAMPLER those

* routines would not function. It is perhaps best to view SAMPLER as an organizer
of the Sampler Module rather than a complete software routine. The discussion

-~ that follows centers on this organizer function.

5. Invocation

Since the first line of SAMPLER is the entry point for the Sampler
Module, SAMPLER is the routine called by the parent PLZ program. Thus, the

4. invocation of SAMPLER is the same as the innvocation for the Sampler Module
discussed previously. However, SAMPLER itself uses none of the input and

A output parameters of that invocation; these parameters are used by the subor-
dinate routines in the Sampler Module. The subordinate routines do depend
upon SAMPLER to load the IX register with the stack pointer value so they can
reach the parameters with offsets.

6. Variables and. Constnt

SAMPLER uses no declaired variables or constants. It does place the
current value of the stack pointer into the IX register so that it's subordinate rou-
tines can access the input and output parameters with offsets from the IX value.

.~:::SAMPLER also uses the Zero Flag of the Z-80 CPU to determine whether to
branch upon the completion of VALIDATE and USERREADY?

Sampler Module 171

.1

7. Other Routines Called

As discussed in the introduction to the Sampler Module, SAMPLER is
the executive routine for the module. As such, all other routines of the module
are called, either directly or indirectly, by SAMPLER. The names and functions of
these routines was also presented in the module introduction. Figure 42 in the
introduction to Sampler Module shows when in the flow of SAMPLER each sub-
ordinate routine is called.

There are no true parameters passed between SAMPLER and its sub-
ordinate routines. The only communication SAMPLER uses is the status of the
zero flag upon completion of VALIDATE and USERREADY?. For both of these
routines, a nonzero flag tells SAMPLER to abort. From VALIDATE, SAMPLER
just jumps to DEALLOCATE to satisfy PLZ subroutine termination requirements;
from USERREADY? SAMPLER must call both CTC OFF (to clear the counter
timer chip) and DEALLOCATE. SAMPLER expects DEALLOCATE to load the HL
register with return address of the calling routine.

8. Output of Routine

As stated above, SAMPLER, the entry routine of the Sampler Module,
does not pass parameters. The output parameters for the module are loaded by
VALIDATE, USERREADY?, or COLLECTER. Similarly, SAMPLER by itself does
not cause any system configuration changes, though the unaborted execution of
the Sampler Module will result in a number of analog to digital conversion and
storage of those conversions in system memory.

9. Routine Testing

SAMPLER was not independently tested.

10. Reference to Listin

The program listing of SAMPER is on page 318 in Appendix D.

Sampler Module 172

* 1. Routine Name: VALIDATE

2. Subordinate Routine of Sampler Module

3. Written in Z-80 assembly language; 14 lines, 30 bytes, of code.

4. Synopsis of Routine

VALIDATE is a defensive error checking routine for Sampler Module.
'S... Upon being called by SAMPLER, VALIDATE compares the input parameters

against their defined ranges and values. If an out of tollerance parameter is
detected, VALIDATE loads a descriptive error code into the output parameter
ERRORCODE's location and returns to SAMPLER. The Z-80 CPU zero flag, if
reset by the comparisons, informs SAMPLER that the input parameters were not
valid.

VALIDATE looks at two input parameters, 10_CHANNEL and CTC_
MODE. 10_CHANNEL has a defined range of zero to fifteen. If 10_CHANNEL
has a value greater than fifteen, ERRORCODE is set to the constant CHANNEL_
INVALID. CTCMODE has two possible values represented by the constants
FASTMODE and SLOWMODE. If CTCMODE has any other value, ERROR_
CODE is set to the constant MODEINVALID.

5. Routine Relationship Diagram

SAMPLER System Stack

CPU Z Flag

VALIDATE

Figure 46. Relationship of VALIDATE to SAMPLER and the System Stack.

Sampler Module 173

6. Invocation

VALIDATE, as an assembly language subroutine, is invoked by SAM-
PLER solely by its name through the Z-80 CALL instruction. Though VALIDATE
has no formal parameter list upon invocation, it uses two of the input parameters
to the Sampler Module, 10_CHANNEL and CTCMODE, and one output para-
meter, ERRORCODE. VALIDATE accesses these parameters through offsets
from the IX register. This is in accordance with PLZ paramter passing procedures
discussed in the introduction to the Sampler Module and in the Utility Module
discussion.

VALIDATE also uses the Z-80 zero flag to inform SAMPLER whether
the input parameter were correct. In the four comparisons are performed by
VALIDATE, a nonzero result means the input parameter is out of range. The
CPU's zero flag is set by the nonzero result and is not altered by the load and
jump relative commands which follow the compairson. Thus, upon return to
SAMPLER a true zero flag means the input parameters were correct and a false
zero flag indicates flawed input.

7. Variables and Constants

a. Global

Beyond the input and output parameters 10_CHANNEL, CTCMODE,
and ERRORCODE, VALIDATE uses no globally defined variables. The globally
defined constants used by VALIDATE are:

Constant Name Value Definition

CHANNELINVALID CA hex Error Code for bad channel number code

FASTMODE 87 hex CTC command for prescale of 16

SLOWMODE A7 hex CTC command for prescale of 256

MODEINVALID CC hex Error Code for wrong CTC command

b. Module

VALIDATE uses no module variables beyond employing the CPU
zero flag to indicate acceptable input parameters. The module level constants
used by VALIDATE are

Sampler Module 174

Constant Name Value Definition

10_CHANNEL OE hex IX register offset for the input parameter

10_CHANNEL

UPPERFOUR 11110000 A mask to find higher order one's.

ERRORCODE 10 hex IX offset for output parameter
ERRORCODE

CTCMODE OC hex IX offset for input parameter CTCMODE

8. Other Routines Called

VALIDATE calls no other routines.

9. Output of Routine

a. Parameter Passing Schema

VALIDATE loads the output parameter ERRORCODE with the appro-
priate code when it detects an invalid input parameter. The Z-80 zero flag
passes back to SAMPLER whether the input parameters were valid or not.

b. System Configuration Changes

VALIDATE produces no system configuration changes.

10. Routine Testing

a. Description of Test

VALIDATE was tested in conjunction with the rest of the Sampler
Module. Specifically for VALIDATE, invalid channel numbers (greater than 15)
and CTC commands were passed into Sampler.

b. Results of Test

VALIDATE caught the invalid input parameters; VALIDATE did not
reject valid input parameters.

Sampler Module 175

.f* ~A.. ~ ~ %(~~A.{% \A -~ . . ~. . . . >c

11. Reference to Listing

The listing of VALIDATE is on page 339 in Appendix D.

Sampler Module 176

1. Routine Name: ATODINIT

2. Subordinate Routine of Sampler Module

3. Written in Z-80 assembly language; 13 lines (21 bytes) of code.

4. Synopsis of Routine

ATODINIT initializes the analog to digital converter of the AIO board.
This assembly language routine is based on the PLZ language routine AIO_INIT.
Upon being called by SAMPLER, ATODINIT performs five operations as shown in
the figure below. First the AF registers are saved and the Z-80 interrupts are dis-
abled. The AF register save is an artifaci of the routine's use in booting the de-
velopment system. The interrupts are disable to prevent inadvertant interrupts
from the AIO board during its programming. Next, ATODINIT sets the two AIO
ports to input mode by writing the command INMODE to both ports' command
registers. Third, the AIO is placed in polled mode by writing the command INT-
DISABLE to the command registers. Fourth, the data registers (upper and lower)
are cleard to ready the board for input. Last, the Z-80 interrupts are enabled, the
AF register values restored, and control is returned to SAMPLER.

5. Routine Relationship Diagram

SAMPLER

ATODINIT

Command Registers I Data Registers

AJO Board

Figure 47. Relationship of ATODINIT to SAMPLER and AIO Board.

Sampler Module 177

A-728DS INADPTAL NLENTTOOFACPURCONTROLLED DATA COLLECTION SYSTEN(U) AIR FORCE INST OF
TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI.. L E LUTZ

UNCLASIFIEDi FEB 96 AFIT/GE/ENG/S6M-l F/0 9/2 M

umhhhflhhEEmmmm hm hE
Eommhhhhhmh
mEEmhmhhEmhEEI
EhhhEE00hE0hhhE
ommhohmhEEohhEI
m11hE0hE0hhE0hE

1.25 11. 1.6~ *

Ilo

-. % 6. Invocation

ATODINIT is invoked simply by name. It is self contained, having no
input or output parameters.

7. Variables and Constants

ATODINIT uses no variables. It uses six global constants for com-
mands and 10 port addresses. Their names, values, and definitions are

Constant Name Value Definition

InMode 4F hex AIO Command for Polled AtoD Conversions

CMDA_PORT 22 hex Address of AIO Port A Command Register

CMD_B_PORT 23 hex Address of AIO Port B Command Register

INTDisable 07 hex AIO Command for Disabled Interrupts

DataLower 20 hex Address of AIO Lower Data Register

DataUpper 21 hex Address of AIO Upper Data Register

8. Other Routines Called

ATODINIT calls no other routines. It does write commands to the AIO
Board.

9. Output of Routine

ATODINIT has no outputs. Its impact upon system configuration is that
the AIO board in now in polled input mode.

10. Routine Testing

ATODINIT was not individually tested. ATODINIT is based on AIO_
INIT and is used in other programs where it functions properly.

Sampler Module 178

11. Reference to Listno

The listing of ATODINIT's assembly language code is on page 340 in

Appendix 0.

CS

Sampler Module 179

1. Routine Name: CTCPROGRAM

2. Subordinate Routine of Sampler Module

3. Written in Z-80 assembly language; 5 lines (10 bytes) of code.

4. Synopsis of Routine

CTCPROGRAM performs the initial two thirds of Counter Timer Chip
One (CTC1) programming by writing the timer mode command and the CTC
portion of the interrupt vector to the Channel 0 Command Register. CTCPRO-
GRAM obtains the mode command from the system stack as it is the Sampler
Module input parameter CTCMODE. The remaining one third of the CTC
programming is accomplished by STARTTIMER.

5. Routine Relationship Diagram

SAMPLERSAMPLERSystem
Stack

CTC PROGRAM "

Channel 0 Command Register

Counter Timer Chip 1 (CTC1)

Figure 48. Relationship of CTCPROGRAM to SAMPLER, the CTC1, and
the System Stack.

Sampler Module 180

jh&? xv

6. Invocation"

As an assembly language subroutine, CTCPROGRAM is invoked by
name only with the instruction CALL CTCPROGRAM. There are no parameters
formally passed.

7. Variables and Constants

CTCPROGRAM uses one variable, the input parameter CTCMODE,
which it obtains from the system stack using module constant CTCMODE.
CTCMODE (the variable) has two possible values 87 hex and A7 hex for fast
timer with interrupts and slow timer with interrupts respectively. The fast timer
uses a prescale factor of 16; the slow timer uses a prescale factor of 256. The
calling PLZ routine selects which command is to be used and loads CTCMODE
appropriately.

CTCPROGRAM uses three module constants. Their names, values,
and deficitions are

Constant Name Value Definition

* CTCMODE OC hex IX reg. offset for input parameter CTCMODE

CTC1_CMD 84 hex Address of CTC#1, channel 0, command reg.

INTVECTOR 40 hex The CTC's portion of the Interrupt Vector

Note: the other half of the interrupt vector is in the Z-80 CPU and is a system level
constant of 14 hex. The combination of the two halves yields the address 1440
hex, the location in the interrrupt jump table where the address of the interrupt
service routine will be placed by INT SET UP.

8. Other Routines Called

CTCPROGRAM calls no other routines.

9. Output of Routine

CTC PROGRAM has no output parameters. Upon completion of
CTCPROGRAM, the CTC is dormant, two thirds of the way programed to issue
periodic interrupts.

Sampler Module 181

. ,,. ,,.,., ,,,:,,,,..,,, ., ,. . ,. . +. : -.. . ., .. ,. . .. +.- ... +. ,..

10. Routine Testing

CTCPROGRAM was not individually tested. It was tested with the

rest of the Sampler Module routines.

11. Reference to Listing

The program listing of CTCPROGRAM is on page 341 in Appendix D.

Sampler Module 182

Wo m S -. -T . I _ _1 . --

A1. Routine Name: INTSETUP

2. Subordinate Routine of Sampler Module

3. Written in Z-80 assembly language; 9 lines (19 bytes) of code.

4. Synopsis of Routine

INTSETUP establishes the interrupt service routine for Sampler
Module. There are two parts to this action. First, the analog input channel num-
ber is loaded into the alternate A register (A') of the Z-80 CPU. INTSETUP
gets the channel number from the input parameter 10_CHANNEL. The alternate
register set is used by the interrupt service routine. Second, INTSETUP sel-
ects which interrupt service routine will be used based on the input parameter
COUNT and loads the address of the selected routine into the interrupt jump
table. If COUNT has a value of zero, routine TOSAMPLE will be the interrupt
service routine. If COUNT is nonzero, TCSAMPLE will be used and INTSET_
UP loads the counter values into the BC' and DE' registers. The starting address
of the selected routine is placed in memory location 1440 hex, the interrupt jump

ftable location for CTC1, channel 0 responses.

Sampler Module 183

5. Routine Relationshigs Diagram

SAMPLER
System Stack

INT SET UP- :1--

A" RegisterInterrupt Jump Table
______ A' Register

BC' Register

DE' Register

Z-80 CPU
Ii

Figure 49. Relationship of INTSETUP to SAMPLER, the System Stack,
the Interrupt Jump Table, and the Z-80 CPU Alternate Registers.

6. Invocation

INTSETUP is invoked with "CALL INTSETUP". Being an assem-
bly language routine, there are no formal parameter passing lists. INTSETUP
does expect SAMPLER to have properly set the IX register so that input para-
meters can be obtained via IX register offsets.

7. Variables and Constants

INTSETUP uses the input parameters 10_CHANNEL and COUNT. It
uses six global constants for IX register offsets, interrupt service routine ad-
dresses, and the interrupt jump table address. These constants, their values,
and their definitions follow.

Sampler Module 184
Ui

-. ~~~~~. TO 0 1-- - - - - - - - - - - 7- -1 -

* Constant Name Value Definition

10_CHANNEL OE hex IX offset for input parameter 10_CHANNEL

COUNT 08 hex IX register offset for input parameter COUNT

ZERO 00 hex Just zero

TOSAMPLE undefined Beginning Address of Interrupt Service
'4" Routine TOSAMPLE, defined upon

program load

TCSAMPLE undefined Beginning Address of Interrupt Service
Routine TCSAMPLE, defined upon
program load

INTJUMPTABLE 1440 hex Address of Interrupt Jump Table location for
CTC1, Channel 0 Interrupt Services

8. Other Routines Called

INTSETUP calls no other routines.

9. Output of Routine

INTSETUP has no output parameters. Its impact on system con-
figuration is the loading of the selected interrupt service routine's starting address
into the interrupt jump table and the loading of the CPU's alternate register set
with the values needed by the interrupt service routine.

10. Routine Testing

INTSETUP was not specifically individually tested. However, dur-
ing the overall testing of Samper Module, it was verified that the proper ad-
dresses were loaded into the interrrupt jump table and the CPU alternate regis-
ters were loaded with the proper values.

11. Reference to Listing

S.. The program listing of INTSETUP is on pages 342-343 in Appendix
* D.

Sampler Module 185
.

,,,,,...= ., :,,.t 't. .., .v , . . ,' , ' ', t. "". ', ,'," :\""; .-' ,' -..-

1. Routine Name: INITCOLLECTOR

2. Subordinate Routine of Sampler Module

3. Written in Z-80 assembly language; 5 lines (13 bytes) of code.

4. Synopsis of Routine

INITCOLLECTER loads into the Z-80 CPU's primary register set the
values required by routine COLLECTER to load data into the memory buffer and
to count the number of samples collected. The address for the first storage loca-
tion, FIRSTDATA, is loaded into the DE register and the number of samples to
be collected, NUMSAMPLES, is loaded into the BC register. INITCOLLECTER
obtains the values from the system stack as they are input parameters to Sampler
Module from the calling PLZ routine.

5. Routine Relationship Diagram

SAMPLER
System Stack

INITCOLLECTER

~BC Register

DE Register

Z-80 CPU

Figure 50. Relationship of INITCOLLECTER to SAMPLER, the System
Stack, and the Primay Registers of the Z-80 CPU.

Sampler Module 186

6. Invocation

INITCOLLECTER is called by SAMPLER though the Z-80 instruction
CALL.

7. Variables and Constants

INITCOLLECTER uses two input parameters, FIRST-DATA and NUM_
SAMPLES, which it obtains from the system stack with two module constants.
These constants, their values, and their definitions are

Constant Name Value Definition

FIRSTDATA 04 hex IX offset for input parameter FIRSTDATA

NUMSAMPLES 06 hex IX offset for input parameter NUMSAMPLES

8. Other Routines Called

INITCOLLECTER calls no other routines.

9. Output of Routine

The sole effect of INITCOLLECTER is the loading of the BC and DE
registers with the values of the input parameters NUMSAMPLES and
FIRSTDATA.

10. Routine Testing

INITCOLLECTER was not tested apart from the rest of the Sampler
Module routines.

11. Reference to Listing

INITCOLLECTER's program listing is on page 344 in Appendix D.

Sampler Module 187

1. Routine Name: USERREADY?

2. Subordinate Routine of Sampler Module

3. Written in Z-80 assembly language; 33 lines (86 bytes) of code.

4. Synopsis of Routine

USER_-READY? asks the user of the system whether all is ready for
data collection. It serves as the "trigger to begin the data collection. Figure 51
below shows USERREADY?'s relationship to SAMPLER and the operating
system. For this thesis effort, the user typing a *Y" on the system keyboard tells
Sampler Module to begin data collection. If other types of triggers were desired,

* alternatives to USERREADY? could be written and substituted into Sampler
Module.

The sequence of operalons in USER_-READY? is shown in Figure 52
below. USERREADY? begins by loading the output parameter ERROR_-CODE
with FALSE, indicating no error. Then USERREADY? calls the operating sys-
tem to output the message "Collection system ready. Begin ?" to the system con-
sole. This call requires extensive preparation and loading of a transfer buffer.
Next USERREADY? again calls the system to obtain the user's response from
the system keyboard. This call also requires extensive preparation and loading
of the transfer buffer. Execution will remain with the operating system until the
user types in a character. Thus execution of Sampler Module is suspended until
the user responds. When the user responds, USER_ READY? checks to see
whether the character typed in is a "Y". If it is, USERREADY? exits to SAM-
PLER. Otherwise, ABORT is loaded into the output parameter ERRORCODE.
The failed compairson of the input character with "Y" puts the zero flag to zero.
The zero flag's status will be retained during the return to SAMPLER and will
indicate to SAMPLER that the user has aborted the data collection.

Sampler Module 188

5. Routine Diagrams

SAMPLER
UA System Stack

• CPU Z Flag _

USER READY?
--J

Registers

Z-80 CPU Operating System

Figure 51. Relationship of USERREADY? to SAMPLER, the System
CStack, the Z-80 Primary Registers and the RIO Operating System.

Sampler Module 189 -

W-R. W.- 7 ITIV VR i

ON

USER EADY

M Operating System

Input

~ ToOthe Sapleratn ModleRotes

* ~ ~ ~ ~ ~ ~ ~ nu Figur 52KrgaeFo ihn SRRAy or

Samplerfo Moueo9

S ignalS* *

Begin * '

Datak ---- *' .*-

Colecio

6. Invocation .

USERREADY? is invoked from SAMPER simply by its name.

7. Variables and Constants

a. Variables

USERREADY? uses three variables. USERREADY? loads the
output parameter ERROR_.CODE with either FALSE or ABORT to indicate to the
calling PLZ routine whether and error abort occured or not. The second variable
used is the character returned from the operating system call to the system key-
board. This variable is located in the buffer location RTN_MESS. The last vari-
able used is not a true variable, rather it is the state of the Z-80 zero flag. The
state of this flag is used to indicate to SAMPLER whether Sampler Module should
continue execution or be terminated.

b. Constants

USERREADY? uses a host of module constants. Their names,
values, and definitions follow. Of particular interest are the definitions of the

*Operating System Call Vector constants.

Constant Name Value Definition

FALSE 00 hex All is OK Error Code.

ERRORCODE 10 hex IX offset for output parameter
ERROR-CODE.

A-VECTOR undefined Beginning Address of the Buffer for the
Operating System Call Vector, de-
fined during Module linking.

A_LOGICALUNIT AVECTOR + Call Vector Position for Logical Unit
00 hex Desired.

AREQUESTCODE AVECTOR + Call Vector Position for the System
01 hex Request Code. See WRITELN and

READLN below.

A_DATATRANS A-VECTOR + Call Vector Position for Pointer to Data
02 hex Transfer location. See MESSAGE

and RTN_MESS.

Sampler Module 191
--

- S S .

Constant Name Value Definition

A_BYTECOUNT AVECTOR + Call Vector Position for Number of Bytes
04 hex to Be Transfered.

A_RETURN AVECTOR + Call Vector Position for the No Error
06 hex Return Address.

A_ERRRETURN AVECTOR + Call Vector Position for Error Return
08 hex Address

A_COMPCODE AVECTOR + Call Vector Position for Operating
OA hex System Completion Code.

CONOUT 02 hex Logical Unit Number for System

Console.

WRITELN 10 hex Request Code for Output.

MESSAGE undefined Address of first character of message
"Collection system ready.. Begin .'
Address defined upon Module
Linking.

L_MESSAGE 21 hex Length of MESSAGE.

SET? undefined Address of a Section of USER_
READY?, used for ARETURN and
A_ERRRETURN. Defined at Time
of Module Linking.

SYSTEM 1403 hex Address of Operating System Entry
Point.

CONIN 01 hex Logical Unit Number for System

Keyboard

READLN OC hex Request Code for input.

RTNMESS undefined Address of a buffer used to receive the
User's response. Defined during
linking.

Sampler Module 192

Constant Name Value Definition

GO undefined Address of a Section of USERREADY?
used as the ARETURN and
A_ERRRETURN. Defined at Time
of Module Linking.

Y_ASCII 59 hex The ASCII character Y".

ABORT AB hex Error Code for User Aborted Data
Collection.

8. Other Routines Called

USERREADY? calls the operating system to output a message and
to receive user go ahead for data collection. The call to the operating system is
accomplished by loading a transfer buffer know as an Operating System Call
Vector with the information required by the operating system, loading the ad-
dress of the buffer into the IY register, and then calling the operating system. The
call vectors content is shown above in the AVECTOR definitions in the list of
constants used by USERREADY?.

9. Output of Routine

The output of USERREADY? is the status of the Z-80 CPU's zero
flag. If the Z flag is set (a one), then the user responded with a "Y" and data
collection should proceed. If the Z flag is not set (a zero), then data collection
should be aborted.

10. Routine Testin

USERREADY? was tested along with the other routines of Sampler
Module.

11. Reference to Listing

The listing of USERREADY? is on pages 345-346 in Appendix D.

Sampler Module 193
4
"4

1. Routine Name: START-TIMER

2. Subordinate Routine of Sampler Module

3. Written in Z-80 assembly language; 3 lines (6 bytes) of code.

4. Synopsis of Routine

This sole purpose of this very short routine is to supply the final third of
the CTC programing begun by CTCPROGRAM. The effect of this is to turn on
the CTC timer and interrupts. STARTTIMER obtains the command it writes to
CTC1, channel zero, from the system stack. The command is the input para-
meter TIME_CNST.

5. Routine Relationships Diagram

SAMPLER
System Stack

' -

START-TIMER -

Channel 0 Command Register

Counter Timer Chip 1 (CTC1)

Figure 53. Relationship of STARTTIMER to SAMPLER, CTC1, and the
System Stack

6;. Invocation

STARTTIMER is invoked by name only through the Z-80 instruction
"- - CALL. There are no parameter passing lists in assembly language subroutine

Sampler Module 194

'. " "-%°' '"." ."-. -', '. . ,- c,',-.' '', "%'..,.-."...... .".".".. -. . .r 'fl

calls.

7. Variables and Constants

STARTTIMER uses one variable, the input parameter TIME_CNST.
This variable is obtained from the system stack via the module constant TIME_
CNST (value OA hex) which is the IX register offset to the input parameter's loca-
tion on the stack. STARTTIMER also uses the module constant CTCl_CMD
(value 84 hex) which is the address of the CTC1, channel 0 command register.

8. Other Routines Called

STARTTIMER calls no other routines.

9. Output of Routine

The impact of STARTTIMER is significant. By writing the time con-
stant to the CTC, the CTC programming is complete and it begins its timing and
interrupting.

10. Routine Testing

No individual testing was performed on STARTTIMER.

11. Reference to Listing

The program listing of STARTTIMER can be found on page 347 in
Appendix D.

S*d

Sampler Module 195U

1. Routine Name: COLLECTER

2. Subrodinate Routine of Sampler Module

3. Written in Z-80 assembly language; 15 lines (30 bytes) of coda.

4. Synopsis of Routine

COLLECTER is the heart of Sampler Module. COLLECTER reads in
the data from the AIO board and stores it a memory buffer. COLLECTER con-
tinues to read in data until the specified number of samples have been collected.

The executation states of COLLECTER were shown in Figure 43 in the
introduction to the Sampler Module. COLLECTER primarly sits in a loop, check-
ing the AIO board status register until the least signinficant bit becomes a one
signaling that data is ready. The lower eight bits of data is then read in and
stored in a tempory buffer whose address is stored in the HL register. The lower
data is then transfered into the data buffer. The rather complex Z-80 instruction
LDI handles the transfer of the data (HL & DE registers), the decrementing of the
sample count (BC register) and incrementing the pointer to the next buffer loca-
tion (DE register). The upper four bits are then read in (in an eight bit word),
stored in a tempory buffer, and then stored in the data buffer, again with the LDI
instruction. If the down counter (BC register) has not reached zero, COLLECTER
returns to its AIO status register checking loop. If all the samples have been
collected, COLLECTER ends, returning program execution to SAMPLER.

Sampler Module 196

.,'. '~-~-* ~ 5 ~ ~ ~~ ** .-- . S ~ **** *~5- -.

5. Routine Relationship Diayram

SAMPLER

COLLECTER

System
Memory Data Registers

BC Register AIO
DE Register Board
HL Register

Z-80 CPU

Figure 54. Relationship of COLLECTER to SAMPLER, System Memory,
the Z-80 Primary Registers, and the AIO Board.

6. Invocation

COLLECTER is invoked by name only. There are no parameter lists.

7. Variables and Constants

a. Variables

While COLLECTER uses no named variables, the primary registers of
the Z-80 CPU and some memory buffers are used to hold the values necessary
for COLLECTER to execute. The interrupt service routine, operating concurrently
with COLLECTER, uses the alternate registers of the CPU to hold the values it
needs. The registers and memory buffers used by COLLECTER are

Sampler Module 197

n. . % %

RRegiste Register Function - Quantity Stored

A Receives the data from the AIO board via the INA instruction. The
data is then placed in the temporary buffers.

BC Holds the down counter for the number of samples. BC is loaded by
INITCOUNTER. BC is decremented by the two LDI instructions
used in COLLECTER. An INC BC is included in COLLECTER to
keep the BC value the number of samples, not the number of data
bytes written to the memory buffer.

DE Holds the address of the next memory buffer location. INITCOL-
LECTER loads DE with the beginning address of the buffer. DE is
incremented by LDI. So that DE holds the address of the lower half

, of the last sample stored, DE is decremented by COLLECTER upon
*" its termination.

HL Hclds the address of the tempory buffers in which data bytes are
placed. HL is loaded with the address of lower temporary buffer
(DataLower) in COLLECTER's AIO status loop. The first LDI in-
crements HL so it points to the upper temporary buffer (DataUpper).

L_BUFFER A memory location used as a temporary buffer for the lower eight
bits of data read in from the AIO board. HL holds the address of
DataLower.

H_BUFFER A memory location one above DataLower which is used as a
temporary buffer for the upper data byte read in from the AIO board.
After the first LDI, HL holds the address of DataUpper.

b. Constants

COLLECTER uses five module constants to refer AIO registers and
buffer registers. These constants, their values, and their definitions are listed
below

Sampler Module 198

., .

Constant Name Value Definition

L_BUFFER undefined The address of a memory location used for
temporary storage of the lower AlO data.
The value of LBUFFER is defined
when Sampler Module is linked.

HBUFFER undefined The address of a memory location used for
temporary stroage of the upper AIO
data. This location is one above
LBUFFER.

ATODSTATUS 29 hex The address of the AIO board status
register.

DATALOWER 20 hex Address of the AIO board lower data
register.

DATAUPPER 21 hex Address of the AIO board upper data
register.

8. Other Routines Called

COLLECTER calls no other routines.

9. Output of Routine

COLLECTER reads in a user selected number of sixteen bit values
from the AlO board and stores them in memory.

10. Routine Testing

COLLECTER was tested in concert with the rest of Sampler Module.

11. Reference to Listing

The code listing for COLLECTER is on page 348 in Appendix D.

Sampler Module 199
=.

1. Routine Name: CTCOFF

2. Subordinate Routine of Sampler Module

3. Written in Z-80 assembly language; 5 lines (7 bytes) of code.

4. Synopsis of Routine

The sole purpose of this little routine is to turn the CTC timing and
interrupting off. Is is accomplished by writing the off command to the command .
register of CTC number one (CTC1). Prior to writing to the CTC, Z-80 interrupts
are disabled to prevent inadvertant interrrupts. Z-80 interrupts are enabled by
CTCOFF prior to its retum to the calling routine, SAMPLER.

5. Routine Relationship Diagram

SAMPLER

CTC_OFF

Channel 0 Command Register .

Counter Timer Chip 1 (CTC1)

Figure 55. Relationship of CTCOFF to SAMPLER and the CTC.

6. Invocation

CTCOFF is invoked by name. It has neither input nor output
parameters.

Sampler Module 200

7. Variables and Constants

CTCOFF uses no variables. It does use the following two global
constants.

Constant Name Value Definition

CMDCTCOFF 78 hex Command to hault and disable interrupts

CTC1_CMD 84 hex Command port address for CTCl, channel 0

8. Other Routines Called

CTCOFF calls no other routines.

9. Output of Routine

CTCOFF has no output. Its impact on system configuration is to turn
off the CTC1, channel 0 timer and inhibit CTC1 from issuing interrupts.

10. Routine Testing

A variant of CTCOFF was successfully used in another program

yielding some faith that CTCOFF would function properly. For this effort CTC_
OFF was tested in conjuction with the rest of Sampler Module as described in the
module discussion.

11. Reference to Listin

The program listing of CTCOFF is on page 349 in Appendix D.

% d'

Sampler Module 201

• ... " ..-.... '.. . -. "

1.7 -7 Q. -7 V n..

1. Routine Names: TOSAMPLE and TCSAMPLE

2. Interrupt Service Routines of Sampler Module

3. Written in Z-80 assembly language;
TOSAMPLE: 4 lines (6 bytes) of code;
TCSAMPLE: 19 lines (25 bytes) of code.

4. Synoosis of Routine '.

TOSAMPLE o r TCSAMPLE is the interrupt service routine for the
Sampler Module. TOSAMPLE, for "Timer Only", is used for timer periods be-
tween 50 microseconds and 10 milliseconds. TCSAMPLE, for "Timer and
Counter, is used for timer periods between 10 milliseconds and 29.3 minutes.
Which routine is used is determined by INT_- SETUP based on the input para-
meters to Sampler Module. INTSETUP loads the starting address of the sel-
ected routine into the interrupt jump table. The two routines service the CTC
timer interrups differently.

TOSAMPLE swaps CPU AF register banks, outputs to the AIO chan-
nel select port the desired analog input channel, swaps the AF register banks
back, and then returns from the interrupt. The register banks are swaped to gain

Interrupt Return from
from CTC Interrupt

TOSAMPLE

A' ReiChannel Select Register

Z-80 CPU A10 Board

Figure 56. Relationship of TOSAMPLE to CTC Interrupts, the Z-80
Alternate Register A, and the AIO Board.

Sampler Module 202

d~ P l

access to the A register of the alternate register set which holds the desired ana-
log channel number and to prevent interference with COLLECTER. By selecting
an AIO input channel, an analog to digital conversion is initiated on that channel.

