.

AD-A172 823 DESIGN AND PARTIAL IMPLEMENTATION OF A COMPUTER
ONTROLLED DATA COLLECTION SYSTEMCU> AIR FORCE llST
H WRIGHT-PATTERSON RFB OH SCHOOL OF ENGI.. L E L
UNCLASSIFIED FEB 86 AFIT/GE/ENG/86M-1 9

-4
N

\
[-]
\Nm
~

I

_m\
|

——

N

o

rrEFEREER

O

F

S
I

EEEE

5

rr

f
(14

=

II

il

o

AD-A172 823

DESTGN AND PARTIAL IMPLIMENTATION
0F A COMPUTER CONIROLLED
DATA COLLFCTICN SYS v

TiIESTS

Lloyd FE. Lutz Jr,

Capiain, USAT i
AFIT/GE/ENG/E0N-1 i
g] 7 N f“,‘i l(.»]
o “DISTRIBUTION STATEMENT X ¥ ,:f-\ v ST E y
(- publio 1oo.q - ona H Y
" et B ARt B
= w
4 DEPARTMENT OF THE AIR FORCE (] Fo
l__c.g AIR UNIVERSITY
= AIR FORCE INSTITUTE OF TECHNOLOGY
¥
Wright-Patterson Air Force Base, Ohio
88 0 S aa
5
N

AT A NN AN A e N T I W T

mmvvm ~ T R W
:

AFIT/GE/ENG/86M~1

DESIGN AND PARTIAL IMPLEMENTATION
OF A COMPUTER CONTROLLED
DATA COLLECTION SYSTEM

THESIS

Lloyd E. Lutz Jr.
Captain, USAT

Eaa o

AFIT/GE/ENG/86M-1

‘w “

W

B

R

Approved for public rcleasc: distribution unlimited.

2. . .
EONGOEOLIEEE e

i

TN A

ML A

P

ARhAAAN

]

s -"."."} 2

AN |

o~
e

A

AFIT/GE/ENG/86M-1

DESIGN & PARTIAL IMPLEMENTATION
OF A COMPUTER CONTROLLED
DATA COLLECTION SYSTEM

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
in Partial Fulfilment of the
Requirements for the Degree of
Master of Science in Electrical Engineering

by
Lloyd E. Lutz Jr.
Captain USAF
Graduate Electrical Engineering
~ February 1986

Approved for public release; distribution unlimited.

Preface

This thesis describes the design and software for a computer con-
trolled data collection system. A MCB Z-8Q development system with an AlO
analog input board was both the target hardware for the data collection system
and the computer system the software was developed on. The software des-
cribed in this thesis is a mixture of PLZ, a Pascal like language, and Z-8@ assem-
bly language with hooks from both into the development system's RIO Operating
System.

The software doesn't implement the full design and isn't com-
pletely bug free. The difficulties of too little time and too much code to debug took
their toll. | have flagged weak points and logged my suspicions where appropri-
ate in the code descriptions.

Special thanks go to the Apple Computer Company for their
development of the Macintosh, LaserWriter, and MacWrite. Without these
products this thesis would never have been written.

J_ Lloyd E Lutz Jr

e AT Mt AT M AT AT e T e T T At et e e T
D - » -.._-‘_\~.§’ N '(,'1‘_\"\}" -) e,

SRPTA

I~
33

Contents
(£ o T ii
LSt Of Diagrams ...t it it it it it i i et e et v
o) = Tt Xii
\ 11 (o (3o (o] o T 1
Requirements of Data Collection System 3
Hardware Used for this Thesis Effort 9
Overview of System Design ...ttt iiiiinennnn. 11
81U 11117 1o 19
Overviewof Restof Thesiscciiiiiiiiniiiiivnnnnn. 19
i EnhancementsModule i e 20
Description of Internal Routines ..., 28
Descriptionof Qutput Routines ciiiiiiiiiiinnnn. 61
Description of Input Routinescccviiiiiiiiiinnnnnn.. 91
. Utiity Module i i i i ittt e ciaieneens 124
Iv. SamplerModuleoiiiiiiii i i i it e 159
V. BuffersModule ... oot ittt e 208
VL. CollecterModuleccuiriiiiiiiii i iiiiieerenennnn. 209
VI CONCIUSIONS ..ottt ittt ittt ettt e naaeeannn. 274
Biblography ..o e e it e e 276
Appendix A: Enhancements Module Listings 277
Appendix B: Utility Module Listingsccoiiiiiiniiiiin i, 314
Appendix C: Comparison Timing Calculationscccvvivunen... 333

LS

WYy O POy W ler-g—y v vVvrrrrElawv vt T v

"WTWVEEEN WYY VWb P Y v

Aut,
o

L) .~

Appendix E:
Appendix D:
Appendix F:

Appendix G:

Appendix H:

BuffersModule Listing.......................... e 367

Sarﬁpler Module LiStiNGSoeueeneeeineeaennnnn. 335

Coliect_Data Module Listingscovvieen... 369

AIOPLZSModulecoiveiiiiiiie i, 390

Scale_FactorModule 416

.. 429
iv

e W W GT WY, .

List of Figures

Eigure Figure Name _Page_

Introduction Figures
1 DataCollection Systemciiiiiiiiiiiniiineeerncens 2

2 Resolution of Least Significant Bit for Various Sized Analog .. 4
to Digital Convenrters and Input Signal Ranges

3A Data Flows Between the Major Processes ofthe Data 13
Collection System, the Operating System, and the User

38 Hierarchical Relationships Between Components of the Data.. 14
Coliection System, the Operating System, and the User
Enhancements Module Figures

4 Relationship of Enhancements Module Routinesto Calling 22
PLZ Routines and to PLZ STREAM.IO Module Routines

5 Routines and Relationships Used to Read in a Decimal 24
Value and Output a Hexidecimal Value

6 Relationship of ASCIIto PLACE_LOOPcc.ov.t. 28
7 Relationship of VALUE to Other Routines 31
8 Relationship of VALUE_LOOP to Other Routines 34
9 Relationship of PUTCH to Other Routines 38
10 Relationship of GETCH to Other Routines 41
Y
T 2 S R B LR R RN

LS PRt To bk Sl St it Ao S dadh N mwm“ﬁwwmm

A% Eigure Figure Name _Page_

¥4

11 Relationship of GET_ASCII_CH to Other Routines 45

12 Relationship of PLACE_LOOP to Other Routines 48

13 Relationship of VALID_BINARY_CH to Other Routines ... 51

14 Relationship of VALID_DECIMAL_CH to Other Routines . . 55

15 Relationship of VALID_HEX_CH to Other Routines 58

16 Relationship of WRITE and WRITELN to Calling 61
Routines and PUTSEQ.

17 Relationship of Byte WRITE_xBYTE and WRITE- 66
LN_xByte Routines to Other Routines.

18 Relationship of Logical-Byte WRITE and WRITELN 70
Routines to Other Routines.

% 19 Relationship of Decimal-Integer WRITE and WRITELN 74

Routines to Other Routines.

20 Relationship of Decimal and Hexidecimal Word WRITE . .. 79
and WRITELN Routines to Other Routines.

21 Relationship of Pointer WRITE and WRITELN Routines 83
to Other Routines.

22 Relationship of WRITELN_RCODE and WRITE_RCODE. .. 87
to Other Routines.

23 Relationship of READLN to Calling PLZ Routines and. 91
to GET_ASCII_CH.

24 Relationship of READ_HBYTE to Other Routines 95

25 Relationship of READ_BBYTE to Calling PLZ Routine, ... 99

GET_ASCII_CH, and VALUE_LOORP.

' vi

R

-l

p T Figure Figure Name Page
) 4

¢ 26 Relationship of READ_DBYTE to Other Routines 103
'

S 27 Relationship of READ_LBYTE to Calling Routines 107

: and to GET_ASCII_CH.

. 28 Relationship of READ_DINTEGER to Other Routines 111
A 29 Relationship of READ_HWORD to Other Routines 115
A 30 Relationship of READ_DWORD to Other Routines 119
3 L]

o

P

Utility Module Figures

" 31 Relationship Between the Routines of the Utility 125
: Module to Calling Routines and System Elements

<

B é 32 Example of PLZ Activation Record -- ALLOCATE 127
¥

. 33 Relationship of IOOUT to Calling PLZ Routines and.. 129
. the Central Processing Unit
2 34 Relationship of IOIN to Calling PLZ Routines and the 132

Central Processing Unit.
N 35 Relationship of MEMSET to Calling PLZ Routines 135
A 36 Relationship of MEMREAD to Calling PLZ Routines 138

. 37 Relationship of DISABLEINT to Calling PLZ Routines.. . .. 141

x and the Interrupt Setting of the Central Processing Unit.

<

d
5 38 Relationship of ENABLEINT to Calling PLZ Routines 144
_ and the Interrupt Setting of the Central Processing Unit.

'
" 39 Relationship of DATE to Calling PLZ Routines and 146
a Memory Locations of Data Characters.
)
DY vii
.
Ca
(
,y s R N R N T N

O -

-

o

oL AL T

-

A_a_ a8 &80,

aUA AN N Y

Figure Figure Name _Page_

40 Relationship of ALLOCATE to Calling PLZ Routines 149
and the RIO Operating System.

41 Relationship of DEALLOCATE to Calling PLZ Routines . .. 154
and to the RIO Operating System.
Sampler Module Figures

42 Relationship of SAMPLER and its Subordinate 162
Routines, the Interrupt Service Routine, and to the
Calling Routine.

43 Operation States During Subrodinate Routine 163
COLLECTER Including the Interrupt Service Routine

44 Counter/Timer Combinations Used for Real Time Clock . . 165

45 Activation Record for Call of Sampler Module 168

46 Relationship of VALIDATE to SAMPLER andthe 173
System Stack.

47 Relationship of ATODINIT to SAMPLER and AIO Board .. 177

48 Relationship of CTC_PROGRAM to SAMPLER, the 180
CTC1, and the System Stack.

49 Relationship of INT_SET_UP to SAMPLER,the 184
System Stack, the Interrupt Jump Table, and the Z-80
CPU Alternate Registers.

50 Relationship of INIT_COLLECTER to SAMPLER, the 186
System Stack, and the Primary Registers of the Z-80 CPU.

viii
R G R LAy SRR SRR ST AN :;\:;-.:. SR NS NN N N RYTHLY

51

52

53

54

55

56

57

58

59

60

61
62

Figure Name

Relationship of USER_READY? to SAMPLER, the

System Stack, the Z-8@ Primary Registers, and the
RIO Operating System.

Program Flow Within USER_READY?

Relationship of START_TIMER to SAMPLER, CTC,

and the System Stack.

Relationship of COLLECTER to SAMPLER, System

Memory, the Z-8@ Primary Registers, and the AlIO Board.
Relationship of CTC_OFF to SAMPLER and the CTC ...

Relationship of DEALLOCATE to SAMPLER and the

System Stack

Relationship of TO_SAMPLE to CTC Interrupts, the

Z-8Q Alternate Register A, and the AlO Board.

Relationship of TC_SAMPLER to CTC Interrupts, the

Alternate Registers of the Z-8@ CPU, and the AlIO Board.

Collect_Data Module Figures

Data Flow for Collect_DataModule

Relationship Between STRING_COPYand

CREATE_DATA_FILE

Relationship of ASCll and CREATE_DATA_FILE

Relationship of GET_DATA to SAMPLE_DATA and DATE . .

189

190

194

197

200

202

203

205

211

220

222

225

AatASelio AR RO TN A e At AR A 1% A I N A RGOR R R, a6 gt a0 i Rt e R AL RS O N S A e At b et e RRCAR AR ARt AR R SRS AN A

G Figure Figure Name _Page
63 Relationship of FIND_TIME_CNSTto 228
FIND_CTC_COMMANDS
64 Counter/ Timer Combinations used for Real Time Clock . .. 231
65 Relationship Between FIND_CTC_COMMANDS and 232
PREPARE_COLLECTOR and FIND_TIME_CNST
66 Relationship Between SIZE_DATA_BUFFERand 235
PREPARE_COLLECTOR
67 Relationship of ERROR_IN_PREPARE to Its Calling 238
- and Subordinate Routines
68 Relationship of PREPARE_COLLECTOR to SAMPLE_ ... 242
DATA and its Subroutine Routines
N 69 Relationship of ERROR_IN_CREATE toits Calling 245
% Routine and Subrodinate Routines
G’ 70 Relationship of VALID_STRING to CREATE_DATA_FILE .. 248
71 Relationships Between CREATE_DATA FILE, 251
SAMPLE_DATA, and Subordinate Routines
" 72 Relationship of LOAD_DATA_FILE to Other Routines 256
‘
. 73 Relationship of CLOSE_DATA_FILE to Other Routines 260
74 Relationship of ERROR_IN_SAMPLER to SAMPLE_DATA .. 263

to SAMPLE_DATA, CLOSE_DATA_FILE, and WRITELN

75 Relationship of SAMPLE_DATA to its Calling Routines 267
and to its Subordinate Routines

A M

Figure Name

AlO.PLZ.S Module Figures

Relationship of AIO.PLZ.S Routines to Their Calling
Routines, the Routines of the Utility Module, and to
System Elements.

Relationship of AIO_INIT to Calling PLZ Routines and

the External Routines.

Relationship of IN_CHAN_SEL to Calling PLZ Routine ...

and IOOUT.

Relationshipo of IN_DIGITALP to Calling PLZ Routine ..
and IOIN.

Relationship of IN_DIGITALT to Calling PLZ Routines, ...

IN_CHAN_SEL, and IN_DIGITALP.

Relationship of OUT_ANALOG to Calling PLZ Routines . . .

and IOOUT.

Scale_Factor Module Diagrams

Hierarchical Organization of Scale_Factor Module

Program Execution Flow Within CHANGE_SCALE

M * » 4 AR QAR BN AU LN e 4’2 & i.¢ . 82 i’ 42)" 1 0 . V.8 4.8t v.p b .

h e e e m o

@ Abstract)

: \
; -

| % "~ | A computer controlled data collection system was designed and
g partially infw;)lemented in software. The design concept is for a data collection unit

to be placed inside the system being tested where it stores the test data in an
internal memory. Post-test this internal unit is connected to and polled by an
external control and data storage unit which archives the data. Both units are

LY

computers. This combination of an internal data collection unit and an external

.'

control and storage unit is intended for testing applications where it is either
undesireable or not possible to connect the sytem being tested to external data
v, recording devices during the test event.

' é The partial implementation of this dual unit data collection system

design was performed on a Zilog MCZ Z-80 development system in PLZ, a
¢ Pascal-like language, and Z-80 assembly language. Routines to improve the
: input / output and hardware access of PLZ were written and used. The software
to implement the internal data collection unit and portions of the external control
and data storage unit were also written. The internal unit routines employ a Zilog
Counter Timer Circuit to generate sampling period interrupts. The analog to

CoCNEAT ALY

digital conversion is accomplished via a Zilcg Analog Input Output (AIOI) board.
The data collection system is not fully operational. ,‘

-~

|. Introduction

Whenever a system is tested, a major part of the activity is collection of
performance data. "Did it work ?" is not a question answered by the outcome of
test alone. Rather it is answered by an evaluation based on the information col-
lected during the test. In the past, this performance data might have been man-
ually collected, notes carefully recorded in an lab book, or as a photographic
image of an oscilloscope trace. Today's technology permits the collection and
storage of performance data in electronic forms, both analog and digital. Besides
automating the data collection process, this electronic collection of data permits
analysis without having to manually reenter the data into computers.

The automated collection of performance data is accomplished by
attaching sensors to the system under test and then connecting the sensors to
some data recording equipment. The sensors translate the physical responses of
the system being tested into electrical signals. Examples of sensors include
strain gages for movement and pressure; current, electric field and magnetic field
sensors for Electromagnetic Pulse testing, and microphones for human speech.
The data collection equipment stores the sensor generated signals. Examples of
recording equipment include tape recorders and transient digitizers like Tektronix
7912s. The connection between the sensor and the data recording equipment
can range from simple twisted pair wiring to multiplexed fiber optic links to the RF
data links from tagged grizzly bears through the TDRSS satellite to NASA's
ground siations. The length and type of connection used is dependent upon the
nature of the system being tested.

There are instances in testing however where it is either physically
impossible or undesirable to connect the item under test with some external data
recording system. For example, the "black boxes" of airplanes, the cockpit voice
recorders and the flight data recorders, are internal to the system. It is not feas-
ible to hard wire aircraft to ground based recorders or squander the RF spectrum
on data links. Another example is Electromagnetic Pulse (EMP) testing. Exter-
nal data recorders can not be wired to sensors in the aircraft undergoing EMP
testing for the presence of these conductors alters the EMP response of the air-
craft. Use of dielectric instrumentation cables, like fiber optics is one solution,
though this tethers the test object. RF links are also possible though complex to
set up and often limited in bandwidth. Another solution exists and is used. The
sensor data is stored within the system being tested and then extracted after the
test event is over. In the first example, the flight recorders are recovered from the
crashed aircraft; the crash being the test event. In the EMP example, an early
procedure was to put oscilloscopes with cameras inside shield boxes (EMP &
noise "proof" enclosures) and place these boxes within the aircraft; the exposed

Introduction 1

PSS

%

e h ™
NS
v

film was recovered after each EMP exposure (Ref 12). In both cases, the data is

saved in recording equipment placed insicle the system being tested and then the
data is retrieved after the test is over.

This thesis investigation considers another version of the internal data
storage approach discussed above. The sensors on the item under test are con-
nected to a data recording unit located inside the test item as shown in Figure 1
below. This internal data collection unit is a microprocessor / memory system that
samples sensor data at a programmable rates and saves the data in random
access memory (RAM). Pretest, the internal data collection unit is programmed
for the desired sampling by the external control and data storage unit. Next, dur-
ing the test, the links between the internal unit and the external unit are severed
or ignored. Post-test, the internal data collection unit is reconnected to the
external control and data storage unit. The data is then transferred out of RAM to
the external unit and saved in some long term storage medium like a floppy disk
or data tape. The external control and data storage unit would also handle

simple data scaling and printing of the data and could be available for User data
manipulations as well.

External Control &
Data Storage Unit

Programming (pretest)

a Data (posttest)

| er Test

Figure 1. Data Collection System

Both the internal data collection unit and the external data storage
system are digital devices , adapted through their software for the specific needs
of each data collection effort. The object code of the collection unit, would likely
be ROM based; for the storage system the object code would probably be called
from disk. The key is that the collection unit and the storage system must com-
municate with each other based on a common understanding of purpose. An
example of this type of system is the Tektronix 7912 and a post test polling com-
puter (Ref 11). This thesis deals with the software required to make such a sys-

Introduction 2

- - (" A R o S AR S N SN IR 2 T P TR P A S A i R SR A P e
..—S.",’.fjf‘(ﬁvl.‘ - f q :}» J\-,‘ .‘ e .’.I.\ 1"-\ \.p:gx'\ ;".‘w.- \!\ K \ \ \ \ \‘-‘ " e L .

RN s)

"o

RARANAAN

e g e w2

PN S, T Y I TEE A VVS T VT O

tem work (in conjunction with the hardware of the system), the software of the
internal data collection unit and the external data storage system.

Requirements of Data Collection System

While it is simple to state the purpose of a data collection system, "To
Collect Data", it is more important to examine the characteristics or attributes re-
quired of the system. The primary attributes of concern for this data collection
system are accuracy, data integrity, flexibility, and a simple user interface. In
practice, it is vital to quantify the specific requirements for each attribute; to define
exactly what the necessary performance characteristics are. As this thesis is not
tageted to any specific application, the following discussions of accuracy, data
integrity, flexibility, and a simple user interface are general.

Accuracy

For a data collection system to have any value, the
data it collects must as accurately as possible represent the original physical
phenomena or sensor signals that were sampled. There are three facets to this
requirement for accuracy: amplitude fidelity, sampling period, and data scaling.
The need for amplitude fidelity will be discussed first.

The mapping between the amplitude of the analog signal being sam-
pled to the digital values stored has several variables: analog to digital (A/D) con-
version fidelity, linearity, and sensor impacts. First, the analog to digital (A/D)
conversion must have as much fidelity as possible. Obviously more bits do yield
greater fidelity. This increased fidelity is paid for in increased hardware costs or
settling times. The objective in selecting the number of bits of the A/D converter is
to match its conversion range to the data signals of interest. This matching has
two aspects, maximum amplitude (or dynamic range) of the input signal and
resolution (units per least significant bit or scaling) required by the test applica-
tion. Any A/D converter can be matched to the maximum expected amplitude of
any given signal through the use of attenuators or amplifiers; the resolution of
amplitude is another matter however. Figure 2, below, shows the resolution
variation for a variety of A/D converter sizes and signal dynamic ranges. The
selection of the size of the converter must be based on the expected dynamic
range of the signal and the resolution or scaling required. If there is a mismatch
in dynamic range , the analog signal may overflow the A/D converter or the sig-
nal may register only in the least significant digits. Through correct matching of
the input signal to a properly sized A/D converter with amplifiers or attenuators,
the amplitude of the analog signal will be accurately represented with the resolu-
tion necessary for the specific signal or sensor of interest.