TCSAMPLER is more complicated. To achieve the longer timing
periods, TCSAMPLER has a sixteen bit counter decremented by each interrupt.
When called, TCSAMPLE first swaps the AF, BC, DE, and HL registers to protect
the contents of the primary bank of registers and to gain access to the counter
values stored in the alternate bank of registers. The counter is then decrement.
When the counter reaches zero, TCSAMPLE writes the desired analog input
channel number to the AIO board, initiating an analog to digital conversion, and
resets the counters. Just prior to returning from interrupt, TCSAMPLE swaps the
primary register bank back.

Interrupt Return from
from CTC 7 Interrupt

(E TCSAMPLE

A' Register Channel Select Register

BC' Register AIO Board
DE' Register

Z-80 CPU

Figure 57. Relationship of TC_SAMPLE to CTC Interrupts, the Alternate
Registers of the Z-80 CPU, and the AIO Board.

5. Invocation

Neither TOSAMPLE nor TCSAMPLE are "invoked." Rather, when a
CTC initiated interrupt occurs, one of these routines will begin execution.

Sampler Module 203

,- 6. Variables and Constants

Neither TOSAMPLE nor TCSAMPLE use any named variables.
Rather, these routines make use of values saved in the alternate register set of
the Z-80 CPU. Both routines use the alternate A register (A') to hold the number
of the user specified AIO board analogue input channel. Both routines write this
number to the AIO channel select register to initiate an analog to digital conver-
sion. TCSAMPLE also uses the alternate BC (BC') and DE (DE') registers. BC'
holds the current down counter value that is decremented with each call of TC_
SAMPLE. DE" holds initial value of the down counter; DE' is used to reset BC'
when the counter reaches zero.

Both TOSAMPLE and TCSAMPLE use the module constant
CHANNELSELECT value 28 hex, for the address of the AIO input channel
selection register.

7. her Routines Called

TO-SAMPLE and TCSAMPLE call no other routines.

8. Output of Routine

In the single execution of Sampler Module, TO SAMPLE or TCSAM-
PLE can be called hundreds to thousands of times. Each time TOSAMPLE is
called, an analog to digital conversion is initiated. Each time TC SAMPLE is
called the down counter is decremented; when it reaches zero an analog to digi-
tal conversion is initiated.

" 9. Routine Testing

Both TOSAMPLE and TC_SAMPLE were tested in conjunction with
the rest of the Sampler Module routines. Being interrupt service routines there is
no way they could be tested independently.

10. Reference to Listing

The listings of TOSAMPLE and TCSAMPLE are on page 350 in
Appendix D.

Sampler Module 204

.VI. 1. Routine Name: DEALLOCATE

2. Subordinate Routine of Sampler Module

3. Written in Z-80 assembly language; 11 lines (16 bytes) of code.

4. Synopsis of Routine

DEALLOCATE is the last subordinate routine of Samper Module. DE-
ALLOCATE handles all prepartions for the return to the calling PLZ routine. Spe-
cifically, DEALLOCATE loads the addresses of the last data values stored into the
output parameter LASTDATA's storage location in the system stack. Then DE-
ALLOCATE pops the calling routine's IX regester value (into IX) and the return

- address (into HL) from the system stack. Last, DEALLOCATE pops from the sys-
tem stack the storage locations for the input parameters. Having completed its

m =actions, DEALLOCATE returns to SAMPLER.

5. Routine Relationship Diagram

~SAMPLER

System Stack

Figure 58. Relationship of DEALLOCATE to SAMPLER and the System Stack

6. Invocation

As an assembly language subroutine, DEALLOCATE is invoked by
name only. There is no parameter passing.

9,

Sampler Module 205

,.

7. Variables and Constants

DEALLOCATE uses no variables. It does use the module defined
constant LASTDATA, value 12 hex, for the IX register offset to the storage loca-
tion of the output parameter LAST_DATA. DEALLOCATE does load the HL re-
gister with the return address for the calling routine.

8. Other Routines Called

DEALLOCATE calls no other routines.

9. Output of Routine

At the end of DEALLOCATE's execution, the HL register holds the
calling routine's return address, the IX register holds the calling routine's original
IX value, the return parameter LASTDATA is in place in the system stack, and
the input parameter storage locations in the system stack have been deallocated.

10. Routine Testing

DEALLLOCATE was tested with the rest of Sampler Module routines.

11. Reference to Listing

The program listing of DEALLOCATE is on page 351 in Appendix D.

Sampler Module 206

UWU ~JU V1 WV i.r'g ~ TT~ '.T i~~T ~ ~ '~ ~ Y~WW~ ~ -~ ~ q-~ '-. .y ~ ~. w. wv .. w~. w.. -~ ~-. ~ .-. - ~j .-- .- J V~ - ff~*.# ~; ...

k

This page is intentionally blank.

V

I.

-p

V..

I

Sampler Module 207

.2~A3A,...iA ,A.. ~ ~ * -. -' '. * *....

*4,

V. Buffers Module

Definition of Buffers Module

Buffers Module is unique among the modules of the data collection
system in that it contains not one line of code. Rather than code, the Buffers Mod-
ule holds the definition of the memory buffer that Sampler Module loads data into
and that routine LOADDATAFILE, of CollectData Module, reads data from
and writes to a disk file. The global buffer established in Buffers Module is
named DATABUFFER. It's declaira- tion statement sizes DATABUFFER as an
array of BUFFERSIZE words (sixteen bits). BUFFERSIZE is a Buffers Module
constant having a value of 1000 decimal. Thus, DATABUFFER holds 2000
bytes. When the whole data collection system is linked together, Buffers Module
is the last module linked in.

The listing for Buffers Module is in Appendix E.

Buffers Module 208
L,

4-

Bufr°odl 0

VI. Collect Data Module

Introduction to CollectData Module

CollectData Module is a set of PLZ language routines which, along
with some external routines, implements a portion of a data collection system.
The portion implemented is the reading in of data from the AIO board and storage
of that data in a disk file. CollectData Module is intended to be called from a
high level user interface routine.

The routines of CollectData Module presented here are not com-
pletely developed. They have not been assembled nor linked in with the external
routines called. These routines do fully represent the design of the data collec-
tion system.

In the following sections the organization and function of the routines
of CollectData Module will be presented. Following that will be a listing of the
external routines used, a description of the invocation of Collect_- Data, the varia-
bles and constants of ColectData Module, and the known flaws in the module.
Descriptions of the fifteen routines of CollectData Module are then presented.

Organization of Collect Data Module

The fifteen routines of CollectData Module and the thirteen external
routines used by CollectData are organized into a hierarichal structure. There is
one executive routine, SAMPLEDATA, which calls seven subordinate routines.
Five of these routines are primary subordinate routine ; they control the five major
functions of CollectData. The routines of CollectData and their functions are
listed below. The numbered routines are the primary subordinate routines.

Routine Name Function

SAMPLEDATA Executive routine of CollectData Module.

GETDATE Via an external routine, reads the system date .
and loads the six characters into a string.

1. PREPARECOLLECTOR Finds programming commands for the CTC, the
down counter value, and sizes the data buffer. j

CollectData Module 209

Routine Name Function

FIND_TIME_CNST Rounding division routine to find the CTC time
constant.

FIND_CTCCOMMANDS Based on user inputs, calculates the three
values needed to set up the CTC paced
interrrupts.

SIZEDATABUFFER Based on user inputs, establishes the data
buffer.

ERRORINPREPARE Manages error checking and error messages for
PREPARE_COLLECTOR.

2. CREATEDATAFILE Opens a disk file to hold the data read in by
SAMPLER; loads header information into the file.

ASCII Translates a numeric value into the string of
ASCII characters that represent it.

STRINGCOPY Transcribes a string of characters into another
string.

VALIDSTRING Checks the contents of a string to ensure all
characters are valid for a file name.

ERRORINCREATE Error determination and error message routine
for CREATEDATAFILE.

3. SAMPLER Turns on the CTC interrupts, programs the AIO
analog to digital converter, and reads in data
from the AIO Board into the memory buffer
(external routine of Sampler Module)

' ERRORINSAMPLER Checks the output of SAMPLER for errors; writes
error messages to the system console.

4. LOADDATAFILE Transfers the data stored by SAMPLER in the
memory buffer into the disk file opened byCREATEDATAFILE.

5. CLOSEDATAFILE Closes the disk file holding the data.

Ca

Collect_Data Module 210

V ; rt:L ;> ; -' ; ; + ; . ;;; ¢ ?q ; ;

User Sampling Instructions

~User "Start" Command

Prepare Sample .
ColcerProgramming Msae

" , .Commands ,!

Analog Input Data , J" "-'

Empty MemrBufr, Sample Error Code ,
Data

~Filled Memory Buffer

k,.) Load

Data File C

________ r Raw
RIO Operating System Data File

Drawing Name arent Drawing

Co ~ ~ FlledctOe Data FlcilnSe m

Figure 59. Data Flow Diagram for Collect_Data Module

The data flow diagram above shows the functional relationships be-
tween these five prmary proccesses of Collect_Data Module. It is not coinsi-
dence that the names of the five primary subordinate routines match these five
processes. The inputs to CollectData Module are

".. the user sampling instructions,

CollectData Module 211

the user "start" command,
analog input data (via the AIO board)
and the system data.

The outputs of CollectData (assuming all goes well) are messages written to the
system console, error codes to both the system console and the calling routine,
and a disk file filled with data. The sole controlling factors are the inputs from the
user. The mechanisms employed to accomplish each procedures' purpose is
either the RIO operating system or the AIO board.

External Routines Called By Collect Data Module Routines

Thirteen external routines are used by CollectData. Their names,
invocations, functions and modules are listed below.

-------- ---.--- Enhancements Module Routines--------- ------

a. WRITEHBYTE(LOGICALUNIT, VALUE)

where LOGICALUNIT (type Byte) is the number of the device to which the hexi-
decimal representation of VALUE (type Byte) is to be output.

b. WRITEHINTEGER(LOGICALUNIT, VALUE)

where LOGICALUNIT is type Byte and VALUE is type Integer. This routine is
used to output the ASCII characters that form the hexidecimal representation of
VALUE.

c. WRITEDWORD(LOGICALUNIT, VALUE)

where LOGICALUNIT (type Byte) is the output device and VALUE is the number
whose decimal representation in ASCII characters is to be output.

d. WRITERCODE(LOGICALUNIT, RETURNCODE)

where both parameters are of type Byte. LOGICALUNIT is the number of the
output device driver. RETURNCODE is the RIO Operating System return code
whose text descritption will be written to the desired device.

CollectData Module 212

e. WRITELNRCODE(LOGICALUNIT, RETURNCODE)

performs the same function as WRITERCODE with the same parameters but
adds a carriage return on the end of the text description.

f. WRITE(LOGICAL UNIT, TEXTPOINTER)

where LOGICAL_UNIT, of type Byte, designates the device to which output is
directed. TEXTPOINTER, type PByte for Pointer-To-Byte, points to the first
character of the text string to be output. Characters will be output until a carriage
return is encountered. The carriage return will not be output.

g. WRITELN(LOGICALUNIT, TEXTPOINTER)

is identical to WRITE except WRITELN does output the carriage return.

--------- PLZ.STREAM.IO Module Routines------------------------------

h. RETURNCODE:=
* OPEN(LOGICALUNIT, FILENAMEPTR, MODE)

where RETURNCODE, LOGICALUNIT, and MODE are type Byte and FILE_
NAME_ PTR is type PByte. The purpose of OPEN is to open a disk file. RE-
TURNCODE passes back the RIO operating system completion code. LOGI-
CAL_UNIT passes in the desired logica unit number for the file. FILENAME_
PTR points to the first character of a text string which holds the desired file name.
MODE pases in the type of opening desired.

i. RETURNCODE:= CLOSE(LOGICALUNIT)

where both parameters are type Byte. CLOSE's function is to close an open disk
file. RETURN _CODE passes back the operating system's code descriptor of
operation performance. LOGICALUNIT is the logical unit number of the file to
be closed.

j. RETURNCODE:= PUTSEQ(LOGICALUNIT, BUFFERPTR,

NUMBEROFBYTES)

where RETURNCODE and LOGICALUNIT are type Byte, BUFFERPTR is type
PByte, and NUMBEROFBYTES is type Word. PUTSEQ outputs the string of

Collect_Data Module 213

characters (or byte values) pointed to by BUFFERPTR. If no errors occur, NUM-
BEROFBYTES bytes will be output to the designated LOGICALUNIT. The re-
turn parameter RETURNCODE passes back the operating system completion
code.

----------Sampler Module Routine -----------------------------------

k. ERRORCODE, LASTDATA:=
SAMPLER(10_CHANNEL, CTCMODE,

TIMECNST, COUNT,
NUMSAMPLES, FIRSTDATA)

where ERRORCODE, 10_CHANNEL, CTCMODE, and TIME_CNST are type
Byte, COUNT and NUMSAMPLES are type Word, and LASTDATA and
FIRSTDATA are type PByte. SAMPLER is a collection of assembly language
routines which activates an interrupt driven data collection effort that yields a
memory buffer full of data. 10_CHANNEL is the AIO board input channel desired.
CTCMODE and TIME_CNST are the programming values for the CTC chip.
COUNT is the value required for a down counter. CTCMODE, TIMECNST, and
COUNT jointly define the sampling interval. NUM_SAMPLES is the number of
12-bit analog to digital conversion values to be read in. FIRSTDATA points to

i, the beginning of the data buffer. Upon retum, LASTDATA points to the last data
location in memory. ERRORCODE returns a sing byte code for routine perfor-
mance indications.

Invocation of Collect Data Module

As indicated in the introduction, CollectData Module is intended to
be called from a higher level user interface routine. The executive routine
SAMPLEDATA is the interface between the calling routine and CollectData
Module. Its invocation is

ERRORCODE:= SAMPLEDATA (TESTID, USERMESSAGE,
PERIODVALUE, PERIODUNITS,
INPUTCHANNEL, SAMPLES

the type and purpose of these parameters is listed below.

CollectData Module 214

Parameter Tvoe Pumrose

TESTID ASCIISTRING A six character string (plus a carriage
return) that is a unique identifier for the
data file, a test identifier.

USERMESSAGE
ASCIISTRING A free field string of characters (up to 32) of

user message for inclusion in the data file.

PERIODVALUE Integer The number of time units (units given by
PERIOD-UNITS) in the sampling period.

PERIODVALUE Integer The units of PERIODVALUE. Three are
defined; microseconds, milliseconds, and
seconds.IINPUTCHANNEL Byte The AIO board input channel (0-15) to be
used.

SAMPLES Word The number of data samples to be
collected.

ERROR_CODE Byte A one byte code passed back to indicate
the degree of success of CollectData
Module.

For SAMPLEDATA to be called and function, CollectData, Enhancements,
Sampler, and PLZ.STREAM.IO modules must all be linked in with the calling
routine.

Collect Data Module Variables and Constants

There are no module level variables used by any of the CollectData
routines. Other than the input / output parameters and the global buffer DATA_
BUFFER, no global variables are used by any module routines. Quite a few con-
stants are used however. Their names, values, and definitions are listed on the
following page.

Collect-Data Module 215

=F -=

- 17r.- - - - -- 7.

" Constant Name Value Definition

MICROSECONDS -6 dec A possible value for the input parameter
PERIODUNITS.

MILLISECONDS -3 dec A value for the input parameter

PERIODUNITS.

SECONDS 0 dec Third possible value for PERIODUNITS

SLOWMODE 87 hex A programming word for the CTC indi-
cating an interrupting timer with a pre-
scale factor of 256. It is one of the pos-
sible values passed to SAMPLER via
its input parameter CTCMODE.

FASTMODE A7 hex A programming word for the CTC indi-
cating an interrupting timer with a pre-
scale factor of 16. It is one of the pos-
sible values passed to SAMPLER via its
input parameter CTCMODE.

* ENDOFSTRING 7C hex The ASCII character" I "which is used to
indicate end of string.

ENDOFFILE FF hex MCB standard end of file designator.

MINIMUMTIME 50 dec The minimum number of microseconds
permitted for the sampling period.

CONSOLEOUT 2 hex The logical unit number for the system
screen.

DATAFILE 7 hex The logical unit number chosen for the

disk file.

BUFFERSIZE 1000 hex An arbitrarly selected maximum for the
data buffer.

MAX BUFFER ADDRESS
9AO0 hex The upper memory address allowable

for the data buffer. The value is based
on where the operating system and the
data collection routines are loaded.

CollectData Module 216

a ~K:9:%. ~ ..

Constant Name Value... Definition

------------Error Codes of CollectData Module---------------------------------------

FALSE 00 hex No error.

FATAL FE hex Things have gone very wrong. Fatal
e rro r.

ABORT AB hex The user has signaled to hault data
collection.

TOOMANYSAMPLES E0 hex The user specified more samples than
there is buffer space for.

BADCHARACTER BC hex A character in a file name string is
invalid.

* PERIOD RANGE ERROR
El hex The user specified the sampling interval

improperly or selected an invalid range.

REDO 22 hex The user input was not correct.

STORAGEERROR 23 hex Something went wrong during the
transfer of data from the memory buffer
to the disk file.

Constant Name Vau Definition

--------------RIO Operating System Return Codes Used by CollectData ----------

OPERATIONCOMPLETE
80 hex The requested action was successfully

executed.

DUPLICATEFILE DO hex The file name passed during an open
new file operation already exists.

INSUFFICIENTMEMORY
4A hex A memory manager return if a memory

allocation request cannot be satisfied. -

CollectData Module 21 7

p.

Constant Name Value Definition

DEVICENOTREADY C2 hex Code for a device, such as a disk drive,
being unable to respond.

FILE NOT FOUND C7 hex Return for an OPEN request, other than
create, when the desired file isn't on the
disk directory.

Note: no constants are defined at the routine level.

Flaws in Collect Data Module

Aside from the fact that this module was never assembled, there are a
number of flaws present in CollectData Module. Most of these flaws are pre-
sented in the discussions of the individual routines. Two errors are present in the
module overhead however. First, in the introductionary comments, the third rou-
tine listed should be SAMPLER not SAMPLEDATA. SAMPLEDATA is the exe-
cutive routine for Collect Data Module. The second error is more serious. In the
externals definition section, the order of parameters for SAMPLER is in error. The

* SAMPLER definition should appear as

SAMPLER PROCEDURE(10 CHANNEL CTCMODE TIME_CNST BYTE,
COUNT NUMSAMPLES WORD,
FIRSTDATA PBYTE)

RETURNS (ERRORCODE BYTE, LASTDATA PBYTE)

In attition to these two specific flaws, the comments of the CollectData Module
routines just is not sufficient. This is particularly true of the later routines. Last,
some of the constants defined for CollectData Module and one external routine
(SEEK) are not used by the module.

Content of Detailed Routine Descriptions

In the following pages are detailed descriptions of the fifteen routines
of the CollectData Module. In each description, the following information will be
presented.

1. Routine Name
2. Name of Module and Role of Routine
3. Language and Length of Routine

CollectData Module 218

4. Synopsis of Routine
5. Diagram of Routine Relationships
6. Invocation of Routine
7. Variables and Constants Used
8. Other Routines Called
9. Output of Routine

10. Flaws in the Routine
11. Reference to the Routine Program Usting

The program listings of CollectData Module are in Appendix F.

CollectData Module 219

1. Routine Name: STRING-COPY

2. Internal routine of CollectData Module.

3. Written in PLZ, seven lines of code.

4. Synopsis of Routine

Procedure STRINGCOPY transcribes a string of ASCII characters
from one memory location to another. Since PLZ cannot directly refer to absolute
memory addres-ses, pointers to the source and destination strings are used. The
beginning of the source string is pointed to by the input parameter SOURCE; the
beginning of the destination string location is pointed to by the input para meter
DESTINATION. The transcription begins by copying the character at location
S _INDEX of SOURCE to location DINDEX of DESTINATION where SINDEX
and DINDEX are offsets from the beginnning of the strings. Both SINDEX and
D_INDEX are input parameters to Procedure StringCopy. Transcription
continues character by character until the ASCII character "1" (7C hex) is copied
from SOURCE to DESTINATION. The '"" is thus used as an end of string de-
limeter and is the module constant ENDOFSTRING.

5. Routine Relationship Diagram

CREATEDATAFILE
I

E STRING COPY

Figure 60. Relationship Between STRINGCOPY and
CREATEDATFILE

6. Invocation

STRINGCOPY is invoked from CREATEDATAFILE with

STRINGCOPY(SOURCE, SINDEX, DESTINATION, DINDEX)

CollectData Module 220

4..l

where SOURCE and DESTINATION are of type ASCIIPTR (a pointer to an
ASCII string) and SINDEX and DINDEX are of type byte. SINDEX indicates
which character in the SOURCE string is the first to be transcribed to the
D_INDEX position in the DESTINATION string.

7. Variables and Constants

a. Global

No global variables or constants are used by STRINGCOPY.

b. Internal to the Module

Beyond the input and output parameters, STRINGCOPY uses no
module level variables. The module constant END OF STRING, value 7C hex
the ASCII character "I", is used to indicate end of string.

c. Internal to the Routine

STRINGCOPY uses no routine level variables or constants.

8. Other Routines Called

STRINGCOPY calls no other routines.

9. Outout of Routine

Upon the completion of STRINGCOPY the contents of the source
string has been copied to the destination string.

10. Routine Flaws

STRINGCOPY is completely acceptable in its current form.

11. Reference to Listing

STRINGCOPY's program listing is on page 374 in Appendix F.
CeD Mu..2

CollectData Module 221 ,

1. Routine Name: ASCII

2. Internal routine of CollectData Module

3. Written in PLZ; 28 lines of code.

4. Synopsis of Routine

ASCII takes value and translates it into a string of ASCII characters
that represents the value. Also input to ASCII is the base of desired representa-
tion. Thus ASCII can be used to translate the input value into binary, decimal, or
hexidecimal strings. This ASCII routine of CollectData Module is a combination
of the ASCII and PLACELOOP routines of Enhancements Module. The differ-
ence between this ASCII and the combination of the Enhancements Module rou-
tines is that ASCII puts the individual characters into an string where the En-
hancements Module combination writes each individual character to a desired
logical unit.

ASCII accomplishes its task with a loop and a large Case statement.
The loop steps through each place of the output representation, beginning with
the most siglnificant place. For example, if the number 274 was to be represen-
ted in decimal, the first place to be checked would be the 1 09ts. The contribution
of each place to the total value is determined and translated into a character by a
sixteen possibility ("0" to "9" and "A" to F") Case statement and the character is
placed in the output string. If the contribution is outside the define characters, a
"?" is placed in the output character string. The loop then drops to the next signi-
ficant character (or place) and determines the next contribution. The looping
continues until the l's place has been determined. The return ends by placing a
carriage return on the end of the string of characters.

5. Routine Relationship Diagram

CREATEDATAFILE
I

ASCII

Figure 61. Relationship of ASCII and CREATEDATAFILE

CollectData Module 222

* 6. Invocation

ASCII is called only by CREATEDATAFILE and is invoked with

CHANNEL := ASCII(WORD(INPUTCHANNEL), 10, 10, CHANNEL)

which corresponds to the ASCII parameter definitions

TEXTSTRING := ASCII(NUMBER, INDEX, DIVISOR, INPOINTER)

TEXTSTRING and INPOINTER are of type ASCIIPTR (or pointer to ASCII
string) and NUMBER, INDEX, and DIVISOR are of type Word. INPOINTERA[O]
passes in the starting location of the output string. Strictly speaking, the return
parameter TEXTSTRING isn't necessary. It was included to make clear the out-
put of the routine. NUMBER is the value to be translated into its character string
representation. DIVISOR is the base of the representation, and INDEX is DIVI-
SOR raised to the highest anticipated factor.

7. Variables and Constants

Two locally defined variables, VALUE and POINT, are used by ASCII.
VALUE, of type Word, holds the value contributed to NUMBER by each place of
the character string representation. VALUE is obtained by integer division of
NUMBER by INDEX. POINT, of type Byte, is a place keeper for the current loca-
tion in the output TEXTSTRING. POINT is incrimented for each character or
place.

ASCII uses one constant, CARRIAGERETURN, to represent the
ASCII carriage return (value 0D hex).

8. Other Routines Called

ASCII calls no other routines.

9. Output of Routine

At the end of ASCII, TEXTSTRING is filled with the characters that
represent the value of NUMBER in base DIVISOR.

CollectData Module 223

10. Routine Flaws

ASCII is acceptable in its current form.

11. Reference to Listing

The program listing of ASCII is on page 374 - 375 in Appendix F.

Collect-Data Module 224

*, ...

Z

~ ~ * W. 7.j ~ x'w"6[-4 W WIW A V~ W . Fw W. r . . .W .r . -j V".' V -.- -. - __V

1. Routine Name: GETDATE

2. Internal routine of CollectData Module

3. Written in PLZ; 10 lines of code.

4. Synopsis of Routine

Procedure GETDATE interfaces CollectData Module with the Utility Mod-
ule, asembly language routine DATE. DATE obtains the current system date from
its storage location in memory and passes back six Byte valued, the six chara-
cters representing the day, month, and year. GETDATE takes these six chara-
cters and places them into a single ASCII string. The releationships of these rou-
tines is shown in the figure below.

5. Routine Relationship Diagram

System Memory

~DATE

Utility Module

Figure 62. Relationship of GETDATE to SAMPLEDATA and DATE.

CollectData Module 225

i 2A i . . - . " " " - - - - - .Z-? -"

,, ~ ~ ~ 7 V. -W :I '. W , , :, . ,. r. . , '. P -. Y . Fj , %, - . ?k ,= I , yw 2. =_ 'i , Ir .- . . , I. , .L Wo -i;-

6. Invocation

GETDATE is called only by SAMPLEDATA and is invoked with

TODAYSDATE:- GETDATE(INPOINTER)

where both TODAYSDATE and INPOINTER are both of type ASCIIPTR for
pointer to ASCII string. The output parameter TODAYSDATE isn't really neces-
sary as IN_ POINTER supplies all the information necessary for GETDATE to
load the character string. TODAYSDATE was included to make clear the output
of the routine.

7. Variables and Constants
GETDATE uses six local Byte valued variables. These six variables,

YEAR1, YEAR2, MONTH1, MONTH2, DAY1, and DAY2 are used for the return
parameters in the call to the external routine DATE. GETDATE uses one mod-
ule level constant, CARRIAGERETURN, of value OD hex.

8. Other Routines Called

GETDATE calls DATE, and external routine of the Utility Module, to
get the six characters of the system date. DATE is invoked with

YEAR1, YEAR2, MONTH1, MONTH2, DAY1, DAY2:= DATE

where each of the six output parameters are of typeByte and hold an ASCII
character.

9. Output of Routine

GETDATE results in the text string TODAYSDATE begin filled with
the six characters of the system date, ending with a seventh character, a carriage
return.

10. Routine Flaws

GETDATE's current implementation is acceptable.

CollectData Module 226

I, ,, ' , '¢ , ,. ; ., ''." .;- ''t'...,''' '-'.-..., ,.., ,.. ; ..-',"..,....'. ..;"...'...:,

11. Reference to Listing

The listing of GET_-DATE is on page 375 in Appendix F. The listing of

DATE is in the Enhancements Module section.

Colc-aaMdl 2

1. Routine Name: FINDTIMECNST

2. Internal routine of CollectData Module.

3. Written in PLZ; 5 lines of code.

4. Synopsis of Routine

This little routine is used to more accurately find the CTC program-
ming time constant. Normally, division in PLZ produces a truncated result rather
than the more accurate rounded result (Ref 6: 43). FINDTIMECNST, via an
intermediate term and modulo division, determines whether the best time con-
stant is the truncated division (equivallent to rounding down) or should be incre-
mented by one (equivallent to rounding up). The rounded TIMECNST is then
returned to the calling routine FIND CTC COMMANDS.

5. Routine Relationshig Diagram

4FINDCTCCOMMANDS

I

FIND TIME CNST I
Figure 63. Relationship of FINDTIMECNST to

FINDCTC-_COMMANDS

6. Invocation

This routine is invoked from FINDCTCCMDS with

TIMECNST := FINDTIMECNST(TIME, MULTIPLER, DIVISOR)

where the input parameters are all of type Word and the output parameter is of
type Byte. TIME corresponds to PeriodDesired, MULTIPLER corresponds to
ClockRate, and DIVISOR corresponds to PrescaleCounter. FINDCTCCOM-
MANDS is carefull not to pass to FINDTIMECNST input parameters which

CollectData Module 228

-- -. L;:4 .:4 .;;: ::-; _:: :: _-4 __.:.;.: -; ?99: ":::.; : ;. ; -.- -- : -< -;--

would cause overflow.

7. Variables and Constants

FINDTIMECNST uses one internal variable, INTERMEDIATE, of
type Word. INTERMEDIATE holds the product of the PeriodDesired and the
ClockRate.

8. Other Routines Called

FINDTIMECNST calls no other routines.

9. Outout of Routine

FINDTIMECNST passes back to FIND_CTCCOMMANDS the time
constant required to achieve the desired timing period given the CTC prescale
counter value.

,1

10. Routine Flaws

FINDTIMECNST is acceptable though it perhaps should be named
ROUNDINGDIVISION to better reflect its basic function rather than its employ-
ment.

11. Reference to Listing

The listing of FINDTIME CNST's code is on page 376 in Appendix
"J F.

op

CollectData Module 229

.4

'

1. Routine Name: FINDCTCCOMMANDS

2. Internal routine of CollectData Module.

3. Written in PLZ; 35 lines of code.

4. Synopsis of Routine

This routine determines the values of the three parameters required to
establish the desired sampling interval. Two parameters are needed to program
the Counter Timer Chip (CTC) which issues periodic interrupts, the prescale
counter and the time constant (Ref 7: Sec 3.7). One parameter is required for the
additional sixteen bit down counter used for longer sampling intervals. FIND_

CTCCOMMANDS uses FINDTIME CNST to determine the CTC time constant.
The overall formula for the sampling interval is

Sampling Period =
ClockPeriod X PrescaleCounter X TimeConstant X Counter

where
ClockPeriod 0.4072 microseconds,
PrescaleCounter = 16 or 256,
TimeConstant = 0 to 255, and
Counter 1 to 65535.

Since the user selectes the sampling period and the clock period is fixed, the
three variable parameters available to FINDCTCCOMMANDS are the prescale
counter, time constant, and counter value. As discussed in the introduction to the
Sampler Module, the timing periods have been divided into four ranges. Figure
64 below (a duplicate of the Sampler Module figure) shows the ranges. Within
these ranges the PrescaleFactor is fixed; within the longest two ranges the
TimeConstant is also fixed. The sampling period ranges and the values of the
variable parameters are

Sampling Period Range Pra Time Constant CTC Period Counter

minimum to 1.0 msec 16 variable variable not used

1.0 msec to 10.0 msec 256 variable variable not used

10.0 msec to 1.0 sec 16 154 1 msec variable

1.0 sec to maximum period 256 240 25 msec variable

For the first two ranges, only the CTC TimeConstant needs to be de-
termined as the counter isn't used. The time constant is a counter used by the

CollectData Module 230

e4

-', % ' I o ° , % % ,% .'., % " -. .'.' . %' ". - .' -..".- - • . -. . .• -* .- -.

- 7 . ; -77 6 7. .. ,. '. . . -

CTC. In advance of the time constant counter is a prescale counter of either 16
or 256 which correspond to the "fast mode" and "slow mode." Given the MCB
clock rate of 2.547 Mhz the timing constant is found with (Ref 7: Sec 3.7)

TimeConstant = (PeriodDesired X ClockRate) / PrescaleCounter

The time constants are found by calling FINDTIMECNST, a routine which
performs rounding division rather than the standard PLZ trucating division.
Depending upon the time period desired, one of four calls to FINDTIMECNST
is used. These calls are discussed later.

Counter/Timer Combinations Used for Real Time Clock

Timing Period in Seconds

106 10 s 10 -4 10 3 10 2 10 1 10 10 +1 10 +2 10 +3 10+4

~Timer l68iCounter(TCSAMPLE)

J [2668 mSec 293 Minutes

Fast Timer & 16 Bit Counter
(TC _SAMPLE)

1.688 m~e 1 -3 ecnd

vSlow imer Only

(TO-SAMPLE)

104.2 j.Sec 26.68 mSec Full Range of

Timer Combination
Fast Timer Only
(T-SAMPLE). . -....... Employed Range of

Timer Combination
6.515 gSec 1.688 mSec

Figure 64. Counter/Timer Combinations Used for Real Time Clock

CollectData Module 231

.4'

- -,-I

,,.% o - • " " " ". %- % %,. .. 4 ,. ,- - . . . - - .. -° . . ". -- '. ' -' °" %' . -.

For the longer timing periods, the CTC timing is fixed and only the

counter value is used to set the timing period. The formula used is

Counter:= PeriodDesired / CTCPeriod

where CTCPeriod is either 1 msec or 25 msec. In the code implementation,
multiplication by the inverse of the CTC period, with adjustments for period units,
is used.

Having determined the CTCMODE, the CTCTIMECONSTANT,
and the COUNT for the counter, FIND_CTC_COMMANDS ends.

5. Routine Relationshio Diagram

PREPARECOLLECTOR
I

FINDCTC COMMANDS
to, I

FINDTIMECNST

Figure 65. Relationship Between FINDCTCCOMMANDS and
PREPARECOLLECTER and FIND_TIME_CNST

6. Invocation

FINDCTCCOMMANDS is invoked from PREPARECOLLECTER
via

ERRORCODE, CTCMODE,
CTCTIMECONSTANT, COUNT

FINDCTCCOMMANDS(TIME, UNITS

where TIME is the desired sampling interval measured in UNITS, both input para-
meters being type Integer. The output parameter ERRORCODE, type Byte, re-
turns an error message if an out of range sampling period was requested. CTC_

CollectData Module 232

MODE, type Byte, returns the CTC command for "slow mode" (interrupting, pre-
scale factor of 16) or "fast mode" (interrupting, prescale factor of 256). CTC_
TIME_ CONSTANT, type Byte, returns a value between 0 and 255, for the CTC
counter (counter range 1 to 256). COUNT, type Word, passes back the additional
counter value required for longer sampling periods. COUNT has a defined range
of 0 (signaling no counter is required) to 65535.

7. Variables and Constants

FINDCTCCOMMANDS uses no variables beyond the input and
output parameters discussed above. The routine makes use of several moduleconstants. Their names, values, and purposes are

Constant Value Pumose

MICROSECONDS -6 dec UNITS input to indicate units of TIME input.

MILLISECONDS -3 dec UNITS input to indicate units of TIME input.

SECONDS 0 dec UNITS input to indicate units of TIME input.

* MINIMUMTIME 50 dec Minimum allowed microseconds for
sampling.

PERIODRANGEERROR

El hex Message for Out of Range Sampling Interval

FASTMODE 87 hex CTC command for interrupting timer with a
prescale factor of 16.

SLOWMODE A7 hex CTC command for interrupting timer with a
prescale factor of 256.

The MINIMUMTIME of 50 microseconds was selected to allow the AIO analog to
digital converter to settle and allow for the interrupt service routine cycling.

8. Other Routines Called

FINDCTCCOMMANDS calls FINDTIMECNST to determine the
TIMECNST. FINDTIMECNST is used because it performs a rounding divi-
sion rather than PLZ's standard trucation division. FINDCTCCOMMANDS
contains four calls to FIND_TIME_CNST all of the form

Cl-a d2

Collect_Data Module 233

TIMECNST:= FINDTIMECNST(TIME, MULTIPLER, DIVISOR)

Both MULTIPLER and DIVISOR are passed to FINDTIMECNST as constants
using different constants for each of the four calls. The timer periods, constants,
and units of TIME used are

Samoling Ranae TIME Uita.. DIVISOR

mimimum to 26 isec microseconds 2457 16000

26 gsec to 266 psec microseconds 246 1600

226 jisec to 999 jgsec microseconds 25 160

1 msec to 9 msec milliseconds 2457 256

The values passed with MULTIPLER and DIVISOR are selected to keep FIND
TIMECNST from having a multiply overflow and maintain the maximum accur-
acy possible.

9. Output of Routine

1PAt the end of FINDCTCCOMMANDS, the three parameters neces-
sary to program the CTC and set up the down counter have been determined.
However, if an out of range sampling period was requested, and error code will
be retumed to the PREPARECOLLECTER.

10. Routine Flaws

The code and organization of FINDCTCCOMMANDS is acceptable
with one exception. ERRORCODE needs to be set to FALSE as the first execu-
table statement. The comment lines in the code need improvement though.

11. Reference to Listina

The program listing of FINDCTCCOMMANDS is on page 377 -378
in Appendix F.

CollectData Module 234

-

1. Routine Name: SIZEDATABUFFER

2. Internal routine of CollectData Module.

3. Written in PLZ; 10 lines of code.

4. Synopsis of Routine

This routine is largely a place keeper, intended to be replaced by a
routine which calls the Utility Module routine ALLOCATE. SIZEDATABUFFER
compairs the number of samples requested by the user with the storage supplied
by Buffers Module. If the number of samples is less than 1000 decimal, then all
is ok and the routine will proceed. Otherwise, SIZEDATABUFFER will output
an error message to indicate that too many samples were requested.

Ultimately, this SIZEDATABUFFFER would be replaced with a rou-
tine which calls ALLOCATE, an assembly language routine which gives PZ pro-
grams access to the RIO operating system memory manager. Though ALLO-
CATE, this "new" SIZEDATABUFFER could make a real time request for data
storage and not be limited to preformated buffers.

5. Routine Relationship Diagram

PREPARE COLLECTOR
I

SIZE DATA BUFFER

Figure 66. Relationship Between SIZEDATABUFFER and
PREPARECOLLECTOR

6. Invocation

SIZEDATABUFFFER is invoked from PREPARECOLLECTER via

IL

CollectData Module 235

Z--"

,1

ERRORCODE, SAMPLESALLOWED:=
SIZEDATABUFFER(SAMPLESREQUESTED)

where SAMPLES_REQUESTED and SAMPLES-ALLOWED are of type Word
and ERRORCODE is of type Byte.

7. Variables and Constants

a. Global

SIZEDATA _BUFFER uses the globally defined DATABUFFER to
determine how much storage area is available. The routine uses no global
constants.

b. Module Level

SIZEDATABUFFER uses no module level variables. SIZEDATA_
BUFFER uses three module level constants to define error codes and give the
highest possible address for data in the buffer. FALSE (value 00 hex) is the
error code for no errors occured. TOOMANY_SAMPLES (value EO hex) is the
error code output when the number of samples requested by the user exceeds
AVALIABLEWORDS. MAX_ BUFFERADDRESS is set to a high memory value
(9AOO hex), above the code of all the modules of the data collection system but
below the system stack. This is used in conjunction with the beginning address
of DATABUFFER to determine how much space is available for data storage
(above the define range of DATABUFFER. This is a cludge; a call to ALLOCATE
would be far superior.

c. Routine Level

SIZEDATABUFFER uses a single, routine level variable AVAIL-
ABLEWORDS to hold the number of words (one word is two bytes) available for
data storage.

8. Other Routines Called

This version of SIZEDATABUFFER calls no other routines. An
improved SIZEDATABUFFER would call ALLOCATE.

CollectData Module 236

% % • i % . . " " - .. . -'

-~~~~~W 7.777-a ~ - -a

9. Outnut of Routine

If the number of samples requested by the user does not exceed the
storage available, SIZEDATABUFFER will return ERRORCODE as FALSE
and SAMPLES_ ALLOWED as the number of samples requested. However, if
too many samples are requested, ERRORCODE will be returned as TOO_
MANYSAMPLES and SAMPLESALLOWED will be set to AVAILABLE_
WORDS.

10. Routine Flaws

SIZEDATABUFFER is ok, but the function it performs would be far
better served by calling ALLOCATE. That Utility Module routine would allow
SIZEDATA_ BUFFER to interact with the operating system memory manager.

11. Reference to Listing

The listing of SIZEDATABUFFER can be found on page 379 in
Appendix F.

IC

CollectData Module 237

_ _ ; - : : : : .- .,,,-a. . ,..

1. Routine Name: ERRORINPREPARE

2. Internal routine of CollectData Module

3. Written in PLZ; 14 lines of code.

4. Synopsis of Routine

ERRORINPREPARE writes error message to the system console if
an error code other than FALSE is returned by any of the routines under PRE-
PARECOLLECTER. Two error messages are possible. If TOOMANYSAM-
PLES is returned by SIZEDATABUFFER, a message is written to the console
identifying how many samples will be collected. If PERIODRANGEERROR is
returned by FIND_CTC_ COMMANDS, the defined ranges will be written to the
console and ERRORMESSAGE will be reset to FATAL.

5. Routine Relationship Diagram

CP PREPARECOLLECTOR

ERROR INPREPARE

I WRITEEE WRITELNJ W.RITEDWORD

Enhancements Module

Figure 67. Relationship of ERRORINPREPARE to Its Calling
and Subordinate Routines.

6. Invocation

ERROR IN PREPARE is called from PREPARECOLLECTER with

OUTERRORCODE:= ERRORINPREPARE(IN_ERRORCODE)

CollectData Module 238

Nkv where both the input and output parameters are of type Byte.

7. Variables and Constants V

ERRORINPREPARE uses no variables. It uses four constants,
TOO_MANY_ SAMPLES, PERIODRANGEERROR, FALSE, and FATAL which
are the possible error codes within PREPARECOLLECTER and its subrodinate
routines. The values of these module level constants are EO hex, El hex, 00
hex, and FE hex respectivally.

8. Other Routines Called

ERRORINPREPARE calls three external routines, WRITE, WRITE_
DWORD, and WRITELN, all of the Enhancements Module. These three routines
are used to output text strings and decimal values to the system console. The
routines are invoked with

WRITE(LOGICALUNIT, Pointer-to-Text-String)

WRITEDWORD(LOGICALUNIT, NUMBER)

WRITELN(LOGICALUNIT, Pointer-to-Text-String)

where LOGICALUNIT is of type Byte and NUMBER is of type Word. In ERROR_
INPREPARE LOGICALUNIT is all ways passed as the constant CONSOLE_
OUT. Pointer-to-Text-String could be a variable of type ASCIIPTR or could be
a constant string. In ERRORINPREPARE the constant string form is used.
NUMBER is a sixteen bit value which WRITEDWORD will translate into the
ASCII characters of its base 10 representation. WRITE and WRITEDWORD do
not output carriage returns at the end of their output; WRITELN does.

9. Output of Routine

The output of ERROR IN PREPARE are messages to the system con-
sole which tell the user that the input parameters provided are out of range. If the
error was an out of range sampling period, ERROR IN PREPARE returns to

PREPARE_ COLLECTER the FATAL error code. Otherwise the FALSE error
code is returned.

CollectData Module 239

10. Routine Flaws

ERROR IN PREPARE's error message to the system console is
wrong. It lists the mimimum time range as 7 isec; 50 gIsec is the correct value.
Also, PREPARECOLLECTER calls ERROR_IN_PREPARE only when errors
occur. The alternate structure of having ERRORINPREPARE determine
whether an error has occured would be superior.

11. Reference to Listina

ERRORINPREPARE's listing is on page 380 in Appendix F.

C M

Collect_Data Module 240

1. Routine Name: PREPARECOLLECTER

2. Primary subordinate routine of CollectData Module

3. Written in PLZ; 13 lines of code.

4. Svnopsis of Routine

PREPARECOLLECTOR is the second routine called by SAMPLE
DATA, the executive routine of CollectData Module. PREPARECOLLECTER
takes the user supplied sampling instructions and translates them into the CTC
commands and other parameters needed by SampleData. As shown in the
figure below, PREPARECOLLECTOR accomplishes its functions through calls
to three subordinate routines, FIND_CTCCOMMANDS, SIZEDATABUFFER,
and ERRORINPREPARE. The last routine is the error service routine for PRE-
PARECOLLECTER.

PREPARECOLLECTOR is rather simple in implementation, consist-
ing of one do loop. Within the loop, FINDCTCCOMMANDS is called followed
immediately by ERRORINPREPARE to see if FINDCTCCOMMANDS suc-
cessfully executed. If an error is detected, the output error code is loaded, the do
loop is exited, and PREPARE_ COLLECTOR ends. If no error occured, SIZE_
DATABUFFER is called, again followed immediately by ERRORINPREPARE.
If an error is detected, th output error code is loaded, the do loop is exited, and
PREPARECOLLECTOR ends. If no error was detected, the do loop is exited
and PREPARECOLLECTOR ends. The do loop is executed only once.

CollectData Module 241

5. Routine Relationship Diagram

SSAMPLEDATA

PREPRECOLLECTO

FFINDCTCCOMMANDS SIZEDATABUFFER ERROR-INPREPARE

FINDTIMECNST

Figure 68. Relationship of PREPARECOLLECTOR to SAMPLEDATA and its
Subordinate Routines.

6. Invocation

PREPARECOLLECTOR is invoked from SAMPLEDATA with

ERRORCODE,
CTC_MODE,

TIMECONSTANT,
DOWNCOUNT,

NUMBEROFSAMPLES
PREPARECOLLECTOR(PERIODVALUE,

PERIODUNITS,
SAMPLESREQUESTED)

where these parameters are of the following type and purpose.

, I. CollectData Module 242

Variable Name Do Puroose of Parameter

---------------- ---- input parameters ------------------------......-----------------------------

PERIODVALUE Integer The desired time duration of the
sampling period in PERIODUNITS
units.

PERIODUNITS Integer The designated units of PERIOD_
VALUE. The possible values are three
constants MICROSECONDS, MILLI_
SECONDS, and SECONDS.

SAMPLESREQUESTED Word The number of analog to digital con-
verisons the user wants collected and
stored.

----------------------- output parameters ----------------------------------------------

ERRORCODE Byte A code to tell SAMPLEDATA how
things went within PREPARECOL-
LECTOR. Two values are possible, the
constants FATAL and FALSE.

CTCMODE Byte The first of two commands to the CTC to
program its interrupts. CTCMODE has
two possible values SLOWMODE and
FASTMODE.

TIMECONSTANT Byte The second CTC programming com-
mand. It tells the CTC how many times
to count before interrupting. Values of
0 to 255 are possible with 0 meaning
to count 256 times.

DOWNCOUNT Word The number of interrupts the down
counter (used longer sampling periods)
must receive before commanding the
AIO board to initiate an A to D
conversion.

NUMBEROFSAMPLES Word The number of samples to be collected.

CollectData Module 243

... C. -, . , , *. . . ,.... . . , . , ,.

7. Variables and Constants

PREPARECOLLECTOR uses no variables beyond the input and out-
put parameters discussed above. PREPARECOLLECTOR uses two module
level constants, FATAL and FALSE, as error codes. Values: FE hex and 00 hex.

8. Other Routines Called

PREPARECOLLECTER, as shown in the figure above, calls three
subordinate routines FINDCTCCOMMANDS, NUMBER _OFSAMPLES, and
ERROR_ INPREPARE. Their invocation statements follow.

ERRORCODE, CTCMODE, TIMECONSTANT, DOWNCOUNT:=
FINDCTCCOMMANDS(PERIODVALUE, PERIODUNITS)

ERRORCODE, NUMBEROFSAMPLES:=SIZEDATABUFFER(SAMPLESREQUESTED)

ERRORCODE:= ERRORINPREPARE(ERRORCODE)

Please consult the descriptions of these routines for more details.

9. Outout of Routine

There are two sets of possible outputs for PREPARECOLLECTOR. If
something went seriously wrong, PREPARECOLLECTOR will return the FATAL
error code. This will cause termination of SAMPLEDATA. If nothing went seri-
ously wrong, PREPARECOLLECTER will return a FALSE error code and the
programming values for the CTC, down-counter, and the number of samples to
be collected.

10. Routine Flaws

As it stands PREPARECOLLECTOR is ok. It might be better to call a

modified ERROR_ INPREPARE after each subroutine call and then check the re-
turned error code.

11. Reference to Listing

The listing of PREPARECOLLECTER's code is on page 381 in
-. ':-,Appendix F.

CollectData Module 244

• .., ..-., .,.-,. ,. .. -. ..:. ,. .. ,.. ,., -. -. .,

1' . Routine Name: ERRORINCREATE

2. Subrodinate routine of CollectData Module.

3. Written in PLZ; 16 lines of code.

4. Synopsis of Routine

ERROR IN CREATE is one of the support routines for CREATE
DATAFILE. This routine checks the error code generated during CREATE_
DATAFILE, outputs messages to the system console based on the error codes,
and sets the final error code. As ERRORINCREATE is called only if a FATAL
error occurs, invocation of this routine signals termination of CollectDataModule execution.

5. Routine Relationship Diagram

CREATEDATAFILE

'I"

ERROR IN CREATE

IWRITELN I WRITELN RCODE7
Enhancements Module

Figure 69. Relationship of ERROR IN CREATE to its Calling
Routine and Subordinate Routines.

6. Invocation

ERROR IN CREATE is invoked from CREATEDATAFILE with

OUTERRORCODE:=
ERRORINCREATE(INERRORCODE, RETURNCODE)

CollectData Module 245

p-.-: ., --,;..:-, :..; :_ ,~, " " "

where all three parameters are of type Byte.

7. Variables and Constants

ERROR IN CREATE uses no variables other than the input and
output parameters. Several module level constants are used. Their names,
values, and definitions are

Constant Name Value Definition

BADCHARACTER BC hex Error code for invalid character in a file
name string. See VALIDSTRING.

CONSOLEOUT 02 hex The logical unit number for the monitor
screen.

FATAL FE hex Error code for fatal error.

DUPLICATEFILE DO hex RIO return code for duplicate file name.

9. Other Routines Called

ERRORINCREATE calls two of the output routines of Enhancements
Module to write messages to the system console. The routines called and their
invocations are

WRITELN(LOGICALUNIT, Pointer-To-Text-String)

WRITERCODE(LOGICALUNIT, RETURN-CODE)

where LOGICALUNIT (type Byte) is the number of the logical unit to be written
to, Pointer-to-Text-String (type ASCIIPTR) points to the output text or is a con-
stant text string, and RETURNCODE (type Byte) is the completion code passed
back from calls to the RIO Operating System. WRITLEN outputs a string of text
followed by a carriage return to the designated logical unit. WRITERCODE out-
puts the text translation of the RIO return codes to the designated logical unit.
WRITERCODE is used to output unexpected RIO return codes.

9. Output of Routine

ERRORINCREATE writes messages and operating system return
codes to the system console. In its current form, ERRORINCREATE always

CollectData Module 246

S.- *Kw

returns the output parameter OUTERRORCODE as FATAL.

10. Routine Flaws

ERRORINCREATE would be improved by by using the IF state-
ments within a DO loop structure like that used in PREPARECOLLECTOR or the
CASE statement structure like that used in ERRORINPREPARE. Even if the
structure isn't changed, ERRORINCREATE needs to initially set ERRORCODE
to FALSE.

11. Reference to Listina

The program listing of ERRORINCREATE is on page 382 in
Appendix F.

J

Collect_Data Module 247

1. Routine Name: VALIDSTRING

2. Subordinate routine of CollectData Module.

3. Written in PLZ; 10 lines of code.

4. Synopsis of Routine

VALIDSTRING checks the content of a text string passed to it to see
whether it is a valid file name. Specifically, VALIDSTRING ensures that each
character in the string is a 0 through 9 or a A through Z. This check is accom-
plished by examining the ASCII value of each character against the ranges de-
fined by the acceptable characters. Each character in the string is checked until
an end of string is detected or 32 characters have been checked. If VALID_
STRING finds any invalid charactes, the output ERROR_ CODE is set to BAD_
CHARACTER. Otherwise ERRORCODE is returned as FALSE, indicating no
error.

5. Routine Relationship Diagram

CREATE DATA FILEI
VALID STRING

Figure 70. Relationship of VALIDSTRING to
CREATEDATAFILE.

6. Invocation

CREATEDATAFILE calls VALID-STRING with

ERRORCODE := VALIDSTRING(TESTSTRING)

where TESTSTRING is of type ASCIIPTR (for pointer to ASCII string) and
ERROR_ CODE is of type Byte.

CollectData Module 248

• w - • ' =- =,- q • • ,• * , . . .o- a- .- o -. . . .-

7. Variables and Constants

VALIDSTRING uses one internal variable, INDEX (type Byte), in
addition to the input and output variables. INDEX is used as a place keeper for
the string TEST-STRING.

VALIDSTRING uses two constants FALSE and BADCHARACTER.
FALSE, value 00 hex, is the error code for every thing is ok. BADCHARACTER,
value BC hex, is the error code to signal that a invalid character was found.

8. Other Routines Called

VALIDSTRING calls no other routines.

9. Output of Routine

VALIDSTRING has two possible outputs. The output parameter
OUT_ ERRORCODE is either FALSE or BADCHARACTER. FALSE if no
invalid characters were found in the string; BADCHARACTER if one invalid
character was found.

10. Routine Flaws

VALIDSTRING is acceptable, though its listing format and comments
could be improved.

11. Reference to Listing

The listing of VALIDSTRING's code is on page 383 in Appendix F.

CollectData Module 249

* - -. - - . .* - k o- XVI T. 79 r

1. Routine Name: CREATEDATA FILE

2. Primary subordinate routine of CollectData Module.

3. Written in PLZ; 29 lines of code.

4. Synoosis of Routine

CREATEDATAFILE is the third routine called by SAMPLEDATA,
the executive routine of CollectData Module. Using instructions passed into
CollectData Module, CREATEDATAFILE opens a disk file into which the data
collected by Sampler Module will be transfered. This requires the formation of a
valid file name and a call to the operating system. As shown in the figure below,
CREATE_ DATAFILE calls many routines to accomplish these functions.

The file name formed has three fields separated by periods. The first
field is the test identifier, passed into CREATEDATAFILE from the user. This
field is six characters long and is susposed to be unique. Routine VALID_
STRING is called to ensure the user input has only valid file name parameters. If
any of the characters are invalid, an error message is written to the console by
ERRORINCREATE and CREATEDATAFILE ends with ERRORCODE being
FATAL. The second field is the channel number. CREATEDATAFILE is pas-
bsed the input parameter INPUT_ CHANNEL, type Byte. The routine ASCII is
called to translate INPUTCHANNEL into the ASCII characters that are the base
ten representation of INPUTCHANNEL. The third field is the phrase "RAW_
DATA". Thus the file name looks like

testid . ##. RAWDAT A

where "testid" is the unique test identifier and "##" are the characters that repre-
sent the input channel number.

With the file name formed, CREATEDATAFILE calls the operating
system via OPEN, an external routine of the PLZ.STREAM.IO Module. If for any
reason the opening is not successful, an error message is writen to the console
by ERRORIN_ CREATE, CREATEDATAFILE ends, and ERRORCODE is
returned as FATAL. If the opening is successful, CREATEDATAFILE proceeds.

iL
With the data file open, CREATEDATAFILE continues by writing into

the file the header information. Five extenal routines of the Enhancements Mod-
ule are used by CREATEDATAFILE to write the header information to the disk
file. The following is the content and format of the header.

testid :testid
I inputchannel:channel
Iperoidvalue: periodvalue

CollectData Module 250

4L!

, Iperiodunits: periodunits
I#_samples: samples
#_samples: samples

I date _oftest: todays-date
user-message: userstring

lbeginning of data:II
where the italized items are the names of the text string variables. Most of these
text string variables are input parameters passed into CREATEDATAFILE.
CHANNEL is formed in CREATEDATAFILE through the call to ASCI. The "I"

character (ASCII C7 hex) is used as a field marker. With all the header informa-
tion written into the data file, CREATEDATAFILE ends.

5. Routine Relationship Diagram

SAMPLE DATA

CREATEDATAFILE

IICI',STERRORINCREATE

STRI G__COP WRITE COPY

WRITHINEGER

WEHWORD
WRITELN]

PLZ STREAM.IO Enhancements
Module Module

Figure 71. Relationships Between CREATEDATAFILE, SAMPLEDATA, and
Subordinate Routines.

CollectData Module 251

- -,6 Invocation -

CREATEDATAFILE is invoked from SAMPELDATA with

ERRORCODE:= CREATEDATAFILE(INPUTCHANNEL,
DATAFILE,
PERIODVALUE,
PERIOD_UNITS,
SAMPLES, TESTID,
USERMESSAGE,
TODAYSDATE)

This routine has many input parameters, most of them passed in to become part
of the data file header. Their types and purposes are

Parameter Name TDim Definition

INPUTCHANNEL Byte The number of the analog input
channel, 1 to 16, data will be collected
from.

DATAFILE Byte The logical unit number for the file.

PERIODVALUE Integer The desired sampling interval (in
PERIODUNITS units)

PERIODUNITS Integer The units of PERIODVALUE. The
valid values are MICROSECONDS,
MILLISECONDS, and SECONDS.

SAMPLES Word The number of samples to be
collected.

TESTID ASCIIPTR A pointer to a six character (plus car-
riage return) string that is the unique
test identifier.

USERMESSAGE ASCIIPTR A pointer to a free field string of
characters.

TODAYSDATE ASCIIPTR A pointer to a six character string (plus
a carriage return) that represent the
date.

The single output parameter, ERRORCODE (type Byte), passes back an error

CollectData Module 252

* code to SAMPLEDATA.

7. Variables and Constants

CREATEDATAFILE uses several internal variables in addition to
the parameters discussed above.

Parameter Name Type. Definition

FILENAMEBUF ASCIISTRING A 32 character buffer to hold the
completed file name. 19 characters
are used.

CHANNELBUF ASCIISTRING A 32 character buffer to hold the
completed channel number. Only 3
characters are used.

FILENAME ASCII_PTR A pointer to FILENAMEBUF.

CHANNEL ASCIIPTR A pointer to CHANNELBUF

RETURNCODE Byte Receives the operating system return
code from the call to OPEN.

In addition to these variables, CREATEDATAFILE uses two con-
stants, OPERATIONCOMPLETE (value 80 hex) and FATAL (value FE hex).
OPERATION_ COMPLETE is the RIO Operating System return code for all went
well. FATAL is the ColectData Module error code that signals fatal errors.

8. Other Routines Called

As was shown in the figure above, CREATEDATAFILE calls ten
routines. Their invocations and parameters follow. Unless otherwise stated, theroutines are part of CollectData Module.

a. TEXTSTRING :=ASCII(NUMBER, INDEX, DIVISOR, INPOINTER)

where TEXTSTRING and INPOINTER are type ASCII_PTR, and NUMBER,
INDEX, and DIVISOR are type Word. ASCII converts NUMBER into the string of
ASCII characters which represent it.

C c l.
Collect_Data Module 253

b. STRINGCOPY(SOURCE, SINDEX, DESTINATION, DINDEX)

where SOURCE and DESTINATION are type ASCII_PTR, and SINDEX and
D_INDEX are type Byte. STRINGCOPY transcribes the characters of SOURCE
string into the DESTINATION string.

c. ERRORCODE:- VALIDSTRING(TESTSTRING)

where ERRORCODE is type Byte and TESTSTRING is type ASCII_PTR.
VALID_ STRING ensures the characters in TESTSTRING are valid for inclusion
in a file name.

d. RETURNCODE:- OPEN(LOGICALUNIT, FILENAMEPTR, MODE)

where RETURNCODE, LOGICAL-UNIT, and MODE are type Byte and FILE_
NAME_ PTR is type PByte for pointer to byte. OPEN is an external routine of the
PLZ.STREAM.IO Module. OPEN calls the operating system to open a disk file.

e. WRITE(LOGICALUNIT, TEXTPOINTER)

where LOGICALUNIT is type Byte and TEXTPOINTER is type PByte. WRITE is
an external routine of the Enhancements Module. WRITE outputs the text pointed
to by TEXTPOINTER to the desired LOGICALUNIT.

f. WRITE_HBYTE(LOGICALUNIT, VALUE)

where both parameters are type Byte. WRITE_HBYTE is an external routine of
the Enhancements Module. WRITE_HBYTE outputs the two ASCII characters
that represent the VALUE.

g. WRITE_HINTEGER(LOGICALUNIT, VALUE)

where LOGICALUNIT is type Byte and VALUE is type Integer. WRITEHINTE-
GER is an external routine of the Enhancements Module that outputs the chara-
cters which form the hexidecimal representatio of VALUE to the designated
LOGICALUNIT.

CollectData Module 254

• . ", - -o.-°. . *. ° -

J ,4" h. WRITEHWORD(LOGICALUNIT, VALUE)

where LOGICALUNIT is type Byte and VALUE is type Word. WRITEHWORD is
an external routine of the Enhancements Module. WRITEHWORD outputs the
four characters which form the hexidecimal representation of VALUE to the desig-
nated LOGICALUNIT.

i. WRITELN(LOGICALUNIT, TEXTPOINTER)

where LOGICALUNIT is type Byte and TEXTPOINTER is type PByte. WRITELN
is an external routine of the Enhancements Module. WRITELN, like WRITE
above, outputs text; WRITELN adds a carriage return at the end of the text string.

j. OUTERRORCODE:= ERRORINCREATE(INERRORCODE,

RETURNCODE)

where all three parameters are type Byte.

Please consult the descriptions of these routines for more information on their
function.

9. Output of Routine

If something goes wrong during the execution of CREATEDATA_
FILE, the output of the routine is ERROR_CODE filled with FATAL. If all goes well,
the output of CREATEDATAFILE is an open disk file with the header informa-
tion written in. The output parameter ERRORCODE will hold FALSE indicating
successful operation.

10. Routine Flaws

The major omission in CREATEDATAFILE is that VALIDSTRING
isn't called to check the TESTID or the CHANNEL number. Both VALID_STRING
and ERROR IN CREATE calls should follow the STRING-COPY calls. The
second problem in CREATEDATAFILE is that STRINGCOPY is improperly
called COPYSTING. The routine also badly needs commenting.

11. Reference to Listing

.- ,CREATEDATAFILE's listing is on page 384-385 in Appendix F.

CollectData Module 255

o-

,a- 1. Routine Name: LOADDATAFILE

2. Primary subordinate routine of CollectData Module.

3. Written in PLZ; 16 lines of code.

4. Synoosis of Routine

LOADDATAFILE reads the data loaded into memory by SAMPLER
and loads that data into the disk file opened by CREATEDATAFILE. Were it
not for error checking, LOAD-DATAFILE would simply be a call to PUTSEQ, an
external routine of the PLZ.STREAM.IO Module, to write the data to memory. Two
error checks are present however. First, a check is made after the call to
PUTSEQ checking that the number of bytes that should have been written to disk
were written to disk. If the numbers don't match, an error message is written to
the system console via the external output routines of the Enhancements Module.
The output parameter ERRORCODE is set to STORAGEERROR. The second
error check is on the operating system return code from the PUTSEQ call. If the
code is no OPERATIONCOMPLETE an error message is again written to the
console. In this case, the returned ERRORCODE is FATAL. The figure below
shows the relationship between LOAD_DATA_FILE and the external routines.

5. Routine Relationship Diagram

SAMPLE_DATA

LOADDATAFILE

WRITEDWORD
PLZ STREAM. 10

MODULE RTL

FWRITELN_RCODE

Enhancements Module

Figure 72. Relationship of LOADDATAFILE to Other Routines.

CollectData Module 256

-W' 4"

6. Invocation

LOADDATAFILE is invoked from SAMPLEDATA by

ERRORCODE:= LOADDATAFILE(DATAFILE,
BUFFERBEGINNING,
LASTDATA)

where ERRORCODE and DATAFILE are type Byte and BUFFERBEGINNING
and LASTDATA are type PByte for Pointer to Byte.

7. Variables and Constants

LOADDATAFILE uses three internal variables. Their types and
purposes are listed below.

Variable Name lyve Definition

NUMBEROFBYTES Word The number of bytes of data in the
memory buffer

BYTESWRITTEN Word Receives the return parameter from
PUTSEQ that says how many bytes
were actually output.

RETURNCODE Byte Receives the return parameter from
PUTSEQ that holds the operating
system return code.

LOADDATAFILE also uses a few constants. They are

Constant Name De Definition

STORAGEERROR, 23 hex Error code for mismatch in number of
bytes written vs number of bytes in
memory buffer.

CONSOLE OUT 02 hex Logical unit number for the system
console.

CollectData Module 257

wV7

C" Constant Name Type Definition

OPERATIONCOMPLETE
80 hex RIO return code for successful

operation.

FATAL FE hex Error code for a fatal error in
CollectData.