Introduction 3

AR Rl B S S LA Nl N N e Rl S R G A A At 0 Bl e i DR e e L

v
Resolution of Least Significant Bit
Size of Analog to Digital Converter
Total Elements | 4 g4 | gt | 12-Bit | 16-Bit
Signal Range 16 256 | 4,096 | 65,536
2 to 1 263 | 004 | 0002 |.00002
@ to 10 625 | 939 | .0024 |.000Q15
@ to 100 6.25 | .391 D244 | 00153
2 to 1,900 62.5 | 3.91 2442 | .01526

Figure 2. Resolution of Least Significant Bit for Various Sized Analog to
Digital Converters and Input Signal Ranges

A second variable of the mapping between the analog signal's am-
plitude and the digital values is linearity. It is desirable for the bit change to be
the same for a signal amplitude change regardless of where in the dynamic
range the signal change occurs. The delta bits for a 98.7 to 99.0 volt change
should be the same as for a 7.3 to 7.0 volt change. This linearity is a function of
the A/D converter and any signal conditioning equipment (attenuators or ampli-
fiers). Two courses of action are available, get as linear a system as possible or
measure the nonlinearity and extract its effects posts test.

The third variable is the sensor itself. Though sensor concerns are
outside the scope of this thesis, the resolution of the sensor must be matched to
the physical phenomena being measured. As with the A/D converter, dynamic
range and resolution are of concern. Linearity is a concern for the sensor also.

The second facet of the requirement for accuracy centers on the sam-
pling period. Of foremost concern is that the sampling rate be sufficient to cap-
ture the frequencies of interest in the input analog signal. Beyond the sampling
rate, are two aspects of concern for the generation of the sampling period. First,
the sampling period employed must be stable; that is the time between samples
is constant from the beginning of data collection through the end. This is depen-

Introduction 4

NN SRR 2T R R AL RN SR P SO Y AR R R ST PR R PRt o PR GG PO R A
N T IS L PR O R A R AR L L CR PR T Sy W (RS DR SRS ARy AR CR R N N S SO Rt SEOLEEN

mmﬂﬂmviv.w I ASaifach o g te A Rio UL R R0 3 G pfn) 48 0o R0 <ai A, la tuli U nal A ah b bR R Sut a0, ahoal nn ety il ety ot

A dent upon the clock used to trigger individual samples. The second aspect of
‘ concern is that the sampling period empioyed should be what was specified.
Few things could distort test findings more than to have the time base unknow-
ingly off. Correct implementation of the specified sampling period is a function of
both the clock used and the routine that translates the specified sampling period
into hardware controls or programming.

The preceding paragraph discusses continuous samplers. Another
type of sampler, event driven, also exist. Event driven samplers collect data only
when something of interest occurs. For this type of sampler, timing accuracy
centers on knowing when the event occurred. Event driven samplers are not
within the scope of this thesis effort. However, for continuous samplers, know-
ledge of when the sampling began, or a time tie between the sampling interval
and some external event is valuable.

The third facet of accuracy requirements is data scaling. Each step
from the actual physical phenomena to the digital data stored alters the represen-
tation of the phenomena. A pressure of 3 KPa is translated by a sensorinto a 3
volt signal; an amplifier boosts this to 27.3 volts; a 12 bit A/D converter transforms
it into the binary string 100013111100. Data scaling is the process of conven-
o ing this binary string back into physical parameters. The process can be as
ﬁ straight forward as multiplying the digital value by a single scale factor. It could
be a complicated filtering effort involving multiplication by an amplitude depen-
dent scale factor to remove nonlinearities produced by the sensor. In either
case, the scaling process must be uniquely accomplished for each sensor to
satisfy this third facet of accuracy.

—Data Integrity

Data integrity is the second attribute required of a
data collection system. Data integrity simply refers to the data being protected
from loss or alteration from improper or inadvertant actions. Tests are not inex-
pensive and to loose test data or have it altered could force a retest or perhaps
acceptance of the loss of unreproducable data (aircraft flight data recorders for
example). Also including in data integrity is data traceability. As files of data are
manipulated, it is vital to know what the original raw data file was and which file
was the immediate parent of the manipulated file.

&

Introduction 5

| QT ath R R S ala iR gl e 2 h Pl A S SN o'h AL N o Vh Ne ot ottt ML SR RAS D CLAD sl G0 Sl Vot el et Al oty iy Ry 20 Sl te Ryt 4

b Flexibility

A data collection system having the attribute of flex-
ibility is a system that can readily adapt to changing data collection efforts. This
attribute can be examined from two perspectives, the flexibility to adapt to ditfer-
ent systems being tested and the flexibility to adapt to changing needs during the
test of a single system.

It makes sense for a piece of test equipment , such as a data collection
system, not to be tailored to a single specific system under test. If it were tailored
it would have to be developed anew for each new system being tested. Instead,
the data collection system should be sufficiently broad in its capabilities to sup-
port a reasonably wide range of applications. This could mean being able to
withstand both the g-forcas of an aircraft and the thermal environment of a tank in
desert testing. This could mean being able to record information from both a cur-
rent transformer hooked to a high voltage line and a strain gage on a tactical
shelter during an overpressure test. This could mean being able to both record
1,000 samples in 10 seconds of transient response measurement or one sam-
ple every 10 seconds of long term stability measurements. In the actual devel-
opment of a data collection system, the scope of application would have to be
clearly defined in order to establish firm design requirements. The following are

- examples of the kinds of variations a general purpose data collection system
‘ (intended to be located inside the object under test) would have to accomodate.

Varied Test Environments. The data collection system, particularly the internal
unit, should be able to operate in many environment such as
high and low temperature, electrical noise, RF, salt water at-
mosphere, pressure, dynamic loads, high humidity or wet
environments, and shock or vibration. Producing hardware
that can function in these environments is mostly a constru-
ction and packaging problem.

Assorted Sensors. A unit intended for multiple purposes must be abie to inter-
face with many different kinds of sensors. The inputs may be
differential or single sided. The sensor output voltages may be
in a millivolts range or 1C's of volts. The impedances of the
sensor and the collection unit must be matched.

Range of Sampling Periods. Sampiing periods range from well above 105 sam-
ples per second for nuclear weapon effects (Ref 11) to less
than one sample per hour for thermal drift. The higher sam-
pling rates will force the use of faster analog to digital conver-
ters, processors, and memory.

Introduction

......
PO TP
S A L Y L NS P IR

L e PR P
e . S EURA AN AR e

Tm,\mnwmr!m 4 o < A -] Y A Lol &t Gt Al AN SR 88

f‘@, Number of Samples. The number of samples needed will vary greatly based on
‘ two factors, the sampling period needed and the frequency
with which the stored data can be extracted. A system requir- ;
ing only one sample per hour could go nearly a whole year on :
1 8K bytes of memory. On the other hand, at 105 samples per ;
{ second, 64K of memory would be filled in less than 190 milli-
seconds. The need for large numbers of samples will rapidly
complicate the internal data collection unit. More memory)
means greater power consumption, more complicated ad- R
dressing, and larger physical size. The longer the interval J
between extraction of stored data, the larger the memory
needs to be.

Frequency of Access. This refers electrical access for retrieval of data or charg-
ing of batteries. If the access is infrequent, then the power sup-
ply will have to sufficiently large to power the unit between ac-
cesses. The frequency of access also impacts the size of the
data storage memory as discussed above.

L g aae oo L
> Y B V P ¥

Physical Dimensions. As the data collection unit will be located within test

objects, It should be as small as possible and be readily
mountable.

In the actual design and implementation of an internal data collection
unit, trade-offs would have to be made between the above capabilities and other
parameters such as cost. For example, one test environment, nuclear radiation
testing, imposes significant problems for electronics. To include this environment
upon a general purpose data collector would impose severe penalties on other
applications. Extremely long sampling periods or very large numbers of samples
are other examples of needs outside the bounds of a "general purpose” data col-
lection system. For these kinds of requirements, specialized units would proba-
bly be created; these special needs just push hardware flexibility too tar. The
software however, would be consistent.

The second perspective on the required attribute of flexibility is the
ability of the data collection system to adapt to changing needs during the test of
a single system. Perhaps predictions were off and signals that were expected to
be 1Q's of volts are actually just a few volts. To have the capability to remotely
adjust the internally mounted data collection unit is quite desirable. With remote
adjustment or programming the test apparatus wouldn't have to be torn apart to)
make adjustments. Perhaps the item under test itself is inaccessible except via
control lines. It is desirable to have the capability to change the following items
NAS remotely.

Introduction 7

T OEN

Input Channel/Sensor Selection. With the ability to remotely shift between chan-
nels or sensor, a single internal collection unit could perform the
function of several. This is an advantage only for reproducible
tests.

Attenuator / Amplifier Selection. The ability to change the gain remotely is vital.
The example above of errored predictions shows an application
where remote adjustment of attenuators would be useful.

Sampling Rate. As a unit is switched between sensors or to accommodate dif-
ferent test interests, the sampling period of the unit needs to be
changed. For example, one test run might be made at 1K samples
per second to measure the inttial transient response followed by a
second test with 10 samples per second to examine the long term
response.

Number of Samples. Given the vanation in sensors and sampling rates, the num-
ber of samples collected needs to be remotely controlled.

Mode of Operation. Should the test go into a ho!d, it would be useful to place the
internal data collection units into some standby state to conserve
battery charge. Other states of interest would be battery charge,
programming, off, and ready, self-test/readiness check.

Flexibility is thus a two perspective attribute of the requirements for the
data collection system. The ability to adapt to both varied test requirements and
changes in an ongoing test are needed.

imp!

The final requirements attribute of the data collec-
tion system is that it have a user interface. This involves four factors, clear
instructions, error diagnostics, operation on the users' terms, and fool tolerance.
The first two factors revolve around the messages passed to the user. Instruc-
tions must clearly spell out what the user is to do and the format it should be done
in. Error messages must tell what went wrong, where it went wrong, and, if possi-
ble, why it went wrong. '

Operation on the users' terms refers to two efforts. First, all commands
need to be in "real world" terms, not values selected for ease of programming.
For example sampling periods should be specified in seconds, not clock cycles.
By requesting and expressing information in terms readily understood by the

introduction 8

h Yo T Yo S0 I

P M

n s A ALY

o'l.
a ¥ty

)

users, the ease of use of the system is greatly enhanced. The second portion of
operation on the users' terms is for the computer to do the work. If translations
between units are required, the routine should perform the transiation rather than
forcing the users to do so. Also included is telling the users what is happening.
Nothing disturbs a person more than sitting by a computer which hasn't "said" a
thing for several minutes. Status feed back is important.

The final factor of a simple user interface is fool tolerance. While no
system can be made totally fool proof, reasonable steps can be taken to avoid
problems. The factors already discussed go a long way towards fool tolerance;
the remaining step is error checking on the user input. Are the users' input com-
mands in range, consistant, of the proper format, and complete? If not tell the
users what is wrong and remind them of the allowable inputs. These steps will
not fool proof the system (the reset switch will still get bumped) but they will
greatly reduce the occurrence of inadvertant errors.

In summary, the data collection system must be accurate, must
ensure data integrity, must have sufficient flexibility, and must present a simple
interface to the users of the system. Though there are design trade-offs within
and among these requirements, a reasonable general purpose data collection
system design can be derived from them.

Hardware Used for this Thesis Effort

Were this thesis effort an actual development of a data collection sys-
tem, a substantial portion of the effort would center on the selection or design of
the hardware which implements the collection system. For this thesis effort, the
hardware was a given. The thesis effort focused on the design and implemen-
tation of the software needed to make the data collection system functional.

The hardware used for this thesis effort was a Zilog MCZ-80 develop-
ment system. It was used for several reasons. It was available, it had an analog
to digital (A/D) converter board, timing chips for generating sampling intervals
were present, a high level language similar to Pascal was available, and exten-
sive assembly language programming tools were available. Thus the MCZ sys-
tem met many of the requirements for the data collection system discussed in the
previous section and provided the software development tools needed to carry
out the thesis effort. The following is an overview of the MCZ system used as
both the software development system and as the target hardware for the data
collection system (Refs 1 through 9).

Introduction 9

ol A 'I-',' 'ﬁ".’-'.' e 'f "o e, 'f PP .‘~ "W -f,.l. s -*:1' ‘-'.‘-‘.". e .1’,:1' ~Q"“-' .v'.: - . '."' .(;_’.\"..l‘{v "-.'.l.-;‘..'f" .‘-‘.'c
h 4 el) N . . A K

TR T

R The MCZ development system consisted of

1. Equipment chassis with power supply and card cage
2. Two 8 inch floppy disk drives.
3. A Zilog MCB Microcomputer board. This board held:
Z-80 microprocessor
3K ROM with monitor routine
System Clock
16K of RAM
Z-80 CTC (Counter Timer Circuit)
Z-80 PIO (Parallet Input Output)
USART (Universal Synchronous Asynchronous Receiver
Transmitter)
A Zilog MCD Board (memory & disk controller) 48K RAM
A Zilog SIB Board (serial interface board, has three CTCs)
A Zilog AIO Board (analog input output card) which has a 12 bit
analog to digital converters.
7. RIO Operating System which mcludes disk operating system.
8. An ADAM-3 terminal.
9. A NEC Spinwriter Printer.

o0

- To prepare the MCZ system for this thesis effort, the AlO board had to
‘i be integrated into the system (Ref 8:Sec 2, Sec 3:5); it had never been installed.
Installing the AlO board required minor rewiring of the mothertioard of the card
cage, addition of backplane connecters for the AlO board's interfaces, and the
fabrication of connection board to permit easy hookup to th2 AlO board's inter-
faces. Once the AIO board was installed, its disk based diagnostics were run and

the board's alignment was checked and adjusted as required (Ref 8: Sec 5).

As target hardware for the data colection system, the MCZ hardware
met several of the data system requirements discussed in the previous section.
The system possessed accuracy with both a 12 bit analog to digital converter and
ample hardware for generating accurate sampling periods (Ref 2, 7, and 8). The
RIO operating system supported disk file operations permitting protection of data
integrity (Ref 4). The system was relative flexible having sixteen input channels
for the analog to digital converter (Ref 8:1) and sufficient memory for both the pro-
grams and data sample storage. The Adam-3 terminal would serve as the user
interface; the bulk of the simple user interface up to the software.

While the MCZ system met many of the requirements for the data col-
lection system, it did not mesh well with the hardware concept of the data collec-
tion system. The MCZ system is a single system; the data collection system con-
cept calls for two distinct hardware units, the internal data collection / temporary

N ,
e storage unit and the external control / archival storage unit. This mismatch be-
Introduction 10
iﬂ* R R L O N R R i R A S, S L LN O L L S A DL S

~ &

v
A) . N
D tween the realities of the MCZ hardware and the hardware concept of the data K

collection system is largely resolved in software.

The focus of this thesis effort is the software required to make the data)
collection system work. Thus the reality that a single set of hardware was being
used could be masked, in part, by making the software of the two data collection
units separate and distinct. As will be shown, the software developed for this
thesis effort maintains this division. The software of the internal unit does not talk A
directly to the user except for a trigger signal. The software of the external unit :
does not have direct access to the analog to digital conversion. The program- .
ming the external unit provides to the internal unit is represented by the para-
meters passed between the software of the external unit and the software of the
internal unit. Thus, while a single set of hardware is used, the software of the
data collection system is separated into internal and external units.

Overview of System Design

RN AT

In designing the software of the data collection system software, the

‘-’ first question was "What tasks will the user need to accomplish ?" The principal

task is to collect the data, but what else would the user need to do. Three specific .

tasks and one general activity area were fidentified. The data read in frcm the 2

internal unit and stored in the external unit is raw data. It is in the digital form

received from the A/D converter. Thus, an important task is to translate this raw

data into data set in real world terms; the raw data needs to be scaled. To main- 3
tain data integrity, this scaled data should be written into a new file leaving the

original raw data file unchanged. To accomplish the scaling, the user must g

specify the scale factor to be used; a unique scale factor for each input channel.)

L

L

4

)

Thus a third type of file is needed, a file of scale factors. Having translated the
information of the raw data file into the information of the scaled data file, the

users would probably want to print out the data or perform further manipulations ?
of their design or choice. The printing out of data is the third specitic task of the R
data collection system and the user defined manipulations are the general 2

activity area. One final feature of the data collection system is a common user
interface so all the the tasks can be invoked in a consistent fashion. Thus the five
tasks the data collection system must accomplish are

Collection and Storage of Data "
Setup of Scale Factors in a File N
Produce a File of Scaled Data from the Raw Data and Scale Factors -
Output of Data Files (Both Raw and Scaled)

s Support User Manipulations of Data

Introduction 11

“
L 4

Y T

LN W

e A0 .Y

& &« @ W

all with a consistent user interface.

Figure 3A below shows how these five tasks or processes interact with
each othcr, the operating system, and the user. The common user interface is
present as an interface or interpreter between the operating system and the pro-
cesses of the data collection system. Though the figure implies that all operating
system calls would go through the user interface, this is not necessarly the case.
Once a process begins its execution, standard operating system calls and mes-
sages to the user would go directly to the operating system rather than through
the interface. Thus elements of the common user interface are implemented
through out the processes of the data collection system.

Figure 3B shows the elements used to implement the data collection
system shown in Figure 3A and shows the hierarchy of these elements. The pro-
cess of Collect and Store Data of Figure 3A is implemented by Collect_Data
Module and Sampler Module along with the hardware elements and calls to the
operating system. The Set Up Scale Factor Filed process is implemented by the
Scale_Factor Module of Figure 3B, again assisted by operating system calls.
The Figure 3A processes of Scale Data, Output Data, and User Data Manipula-
tions, were not implemented. Shown in Figure 3B as portions of the operating
system are three modules of general support software which were implemented
as software development aids. The common user interface of Figure 3A is par-
tially implemented and is represented in Figure 3B by some of the calls to the
operating system from Collect_Data Module and Scale_Factor Module.

In the following paragraphs, the activities performed by each process
of the data collection system and, when appropriate, an overview of how the pro-
cess was implemented the will be presented. The purpose and design of the
general support software will also be presented. Information of greater detail on
design and implementation for each module is presented in later sections of this
thesis for each software module. Please note that the software developed for this
thesis effort addresses only the Data Collection and Storage process and the Set
Up Scale Factor File process. These processes were implemented since their
output is required as input to the remaining processes. Also, the remaining
processes are simpler to implement and can be, in part, built frcm the routines of
the implemented processes.

Introduction 12

ﬁ\-',\q' o« Q"n'.-’..f‘.-‘ " -' * .-' < -\' N

[4
s

User Inputs

Keyboard Monitor Screen Printer

v
Operating System

Common User I_n»terfa_ce |

%

Cdllect &
Store Data

Scale
Factor }

Files J

—>

Set Up Scale
Factor File

1 Output Data |-~

Scale Data

N/
User Data
Manipulations

Figure 3A. Data Flows Between the Major Processes of the Data Collection
System, the Operating System, and the User.

Introduction 13

SRR
- S

-

User
- \;outine Invocation
%

- Operating System (Routine Selection)

\

Scale Output User
Data Data Support

Collect_Data
Module

Data *

Commands +

Scale_Factor
Module

User & System
Responses
Commands

\& Data x

Sampler
Module

Interrupts*
Respo&

: Commands +

L IR A

PRV

l

CTC f Operating System

S
@
[

Commands | Data
x Enhancements Module

-J;'.‘.‘.‘<n’r'

Utility Module] | Buffer Module

Aga'°9 Analog

t

22 ! Input/Output Commands
#\ Board

Status & Data
& Queries

[Screerﬂ [Keyboard J

- dU ser/

Figure 3B. Hierarchical Relationships Between Components of the Data
Collection System Components, the Operating System, and the User.

- ef e

'ﬁ:'} neral warl

Early in the design process one of the questions
raised was which language should this data collection system be implemented
in, PLZ, Zilog's Pascal like language, or Z-80 assembly language. PLZ offered
some of the benefits of a high level language such as mathematical operations.
PLZ however was quite cumbersome in the string input and output which would
be required for the user interface. Assembly language would be fast and offered
direct access to input output ports,memory, and the Z-8Q registers. On the other
hand, Z-80 assembly language was unfamiliar, 1O was even harder than PLZ,
and math operations would be far more difficult. The selected approach was to
use the best qualities of both PLZ and Z-80 assembly language plus providing
some software "improvements” to PLZ. The software improvements focused on
two areas, string input and output, and on access to system hardware. The string
input and output improvements became the Enhancements Module; the hard-
ware access routines became the Utility Module.

The PLZ Language routines of the Enhancements Module were writ-
ten to make string input and output easier in PLZ. The routines were written to
approximate the standard Pascal read and write statements (Ref 10: Sec 7.2).
The major difference is that the Enhancements Module routines all have in input

\ parameter for the logical unit number, where Pascal handles device specification
L5 as an optional parameter with the compiler sorting things out. The PLZ compiler
was not capable of this. The choice for the Enhancements Module was to use a
mandatory logical unit parameter or add new routines and global variables to
switch between logical units. The logical unit parameter approach was selected
as it is closer to the Pascal implementation and would yield far more readable

code. The Enhancements Module routines were fully developed and tested.

The Utility Module assembly language routines were initially written to
give PLZ language programs access to the AlO board. This purpose was expan-
ded to give PLZ language routines access to other portions of the system not nor-
mally accessible to PLZ. The module ultimately contained nine assembly lan-
guage routines. They provide access to input/output ports, individual memory lo-
cations, the system date, the operating system memory manager, and the enabl-
ing / disabling of the Z-8@ CPU interrupts. The nine assembly language routines
of the Utility Module were completely developed and tested.

With the "improvements" provided by the Enhancements Module and
the Utility Module, development of the data collection system software could
begin.

.
t.', Fl
s

Introduction 15

\
B P e i te ey L o . e " N - - Pt - e e lte s et atatp gyt S e S
B o e e e e o e o o o ey S S T2 Sy S et T

Py 3 o " " A y » . R R 3 R A g » A 3

%

AAKH

\..“.h-'

llect an re D

This process is the heart of the data collection system
for it is in this process that the analog data is collected, converted to digital data,
placed in temporary storage, transferred to the external data storage unit, and
archived on magnetic media. The design of this process and its implementation
in software focussed on two competing sets of constraints. First, the design
looked the requirements for the data collection system discussed in the previous
section. Second, the design had to live within the constraints of the Zilog MCZ
development system. In addition, the software of the internal data collection /
temporary storage unit and the software of the external control / archival storage
unit had to be separate and distinct to keep faith with the hardware concept of the
data collection system. The design process for the Collect and Store data pro-
cess looked at three basic areas, the analog to digital conversion, the timing of
the sampling periods, and the archival storage of the converted data.

Analog to Digital Conversion. The design of the analog to digital
conversion portion of the Collect and Store Data process was based on the capa-
bilities of the AlO (Analog input Output board). This board satisfies many of the
requirements outlined in the opening section. The board has a 12 bit analog to
digital (A/D) converter; this meets the needs for accuracy. Via programming, the
board can address any one of sixteen input channels; this meets the flexibility
need for in place adaptability. The A/D converter settles in about 2@ micro-
seconds (Ref 8: Sec 3.5.5). Giving a liberal allowance for program overhead this
permits a minimum sampling period of about 5@ microseconds, a reasonable
minimum for a general purpose data collection system. The board is hardwired
for +/- 10 volt full scale inputs and coding the output in two's complement format
(Ref 8: Sec 3.5.1).

Given the capability of the AlO board, the method of employment was
determined. The AIO board would be programmed into a polled input mode (Ref
8: Sec 4). Then, upon receipt of a timing signal, the desired input channel num-
ber would be written to the board; this initiates an A/D conversion. The control-
ling program then goes into a loop, polling the AlO board's status register until
the data ready flag is raised. The controlling routine then reads the data from the
AlO board and stores it in memory. This sequence is repeated for each timing
pulse. Initial design of the software was accomplished in PLZ. This initial soft-
ware is the AIO.PLZ.S Module. For the final program, assembly language was
selected for reduced overhead and simpler handling of the timing pulses. The
assembly language program which, among other things, implements this process
is the Sampler Module, the software of the internal unit of the data colection
system.

Introduction 16

LA LS

s Timing of Sampling Periods. The second general area of the
\Sh0 Collect and Store Data process is the selection and generaticn of the sampling
periods. The implementation of this timing is based on the timing capabilities of

the CTCs (Counter Timer Circuit) of the MCZ Development System's SIB. The

CTC can be easily programmed to generate periodic interrupts with intervals of

6.515 microseconds to 26.68 milliseconds (Ref 7: Sec 3.7). This timing capability

meets the needs of accuracy and begins to satisfy the requirement for fiexibility

discussed in the opening section. The 26.68 millisecond maximum however is

not sufficiently long for a general purpose data collection system. So, a sixteen

bit counter was added. The combination of the CTC timer and a sixteen bit coun-

« ter yields a maximum timing period of 29.14 minutes; this meets the needs ot
4 flexibility.

Building upon the capabilities of the CTC, the sample period timing
software of the Collect and Store Data process was designed. The software had
four purposes, calculating the CTC programming values, initializing the CTC
interrupts for the sampling periods, determining the interrupt service routine para-
' meters, and shut down of the CTC interrupts. Since the calculation of CTC pro-
" gramming values is a math intensive effort, this task is accomplished by a PLZ
routine in the Collect_Data Module (external unit). These values are passed to
the Sampler Module (internal unit) where the CTC is programmed. Also inside y
the Sampler Module are the interrupt service routines. The interrupt service rou-
% tine used for short sampling periods employes the CTC exclusively. The routine
for longer timing periods uses a sixteen bit counter in addition to the CTC timing.
In both routines, a channel selection byte is written to the AlO board to initiate ,
each analog to digital conversion. The final CTC related software accomplishes .
the shut down of the interrupts. These shut down activities are also in the Sam-
pler Module portion of the software. .

This division of activity between the Collect_Data Module and the
Sampler Module tracks with the division of function between the internal data
collection/storage unit and the external control/long term storage unit. The pro-
gramming values needed by the internal unit (Sampler Module) are developed in
the external unit (Collect_Data Module) and passed to the internal unit (Sampler
Module) to program the data collection. Thus the software developed in PLZ for
the Collect_Data Module and in assembly language for the Sampler Module
reflects the dual-unit hardware concept of the data colicction system.

Archival Storage of Data The final purpose of the Collect and

Store Data process is the transfer of data from its temporary storage in memory

into a more permanent storage. As with the previous two discussions, the capa- "

: bilities available in the MCZ development system formed the basis for the design.
The Zilog system's RIO Operating System supports disk file operations. It was
re pointless to reinvent the wheel so the RIO disk file opcrations becama the basis

Introcuction 17 .

P A T S A O I

mmmmmmmmm.WIW b Bt S S Vel Al R At Ale A Al

for the long term data storage. In the PLZ language Collect_Data Module, a disk
file is created, filled with the data from memory, and then closed. To sctisfy the
requirements for data integrity, a block of header information is loaded into the
beginning of the raw data file. This header information holds a test identifier, a
tag which all subsequent files based on this original file will also have. This tag is
ment to ensure data traceability.

: The activities of the Collect and Store Data process are thus imple-
mented by the Collect_Data Module and the subordinate Sampler Module. The
combination of the two modules represents the full implementation of the Collect
. and Store Data process, a process that involves both the internal and external
units of the target data collection system. Though the Collect_Data Module is
subordinate to the common user interface process, some portions of the common
, user interface are implemented in Collect_Data Module. Collect_Data Module
: sends messages to the user and performs error checking on the user supplied
; input parameters. Sampler Module also has one direct tie to the user, a request
for a begin data collection. This was ment to simulate a trigger signal.

This process precedes the scaling of the raw data
and focuses on user input of the needed scale factors. Though interaction with
the user via prompts for information on the system screen and keyboard input of
data, a file of scale factors is created. The scale factor file holds sixteen records,
one for each of the input channels of the AIO board. The user interface is menu
| driven, offering the user a choice of six activities associated with editing the

sixteen records of the scale factor file. The process was implemented in the
f» Scale_Factor Module. This PLZ software was successfully complied but due to
time constraints it was not integrated in with the other software. The listing of
| Scale_Factor Module is in Appendix B.
:
3

ale D

The purpose of this process is to translate the twelve bit,
two's complement representations of the raw data file into scaled data. In its
simplest form this would be accomplished by multiplying each channel's data by

the appropriate scale factor from a scale factor file. This process was not
implemented.

-

B VOWRSESREYT BN

,
b

Introduction 18

et g v SR P PP A,

Qutput Data

This process simply prints out the contents of a data file.
The header information in each file would give full identification of the original
test from which the data was collected. Similarly the channel number, sampling
period, number of samples, and user comments would be displayed along with
the data. This process was not implemented.

User Data Manipulations

The final process is left up to the user's needs. However,
to maintain data integrity, file access routines which included the necessary
checks and prohibitions would be provided to the user. With these routines, the
header information maintained in each file would also be maintained in any files
created by user activities. These process support routines were not implemen-
ted.

§ummgry

In summary, the data collection system was partially implemented on
a Zilog MCZ Z-80 development system. The data collection system was design-
ed around five processes and a common user interface. The functions of the in-
ternal data storage unit were implemented in the assembly language Sampler
Module. Some of the functions of the external data storage and control unit were
implemented in the PLZ language Collect_Data Module and its subordinate
Sampler Module. These implementations focus on the Collect and Store Data
process. Of the remaining processes, only Set Up Scale Factor File was worked
on, it being implemented in the Scale_Factor Module.

Overview of the Rest of the Thesis

The remainder of this thesis is devoted to describing the software
modules. The modules are presented in a bottom up order. The modules'
names and purposes are listed below along with the page numbers for the
beginning of their descriptions. The listings of module software are in the
appendices.

Introduction 19

Py)

A N X X

IR e ®e Bt o "B SR el L T

M 8 f. e .C

’
0
A s s eemme s s

L o

WU W -

-®u

RO Module Name Page Description & Purpose

Enhancements 20 Enhancements Module is a set of PLZ language rou- y
tines which make input and output in PLZ programs "
easier. The 38 routines are divided into three groups. ;
There are 2@ "write" routines, 8 "read" routines, and 10 t
internal support routines. Enhancements Module calls
routines of the PLZ.STREAM.IO Module. X

Utility 124 Utility Module is a collection nine assembly language
routines which give PLZ language routines direct ac-
cess to 10 ports, memory locations, the Z-8Q interrupts,
the system data, and the operating system memory 3
manager. To the calling PLZ program, these assembly .
language routines look just like PLZ subroutines. .

Sampler 159 Sampler Module is a single assembly language pro-
gram which sets up and executes an interrupt paced
analog to digital conversion data collection system.
Sampler Module supports the PLZ subroutine call
structures.

‘i Buffers 208 Buffers Module contains no code. It defines a 2,009
byte memory buffer used by the data collection system.

Collect_Data 209 Collect_Data Module is a PLZ language program that
controls Sampler Mcdule's collection of data and then
loads that data into a disk file. Collect_Data must be
linked with the Enhancements, Sampler, and PLZ.-
STREAM.IO Modules. Collect_Data Module has not
been compiled.

AIO.PLZS 390 AIO.PLZ.S Module is a coliection of PLZ language rou-
- tines which, through Utility Module routines, control the
AlO analog input output board of the MCZ development
system. These routines were written principally as de-
sign routines; assembly language versions are in
Sampler Mcdule.

Scale_Factor 416 Scale_Factor Module is a PLZ language program
through which the user would set up or edit a file of
scale factors. The scale factors are used to convert raw
data files into scaled data files.

A

Introduction 19A

.................. Cet . Te ta™
T T R N S R R A R IR L L)

AU S S R T AR L R R S SR e P AT .
}b:*;fkfkq'.\f:f}f. d’-.‘l’rﬂ P I I I R ;'::':n".;" P A N :

. { - -". - - . . - . . N
RN DT S ST AP I ST SO S St S S Sl T St Sl be e

Y ¥ W vV

"N W e W,

[l. Enhancements Module

Introduction to Enhancements Module

Enhancements Module is a collection of 28 PLZ language routines
whose purpose is to make PLZ input/output more Pascal-like. The 2@ "Write"
routines and the 8 "Read" routines were written to emulate their Pascal name-
sakes. Internal to the module are 19 support routines used for data formating,
translation, and error checking. The routines are:

—Internal Procedures —Write Proceduyres -Read Procedures
ASCH WRITE READLN
VALUE WRITELN READ_HBYTE
VALUE_LOOP WRITE_DBYTE READ_DBYTE
PUTCH WRITELN_DBYTE READ_BBYTE
GETCH WRITE_HBYTE READ_LBYTE
GET_ASCII_CH WRITELN_HBYTE READ_DINTEGER
PLACE_LOOP WRITE_BBYTE READ_HWORD
VALID_BINARY_CH WRITELN_BBYTE READ_DWORD
VALID_DECIMAL_CH WRITE_LBYTE
VALID_HEX_CH WRITELN_LBYTE

WRITE_DINTEGER
WRITELN_DINTEGER
WRITE_DWORD
WRITELN_DWORD
WRITE_HWORD
WRITELN_HWORD
WRITE_POINTER
WRITELN_POINTER
WRITE_RCODE
WRITELN_RCODE

The Enhancements Module routines were written to speed up devel-
opment of other PLZ software, to make PLZ a slightly higher level language.
Input/output (I0) in PLZ is somewhat cumbersome. For example, to output the
string "I Like Pascal Best” using PLZ 10 the statement would be:

RETURN_BYTES, RETURN_CODE :=
PUTSEQ(LOGICAL_UNIT, ASTRING, LENGTH)

where LOGICAL_UNIT is the logical unit number of the desired output device,
ASTRING is a pointer to the string "l Like Pascal Best” ("#'| Like Pascal Best %R™

Enhancements Module 20

- N

\5‘.; could also be used in place of ""STRING"), and LENGTH is the number of chara-
cters to be output. Thus, unlike Pascal's single input parameter for WRITELN,
PUTSEQ requires three input parameters. Also unlike the Pascal WRITELN
statement, this PLZ output has two output parameters. RETURN_BYTES is the
number of character actually output and RETURN_ CODE is the operating system
condition or error code. In contrast, using the Enhancements Module WRITELN
procedure the line is:

WRITELN(LOGICAL_UNIT, #1 Like Pascal Best %R')

which has only two input parameters and no output parameters. This is possible)
because the Enhancements Module includes the procedures necessary to check b
and format the input, eliminating the need for the extra parameters. The key dif-
ference between Pascal's WRITELN and the Enhancement's Module WRITELN is
the manditory inclusion of the logical unit input parameter. In Pascal, the output
device number is an optional parameter.

The logical unit parameter was incluced for three principal reasons.

First, the Enhancements routines are compiled appendages to the PLZ language,
not extensions to it. Within these constraints, it simply wasn't possible to imple-
ment an optional parameter. An alternative to an optional parameter would be a
output device selection function. This was rejected in lue of the logical unit para-
e-i meter since one, Pascal doesn't have such a function, and two, it would increase
the overhead of the Enhancements Module, including the addition of module
level variables. The third reason for the inclusion of the logical unit parameter .
was the anticipation that many devices wouid be used rendering the parameter)
particularly useful. For these reasons, the routines of the Enhancements Module 3
include the logical unit parameter.

- .‘

2,

L‘

The other major deviation from Pascal is the use of many read and 4
write statements rather than just four. This was forced by the appendage nature
of the Enhancements Module routines, the limitations of PLZ, and a desire to {
reduce the overhead for cailing routines. In Pascal, the output string is parsed
during compillation; PLZ does not support such actions during compiling. In
Pascal, variables are converted to or from ASCI! by the read and write state- y
ments; PLZ does not support such conversions. In Pascal, all output is either
decimal representations or strings of ASCII characters. To input or output values
in other than decimal representations requires the Pascal program to perform the
conversion. By having separate routines already set up for 1O in , character hexi-
decimal, decimal, binary, and logical formats, the burden on the calling PLZ rou-
tine is reduced. Given the nature of the Enhancements Module, the restrictions of
PLZ, and the desire to reduce the overhead of calling routines, separate routines
were written for each type of PLZ variable.

o The Enhancements Module routines, as appendages to PLZ, do use
. two of the PLZ input output routines of the PLZ STREAM.IO Module (Ref 6: Sec

Y
\
1
)
Enhancements Module 21 i
w
:
1
N

. -.‘-'-"1'-'-' IR - *... -f.

ot N ¢ . . NNy AR
RS .\ ., \i_,,\\); DY et 4\;\') A v .A\t SRS

)

e st -

BN

Y

6). These routines,
routines upon which

PUTSEQ and GETSEQ, are the primitive input and output
the Enhancements Module routines are built. PUTSEQ and

GETSEQ are declaired external to the Enhancements Module. Their relationship

to the Enhancements Module routines is shown in Figure 4.

\

Any PLZ Routines Needing Input/Output Support

RN W\ |/
\ :/':/ Enhancements rll\jodule \:‘\ :/

il o
 »

WRITE & WRITELN .
Routines READ Routines

N

Internal Routines

PUTSEQ

PLZ STREAM.IO

\ / . |
r \ f

J/

Figure 4. Relationship of Enhancements Module Routines to Calling PLZ
Routines and to PLZ STREAM.IO Module Routines.

To show

how the Enhancements Module routines can be used, the

following are some examples of Pascal 10 statements and their PLZ/Enhance-
ments Module parallels. Carriage returns in the output are shown by "«". "%R" is

the PLZ constant for

Example 1

Pascal: WRITELN(This is a Text String Output');

Output: This is a Text String Output.«

PLZ: WRITELN(PRINTER, #This is a Text String Output %R’)
Output: This is a Text String Outpute«

Enhancements Module 22

EAT SN SN W IR PO R PO UL T T N Ve T e e T
N N e e e T N A T N N T A

a carriage return.

.................

o —— —————— " —— T ra—— W . w W =

Example 2
Pascal: WRITE(CURRENT_COUNT, ' items have been sorted.'),
Output: 27 items have been sorted.
PLZ: WRITE_DBYTE(PRINTER, CURRENT_COUNT)
WRITE(PRINTER, # items have been sorted. %R'")
Output: 27. items have been sorted.

Example 3
Pascal:
WRITELN(DIMES, ' dimes plus ', NICKELS, ' nickels totals ', TOTAL);
Output: 17 dimes plus 8 nickels totals 25«
PLZ: WRITE_DBYTE(PRINTER, DIMES)
WRITE(PRINTER, # dimes plus %R')
WRITE_DBYTE(PRINTER, NICKELS)
WRITE(PRINTER, # nickels totals %R')
WRITELN_DBYTE(PRINTER, TOTAL)
Output: 17. dimes plus 8. nickels totals 25.«

Example 4
Pascal: This would require a 25+ line routine, including a 16 item case
statement, to translate the decimal variables into hex.
PLZ: WRITELN_HWORD(PRINTER, ADDRESS1)
Output: 2FC7h

Error checking is both accomplished and ignored in Enhancements
Module routines. The error checking that is performed is distributed among the
routines. Gross errors, like an operating system return code for an 10 error, are
not passed back. Errors like these are ignored or "patched" to permit continued
program operation. This approach was selected to permit the programs to stum-
ble along rather than fatally fail during debugging. This way debugging can pro-
ceed more readily using the expected output and the debugging aid of WRITE_
RCODE to figure out what went wrong. This approach is based on the belief that
once final version software was reached it would be error free and diagnostic
error checking would not be needed. Defensive error checking, such as GET_
ASCII_CH's acceptance of only ASCII characters, remains in place.

To give an example of the distributed error checking, the figure and
text below describethe process of reading in a decimal value and then outputing
it as a hexidecimal value. This process involves thirteen routines, seven for input
and six for output. The routines involved and their reiationship is shown in Figure
5 . Error checking and ignoring is scattered throughout the thirteen routines.
The following is a list of the error related actions.

Enhancements Module 23

A% et ol et ode A0 ole Shg R e &

ii
3
i

-

READ_DWORD WRITELN_HWORD

A
VALUE_LOOP
Y WRITE_HWORD
VALUE]
VALID_DECIMAL_CH PLi‘CE—'—OOP
GET_ASCII_CH ASCII
~
GETCH PUTCH
C’LZ STEAMIO | gETSEQ PUTSEQ]

Operating System

Figure 5. Routines and Relationships Used to Read in a Decimal Value and
Output a Hexidecimal Value.

1. GETSEQ This is an external routine of the PLZ STREAM.IO Module. It
returns to a calling routine the RIO operating system error code,
RETURN_CODE, and the number of characters actually read in,
LENGTH.

2. GETCH This routine calls GETSEQ to read in only one character.
GETCH then ignores the return parameter LENGTH since only

Enhancements Module 24

3. GET_ASCII_CH Only ASCII characters are returned to the calling routine
by GET_ASCII_CH. It checks the character it gets from GETCH
to see whether it is a valid ASCIl character. If it is, the character
is returned to the calling routine. If not, GET_ASCII_CH calls
GETCH for another character and keeps checking and callin
GETCH until a valid ASCII character is read.

4. READ_DWORD This routine does no error checking itself. It depends upon
GET_ ASCII_CH to pass only valid ASCIl characters and upon
VALID_DECIMAL_CH to ok only "@" through "9". READ_
DWORD sits in a loop, calling GET_ASCII_CH and VALID_
DECIMAL_CH until sufficient characters are input. Then READ
DWORD depends upon VALUE_ LOOP to correctly translate the
characters, all aiready verified as decimal, into the NUMBER
passed back to the calling routine.

5. VALID_DECIMAL_CH VALID_DECIMAL_CH examines the characters
passed to it. |If the character is a "@" through "9" VALID_
DECIMAL_CH returns as TRUE, otherwise it returns as FALSE.

6. VALUE This routine is used by VALUE_LOOP to translate a character
into the MAGNITUDE it represents. VALUE will translate the
characters "@" through "F" into values of @ through 16. |f VALUE
does receive a character other than these defined, it returns a
MAGNITUDE of zero.

7. VALUE_LOOP With the MAGNITUDESs returned from VALUE, VALUE_
LOOP translates the string of characters into a single
MAGNITUDE. VALUE_ LOOP checks for overflow with the
addition of each character's contribution to the total value. If
overflow is detected, the output MAGNITUDE is set to the
maximum possible for a PLZ word, 65535 decimal.

At this point, READ_DWORD returns NUMBER to its calling routine. For this
example, NUMBER is immediately passed to WRITELN_HWORD.

8. WRITELN_HWORD This routine depends upon WRITE_HWORD and
PUTCH to handle errors and expects its calling routine to pass
only valid NUMBERSs to be output.

9. WRITE_HWORD This routine does no error checking. It depends upon
PLACE_ LOORP to transiate NUMBER into ASCII characters and
PUTCH to output the "h". It also expects its calling routine to
pass only valid NUMBERSs.

10. PLACE_LOOP This routine also does no error checking. It breaks down

Enhancements Module

N

ags the NUMBER, from most significant place to the ones place,
determining the VALUE of each place. PLACE_LOOP depends
upon ASCIl to correctly translate the VALUEs into ASCII
characters and upon PUTCH to output those characters.