8. Other Routines Called

LOADDATAFILE calls five external routines. Their invocations,
parameters, and functions are listed below.

a. RETURNCODE:- PUTSEQ(LOGICALUNIT,
BUFFERPTR,
NUMBEROFBYTES)

where RETURNCODE and LOGICALUNIT are type Byte, BUFFERPTR is type
pointer to Byte, and NUMBEROFBYTES is type Word. This external routine of

pthe PLZ.STREAM.IO Module is used by LOADDATAFILE to write the data
stored in memory into the disk file.

b. WRITE(LOGICALUNIT, TEXT POINTER)

where LOGICALUNIT is type Byte and TEXTPOINTER is type PByte for pointer
to byte. LOAD_DATAFILE uses WRITE to output error messages to the system
console. WRITE is part of the Enhancements Module.

c. WRITEDWORD(LOGICALUNIT, VALUE)

where LOGICALUNIT is type Byte and VALUE is type Word. This external
routine of the Enhancements Module is used to output decimal values to the

* system console.

d. WRITELN(LOGICALUNIT, TEXTPOINTER)

where LOGICALUNIT is type Byte and TEXTPOINTER is tv-e PByte. LOAD_
DATA_ FILE uses this Enhancements Module routine to ou" ,,t strings of chara-

• %.p cters to the system console. WRITELN, unlike WRITE, output;- a carriage return at

CollectData Module 258

e% _e

the end of the character string.

e. WRITELNRCODE(LOGICALUNIT, RETURNCODE)
I,

where both LOGICAL UNIT and RETURN CODE are type Byte. LOAD DATA_
FILE uses WRITELNRCODE to translate the operating system return code into
text and then output the text to the system console. WRITELNRCODE is an ex-
ternal routine, an element of the PLZ.STREAM.IO Module.

9. Output of Routine

If all goes well in LOADDATAFILE, the result will be a data file load-
ed with the data from the memory buffer and an ERRORCODE of FALSE. If
things don't go well, error messages will be written to the console, the data file
will be in an indeterminant state, and the ERRORCODE will be FATAL or
STORAGEERROR.

10. Routine Flaws
LOADDATAFILE is flawed in that ERRORCODE is in an indeter-

minant state if every thing goes well. To fix this flaw, an additional statement

initializing ERROR_ CODE to FALSE (error code for no error) should be added to
LOADDATAFILE. This statement should be inserted prior to the PUTSEQ call.
Also, LOAD_DATAFILE is devoid of commenting.

11. Reference to Listing

The program listing of LOADDATAFILE is on page 386 in Appendix
F.

CollectData Module 259

.'...:' L- .' .' .' .':... ."L...;.....'. .. ',: ..'. .,-. " ".-. ".....,.,,." ,' ',.-.' .' ,, " . • ,. ..

1. Routine Name: CLOSEDATAFILE

2. Primary subordinate routine of CollectData Module

3. Written in PLZ; 7 lines of code.

4. Synopsis of Routine

This short routine closes the data file opened by CREATEDATA_
FILE and filled by LOADDATAFILE; it is the last routine called by SAMPLE_
DATA, the executive routine of CollectData Module. CLOSEDATAFILE
closes the file with a call to the external routine CLOSE. If the operation was
successful, CLOSEDATAFILE ends. Otherwise, CLOSEDATAFILE outputs
an error message to the sytem console and returns the FATAL error code. The
relationship of CLOSEDATAFILE to its calling routine and its subordinate
routines is shown in the figure below.

5. Routine Relationship Diagram

SAMPLE-DATA

CLOSEDATAFILE

P12 STREAM. 10
MODULE WRITELN

Enhancements Module

Figure 73. Relationship of CLOSEDATAFILE to Other Routines
• -...- 6 . In v o c a t io n

CollectData Module 260

. . .,

CLOSEDATAFILE is invoked from SAMPLEDATA via

ERRORCODE:= CLOSEDATAFILE(DATAFILE)

where both ERRORCODE and DATAFILE are type Byte. ERRORCODE re-
turns to SAMPLEDATA a code indicating success or failure. DATAFILE is the
logical unit number of the data file.

7. Variables and Constants

CLOSEDATAFILE uses one internal variable, RETURNCODE
(type Byte). This variable receives the return parameter from the call of CLOSE.

Two constants are used by CLOSEDATA FILE, OPERATIONCOM-
PLETE (value 80 hex) and FATAL (value FE hex). OPERATIONCOMPLETE is
the RIO Operating System return code for successful completion. FATAL is the
CollectData Module error code for failed operations.

8. Other Routines Called

LOADDATAFILE calls four external routines. Their names, para-
meters, and functions are listed below.

RETURNCODE := CLOSE(LOGICAL-UNIT)

where both parameters are type Byte. RETURNCODE is the operating system's
message on success or failure of the file closing procedure. LOGICALUNIT is
the number of the unit to be closed. CLOSE is a routine of the PLZ.STREAM.IO
Module.

WRITE(LOGICALUNIT, TEXTSTRING)

where LOGICAL UNIT (type Byte) is the device number to which output is
directed and TEXT STRING (type PByte) is a pointer to the string of text to be
output. CLOSEDATA_ FILE uses WRITE to output an error message to the
system console. WRITE is a member of the Enhancements Module.

WRITELNRCODE(LOGICALUNIT, RETURN CODE)

where both parameters are of type Byte. LOGICALUNIT is the device number to
which output is directed. RETURNCODE is the operating system code that
WRITELNRCODE will translate into its text definition and output the text to the

CollectData Module 261

S'

designated LOGICALUNIT. CLOSEDATAFILE uses this external routine from
the Enhancements Module to output the translated return code to the console in
the error message.

WRITELN(LOGICALUNIT, TEXTPOINTER)

where LOGICALUNIT is type Byte and TEXTPOINTER is type PByte. LOGI-
CALUNIT is the device number for the output. TEXTPOINTER points to the
string of characters to be output. WRITELN, like WRITE, is used by CLOSE_
DATAFILE to send error messages to the system console. Unlike WRITE,
WRITELN concludes the text string with a carriage return. WRITELN is an
external routine from Enhancements Module.

9. Output of Routine

CLOSEDATAFILE closes the disk file into which the data collected
from the AIO board was stored.

10. Routine Flaws

Like several other routines of CollectData Module, ERRORCODE is
not initialized. An additional line of code to initialize ERRORCODE to FALSE is
needed. Also like tha later routines of CollectData Module, CLOSEDATA_
FILE needs commenting.

11. Reference to Listing

CLOSEDATAFILE's code listing is on page 387 in Appendix F.

CollectData Module 262

......... .. , , ,. .,~~~,..:. ...; , ., .. ,. .., .,.,,-.. . .. -,,

1. Routine Name: ERRORINSAMPLER

2. Subordinate routine of CollectData Module

3. Written in PLZ; 8 lines of code.

4. Synopsis of Routine

ERROR IN SAMPLER is a error detection / error message writing
routine that SAMPLEDATA calls after the call to the external routine SAMPLER.
SAMPLER returns an error code to SAMPLEDATA. If the error code is other
than FALSE, SAMPLEDATA calls ERRORINSAMPLER to send the proper
error messages to the system console. ERRORINSAMPLER also calls
CLOSEDATAFILE and returns to SAMPLE-DATA a FATAL error code.

5. Routine Relationship Diagram

SAMPLE DATA

ERROR INSAMPLER

CLOSEDATAFILE rEL

Enhancemns Modue

Figure 74. Relationship of ERRORINSAMPLER to
SAMPLEDATA, CLOSEDATAFILE, and WRITELN

6. Invocation

The invocation of ERRORINSAMPLER from SAMPLEDATA is

CollectData Module 263

,-OUTERRORCODE:. ERRORINSAMPLER(INERRORCODE)

where both parameters are of type Byte.

7. Variables and Constants

No variables other than the input and output parameters are used by
ERRORINSAMPLER. Four constants are used. ABORT (value AB hex) is the
error code from SAMPLER that data collection was terminated. CONSOLEOUT
(value 02 hex) is the logical unit number of the system console. DATAFILE
(value 07 hex) is the logical unit number of the disk file opened by CREATE_
DATAFILE. Last is FATAL (value FE hex), the error code for a fatal error.

8. Other Routines Called

ERRORINSAMPLER calls two routines, WRITELN and CLOSE_

DATAFILE. Their invocations, parameters, and functions follow.

WRITELN(LOGICAL UNIT, TEXTPOINTER)

where LOGICALUNIT (type Byte) indicates the logical unit and TEXTPOINTER
. (type PByte for Pointer to Byte) points to the string to be output. This extemal rou-

tine of the Enhancements Module also outputs a carriage return at the end of the
text string. ERRORINSAMPLER uses WRITELN to output error messages to
the system console.

ERRORCODE:= CLOSEDATAFILE(FILE-UNIT)

where ERROR CODE (type Byte) indicates whether the closing was successful
and FILEUNIT (type Byte) is the logical unit number of the file to be closed.

9. Output of Routine

ERROR IN SAMPLER is called only if SAMPLEDATA finds a non-
FALSE error code returning from SAMPLER. Thus something has already gone
wrong. ERRORINSAMPLER's output is messages to the system console and
the closing of the data file opened by CREATEDATAFILE. ERRORINSAM-
PLER always returns a FATAL error code.

a..

CollectData Module 264

. .

10. Routine Flaws

The only flaw is that SAMPLE DATA calls ERROR IN SAMPLER
only when it detects an error. A superior organization would be to have SAM-
PLEDATA call ERRORINSAMPLER immediately after SAMPLER without
checking the error code. ERRORINSAMPLER would determine if any error
had occured and return an error code of FALSE for all nonfatal errors. The IF
statements inside a DO loop structure used by PREPARECOLLECTOR would
be one approach with IF statements for each expected error code and a "wild
error" message for the unexpected.

11, Reference to Listing

The program listing of ERRORINSAMPLER is on page 388 in
Appendix F.

C-.o6

Collect_Data Module 265

,o',".:,,.'..'. '.-. 4 ". ' . . --''"...' ','"" '..."". . . ."."'""". . ".".. .'., .''

i 1. Routine Name: SAMPLE-DATA

2. Executive routine of CollectData Module.

3. Written in PLZ; 17 lines of code.

4. Synoosis of Routine

SAMPLEDATA is the executive routine of the CollectData Module.
All the other routines of CollectData Module are called either directly or indirect-
ly by SAMPLEDATA. The figure below shows the basic execution flow of SAM-
PLEDATA and the principal subordinate routines it calls. Included in this list is
SAMPLER, the executive routine of Sampler Module, the assembly language
module that performs the actual data collection.

The execution revolves around five major processes. First User sup-
plied instructions are translated by PREPARECOLLECTOR into the command
necessary to program the CTC driven interrupt timer. Next, again with user in-
puts, a disk file is opened in process CREATEDATAFILE. Third, the analog
data is read in and stored in memory. This process is the responsibility of the
Sampler Module. The data stored in memory is then written into the disk file by
LOADDATAFILE. Lastly, the now filled data file is closed by CLOSEDATA_
FILE. Thoughout this process, if anything goes wrong an error message is output
to the system console.

SAMPLEDATA, and hence all of ColllectData Module, is designed
to be called from a superior PLZ routine. The responsibility of that superior rou-
tine is the interface with the user.

4

CollectData Module 266

.~ 5. Routine Relationship Diagram

Calling Routine

SAMPLE DATA

-rr

Figur 75SeainhifSMLATAtMisCalngRutnEadt

~ERO its SuorinteRoties

' . 4 .A***

6. Invocation

SAMPLEDATA is invoked from its calling routine with

ERRORCODE:= SAMPLEDATA(TESTID, USERMESSAGE,
PERIODVALUE, PERIODUNITS,
INPUTCHANNEL, SAMPLES)

The type and purpose of these parameters is listed below.

Parameter Name Type Definition

ERRORCODE Byte Return parameter to indicate to the
calling routine whether execution was
successful.

TESTID ASCIISTRING A string holding the six character
sequence that uniquely identifies the
test.

USERMESSAGE ASCIISTRING A string holding a free field message.

PERIODVALUE Integer The number of time units desired for
the sampling period.

PERIODUNITS Integer The units of PERIODVALUE. Defined
units are MICROSECONDS, MILLI-
SECONDS, and SECONDS.

INPUTCHANNEL Byte The number of the desired analog

input channel on the AI board.

SAMPLES Word The number of data samples the user
wants collected.

7. Variables and Constants

SAMPLEDATA uses three variables in addition to the parameters
addressed above. They are

Variable Name TyI e Definition

TODAYSDATABUF ASCIISTRING A buffer to hold the characters that
represent the date (yymmdd)

CollectData Module 268

Variable Name Tvoe Definition

TODAYSDATE ASCII_PT A pointer to TODAYSDATEBUF.

LASTDATA PByte A pointer to the memory location that
holds the last byte of the data
collected.

SAMPLEDATA also makes use of a number of constants. They are

Constant Name T voe Definition

FALSE 00 hex The error code for nothing went wrong.

FATAL FE hex The error code a fatal error.

DATAFILE 07 hex The logical unit number for the data
file.

8. Other Routines Called

SAMPLEDATA calls seven subordinate routines and uses one
buffer. Six of these are members of the CollectData Module. They are

GETDATE,
PREPARECOLLECTOR,
CREATE DATA FILE,
ERRORIN SAMPLER,
LOAD_DATA_FILE, and
CLOSE DATA FILE. .4

.
•

The invocation, parameters, and functions of these routines will not be discussed
here. These items are detailed in the descriptions of these routines. One impor-
tant note however. Several of the above routines call input/output routines of the
PLZ.STREAM.IO Module. The PLZ.STREAM.IO Module must be linked in with
CollectData Module. The routines called, OPEN, CLOSE, and PUTSEQ, must
be declaired external routines.

The other subordinate routine called by SAMPLEDATA is SAM-
PLER, an external routine of the Sampler Module. SAMPLER sets up the CTC
interrupts, programs the AIO analog to digital input, polls the user for a "GO" sig-
nal, and then reads in data from the AIO board and stores it in memory. SAM-
PLER is invoked from SAMPLEDATA with

CollectData Module 269

. •........ . .. h.~... .". ,,

.' :.: " ERRORCODE, LASTDATA:-

SAMPLER(IO_.CHANNEL, CTCMODE,
TIME_CNST, COUNT,
SAMPLES, FIRSTDATA

The type and purpose of these input and output parameters follows.

Parameter Name Tvoe Definition

ERRORCODE Byte Returns a code which indicates whe-
ther data collection was successful or
tells what went wrong. Five codes
are defined. FALSE: no error; ABORT:
user abort; FATAL: complete break-
down; CHANNELINVALID: channel
number was out of range; MODE_
INVALID CTC commands were invalid.

LASTDATA PByte Returns a pointer to the memory loca-
tion in which the last byte of data was
stored.

10_CHANNEL Byte Passes in the number of the AIO
Channel to be used for data collection.
(0 to 15)

CTCMODE Byte The first of two programming bytes for
the CTC passed into SAMPLER.
CTCMODE has two possible values,
FASTMODE (87 hex) and SLOW_
MODE (A7 hex). Both set the CTC to
generate periodic interrupts.

TIME_CNST Byte The second CTC timing value passed
in. Its defined range is 0 to 255
decimal. This byte tells the CTC the
value of the internal counter.

COUNT Word The number of CTC generated inter-
rutps per AIO analog to digital
conversion.

NUMSAMPLES Word The number of twelve bit samples
(stored in two eight bit locations) to be
collected.

CollectData Module 270-.1
4 . ' . , :' . . r'.,."'.iX.- -'' .- ;.% :".-% .".".,". ."".-'.-"-, -"."."-".- ."""-, 2-:-;.2 -'-''i;

Parameter Name Type Definition

FIRSTDATA PByte A pointer to the memory location
where the first byte of data collected is
to be stored.

In order for SAMPLER to be called by SAMPLE_DATA, it must be declaired exter-
nal and Sampler Module must be linked in with CollectData Module.

The third external structure used by SAMPLEDATA is DATABUF-
FER, a 2,000 byte memory allocation set up by Buffers Module. This buffer is
used inconjunction with routine SIZEDATABUFFER (an internal routine sub-
ordinate to PREPARECOLLECTOR) to define the storage space used by SAM-
PLER to store the data read in from the AIO board. This simple approach is only
indended for initial checkout of Collect Data Module. Ultimately, SIZEDATA_
BUFFER would work directly with the RIO operating system memory manager.
Then, the data buffer would be dynamically allocated rather than limited to some
arbitrary preselected size. Access to the memory manager from SIZEDATA
BUFFER would be provide by ALLOCATE and DEALLOCATE, external routines
of the Utility Module.

9. Output of Routine

There are two classes of SAMPLEDATA (and hence CollectData)
outputs. First, if all goes sufficiently well in both CollectData Module and Sam-
pler Module, the output will be a new file on the system. That file will contain
header information on the data collected and up to 2,000 bytes of data read in
from the AIO analog to digital converter. The second class of outputs covers the
outcome when fatal errors or user aborts occur. For most errors, execution of
SAMPLEDATA will end. For a couple of cases, a data file will have been
created and filled with header information but no data will be present.

10. Routine Flaws

There is one structural flaw in SAMPLEDATA, a number of listing
errors, and a lack of comments. The sturctural flaw is that if a fatal error occurs
during LOAD_ DATAFILE, the current logic flow has SAMPLEDATA just end,
leaving the data file open. Reguardless of the error, the data file should be
closed by calling CLOSE_ DATAFILE. The conditional exit following the call to
LOADDATAFILE should be eliminated.

CollectData Module 271

,.,..

A

The listing of SAMPLEDATA has three mislabled parameters in calls
to subordinate routines. First, in the call to CREATEDATAFILE, the third input
parameter should be the constant DATAFILE rather than FILEUNIT. Then in
the calls to SAMPLER and LOADDATAFILE, the parameter currently listed as
BEGINNINGOF_ BUFFER should either be changed to ADATABUFFER[0] (a
pointer to the first location of the data buffer) or be defined as local variable of
type PByte and set equal to ADATA_ BUFFER[O] early in SAMPLEDATA.

The final flaw in SAMPLE DATA is its lack of comments. The use of
an alternate format for the rather lengthy subordinate routine calls would also aid
readability of the routine.

11. Reference to Listing

The listing of SAMPLEDATA is on page 389 in Appendix F.

JC

Collect_Data Module 272

D.° I
:"* ,2 ' : : . '" .' .i ' .''' '. ''.:." "'' '.°'''"" :i- :.i." .. "".".... -"" ''" ' ;" "'' . " : .. -' "2 " " " --

This paeis inentio~nally blank.

CollectData Module 273

RD-AI?2 823 DESIGN AND PARTIAL IMPLEMENTATION OF A COMPUTER 4/5
CONTROLLED DATA COLLECTION SYSTEM(U) AIR FORCE INST OF
TECH WRIGHT-PATTERSON RF9 ON SCHOOL OF ENGI.. L E LUTZ

UNCLASSIFIED FEB 96 RFIT/GE/ENG/86N-l F/G 9/2 NL

L' 2

1! II.25 ~QI1.4 I

VII. Conclusion

The system designed around the hardware of the Zilog MCZ Z-80
Development System is a reasonable, general purpose data collection system.
The design supports the requirements for acuracy, data integrity, flexibility, and a
simple user interface presented in Section 1. The design is based on having an

-: data storage unit located with in the item under test. This internal unit would store
the data until post test when the data would be transfered out to an external
control and data storage unit.

The purpose of the thesis effort was to examine and develop the
.~ software required to implement such a data collection system. The first step was

W to provide some improvements to the PLZ language. The software written to
improve the Pascal-like PLZ language proved quite useful and effective. These

10 routines, written in PLZ, of the Enhancements Module were fully developed
and tested. Hardware and operating system access routines were also written
to supplement PLZ. These assembly language routines of the Utility Module
were also fully developed and checked out.

Like the PLZ improvement software, the software written for the data
collection system was written in both PLZ and Z-80 assembly language. Since a

single development system was used for both the internal data collection / temp-

orary storage unit and the external control / archive unit, the division of software

between the units became some what blurred. The software of the CollectData
Module, and its subordinate Sampler Module, implement one of the five pro-
cesses of the data collection system, the collection and storage of data. The

~: ~ Sampler Module software is that of the internal data collection / temporary

Conclusion 274

I
storage unit; the CollectData software would be resident in the external controlI

data archive unit. This software was never fully functional. The problem appears

to be in the interface between PLZ language calling routines and the Z-80

assembly language Sampler Module. Though the software was not functional, it

did fulfull the purpose of examining the software required to implement a dataI

Recommendations
Two courses of future action are clearly open. The software of the

data collection system could be completed and thoroughly tested. This would

include integration of the Set Up Scale Factor File software and implementation
of the three processes (Scale Data, Output Data, and User Data Manipulations)I
not implemented during this effort. The second course of action would be to build

one of the internal data collection units. This activity should not be started until

the software portion of the system is complete.

I

Conclusion 275

Bibliography

1. Zilog. Z-80-CPU. Z-80A-CPU Product Specification. Zilog, Inc.
10460 Bubb Road, Cupertino, California 95014, March 1978.

2. Zilog. Z80-MCB Hardware Users Manual. Revision A. Zilog, Inc.
10460 Bubb Road, Cupertino, California 95014, 8 May 1978.

4. Zilog. Z-80 MCB Software Users Manual. Revision H. Zilog, Inc.
10460 Bubb Road, Cupertino, California 95014, July 1979.

5. Zilog. Report on the Programming Language PLZ/SYS. Zilog, Inc.
10460 Bubb Road, Cupertino, California 95014, undated.

6. Zilog. PIZ version 3 User Guide. Revision H. Zilog, Inc. 10460
Bubb Road, Cupertino, California 95014, July 1979.

7. Zilog. Z80 SIB Users Manual. Revision B. Zilog, Inc. 10460 Bubb
Road, Cupertino, California 95014, 28 July 1978.

8. Zilog. Z80-AIO/AIB Hardware User's Manual. Revision A. Zilog, Inc.
10460 Bubb Road, Cupertino, California 95014, 28 April 1978.

9. Barden, William Jr. The Z-8Q Microcomputer Handbook.
Indianapolis, Indiana: Howard W. Sams & Co., Inc., 1978.

10. Grogono, Peter. Programming in Pascal. Reading, Massachusetts:
Addison-Wesley Publishing Company, Inc., 1978.

11. Cave, Stephen. Telephone Interview, 3 April 1980. EG&G
Corporation, Albuquerque, NM.

12. Aeby, Charles A., Project Officer. Telephone Interview, 5 May 1980,
Air Force Weapons Laboratory, Kirtland AFB, NM.

276

*1

Appendix A:
Enhancements Module Listings

The following 36 pages are the compiler listing of the Enhancements
Module, the DEBUGS Module, and TESTIT Module. DEBUGS Module is a
special subset of Enhancements Module used for debugging of PLZ programs
which interact with the RIO Operating System. TESTIT Module is one set of
routines used to test the routines of Enhancements Module. The following is a list
of the routines found on each page.

PagNmbe Contents

279 Constant, Type, and External Declarations of Enhancements

Module.

280 Procedure ASCII

281 Procedure VALUE

282 Procedure VALUELOOP

283 Procedures PUTCH and GETCH

284 Procedure GETASCIICH

285 Procedure PLACELOOP

286 Procedures VALIDBINARYCH and VALIDDECIMALCH

287 Procedure VALIDHEXCH

288 WRITE and WRITELN Procedures

289 WRITEDBYTE and WRITELNDBYTE Procedures

290 WRITEHBYTE and WRITELNHBYTE Procedures

291 WRITEBBYTE and WRITELNBBYTE Procedures

292 WRITELBYTE and WRITELNLBYTE Procedures

293 WRITEDINTEGER and WRITELNDINTEGER Procedures

294 WRITEDWORD and WRITELNDWORD Procedures

295 WRITEHWORD and WRITELNHWORD Procedures

Appendix A 277

Paae Number Contents

296 WRITEPOINTER and WRITELNPOINTER Procedures

297-298 WRITERCODE and WRITELN_RCODE Procedures

299 Procedure READLN
300 Procedure READHBYTE

301 Procedure READDBYTE

302 Procedure READBBYTE

303 Procedure READLBYTE

304-305 Procedure READDINTEGER

306 Procedure READHWORD

307 Procedure READDWORD

308-309 DEBUGS Module

310-314 TESTIT Module

ApnxA2

Appendix A 278

.1
' ' '# 'lZ":v',,t"' ,;.'.';.','','' '°:, ', ',

' , ,"..' : ,",' ", ' . ,".","%',"" '.'."" .'."'" . '-%"' " '...."."'"s" 0*

49- z

-4

40, 04' 0W

8 ,S - w -

lIP (a ligi§i
CNI~~ 6I'4i
41'

C'-4

-U -

0,-4 0N m vIIo -0 %

dPd PdPd PdPd P dPd Pd

.- q~c

r-4 r-4 f- II- -l rfF4
,f, ; c m jVc, q "n 4r;o q- vL - , n wmo c4m-

m m n - " -Wwz ' n lL o' w" o' o -r or

iijfl 9

dii4
-I I I I I II I I I I II I I I I I

* I ~I~i~i~o

#_ C.' m II - M0 - Nr wLr o 0 O!III.- r4r- 4 -r4r- -
88OG 48
r- r r -4 - -

4% -

- - .- - - - - - - C d
0.

$4 41 -4 E-

>'

r-4 s2

e.44

4., 6.

p- 1

a

*4

I

w
8 2a- -

T. 74* IL w;: .. ,. 7

%

-44 J

U--

= "-4 '-

Egl
raI

UU4

02$V4

~- W------- -4 w4 m4 N 4 -4 -4 a% a4 F-4 -4-m 4-4-4%0 4-4 - I-4

IV.**:* *w *wwl m U nL lL DWw w% ' -

7- -.7

U2-

4-1J 11101
..- "W iU1 'or o ,00

e D 111-

.w'-w-.W ~-'-. *~v 'n w''.'' ~ '. t~ w' 'sn ''~ r. W'J % -. -. -. '4 %7

rg

*~U U-I4

1.4
~t

F-4 -4 rI -4 4-C4 CCN ~ ~ C14N N~c4 C

z r.

tou

W)r--o.'

~~r,,

C4 R w -Hn -W -l -or m ,

NC 'l(
C4* C'

4 'N 4C4

x .

.4 43

5~C14

qw oi c o - , n nk -C 4 4r WV 0r 0

p-INCN 4, A A AAA A iFR FM M C

4 4

w E

JQJ

C4 r-' -

74 - 4

P- n - LII4 J:I i! Iii rq q
-NNN ... ~

%'. .L~
7 ~~ ~ - ka ~ p4

I- r6 1
a1

* 4- 4

04 40-

C% m IVL 04f

rrI N * 14mf nii n W --W iIT

M M nf nMf nr n(nf nC nMMMMMt)(Ie ne n(

7-7-77 -- -

C4-4

0p

>I I
Ia 1111 li' I-

(a-4dJI-.

,-q I4 en w nCk
IV0Nr mQr4NmvL Hw0 - w0k oC

!r Ln Ln Ln nL o% o o -r

C4

r-4-

%0

%5 2

4-j

4- g6.

f-4 JS (In
r- CN (q q

m NC). nioO114.1 ~i
mmm mmm mr mmi FnMmmc

U----F-U V - - -]FM~~'

-- 4,

w

t4.4..4L1 44 -

0 - 0

r- C J) w n z 1

VO w-w % cI NqwtnA j mlli r-w
IV q J.J

V5.

4.2

11
0

Li -W tn %Q -N r4 C4

.4~~~- r 1-4 .. ~0
v wi ONq1-i- m n % - m 0 - 4 m

lw WV LnLn1Ln 1
lw1 wIVR wI v1 wv W ~ U I I.... r, -

*~V -1-C - - -

1-440-4

0 0

r. -4 WL rI c

C%, ONq n ON

6677 -41 77-. ---7

- 4W

1.N

(N,

611

I- r4l C"iJw i11i
* m

-;n Ln - ~ ' -n L-. ~ A nLnZn00

v.-C K~-K & - s2 ~ &A.A~ ~A~~AX.%\

-7-7 ---

- 0
co-

9-4

0 01

14 I

4.;1

,-4 04 n.-4Cn

.qw -1r 000 *,I, 0 I or .

41 - U

w L dP --- P
-41dP ~ 0 op

- - dJ LV ;>I 0p ~ d-

L4~ L

00)P -4 Q -

0,9 0 z r. <..h . - r

Uu0

dPp V%

d5 0

00 4u ddO P

0 -as

w (O) - s~

0 > w r- cuLd dp0 4j --4 rf 49

g g g 40 -)Q
t5 1*t

Id

tt

- -.

-En

$-L

2w' 2

-- 44

4,1

4U4

-- p

.4~ .14 2~4 4-

r. ft

4 oI
(L) 42 4 1

'-4rn -4

*61 W); ~ 5

Ii j 1111 r-wg
_ lie

c
* "~I

* A4b

:~~~~~~~~~:.~~~C M. .q-. Ln %D~*.. 5***~*2 V - . * . * . ..- ~S* .*~.

44Z

EmI +

-4 1

F- C4 f V* % -OC
ER V Iwm ' NVl % -w .

0 ---If- 4t4r r4r4r4"S 1
kcr -NIr r r-r -r -r -r -r-f.r r -r -r

C4,. r

C4 4C4 4mm nfnm mne! 4 Q tU r wsvV)G nL

r-F-r rr r r TrhrAr

44.

"4

4

Ii w 0. b .

EO~ wS U% 82I
N (n lw Ln uj o r

0,. LVw%%W O w Ww r

41d~ hs.-W- - ~ U .' ~~ W~ E

ulU

J-j4

'IW
U)

r- 1 e V..%,.000 ' w L

o- - - - - -

%a alRR96*F o0.4.4(n 0 % Dr 4m- n c

LWAIiIIFi.E

r44

r-f r-I -4 I 4(1

0% 4=9 14lw L; G

CE-4

41

m -W Z or O a 1 en m-W

". P-4= r- FI -
m - wL ,vL m. -4 C4mw0w" . I n%

gess ase ms@

rrzu

a.' z

"3-4 H- - - - -

- BH - H.s---M § 918 9C0Cc oc M c

r---

C)~ C) 0~ w

or - t
.-4 0.4 u C

r,4C OU m- r- * C-

C" r-.. 4J -:cf
'-0 C-.4-J r.> C ..- 0

to4 (-' L- c-- riC C C cn - 1W - drL.O

r- - .O4-4 dpc6 L. J
>1r IT, C))-f r- EE C C 0OV-- C w~ rc wj~i

*ri U- dCJ4- > -4- C OCF -4 C) A.iw

-1 0 c.- e- t C;C _4 -
p J11 C .- i 0~ -- WC OC 4J WJ - C.400

t" r_ -E*E - , -4 .,[41 0'-4C .- IO r_ el -4
--- IV , 1$1wr L.44 OL.4 .MC a ,

4J. CJ'C V- - ;r V

C C 0-flC I 1 4J - H-4 > r C X cd,44CLr- 4 JOU

L,44'CU C'4
w o -CC) ,-4 ~- Coj a Ir-t0I $4r--1 04-

C; 4j CCT C.

Ci r, E-.ji c

V, t =; -'4 j - E E0 c0CCoCCOccc COOC~c
C) w 4 C-

t00 t0 t, Ojclc c CCC CCCcCC 0cC)
.z1 C j cf. C.i . L^ m~ mt m CV. C. 11 V, L" Cm LO m m
:3C Cl). 4-i r1. 5' C - - . .- .r: 2: Z z
o J0Q ' 4JC C0000CCCCCO0CC COO

w to C- 4J~ =)U UC'U L L)'CU
XCG) -d (- I Cc c 1

f 12 c E- E, E- E, E- (-i E-, C-' E, E- F- C E, S -, C
r, a; m.C 0' C' C- -o . :r - 4

E, C C rC C-f C''C>C Wf" -r 4 Or CL

!l C E-, E- E- E C

r Cl C) r) i. (L C. CV -C v. 4.t -CC'. W

C) d' C) c. f' C- CLC W r C
C, C. *'' 41fl w c-L.V rt.c l rG. l l l. aL r r V

U', C; C'C4. - C7. Ci C o

EI- r-. C 4 o) -4 >f) %0. i-- CC 4T C C' M -Wtr. %D
*- UC CCC C- C,4 -4 -

E;;If Vkr f-C- C C' -. C I M -r .U 1 ,C! ,C 4C C)- L
o' r. c r, c, -) r)MC r a- C 4

,' , , .,: .i . , a , k :,.'.: '. , : .. i :w.- , &., .,"- 'I ;,, Jj - '-~' ,-i- : , ,.' i a -, . >-.- ' , .- . . -.

I V

44N

0 fU

-_-.144

-' M

4% (U 41 W"r ,C - :l

a 3 (3 -4 W 4J V" r- sl(, . ,r , , .r c
C- 0 4. C -.,. F ' -:rJ cl 0 - U. 2. :, - 0 J.,:(0 r:2 C r'. ." { . j

,-4 .d -#U d) .,-. e . M .I' l"' - Z 04. 0" w3 w' C -{1",4 > ;>

d, 0- erU U4

u :1 -t : W1 w/ ED; -: 0~ > 1- C, ,

wC- 1 4-) - cw C

C e d, '- CC C C.