11. ASClI Through the use of a case statement ASCII translates VALUEs ;
into CHARACTERs. If the value passed exceeds 16 decimal, :
ASCIl returns a blank. Thus if any of the higher lever routines
errored, ASCIl will return either a blank or an erroneous h
character between "@" and "F". Thus, the program will continue
to execute though flawed output may occur. '

12. PUTCH This routine ignores all errors returned by PUTSEQ. PUTCH
calls PUTSEQ to output only one character. PUTCH assumes
that the single character is successfully output. PUTCH also
ignores the PUTSEQ output parameter RETURN_CODE
assuming that the output was successful. This permits the
program to continue execution.

13. PUTSEQ This is an external routine of the PLZ STREAM.IO Module. Its
error checking has two return parameters, the RIO operating

system RETURN_CODE, and the number of characters actually p

6 output, LENGTH. £
,

While Enhancements Module is a complete set of 10 support routines $

intended to ease the |0 programming in PLZ, not all PLZ applications will require

all of the routines. In these cases, a new module, containing only the needed ,
routines could be formed and linked in with the application program. An example 7
of such a module, DEBUGS, is listed in Appendix A. Alternatively, the Enhance- 7
ments routines needed could be part of the calling routine’s module. An example
of this approach is Scale_Factor Module (Appendix H). In either case, the PLZ
STREAM.IO must be linked in for access to PITSEQ and GETSEQ.

If speed of execution is of concern, the overhead of the Enhancements *3
Module routines could be reduced by combining the code of several routines into D
one larger routine. This would eliminate the overhead and delay of subroutine .

calls present in the current set of routines. For example the six routines used in
the example above to read in a decimal value could be combined into a single
routine version of READ_DWORD. The negative impact of this approach would
be the duplication of many lines of code in the combined routines.

In conclusion, the 38 PLZ routines of the Enhancements Module were
£ written to make 10 in PLZ a little easier, in effect to make PLZ a slightly higher
\':,:3 level language. These routines have defensive error checking distributed

Enhancements Module 26

Ty e g g ths B QI LR b Al al ghe AV Y, 2" "nd 'Lt et . Li 8w i's 408" y o Y. g ~a¥ TR RO 0 e S s ba‘'ta’l st

k] Qﬁ} throughout the routines but patch or ignore fatal errors in the belief that a routine
‘ that stumbles along is easier to debug than one which fails completely. Though
the Enhancements Module is a complete set of 10 routines, not all applications
will require all 38 routines. In these cases, a module of selected routines could
» be used or the routines needed could be put into the application program's mod-
ule. In either case the PLZ STREAM.IO Module must be linked in.

"

- The following pages detail the 38 Enhancements Module routines.
- For each routine the documentation includes:

-t; 1. Name of the routine or routines,

2. Name of module,

) 3. Language routine is witten in and number of lines of code,
X 4. A synopsis of the routine or routines,

:Zj 5. A data flow diagram showing the relationship of the routine to its

' calling routines and to routines it calls,
bt 6. How the routine is invoked including the input parameter passing
‘ schema and a list of the routines which call,

o 7. The variables and constants used by the routine at the global,

N module, and routine level,
N 8. The names, purpose, invocation, and parameter passing of any

6 other routines called by the routine,

. 9. The output of the routine and any system configuration changes

> produced by the routine,
'_2 10. The testing of the routine and the results of the testing, and
- 11. The location of the program listing.

J

= The program listings for Enhancements Module and the various test
- routines are in Appendix A. Further information on the PLZ language can be
- found in references five and six.
‘-.:

2

\1

Enhancements Module 27

& 1. Name of Routine: ASCII
2. Internal routine of Enhancements Module.

3. Written in PLZ; 22 lines of executable code.

. S is of Rout

ASCII is an internal support routine of the Enhancements Module. It trans-
lates a hexadecimal value (@ through F) into the ASCII character which repre-
sents that value ("@" through "F"). To facilitate the use of leading blanks in stings
of values, ASCI! will return a blank (ASCIl 2@ hex) rather than a zero (ASCII 30
hex) if blanking is selected.

| 5. Routine Relationship Di

PLACE_LOOP

® ASCII

Figure 6. Relationship of ASCIl to PLACE_LOOP.

6. Invocation
a. Invocation Statement
ASCll is invoked by:
OUT_BLANKING, CHARACTER := ASCII (VALUE, IN_BLANKING)

b. Parameter Passing Schema

ASCII has two input parameters, VALUE, type Word, and IN_BLANK-
ING, type Byte. VALUE is the hexadecimal quantity that is to be transiated into
the correct ASCII character. IN_BLANKING is a logical parameter which indi-
cates wether values of zero should be returned as a "@", when IN_BLANKING is

200

Enhancements Module 28

N

AY 5

.
4

¥

e A

s - by .b..’-.c . .

SR G LB Wi Sl AL RS SV NS B il RS S £ NS I R AN YR A A S AN AR B AT AR A PR AN AN I G AN N IE T P B A S S N I S V‘."".’""TW?‘

false, or as a blank, when IN_BLANKING is true. The output parameters are
discussed below.

¢. Routines Which Call ASCII

ASCIl is an internal support routine for Enhancements Module was
written to be called only by PLACE_LOOP, another internal routine of Enhance-
ments Module.

Z.Variables and Constants
a. Global

ASCII uses no globally defined constants or variables.

b. Module

ASCII uses three Enhancements Module constants:
TRUE: Value of 1, logical true,
FALSE: Value of @, logical false, and :
BLANK: Value 2@ hex, ASCII blank character.

8. Other Routines Called

ASCII calls no other routines.

2. Output of Routine
a. Parameter Passing Schema

ASCII has two output parameters, CHARACTER and OUT_ BLANK-
ING, both of type Byte. CHARACTER is returned as the ASCII character which
represents the VALUE input to the routine. However, if IN_BLANKING was True
and VALUE was zero, CHARACTER will be returned as a blank (ASCIl 20 Hex).
OUT_BLANKING is a logical parameter, true if CHARACTER is returned as a
blank, false otherwise. OUT_BLANKING is a flag to the calling routine that a
blank was returned.

Enhancements Module 29

b. System Configuration Changes o

Y

ASCII causes no system changes.

10. Routine Test
a. Description of Test

ASCIl was tested in combination with its calling routine (PLACE_
LOOP) and the hexidecimal output routines WRITE_HBYTE and WRITELN_
HBYTE. The PLZ program output hexadecimal characters to the system console.
Out of range and undefined values were used in addition to a range of valid
values. Unless all routines were working, no output would occur.

& &5

b. Results of Test .

The proper characters were output to the system console for all cases

tested.

¢ -felsmenld
ASCIl's listing is on page 280 in Appendix A. "

J

"

:

X

.

S

W :

PR ARY

Enhancements Module 30

w g d e -

a'aa A

-

¥ o NN

o x50

7,
L

P

S S A S i A A R G O S S O T S Ly TR

1. Routine Name: VALUE
2. Part of Enhancements Module
3. Written in PLZ. 19 lines of executable code.

4. Synopsis of Routine

VALUE is an internal support routine of the Enhancements Module. It
is used to convert from ASCII characters (@ to 9 and A to F) into their hexadeci-
mal values. If an undefined character is passed, a value of @ hex is returned.
VALUE supports some of the READ statements of the Enhancements Module.

5. Routine Relationships Di

VALUE_LOOP READ_HBYTE READ_DBYTE

VALUE

Figure 7. Relationship of VALUE to Other Routines.

6. _Invocation
a. Invocation Statement
VALUE is invoked via:
MAGNITUDE := VALUE(CHARACTER)
where CHARACTER and MAGNITUDE are both of type Byte.

b. Parameter Passing Schema

VALUE has one input parameter, CHARACTER, the ASCII character
that is to be translated into a hexidecimal value.

Enhancements Module 31

........

a ¥ e i W

e,]

SR Nl Sy

| SR N g

a8 8

Cetalatr s

A

P Ll LS

i

[PPN

s % 'y

oA

4
R,

c. Routines Which Call VALUE.
VALUE is an internal support routine of the Enhancements Module. It

was written to be called only by VALUE_LOOP, READ_HBYTE, and READ_
DBYTE.

Z_Variables and Constants
VALUE uses no constants or variables outside of its input and output
parameters.

8._Other Routines Called

VALUE calls no other routines.

9. Output of Routine
a. Parameter Passing Schema
VALUE has a single output parameter, MAGNITUDE, the hexidecimal
value represented by the input parameter CHARACTER.
b. System Configuration Changes

VALUE causes no system configuration changes.

10. Routine Testi
a. Description of Test

VALUE was tested in concert with VALUE_LOOP, READ_HBYTE, and
READ_DBYTE. A short PLZ program read in values from the keyboard and out-
put their value to the system console. Out of range and undefined values were
also input. Unless all the routines worked, proper output would not occur.

b. Results of Test

The correct values were output including when improper values were
input.

Enhancements Module 32

»

hE;

o - .

Q\r.

]

r'a»

v

»
'n IR AN

J‘

‘o ath Ve mtEtall’

1. Ret to Listi

VALUE's listing is on page 281 in Appendix A.

Enhancements Module

AN Y

bk

»
ALY

., et
a ™

- \‘ ..
G N

TNt
BAGASHS

S

33

P W IRV R RT |

4

(L
X

R .
CIEY
LA A)

2 1. Routine Name: VALUE_LOOP
2. Internal routine of Enhancements Module.
3. Written in PLZ; 11 lines of executable code.
4 Nnopsi

VALUE_LOOP is an internal support routine of the Enhancements
Module; it is used by some of the READ routines. VALUE_LOOP translates a
string of ASCIl characters into the value they represent. The string of ASCII
characters (1 to 8 characters) can be in any base as the base is input to
VALUE_LOOP. The routine translates each character into a value (via routine
VALUE), multiplies that value by the base factor for that character's position, and
then adds the character's fuil value to the cumulative value. This process begins
with the least significant bit and proceeds through the higher significence bits. |f
the translated value exceeds the maximum value for a PLZ word (65535 decimal)
the output value is set to the maximum. The routine ends when a blank is
detected or when eight characters have been transiated.

5. Routine Relationship Di

fi
READ_HWORD READ_DWORD
READ_BBYTE READ_DINTEGER
VALUE
Figure 8. Relationship of VALUE_LOOP to Other Routines.
6. Invocation
a. Invocation Statement
VALUE_LOORP is called via:

A

Enhancements Module 34

WtLe L e e e e e e et et T e et e e ma e e e mas. e et e s e et et e tar tam e el e
€T, e e e T e e g T T e e e e e e . v T AN T N e e e, e . e e ey e e A L. 1
L P e, e e, . .‘-'.. EACASREATN AR L) --' .‘ .' AT S S ‘-L_;-'\ ------ 5-' ey -c’\ e -~
&Am\‘.ﬂ‘.&u; P S " _.-LA--- A _L_-‘-_-

v

..........

MAGNITUDE := VALUE_LOOP(INPUT_STRING, MULTIPLIER)
where MAGNITUDE and MULTIPLER are of type Word and INPUT_STRING is a
pointer to an ASCII string.
b. Input Parameter Passing Schema
VALUE_LOOP has two input parameters. INPUT_STRING is a pointer
to the string of ASCII characters to be translated. MULTIPLER is the base of the
number represented by the string of characters. As it is type Word it has a de-
fined range of @ to 65535 decimal though its useful range is 2 to 16 decimal.
¢. Routines Which Call VALUE_LOOP
VALUE_LOORP is an internal support routine of the Enhancements
Module. It was written to be called only by READ_BBYTE, READ_DINTEGER,

READ_HWORD, and READ_DWORD. This is important as error checking is
distributed among the routines.

Z._Varigbles and Constants
a. Global

VALUE_LOOP uses no module level variables or constants.

b. Module
VALUE_LOOP uses one module level constant, BLANK: The ASCII
value 20 hex for a blank. VALUE_LOOP uses no module level variables.
c. Routine
VALUE_LOORP uses two routine level variables, INDEX and FACTOR.
INDEX, type byte, is used to advance through the input character string. Its initial
value is zero. FACTOR, type word, holds the base value of the current character

position. Itis the base (MAGNITUDE) raised to the INDEX power. Its initial value
is one.

Enhancements Module 35

‘‘‘‘‘‘

.........................

.

!

PANARACRA A A A A S-St S R Rt N

VALUE_LOOP calls procedure VALUE to translate each character into
the value it represents. VALUE is also an internal support routine of Enhance-
ments Module. VALUE is invoked via:

MAGNITUDE := VALUE(CHARACTER)

where CHARACTER is the ASCII character to be converted into the MAGNITUDE
it represents. Both CHARACTER and MAGNITUDE are of type Byte.

9. Output of Routine
a. Output Parameter Passing Schema
VALUE_LOOP has one output parameter, MAGNITUDE, of type Word.
It is the value represented by the input character string of the input base. MAGNI-

TUDE can take on a value of @ to 65535 decimal. If the value of the input string
exceeds the maximum value, the maximum value will be returned.

‘ b. System Configuration Changes

VALUE_LOOP causes no system configuration changes.

). Routine Testi
a. Description of Test

VALUE_LOOP was tested along with other Enhancements Module
routines. The complete set of routines are necessary for correct function. The
integrating PLZ program read in character strings from the keyboard, translated
their value (using VALUE_LOOP and VALUE), and then output the value to the
system console. Various valid character strings and several out of range and
invalid strings were input.

b. Results of Test

The correct value was output to the console for all cases tested.

. .s':%'

l

Enhancements Module 36

SN NI AN R P AN P I O "-"q""u’"-';:-," '\"'I.: A e AR R . R P A A S RSP L

e et

L7,

“R 11, Ref istin

The listing of VALUE_LOOP is on page 282 in Appendix A.

[
¥ 9
L
L
9
L
&
L)
]
L]
'
3 "
3
N L
N I
O L
L)
-« '
-
L
K a
2 o
L
- L
L
4‘ b
™ L
s
o
xS
<
<+
"
L4
3

X,
d [
" 1
4 k
- Y
g b
) |
\J
‘, S
Y
L]

Enhancements Module 37

\ " r A Ta R e v B "ATa e " AR tam. - . R S
's NS DI S R S A O, e -\.'w. AN \1 Lol '* " L \i Nt ‘! rs) :“.: T~ !ﬂ‘ ".:"". SO

P e W

e ot

&N iy

,-.JJ’

” e 'f."

e

o ~dl.: -

...................

1. Routine Name: PUTCH

2. Internal routine of Enhancements Module.

3. Written in PLZ; three executable lines of code.
4 nopsis of in

PUTCH is an extremely short routine which interfaces the output routines of
Enhancements Module with the output routine of the PLZ Stream {O Module,
PUTSEQ. Where PUTSEQ has five parameters (three input and two output),
PUTCH as only two input parameters. PUTCH thus insulates the output rou-
tines of the Enhancements Module from the added complexities of PUTSEQ.
PUTCH is based on a sample routine given the the PLZ Documentation (Ref 6:
6-5).

5. Routine Relationshios Di

Enhancements Module Routines

WRITE_XXXX & WRITELN_XXXX

(PUTSEGQ| PLZ STREAM.IO)
Module

Figure 9. Relationship of PUTCH to Other Routines.

6. Invocation
a. Invocation Statement
PUTSEQ is invoked as follows.
PUTCH(LOGICAL_UNIT, CHARACTER)

where both input parameters are of type Byte.

Enhancements Module 38

e -
- L9 ES L% \ L A T A R T WL T NS W W R I N R NP PN TN T I IS U RN AT
’ . [3 - .' - L} - - » - - - «® A I I T S - . - - LR - .N
LA A S i o X W By R ad A . [ARV PR PV A s VAR AT A

L,
WAl

£ a
iy

» 3 N
- W Wy VN

b. Parameter Passing Schema

PUTCH has two input parameters. LOGICAL_UNIT is the number of
the device the output is to be routed to. CHARACTER is the value to be output to
the desired LOGICAL_UNIT. Though its name implies ASCII data, any eight bit
hexidecimal value can be passed though CHARACTER.

c. Routines Which Call PUTCH.

PUTCH is an internal support routine of the Enhancements Module. It
was written to be called only by Enhancement Module routines. PUTCH is called
by PLACE_LOOP, WRITELN, WRITE_DBYTE, WRITELN_DBYTE, WRITE_
HBYTE, WRITELN_HBYTE, WRITE_BBYTE, WRITELN_BBYTE, WRITELN_
LBYTE, WRITE_| DINTEGER, WRITELN _DINTEGER, WRITE_DWORD, WRITELN_
DWORD, WRITE_HWORD, WRITELN_HWORD, and WRITELN_POINTER

Varigbl n

a. Global

PUTCH uses no global variables or constants.

b. Module Level

PUTCH uses no module level variables or constants.

¢. Routine Level

Within the routine are two variables, LENGTH (type Word) and
RETURN_CODE (type Byte). LENGTH is used as both for input and output
parameters to the external routine PUTSEQ. For input it is set to one as PUTCH
outputs only one byte to PUTSEQ. LENGTH is used as a place keeper output
variable — there only to keep the subroutine calling syntax correct. RETURN_
CODE is similarly used as a place keeper output parameter.

8. Other Routines Called
PUTCH calls PUTSEQ, an external routine of the PLZ STREAM IO

Module. PUTSEQ outputs a known length sequence of values to the specified
logical unit. PUTSEQ is invoked by:

Enhancements Module 39

e 2 aie Rl gl ghaia &' Bin! VN e

RN

Foate i p T/ are tat tal fale fat Rat tef Sal Rl I Bal Bl I Ak e A€ S it AW e he i Salie AR SRR AL Sah tal Vel Sl et ia b il A

LENGTH, RETURN_CODE =
PUTSEQ(LOGICAL_UNIT, BUFFER_PTR, LENGTH)

‘ ~\
%

PUTSEQ has three input parameters, LOGICAL_UNIT, BUFFER_PTR,
and LENGTH. LOGICAL_UNIT (type Byte) is the number of the device to which
data is to be output. BUFFER_PTR (type Pointer to Byte) is a pointer to the string
of characters (or values) to be output to the designated logical unit. Note that as
PUTCH outputs only single characters, BUFFER_PTR is passed as pointer to the
PUTCH input parameter CHARACTER. Thus, in the call to PUTSEQ,
CHARACTER undergoes a type conversion from Byte to Pointer-to-Byte. The
third input parameter, LENGTH (type Word), is the number of characters (values)
to be output; the length of the string pointed to by BUFFER_PTR. The PUTSEQ
call in PUTCH uses the constant one for LENGTH as only a single character is
output.

PUTSEQ returns two parameters, LENGTH and RETURN_CODE.
LENGTH (type Word) is the number of bytes actually output. RETURN_CODE is
the operating system error code.

9. Qutput of Routine

i-' PUTCH has no output parameters. Beyond writing a value to a logical
- unit, PUTCH has no impact on system configuration.

10. Routine Test

PUTCH was not specifically tested. Rather, it was tested along with
the other routines of the Enhancements Module. Most of the "write"” and "writeln"
routines use PUTCH, directly or indirectly. These routines worked, thus PUTCH
worked.

11. Ref List
The listing for PUTCH is on page 283 in Appendix A.

' Enhancemeﬁnts Module 40

-

e 1. Routine Name: GETCH .
2. Internal routine of Enhancements Module.

3. Written in PLZ; four lines of executable code. A

+._Synopsis of Rout

GETCH is a very simple routine which interfaces the PLZ STREAM IO
Module routine GETSEQ to the "read" routines of the Enhancements Module.
Where GETSEQ has three input parameters and two output paramenters,
GETCH presents its calling PLZ routine with one input and one output para-
meter. The key difference is that GETSEQ can read in a string of arbitrary length
while GETCH reads in a single value. GETCH is based on a sample routine
given the the PLZ Documentation. (Ref 6: 6-5)

5. Routine Relationships Di
READ_DINTEGER READ_HWORD
READ_BBYTE READ_DWORD

PLZ STREAM.IO
(GETSEQ o)

Figure 10. Relationship of GETCH to Other Routines

6. lnvocation
a. Invocation Statement
GETCH is invoked by:
CHARACTER := GETCH(LOGICAL_UNIT)
where both CHARACTER and LOGICAL_UNIT are of type Byte.

.

e e W

Enhancements Module 41

J
J
LIRS TR » LA AR AR R R S o --'_--‘;-'-..‘_-J'_' e ot P S S S A A ST NS AN
. . P L, B e S T MO AT T T AT T et T T N St W T AT AT !'-."-.‘!'-}\‘\ %) RS \’.\}m‘v -

b b. Parameter Passing Schema
GETCH uses the input parameter LOGICAL_UNIT to select the device

from which a value is to be read. The value read is output via parameter
v CHARACTER. Despite its name, CHARACTER could output any eight bit value.

c. Routines Which Call GETCH.

a4,

- GETCH is an internal routine of the Enhancements Moduie and was
) written to be called only by other Enhancements Module routines. GETCH is
called by GET_ASCII_CH.

o a. Global Level

GETCH uses no global variables or constants.

b. Module Level

f—' GETCH uses no module lgvel variables. It does use two module level
N constants, OPERATION_OK and BLANK. OPERATION_OK is the operating sys-
tem return code for a successful 10 action; its value is 8@ hexidecimal. BLANK is

o the ASCII blank, value 2@ hexidecimal.

2 c. Variables and Constants internal to GETCH

\ GETCH has two internal variables and one internal constant. The
& internal variables, RETURN_CODE (type Byte) and LENGTH (type Word), are
. used in calling GETSEQ. The constant used, 1, is explicit (not a named con-
N stant) and is also used in calling GETSEQ.

3 8. Other Routines Called

v GETCH calls a single routine, GETSEQ, an external routine of the PLZ
v STREAM.IO Module. GETCH uses GETSEQ to read a single character from a
» designated logical unit. GETSEQ has one input parameter, LOGICAL_UNIT
~ (type Byts); one return parameter, RETURN_CODE (type Byte); and two bidirec-
. tional parameters, BUFFER_PTR (type Pointer-to-Byte) and LENGTH (type
S e Word). LOGICAL_UNIT passes the number of the device driver from which the
~ N character will be taken. This is the same as the LOGICAL_UNIT passed into
by Enhancements Module 42

Y NI T D I I R T A e - . .~ o - ™t - .
T T e AL ".n* '}’F » -f"h) PR {."; ‘-"_-_ R ¢.“q PO S '{‘.f\'f“l’ l'-'. R ~.-n' Wi ."‘.7- <
ey by " " N y !

WL Y T T YT Y A S VW d

y ap ap e L - S

GETCH. RETURN_CODE carries back the operating system code indicating
whether the input was successful or not. If RETURN_CODE does not pass back
the OPERATION_OK code, GETCH returns to its calling routine a blank.

BUFFER_PTR points the the memory location where the first character
of the string will be stored. Thus, it is similar in function but different in type from
the GETCH input parameter CHARACTER. In the invocation of of GETSEQ,
BUFFER_PTR is passed ACHARACTER or pointer to the variable CHARACTER,
type Pointer-to-Byte. In this way the type conversion occurs.

LENGTH serves two purposes. On the call to GETSEQ, LENGTH
gives the number of characters which are supposed to be read in. Upon return to
GETCH, LENGTH passes back the number of characters actually read. For
GETCH, LENGTH is passed to GETSEQ with the constant value of 1 as a single
character is to be output; the return value of LENGTH is ignored.

GETSEQ is invoked via:

LENGTH, RETURN_CODE =
GETSEQ(LOGICAL_UNIT, CHARACTER, LENGTH)

9. Output of Routine

GETCH returns to its calling routine a single ASCII character in the
output parameter CHARACTER (type Byte). If the reading operation was unsuc-
cessful for any reason, a blank is returned to the calling routine. Beyond reading

a character in from a logical unit, GETCH causes no system configuration
changes.

0. Routine Testi
a. Description of Test
GETCH was tested with the rest of the Enhancements Module
routines.
b. Results of Test

GETCH worked properly.

Enhancements Module 43

1
4
g

. - Y - - - - - - " - - - - - - - - =
1. a4 '. T A N Y TP L G PR S I s e
N S S L L R AN YL A

& » “ Pt gt - - Tatha’, 2 - - “~ .
ta Y W Egd - s ey 44 Y A S Aot AatLR - - - e A% NS, » et -

“r,

x -
&

e,
‘."

11, Ref to Listi
The listing of GETCH is on page 283 in Appendix A.

*5

- - =
el y]

ol

2
L AT

s

LSV

N | o

A e
ii}

AR AR
s & 0 3

] %
PP RN

‘r -y

S0 3 SN WA

2NJ
o P
~.‘ "-J
!)
"
g
W,

; Enhancements Module 44

L aP ™ N i N P P R R e L T a P O S SRR e o L I P e A TP
LSCHEY 0TS P SO YRS SRTTA S DAL DA WL A SR R A L L S S S AL G
o AL A X A TR IRV A VATV E o AT ARSI AN AF A

X% 1. Routine Name: GET_ASCII_CH
2. Internal routine of Enhancements Module.
3. Written in PLZ; three lines of executable code.
4 is of in

GET_ASCII_CH reads in values from a designated logical unit and
checks that the value read in is a valid ASCII character. If the value is valid, the
character is returned to the calling PLZ routine. Otherwise, GET_ASCII_CH
keeps reading in values until a valid character is read. The values GET_
ASCII_CH considers valid are:

All printing characters: @-9, a-z, A-Z, and punctuation,
Control-G, the aural tone,

Control-1, horizonal tab,

Control-J, line feed,

Control-M, carriage return,

Control-[, escape, and

blank.

® . Fodtine Relalionshios D

Enhancements Module
READ Routines

GET_ASCII_CH

GETCH

Figure 11. Relationship of GET_ASCII_CH to Other Routines.

6. Invocation
a. Invocation Statement
23 GET_ASCII_CH is invoked via:

Enhancements Module 45

. W L - et tm ™ . LIS . - vaN v
"v“‘(\ *Nf"-' o '.'-\" ‘.'.,-' '.q' 'd'\\-;-'\ o LN ’..' --------

MO - ,.'.';“‘.~"_ e o (SRR
SV LR A W S I N T T L PN S Y

L]
4

-t

1%

CHARACTER := GET_ASCII_CH(LOGICAL_UNIT))

where both CHARACTER and LOGICAL_UNIT are of type Byte.

b. Parameter Passing Schema

The input parameter LOGICAL_UNIT is used to designate which
device the value is to be read from.

c. Routines Which Call GET_ASCII_CH.

GET_ASCII_CH is an internal routine of Enhancements Module and
was written to be called only by other Enhancements Module routines. GET_
ASCII_CH is called by READLN, READ_HBYTE, READ_DBYTE, READ_BBYTE,
READ_LBYTE, READ_DINTEGER, READ_HWORD, and READ_DWORD.

7. Variabl
if, a. Global

Aside for the definitions for ASCI! characters, GET_ASCII_CH uses no
gloal variables or constants.

b. Module Level

Within the Enhancements Module, a number of constants are used to
represent nonprinting ASCII characters. GET_ASCII_CH uses:

BELL: ASCII Control-G, the aural tone,
TAB: ASCIl Control-I, horizonal tab,
L LINE_FEED: ASCII Control-J,
X CARRIAGE_RETURM: ASCII Controi-M,
; ESCAPE: ASCII Control-[, and
BLANK: ASCI| for a space.

GET_ASCII_CH uses no module level variables.

¢. Routine Level

';!:::' GET_ASCII_CH has no routine level variables or constants.

Enhancements Module 46

-

Mo & &

-

L hf 2 .

«,

©

N
.

h in i
GET_ASCII_CH uses another Enhancements Module routine,
GETCH, to read a character from the device designated by the input parameter
LOGICAL_UNIT (type Byte). If the reading operation was successful, GETCH
re-turns the ASCII character in return parameter CHARACTER (type Byte). If the
reading operation was unsuccessful, GETCH returns a blank. GETCH is invoked
via:

CHARACTER := GETCH(LOGICAL_UNIT).

9. Output of Routine
a. Parameter Passing Schema
GET_ASCII_CH has one output parameter, CHARACTER (type Byte)
which returns an ASCII character to the calling routine.
b. System Configuration Changes
Beyond reading in one or more values from the designated logical
unit, GET_ASCIIC_CH causes no system configuration changes.
10. Routine Testi
a. Description of Test
GET_ASCII_CH was not tested independently. It was tested in con-
cert with the "read" routines of the Enhancements Module. All of the read rou-
tines use GET_ASCII_CH to input characters. Thus, any test of these read rou-
tines tests GET_ASCII_CH.
b. Results of Test
The "read” routines of the Enhancements Module functioned properly.
Thus GET_ASCII_CH works properly.
1 f istin

GET_ASCII_CH's program listing is on page 284 in Appendix A.

Enhancements Module 47

» Ta ¥ N

»

&,

r/

4

n Al
XK

I RN

1. Routine Name: PLACE_LOOP

2. Internal routine of Enhancements Module.
3. Written in PLZ; seven lines of executable code.
4 n i

PLACE_LOORP is an internal support routine of the Enhancements
Module. It outputs to the designate device a string of ASCII characters repre-
senting the value NUMBER. The base of the output representation (defined
range 2 to 16) and the number of characters output is selectable. Blanking of
leading zeros is also selectable.

PLACE_LOOP works its way down from the most significant place to
the least sugmf icant. At each place, (base) the contribution of NUMBER to the
mantissa is found and translated into a character representing the mantissa. For
example, if the base is 16 and the contribution is 11, the character would be B.
NUMBER is reduced by the mantissa contribution and PLACE_LOOP proceeds
to the next lower significance place. This process continues until NUMBER is
completely represented.

5. Routine Relationships. Di

Enhancements Module WRITE_X Routines
(DBYTE, HBYTE, BBYTE, DINTEGER, DWORD, HWORD, POINTER)

PLACE_LOOP

ASCII PLACE_LOOP

Figure 12 . Relationship of PLACE_LOOP to Other Routines.

6. Invocation
a. Invocation Statement

PLACE_LOORP is invoked by:

Enhancements Module 48

.........

..‘\; .y _. ..\ v.) e -“_\ (- ‘_-. _-.(:,'.-.._'\._--._ TSR BICIA ..,._ S o . -'.'d‘_"' TR -..'-_.;.. -_...‘, ."_.\..-‘
] '\ o] A N e o7 v (' Y

o m e aammens o

Bndadiond o e

g

PLACE_LOOP(LOGICAL_UNIT, BLANKING, NUMBER, INDEX, DIVISOR)
where LOGICAL_UNIT and BLANKING are of type Byte and NUMBER, INDEX,
and DIVISOR are of type Word. '

b. Parameter Passing Schema

PLACE_LOOP has five input parameters. Their definitions and uses
follow.

LOGICAL_UNIT: The number of the device to which characters will be written.

Type Byte.

BLANKING: A logical flag which, if true, indicates that leading zeros are to
be suppressed. Type Byte.

NUMBER: The value which will be output. Type Word.

INDEX: The base value of the most significant character of the
output. For example, if the output is decimal with four digits,

© INDEX would be 1,900 or 194. INDEX is of type Word.
DIVISOR: The base of the output. Type Word.

c. Routines Which Call PLACE_LOOP
PLACE_LOORP is an internal routine of the Enhancements Module and
was written to be called only by other Enhancements Module routines. PLACE_
LOOP is called by WRITE_DBYTE, WRITE_HBYTE, WRITE_BBYTE, WRITE_
DINTEGER, WRITE_DWORD, WRITE_HWORD, and WRITE_POINTER.
Vari nstan

a. Global

PLACE_LOORP uses no global variables or constants.

b. Module
oo PLACE_LOOP uses no module level variables or constants.
e c. Routine

Enhancements Module 49

PLACE_LOOP has two routine level variables, VALUE (type Word)
and CHARACTER (type Byte) in addition to the input parameters NUMBER and
INDEX. The following shows how the variables of PLACE_LOOP function to
resolve the characters which represent NUMBER. Once VALUE is resolved it is
translated into a CHARACTER by routine ASCII.

A4

mantissaz X base3 = VALUE(3) X INDEXg)

mantissa, X base? = VALUE(p) X INDEX ()

mantissay X base’ = VALUE(q) X INDEX(4)
+ mantissag X base? = + VALUE(g) X INDEXg)
= NUMER = NUMBER

where

VALUE(5) = NUMBER 5 / INDEX (),
NUMBER 5.1) = NUMBER ;) MOD INDEX (5, and
INDEX (1) = INDEX) / DIVISIOR.

The calculation of VALUE and translation of the VALUES into characters begins
with the most significant position and proceeds to the least significant.

8. Other Routines Called

PLACE_LOOP calls two Enhancement Module routines ASCIl and
PUTCH. ASCIl is used to translate the VALUEs into CHARACTERs. ASCII
receives VALUE and BLANKING (passed into PLACE_LOOP by the calling
routine) as input parameters and returns to PLACE_LOOP BLANKING and
CHARACTER. If VALUE is zero and BLANKING is true, CHARACTER will be
returned as a blank and BLANKING as turn. Otherwise, CHARACTER will be the :
ASCIl character which represents VALUE and BLANKING will be returned as -
false. .

PLACE_LOOP uses PUTCH to output each CHARACTER. PUTCH
receives LOGICAL_UNIT (passed into PLACE_LOOP by the calling routine) and
CHARACTER. PUTCH outputs the character to the desired device. PUTCH has
no return parameters.

9. Qutput of Routine

Enhancements Module 50

a. Parameter Passing Schema

PLACE_LOOP has no output parameters.

b. System Configuration Changes

Other than the outputing of a string of characters to a device, PLACE_

- LOOP causes no system configuration changes.
10. Routine Testing
A a. Description of Test
,, PLACE_LOOP was not individually tested. Instead it was included in
ﬁ a test of all the Enhancement Module routines. As many of the "write" and

1 "writeln" routines depend upon PLACE_LOOP, if PLACE_LOOP didn't work, they
wouldn't work.

i‘ b. Results of Test

The "write" routines functioned properly, thus PLACE_LOOP ‘func-
tioned properly.

{1._Ref List
The listing of PLACE_LOORP is on page 285 in Appendix A

-'.j\
Enhancements Module 51

O " & o802 tal ol B Rt b, flars, Ny

@} 1. Routine Name: VALID_BINARY_CH
2. Internal rbutine of Ehancements Module.
3. Written in PLZ; four lines of executable code.
4 nopsi Routin
VALID_BINARY_CH a simple internal support routine of the Enhancements
Module. It examines an input character and determines whether it is a "@" or a

"1". If it is, VALID_BINARY_CH returns the flag VALIDITY as true; otherwise
VALIDITY is false.

5. Routine Relationships Diagram

READ HBYTE = READ_HWORD

VALID_HEX_CH

Figure 13. Relationship of VALID_BINARY_CH to Calling Routines.

(7

nvocati
a. Invocation Statement
VALID_BINARY_CH is invoked via:
VALIDITY := VALID_BINARY_CH(CHARACTER)

where both VALIDITY and CHARACTER are of type Byte.

b. Parameter Passing Schema

VALID_BINARY_CH has one input and one output parameter. \
CHARACTER is passed into the routine and is checked against "1" and "Q". 3
VALIDITY is returned as either true if CHARACTER checks out. Otherwise]
VALIDITY is returned as false. ?

Enhancements Module 52 !

. LI - - . - » L L T IR N) T T e P Rl B S ST TR TR TS S S NP T Y
S e .'__._.(‘_......- L2 R N A A T N ST L ST S

S T RIS
. NP Dy T T Ty O U Y A TR A A Se Ny Yy N e ', e Pa e “m o . a

’-‘- s o e

Fos/sra

Ty Iy Aadl Al 3 iad hd
...................... S T T T T N T T T TR T N TN TR T TN T NN TR TN T Y Y

c. Routines Which Cali
VALID_BINARY_CH is an internal routine of Enhancements Module.

It was written to be called only by other Enhancements Module routines. As it
turns out, VALID_ BINARY_CH is not called by any routines of the Enhancements
Module. In writing the other routines, an IF statement was used to determine
whether the input character was a "1" or a "@" rather than calling VALID_
BINARY_CH.

a. Global

VALID_BINARY_CH uses no global constants or variables.

b. Module Level
VALID_BINARY_CH uses two module constants: TRUE - value 1 hex,

and logical true, and FALSE - value @ hex, logical false. VALID_BINARY_CH
uses no module level variables.

c. Rodutine

VALID_BINARY_CH hs no routine level constants or variables.

8. Other Routines Called

VALID_BINARY_CH calls no other routines

9. Qutput of Routine
a. Parameter Passing Schema
VALID_BINARY_CH has a single output parameter, VALIDITY, of type
Byte. It is returned with the logical value true if the input CHARACTER is either a
"1" or a "@". Otherwise VALIDITY is returned with the logical value false.

b. System Configuration Changes

VALID_BINARY_CH causes no configuration changes.

Enhancements Module 53

e TN T N e
B . IR .
P A VR v VR PR A SRR DRI |

4

[

el 3o A

\':\‘.:.‘- -3

o

TWAle Ul Wl g e ¥ Nogtha’L e VAWL) KYel & Ve

1 i i

VALID_BINARY_CH was not tested since it isn't used. However, this
routine is vary similar to VALID_DECIMAL_CH and VALID_HEX_CH. These
routines performed properly. Based on their similarity, it is likely that
VALID_BINARY_CH would perform properly.
11 Ref Listi

VALID_BINARY_CH's listing is on page 286 in Appendix A.

Enhancements Module 54

‘-“_‘-'\

. W A AT T T A e At et AT T e A e N E " A" a"b s s ¥V * B I O o U T S e
%"~ N -.'.q’ "ﬂd. \{.’ .n".-‘f ! 5"\ ‘P\ .._ ‘."\.x ..\.. o o -‘\.._! ._'_‘- . ._"-:"-.‘ L) -.";. .--l'_.. 4‘}."‘-\1 .."s_{.-.' o le” .".\‘.J"‘. o, * %
B & A Aol - Ll g < A A B

1. Routine Name: VALID_DECIMAL_CH
2. Internal routine of Ehancements Module.
3. Written in PLZ; four lines of executable code.
4. S is of Routi
VALID_DECIMAL_CH a simple internal support routine of the En-
hancements Module. It examines an input character and determines whether it is

a "@" through "9". If it is one of these characters, VALID_DECIMAL_CH returns
the flag VALIDITY as true; otherwise VALIDITY is false.

5. Routine Relationships Di

READ DINTEGER
READ_DBYTE READ_DWORD

VALID DECIMAL_CH

Figure 14. Relationship of VALID_DECIMAL_CH to Other Routines

6. Invocation
a. Invocation Statement
VALID_DECIMAL_CH is invoked via:
VALIDITY := VALID_DECIMAL_CH(CHARACTER)

where both VALIDITY and CHARACTER are of type Byte.

b. Parameter Passing Schema

VALID_DECIMAL_CH has one input and one output parameter.
CHARACTER is passed into the routine and is checked against characters "Q"
through "9". VALIDITY is returned as either true if CHARACTER checks out.
Otherwise VALIDITY is returned as faise.

Enhancements Module 55

Pl S]

S T LN,

o DAL T

~ .

-

L T

nnnnn

- e g
[}

-

forte ¢. Routines Which Call
. VALID_DECIMAL_CH is an internal routine of Enhancements Module.
_ It was written to be called only by other Enhancements Module routines. VALID_
. : DECIMAL_CH is called by READ_DBYTE, READ_DINTEGER, and READ_
, DWORD.
Z. Variables and Constants

a. Global

VALID_DECIMAL_CH uses no global constants or variables.

b. Module Level

- VALID_DECIMAL_CH uses two module constants: TRUE - value 1
« hex, logical true, and FALSE - value @ hex, logical false.

c. Routine

ﬁ- VALID_DECIMAL_CH hs no routine level constants or variables.

8. Other Routines Called
VALID_DECIMAL_CH calls no other routines.

; 9. Qutput of Routing
a. Parameter Passing Schema
VALID_DECIMAL_CH has a single output parameter, VALIDITY, of
. type Byte. It is returned with the logical value true if the input CHARACTER is a
X "@" through "9". Otherwise VALIDITY is returned with the logical value false.

b. System Configuration Changes

) VALID_DECIMAL_CH causes no configuration changes.

.
A

iy L)
AR

Enhancements Module 56

S

I IR N o AT AT Ty T R P G PGP I T T R T R Y
£ " R AR 3] "h.) ‘J N N A I TSR A

ot Fad L 3t W ad 8 B)

" Rat dat Ba g% o' faf TN R W r'E YT TP U RaT i R Jha o) i o) 'S 0o n'd. 0 Yup $ Yap tah cal) TN 0

’\‘; N .
YA mnmm
a. Description of Test

VALID_DECIMAL_CH was tested in conjunction with the rest of the)
Enhancements Module.

b. Results of Test

VALID_DECIMAL_CH works.

11. Ref to Listi
: The listing for VALID_DECIMAL_CH is on page 286 in Appendix A. .
%

Enhancements Module 57

........

"
Y
;‘:
N
N 5% ; .
X 9% 1. Routine Name: VALID_HEX_CH
~ 2. Internal routine of Ehancements Module.
*
N 3. Written in PLZ; four lines of executable code.
™ 4. Synopsi
"‘ VALID_HEX_CH a simple internal support routine of the Enhance-
: ments Module. It examines an input character and determines whether it is a "@"
;",v through "9" or "A" through "F" (note upper case only). If it is one of these chara-
3 cters, VALID_HEX_CH retums the flag VALIDITY as true; otherwise VALIDITY is
false.
-,
g
A 5._Routine Relationships Diagram
K
-,
&
2 READ_HBYTE READ_HWORD
% —
l @
;_ Figure 15. Relationship of VALID_HEX_CH to Other Routines.
v
a. Invocation Statement
" VALID_HEX_CH is invoked via:
. 7.‘ VALIDITY := VALID_HEX_CH(CHARACTER))
L)
& where both VALIDITY and CHARACTER are of type Byte.
K]
" b. Parameter Passing Schema
.‘\ .
4 VALID_HEX_CH has one input and one output parameter. CHARA-
A CTER is passed into the routine and is checked against characters "@" through
e "9" and "A" though "F". VALIDITY is returned as either true if CHARACTER
R checks out. Otherwise VALIDITY is returned as false.
. ';E AN \
",';'
Y,

Enhancements Module 58

c. Routines Which Call
VALID_HEX_CH is an internal routine of Enhancements Module. It

was written to be called only by other Enhancements Module routines. VALID_
HEX_CH is called by READ_HBYTE and READ_HWORD.

Z. Variables and Constants
a. Global

VALID_HEX_CH uses no global constants or variables.

b. Module Level
VALID_HEX_CH uses two module constants: TRUE - value 1 hex,
logical true; FALSE - value @ hex, logical faise.
c. Routine

VALID_HEX_CH hs no routine level constants or variables.