-0 C e U DL*f w:3l C - C

: r- o 4J 4 (U -" U " .-. wl C w r, d- C : r c

W _=I =1 t(3 :L r; r. C

E,. - . ' l{ edE " E 6 Ed : . :~ i : CJ 14 44 0 0 ., r'(1,; 4- 4.1C _4 4C)01 - ,(,

... - P r" C W C) c r. I 4 -' ' C-
(,C 0 c< C " "' rC

a m w -4" W 4J r- M- 0 r C)

- - wf. uIo C) (c u ~ -1- r 7

-C .j $ U- 4J 4 - .- C W 04J I r-4 0) -4 C) C 6.

C. ; CrJ V r' .[: W . 'r :'r'l, U Utl, r-l/ r 1- .Z IM C .X D, ,' ,-;-N

C:

L-, I .<

4- U% 'U ;[

C I, - C E ' I' CI'. E' E 17 1' E

C. C 8P8 ccI C 0 C.-cUcJ- C-. CL4 C) E

LI -J IC L IIIII-.. I.iCI I f l I C -:2 I I IIC;141a

D DI " r ". ". ,.- " . . C.'. EL-I'. - '- C.1 C L -. - C , ' -cC'. P -. . " ." c

c c 4.Jcl,4: cL .' cIl~l'C.C C: c ,I c ccCcc0c >ccc

C ,C) LI C 4 0 C) C) C' C - .C C) c . IZ .c 0 0 c' r 4i C
u : :E- uUU uE CC)C j L 41 C

~fl.-C :3 (.z U
- ,- 4U 4 -~4 I - -------- v 4

0i; C. rI W , ., . r- , r-,L'r C4.1 - ,1I.'C.H2I 'J ,rC . 4) C, ri)
1 E E --, :1 E, E'4 E-~ 4.,- Et E-E1 ,[, >;C'lE.-)- '- :l C

" " F$'V! " P,4Th4C "4)l 'l4 " 4:41 j - t- - CL r. C),0 ..

--

C C', U.C'
CCC CCC CCCECC CCCC. CO EC

I 4-C

C* ::::;::.C t.x ICC-C- ,.~ C; M C- Cr C C: E---

r Q L. " ED-4
t'cC~'C C C .jr'C r CrC. -l r.C rJ:. C C.rC:.C C f C :L E -C 7

e, -, 1 C. . . Cf .: Ci , - : " .; <.' -' ei . C ': : -'. - c c I 4 6
u''- C L C CE .C)C - rr .C u uL-,E.)EC t'ECC '' r-~ I CC 4

-- v CC .C c C C r k. C -C.: c C: - C, C) C C r r. C. C ,c:C C. <
.r~~~~~ ~ ~ ~ 1.4 CCC:r C;C r "C4 ,

c C- C CI C C

I') %C - C , C> 6.2 _, NC k, r C C C _ 4 1> 6. C' Nr U C C' r C t C : I1' n%'f
C

2
8', tn 8r 4: 42 4 t. C C k: kn tc r- r- r- r- r- r- r- r-r -cI c C C, a, C. C) C

4.) - z .t,

bp 0
4

).J-C c -.

w1. -4 4 -

01 r - -41)
CU :

-4 H V-) 4- 4

(n 4. M '; 4 0)
:3 WU 4JJJ r- (- 4J H E .H U

41 C,4

m .4-C 1- -4 >. E- , ,3 -~ CC0
43 -) 44 0 _) 0 E C C 0 0 >,

M 3W 4 ,-4n - Un ii (1 Q

C0 - U) - - m, w~ m m m

.1 W4J~ 04 0 4 0 >1 0 o [4 0 l~

4)i~.JJ U -C- =-' = r. % P z

0 -- wL W 0 El E

>4 . .I~~4 .J -. ~ I4 - & 0 Cd >4 >4 Cd >4 E. >

to >143 mV 0 d 0E 0 0 I4 E.
~ ~ 0 1) W , a . co 0 Z 04

D ~ ~ & LJ.j~ $1 w-E- 44 "I ca I EI

OH -.-. a)-.44-* Cl W (DU) U - Z E

441 -Z4 -Sr
wC- 0 U):j=:3 :

4.OC) U C-' 4JCd E4
4j 4J4J-4-4-Cd-

u

4) 4

0f E-1 N t4 n 4.) ::) e 0 0 0 r d4 im 1% 40N0a - N ~ L -' 4(Nm~ L . 4Nr 0

(n Z z.C C: a 0 .a I-43

w A- wW1 0 4

(nZ0)E A wC I

ca 14
c0 E. 0

1-4 0 - 0
z m : z

1- ~0 C~ 0 0

4 co 0 0 0 EA'
W X 3ZZ1-4 ." 4 -.
m m wa 14 E. U
X: z z lm l Wn 4 0

U3 x rCa x u .4 C
z :: m m 0 EH

Ca~ ~ z Z ~ z .1 - -

- E4 Ma M
C >4 z - E-,~E EW COa Ca C >4- CO

-E- -1 E- - E-4- - E -
ca E-'. >4 Ca >- >4 - >4

W- E E, M M E-. w wa C CQ 43 W ca U3
E- Z >4 >4 - E-. E- H E- E- E. H-

W- E, m E-4 E4 Z ->4 > 4 > E- >4 4
* z I 1- -4 1- -l

Mp Z E- Z z z a-. --

* -q n '-4 D n - p-4-- p- E-' E. p- M E-4 E-
z- 4 >4 " W " W >4 -C -C -4 Ca -q~ -0 44
M M2- ca ' - Wa Z E ZE- &I Z E

OE =>II ~ 4- - ~>1 M> J>4 >1 .4 Mo 0 0
1 0 . U .1 U U L - E->4 IW In ca co U 12: I

C-< .- 4 . - -4 0 i- 1-4 ". - .1 14
0 u 02 04 (' < ZO .0 < M~ 4~(

-4 0 14 0 0 u u) w~ U ua U U1a 0 L)a w ua

0 0 CO r:M
0 I- - ix~ c 0 0 M 0D 0~ 0n 0

k% 14 W ca -IE- z.~ .IZ Z .- z wC . I~ ~z
In u M Ma M a C4 uE
C4 0 lz m 0. 0 M U 0~ Wa w Ca W 0 Ca c4
u Z ~ M Ca -- Wa w 0 -00 Q z Ix a 0 l

*0 lo 0 0 0z M - M D LoI =)i U C) En (
Ca 0 Ca I'l z 0 z Inz 0 z 0 n Z 0 z

04 m ~ U cz 8a Cz CO Ma Z w C~ M w c l CM

- 0 wa 0,Cf wO i 0E- 0 p- CE 0 E UE
ul -l Ca Ca n1 z ix 0 0 C Z w ixC wC zC 0 uCa * w

U E- % z- M* a4 Ca a4 Ma a.. a u a 4 0 1
W C Z - 0 0 0- E- -f C)

- E-~ 4 0 M 0. 0 0 El Ca Ca Ca Ca Ca
0 - 0 0 0 C- - W-~ E-l E-~ E-. E. p- lz

-: x- I 0 10 IZ >4 >, >1 >4 z 0 0
1 .3 Z ~ - 3 0 l '4 Z ca 0 0 Q -

* - Iw w 9- I I Da - 0 W -

- E. E. P- E- E-, E-4 E, P~ 0

co a CD 0 4 NM V tn W r, M 0M 0D . q (N e Ln W' (I W ON0 CD4 M r, M M~ CD0 *.~ ~ 4 fn ((r Ln W. r W ON 0 -T. LN n

-wo nIt~~~ nL nL wwwwt -r -r r ,r r wwmmmcmO

-% .; . a -.

dPP

43*- i3

-- >

a Q)
bw

4-4 44

dP-. 4

C-4 4 ', . 4

-U) U) f

CJZ ** 4 4

CD.p4J-4 C

E-.C. xc U)
E- 0) a)-

0 Q m u .U)i .M a.

E, M CL r d 0 4-.
>1 0 ' C. U) >

a-- C4; ar: - 4 .1 CU~ 44
U) -. 0 44

C:V 0 - - t. C

;_7 =) = U 1)
4J () '4 4 14-

-- Q 0 oE- f , E: [, H . >
0-- =3 0 3:. 0-. 0j ., Z [-1 , . n ,0 4 -4 0 C. E- E-E . E-

>4- 0 4 3C .= U) a) >- l1> I> I I 1
co I- - u).0 V 4 E,4 i I/ I) 10 C -

- . 0C) 0 44CC) X ,"o,
- U)~ E-4)4 -4 1U -Y0 4- >t)-414-t)4- U)- C.

- C: 4-4C,4-4 4DC.0 4 0,-O 0 -- ' v " " --

-- E EnE-n D 0Y U R)) [O O.. .0ix W . w: u ,C u- E- .,- E.- m P +OO x
- > M IV) E-n -
-I -- t E 0 0 0 r. u

- 44 ul ~ CDVf 4 -. -0- ~ 4J - UO OE0- E- Z

- E-(E0E-. r_0 En XU).0- . . .," , , E -
- 0 lcD 4J E-) E- CO)~ 4 4 ~ 0 0 U 0

-(n 4)) 0 W- . -0 E0 0 0E > 0
I C 10 E, co4- ;_ ft UtO ft~ E CD~ E 0 o. C. o C.)CIC4

- 0 . .0) Di 1J w

°n
.. EE

E E- ~0 -1 E- -E-- 0 0D >1W >4 W >' C4 > >4
-) 1.- C ~U)) w MZDZ C)) C/ UC/C) .. ;,7:E-~

- 0 a) u (4) 00 E4 2.> 0 E- >4E-
0z .0 u'W EnL C/) U)424 U) 4 U-LO ICO Ica Ica IL'-E

04 4 F-E- i 00- >, L2UU2 >, - .2 - z .- CO .Z .- QIX E
im a CD z.-w4Ell (Z L13 W co W(Jw4C44 C.)4)

E- C E- (1 E-E-- E-4 C4E C2 -. -

Ml U). OC.C n... m - E, E- E,0) 0- E - MP zm 40 :M a

C4 W.) IX I: C ". 4")q E F: - :

,-4 C1 m T Ln%0r- CO a 0 -CD (2 4Ln44.0 - CO4 a, %4

-4 ,.4 - 4.--4.-4 C4N

4 0 ON~a 0 -4 0N42 r 'IT i n 0 0 c -4 c'4 en2 -r 2n D0 r- cc) 0 cr-4 (N m -t n0 Wo r 00 .- 4 c 42 m Wv)

40O 000 000- -4- 1-4 -4 -4 1-4 14 -4 -(N N N N Nre 4 m

~0

4

- 4-)
dP 4

0 n .-l W

o 'C 4)U) C~.
0) m 1 0) > O

41 U) m m) 'i-

.0 4J W) W 1U 0 a) m) Ho
a) m' (D 4) 4 m ul W 44 >Z 0 u

>0 ri0 E 1 DC

'44 W- '44 P E- P E- - 7- -it I+ H Z + i H 4

0-W 0H H 0' 0D U3 LU4 co C4 IO >4W>40 (m E QE

U) 4) 4> '> >' H U) C1) E.i UC) 'O C
41i z0 mE- i0H0H ElcoH-- 44 44 C) U) 44 In '- t z W
EO 44J -4 U) I to Iton I-' Hn E to ac CO LWL W W C t .4') HW W
a) M EHZ P HE04H0H- Z+.- C) *-. Vt- H- H E C - H H

44J 44 >totEn 4-t-io44 En In c. U)t C-H--- -zH E

144 4J1- . -. 4 . - H E 0 C) --- , I o) o -i- t' o a
o El) XH C H - - H 0 o'H El E-CD CHO: UH/2EIC

4J C :C E: H H : H M HO 44 C) 0 U (D 0 4J *-Ufltoo WQ/ nC
V U) toto-o.t to Ito v 0-t C OZ0 r4 C Int o 4 H4toN to-
C '23 EH.]4H.4H . 4H.EUHHE C: fIW C r'U- LUI TC) t- t L4

El H e attttttto U) nin (n'C HA EnH U>- HOA F

El - I_ u4. H-) .) X -4 _W4 11- E~-- a - .. - - Wt- W

HHE P P E H- H, HA HID - E.JW -L) c 0V -W L
-) El E - E-El)---W z--;:-----, - Wa - in - EI - - ca -O

to to toHWHOHOHOHO to (D 0t C Z 0 C)L24-- 1 CU tou> >-ztoi0-I~-.
Ol Hu.HO O I 0 O E- W 0' uH)-H I H

L) to4 -ZI r-1 IHH to Wt) Qi-4 E- z Z-U 4:h~t IW o W
E-E E E- E- E- 10 E,- E-IP- - M t - I-- - - -

3 300 3HO03HQ 03

C14 r', -fln ko r- m0oCO.-C4 n i n ct - C ~O C (I -~ fi ino r-WCOD -,- m-i 4 f
r-4 rjiN Ct'4CN -Jtq'nmffnm r-nm m -' -IT -t -T-T I -7 nfl na i nn u n

>y.;:~ v& :4z~ . .:.2--.:-4'x:-.:--..- ----~ . -- - -- - * --

; TT~ ' F i~ 7T ~7 ' ~ ?~rrw.17W. .. ~.~ 1 - . -. W. - Wi W'. -7 IiW .

*p dp

r..
dp dP

04J- E-4 Ai Q~- E-co

-4 CI i4 U) -4U
w- >oW 4 -

E-4 pE 3: 0 El E

4 ~ E WJ % ('- r) 1

0 0 U) 00

0I 0~ 0" 0 0 " 0i
** o I 0 .0.0 0 co

*.CJ 0 = c >
E-4 0 E- z toJ~ E-4 cI WQ- C~C ~ -

0- D45- AC~- a- C. E

m ~ U) Er ti) wE
Z ~ 74 . .1 o

u~~~~~u~ ~ E- u Q(n (n 10E) (

1.4 E E P- w mu~

jxf H o~ %0~ (4 "~ w~5 F- 4 CD %IAIA lzl 0 5O' C4~o r E- " %o

0 0 lm -E~~~~~ O5 5 0 0 00 0 n

e~~~~ ws* ~ ~ ~

1~~~~~~E 0 %N,. **~

p!

Appendix B: Utility Module Listings

The following 17 pages are the assembler listing of the Utility Module
routines and listing of two modules of testing routines. The contents of these
pages is

Page Number Contents

316 Introduction Comments

317 IOOUT Routine Comments and Listing

318 lOIN Routine Comments and Listing

319 MENSET Routine Comments and Listing

320 MEMREAD Routine Comments and Usting

321 DISABLEINT Routine Comments and Listing

322 ENABLEINT Routine Comments and Listing

323 DATE Routine Comments and Listing

324-325 ALLOCATE Routine Comments and Listing

326-327 DEALLOCATE Routine Comments and Usting

328 Equates for Utility Module

329 Symbol Cross Reference Table for Utility Module

Utility Module Testing Routines

330 TESTS Module

331-332 ASMTEST Module

Appendix B 315

w Q

Br
ggj

CN442

I* n4

1

0

h41

00

4 EL

t -4 r-

440 .W *s F@ E~ *s* s S

(N
s 9 MI ,N

'-44

413

C4 coan ~rL

*~~~-
P- P-

-9..-- ~ s~

ciI 41 c
-a :4

3) =5

.0 0

~4Ei

o~co

%03 co . 1

998 888 8 C

--le' 1 II

WTv VVF--- 11p I~rII-r~w' -Wv V nmn1 k V fWwIU1-X I

* i~iI~i4 l.
Th~&~ - 41

0 E U

4-

66 0 4J C

49~

r-4~-W co I B ' ii 1~I-4LfiilI
.24..5. Sq 4 S'J* S***

a. 000 0

g I F

ra~* 01 11~, 4i.'A..~.. 7. ~ A 7 **-

-v- ~~W ~F~'~* * J - a -kwxw. P. 777 -j ~. --..

'41

a4-
-4 * Q

~ 4-1 n4* gj 0

2 o
44 4 M N h 2

>1 > I44~

Ci~ 1 I4
C14u

Eg~

* 000
00000

%

41 L4

w rn 0

0J~j~-4 -4

0 4 2q (4 -I Dc M0rIC4(-n% oO
%D o%%0k wa lt --4 ----4IoIII0 r r"Sl -,r-, 1 -11 -

3 '-1

UU)

4j4

dU I -
.. .. s . s . * .E *

14.4.

$4*~

~d cn

wo (U 41-4

tl aBS. 0)4)

-4 >4~~ 44 ttgFg J

44-

04.CIOu co i
* ~ PS

0 w~0

~ ~ -4O44
.4-; ~0 0

N 44

'-4

~F44

rn~'~ 2VA $WA8u

".4

11- . -1

a);- 0 C%.-

0D w) 0.)Ck

p 2

00

4 0 0'

U)

...

w~ Ta

Q co

14 ~ ~ ~ - -..C- I- u -z N

v" ~ ~ ~ ~ C .". V ,L v', , ,'W . ,. "" .-. N -" . .," . -CN'. .-,-', ,-. .N..M-M-M-".--..- ---.-.- .-M .-.MoM

,r..,,:. , ,,,, v , ,,, L , ,.., - ,,,, -L -,.-. ,,, m , ,•.-, . -

4-4

J6 0

w. r0 1 -.

4

~~4.4
~~41

4 4 -4 r$ $

W % 0 La - 1

84.,9 9 a;0

***(a LM%''

* .. 6)

.W~ 4J.4 CD 0

2 4 U2 - -

64 4-J~ .

a) 2
.14-4

pT *. *.

- *

'n2 -R' 2E

I1 L4 M-

CD 0 DC a =C

'el AM0

-0 0

444II

w

44

. .M t.
co i'i

""""S,
...

49i

8 C

CN'N

4-4

(N

C4"

C-.14

CU
I-Ir

00 r- n

-I.-.

r9-

W 0n 0 IV A *o 2 w Q n 6q C 0 -W 0m
C14 CNFQ C4 r4 C- r CD C4 'W-4 r-qm -

4C

o c

00

C-4 (-4 (4El

>4 CD-i1 1
CZ- E - vi

w- U3 o C < E
o O uo -1 z Oil z >

iz 0 i 0+ + 0
mi 4 Z E-. E

zN C4 m)l :0 4 E
w ca Z . u. -0

E- 0 8- EL 0 .0 4 0 ELE-0 1

8- E..c w E4 W - < U) (n E

ix4 <4Z 0. 0 D ii = 0 w

o3 0> p En O
E- E, <2 0 < : MI 0 in E0

-~0 -) E. E-I 01

0A. a.~~4 E--I 0

E-~i EO < Pi

Cii 00 E-E. O4
C)i C)i m ci-Zn %D D N)

C.) C.J-3'4000

ILIi '.4 -1 4: C44 C4 C i C1 ..4> E..4C 0- r,1 04 M) M 1 W'W' T- W W-rL n Lf nL

rL. -4

E-4

E-4

E4 >4

E-4 >4

zz- 9 ~ >4 E-
F-4 w n'-4

wow a: w z'E-

>) "- - 4)
o - W 1-4 0 E-

E-4-. m. w~ U) 4
M 4 1>4 >z

M) 0 M"0 U4 Q UI
a, Cl 4 0 0 U10

U)PU dP 0 U) P 1-4U w 4-
aUC U) 14 '- UE-

ZE4) cn o0U 14 zUW
>-z Da M4 M C Z4t c 0 -

9U ZZ >4 8 O 04
W a) IO-12 1% w0Z a4 W -40 ruI -4Cu0 =

OO.4 M C4'hOO 04a04 w 1- 0 - . C >

0 ")- Dw 04ppM1-E4UU E40>r E-40 0 1-4r

z g 4:z wo .-D U)0 p- C04 E-14 0- : 0
Pfx 0>4 U))~ 00- > 13 fx4-

p) 14Wgzl '-)4:U004 - ' 10

Z: z~): p c 4 0~1
cl) 0!)j.n 01 Z-4 zI4 P

'a
I---_

W -A

rz

E-, ,-,

H z..

4~ E-4 H

E-4 0 D

o0 A En> zCD 4 CD 11
i: , " " I . , . ---

r{i Il o,- If H ' . -
€, II * ~ I - iS . 11.. E1 +

• " > 0 E-4- 00
>- z x l E-4 E-4

% ""C) 0 -000
SCL.Z3 0 EA

00 H0~ 0O E

H En

0

1%1

' ', , ', ,' '. - -. .r .'- .'. ,.". ..- - - - - -- - --.--.. .. '.- ' ,".----",."

~~ &4 a-. ~ ~ ~ *N~'~*---

': ~'Appendix C:
Time Compairson Using PLZ

As discussed in the introduction to Sampler Module, assembly language was
selected primarly for a speed advantage. In Sampler Module (routine COLLECTER)
only four assembly language instructions are needed to read a value in from an 10 port
and check the value against a constant. The alternative was to use a PLZ routine which
calls the Utility Module routine lOIN. The listing below is an estimate of the assembly
language coding required to accomplish the read and compair with PLZ and the Utility
Module lOIN.

Lable Instruction Cl Comment

Call to IOIN from PLZ Program

LOOP: LD HL,RETURNADDRESS 4 Save the return address
on

PUSH HL 3 the system stack
LD HL, IX+OFFSET 5 Put the 10 port number

(input
PUSH HL 3 parameter) on the stack
JP lOIN 3 Go to lOIN

------ ---------------------------- ------ Utility Module -------------------------..---------------------

lOIN: PUSH IX 4 Save Calling Routine's IX
LD IX,ZERO 4 Clear IX register
ADD IX,SP 4 Get Offset for Parameters

LD C,(IX+4) 5 Get 10 Port Number
IN A,(C) 3 Call 10 Port
LD (IX+6),A 5 Load Return Parameter
LD (IX+7), ZERO 5 Fill upper byte of return

parameter.
POP IX 4 Get calling routine's IX
POP HL 3 Get Return Address
POP DE 3 Clear Parameter Space
JP (HL) 1 Return to Calling Routine

Back to Calling PLZ Routine

Appendix C 333

Lable Instruction C Comment

POP IX 4
LD IY,ZERO 4 Set offsets for return
AD IVSP 4 parameters
LD r,(IY+dn) 5 Save return parameter in

LD (IX+d 1),r 5 Local AREC.

LD rx,(IX+d 1) 5 Get the returned value

LD ry,(IX+d) 5 Get the check value

CP rx'ry 5 Compair the values

JRZ LINE1 2 They don't match
LD (IX+d 3),TRUE 5 They match, logical TRUE

JR LINE2 3 Continue
LINE1: LD (IX+d 3),FALSE 5 They dont'match, FALSE

LINE2: LD rx,(IX+d3) 5 Get result of compairson

LD ry,(IX+d4) 5 Get compairson value Z

CP rxiry 2 Check the values.

JRZ BRANCH 2 Data is in, go to next
section of code.

JP LOOP 3 Data is not ready, cyle
through again.

Sum of Cycles 129: Data is Ready
130: Data is Not Ready

With a clock period of 1.56 psec per cycle (Ref 2), the estimated times
for execution are 201 igsec when data is ready and 203 gsec when data is not
ready. In compairson, the four lines of assembly language used in routine
COLLECTER require only 16 gsec. This substantial difference in time is due to =

the overhead of parameter passing between routines and the overhead of PLZ's
activation records (AREC) used to keep track of parameters. (Ref 6 and 9)

ApnxC3

Appendix C 334 I

Appendix D: Sampler Module Listings

The following 21 pages are the assembler listing of the Sampler Mod-
ule. In addition, there is the 9 page listing of TEST3, a routine used in the initial
work with the AIO board. Some of the code in TEST3 is repeated in SamplerMod- ule. The contents of these pages is

Page Number Contents

336 Blank
337 Introduction Comments

338 SAMPLER Routine
339 VALIDATE Routine

340 ATODINIT Routine

341 CTCPROGRAM Routine

342-343 INTSET_UP Routine

344 INITCOLLECTER

345-346 USERREADY? Routine

347 STARTTIMER Routine

348 COLLECTER Routine

349 CTCOFF Routine

350 TOSAMPLE and TCSAMPLE Routines

351 DEALLOCATE Routine

352 Definition of Storage Locations for Sampler Module

353-354 Equates for Utility Module

355-356 Symbol Cross Reference Table for Utility Module

357-366 TEST3 Module

A 3.

•Appendix D 335 I
4

4'4' ~ p . * - * - . .,. * * 4 - .

C1~4

C

Li

T.1gVY ,J R.7 111- WT r' ~U-L - L

14

W -4
1-4 0 M

c.,a~ 1 , 5

1-4 0~ -4

I 0 M I-d

U.r

-4 -

U) w

cu 6Aj~

~ . a

4 -4 o 0
LI aI.

4.1

- ~ S T I 4.1 wI

-1 w
Mu LI

- ~ L3

4) U 84

(U. 4J.J 4 4 1- c

CNC

Elm, a 4C nQC ,

1-4'

c W.

. Q8 0 ED

II

4- r

-, *-b .2 o.0

-W -4

-

1
.41.I.0

44. -4'* 4
-

Q 44

41 m

m* ** ** *N v* .. m.*

-w agrff Cao 'CDm D
-41- -4I -

-0

C ~ ~ r, C % ,LnL)

0 §2 S c 00 m' 000

Q 0 QC

4 d 4A.J W 6

64 4&J .4.

41- 4-J

1- t- . 0

o~ ~~~ 414; A1.,O4 1

iA-1
:E E

CN .-qC%4

E- -

-4 I
C44

ONO~ ~~~~. 1-4 0N.t QrwI , N l)C W

0000 0 00 0 0 00
0 0 0 0 Q0 00 0

40

CN M V tn 0 -4 N Vn

q It - .2LnL nL

cn I u

-N .co

9N c

0n -A U2

-4. 11

E- m

4j a ~ l dl 0 1 .

0 0 L"

00

41a

clii

1.4 .. 4

'--4

U). 1 - - 4

4-4 .- 4 a-f -4 r- - -I a 4 - 4 4 4 .- 4 - 4 - 1 4 -4 - 4 - 4 a-I 4

II ~ 0o

8a

0 coo.--

0 .0

La

-4-

~~r- NEC2O a 1 *.4

-l .. *.. .* .* . * . *. . s

00

*~ -4

-43

(-.t4

0 Lana

4q41

-4
0~

040

0E-4

rn

4-'1

.10

- ~I19

U rM co

co
-aN

499A.4 iI-I 'Ci iNC -C'''
S-W -

sp EDu

40

44I

'a '9

r41 41.1 J a

-4

cc2

CD"-

C' C- C4 CN 14CN N 4 C-No.-i.-qC

* L. 4Z

4 4J 0

0 LII4-1
-0W 1.a

C)-

..4* .. s* .o s 5~* . S *

eI *

9z g

IsIN F-,1' 4 . F s...IF F F

r-4 (%JV
* S ~~~-,-,*.-4

C100

m "c C 1

.8 1

I
-bL

1

Jill
C4c

* ~9 t 8

cc'
*C4 ~!

0 FKo 411%.

% %

r- 4J'~ -. 4 j

cu M

r-4 4J -40)4

-e . 4w,

44

44

4 U- q;

4r-

W.-.

4r4

04. 84 44-

0C4u

0 0 40 0 - - - -4 4 - 4 04 0 4 44 .1a .4 N m M en()(n m e

00 0W 00 00 0 0 0

4 - 11-

'S.. *~ *S ~ ~ ~ *%** ~ '.4 1- U* *" ~ ~ **~*. -. ~..'

41b

4-1

C)

gw %

4~41

-W c

('4
4-4.5

60

rn

114 i

00l0

gq:q

a)a Uo w0,-,la 1.6, 44 6
cn-J 4.1

adU w a9 '' . " E I8 *j -
fn 41 .w

-~ ':*,
_. j a -

> d)

-4 - -4 -w W0 6

- N U

LOO co -t4 4d'

cc~

.5-'~~a w~j*~

oN

-4*e~ ,

U3 I-

U)O on onL A% oooc

(n~~~ (n r r n n n fne me me
u q

00000 0000 (M 4 u

-4 -4 -1 -4 - -4 " - 1

44

44

lo

CN~

C.

r4

"JON

Iip "AI

* * a . - a .- - .1

w

-
E,

0M0 CD (CD0 00

- -4. . W L441 !
pas -n

CD0 0 00 0

E8

49

C4 enI U) ,coC WL) 0 a D14C W

13110411
~w

8

U) L

Ul ulLn LnQ %

4j .j -. - - .

ww

"4 4) "4 "1

M ~ . $ 82wL

E i

)JW WJ.4JO00 O' C l C 0 000 c

-I L)44 L 41

L%0r- 43N (N)4qq Jlv W.).H . WZLJ M'TL rC - l 4 U OM0- '

= ~ ~ ~ N -www

I~~L -7 1-- N- VI -C -.

C'ca

4..'

C'.0

14- 44 1 :W.
ud. WC''.

w 4L" L

24 a 4 .4- a) .l 4t

F 000

0.-4n C

CN

-4 C:C--

C\J

0 n %0 r, co 0%=- '4e WCn.c

.Am laMAI

irli

C141

C144

(N

(No

o 14

C14 C-

r. 1w N 0N

U) -WL n N Ll U O -nm14 fiL) m-W c N-rC4 c
UL LC) L w -U-~q~ 1i --- o rL ON a 1 N

A Lrrc0 O) FL Cll r 1 00)I
CN CN CjC 1 NC4CNmmm1. r ne63WclL O TP C4(c F o rC4 qen-v 1 (%Lr %en c m c - %-

ko N 14 N 14 n Q n 141 T a T 1 %r n C -mC
-4~00 W -V-4 *r- - r- W- W I - W ' 4 r f W

00000000000000 000000000c

ON acowmw 'w qWW MWM 4 - D T L s-(1i 4 nC4 ,LC4 Di 0 D
'm' 0 0C , M 9 8 4 0" D '4-4 *o

0~~~~~~~~~~~ ~ ~ ~ ~ ~ ~ (Da00C DQC D0C C MC m 0

I I b Bil =I 0 0 CD CD D CD0 C

4-1. . ,

-. N. 7 -- - 7; 1-7'-

NC

. C%*.Q C

(NN

m , -Sq% q - -T l I - ok

C1 .C4 %P -4 vo1 0* 00 r
m** m CCs liC4

0DM0 1 WM q- OO 4-

84R Z W' n 7 c, M0- n r ,

1-8 - 4 D- O

CS.0MQ 000- C D0C M0Q(

oi " o0 0 0 0 040 000 000

E5-

0

z

coo

0

A,,

E,

00

13-

CDl

U -L;
0 4

-4

0 0

.,) 0)

4.J * .14 V
W4 01 r- 0)

I -40 .0) 0) 44
to w)0 0 E0 G

I 4 4j4j 004) 4J)9
41) u P0. 04 r.

X;t%. £4J4 > L- 0) -i 44
4-) a) rV01 WV

.C 4J 444. 0) r-

a) E0 a)u L)r- 0

4-1 n C J E 0CE fu 0

., -444F- 4
04) 02 -4E 4 E.

u ()* 0) r02 a) u a) 0 0
li E)-=V>2)4' 00 -4 03wr U r

0-) U)- (V > 4J W0)a 4) E4-) E-U E-4-
4J Efl -A 4 00 4 0) VL 4w0 _~ .E' L

HI 0 _E 0)
4

0a-LO 4-)2 02)- 0)a a) 02q 40 4

>,Z .O4 i404 r- V -4 r4 4-JO ~4J W u) 4J
U) "20 C-.Z 000 V U(U 4) 10 4.-0 Q -) Uc 4) E 44 4C

t4Ea)W Q U4 44EU . Z4- k U 4) U0) 4- W 4 L .. 4 0

4J 0. r. Ur- -4) W 0 u 0) aQ P-)- 0 0.)a 4 4-) 4

id*00E-- F- -V) :3~f 0) in -4 .4 a2 b

44 r- 44 00)H-u 4-) rz w) 0) :44 0). 0 > ~
- U4 00-00 4 E0) 0 [0 a)0- wH wi L, 0~ [)

4 U M 0 ~-1 4.. U 4j)-1a 4- 4)4 4J a) Q)2'~ 00

w A CU)4~V 0 w) - 0 j 44q 4) D I . 40 4.- 0 0)

11 0 0) >, W (1) 4) c) 00 U) -2 t) - U v 4 U)u

AI W.l.4 0) U) 0. . - 1 0)- 4 >, WH -A W -A 0

>I 444-4 42004 E4 C: c- m (o 0)4 020) 0 0

-4 -)~4) U V. . 04 .. -4 - U4 H4 44, = 4 44 44

4J 04J W 020)0)U) -I,- n) 4J 0a W 0) 0) >1
-I w w'l L) E-40 -4 - j V C -- = a) VV Vr. '043 r. 4 .U
0 0 -. 4. ' 0 5~ 0 W 1- Z4 0 a ') - -H 0)- r-41 0
a) r 4j a*U

0
))4r- r 4 0)0 W) _H-

4
w -4 00 4 04. 04. 0)j

SI 4 4J E- CA MU4) 40'- al- U.~C : zU0 a)-.- W2 -2) -4~
fr V M0 P4 0)0 0) 0)4 V 0) 1 -- j rO4J V -

0 40 0) =)00) V r-0240w0 2 O f r

-4 UI 0 .C 4 4 (0)-40 0) -H _ 4 00 0L4 0U 4 r

S 0 44) W) 44n 0 4 (a W --. . .0.4.4.

LC11 00 U) a) W0)0.r.H2))-0 LW 1- .W0 4 4J
(1) 004 4 o EE H 0 W))

ii V 00 04 4)U 4J -4 W U- %.

% 3x 11 vU ~00 4 4J 4J) w 0) 0 V -04
C) m U o _4 W , a O44 - -)44 44

IIL. 3 0 QH44 a)'.E w~ 442 W

WI 0) 4J W- L4 &i) 1U0) 0 0'- a)0 ~ 0
(a (ar- =)a)4 r.r 0 0 .Z - a) .40 04 0)4 444

II -' 41 4 t-i 44-02004 - 4 - -%d 4) V C
i) E,-n4U2 , r - 4 4-440 W v)) U) 4)V (. U-4 C4 0

a), a0) V -i -'---3
4

a
)

0) v a)i 00 >,- w0 00~4t
NI (a0) 0) -44 0 4 440) 0 . -2nU).)C a HZ (14~ 4.

r-4 (n -E 4 0) -. 0 02 r_ 44 q E-H U0 0.-) 0-U C
(a - a444 .- 40 44: -&- (1n 0) .-0 c r_' UO 10 :0 0)0

a) 0 0039 0 (p4 4 0 4J 04J V' z4 U I U44 -U z -i7 Huz

(-4 I -C0 4 E £0) UU 4!)) 0 0 L) UE- c -E- "E-'E-.
-,I) 4J -0 4 4-J M 4JCE- C a) -A b-2 .4- -u CD CD rU

r- I w- -H0 w- 04JU0 w U 41 0) U * U --

C 4 0. 4 1 0- . 0 - .. i) (E a 0C II 0 4 L) L

II C 4 -O WN3 rOU4W-4
C) 11 1-4J0 Q) 4,W -4C4 E 00

II, U- .- 0 .w 02 --- 'r44a
t4 0) 4-- r U 44 V2- 0 - 0' E

11 .1 .- I V) U U - > 4)-- 0) U) 00 0i Q ~ =) m
0-' V U0)U 4)) CC04 E-. .a 'j. .-)0 .120 .10 C. ii

r-CE 0) C >4 0 (au

" 00 ta 4404V rU) 0 ~.-
wi t4 .-I-4.=)0) 10C r_ UL u <
m U 44 U J--0 E :J) Q) r- Z a
W'0) 0 U) 4J L- .4-) C, a, C

024C U) 0 U r- a0)- 4 C -

E., L-) 4 C EC) C. =)~ -) %;

4- r N (a 4)u C -' -m~- C
w) U-i EC r - -''- (

a) 0r- L) -0 E- - W C C..
0) E 001- EU-'44 -A IUL 0

E

C.1-Y

0 0,4'

Uo -T - Ta, M c %O

0Cw. " C- 1 0 m M en 0 m C.

C* L* U.- i) 0: 4 U.-) C-)

U: : : : c :
r_ - C D(- C () C

to S

to it
to it

u) t I it

w 4J

to 0 U~ 4 I
1- 0 0i r- 4.)

M.t N4 a) -4 It

c) c> to a
uu E0 U ii It

Q.i H) It It w 4

ZC * L> 4J II 1) t
4. 4V 0 4- G: >I I=

ii 0 w 0

4J 0 W
U)U O In Ei 7.1 to

u)JJ to u U EE 10
.4

11.444J (4.4. 4.II C

toto4.i..en c niU .L
LII-.~~~~ -KU I i - L

co coi % 4 0 L1.2 -

PI 0i 1-

ZD n It 0

0 0 ~ ~ H 1-1 0I i)~Z Wi

f-4 r_)

if

II 0

4J 04

r: 0 Ini-

r_ U E U 4J0

yj CD _4 C, MCrL)r r 4V WI -H o
T~I Cl v) ..-)4r 4lL, r r.)%Dk w% 0 o%

.oot.

mV a)) 4) 4) 4- 4Ji
r-44.).1 .4.) LI U) En

.,1O 0.1O mD.4)2 Il

0-)) 4j a) 0) .- 1 W W I

.- 44j 0' 0~IJ. m m

01 E z -. Q)t 15()a

.~0 tD0 0 0 ii

4J . 44J A 4J s..: 1.~0 4J-4< M
Wa W .0 4)) =11 vo a)4

a,4J. 0 .41. 0IL 0000 J . Q 04JJ:04 11

4.41 I. U 34 4.1 4U)J U) r-0 U)W W 0 4 1

(1 2) 1 4-' Ion -0 14 4) I

-4 4J 4 4)V'4.) 4 4w1w'0U00 00 o 1

r.1 0. 044 = 0 (aW(a L4 QEDC1UU P4
W'~ 4J4) W 4 4.) 4J w 10C.Cl2f II
w (.(a)J~ r. r. 44 U C4G42 4

w U 4-) LIC 000 00.I ro V 41 00 00
% 4 4.1J0 U) C C 4.) r Q r- EIF

44 0)0 F-0 E0.1E0z) 4) 0 It
no w) .04)) rz =; =. 4. . EQ r 1)() ;

w 0C C) '4-4 W 0) a)~ (1)42 W EU 'l 0
u4 0) aLL =LL .44 u I
0)Cn.)4. C4 4J 4J 4JU 4) H

.0 U) 4j 4 w1
02) 4) a) w L -4it

42)f U 4 II O- - .4)(
.,I >1 0 W W I4I 1o, to -1 .4A L

0_ 4 -4

A~~~ 0 -- I

(4 2: U) 2)..-. LL t.I
0 WI -442W E- E ,-E-4 0)) I

0. E4 00 U 404 o-1 inI
I4. I,.0 u.I I ItIo C

r-Q in Z0 in0 it
4-U L 4) 0 COU0C00

'-4J0. It

IN 04C E-.EP E-4 E-4 wII
(NI 0 D D Q H 7 0 I
mt MU-4 0 -0 0.O I-4H C. L-4
0) 4.1 I
r-4 OC U)I

OD 4- (0UQ

U) H

p- 0 E Ha *04P4 4

= m () u) 0 0 CLU
('ca H4 0-0~-J Cu_ n

m : M - 4) r

U) uL

E- C

L)

0

r4 C.4 CL.nC r-IN m CD -4
It) EUI r4 CNIq qN (NN

mo t.)m rm 14 (n (m m m
0 Mi. m0 Q"0 00CL

01 -4 4 1-H-4 q-i-4 IN (NA1 IN r
C) CD 0 000 00CD0 0D 0D C
0. 000 000 0lC Dc D0 0)

* L.

2) 4444l

4.0~ 0iIII
..4 U) -4

E2) U. d) wI r.w w4

(1 U) a)r i
(1) -- 4.1 U 14 f 4Jc

-4.4 '0 44 3: -2) '1" 4j ,
4j jz; = w U)4 W810 w 44 04
(0) 44 4 0 CO in

0 o
C1 44 (1 9c)U w 2 >,E - f 0) En)0

'0 0I 44 U) 442)- .C0- 4)-'~
-4 (a 44 co C.42 44J 0

a na-~IMo ac. C) 4-JE,) a)4H
0 44 CU) rl 04. 4flJ 40 CO 4 ...

U) 44 E-1. c-V'- CO Z3 U44 .. 4 W. W4
it 4 -. C. 4 .. W) 44 C)'G 01 0o 3:4.4 44Q) Q

4.) 41 04 44JI- wU. L c .- 4J U).4U.- U) 4- 444J0 0
44 4 4.)U) O C al. r0 4) 4-4 L44 44 44 '4-J En '4- a) 0U HU)41 0- 2 0 0

04 U4 ' 0 - -H 4-' A a 0) u (D)) '03 4 4
O~~ 444f-- 4-J 4J 4)4.) U)C -4 *U)-O.

44 44 o C42)-U). E:4 C 4JO * C f U U).- ~ 4U)L)(0I II 0-1 mU .4WQ- v U.4 U 0 wm
U) 44 4.) W)- E~ u 0 4 ,U)4)02)))) o
o 4 ii 0 C.- 0)'.~ -w) u 4. > 040 04 44

I 44 '4 (n 44 CC-H 0 - C)O U >C 4) U)CUU))

44 44~~~~f 0)4 .0 3:I..-.4J. 0 ~ 42 04,JJJ- r-)U U4
41 r. V4-J 0 U) w4, C U 41)al)0 =)

-4 U4 U)E0 4*- r- C Ef) (aO VV r 4444U 44 0 4.J). '03 U).4J w) a0044 _4
> 44 W.4 Q)r-4) 0 a) 44.4 Q)U U20) >0 ,0 I

04 444 1-n EO w 4V20 w
a) 44Q U)4_4 W>COU

a44 4) 4 0 4. C C 0 r_ 4J2)),-4C
444J W)0 -A 400 4CU) J 0 04P

>4 4) 44 Q'))4 ' ~ U En0 C .
44 j 42) q -U0C) W .'4C- 45)U)U J 4

04 44 CO4W C 4 l .
r_ 44 4 0 - 0))') 44i 14

44 4 4 0 0 H 4 ' . 4 - 0 U) ~ -u r4.IW44 D

44~~~ II W 4 - w. 0 UO .4 - 4 2) I4C ~ f C J N '
40 >4 WC4 C E a 3 CO (a n a) -4-444

"4 10 -4J -4,4)4)4)0400 w) 0 0 . 4
04 _4 r-)C C w C4f W4 E-4 41 E. C)C14 0) U) -4 u)) c~ <0 =1 El W04 4: W4-J 0- - 02a).' 4J QM U) Q z 4 -- a.4 C4 0 OIO

;L 11 l0 'A(. 4JC2 0- 04. 14 ") C) a0 u (a C -44 , 4 C-4 a C4 -44-- C W
0 - C4 -'4)40 m. CJ M 40C 04U

14~~r r- 000 4202)OD44
4444 E-*,e0 4 (4 0 - 4 42)

r. 4 ~ V -C U N2 0 4 U) 44()V u(
4J M4 44Jl Y nU

4 I 8) (V'0 .4 0 -.-.E- 0 -00U U 4 , U 0 4 to l U)
I-4 .4 C 2 W CW) U) 4 4) U40 J 4 w 0 J (

-~ C) > m 0 w e 40 U) zH1
E- 'U '04. 0C>f(a 0 - -1.C >

4 0 pi wO V4.-4-4H

w V 0O)44 0) 0)E 0 U) a) 44.) m

W................... ...
U)

04 U
0 m.

U)
r-,c-040 .4 '0'r C' ' 0-C- mU)T LfC Wr- cu a C~l-i CN mU U), Hn El. -

U

C0C)

C11 CN (11 C.) r 4 r
C-'Ci4 C.) C C)r D)C

o ~~~c-, N U'C'

O~~U '4C44r'
A.i4)C) (N m r4**

r*-W . Tri II74IM.Ir u

0I 0
0I 43 1 .
-4 >,wfn3 C r

11 4. o r)0.4iI
11 0 W m 1 (1 -1 4-

It 410 WC44J 0 J :

11 $4C C 0 0 I

I 0 01 r-003 0 1 :
r- .- I4 >, U] a) En (1 II

a) I) JW U .1~ 44 -1= -4z
=I .IJ 4- r EN 4J -4 44 i 4J tW

a; E,4 0r c .1 .0n-4 za)0 0~ 0 I

eI CJ-4 c 0 0 1a4w . -- 3:~ 3 U
wI 4- rU~ 0 0-4J0 J--00 4J4

11 04'0 (1 U n1 4-H 0.$ 4 0 ' U4W 0
E " 4.0C *- 0 ~ t) W0 4. $401)4

11 04.WU4 * -4) w 0) U 00 00. w I

11 H = f 4U]4 4J 4J 4J j 4- 1 a 0 a) -J0I0 It
I -4 F* 020 EP 1U 4 r 4 r- 0IM aImI

4J C a) 0t .,I.J]U r (a4-4 * -4 .04r4 (a IIt C
.

C0U a)4 -020 020 LWU a 44

11 r 0- '4V 0- u-U0 EU =] Q101 0 0 0 0
0) QL' Q) ,- 024 4Jj 0 U 4] U
w WN- 0 0 4]U]. -4]. 0 (I 0 wE

It 4-] Cj U 0- 0 '0 -4 W0 I-M W0 W
- 0U14- 0 4-4 04 C a 44-U- MC '444

.0 0N4 H) o Ir
>I U 4(0 4j- 0 1010 0 (fU] I

In Ln 4J 44 20 4.4 022-

It J.42 U fl- 0 '-4.- 0 4-4- I
UI f00E-4U]. -. 4J4~ V

II I U)l. m .w4 *.4 c;- r_
to ca-IN O ' a)4 r a

=) (a *U~ 02 (0 0 II~ 0 0

I 40 =~' 4 20 r- P 1-4 -4

11 Z.4 U0U 4J .u w-. r1 C I
0I 0J < Z-. KC < I
4J Z I4002 ,00 3-r 0 0. Q) (D

It w m =) X C4 . -4 U -.4 W

4.1 0-4~ > 2 0 U] a]I
0I =4- X'.~ 0 0 U)02I

(0 r4)*- 2 CI M2 02 C! C 9 C

-4 1.4 >0 U11 m C
a) 0) J *UCJ- 02)-

<I C~ 0 1.,.- (] (a OI4.

=) 4IC rO P. CT' J C% 0) W 0w~C '4 0

to 4J '-4, 4 0 a tC) 0 I

W W C lM4 0 CL = 0 04 0 C
S C;. 0C 00 4. fn 4JII=4 j"

.,j 4'j 04 4j W N 0' 02 -4-4 C] C-4
0 O UW)- 4 :3 U) 020 U) 0

U] .44,-4 U] 0. U] 0~

Cnmm(1 m-3 V- -C0C 40 1-T1 2, v] v ri nL r nL f nU Ak Dk ok D% 0% D
4 1.4 - - - q4 -4 -4 - 41 1 4-4 -414,4I,.r1r1 4 - -4 4 4rI -IN -

0- n. r- * 0

CN md C) C,

L 0'% I A

.44J

4 4;

C) 00

It 0 0> $
4- U) w

4j 00 0
0) 0 (a 0

f00> LWa 0 J- 1 J
l4IU. 0 u 0 r

0(0

= (a 0 r- 2 0
it to) 001W 4-.
It a tw) -4 4- '

0t 4 0 0 40 .() -r) r

a) 0o a 0c 0 F(2 *
% -- PW4 0) C .0 C)

-~m =5 40-a4j- 4J '-' 0 J
It r. q 0 'Uz -4 .0

11~ 4. .-4J CT) m-4 W C*0

If a %B o.) 0 a, -0 lU0) a
11 10 JU U. EW C M>JUUCJ r L-a

if ~0.0 E, (UW4WEu0CW 4 C2
0 (a-4 4LJa 4.1 -,1 0.
4.) 01: Ul U.4) ol4J WU

II -4 .CO 44
10, ~ ~ ~ ~ ~ .r=14 4* *.440J zw U =0

4-) 0-' 0 u D
LWW -C -a) W Wal) -r, Q

u) .1.4. In~0 4J toZ~- CZwW V)
0 0 (. 0 04 41 4- 4J _4 W 4J . Q)

4J fW .- -$4 (200 vT Ui)O
(aar-a 04 0 Uc 4) , -4 0 0ma

V) 4) 4J (0)0 0 00 C C 0~ V)((

cj (o.~U
1 ~ 00 1- .4-

iI L 0 0 1 0 o

UI 0~-U HH 0a)~a4 J

It 0 ly.-L 0) 0j 0 <.LI 1 4.)

= 4J U) ')0 4-) UC~-a 0 co
4J 4) COw r- 4) 4 U

0I 4 X-; - z Q V

In 4.1 W.4 W 0 r- a) ~~0 r_ 4
0-4E W 00' t 0 (2

(04 0)--W 01 u u E U 0 .m H

a C 0 .0 J 1-2lU f -
I; IM - W U*.:

it . r. 00 40

ff WU~ 0n 4) Il =0'
It r4 '04v a) u) 0N 4

= 1, wO 0 4 U 4.m1 0
UI 04r .C-u-4UZ -4

a UU4.) t CD ~ 0

I.W 10 O-40-,4W U U -4 - O

I ZI'U H1 (v 40 (n 0 c ca
0 m Ll4-) J .

u 1 Z 0 ca 4-

0o 041 to :r-

UOa c04 C L)~ a-4 ca4w

W'0a-.0- En44

) a) 4140 -i- 0 0

((20-V4- P

40U~L -

.CV C_2- 0a

04 WE-

C' >W'HU4-' <

5%%

4J 4'

o ' 0

.4.4u 0044
'U,4

0 CI 4J4J4
.4--,~ ~ 0 4'-'1 4

EU 0) 0 a) 4

w- a) 0 4) 4444C
'U (0 0- a 0I4

44:: 0 04 It I

I' u) -,4 .44 II4
o r 0): 4-J 4J i

44 0 00 .'UC 44r_
r-. 0 D 444. 44 4.J44O 40) 44 11
0 4.' u n 0) 0) 11

'0 C -4 C 04 U440

4J V) -440 U)UU -I

I; En -404. m In -i ' 44 Z)44.

m v ll 4JV cu 0(04 ,

co 10-4'-4 toD C) 44 F-4

00U 0 0 *O0) 41 11

14 ~ ~ 0' U 0 4J 4J 44J0> . It

(1) Cr- WUW L)W- w rA ..- I).-..E 4 "4 4

L 0 0 00 0 04Cl~- r- r- 44
to Q 4 -4 44 tW 44 'U0 0' 0 0 ' 4

In 0) OW) ' V) w 0) a)40r-) U) 4

4) (a to- to al m) u r-4~0 C 4 (1 . it

z4 0) 0 0 0 44a
0 04 0)0 J4- 4) 0) 0)- 44ro I 0 I

0. .4444.-J- .4.4 a>E a a
cu)-0 i) 4 C) 4
olC 444i4 4'- i4
0 0 0 00C4444 4 (2 4

'Uw 44E4-'- - ~ 0 I C) 4

W 4)444 4 4 4

4 000 0'~ V '44

u4 .- 44

0) 44 I

z) 0 0) x4 x 4C4
0- 44 r , c - 44: II
u. 0) 0) C.) CC D 4 : .1-

'002 44 44

0 0 ~ 4.)

4-' 4 44D WC4 2 T ,4 Z 0

0 4 4EL E ww C C .C 44
44 1-1 IM0 0) 0J) 44 9 X W~O co 44

0o 0 E4 44 4

04 444 .. a) X
44 04 V"4

0 0.C2C)W.C). 0 C:O OC 0 Y44>

-4 U) UU U. 0 A)f

M .G .1 0) 0) C)CC.C)C C)C 4r4 1 0 04 4 C44 C4

1) 1- 4 - 0 044 ' NC r4 r4) ' (.4 CN 44; CNC A4-C' NN C

0 _ 0) 0) C.

0 0~-4 -1C C , De
C:) c CD C) *: -C>0)

C- U) Vf)L nL L)L)L r

4CD
C)C >C C)c)

0 C0C)> C C DC

.04) 4j S)
E U) w U)~ .,4 0) *-4 I

w w 0) w

II~~ 4S) -- S

Iu 0 4) 4 -4 4.
4

- I
-'.40o

II * -s.C0 U).r I
II~~ 0 .4C)0

II Is.4U) Q) -4

Ii 4.- (0. S T4-1 1

cu .11)0 r. 0 4J
II --4 .C_ Si 4) 4

(a u0 4J 4J I-

w 1 4.)) .).0) :j 4 11

01 4-5 4fl w 0-
X: 0 4 0 -1 =3 a) 0 iI

4j 4.4), W 1-' 4 4-1 w II
I E4 (a r_ C 0) U)

a) -. 4 r r 4 -4 U) *.4 NW a)
0, 41J OI (a ED) 4J4 W-

11 M0 .,I * C a) a-V II
r_ u r.L) ONC r_ .c W0V
(a E) (-a m-. W 4 C (a
ri U C 0J 0) w c0) I

11 0 00)0 4 4.) 0 rC =
II 444 =. 4J- 4-4 c I U

I) *- r .44
r- 0)-4JO0 .1 Q) C I

11 .- E-40 U) .-1 w"I
1 S4J H r M 4 .0 =5

=3 4J.1.-4W a) to-4 fa 4.) I
0 0 04 w 0) I

>I 00) <I
w) > 0) D)C

II 0) -4..r-i 4-. I-~ CN
11 U) - 4.1 Sv 4J

fu I) 0 04 C.iI
4Ju 5JL-" a)

II 0. E.4 ra1-
:3 ~U) uC 0L)

4J 44 4) c- U

It CC 0) -4 r 0 I

PI CiU)X0 0 40 Z
4J S 0)u -5 . 0 11

$4 s-s U S N Q M M I
inU) E4) - IN 0 0101 I

(D <.i.40 c') .0 .- I W~i w
C. ~) 14 C0 4i p

E, 0 _Q-4 '-4 0 II
II .)C U) OD a)

0I OE-UL) UJ it

E, E-0 Q) I W 0 * I
II ~4.4U)C r. ~ 0 s Wl 1-4 Si I

WI 4.) 0 I
r CCEC- U) 0) I

u 0 0C U c 0) .a)
O - -1 u0 04 L.3 4i a) W~
.-) 4-1 4 0 m Ifu I) u
U) u0 Cr 0 4.cn~ m -4 0 n
E' 1) czU) 0 - I E, E- 01 0) .I

m- 0C=1-1- 0 CsW C u
C' 0 n)C UrCO V

m0 041 rC~ 0
0 (a0

U)

CI (N IN CA1.4 CN C CN'JIC-4 INCN " C-4 N P- "iN IN N c, NI 4 N IN r I NNNcN4 IN

U.)

W ~m 0n M
mnCA C. ~ 0) w

IN'. - U I
%D %0

4.C 0D 0 CD-
C)c 0) CD

%. :-.~ %-

4.1

.4.I

J.m

4.W

El

cc(N0TC 4 NC r

r- N-i"C - 14

4 O' C14 (NI ON 4

-T CC M NM r n n-T D C C-- (N (C k DI . NC NM V .- 4 M 1414 L)
-4 C (N CN1- H 4-i- "N C4N C4r

C- 4C.. C I(Nr) DMC (' U, QCC Un O L . '4' r- .r-CD" 'C 4CD~ M)C r
14 m. (N 4 re) r 0 .aU)C) 4 ,-- %: i,-4 C ,..4 .- -4J C-(N.HrJC, n"C % C DC

L" . r-;- C) (CDC. CD CD CD CD CD C) CD 0 , C C (N C 0 cm LI tfC;l ,C - C 4C) 4 DC

t ~ a. <1~. r.) uC u C)u L)Uu 0 n0nC 4 E

014'-
C.0?C h C 0 C C ~ C C C(C C C (,) C J~ C ~ O

17: .7.-- .-.

Appendix E: Buffers Module Listings

The following page is the compiler listing of the Buffers Module.

Appendix E 367

L P ~-

C%4

rO 4-4

4-J

C~C)

0 C)

('4I

'-4 r-I (1)- - r4rI - -ir4C4 C

V,.

Appendix F: Collect Data Module Listings

The following pages are a listing of the CollectData Module. This is
not a compiled or assembled listing; it is source code.

Page Number Contents

370 Introduction

371 Constant Definitions

372 Type Definitions

373 External Routine Definitions

374 STRINGCOPY Routine

374-375 ASCII Procedure

375 GETDATE Procedure

376 FIND_TIMECNST Procedure

377-378 FIND_CTCCOMMANDS Procedure

379 SIZEDATABUFFER Procedure

380 ERRORINPREPARE Procedure

381 PREPARECOLLECTOR Procedure

382 ERRORINCREATE Procedure

383 VALIDSTRING Procedure

384-385 CREATEDATAFILE Procedure

386 LOADDATAFILE Procedure

387 CLOSEDATAFILE Procedure

388 ERRORINSAMPLER Procedure

389 SAMPLEDATA Procedure

Appendix F 369

-"i ",-"" ".'-" "..." .- ".'..''-.',...-.-.-.-..-........,... ---.

RD-AI?2 823 DESIGN AND PARTIAL IMPLEMENTATION OF A COMPUTER
CONTROLLED DATA COLLECTION SYSTEN(U) AIR FORCE INST OF
TECH URIGHT-PATTERSON RFl OH SCHOOL OF ENS!.. L E LUTZ

UNCLASSIFIED FED 86 AFITIGE/ENG/86Nl-1 F/O 9/2 NL

monsooEns EE

I

111 Il 5 11112

n m m m m m n n n m m mu m m m in i n m l nnn m l ml = Z . m.u , , . - ..

El

C) 4

4-4

< >

I t&.4
S ,-4 •4

0

CC c

0

F, E ., C' E I ,- , I4 < . f-.e' L- El

I "" - I -r-, Io

< " . .C V

to

00

,,",

C;1. ''

00

m 4!

4. IJIQ .- .- 0 C),
In r_.4- 1 0 .
C- 0 L''(1 r) L

-' 41- 4 .44 .

V. 4IU C"
r- .I.Ci 131'0 0

-' 4Jt C1 Vl~ 4 -3 C.8 c
4J r5 4J . 0 cc1.r

(z c C2',.
v C).I w r C 'U V4

e-44 1--i C) 4.' .- 44- 4-. LI.
c,4 op 0 00 44 Cr

-0CC c Er H -4 C: Vz 'J r.,
- S 4. V4 0) W) cr Q)0.:

164 v -4 ,-1 l -I1
-I ,4'4 cc 4-1 - 434

0 L)C r.. L u1
5 EC. Ci a,' I C 4JIJ3- 4)

w wtnC =. - C. 4-4 w 4-r
0o w 0 In : 4 t C*- 0C! 1, V

w 1 C. -H U4 . 0' 'CM . i =- c ' F-i *. C' 0.4 C

w 4J- E lo A 4.0 w 0 '4 tc' C! C;
r..4 Er~ 0. 0.. *-0 0-(.- L .1 .4) ') .4VC' r- .04-

-4. 4)4 04 AIJ 003 C4..C, Ois V %I ')lL0.ll

04El 0 to0 0 rC) C r, z; C." -3 C,
C.,C. C)i in 4 .0..' 4 . QC -C : -14. C4J(

-u 0 Ic t w---44l 0 04J r-; ..7~rs.) ' 1; '0m
V 4 4) 00. 4- a-1 r: 0) 6~4 C: -1 0 LI -

la (;C,).J) 41t" C -0 .-.- CJ .. I.. "'
-, ~ cr 0 CI .4 a 4)1 m l. .4c -3I.4-

r- r ri. . m E; 14) (a~ 0t.. w 44Q
-I--141 .4 0 0 t 0 L) r I r, = r -1 0

4J. C'.-. r. 0C m4. u 1C)-4C M AJC L , .
4JZ') "-44 0 0J0-4'70 'c"

M-1r (' 14 w .1.1 J r .'o -. 3C.1W $ C
14 *,.40r_ r_ a Ln CV -,-1- ; 0.0 w

W O 4 V-4r) . 0.0 c;0 L'' r UrWL40

- r 4- C) -41 r_ r II W. - 4 ; L 34 ; . W r' ' - 4..

V 0 414 C V J ',El 4-1.- C C.r4 9-

0 0tI0- c I.) 00 0- 14-1 ru f C -
* - CF~~.1 0i 4--1 -,4 CI' 4,II. ., .4

- 0000 cr 00 r., C,-'~ 3 o '
- 't 0. '1 I 13r .- 4.-4 C' 0I 40' -H .0 r"0 r-31 L3.I .,

C 4r. 114 w3; V3 ri i ".C

r'. C.) C' 0' W 4J i Ei (V. C, Q.' r: I: V, is i"is C) .- 1 .0 C'0

00 0- U4-' 0 d WL - .C % nL
C.0 U - 4 CO 4 . W41-30J 4,o CC1 C. rC V.

r. cc r_ C ; C- 1 o1. l'.i' C C. 'I L:
.- Q 40 C.: ; .r o: I'C. C:v4 , - i C-4 Q

E- P E1' . E. I~ C'~ E, E, e C' r. .

C- c-c- -C-c-

Q C CCd.-~I C. C! CC
dIf (' ' (d- cr C.c e

-, 11 if IT 11

-' e- (Z r C'. rr

C 8- c .

C'.-C2 -. u. I- ~. C". c .. : V I C 1
41~~~f Cs. I- Cj r' .'. r) r CE I : r

D)C. r-l) cr ... C8'C r:: _1 t C.C < -8 ; 38'. r s.I c s r

C,)

In In D t 1cr .C

#.%

41NPLO I -
t .4-. -4'

- 0.

- 4J
- C..

4J1 -

- V

- - 1-

- Ci

W 4J

-) ci

- raE-' =

-I I . 1
- I . 'W -

C4-

C.,

I M
E*I14 CU CU.

> C"U

i4 r = =
CO0.< n

cr

0

C C l
C.D

0
cr

E)

- - E- - C) FC 4

>i :7- C' '.' rj
0 r . C)

k A ;7 It C

r4 D3 C-CC C

= n w ci -u
E. 0 in U C. c CC L

E- < CC f0 > u I
>4 im r- 0, 0 E- C, >1

E- : M Ii >, C. C, C.
E- cc r- r!. Ci r to *

-2 E-, 0 EZ C C' E C
c 4 E-:>' . . C C-'' jjI;M'Er

w 02 1-4 . - C E E C .) !
C 4: E 1-i " " C

L) ~ ~ . -l = z n z c . .>

0 m~CH E- H- E' m
C' r-" .-. C-' C E CC F. E

E, C' C'. E-C~ .

ILE,0 C C C)

Ct) tC r. U c.,C -
En 0 D1 I- I ~ L

C C C ' r. i c i - I - 'I .~

CiC-. W 0: CL7 C7) Vc 14 il

s-% r: C' r C4 c" mC c

I~c~c c: i (Th C-i Li C.)rr
Ur Cl. L) ct

alC, C" a*) C) C
C, P. rc a, 04 c r or c

-/ c M.. I- t'n t,. u -C
C.) n 0 L 0 c C' cI - a

C E, E-C. C C-' E-' t7.
CcE .U C ->C.

<. ~ CJ ' 0 0 0 ~ . i C ~ c*~~~ En ~ . HC.
E;C CC

di

'.w

- 0

- I

- E-4

- I

_- H J .-i 1

- 0 CC I

E- 4 P)F
z 0 C) 4

H .0 -C

- L -) .. rH:

-, C.

- - ., ' :

- 0 c:L' e.-i -' + ¢ --- 1II 4bNN

-4 H

-C H L L EI

- ..- VC,-. 0. -
- .C. .Jj-. 0 -) -,--C'- - -

-4. j C C IC : E-, U E, E 4 E- P
-, .4 0 .. .i V-' C C" r- .U Hn 1-404j 0- I- -

H, w to~ CO 0 HH -

- U) 8l-.. U'c, I [r l C) HII -;",C C C' U (, CI -4 .,- X r' I U) > b ' ' lrr : . .{

-. 1 41 r-. E.

4[' W,, rF

• "..CO "7,

C) 'r .' i ci mmaw HHH

C" E- E, E, E- E4 E, P P
- 0 c(P.-. c-l+ +I I I II II I I) CI-X: E.0 E , EE- E-4 E- E-E- P-

- - *C -IJf* CH. X C4 ,> x x. x X V.C).).C) .
- et 0 In =0 E, - P-E-1E-PEPE-'E- E-

CC 4.-J 0 1:

C r_- 1.