8. Other Routines Called
VALID_HEX_CH calls no other routines

9. OQutput of Routine
a. Parameter Passing Schema
VALID_HEX_CH has a single output parameter, VALIDITY, of type
Byte. It is returned with the logical value true if the input CHARACTER is a "@"

through "9" or "A" through "F" . Otherwise VALIDITY is returned with the logical
value false.

b. System Configuration Changes

VALID_HEX_CH causes no configuration changes.

Enhancements Module 59

............

T AN ';:.’...'.:._-?A)N'._‘.'.r} s.lﬂn‘e_\._\. S

e 1] i ‘
a. Description of Test 3
-
VALID_HEX_CH was tested in conjunction with the rest of the En- :
hancements Module rather than being individually tested. :
b. Results of Test R
VALID_HEX_CH works. B
The listing of VALID_HEX_CH is on page 287 in Appendix A.
DS
£
o
5 R
T

Enhancements Module 60 .

el 1. Routine Names: WRITE and WRITELN
2. Output routine of Enhancements Module.

3. Writtenin PLZ.
WRITE: eight lines of executable code.
WRITELN: three lines of executable code.

4 nopsi {

WRITE and WRITELN emulate their Pascal namesakes; they output
strings of characters to the device designated by LOGICAL_UNIT. WRITE and
WRITELN both use the PLZ STREAM.IO Module routine PUTSEQ to perform the
actual output. The difference between the two routines is WRITELN outputs a
carrage return at the end of the sequence of characters; WRITE doesn't.
WRITELN calls WRITE to output the string and then adds the carriage return via
PUTSEQ.

5. Routine Relationships Di

© | Any PLZ Routine
L\

‘\
Enh t
arviviaky WRITELN
o W,
\
‘ PLZ STREAM.IO
[PUTSEQ | Module

Figure 16. Relationship of WRITE and WRITELN to Calling
Routines and PUTSEQ.

Enhancements Module 61

6. Invocation
a. Invocation Statement
WRITE and WRITELN are invoked with:
WRITE(LOGICAL_UNIT, BUFFER_PTR) and
WRITELN(LOGICAL_UNIT, BUFFER_PTR)

where LOGICAL_UNIT is type Byte and BUFFER_PTR is of type Pointer-to-Byte.

b. Input Parameter Passing Schema
Both WRITE and WRITELN have two input parameters, LOGICAL_
UNIT and BUFFER_PTR. LOGICAL_UNIT brings in the number of the device the
output is to go to. BUFFER_PTR points to the memory location where the first
character of string to be output is located.
c. Routines Which Call
As global routines of the Ehancements module, WRITE & WRITELN
can be called by any PLZ routine which is linked in with Enhancements module.
In addition to this purpose, WRITE is used by some other routines in Enhance-

ments Module. Specifically, WRITE is called by WRITE_LBYTE and WRITE_
RCODE.

Z._Variables and Constants
a. Global

Neither WRITE nor WRITELN use any global variables or constants.

b. Module

Neither routine uses any module level variables. WRITE uses the
Enhancements Module constant CARRIAGE_RETURN.

Enhancements Module

I.‘.

LS

-

oo
-

.
FISMN

lI‘._'; "o".-.. '.‘.'. i‘- \ AL \ o | I{A ‘,._"-_ "- ts,
Wy
»
. e

; k i;&..‘ -‘c .‘. l”

UN
Wiy

£

c. Routine

WRITE uses three routine level variables, LENGTH (type Word),
RETURN_CODE (type Byte), and PINDEX (type Pointer-To-Byte). LENGTH is
used to pass the length of the output character string to the external routine
PUTSEQ. RETURN_CODE receives the system completion code sent back from
PUTSEQ. PINDEX is a place keeper pointer for the string to be output. WRITELN
uses no module level variables. Neither routine uses any routine level constants.

8. Qther Routines Called

In addition to WRITELN's calling of WRITE, WRITE calls the external
routine PUTSEQ to output strings characters and WRITELN calis PUTCH to out-
put the carriage return.

a. PUTSEQ

This PLZ STREAM.IO Module routine is declaired external to the
Enhancements Module. WRITE uses PUTSEQ to output the string of characters
to the desinated device driver. PUTSEQ has three input parameters, LOGICAL _
UNIT (type Byte), BUFFER_PTR (type Pointer-to-Byte), and LENGTH (type Word),
and has two return parameters, LENGTH (type Word) and RETURN_CODE (type
Byte). LOGICAL_UNIT is the same as the input parameter to WRITE and
WRITELN, the number of the device driver to which the output will be directed.
BUFFER_PTR points to the first character of the string to be output. LENGTH is
the number of characters (Bytes) to be output. The return parameter LENGTH
carries the number of characters which were output by PUTSEQ. RETURN_
CODE returns the operating system completion code or error code for the output
operation. PUTSEQ is invoked via:

LENGTH, RETURN_CODE :=
PUTSEQ(LOGICAL_UNIT, BUFFER_PTR, LENGTH).
b. PUTCH

PUTCH is an internal support routine of the Enhancements Module. It
has two input parameters, LOGICAL_UNIT and CHARACTER, both of type Byte.
LOGICAL_ UNIT holds the number of the device driver to which the character is
to be output. CHARACTER passes the character to be output. PUTCH is invoked
with:

PUTCH(LOGICAL_UNIT, CHARACTER).

Enhancements Module 63

e s a4

Y

4
o
d

.Il"' I‘A"' L
CA PR A AT 4

e,

From WRITELN, CHARACTER passes "%R", the RIO constant for a carriage re-
turn. PUTCH has no return parameters.

9. Qutput of Routine
Neither WRITE or WRITELN have output parameters. Nor does either
routine affect the system configuration beyond writing characters to some logical
unit.
10. Routi i
a. Description of Test
WRITE and WRITELN were tested along with the rest of the Enhance-

ments module routines. A module of test routines called TEST_IT was used to
out- put strings to the system console via WRITE and WRITELN.

b. Results of Test

WRITE and WRITELN performed propery.

11. Ret to Listi
The listing of WRITE and WRITELN are on page 288 in Appendix A.

Enhancements Module 64

R AL e e S e e e e e e e e e e T e e e e e e e e e e
- . - . - . . N

E
4
<
4
r
9

e ARA A 4 0. -

120

1. Routine Names:
WRITE_DBYTE, WRITE_HBYTE, WRITE_BBYTE,
WRITELN_DBYTE, WRITELN_HBYTE, and WRITELN_BBYTE

2. Output routines of Enhancements Module.

3. Wiritten in PLZ.

WRITE_DBYTE: five lines of executable code.
WRITE_HBYTE: five lines of executable code.
WRITE_BBYTE: five lines of executable code.
WRITELN_DBYTE: three lines of executable code.
WRITELN_HBYTE: three lines of executable code.
WRITELN_BBYTE: three lines of executable code.

4 nopsi R

These six routines take a single byte value and output the ASCII
characters which represent it. The DBYTE routines output the value in base 19
@ as a decimal value, one to three characters (@ through 9 or space) followed by a
decimal point. The DBYTE routines blank leading zeros in the 13@'s and 1Q's
places. The HBYTE routines output the value in hexidecimal form, two characters
(D to 9 and A to F) followed by an H. The BBYTE routines output a binary repre-
sentation of the value, eight chararcters (& & 1) followed by a B. The WRITE form
of the routines does not output a carriage return at the end of the string; the
WRITELN forms do. It is up to the calling routine to put CHARACTER in the
proper form prior to calling any of the WRITE or WRITELN routines. For example,
a number stored in complements form would have to be transformed before
WRITE_DBYTE was called. The WRITELN forms function by calling the WRITE
version to output the character strings and then call another routine to output the
carriage return.

All three WRITE routines function identically; the only difference be-
tween them is the values assigned to the internal variables BLANKING and
INDEX and the output base value (19, 16, or 2) passed to routine PLACE_
LOOP. PLACE_LOOP performs the actual conversion of the byte value into the
character string given the base desired and the order or INDEX of the most
significant output character. The values for the three routines are:

F Enhancements Module 65 !

NN

O o

b e Gde at o

s
e

: —Routne _BLANKING _INDEX_ _Base
WRITE_DBYTE TRUE 100 10
WRITE_HBYTE FALSE 16 16
WRITE_BBYTE FALSE 128 2
i lati ' i
Any PLZ Routine

E

WRITELN Zsevre
“BBYTE

PLACE_LOOP PUTCH

Figure 17. Relationship of Byte WRITE_xBYTE and
WRITELN_xBYTE Routines to Other Routines

6. lnvocation
a. Invocation Statement
The routinas are invoked from calling PLZ routines via:

WRITE_DBYTE(LOGICAL_UNIT, NUMBER)
WRITELN_DBYTE(LOGICAL_UNIT, NUMBER)
WRITE_HBYTE(LOGICAL_UNIT, NUMBER)
WRITELN_HBYTE(LOGICAL_UNIT, NUMBER)
WRITE_BBYTE(LOGICAL_UNIT, NUMBER)
WRITELN_BBYTE(LOGICAL_UNIT, NUMBER)

where LOGICAL_UNIT and NUMBER are of type Byte.
b. Parameter Passing Schema

Enhancements Module ' ‘ 66

SRAASINT VISP IIE

All six routines have the same two input parameters, LOGICAL_UNIT
and NUMBER, both of type Byte. LOGICAL_UNIT is the number of the device the
characters are to be output to. NUMBER is the value to be translated into deci-
mal, hexidecimal, or binary character representations.

BTV TS .

2 c. Routines Which Call
These six routines can be called by any PLZ program. The Enhance-

ments Module and the PLZ Stream.lO Module must be linked in with the calling
programs' module.

Vari

a. Global

None of the routines use any global variables or constants aside from
the definitions of ASCII characters.

b. Module

None of the routines use any module level variables; The WRITE form
routines use no module level constants. The WRITELN forms use the PLZ con-
stant %R to represent a carrage return.

¢. Routine

The WRITELN form routines use no routine level constants or vari-
ables. The WRITE forms use two variables, BLANKING of type Byte and INDEX
of type Word. BLANKING is used as a logical flag to indicate to routine PLACE_
LOOP whether leading zeros are to be blanked. INDEX is used to pass the value
of the most significant place of the output string to routine PLACE_LOOP. Neither
of these variables are necessary, they are present solely to aid the readability of
the routines.

8. Other Routines Called

The WRITE and WRITELN routines call two internal routines of the En-
hancements Module, PUTCH and PLACE_LOOP.
a. PUTCH

Enhancements Module 67

All six routines call PUTCH to output single characters to the desired
logical unit. WRITE_DBYTE outputs a decimal point, WRITE_HBYTE outputs an
H, WRITE_ BBYTE outputs a B, and the WRITELN's output a carriage return. In
all cases PUTCH is invoked via:

PUTCH(LOGICAL_UNIT, CHARACTER)

where both LOGICAL_UNIT and CHARACTER are of type Byte. LOGICAL_UNIT
is the same as the input parameter to the WRITE and WRITELN routines, the
number of (he device to which the CHARACTER is to be written. CHARACTER is
the hex value of the ASCII character to be output. PUTCH does not check to see
if the CHARACTER is valid ASCIl. As the WRITE and WRITELN routines use
PUTCH to output constants no error checking is needed. PUTCH has no return
parameters.

b. PLACE_LOOP

PLACE_LOORP is called by the three WRITE form routines to translate
a value into a string of characters which represent that value and to output those
characters to a designated device. PLACE_LOOP is invoked in the three Write
routines with:

PLACE_LOOP(LOGICAL_UNIT, BLANKING,
WORD(NUMBER), INDEX, BASE)

where INDEX is of type Word, NUMBER is of type Byte converted to type Word,
and the other three input parameters are of type Byte. LOGICAL_UNIT is the
same as the input parameter to the WRITE and WRITELN routines, the number of
the device to which the string of characters is to be written. BLANKING is a logi-
cal flag indicating whether leading zeros are to be blanked. NUMBER is the
value to be translated into a string of characters. Note that the input parameter to
the WRITE and WRITELN-routines NUMBER is of type Byte and the input to
PLACE_LOORP is of type Word. Thus the type conversion in the invocation of
PLACE_LOOP. INDEX is the value of the most significant character to be output.
BASE is the base in which the character representation is to be made. PLACE_
LOOP has no output parameters.

PLACE_LOOP does no range checking on its inputs. This is not a
problem as the WRITE routines pass BLANKING, INDEX, and BASE as con-
stants. With the constants passed and the input NUMBER limited to a single byte
range, the inputs to PLACE_LOOP cannot be out side defined ranges. It is
assumed that the correct LOGICAL_UNIT number is passed into the WRITE and
WRITELN routines.

Enhancements Module

9. Qutput of Routines

The six routines have no output parameters. The only effect they have on
the configuration of the system is the writing of a number characters (two to ten) to
some logical unit.

o ol S PR PR]

1 i in
a. Description of Test
These six routines were tested in conjunction with the rest of the En-

hancements module routines. Each routine was given a number of values to
output.

»

b. Results of Test

Each routine output its test values in the proper formats. :

11. Reference to Listing : 3

: The listings for these routines are found on the following pages.

WRITELN_BBYTE

Enhancements Module

Routine Page
.\ WRITE_DBYTE 289 in Appendix A
] WRITELN_DBYTE 289 in Appendix A
{ WRITE_HBYTE 290 in Appendix A
{ WRITELN_HBYTE 290 in Appendix A
WRITE_BBYTE 291 in Appendix A

291 in Appendix A

A A

[l Nl A Ay

@ 1. Routine Name: WRITE_LBYTE and WRITELN_LBYTE
2. Output routines of Enhancements Module.

3. Writtenin PLZ.
WRITE_LBYTE: six lines of executable code.
WRITELN_LBYTE: three lines of executable code.

4. S is.of Routi

These two routines take a single byte defined as a logical value and
output the text string equivillent of the byte's value. Three string outputs are pos-
sible. If the value of the byte is uniary, "TRUE " is output. [f the value is zero,
"FALSE" is output. If the byte has any other value, the output is "UNDF ". Note
that all three output strings are five characters long. The difference between
WRITE_LBYTE and WRITELN_BYTE is the same as in Pascal; WRITE_LBYTE
does not output a carriage return and WRITELN_ LBYTE does. WRITELN_
LBYTE calls WRITE_LBYTE to perform the five character string output and then
calls PUTCH to output the cariage return.

Any FLZ Routine

WRITELN_LBYTE
WRITE_LBYTE

Figure 18. Relationship of Logical-Byte Write and Writein
Routines to Other Routines

Enhancements Module 70

.

AP O P T S T SO

- - f e ATttt T e - BN . NN
' A TS TP R R P e e . (AP e . . N
. -~) -, PR e e e et e N T e e e e e et L e e A e et e
alA S). A v .. o’ Aw mhﬁthﬁ.:@m@h@:@;;.;;‘:A.k&_& A P . " P R P T S SR W

TR AR % o

ey

.

Y
)
.

6. Invocation

a. Invocation Statement

The routines are invoked from a calling PLZ routine by

WRITE_LBYTE(LOGICAL_UNIT, FLAG)
WRITELN_LBYTE(LOGICAL_UNIT, FLAG)

where LOGICAL_UNIT and FLAG are both of type Byte.

b. Parameter Passing Schema

Both routines have two input parameters, LOGICAL_UNIT and FLAG

LOGICAL_UNIT is the number of the device the character string is to be written to'

FLAG holds the logical variable to be transiated into text.

c. Routines Which Call

Both routines can be used by any PLZ language program with which
the Enhancements Module and the PLZ Stream.lO Module have been linked.

The routines, like the rest of the global Enhancements module routines, are
Pascal-like 10 subroutines intended to reduce the difficulty of IO in PLZ.

Z. Variables and Constants

a. Global

- No global variables are used by either routine. Both routines require
logical true to be defined as @1 hex and logical false to be defined as @D hex.
Both routines also follow the PLZ convention of "%R" representing a carriage
return.

b. Module

Neither routine uses any module level variables. Within the Enhance-
ments Module, TRUE is a constant of value @1 hex representing logical true and
FALSE is a constant of value @9 hex representing logical false.

Enhancements Module

71

et ta"

.....

AL Sl g Bte RARie) Wit i SR a0 4 S A5 a2 24 s S A
»

)

.

b %Y

'i o c. Routine

Routine level variables and constants are not used by either routine.

8. Other Routines Called

Both WRITE_LBYTE and WRITELN_LBYTE use other Enhancements
Module routines to output characters. WRITE_LBYTE uses the global routine
WRITE and WRITELN_LBYTE uses the internal routine PUTCH.

T XX

a. WRITE

WRITE is very similar to its Pascal namesake. It outputs a designated
string of characters. WRITE_LBYTE uses WRITE to output "TRUE ", "FALSE", or
"UNDF " to the designated logical unit. WRITE has two input parameters
LOGICAL_UNIT, ot type Byte, and TEXT_POINTER, of type pointer-to-byte or
Pbyte. WRITE's LOGICAL_UNIT services the same function as WRITE_LBYTE's
input parameter LOGICAL_UNIT. It is the name of the device to which the chara-
cters will be written. TEXT_POINTER is a pointer (two bytes) to a specific memory
location, the location of the string to be output. For WRITE_ LBYTE, the string is
entered as a constant in the invocations of WRITE. PLZ translates this into a

@ pointer to the first character of the string. The "%R" (carriage return) is used by
PLZ to denote end-of-string. Thus the invocation of WRITE from WRITE_LBYTE
looks like the following.

WRITE (LOGICAL_UNIT, 'string to be output%R')

WRITE has no return parameters.

b. PUTCH

WRITELN_LBYTE uses PUTCH to output a carriage_return to the
designated logical unit. PUTCH has two input parameters, LOGICAL_UNIT and
CHARACTER. As with WRITE, LOGICAL_UNIT is the Byte parameter indicating
which device the output is to go to. CHARACTER, also of type Byte, holds the
ASCII character to be output. For WRITELN_LBYTE, PUTCH is invoked by:

PUTCH(LOGICAL_UNIT, '%R')

where '%R' denotes a carriage_return. PUTCH has no return parameters.

9. Qutput of Routine

d
I'
o
2
”
‘l
i
o
b,

aa

T
-

Enhancements Module 72

.
L w s NN AT APy o m i N T e ae e e et me e e i Mh i e e i e e e e .o
; o \ W, A P A . .. e e e e L A -

R R R P o O R D P A S T N O O T S AP A KL SR SN PR PP P T

fwvmxnm‘vmmvvw A

- v -

Neither routine has any output parameters. The sole effect of the
routines upon the system is the writing of five characters and, if WRITELN_
LBYTE, a carriage return to the designated logical unit.

10. Routine Testing
a. Description of Test
WRITE_LBYTE AND WRITELN_LBYTE were tested along with the rest

of Enhancements Module. This test was accomplished by linking with Enhance-
ments Module and the PLZ STREAM.IO Module with a module of test routines.

b. Results of Test

WRITE_LBYTE and WRITE_LBYTE output the correct text strings to
the correct logical units.

11, Reference to Listing

The listings of WRITE_LBYTE and WRITELN_LBYTE are on page 292
in Appendix A.

Enhancements Module 73

.t: .p;.\'_

.
ISR

A.A.LL“

l‘\..

—

. Routine Names: WRITE_DINTEGER and WRITELN_DINTEGER

N

. Output routines of Enhancements Module.

3. Writtenin PLZ. WRITE_DINTEGER: 11 lines of executable code.
WRITELN_DINTEGER: 3 lines of executable code.

WRITE_DINTEGER and WRITELN_DINTEGER take a PLZ Integer
type value, translate it into the ASCII characters that represent the base 10 mag-
nitude of the value, and then output the characters to a specified logical unit.
Since Integer type values have sign, WRITE_DINTEGER and WRITELN_
DINTEGER put a blank or a "-" ahead of the character string to indicate the sign of
the value. After the last character, the routines output a decimal point. Then,
WRITELN_DINTEGER only outputs a carriage_return. Both routines blank lead-
ing zeros.

WRITE_DINTEGER does most of the work for both routines as
WRITELN_DINTEGER's first statement is a call of WRITE_DINTEGER. WRITE_
DINTEGER first determines the sign of the value and outputs a blank for positive
or a "-" for negative via routine PUTCH. If the value was negative, it is converted
to a positive value, the sign already output. WRITE_DINTEGER then calls
PLACE_LOOP to perform the actual translation of value to characters. WRITE_
DINTEGER ends by outputting a decimal point via PUTCH. WRITELN_
DINTEGER ends by outputting a carriage return.

Routin ionshi i

Any PLZ Routine

WRITELN_DINTEGER
WRITE_DINTEGER

PLACE_LOOP

Figure 19. Relationship of WRITE_DINTEGER and
WRITELN_DINTEGER to Other Routines.

Enhancements Module 74

S 6. _Invocation
a. Invocation Statement
The routines are invoked from calling PLZ programs via:

WRITE_DINTEGER(LOGICAL_UNIT, IN_INTEGER)
WRITELN_DINTEGER(LOGICAL_UNIT, IN_INTEGER) s

where LOGICAL_UNIT is type Byte and IN_INTEGER is type Integer.

b. Parameter Passing Schema X
Both routines have two input parameters, LOGICAL_UNIT and IN

INTEGER. LOGICAL_UNIT is the number of the device the output characters are .
to go to. IN_INTEGER is the value to be output in character form. N

c. Routines Which Call
WRITE_DINTEGER and WRITELN_DINTEGER can be called by any N

‘) PLZ program that has been linked with the Enhancements and PLZ STREAM.IO
modules.