I"
::li" =- ~~C E- OI- 8-1 P -- e~d ~

"'~~~~~~~~~~ " J ""- "" ""-"!"' '" " r: : 0 c ""...1" " " :"~ dW i' | '= '

0 *.c CC:I jrL. H7I tE C V. M E LI Etn

4... r n Er Q C.) rrC

C.~~ H 0C~L c. C~E
CC. E-ELr

C C.

I.

C: .

E- C)"

-. c

. "~ .-. . *-. I "r

, I, II II II II II

C.'

:. " . .. ,- ..- . -. * *." -. '..- .,,,

4-' 0
U .l.J o,.

* *.- C *-4.44

C-" to E,-

U 4J L :

CI Ct r ,"--

c C: c- ."

C CJ

0-. (. 0 ,, ,%

U ':' .. 0 , " -

0

C: C'

S4-,.1 L r. !7. M0 - (0 U) t,: j) C :i' q

=
-

i c -4 G) C 0-- .-
S . - 1 r S , !... ; 0 C. C 0 .4 . -4-,1 c C 0 C . CJ 4, C x

'(1 4JE ¢ , C. cL, I. u OC'' 7.G, 3: " .4i Ell t

f: c ~'it!C : 7 EiE

r -c a, a .C c Cr C_ Q 0 I (N

r-l E- - ..,J r . e-i, o .,it: c u E r ll0 - E

C-' 4J .,Ij'; U4 FJQJQV4

. c - C " $ Ct, C C _ .- I ' -C t - f.- 4-. r) (N -,

-4C 4 C~ -'C (.1 C C4 ,4C. r. _ri-M *

T 4. A.- :t 0CC' W

* ' , O fi r -I C i-i (C2' (2 -i. -' *'- C_ i(E ,
CM : .; t4 ' 4 ; 0 ilo'C C " L C ' C. C- 1-o

$4t - C C I { r) 0 r-- C: C. . 71 4.) a " I:- , - .,

C V4 C;G.. ;: 0 -t4 , -L' 4- fl- ' El) c 0"
E o c:.,C_', -4 o4 c , (C.-. C - C

U F_ C' . C' C-' -H ,,4J., U-- Er -

C r . C% C t r -L-a U -i,

'-I -; ' t -4Li .- ;CC;.rL..U .4 i-i- q : ,t ; [P L C, -

-4 . - w :- o) _ .C c: 0 ,' . , C. . C-' C-,
43 ' il i " t7 :r J 4J c-IC 4-i'.C -

I : (' C I0 , -'- .4;a I-i t.'(.: '7 ,' 1-1(v. V C-

%U 4,4- C;-' .-4 -- 0 -- C * fi ' I. IV .,) C - , , ,t 0.4-iL J i" " L U. U E-E~ - - ' (D 4 Q Er C:

E. --,i"a - 't i L, tc- *C

C) o4' ~c) < U CI E'C-4) -

C V C,) C- .C Lr i C .~ h
C' u- , D0_ r 0iJ 4 C i ; L) '- .4 C_ *-.1E, m rI J c,-.-H.i c*- ij c, r-'' r

4 cC . .4 .j 0 r2,'.4 C:3 4 L: Cv -.,

. - " -C. "- 4"."i, . V .. .) 0 . . LI C. V'-' C 0
Et-! 4 :' 0 :j 'I C ; -- ru ' cC 0-f I.c4L

, C1- 0 r.4-,ri-c - C ,
C' C-'C .. " (

-. C 4 .. 1 : V C M i U$40 ;

V'' C) .- 1 X.'4 Er. 0' w .. ,-i U La;
V. -.- 4- * J JI; .4.)n C ' C'EE

0- C LC, u -c 1c

r. W.C 4j~ r) C;- C (D Di I. I ' I~- C r Q-4C -ii 4 i r: r-i-

U C iII C ' -- 4J c E--O.4-':.
L)c r!c v r:. 4''CC r L, r ,: r I Irc CE

C , r-4 - r:C

Ci

C;C

4 4 C)

0 4)-4 r: CC: 0

c ..- C) 1

; C:C)w rrC

to 0 C
) 41L,1

(..1 L44J W-

U-U

vr 4-1 '

AC41 tZ~

- 4J

low) K~~2.)

04 ~ C- ~ .1i
10 2~)C r

.2 C))

i-i ::E~.-~ ii
CI; I-I
e-.. (C. C.

allN

7-4

tL) C'v C

4 Li

L: ~ ~ ~ ' C zm iC--

dc 0 0.

e7- 1, 1'1C
< < C) CCC
to- -I p-n L

a . ~ ~ ~ ~ ~ r. ;C. - 1 r cE
C. :3 cj , C. C,

ErU E ,
InC

En-. ". E. ,
f > - . ,114 o r- C

cn-1 r-4o C
o wn c ccr'u C- -- 4j

0'- -C, I UC' X I -- 71
(7 Ce 7-H) -1

4~1) £ZCU Vt, - V

CC' C47.* <~ 4
41 < " C --4

0-. ~ j C(C-'. C,tL rc c
V.-~f4 4U 7) r

C. C r7 'S> --
r- ,H t :, CC % I

V C'$- r, ~ i :c c
r1 CC-c *r -o C

L. C . C) 't C) V4 4 C 0 r Ur
<C 73 t:-. U,-4
E FU U C C.C IC-

4 -H aj oC C' r,

C ' L$4c;L 1
7

-.-- 0) Is C
V) CJ7, .~ C? (til r-

-, c)c~ cC I r40 U IrDfj:
eC C 4) M (U C, -1

CCC 21k

t4n

0
4.~

C

d. P d

0 L

41 0 .40_

0 W2 £2 Q-

Cv cl C:r 0

V , 0 0 0

en] V WV

* Q r-a. 4 V C
-. 0 4 0 04

- . 0-to 0a

- ~ e a, r- :

In 0 a C 0C' i-
c. M Z. *.40C4,Hr-

C 0 0n (-'
0C:0 n2 C.

04 0' C,-'0 o -C C

a, 2- 0" w .-. C1 s
U-C C c.-42 > C

z'> Cr"- U C osL - ur)r
cE.~ E. c.Cr C

C I C' C.' -I.' r CO L

C-) C 1 -740 0
I C' r :-t .. r C :. 0 W W

C? EU-E C ,E I E- C'-1 C

I4 C

tr ;.- C I I I I
r4.C rC2 l~-

CI, I*Ntz

rnr
El'

C--

Cr r

cw

C0

DI =) C-
4-,

C'L 1

D: t

Cal CC-4 fr.

-~~~ CO0L.C
Ca) I . - C

t. C- Ilivo
Cl) a-.- .

(-al to4 M

< E,< Cd
CCa.

C~ C

CLLO

C- Ci

t1 -

0)

-4J

C: C4
-C. C. L 4

- -C
0 it

0 c;

- I- C I

4J t':o Us-Ci c
-i Z: :::0 -

0 uC u : 7

- CIS r [

E4 CCI :L;

r-IC C..

cc: -IN-

0

44

4C,

-0

N,

U4 :1

0 0 4-j

4J -4 < -i4

.,I > Q -4M

04 00 f . r U

V,4- r . 4 444 l
to..- = 4Ht H lr

., & -4 M Q)-C
w -jc,.0 - E-

4-) 40 >4f-I

c)-4 zC)j

(Z) CHrE

444 H-

0 414 CE-0

C44

->I- r4-4 <~
C 0. 1 r- 0m ~
4JE -4 V 9:1 d .C' C
r- 44 C.-4 H4 C

H CC4- W U -H 17.

M r 1CC4J V F
E-4 0 C4 4' z I

£~E O e) 1441
* U C.)U -iO~ J

r. r: (f C C PC
ri 0 - 4 & ~ ~ i r:- c.,

E-WC. m) [C) Ea0' M: -- V, V -I iic rr
0~4 cz el) C, :> 4l l .C," r
w Vr 1 Cc: Cj r 0 E E C Vi
m' CO2> .C rl] wl DI

C ~ XrC 14 r)) C
C/) C4r.1 C, .l) C4 H0 4 Fl-'F

I C,, C' C9. 0)~W ' r:F
Im ul 44t'.l rn E- 0 - ' ,

riC C r.

4

to

U)

.H

0

C

."q -

0 4

10 4)

w 10

0 0

toC) 0-. 4

Eri Z i 14

C~~ 0
C) E- -.4

D- C -4 m.C ..
C. c - C- $4

M. 0-

C'CC.

.I> C, . HH7 C". 4J
14 UU & C r- I I~E IL 0'I C t C

H~rJEIC C. I

- ~ k- "- ~
c .I <rI

c.. ' (C <C1 W
A~~l Iv. rc ... C1c': C

(.2 -rj E- I. C< 7 0

2U C:r .. C C, E 0; i C C..
C~~~~ cl' UU 4' (A . ie' c v *

5%~11 al 2. .0

CL. C 1 It 0 r

%(C- 0 0in

I~ ~~~ 0.2 EA,~1 .Z)

C E~' F4' C4rl
I r.-i-2.- to..s r. C4 w) cr t

C-t U sC.C Er Cr, C.)C. :Z C C f:'. .

E, c:

UJ

R Fe
6&a 9 - .. f%

44

41

S4

0

0
Cc-; 4

0. 0 410 d -)0) t
'U- - - -, c, C a r

1.W4 r* l -I 4 o

~ I)
rO d- N 4-4 -1

0 <0

41 <r- r < ICl
J) w i.:- ta.- -L)I o) W

0)- s C4 C' F ~ > C/) I
0E- *v-4t' W r r, _- -- c ~ S

C-FI W 4- ~ '- C

'UI <

IEzr i C.- r- r ,: r - rlCf C CS
W 44 4 <4 -7, - 4-7- --- 44 .1 40 D.

0 -4E-4 E-I - I E' E, EC4- E-,- E-I-- 1-4 44-4 in~

-r- -r -0 C', C' C: -C

E- P F, E; 1' Er - C. I 4 El E- 4t - AE -

"*-s~ "~i n 1- -S F' .. ' :. ~ -:t4H -.~~~~r .4 , *5,4 '

I

E[,

r*.

-r.. -

'- 4 >1 0CL

-- U

El. 14C2 i4

- >4 Zr.:" E, ,

rM~ Z 0 rL r. rV : ., .

- 4J.. 0 r"'l , t- . ,t9 w C: 7 E ,.-, e , i.
V, W .c r

1
- r' r'

%
C ,4 ..

- j Ik r- C -r41r 7 C7 :I

ED. M
I

< C, 0 : 0 J E
<

":

mq C4' IE
,

C, 11-1 $4, e

-r-

Er E r-: C C r < C I

U. r r- " -, () I c 0 0 . r- I, 7 i 1

-- ,t~ Ell c '- V . , - -- - -r..- 11 .:. Er tr 1 -- 1,

- .. j -C-" Cr -r'. C.- I.:

E-, E-. C Er C.a -C

-- 0a r, w
'. . .- - "- " .

-' r4 w w mC- . O , -

"L C CA1 P~ *JE O E- ,'C 1

CC

- c1C)c-,

IW .~ . . .C
II~~~k I 0-2 sc ~c -

- d-

,4.

C

Cr)

r.,. 12 .JC12

0

4-LU

E-4

4IJ

E t. - C , .

r.. -1 4J ,-trF

-- Im EL -, ' ; o ; 14

-- 4 P, ,1

--)

0.C) E;C

w- 0 . t :

u " P" L, \" 0 r 01 "

C~3CJZ

ra~~~.. .w 1 ,C) .C

a)- C . C

C, M JC) U C') -

0 r) 0 1 C)-, -C
F-4 C- C., - r; C

:7.1 E- -,E- E

-4.,

P, 94: r* "c

d t)I j. :.
0~C. ~ C .~c~

%) C 2 ; C -

cri

4J

c

d'

- a,

4 0

4.J

00

, C 41

0 ~ ~ 4 0-; 05' L~~

'4 C i

'-0

0

Im 0) E
- -.- - -1Q

-- 0 ; -, 0 0

W-I4 W.r

- E~-. . li

- 00,

-i C) -r Er

.C.
- -- ' C E- -

r- c n 1 I
-E E-' C ... c

ia I m a

Ca l M.C V 7 1
(fl 0rU. m. -Q

-. C 0~ CW

ol C).O~ W.- l

LI ~Z0 It

:

C-4

C:l

CE,

E,

cr

U E:

E, Ei,

Qo 0 E

.I~~m C.C-E r,
1W.~C V4 0 I jC - E

- n A qC r.'.

IC4 DI0C4
f4~cr () n - _ T
E, E E, a E11 ECl:

v. I4 aPr: E , o.

>- 4 ,- . <u r

r. E-4

-~~ (O C-i ,
- I - C, Ur rc

C. DI r 0lC) I I
- t E0 I-1:c,((1 (. r -r; Cc

-- <HC>'rC, - C C - r

-r Er,. m. cr E-'c WIW C, - D
-~~~ EnC cr :c n; "i rr .c

E C.~c a:- C. I (4 r: r
C-iul r ICW -C) .C-' fF' WC E

-~- 0DZ CCE13~C - F

c-COr- I -r c
-r <>;:j z 0

- Ic.c*~. c cC ~ o a
- CO 1.41 :~i n uc,~ r (2t -C ci.

-7 "-0 '.C c r -
-~ ~~~~ %'HDUC CC - - , (I - 'a C C

Appendix G: AIO.PLZ.S Module Listings

Introduction to AIO.PLZ.S Module

To determine how to use the AIO Analog Input Output board of the
MCB Z-80 development system, the PLZ language routines of the AIO.PLZ.S
Module were written. These routines permitted the initial operation and checkout
of the board and served as software "breadboards" for the assembly language
routines of Sampler Module actually employed in the final software.

The five PLZ language routines of AIO.PLZ.S Module and their
functions are:

AIO_INIT: Initializes the AIO board;

INCHANSEL: Selects one of the sixteen analog-to-digital input
channels and initiates the conversion;

INDIGITALP: Reads in data from the selected input channel;
I
N_DIGITALT: Selects an input channel, initiates analog-to-digital

conversion, and reads data in from the channel; and

OUTANALOG: Outputs data on a selected digital-to-analog channel.

To accomplish these functions, these five PLZ routines use four exter-
nal assembly language procedures from the Utilities Module. The routines and
their functions are:

IOOUT: Writes a byte to an input/output port,
lOIN: Reads a byte from an input/output port,
ENABLEINT: Enables the CPU interrupts, and
DISABLEINT: Disables the CPU interrupts.

The relationship between the AIO.PLZ.S Module routines, calling routines, and
the Utility Modue routines is shown in Figure 76 below.

Three of the AIO.PLZ.S routines, AIOINIT, INCHANSEL, and IN_
DIGITALP, were initially used in in this thesis effort. They were replaced with as-
sembly language versions of these routines to yield greater speed of execution.

. The AIO.PLZ.S Module routines obtain access to the AIO board through two other

Appendix G 390

i,

': c; ,'*_. * , ; ,f.... -, :,-,-_. . '; .2.,- -.. :. . ':2U - '.. .-. ,'. .x .*.. ... :,'''.-'' .:., : ..' ,. ,..,.;

Imodules, UTILITY and PLZ STREAM.IO. The assembly language routines
directly communicate with the A10 board. The PLZ routines however, were quite
helpful during initial development of the higher level modules of the thesis effort.

Calling PLZ
Routines

OUIT-ANALOG

INDIGITALT

IO!N _ -HANSEL

ENALENTDISABLEINT
Control Data In I hne a

Z-80 CPU A10Bor

Figure 76. Relationship of AIO.PLZ.S Routines to Their Calling Routines, the

Routines of the Utility Module, and to System Elements.

Appendix G 391

', .t 4 .A, ,i.. .r. 'k , ; *, . ,,,J . . , -. ._ . .t ,! - ... -..--. - -, .,

The following pages detail the five PLZ language routines of the AIO.
PLZ.S Module. For each routine the following information will be presented.

1. The name of the.routine.
2. The name of the routine's module.
3. The language of the routine and the number of lines of code.
4. A synopsis of the routine.
5. A diagram showing the relationship of the routine with other

routines, both calling and called.
6. How the routine is invoked including parameter passing schema

and a list of the calling routines.
7. A list and description of the global, module, and routine level

variables and constants.
8. A list of the other routines called including a description of their

function and their parameter passing schema.
9. Descriptions of the output parameters of the routine and any

system configuration changes it makes.
10. A discussion of the test performed on the routine and the results of

those tests.
11. A reference to the program listing of the routine.

Aex3

Appendix G 392 -

TV IF, Itr -'W J'-r-' 'F 2 . I"

1. Routine Name: AIOINIT

2. Part of AIO.PLZ.S Module

3. Written in PLZ; nine lines of executable code.

4. Synoosis of Routine

AIOINIT initializes the AIO Analog Input Output board of the Z-80 develop-
ment system. To prevent inadvertent interrupts during this initialization process,
the first action of AIO_INIT is to call the external routine DISABLEINIT. The AIO
initialization is accom- plished by writing commands to the control ports of the
board. The external routine IOOUT is used for this writing. The AIO board is put
into polled mode and inhibited from issueing interupts.. The input registers of the
AIO board are then cleared by reading them via the external routine lOIN. Lastly,
the system interrupts are enabled by calling the external routine ENABLEINT.

5. Routine Relationships Diagram

l Calling PLZ Routines

AIO -INIT i!

IOOUT lOIN DISABLEINT ENABLEINT

AIO Board Z-80 CPU

Figure 77. Relationship of AIOINIT to Calling PLZ Routine and the

External Routines.

Appendix G 393

,V . 6. Invoc;ation

a. Invocation Statement

AIOINIT is invoked solely by its name. To be invoked however, both
the AIO.PLZ.S and UTILITY modules must be linked in with the calling routine's
module.

b. Parameter Passing Schema

There are no input parameters for AIOINIT.

c. Routines Which Call

AIO_INIT can be called by any PLZ routine using the AIO board. For this
thesis effort, AIOINIT was used during initial work with the AIO board. For the
combined modules of the thesis effort, and assembly language program, AIOINIT,
similar in function to AIO_INIT, was used.

7. Variables and Constants

a. Global

AIOINIT uses no globally defined variables or constants.

b. Module
AIOINIT uses six module constants for AIO board addresses and

commands. The six are:

COMMANDUPPER: value 23h, address of upper AIO command port,
COMMANDLOWER: value 22h, address of lower AIO command port,
DATAUPPER: value 21 h, address of the upper AIO data port,
DATALOWER: value 20h, address of the lower AIO data port,
INPUTMODE: value 47h, AIO command to receive input, and
INTERRUPTDISABLE: value 07h, AIO command to disable interrupts.

AIOINIT uses no module level variables.

Appendix G 394

W .-.

.- ;5 .. ;. % ". ,., .. '. :-,..,..,..,.,.,'..". . .'.".-.. ..-
.5 ~ ~ , fL.~ m - . ,t .J ." = . .. -, "'":

c. Routine

AIOINIT uses the variable NULL (type Byte) as a dummy return
variable for the call to lOIN. There are no routine level constants.

8. Other Routines Called

AIOINIT calls four external assembly language routines, DISABLEINT,
ENABLEINT, IOOUT, and lOIN, to accomplish its purpose. These four routines
are declaired externals. Descriptions of these routines follow.

a. DISABLEINT

AIOINIT uses DISABLEINT to disable the Z-80 interupts during Ale
board initilization. This is a Zilog recommended practice to prevent inadvertant
interupts during the initilization. DISABLEINT has no input or output parameters;
it is invoked solely by name.

b. ENABLEINT

ENABLEINT is the last routine called by AIOINIT. It enables the Z-80
interupts disable by the earlier call to DISABLEINT. ENABLEINT has no input or
output parameters; it is invoked by name only.

c. IOOUT

AIOINIT uses IOOUT to write commands to the AIO board. IOOUT is
invoked via:

IOOUT(I0_PORT, VALUE)

where both 10_PORT and VALUE are of type Byte. IOPORT passes the address
of input/output port to which the eight bit VALUE will be written. For AIOINIT
both 10_PORT and VALUE are passed constants.

d. lOIN

AIOINIT uses lOIN to read the data registers of the AIO board and clear
them of any value, lOIN is invoked by:

* Appendix G 395

.4-

VALUE:= IOIN(IOPORT)

where both VALUE and 10 PORT are of type Byte. 10_PORT is the address of
the input/output port from which data is read. The return parameter VALUE
carries the eight bit value read in from the port.

9. Output of Routine

a. Parameter Passing Schema

AIO_INIT has no output parameters.

b. System Configuration Changes

AIOINIT produces several changes in the configuration of the system.
First, during the program execution, the system interupts are disabled. Second,
the AIO board is put into polled mode and the AIO board is ihnibited from issuing
interrupts. Last, the AIO board input registers are cleared.

10. Routine Testing

a. Description of Test

No tests were conducted solely on AIO INIT. Rather, it was tested in
conjunction with the other routines which could not function at all if AIO_INIT
didn't work.

b. Results of Test

The other routines worked, therefore AIO_INIT works properly.

11. Reference to Listing

The program listing of AIOINIT is on page 404.

Appendix G 396
U

1. Routine Name: INCHANSEL

2. Part of AIO.PLZ.S Module

3. Written in PLZ; two lines of executable code.

4. Synopsis of Routine

This extremely short routine writes to the AIO board Channel Select
register the desired channel number. This forces the AIO board to sample the
specified input channel and perform an analog to digital conversion. INCHAN_
SEL uses the external assembly language routine IOOUT to write the value to the
AIO board.

5. Routine Relationshios Diagram

Calling PLZ Routines

IN_CHANSEL

Selected Analog
AIO Board I Input Channel

Figure 78. Relationship of IN_CHAN_-SEL to Calling P12 Routine
and I U yT.

Appendix G 397

E-Module

a. Invocation Statement

INCHANSEL is invoked by:

INCHANSEL(CHANNEL)

where CHANNEL is of type Byte.

b. Parameter Passing Schema

The input parameter CHANNEL is the number of the analog to digital
channel desired.

c. Routines Which Call

INCHANSEL can be called by any PLZ language routine using the
AIO board. The AIO.PLZ.S and UTILITY modules must be linked in with the call-
ing routine. For this thesis effort, INCHANSEL was used during initial work
with the AIO board. For the final thesis effort routines, an pair of interrupt driven
assembly language routines, TCSAMPLE and TOSAMPLE, perform the chan-
nel selection, initiation of analog to digital conversion function.

7. Variables and Constants

a. Global

INCHANSEL uses no globally defined constants or variables.

b. Module

INCHANSEL uses the module level constant CHANNELSELECT,
value 28 hexidecimal, the address of the channel selection register of the AIO
board. IN_ CHANSEL uses no module level variables.

c. Routine

INCHANSEL uses no routine level constants and variables.

Appendix G 398

6~ 6"i

8. Other Routines Called

INCHANSEL calls the external assembly language routine IOOUT
to write the channel number to the AIO board. IOOUT is invoked by:

IOOUT(IOPORT, VALUE)

where both 10_PORT and VALUE are of type Byte. 10_PORT is the address of
the desired 10 port and VALUE is the eight bit to be output.

9. Output of Routine

a. Parameter Passing Schema

INCHANSEL has no output parameters.

b. System Configuration Changes

INCHANSEL, by selecting a channel, initiates an analog to digital
conversion on the selected channel of the AIO board.

10. Routine Testing

a. Description of Test

IN CHANSEL was tested in conjuction with other routines using the
AIO board. If INCHAN_SEL didn't work, routine INDIGITALP would not find the
correct value (from a known, constant input voltage) in the AIO data registers.
Several channels were selected by INCHANSEL and read by IN_DIGITALP.

b. Results of Test

The digital values corresponding to the analog inputs were found by
INDIGITALP in the AIO data registers.

11. Reference to Listing

The listing of INCHANSEL can be found on page 404.

Appendix G 399

- w * . o - - - . - " • - - - . . . " • • - . • • . • . . .". -, o..,.;.:.,.' ;- ,...-... ;,...-.-,...... . ° - / - -- ... ; .

1. Routine Name: INDIGITALP

2. Part of AIO.PLZ.S Module

3. Written in PLZ; four lines of executable code.

4. Synopsis of Routine

INDIGITALP reads the data registers of the AIO board to obtain the
digital value converted from the analog channel selected by routine INCHAN_
SEL. INDIGITALP loops, polling the AIO status register until an analog to digital
conversion is complete. Then INDIGITALP reads data from both AIO eight bit
data registers and combines them into a single sixteen bit Integer value. Note
that AIO analog to digital conversion yields only 12 bits of information. Thus the
upper data register holds only four bits of information.

5. Routine Relationship Diagram

Calling PLZ Routines

i,[IN DIGITALP

Status Data

Selected Analog
AIO Board Input Channel

Figure 79. Relationship of INDIGITALP to Calling PLZ Routine
and lOIN.

Appendix G 400

*.SS. ft ft~ i~ i . ' * -

~6. Invocation

a. Invocation Statement

INDIGITALP is invoked from a calling PLZ routine by:

VALUE := INDIGITALP

where the return parameter VALUE is of type Integer.

b. Parameter Passing Schema

INDIGITALP has no input parameters. The input channel is selected
in advance by INCHANSEL.

c. Routines Which Call

Any PLZ routine needing to obtain analog to digital conversions from
the AIO board can use INDIGITALP. The AIO.PLZ.S and UTILITY modules must
be linked in with the calling routine's module. INDIGITALP is not present in the
final routines for this thesis effort. INDIGITALP was used during initial work to
learn how to use the AIO board.. In the final theis effort routines, an interrupt-
paced assembly language routine, COLLECTER, is used read data in from the
AIO board.

7. Variables and Constants

a. Global

IN DIGITALP uses no globally defined variables or constants.

b. Module

Four module level constants are used by INDIGITALP. Their values
and uses are

Appendix G 401

jbA
v.~- -

STATUS: Value 29 hex, the address of the AIO board status register

MASK: Value 01 hex, a logical masking word to retain only the
least significant bit

DATAUPPER: Value 21 hex, the address of the upper AIO board data
register

DATALOWER: Value 20 hex, the address of the lower AIO board data
register

INDIGITALP uses no module level variables.

c. Routine

INDIGITALP uses no routine level variables or constants. The expli-
cit constant 100 hex (represented by %100) is employed in the combining of the
upper and lower data values from the AIO board.

8. Other Routines Called

The external assembly language routine lOIN is used by INDIGITALP
to both check the AIO board status register and to read in the converted values.
lOIN is invoked with:

VALUE "* IOIN(IOPORT)

where both VALUE and 10_PORT are of type Byte. The input parameter 10
PORT is the address (00 hex to FF hex) of the input/output port from which the
output parameter VALUE is to be obtained.

9. Output of Routine

a. Parameter Passing Schema

INDIGITALP returns to its calling routine a single, type Integer, return
para- meter called VALUE. It holds the twelve bit value formed from the upper
(four bits) and lower (eight bits) read from the AIO board's two data registers.

Appendix G 402

b. System Configuration Changes

The configuration of the system is not changed by INDIGITALP aside
from clearing the AIO board data registers.

10. Routine Testing

a. Description of Test

INDIGITALP was tested by having it read from an AIO channel that
was fed constant voltages.

b. Results of Test,

INDIGITALP provided correct digital values to the calling routine.

11. Reference to Listing

The program listing for INDIGITALP is on page 405.

A n G

Appendix G 403

~EYW Wt V WI. 1V P . ug

1. Routine Name: INDIGITALT

2. Part of AIO.PLZ.S Module

3. Written in PLZ; three lines of executable code.

4. Synopsis of Routine

INDIGITALT is a combination of INCHANSEL and INDIGITALP
and con- sists simply of calls to those two routines. Its purpose is to select an AIO
channel for input, then wait for the analog to digital conversion to occur, and
finally read in the con- verted value. INDIGITALT was written for those PLZ
programs that:

a. can afford to wait, or
b. do not need to accomplish other tasks during the analog to

digital conversion period.

5. Routine Relationships Diagram

Calling PLZ Routines

IUT 101N utility
~Module

Channel Status Data

H : Selected Analog
A10 Board Input Channel

Figure 80. Relationship of INDIGITALT to Calling PLZ Routine,
INCHANSEL and INDIGITALP.

Appendix G 404

4i

,

' ' 6. Invocation

a. Invocation Statement

INDIGITALT is invoked by:

VALUE := INDIGITALT(CHANNEL)

where both VALUE and CHANNEL are of type Byte.

b. Parameter Passing Schema

The single input parameter for INDIGITALT, CHANNEL, is the same
as for routine INDIGITALP, the number of the AIO input channel on which the
analog to digital conversion will be made. CHANNEL has a defined range of 0 to
F hexidecimal.

c. Routines Which Call

Any PLZ routine needing to get analog-to-digital values from the AIO
board can use INDIGITALT. To call INDIGITALT, both the AIO.PLZ.S and
UTILITY modules must be linked in with the calling routine. As with the other
routines of the AIO.PLZ.S Module, INDIGITALT was used during initial work with
the AIO board. INDIGITALT does not appear in any of the final programs of this
thesis effort.

7. Variables and Constants

INDIGITALT uses no variables or constants.

8. Other Routines Called

INDIGITALT calls INCHANSEL to select the analog input channel
on the AIO board and INDIGITALP to read in the converted digital value from
theAlO board.

a. INCHANSEL initiates an analog to digital conversion on a specific
analog input channel. It is invoked via:

INCHANSEL(CHANNEL)

Appendix G 405

where the input parameter CHANNEL, type Byte, specifies the desired analog
channel. CHANNEL is the input parameter for INDIGITALT.

b. INDIGITALP reads the converted digital values from the AIO data regis-
ters and combines them to form a single integer type value. INDIGITALP is 4.

invoked by:

VALUE := INDIGITALP

where the return parameter VALUE, type Integer, holds the converted, single
value. VALUE is then the output parameter for IN DIGITALT.

9. Output of Routine

a. Parameter Passing Schema

INDIGITALT has a single output parameter, VALUE. This sixteen bit
parameter passes the twelve bits of information read from the AIO board data
registers back to the calling PLZ routine.

* b. System Configuration Changes

IN DIGITALT initiates an analog to digital conversion on a specified
AIO input channel. Later, INDIGITALT clears the data registers of the AIO board
when it reads the converted analog values.

10. Routine Testing

INDIGITALT was not tested as it is simply the combination of IN_

CHANSEL and INDIGITALP. Both of these routines were tested and found to
function correctly. Testing was considered unnecessary.

11. Reference to Listing

The program listing of INDIGITALT is on page 405.

Appendix G 406

1,11
-. .' '.- '-* -,', -- ,.,.""- ..,.-,.--..o-'. - - ' " -'" """. - • - " . "" " '" '. " •."." "" " ""-'

1. Routine Name: OUTANALOG

2. Part of AIO.PLZ.S Module

3. Written in PLZ; nine lines of executable code.

4. Synopsis of Routine

OUTANALOG takes the integer value passed to it, splits the value
into two bytes, and outputs the digital values to the AIO board for conversion to an

analog signal. OUTANALOG can output on either of the two digital to analog
channels of the AIO board. The writing of the bytes is accomplished with the
external routine IOOUT.

" 5. Routine Relationships Diagram

Calling PLZ Routines

Fiue 1 RltOsiU fTANALOG aln L otn

" I Selected Analog

• "A10 Board Output Channel

Figure 81. Relationship of OUTANALOG to Calling PLZ Routine

and IOOUT.

Appendix G 407

".. 6. Invocation

a. Invocation Statement

OUTANALOG is called from a PLZ routine with:

OUTANALOG(CHANNEL, VALUE)

where CHANNEL is type Byte and VALUE is type Integer.

b. Parameter Passing Schema

The two input parameters CHANNEL and VALUE pass to OUT_
ANALOG the digital-to-analog channel desired for output and the twelve bits of
digital information to be converted to an analog signal by the AIO board. OUT_
ANALOG assumes that VALUE has only twelve significant bits; as an Integer it is
a sixteen bit value.

c. Routines Which Call

* OUTANALOG can be used by any PLZ routine which needs to output
analog values. The AIO.PLZ.S and UTILITY modules need to linked in with the
calling routine. OUTANALOG is not used by any routines of this thesis effort.
Like the other PLZ language routines of the AIO.PLZ.S Module it was used for
initial investigations of the AIO board. An assembly language version of OUT_
ANALOG, routine OUTDA, was written but is not a part of the final thesis effort
routines.