7. Variables and Constants
) a. Global
y Neither routine uses any global variables. WRITE_DINTEGER uses
no global constants. WRITELN_DINTEGER follows the PLZ convention of %R
representing a carriage return.
b. Module
Neither routine uses any module level variables and WRITELN

DINTEGER uses no module level constants. WRITE_DINTEGER uses the
Enhancements Module constant TRUE which epresents logical true.

VS v e

3 ¢. Routine

WRITELN_DINTEGER uses no routine level variables or constants.

-,
$l}l'

Enhancements Module 75

g

@ WRITE_ DINTEGER does have three variables, BLANKING (type Byte), INDEX 3)
(type Word), and NUMBER (type Word). BLANKING is a logical flag to routine

PLACE_ LOOP to indicate whether leading zeros are to be blanked. It is set to B

TRUE. INDEX passes the place value of the most significant character of the out-
put string to PLACE_ LOOP; INDEX is set to 19900 decimal. Neither of these
variable are necessary though, constants could have been used. These vari-
ables are present only to aid routine documentation. NUMBER on the other
hand, is used to pass the input Integer value to PLACE_LOOP which uses a
Word type input.

e, f"
a's

8. Other Routines Called
WRITE_DINTEGER and WRITELN_DINTEGER call two internal
routines of the Enhnancements module, PUTCH and PLACE_LOOP.
a. PUTCH

Both routines call PUTCH to output single characters. WRITE_
DINTEGER uses PUTCH to output the sign of the value, a blank or a "-", and to
output the decimal point. WRITELN_DINTEGER uses PUTCH to putput its
carriage return. PUTCH is invoked via:

PUTCH(LOGICAL_UNIT, CHARACTER) D

e

where both input parameter are type Byte. LOGICAL_UNIT is the same as the
input parameter parameter LOGICAL_UNIT for WRITE_DINTEGER and
WRITELN_DINTEGER. CHARACTER holds the ASCII character to be output.
PUTCH has no return parameters.

| S BN 4
s

b. PLACE_LOOP

OO

-

PLACE_LOOP translates an input value into the characters that
represent that value. PLACE_LOOP is called by:

s

LN N

PLACE_LOOP(LOGICAL_UNIT, BLANKING, NUMBER, INDEX, BASE)

e,
SN

where INDEX and NUMBER are type WORD and LOGICAL_UNIT, BLANKING,
and BASE are type Byte. LOGICAL_UNIT is the device number for output. -
BLANKING is a logical flag indicating whether leading zeros are to be blanked. =
NUMBER is the value to be converted to text representation. INDEX is the place- 24
value of the most significant character to be output. BASE is the base the output
string is to be in. PLACE_LOOP has no return parameters.

Enhancements Module 76

P
g O 9. Output of Routing
5] WRITE_DINTEGER and WRITELN_DINTEGER have no output
< parameter and only effect the system by outputing seven characters, and a
L carriage return if WRITELN_ DINTEGER, to some logical unit.
B
[3 .
\ 10, Routine Testing
:‘:j a. Description of Test
WRITE_DINTEGER and WRITELN_DINTEGER were tested along with
< the other Enhancements Module routines though the module TEST_IT. TEST_IT
N routines exercised WRITE_DINTEGER and WRITELN_DINTEGER.
N
by b. Results of Test
2 Both routines performed properly.
': . 11, Reference to Listing
(w
The program listings for WRITE_DINTEGER and WRITELN_
DINTEGER can be found on pages 293 in Appendix A.

.l .l A".' _S_"_

Enhancements Module 77

N
20

BN

1. Routine Names:
WRITE_DWORD, WRITE_HWORD,
WRITELN_DWORD, and WRITELN_HWOBD

2. Qutput routines of Enhancements Module.
3. Written in PLZ.

WRITE_DWORD: five lines of executable code.
WRITE_HWORD: five lines of executable code.
WRITELN_DWORD: three lines of executable code.
WRITELN_HWORD: three lines of executable code.

4 nopsi

These four routines take a Word value and output the ASCII chara-
cters which represent it. The DWORD routines output the value in base 10 as a
decimal value, one to five characters (& through 9 or space) followed by a deci-
mal point. The DWORD routines blank leading zeros in the 19,300s, 1,90Js,
103s, and 1Js places. The HWORD routines output the value in hexidecimal
form, four characters (@ to 9 and A to F) followed by an H. The WRITE form of
the routines does not output a carriage return at the end of the string; the
WRITELN forms do. The WRITELN forms function by calling the WRITE version
to output the character strings and then call PUTCH to output the carriage return.

Both WRITE routines function identically; the only difference between
them is the values assigned to the internal variables BLANKING and INDEX and
the output base value (1D or 16) passed to routine PLACE_LOOP. PLACE_
LOOP performs the actual conversion of the WORD valus into the character string
given the base desired and the order or INDEX of the most significant output
character. The values for the routines are:

Routine BLANKING _ —INDEX _ _Base
WRITE_DWORD TRUE 10,000 10
WRITE_HWORD FALSE 4,096 16

(1090 hex)
Enhancements Module 78

.......

EAEA R AN SO K oA A G C it i o UL I e b U101 9L A P G R &l S G o Pl Yal Rah Gl A Bty B i & SR A Y A e A e A s ol I b i e SR A P o A

Any PLZ Routine
WRITELN -fwens

WRITE -Awers

PLACE_LOOP

Figure 20. Relationship of Decimal and Hexidecimal Word
Write and Writeln Routines to Other Routines.
6. Invocation
a. Invocation Statement
The routines are invoked from calling PLZ routines via:
WRITE_DWORD(LOGICAL_UNIT, NUMBER)
WRITELN_DWORD(LOGICAL_UNIT, NUMBER)
WRITE_HWORD(LOGICAL_UNIT, NUMBER)
WRITELN_HWORD(LOGICAL_UNIT, NUMBER)

where LOGICAL_UNIT is type Byte and NUMBER is type Word.

b. Parameter Passing Schema

All four routines have the same two input parameters, LOGICAL_
_ UNIT, type Byte, and NUMBER, type Word. LOGICAL_UNIT is the number of the
K*‘r device the characters are to be output to. NUMBER is the value to be translated
\ into decimal or hexidecimal character representations.

b

E\

L)

4

Y

>,

i Enhancements Module 79

N c. Routines Which Call

These routines can be called by any PLZ program. The Enhance-
ments Module and the PLZ Stream.lO Module must be linked in with the calling
programs’ module.

't e

Z._Variables and Constants
a. Global

None of the routines use any global variables or constants aside from
the definitions of ASCII characters.

b. Module

None of the routines use any module level variables; The WRITE form
routines use no module level constants. The WRITELN forms use the PLZ con-
stant %R to represent a carrage return.

6 c. Routine

(- The WRITELN form routines use no routine level constants or vari-
ables. The WRITE forms use two variables, BLANKING of type WORD and
2 INDEX of type Word. BLANKING is used as a logical flag to indicate to routine
' PLACE_LOOP whether leading zeros are to be blanked. INDEX is used to pass
. the value of the most significant place of the output string to routine PLACE_
LOOP. These variables could have been constants; they are present solely to aid

r the readability of the routines.
é
. . her Routin ll
- The WRITE and WRITELN routines call two internal routines of the
A Enhancements Module, PUTCH and PLACE_LOOP.
a. PUTCH

) All four routines call PUTCH to output single characters to the desired
- logical unit. WRITE_DWORD outputs a decimal point, WRITE_HWORD outputs
L an H, and the WRITELN's output a carriage return. In all cases PUTCH is in-
voked via:

S
M

" Enhancements Module 80

s

‘. - - - .. N . ™ a A - I IR S P S I T . - LR R T e I T R R S R T S S S SR ST S SR SRR S S
.U,L i‘l‘.\v\ N LA ..4’"-: O g o e G e ORI e e e T L L RO AEAL N . __.:_....‘. ‘

L e o

vse

PUTCH(LOGICAL_UNIT, CHARACTER)

where both LOGICAL_UNIT and CHARACTER are type Byte. LOGICAL_UNIT is
the same as the input parameter to the WRITE and WRITELN routines, the num-
ber of the device to which the CHARACTER is to be written. CHARACTER is the
hex value of the ASCII character to be output. PUTCH does not check to see if
the CHARACTER is valid ASCIl. As the WRITE and WRITELN routines use
PUTCH to output constants no error checking is needed. PUTCH has no return
parameters.

b. PLACE_LOOP

PLACE_LOORP is called by the WRITE form routines to translate a
value into a string of characters which represent that value and to output those
characters to a designated device. PLACE_LOORP is invoked by:

PLACE_LOOP(LOGICAL_UNIT, BLANKING, NUMBER , INDEX, BASE)

where INDEX is of type Word, NUMBER is of type WORD converted to type Word,
and the other three input parameters are of type WORD. LOGICAL_UNIT is the
same as the input parameter to the WRITE and WRITELN routines, the number of
the device to which the string of characters is to be written. BLANKING is a logi-
cal flag indicating whether leading zeros are to be blanked. NUMBER is the
value to be translated into a string of characters. Note that the input parameter to
the WRITE and WRITELN routines NUMBER is of type WORD and the input to
PLACE_LOORP is of type Word. Thus the type conversion in the invocation of
PLACE_LOOP. INDEX is the value of the most significant character to be out-
put. BASE is the base in which the character representation is to be made.
PLACE_LOOP has no output parameters.

PLACE_LOOP does no range checking on its inputs. This is not a
problem as the WRITE routines pass BLANKING, INDEX, and BASE as con-
stants. With the constants passed and the input NUMBER limited to a single
WORD range, the inputs to PLACE_LOOP cannot be out side defined ranges. |t
is assumed that the correct LOGICAL_UNIT number is passed into the WRITE
and WRITELN routines.

f in
The routines have no output parameters. The only effect they have on

the configuration of the system is the writing of a number characters (six to seven)
to some logical unit.

Enhancements Module 81

.....................

S -

...............

AD-A172 823 DESIGN AND PARTIAL INPLEMENTRTION OF A COMPUTER
CONTROLLED DATA COLLECTION SYSTENC(U) RIR FORCE INST OF
TECH MNRIGHT-PATTERSON AFB OH SCHOOL OF ENGI.. L E
UNCLASSIFIED FEB 86 AFIT/GE/ENG/86M-1

<

-

0 gt myd ty e A e S s

D

[I

o

agdsa

Lhuu

E E E uu..:._._m

=

125

—
———

|-|
———

I
l

o -

s
—
——
—
]

ll\ll '

—
———

14

I

I

o

19, Routine Testing
a. Description of Test
These routines were tested in conjunction with the rest of the Enhance
ments Module routines via the TEST_IT Module. Each Enhancements Module
routines was given a number of values to output.

b. Results of Test

Each routine output its input values in the proper formats.

11. Ref Listi

The listings of WRITE_DWORD, WRITELN_DWORD, WRITE_HWORD,
and WRITELN_HWORD are on pages 294 in Appendix A and 295 in Appendix A.

Enhancements Module

\.’-.

4
g
JERSY 1. Routine Name: WRITE_POINTER and WRITELN_POINTER
2. Output routines of Enhancements Module.
. 3. Writtenin PLZ.
P WRITE_POINTER: five lines of executable code.
! - WRITELN_POINTER: three lines of executable code.
N 4, Synopsis of Routines
3
> These two routines take a memory address and output its text string

equivalent. The output text string consists of a "A" followed by four hexidecimal
. characters (@ to 9 and A to F). WRITE_POINTER does not output a carriage
e return and WRITELN_ POINTER does. WRITELN_POINTER calls WRITE_

- POINTER to perform the character string output and then calls PUTCH to output
» the cariage return.

o

- 5. Routine Relationships Di

X

. .

[~ Any PLZ Routine

A WRITELN_POINTER

%

v

W

4 WRITE_POINTER

- PLACE_LOOP

o Figure 21. Relationship of Pointer Write and Writeln Routines
’ to Other Routines.

"4
3
R

3
3 Enhancements Module 83

,'5.--.-','."-"-J’»_--...-'-.--.pJ.
el L T A TN 5,9 .

_.;:,\.- RGOSt 0 N R S Aty R LN T e o e Y,

R

6. lnvocation
a. Invocation Statement
The routines are invoked from a calling PLZ routine by:

WRITE_POINTER(LOGICAL_UNIT, LOCATION)
WRITELN_POINTER(LOGICAL_UNIT, LOCATION)

where LOGICAL_UNIT is of type Byte and LOCATION is of type Word.

b. Parameter Passing Schema

Both routines have two input parameters, LOGICAL_UNIT and LOCA-
TION. LOGICAL_UNIT is the number of the device the character string is to be
written to. LOCATION holds the address to be translated into text.

c. Routines Which Call
Both routines can be used by any PLZ language program with which
the Enhancements Module and the PLZ Stream.lO module have been linked.

The routines, like the rest of the global Enhancements module routines, are
Pascal-like 1O subroutines intended to reduce the difficulty of 10 in PLZ.

Z._Variables and Constants
a. Global
No global variables are used by either routine. WRITE_POINTER
users no global constants. WRITELN_POINTER follows the PLZ convention of
"%R" representing a carriage return.
b. Module
Neither routine uses any module level variables. Within the Enhance-

ments Module, TRUE is a constant of value @1 hex representing logical true and
FALSE is a constant of value @@ hex representing logical false.

Enhancements Module 84

. ...

L v av gy v]

"

P P,

ALy

» A LA

fo g "
LS

e

c. Routine

Routine level constants are not used by either routine. WRITELN_
POINTER has no routine level variables. WRITE_POINTER has two routine level
variables, BLANKING (type Byte) and INDEX (type Word). BLANKING is a logical
flag to routine PLACE_LOORP to indicate whether leading zeros are to be blank-
ed. INDEX passes to PLACE_LOOP the place-value of the most significant
character of the output text string. These two variables exist only to aid the
readability of the code.

8. Other Routines Called

Both WRITE_POINTER and WRITELN_POINTER use other Enhance-
ments Module routines to output characters. WRITE_POINTER uses the internal
routine PLACE_LOOP to perform the actual value to character string conversion.
Both routines use the internal routine PUTCH to output single characters.

a. PLACE_LOOP

PLACE_LOORP translates a value into a string of characters that repre-
sents the value and then outputs the characters to a designated logical unit.
PLACE_LOORP is invoked with:

PLACE_LOOP(LOGICAL_UNIT, BLANKING, NUMBER, INDEX, BASE)

where NUMBER and INDEX are type Word and LOGICAL_UNIT, BLANKING,
and BASE are type Byte. The parameter LOGICAL_UNIT for PLACE_LOORP is
the same as the LOGICAL_UNIT input to WRITE_POINTER and WRITELN_
POINTER. It is the number of the device to which the output will go. BLANKING
is a logical flag indicating whether leaing zeros are to be blanked. NUMBER is
the value to be translated into a string of ASCIl characters. INDEX hold the
place-value of the most significant character of the output string. BASE is the
desired base of the character representation. PLACE_LOOP has no return
parameters.

b. PUTCH

PUTCH outputs single characters to the designated logical unit.
PUTCH has two input parameters, LOGICAL_UNIT and CHARACTER. As with
WRITE, LOGICAL_ UNIT is the Byte parameter indicating which device the output
is to go to. CHARACTER, also of type Byte, holds the ASCI! character to be out-
put. PUTCH is invoked by:

Enhancements Module 85

A " " e T T o s I S « . .- R S At e e e e tetaTmtat -)
RIS O S S N S N S R L LR O - Aty L s

P

TR F ROV AR XN

LN

PUTCH(LOGICAL_UNIT, CHARACTER)
WRITE-POINTER uses PUTCH to output the "A" and WRITELN_POIINTER uses
PUTCH to output its carriage retum. PUTCH has no return parameters.
9. Qutput of Routine

Neither routine has any output parameters. The sole effect of the

routines upon the system is the writing of five characters and, if WRITELN_

POINTER, a carriage return to the designated logical unit.

10. Routine Testi
a. Description of Test

WRITE_POINTER AND WRITELN_POINTER were tested along with
the rest of Enhancements module. This test was accomplished by linking with
Enhancements module and the PLZ STREAM.IO module a module of test
routines.

b. Results of Test
WRITE_POINTER and WRITELN_POINTER output the correct text
strings to the correct logical units.

1. Ref 0 Listi

The listings of WRITE_POINTER and WRITELN_POINTER are on
page 296 in Appendix A.

Enhancements Module 86

il o & LS T

LoV Ve

|7

v W e

[T D

I

L K

< ol M

LR

ﬁ? 1. Routine Names: WRITE_RCODE and WRITELN_RCODE

2. Output routines of Enhancements Module.

3. Written in PLZ.
WRITE_RCODE: 45 lines of executable code.
WRITELN_RCODE: 3 lines of executable code.

4. Synopsis of Routines

WRITE_RCODE and WRITELN_RCODE are PLZ routines which trans-
late the RIO (operating system) hexadecimal error codes into their text definitions
and outputs the text to the system console. WRITE_RCODE is just one big case
statement with 43 cases, one case for each RIO return code. WRITE_RCODE is
intended to be linked in during program checkout for rapid diagnosis of operating
system problems. WRITE_RCODE does not send a carriage return to the con-
sole. In contrast, WRITELN_RCODE consists of two subroutine calls and does
send a carrage return to the console at the end of the text string.

5. Routine Relationships Di

Any PLZ Routine

WRITELN_RCODE
WRITE_RCODE

WRITE WRITELN

Figure 22. Relationship of WRITE_RCODE and
WRITELN_RCODE to Other Routines

.
-

Enhancements Module 87

W, et

EYAREN KON ‘;\1

-

(i ofos =

R
* 6. Invocation
' a. Invocation Statement

N WRITE_RCODE and WRITELN_RCODE are invoked from another
PLZ routine via:

WRITE_RCODE (RETURN_CODE) and
WRITELN_RCODE(RETURN_CODE)

where RETURN_CODE is the RIO code in question. WRITE_RCODE and
. WRITELN_RCODE must either be linked in and declaired as an external
v procedure or be compiled with the calling PLZ routine.
<

b. Parameter Passing Schema

WRITE_RCODE and WRITELN_RCODE both have one input para-
meter, RETURN_CODE, of type Byte. |f either routine is passed an undefined
RETURN_CODE, the routine executes without taking any action. See the routine
listing for the defined return codes and their text definitions.

¢. Routines Which Call WRITE_RCODE and WRITELN_RCODE
WRITE_RCODE and WRITELN_RCODE can be called by any PLZ

program they are linked with or compiled with. WRITE_RCODE is called by
WRITELN_RCODE to translate the RETURN_CODZC into text.

M Z._Variables and Constants

a. Global
' Both routines use the constant "%R", the PLZ representation for a
” carriage return. %R indicates to routines WRITE and WRITELN the end of the

string to be output. Neither routine uses any global variables.

b. Internal to the Module

" CONSOLE_OUT, a constant of value two, is used by both WRITE_
RCODE and WRITELN_RCODE. It is the logical unit number for the system
console. Neither routine uses any module level variables.

., Enhancements Module 88

-
LY
e

e M T . A P T T B T L T P T e - N .
sy SR N (R TN PN NSNS

.........
.....

¢. Internal to the Routine

Neither WRITE_RCODE nor WRITELN_RCODE use any routine level
variables or constants.

8. Other Routines Called

WRITE_RCODE calls the routine WRITE and WRITELN_RCODE calls
.2 WRITELN to output the text translation of the return codes to the system console.
WRITE and WRITELN are also part of Enhancements Module.

WRITE and WRITELN have two input parameters, LOGICAL_UNIT,
type byte, and TEXT_POINTER, type PByte for pointer to byte. For both routines,
LOGICAL_UNIT is always CONSOLE_OUT or 2. TEXT_POINTER points to the
first character of the text string listed in each case of WRITE_RCODE and the
carriage return, %R, for WRITELN_RCODE. WRITE and WRITELN are invoked
via:

(] Y
PR LA M M

X!

WRITE (LOGICAL_UNIT, #text string %R') and

WYYV

WRITELN(LOGICAL_UNIT, #text string %R')

where %R indicates the end of the string and the # is the PLZ indicator for a
pointer to a string delimited by single quotes.

XYY

9. Qutpyt of Routine

WRITE_RCODE and WRITELN_RCODE have no output parameters
as such though it does output text to the system console. Neither routine alters
the configuration of the system.

x'd

0. Routine Tesfi

No specific tests were created for WRITE_RCODE and WRITELN_
RCODE. Rather, they were used as designed, linked in with other PLZ programs
- for diagnosis. When errors occured and RIO codes were received, the routiness
translated the codes and output the text to the system console. Not only did both
routines work, they proved to be a valuable debugging aids.

[-AN 2 X Y

a

PP PLIL A

AN

&

Enhancements Module 89

LR A R AR a7 S i i o i,

A A

RSC 11 fer istin

The listing of WRITE_RCODE can be found on pages 297-298 in "
Appendix A. WRITELN_ RCODE's listing is on page 298 in Appendix A. A \

LRI

PRI

RARAN, TIRRRRNN

"),

Enhancements Module 90

| pFWSCAINORENGYS | Pt e

e

RANASS

(Y

ShNA

[

o

- <
Tttt

Oh% N

’l' ‘:;’
.

»

S G Ny s‘.\'-.;.-.‘_,-.

—

. Routine Name: READLN

N

. Output routine of Enhancements Module.