7. Variables and Constants

a. Global

OUTANALOG uses no globally defined variables or constatnts.

b. Module

OUTANALOG uses four module level constants. Their definitions
and values are on the next page.

Appendix G 408

-' DACHANNEL_1 UPPER: Value 2D hex, 10 port address of AIO digital to
analog channel one, upper four bit register.

DACHANNEL_1_LOWER: Value 2C hex, 10 port address of AIO digital to
analog channel one, lower eight bit register.

DACHANNEL_2_UPPER: Value 2F hex, 10 port address of AIO digital to
analog channel two, upper four bit register.

DACHANNEL_2_LOWER: Value 2E hex, 10 port address of AIO digital toanalog channel two, lower eight bit register.

These constants are used by OUTANALOG when calling IOOUT. OUT_
ANALOG uses no module level variables.

c. Routine

A single routine level constant, OUTVALUE, of type Byte is used by
OUT_ ANALOG. It is set to the lower eight bits of the input integer VALUE and is
then used to output to the lower data register of the AIO output channel. OUT-
VALUE is next set to the upper four bits of the twelve bit input value. OUTVALUE
is then used written to the upper data register of the AIO output channel. OUT-
ANALOG uses no routine level constants.

8. Other Routines Called

OUTANALOG uses two PLZ type conversion functions and one ex-
ternal routine, IOOUT. The type conversions, integer to byte and byte to integer,
are used in the splitting of the input parameter VALUE in to the upper four bit and
lower eight bit byte values passed to the AIO board via IOOUT. IOOUT is an ex-
ternal assembly language routine of the Utility Module. It permits PLZ language
routines direct access to input output ports. IOOUT is invoked via:

IO0UT(I0_PORT, VALUE)

where both 10_PORT and VALUE are of type Byte. IO_PORT is the number or
address the input/output port that VALUE is to be written to. IOOUT has no return
parameters.

Appendix G 409

w • .o .q 4 ,m ann q J• ,'

9. Outout of Routine

a. Parameter Passing Schema

OUTANALOG has no output parameters.

b. System Configuration Changes

OUTANALOG sets one of the digital to analog channels to a value.
That value will continue to be output by the analog channel until either another
value is written to it or the AIO board is turned off.

10. Routine Testing

a. Description of Test

OUTANALOG was tested through a looping routine which read in an
analog to digital conversion value, via INDIGITALT, and then output that value
back through OUTANALOG. A low frequency sine wave input was applied to
the analog input. Both the sine input and the output of the digital to analog
channel were monitored by an oscilliscope.

b. Results of Test

The output channel tracked the input channel with the time delay
produced by the processing delay.

11. Reference to Listing

The listing of OUTANALOG is on page 406.

Appendix G 410

Program Listings of AIO.PLZ.S Module

The following pages are a listing of the AIO.PLZ.S Module routines
This is not a compiled or assembled listing; it is PLZ source code.

PContents

412 Introduction, Constant Definitions, and External
Definitions

413 AIO_INIT and INCHANSEL Procedures

414 INDIGITALP and INDIGITALT Procedure

415 OUTANALOG Procedure

Appendix G 411

a n

Q) (0 (13) E-
.J 4J 4J =0..,-I..H 0 00) m4 0"- 0-,-I 0

.JJ =% -1.,.4,-I 0C -

w w Uo t
0 0V O) r

•4 0) 4J

C: E-4- r4.v ,-
41- C c~l(a4)

.0 >acn 4O *. EUE . W

w0W -Ua) c)

M.0 "~ C2 40) U) =J

C: 00 0 0 0)
to -) g0 Wi () -s O
-4 i~ >1- H

44 Z w -4 W wf

0 41 fl .a a) :> E-1

0 a E -a I

.a- .cED4J- ,-) I,-4 O eq ~l zq e - . 4 -s1r, Cl: -

,-- .0II F- (IIII

O00
Ue4 (E4l 0) M~ *.-4 CDW M0 D - lr

r,4 m 4 J4 0 OZ

*J.,-..4Jo I.I * ,- ,.1 : -
I m 0 o= . M CO) •

v .- 1l-EE-"

0 u 0 - Z

") 4) i 14

U)< Z -- 0 4-C 0-4 E- E- <Z Z S. i-

Q) -14I 04 0. 0 z -

r.r- CI 0) w ~ E-
0- 3 (a 0. 4 P. 1 VQ w Wz

44 - a M MEn - E-4a t .0a4 :) 4 m u0

0~~~ ~ ~ ~ 0) rq (D P 1-' Wz P
C~ 4J 24 3C14 0 W. W u I-IE-44w

c oErzc D WM0 -
4J4 -- 0 J0433ZZZZ 4z

0U C:r 1PE- -P4 < U

-."~~ ~ .. 0... -.. "... v...... -. - 0. 0. 0 s:4 .. E'.v1 Z, Z'. 0'. ., .'-'-..-...-.- 0 .' H-"' "''' '.-""-'."" -","v - .- ".
. ... ' M .- W-=... , U , .4J.' .P4. E-- -, . . .- - -.4 .w-.' i.-., -, m- '- ' z ".' ' , ', 4,'

0 C:

,--4 -.-

0 , W O0

O 4-10

04 w 4-) V

0 5-3-0)

V 0 J *.O

0 - ,-4 -- 4

(tS ,.U 0) . 0).

la) 'U0)a

. . 0 --. -4 0 ,

i W U 0...4)

0C r-4 En C

(0 4 (0 a)-

m oe rr I4J 44

U*.-sr- -4E-E- UCU

o -,-) I4
w w HH- P) C: 4

C .J' ,,. r,, ,,. ,,.CO~ I,.. --4 M-

4 4 O0 Z o
w f)0 r: Cn)

" E - .w -4- -0 0H

4~) Z Z P J J-4
*.-z4 t 44 0 4 4. ~W C

10 .0...0 H 0 13. ."

) . & E- u a 04 :>
00 V 00 0

'4MU z C)) -J E $4 w.
:4 000 1 1 C4I

04- ' w E- &41- % Ix ~ 14

a)' -14 U)w 000 .- . .0)0 >44
0 p> NP - P Z- 000 m C) .0>C

0 H4 Q 1-1414- z zz czz w wc* u 14 4
1-4 En :,o 00 zWwP- -

-4 4 C4z. i 0- -. U

W r)()a40N0 PE1 H0(

C4Ep0 4: 4 nt f

0) ur

1: W4JU

.. .L~ -w r . ---

>1

'-Io

V.4) (0 0) 0 -

WU 44) (a U W.E-4r-4

0(Uw e2U 1-4

r4.= 4) I

Mo ro~ z 0 4U 4J

C 0 4 I'-j4 $
fu1-44) tz- a

) 04 U $ H) r-4 W .)
41t ,-4 (UrI 0i

Z, rz.) (U- (a40 D

tW M~4~- *4 w

> 4 0 (Uq to

CL)~~4 4-0: -
4J~~.-~ -404)4 UIt

414 (I .44 -H 4Jv

ro *.4.-n) E 4) 0 "rO4-
0)rE- E-z 0.4*-4 0 .LA E

$4 =~ -,Ix 0 4)4 4J4 0 w0
U) En 4)U ..43)(c

w l (() ZE- 41 .) 0 4 - .0 u

E- . r E-4 r4~ z a) -H . H
Z- - i04 .- 1~)~ u C4P4 44) W

Mi)(U- 0)~ to

.5 -1 FO (0 4. r 0.
Z: Sr P4 U) U) -. 4) o E-

0 4 (.E;(
> w- r

0 :3 C,-o u

S 0 u-0

-4 En (a -10

W) -) (

,-- j.J ri- ,.--1 --4 r_ =

C) > > -0 -i UP Cz

w C: o 4) I .I& 4 0 SJ C ,4 :. r. C r

- Q-- 0i 0 , C

-, 00 E > 00 (.

0 "1 4J 4 d W W
W 4. .0 to- ul =1 m- M)E -n .. - 04 II c. II
Z U).) 4J ,- i 4I. 0 .

0 4 r- 41 z

r. 0$4 4J r. r. 0 0,., 0

ra (1 (-4~ -14 -i1

.- . .r-4 I 4 =D. V I

co w a)(ai~ HL a4s
41 a) u :3 > 00 0 0 04

W o 0 0 4) 1~ 1 1

0 > 0- -- 11 r-4E-4H
04 C-X. -f O o4 z *..1.

0 0L: 3 ()H' ::

0 44
1 0 C0

C) 4J (F=:'E-

0
-4~ =Q D r. W 0

u = ~o r c C Z wz - .!
0 E-40 W M n E-o~ w ;, ,,w ,. ;, '° -' " ". ": -H = Z... W,: ,

.~~ ~ ~ ~ A m U W ELI .C/)- , 0., .w., .,, ' ' ...,.,' '-....-..'..-.::- .. . ,.., _

%

Appendix H: Scale Factor Module

ScaleFactor Module is a compiled set of PLZ language routines
which implement the Set Up Scale Factor File process shown in Figure 3 in the
introduction. With the routines within Scale Factor, a user can create or modify a
disk file of scale factors. Due to the difficulties encountered in debugging the
Collect and Store Data process routines, ScaleFactor Module was not integra-
ted in with the other software of this thesis effort.

The routines of ScaleFactor Module are listed here to show how the
10 improvements of the Enhancements Module can be used. The module is
organized into an executive / subordinate routine structure as shown by Figure
82 below. The module executes the subordinate routines in sequence. The most
complex of the subordinate routines, CHANGESCALE, makes extensive use of
the Enhanacements Module routines. The program flow within CHANGE_
SCALE is shown in Figure 83. Both figures are present to aid reader understand-
ing of the execution of ScaleFactor Module.

The listings of ScaleFactor Module routines are on the following pages.

Page Number Contents

419 Constant, Type, External, and Global Variable
Definitions.

419-420 INITIALIZE Procedure

420 WRITELN Procedure

420 READLN Procedure

420-421 WRITE Procedure

421 READ CH Procedure

421 WRITECH Procedure

421 ACCEPTABLE Procedure

422 GETIDENTIFIER Procedure

422-423 FORMFILENAME Procedure

423 CREATESCALEFILE Procedure

423-424 OPEN SCALE FILE Procedure

Appendix H 416

Page Number Contents

424-426 NEWSCALER Procedure

426-427 CHANGESCALE Procedure

428 CLOSEFILE Procedure

428 MAIN Procedure

Scale Factor Module

INITIALIZE

GEIENTIFIEti]

FORMFILENAME

OPENSCALEFILE

CHANGE SCALE

CLOS E- FILE

Figure 82. Hierarchical Organization of ScaleFactor Module

.,

Appendix H 417

Z.

4-

MAINFil

"I.. ~~ Buffer ;%

ValesChannel
Values

ListNextChange
hanelScale

ValuesFactor

WieChange 1
BufferUnits
to FileText

Figure 83. Program Execution Flow Within CHANGE_ SCALE

Appendix H 418

-4-

dll

CO C", 1:

Vi C.l

E-, P- P Ow
LI >, >, I

0 r Cc.cr

E- E 0

CD c

a.. 10E

m L --,

n' cr I
r, 1- - t] .4

Z! C 1 M r= , 0 r-) C-1
I' w uO=-'P E.

< - -. < - < - w i-G I

t) . U C. Vr C' -

C - C' C- V, i&CV E- 0 U

C* w 1:
0 ~ ~ ~ -1 C- E, C El Wi U M U' a: ~ CO

It 11 11 -; -.-. -. '. - ' 0 0. a;
C..: E. -c:c r, j c:E 4(

... . , LC r- 1 0' L)

C-- I C' E ',-1l 0:1 P l E-* C-1. t,-,LC l ll, C. VI 14 E
wC4 . ji F LI. E. 0-4 < .C3 L. 1-

CwC CF E-4-c <- .1 a; a .LIorl C"r . E
In ~C I.i-OCtLrI 44 LLI

r- 4 4- 4 - 4- il 1 4(:cI(N l m- m P1 M-i LIin)C m- mi en -T 1 L :D- r' .Cn 1

-. E4

*444

.I D

-- 4E4

c4 1

EE-

co p- 7:f->

E-4 14r4c

I4 :I ,-l P. 1

-4 - -' -- - - E 1 E

'-)1 C."C 1c

i D1 EL - ow I

c~ u E E
1- -4 U In 0 CU n

-~~~ E. n- :>41 UI
1- P-0 .. .C0 . I <- '-4" : 4E-I

E II IM I II IM P- 04 Ell L) II z E, - C, C. .a >4w
.4- c-- C' E-4

C.4 <- . . . C0C.4E~ .-E4 * liii >4.1

4-4 tn a, cI --i UN mI -1 EN m 2 L
em01 C.. 0 C C' 4 1- -4, 0

V 10'

.3 n% 2MCC-- 3M-'tk -C)C F-1 C1 m C nt.r cCL LI C M >Wt ,C: mVt C4
L) --4 -1 -4 -4 < .Cdd -4

E- E

-4 u-

*~ p,
E-EH

E-~E-1

CD-4~ -4
LI M-' 0 W E

XS, P0. -,

E--- vv

03~~ E.E- 0

E, <2 E, - ~ LIII L

in 2IE- <

P , c el C...I*

x. I-SC F4 C. DO4.3 i MI
*~ D- . wIL LI .- L 03 Z~s MI E:: M UM U3I EE o E, P :D EL: E-c: IaI w

ix .)i- IQ n3 c" E-Y P; LC E- C [-C E0 0s cc , 11 030)C , r .U0~v<U<t
U VL -. x s u)~ p) C) m~ CE- c U M Em-<E<<E- E-

(4I~ LI C! CLI CL4 s
X 0:< r.eC rul 1,s) C E, E0) E-4C) ~ 3~CZ E-C.1 r,4' E r 04) : , t Cf W3- " 3 mt C) 0 C) Css1' -4 u E:i P C.1 E,~ = -Pa, C) wuuILIILIIL

S:4- >4 -" 4_; -4 .304 >E> Ws >, El>s- >, >*LuI" WC)'si. ru, "0 n0 LI <.)~C./ cc W rC)c<DCm E- ZU00-- 0Ell 0 1.4 N.E-1-1 0. a O,.t; re LI.lE, CC r-LC~i~C 04 E4 <L

0
0,

LIi -1 4-4-4- -1r. 4 1 - - - 4-4-4--4-4 - -4-4 - 1 4 4-4-44

* C 06-

Pq3~~~~rA~~~W~~~r~~w ~~~r~~~ir.[~~ .-e~r ~ r r ~ y y . rr-~ , r, *- r ~ .. r .c~ ry.

4-,i

.4.

J4
0

Sw
.E-

n'
4'-

r4'
w C, t,44

E-4 = "z gy4'

-- CI 0 4

C., 4'

E-4 (5 4' C.C rI V

u. -U - '

in U t- Ck: flUl C

Cs (

Cr -I --I E cC

LI C;r "()Cr4014 1 r'

1. 0 E- . r -

04C (a WOUCr(

EC C' .l C . - ,C . C: fs, 1 - r .0
(4 11(E <- r. u4

2-' E I4 * 0 .. F1 "5 " 1 4< (

V- E(2 I. I EC ri () E E C I -

CS <~- OF, E-~o - C I F cr U2Jx(I

Q A" Ac PONOE-C C- CI C 4c> : 0 .1- : '-4

w2 coi. 0- t n0:r r ---- '-

U- I-I .2aO I-A.l 0'0i(
fo .4 rr-'ct-c .UC

(a r C', C) %P Os-iC 00i- C - C-. ic. IC -- Ci CS (a: C rnflf n cr- cc

-.t

044

>_ e ,Ca ..

CL: "

In-

IV wwt CDQ

* ,

F-'44

n L 4

k, " a)i -4 r-I In-
C* C) (4 4 -4!

(5E 0IW 00 E-
1-'t1 <i51 4

.0 0 C '(:- Ic ..-..
C , E, E- L- - :t

E., E-, +-0 0 , E,~J a:)L
.2 ~ ~ - L..C .(3 O
L- 0i EI 0.E- E. 4- > 0 S Li 1
u 1, W4(L) L ,cc I I I E

CS Ioc 04 4 LL C C_

0 z-rE. 741 V4 C1 c L- , f L o Li
(4 >' n OG C- u Cn ---- IMLi

+' IQ C'S WIW -~ I c44(0 -SW

Li0 - t-uuu - 0 -L-- c:
C-,rt .,, r_&. t:C C

E, LA A E- E- E-1 0
-1 C- W.55 c I C1 V E jU)E3w-Li.w 4 w C

E. 0 4 1- o-C'- H Hi E-, >,i~S n0 - ,>
H4 -- ' 1 Er wtH m- r4 W. w' W n iC) m l

I c"4 c,0 LA in E, Ci <L E Z it'
-01: C'.LAD 040 11 .

4i-TLr e CI 4? O-I 0 -I -. l rnRl V r--4 4m - 4'-%DJL-

+cr c r 0-4 rI tU . ,c r 41 '- in E''_n:-.-,4 -CI I kl iC n JL, C - C' 1-SI: n C. C

L) N riC 4o;,4r AC Ar- ,C Ar CA-'4C CIc- 4-I 4-14-1 q C " l ', l A l(1ClC C A CAI (N C C' r 004 0A NCA

C >:XWC' (4 14>- mO E I i U ' L COOO -'4
St ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ? %-CS4T __S 4 CS ~ --- 4I- ~ V nc - I

0--

C,;

riCl0

4J 0

C) Co

-4 El X(-4

W 0 C.,

1.E E-41

D, "SC>X4C-

d- < --) .I
Q1 C 01or-C 4PI Z) ElU

ci C, " :I-; -

EC x E- I C+ 4 . , <E
In C, < <E

C2 L4-, -: --) Ciic l
Ei +4(r" t E2(FCEiO) 1 4 zx

I C; 0-~ u0 (4 czL
HC =.I n1- 1I"- -- -1 -. !cii
n c E4 F4 (4(CC ,2 C-C C E(4L 7 ,

0004 C L) 042L 0

C - I C C.' 02 1 1 E -- C i (

n 0, <L ct t.- -:- 1. XEtCC ' ,Z 1 :. CD : %1
.2~~~~r n C. 0z.> u- C20 E~ - n 1.il 02-(

[CC) US- CCi 2L I <0 + " CCC ".* C"
EUEC- C E ~ n - U al E- E4:X E-UE- X0E-

Ei-4 C 0.111- -1 II L'L (.1 - .2 1 -<4)DIa D-I1u
1112041. E [E1 S--- L. 0 P, 01 '

E,1.. LE 04. r- CCCC C. c 1i

(00C - '0 C. CnF 04 0 0 (0 0 .
2U- ' tQ C-) II .I1- U4 CI CcL C , I. C -l - 04 n 0I 0-14

, 0! (1; 4 1-4 C) -4 1-I . - r:C- l -t:I--I 04 .2Ci <CCO 'c-
1.:C cU -l '-i Un1 CIS CIS ['f' 1- U < (' C :

04((1 N2 0)) 1" Li07 kf4 0- 00,04:n U)k ,c , - , - i pI v C' lC L , 04, 000 m
,C: ~ ~ ~ ~ r-r -r.r -r - -' rc- 0 ca .c 0-. 0- c *c 1-1- LUC- 1-IC LC- 4C-C' CC -4 1.2.21-1.2 0 -4 2.21-11lU l (
U ~ ~ '2 0N 00 lC I ' 4(1 !Clr !CSrit;c :c . r ,; - CO; rn2 000 04f, nr n nc

A.: 0.- P) U '2~'-0 04II LC02)02

C.

0-44

cii -1

r-4f

(..

0 U

(144m

>1n
I-

F- E14 C4

Ell E, 0

E' A - -,I ,

E4 p 44" E iXP-10 n r 0

C: [, E-Ei
.4XC4uI (nm

e- It(II, " - - . : n W

H- 0-I 0~ 0
as 0 n , .. ac Pa : a

H , "1 " - r E- HC, c
Er C C 1- (' CA to 40 (EI E, X E- , X. EI E-C L H

0. <n--.- H' H- U -.- 11-I~ <;H7 0 0. Hl HO V sn 0 +
C. I'tC C, C - as7 <-EI CO C

H 1 0 + 0 (.5 0 + 0 +0 C- , Z0 E(C- .- u1 =o~ 0:~~
\'CO H ~ C -4 ZO II-4 Uo At () IC4 0, <l -

H4 C-) 0 r0C QI ctO rc LI im'A CI 0- C1I = = = HH

HO M r (i c II-M C'~ II -4C I Llk r C: C.H c*..r CoE- .HC f H

-i .. c-, Vi)E- C Cr- CLXE-CDI C E-4 m- CCLr v.t CA' CO r,; u-UE-a v00 1,c ;0- e ,L r cC , n4
C4C ,IN N H<C nm nmc)m()(- , T%" ' 4 2- r Orrfli H<Z HL I L-.I Ir W CU-) HI-ICrrI HD 'S IC zCO OLm-C el ~ C mOO m0 ft. mA- Cm r0. E 'XD. L0 70 m'CA (tMmM r)cO rir. n r)c ctr r L1. m7 mC~u m1(m asmff m iao ea In m

u~~~~~'w ~ ~ ~ L 0w W W~~V*1 -'9r .a - - w ~ ~ ,a- .

A-

d- I

c) 4

* 1-H

*~ z)

Wo -w i.:
c C4dP E' c0

ft4 4)1) -

.1.1 E-

-I+*~r ais-
C ul Wi

V aIC -

,-41 O1. 11 v

r0 c 04 < 41) C
1-4 -4 V) E., .4)

(.2.4.) ,-4 I 1),-

'd .. E~ I' .1

4-411 " 4 1V4 :

Co 0i v m ot- tcf o.

E: V)- t-4.) .
0d a') 0 .1 0 E

Ermr~ IT u14
C); -') E-1- r+w z 0 40

E--dC co 4:1: to-~- (a -It in -12:(.12 12) 0 <C'V -I 0 co '+
+- v~ -c-IL Eb. V -j - - < e 0f .:) .Id 0

X0t+L0c=0O 7-- 0 Cd. : ~r o t
C Oi - (-- C1 CE 1 V .A D I E n- - 0 I I-, EC. I) Io 000 Ii L4E- W~~. 0i. ~ A -Imrd U) 0 V4C. C add~L E I cOi. t" -~ C-i.)o L0

it E, "E -c"0 000 C0 C C 1-1 :7Cd 124 ;zC) -

Er crs V)ErC..c c -. Z. (-.J M 1 to z 40
r-- U ii0 CO0Cd . -. E, ~ E- -U Z Wr: W CCW. u

0 0 r.lz *
4
iAC. u I I " , u-.' ".0 - .0 1-1 ' 1-4 ""- 1-4 Wi~ Cd -1 w 4 od~il - --- - t I .I ELIIn. :C C XDE-XE- C1 0 t.) ecio* -z) w~~u wc).1~1J

L)0 4) 9)1If~ #,* . C C3 d I~~ .0 E-0)-. W. to w- LOO n- 0o Q ErCdU 2 -, IC.11 E-E E - 4CU) 0) 1:7 C z r DI o ra14 z H E-
4-4~ ~ ~~> I 1-4C l I'

C4E 9 0

0

0

IF 0,-I c4* 4l q(7enVn %D r-, r C -4 IN; m - tn %cr- c0' 4c'4
fS .I~ r- .4.. .-I '.1- -- 4 '-4 1-4 cj N '4C N

com. 4 ~ tUl% ,c 0)0 D- ' "U o o cN0 u V o r oC c4q nk mO N a rtc nITi Df c

r- fC-0C,0 0C OC CC)C ,0 7 NM C %4 C)C)C .C)C . C 4- ft -4 r-4 -4 -1- - -4 I r . .ut' . Ch' (N *' N mInmmmmmmmm m* rnV* (n m:, mV V, T- - T ,r q.% -rQ r- r- w-r- w-w' eq wq w- w- avin p

0

4~4c

41
4-J 4.

.- 4 f. .7

Cs' E-1 m4.. 144. t ;7. r4E

ri 4- 44
4. 4. CI

d.- 4)Z.

C.) 442 14 C...
rd 0

CL -4 w W-4

V - u, E,

122 CCe-L;E-4

0 0 1- 4x.
M -4 Ae-4t
E) P.) 0 4) C 41-

U)) W Ci % ') zr 4
I' = I -41IC1U30dP

F- U [P) X) ~. t D Et' WZ X0 0

u E - 0,0 C' Cq 7 C,' 04I C ' E 4 -
M - z 0 r',3 II f C)

*0 104 02 E, 8 1- 0) - : 1 - 1O)r .r
0 W, m0 12 11 C42 (a Z) ri 1

14 '.30 s.-- 14.- C,) 11 C N r4I .-4. 0 r-
041-02 - V0c.. U -- C'- E-0 t 1

E r OM cr I. 14-Z4E u~ r.0 W) -- -W Ot-=~ Z~ -2! 4 o- -n lE,<Wt1
'0. C) to w 4. I P 0

U0zC - 0 C Di-4 U~C W00 b4 2 W
E,. C,) M 'S4 <21 C.)-. .)4) zW M 4 -, a:C)E v. r - - 4-- 0.. -e I- OC. < 0 0 W C.

.C -2.. -~ I - C) 0 0 -4 C.-4 -014C!, P-4 EO) m

W -q -, 2- II- -n W. 49O, 00 COr
0 a), U..- L- C-A Z0 E2 '.0 ix 0

4-4j w
-~E E-4 E.I E E-

C)%Dr,00 (7 C -C - U)%C), DC 0nk- , C C: -4. 110 m L %D r, 00oe" e - c10 0- El; m44- 0 -" (1) P)1 ..nO U) M I-r11 nt n L)Lni nL

P. 4 .1 v14%rr c;0 . '-4, n , r aC)qC 4Lr c -C C :- C, e C) c , 0 ', -42 In v 12. II-A I %D 1 i, m) .4 C4 wtm -m n I me C.) 14.*2 .q P C ,LnL) -r , rL ny r ,j ,k ko w - 2'C , o-20..).4..q .- r 3 . 2 .4 . . r.' IIC C, r-- r- w 0c 0 00cccccOC~~~~"C-." " CC') t1rw1- 0r wc wC-2-. vC' v v10 -2- t14r

-4 +

co +
+o +
+
+

C) +
+

'U +
+
+-
+
+~ CD% +
+
+
+
+
+
+ f

*n + C
0 +

co +
+
+

P +
044 +
4 1 +
u 0) +

C -I +
L) C+

0 (4 fu +
.3 tor- E-

0 +,C
Ul 0 1 1 4. +

W E-1 U 0 +
r-l > I rl +

C-1 CQ-4 C +
.4 < V
< W U+
u u C-1(n l 1- C+
Er c 0 o m n-c, v c+

1 C4 C,) ()I -Z- w+
14 U uu C r:7 z+
;41 0 C4 Z l C4 0 + 0E714C)CD%

r.4-' +I IC'L1n

w c + r - la, + 7."n
+ F-' E- +
+

r i +4

u +

elo C4 +n':
W r~~lL

C) +4
r-G 3 - 4LIM V i Dr ,C - - n-,i vf so _ ir, i L m c +N iPC ~ ~ ~ ~ ~ ~ ~ 1 ccMC ,CCC lc C h0 NC .cc DC D4DC)Cc :,l- 1r4rI- 4rI- 4CJCIC

V) +W -Wv('4 v- nL i ni na ni ,t tiu ni ni ni nu n

A0 +. jp.

Vita

Lloyd Edwin Lutz Jr. was born on 7 November 1951 in Marion, Ohio.

He attented high school in Sidney Ohio and graduated in 1970. In March 1975

he graduated from The Ohio State University, receiving a Bachelor of Science in

Electrical Engineering degree. Following graduation, he was commissioned into

the US Air Force though ROTC. In August 1975 Lloyd E. Lutz Jr. entered active

duty at the Air Force Weapons Laboratory, Kirtland AFB, New Mexico, as

Program Manager for Satellite Systems Support in the Analysis Division. He

entered the School of Engineering, Air Force Institute of Technology in June

1979. Beginning in April 1981 he served as a Staff Scientist in the Electronics

Vulnerability Divison of the Defense Nuclear Agency, Washington, DC. In June

1984 Lloyd E. Lutz Jr was assigned to the Electronics Systems Divison,

Operations Analysis Directorate, of the Air Force Operational Test and

Evaluation Center, Kirtland AFB, New Mexico.

Permanent Address: 2800 West Russell Road

Sidney, Ohio 45365

Vita 429

Li u - '.'a

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PACE

REPORT DOCUMENTATION PAGE

AL PORT SECURITY CLASSIFICAI ION lb. RESTR!CTIVF MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRI3UTION/AVAILABILITY OF REPORT

2b._ _ _ _ DCASFCTONSCEUEApproved for pubkic release;

2b. DECLASSIFICATION/DOWNGRADING SCHEDUL- distribution unlimited.

4, PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION FEPORT NUMBER(S)

AFIT/GE/ENG/86M-1

6. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

School of Engineering (Ifapplicable)

Air Force Institute of Tech AFIT/ENG_

6c. ADDRESS (City. State and ZIP Cudej 7b. ADDRESS (City, State and ZIP Code)

Air Force Institute of Technology

Wright-Patterson AFB, 011 45433

8a6. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (it applicable)

Bc. ADDRESS (i0>, State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT

ELEMENT NO. NO. NO. NO.

11. TI' LE (Include Security ClIasiifcatar'11

See box 19
PFASONAL AUTHOH(S)

lloyd E. Lutz Jr. , Captain, USAF
13a. 'YPE OF HEPOT 13b TIME COVERED]14. DATE OF REPORT (V,.. 1o.. Day) 15. PAGE COUNT

MS Thesis FROM TO_ 1986 February 444
16. SUPPLEMENTARY NOTATION

17. COSA7I CODES 18. SUBJECT TER.MS (Continue on reverse if necessary and Ider;tif) by block number)

FIELD 02__ SU . Data Acquisi tion, Analog to Digital Converters,

Digital Computr:c, nata Storage Systems

19. ABSTRACT fCunginue on revers.e if ucessbry and acintify by block ,urnber,

Title: DESIGN AND PARTIAL IMPLEMENTATION OF A
COMPUTER CONTROLLED DATA CO:,LCTION ,YSTE'M

I hesis Chai rman: Dr. Gary B. Lamont
Plrofessor of Electrical Engirecring

-~ Aa~w~d go a~lIsms: RAW USA 1014

IeDo lot R! o 02 ch and Protllsonal Iqin.A

* Force imaUtule ml technology (AM-
* VtghS-Wdmnf ADS 0 544

• r,;3T I3U i ON , V A L A I L IY F AF'] I A ,, , .CT"L 2i t JA CLo-_ . I I;, r Io ,4

UNCLASSIF IF)/UN LIMI TED X SAM!: AS RPT. OT C ust: FS D U IC LA S S I ED

NI c1I~n , Ii 'o C,,

22a. NAME OF RESPONSIBLE INDIVIDUAL 22h TELIPHC; E NkJ,,'ErLH 22 OrF CE GYNIOL

Dr. Gary B. Lamont (513)-25>-207 AFr'/FNC

DD FORM 1473, C3 APR EDITION OF 1 J/', 73 IS OIl,0. . . I IC1 N C1" 11)

SECLIRITY CL: II" CAI I)F I HIS PAGL

UNCLASSIFIED

CF CURITY CLASSIFICATION OF THIS PAGE

A computer controlled data collection system was designed and
partially implemented in software. The design concept is for a data

collection unit to be placed inside the system being tested where it
stores the test data in an internal memory. Post-test this internal

unit is connected to and polled by an external control and data storage
unit which archives the data. Both units are computers. This combina-
tion of an internal data collection unit and an external control and
storage unit is intended for testing applications where it is either
undesireable or not possible to connect the system being tested to

external data recording devices during the test event.

The partial implementation of this dual unit data collection system
design was performed on a Zilog MCZ Z-80 development system in PLZ, a
Pascal-like language, and Z-80 assembly language. Routines to improve
the input/output afid hardware access of PLZ were written and used. The

software to implement the internal data collection unit and portions of
the external control and data storage unit were also written. The in-
ternal unit routines employ a Zilog Counter Timer Circuit to generate
sampling period interrupts. The analog to digital conversion is accom-

plished via a Zilog Analog Input Output (AIO) board. The data collection

system is not fully operational.

GE4 C.

SECU;lITY CLASSIFICATION CF THiS PAGE

= S. ~ -. - -.-

~ :' ~ N

I\t
2 K

'I
.4 56 /

4

t .4 K
~4j N)

I NW,,

S - * * .5,

S.. S.