3. Written in PLZ; six lines of executable code.

. Synopsis of Rout

READLN is input Enhancement Module routine for the PLZ language;
its purpose is input of text strings. READLN reads in ASCII character and places
them in a buffer. This continues until a carriage return is read. At that point,
READLN retumns to the calling routine a pointer to the last character in the buffer,
the carriage return.

This READLN is ment to approximate the function of the Pascal
Readln command. Unlike the Pascal command, this READLN has two input
parameters to indicate from which logical unit the text is to be read from and to
provide a pointer to the memory location where the string will be put. To let the
calling routine know how long a text string was read in, this READLN returns a
pointer to the end of the string. Again, unlike Pascal, the calling routine must
ensure sufficent buffer space to accomodate the input string. By using this
READLN, a PLZ program can read in text string far more easily than would be
possible with the GETSEQ routine of the PLZ STREAM.IO module, though still not
as easy as with the Pascal Readin. '

- Boutine Relationshios Di
Any PLZ Routine

READLN

GET_ASCIIl_CH

Figure 23. Relationship of READLN to Calling PLZ Routines and to
GET_ASCII_CH.

Enhancements Module 91

'__-.’ wtel N LR RN ARSI AL N .';'. -‘\('._-"-‘._-:._ .'.":-.':\"_\'.‘ N TR T .\"';.'} kot

-
IS

'&C‘)‘" Invocati
a. Invocation Statement

READLN is invoked from a calling PLZ routine with:

A A

OUT_POINTER := READLN(LOGICAL_UNIT, TEXT_POINTER)

where all OUT_POINTER and TEXT_POINTER are of type PByte (for pointer to

byte) and LOGICAL_UNIT is of type Byte. The calling program must ensure the
- buffer pointed to by TEXT_PONTER is large enough to accomodate the input text
. string.

b. Parameter Passing Schema

READLN has two input parameters, LOGICAL_UNIT and TEXT_
POINTER. LOGICAL_UNIT passes the number of the device the text is to read in
from. TEXT_ POINTER holds the beginning address of the buffer into which the
. input text will be copied.

v N

(® c. Routines Which Call READLN
READLN can be used by any PLZ program linked with the Enhance-
ments Module and the PLZ STREAM.IO Module. Alternately, READLN, along

< with the internal routines GET_ASCII_CH and GETCH, could be part of the
calling program's module. PLZ STREAM.IO will still have to be linked in.

7. Variab!
a. Global

READLN uses no declaired global constants or variables. However,
the buffer into which the text string is in a sense a global buffer.

“..'

: b. Module

N

< No module level variables are used by READLN. The module
¢ constant CARRIAGE_RETURN, valued at @D hex, is used by READLN.

b

;’_.

-

Enhancements Module 92

Q
o

TN

LY
O

¢. Routine

AP,

READLN has no constants; it uses one variable, PINDEX, of type
PByte for Pointer-to-Byte. PINDEX is used as a place keeper, pointing to the
current position in the buffer.

8. Other Routines Called
- READLN uses GET_ASCII_CH, and internal routine of Enhancements

mod- ule, to read in each character. GET_ASCII_CH is invoked from GET_
ASCII_CH by:

- PINDEX* := GET_ASCIl_CH(LOGICAL_UNIT)

where PINDEX" is the byte pointed to by PINDEX (and thus is of type Byte) and
LOGICAL_UNIT is of type Byte. PINDEX"* is the memory location into which the
charac- ter reterived by GET_ASCII_CH is placed. LOGICAL_UNIT is the device
number the character is read from.

S 9. Output of Routine
READLN returns a single parameter to the calling routine, QUT_

POINTER, of type PByte. OUT_POINTER points to the last character placed in the
buffer, the carriage return. Thus, having passed to READLN TEXT_POINTER,

pointing to be beginning of the buffer, and having received back OUT_POINTER,
the calling routine can determine the length of the string in the buffer. READLN
does not alter the configuration of the system beyond changing a number of
N memory locations to the values read in from the logical unit.
10. Routine Testing
a. Description of Test
READLN and the rest of the read routines of the Enhancements
Module were tested with a special module of test routines. One of these routines
used READLN to get text in from the keyboard and then displayed it to the system
console.
b. Results of Test
: . READLN performed properly.
:
‘ Enhancements Module 93

...........................

M e & gy X A A .. d g h a4

L)

¥

*ul"s

11 Ref Listi
READLN's program listing is on page 299 in Appendix A.

PR A AT A

N s Ay

T g W

.
..

it a
v Y

4

\' \! "-‘\ LY .

= AU

Y

%

¥
e
". *
&+,

)

L}

‘e

Enhancements Module 94

-

] P O P N U ST U BT UL A SRR SO I N P P - e Attt e
Sal LAl e ta o A A I e T T Ty AT T e

1. Routine Name: READ_HBYTE

2. Output routine of Enhancements Module.

3. Written in PLZ; seven lines of executable code.

L S is of Roufi

READ_HBYTE reads in from a designated logical unit two characters repre-
senting a 8 bit value in hexidecimal form. The routine translates the characters
into the value and returns that value to the calling routine. In reading in the
character, READ_HBYTE accepts only valid hexidecimal characters (@ - 9 and A
- F) rejecting all other characters. READ_HBYTE will keep reading in characters
until it has read two valid hexidecimal characters.

5. Routine Relationships Di

Any PLZ Routine

READ_HBYTE

GET_ASCIIl_CH

VALID_HEX_CH

VALUE

Figure 24. Relationship of READ_HBYTE to Other Routines.

6. Invocation
a. Invocation Statement
READ_HBYTE is invoked from a calling PLZ language routine by:
NUMBER := READ_HBYTE(LOGICAL_UNIT)

Enhancements Module a5

.
l.!'. '

>
I

where both NUMBER and LOGICAL_UNIT are of type Byte.

b. Parameter Passing Schema

READ_HBYTE has a single input parameter, LOGICAL_UNIT, which
holds the number of the device from which the hexidecimal characters are to be
read.

c. Routines Which Call
READ_HBYTE can be called by any PLZ routine that is linked with the
En- hancements Module and the PLZ STREAM.IO module. Alternately, this rou-
tine (and the internal routines GET_ASCII_CH, GETCH, and VALID_HEX_CH)

could be part of the calling routine’s module. The STREAM.IO module is still
required.

Z._Variables and Constants
a. Global

No global level variables or constants are used by READ_HBYTE.

b. Module

READ_HBYTE uses no module level variables or constants.

¢. Routine

Two local variables are used by READ_HBYTE. FIRST_TERM is the
first valid hexidecimal character read in and SECOND_TERM is the second.
Both of these variables are of type Byte. READ_HBYTE uses no routine level
constants.

8. Other Routines Called

READ_HBYTE calls three internal routines of the Enhancements
Module, GET_ASCII_CH, VALID_HEX_CH, and VALUE.

Enhancements Module 96

LA AN S A L S L L A TS C o

f(.f AL -

P AR N RIAPLILII

Y TR Y Ny

£ &S

IAAR

an "ol S N0

%%

PR ST A

| PPl i

o

TR

’ﬂ“‘.

.
XA

a. GET_ASCII_CH

This routine reads individual ASCII characters in from a designated
logical unit. It is invoked by:

CHARACTER = GET_ASCII_CH(LOGICAL_UNIT)
where both CHARACTER and LOGICAL_UNIT are of type Byte. READ_HBYTE
uses GET_ASCII_CH to get FIRST_TERM and SECOND_TERM.
b. VALID_HEX_CH
This function determines whether its input character is a valid hexi-
decimal character (@ -9 or A - F). Ifitis valid, a logical TRUE is returned, other-
wise a FALSE is returned. VALID_HEX_CH is invoked with:
VALID_HEX_CH(CHARACTER)
where CHARACTER is of type Byte and VALID_HEX_CH returns as a logical
Byte.
c. VALUE
This internal function of the Enhancements module translates a deci-
mal or hexidecimal ASCII character (D - 9 and A - F) into the value it represents
and returns that value. If VALUE receives an invalid character, a value of zero is
returned. The function VALUE is invoked by its name as follows.

VALUE(CHARACTER)

Both CHARACTER and the retum VALUE are of type Byte.

9. Qutput of Routine

READ_HBYTE has a single return parameter and produces no
changes in the system configruation. The return parameter, NUMBER, is the
hexidecimal (8 bit) value derrived from the two characters read in.

Enhancements Module 97

...........

B 10, Routine Testing
a. Description of Test
READ_HBYTE was tested along with the rest of the Enhancements

Module routines. In this test READ_HBYTE read in some values from the
keyboard; the values were then output to the screen.

} b. Results of Test

READ_HBYTE properly input hexidecimal values and performed as
expected for all input data.

L. Ref List
The listing for READ_HBYTE is on page 300 in Appendix A.

LR an Bk ab o

Enhancements Module a8

1. Routine Name: READ_DBYTE

2. Part of Enhancements Module

3. Written in PLZ; ten lines of executable code.

L S is of Rout

READ_DBYTE reads three characters in from a specified logical unit
and translates these characters into the decimal value represented by the chara-
cters. The internal Enhancements Module routine GET_ASCII_CH is used for the
character input. The first character read in must be valid decimal character, that
is @ through 9. For the first character, all nonvalid decimal characters will be re-
jected. Character validity is checked by the internal Enhancements Module rou-
tine VALID_DECIMAL_CH. If the second or third character read in are invalid
they will be accepted but will not be included in the value calculation. The actual
conversion of character to value is accom- plished by VALUE, an internal routine
of the Enhancements Module.

As a single byte has a maximum vaiue of 255, if the decimal chara-

cters represent a value greater than this overflow will occur. The calling routine
must guard against this condition as READ_DBYTE does no range checking.

5. Routine Relationshis Di

Any PLZ Routine

READ_DBYTE

GET_ASCIII_CH

VALID_DECIMAL_CH

VALUE

Figure 25. Relationship of READ_DBYTE to Other Routines.

Enhancements Module 99

J‘_»

W 6._Invocation
a. Invocation Statement p
READ_DBYTE is invoked through the following statement. :'
NUMBER := READ_DBYTE(LOGICAL_UNIT) .
NUMBER and LOGICAL_UNIT are both of type Byte.)

b. Parameter Passing Schema

READ_DBYTE has a single input parameter, LOGICAL_UNIT, the
number of the device from which the characters will be read.

c. Routines Which Call

READ_DBYTE can be called by any PLZ routine.

® Z._Variables and Constans
a. Global

~

READ_DBYTE uses no global variables or constants. DY

b. Module 3

READ_DBYTE uses no module level variables. The module constant i

TRUE for logical true is used. w

c. Routine

READ_DBYTE uses three internal variables, FIRST_TERM,
SECOND_TERM, and THIRD_TERM, all of type Byte. These three variables are
used to hold the validated characters prior to calculating the decimal value they
represent. READ_DBYTE uses no routine level constants.

Enhancements Module 100 -'

-~

-
----------- - - . . P . At e B N P o T T T - -
E A IR R T e et L e e A NN T LN NN T ST T T et et e S e e s
’ LA D IS AT S K oL U .y Ay e N\ '..-~. ., - ;-..:‘.' RS -.\‘. .\
N Bia

A AL A |

0 ’e"8"a"a"a

s .

[

%2

vy
v 'J\?
®

o

o‘.l'

..................

8. Other Routines Called
READ_DBYTE uses three internal routines of the Enhancements
module, GET_ASCII_CH, VALID_DECIMAL_CH, and VALUE.
a. GET_ASCII_CH

This routine reads single characters in from a specified logical unit.
GET_ASCII_CH returns only valid ASCII characters. The routine is invoked by:

CHARACTER := GET_ASCII_CH(LOGICAL_UNIT)

where both CHARACTER, and LOGICAL_UNIT are of type Byte.

b. VALID_DECIMAL_CH
This function checks a character to determine whether it is a @ through
9. If the input character is a valid decimal character, VALID_DECIMAL_CH re-
turns a value of TRUE. Otherwise, a value of FALSE is returned. VALID_
DECIMAL_CH is invoked with:
VALID_DECIMAL_CH(CHARACTER)

where CHARACTER and the return VALID_DECIMAL_CH are type Byte.

c. VALUE

This internal function of the Enhancements module translates a deci-
mal or hexidecimal ASClI character (@ - 9 and A - F) into the value it represents
and returns that value. If VALUE receives an invalid character, a value of zero is
returned. The function VALUE is invoked by its name as follows.

VALUE(CHARACTER)

Both CHARACTER and the return VALUE are of type Byte.

9. Qutput of Routine

READ_DBYTE returns to its calling routine a single parameter,
NUMBER, which holds value translated from the characters. NUMBER is of type
Byte. Other than reading in a number of characters, READ_DBYTE causes no

Enhancements Module 101

P
i ,

\ - system configuration changes.

\)

. . .

s 10, Routine Testing

LY

LY

I, a. Description of Test

3 READ_DBYTE was tested with the rest of the Enhancements module
J routines via a version of the test module TEST_IT. In this test values were output
! though READ_DBYTE to the system console.
v, b. Results of Test

: READ_DBYTE performed properly.
9

: The program listing of READ_DBYTE can be found on page 301 in
A Appendix A.

j o
1 o
s
) 4
. o
' -

5

3

“l

h

>,
RS

8 Enhancements Module 102
!

e ™5 b T p e e e et AT e et e at ey - e et mtatacarana e, - et e e
‘ .‘.,“ VA SRR SR A A0 LA\ .\ ‘ LA T AN o

¥ 1. Routine Name: READ_BBYTE

2. Output routine of Enhancements Module.

3. Written in PLZ; thirteen lines of executable code.

L S is of Rout

N READ_BBYTE reads in from a designated logical unit one to eight
N characters representing a 8 bit value in binary form. The routine translates the
characters into the value and returns that value to the calling routine. In reading
in the first character, READ_BBYTE accepts only valid binary characters (@ and
y 1) rejecting all other characters. READ_BBYTE will keep reading in characters
: until it has a 1 or @. Subsequent 1s and Os will be read in and included for the
value calculation. However, as soon as a character other than a 1 or @ is read,
character input ceases. The character reading is accomplished through routine
GET_ASCII_CH.

: READ_BBYTE stores the 1s and Qs in a text string which it passes to
s routine VALUE_LOOP for translation into a value. READ_BBYTE then returns
- this value to its calling routine.

5. Routine Relationships Di

Any PLZ Routine

READ_BBYTE

; GET_ASCIII_CH VALUE_LOOP

Figure 26. Relationship of READ_BBYTE to Calling PLZ Routine,
GET_ASCII_CH, and VALUE_LOOP.

w .
<62

Enhancements Module 103

G R R I TR ok AN OO NS R e . GO
RO O I] . " * e AR RN L)

N e)
P LI PRI, POPE I NN]

e .
A

LA
'- {.'

6. lnvocation
a. Invocation Statement
READ_BBYTE is invoked from a calling PLZ language routine by:
NUMBER := READ_BBYTE(LOGICAL_UNIT)

where both NUMBER and LOGICAL_UNIT are of type Byte.

b. Parameter Passing Schema
READ_BBYTE has a single input parameter, LOGICAL_UNIT, which

holds the number of the device from which the hexidecimal characters are to be
read.

¢. Routines Which Call
READ_BBYTE can be called by any PLZ routine that is linked with the
Enhancements Module and the PLZ STREAM.IO Module. Alternately, this routine
(and the internal routines GET_ASCII_CH, GETCH, and VALID_HEX_CH) could
be part of the calling routine's module. The STREAM.IO Module is still required.
Z._Varigbles and Constants
a. Global

No global level variables or constants are used by READ_BBYTE.

b. Module

READ_BBYTE uses no module level variables. The Enhancements
Module constant BLANK (ASCII for 2@ hex) is used by READ_BBYTE.

¢. Routine

Three local variables are used by READ_BBYTE. INPUT_STRING, of
type ASCII_STR, an array of eight Bytes, is used to store the 1s and @s. INDEX,
of type Byte, is a placekeeper for the array INPUT_STRING. The third variable,
CHARACTER, is used to hold each character as it is read in.

Enhancements Module 104

W R

LB A A A & -

oA

s 8 A 02 A

%

8. Other Routines Called

READ_BBYTE calls two internal routines of the Enhancements
Module, GET_ASCII_CH and VALUE_LOOP.

a. GET_ASCII_CH

This routine reads individual ASCII characters in from a designated
logical unit. It is invoked by:

CHARACTER := GET_ASCII_CH(LOGICAL_UNIT)

where both CHARACTER and LOGICAL_UNIT are of type Byte. READ_BBYTE
uses GET_ASCII_CH to read in the characters.

b. VALUE_LOOP

This routine translates a string of ASCII characters into the value they
repre- sent. VALUE_LOOP is invoked though:

MAGNITUDE := VALUE_LOOP(INPUT_STRING, MULTIPLIER).

VALUE_LOOP has two input parameters, INPUT_STRING (type PByte), a pointer
to the string of ASCII characters, and MULTIPLIER (type Word) the base of the
number represented by the string of characters. Starting from the least significant
character VALUE_ LOOP calculates the value contributed by each character to
the total MAGNITUDE represented by the string. The routine ends when a blank
is found in the INPUT_STRING or when eight characters have been translated.
VALUE_LOOP has a single return parameter, MAGNITUDE, of type Word.

2. Output of Routine

READ_BBYTE has a single return parameter and produces no
changes in the system configuration. The return parameter, NUMBER, is the
hexidecimal (8 bit) value derrived from the 1s and @s read in.

Enhancements Module 105

...........

.........

1 i in
a. Description of Test
READ_BBYTE was tested alnng with the rest of the Enhancements

Module routines. In this test READ_BBYTE read in some values from the key-
board; the values were then output to the screen.

b. Results of Test

READ_BBYTE properiy read in binary values and converted them to
the proper values.

N 11. Reference tQ Listing
The listing of READ_BBYTE is on page 302 in Appendix A.
X
R
:' .
Enhancements Module 106
R e e A a T e T ot eIy e e L e N

B}

-,

1. Routine Name: READ_LBYTE

2. Output routine of Enhancements Module

3. Written in PLZ; seven lines of executable code.

\. Synopsis of Roui

This simple routine reads in characters, on at a time, from a desig-
nated logical unit. It the characteris a T, t, or 1, a value of logical true is returned
to the calling routine. If the characteris a F, f, or @ a value of logical false is re-
turned to the calling routine. If any other character input, the routine loops and
another character is read in. READ_LBYTE uses the internal Enhancements

" module routine GET_ASCII_CH to read in the character(s).

Any PLZ Routine

| @
READ LBYTE

GET_ASCIIl_CH

2 Figure 27. Relationship of READ_LBYTE to Calling Routines
5 and to GET_ASCII_CH.

6. Invocation
a. Invocation Statement
READ_LBYTE is invoked by the following statement.

TRUTH := READ_LBYTE(LOGICAL_UNIT)

Both the input and return parameters are of type Byte.

Enhancements Module 107

..........

..............

‘. [}
LR

b. Parameter Passing Schema
READ_LBYTE has one input parameter, LOGICAL_UNIT, the device
number from which the character will be read.
¢. Routines Which Call
READ_LBYTE, like the rest of the global routines of the Enhance-
ments Module, are ment to be called from any PLZ routine that needs 10
assistance.
Variabl
a. Global

READ_LBYTE uses no global constants or variables.

b. Module

READ_LBYTE uses the module constants TRUE and FALSE for
logical true and false. The routine uses no module level variables.

¢. Routine

READ_LBYTE employes the local variable CHARACTER, of type Byte,
to hold the character read in. The routine has no locally defined constants.

8. Qther Routines Called

READ_LBYTE calls GET_ASCII_CH, an internal routine of the
Enhancements module, to read in the character input. GET_ASCII_CH is
invoked by:

CHARACTER := GET_ASCI_CH(LOGICAL_UNIT)

where both the input parameter LOGICAL_UNIT and the return character
CHARACTER are of type Byte. LOGICAL_UNIT holds the input device number.
CHARACTER holds the character input. GET_ASCH_CH returns only valid ASCII

Enhancements Module 108

P AR

tl, "

~

+ LS

W ok X3

At Wl B8 B Aol Bf 40 A6 by ot AF gt bt Bt L5

W
5}}‘) characters.

2. Output of Routine
a. Parameter Passing Schema
READ_LBYTE has a single return parameter, TRUTH, of type Byte.
TRUTH returns the logical value derived from the read character. TRUTH can
take on only the values TRUE or FALSE.

b. System Configuration Changes

The routine causes no system configuration changes aside from
reading in a character.

0. Routine Testi
a. Description of Test

é READ_LBYTE was tested in the same fashion as the rest of the En-
hancements Module routines.

b. Results of Test

The routine performed properly.

11. Ref to Listi
The program listing of READ_LBYTE is on page 303 in Appendix A.

Enhancements Module 109

O I I A A AR e S N SR P SN P IN e el R R U A S VNI IR N Y
b L RN N SO LHE KN R AL SIL RN “ 5. A A A S VN RO AOA N AN N AT AT T

L e e,

s i # Pty
Ll Dt 2t B W BV N [W S N N N]

S

I AN X

" at A

-

. Routine Name: READ_DINTEGER
2. Qutput routine of Enhancements Module.

3. Written in PLZ; 22 lines of executable code.

+_Synopsis of Routi

READ_DINTEGER reads in a string of characters from the designated
logical unit and translates that string into a signed value. The routine begins by
calling GET_ASCII_CH to read in the sign character. Characters are read in from
the desired logical unit until a blank, "+", or "-" is read in, these three being the
valid sign characters. The sign character read is saved in the local variable
SIGN. '

The routine continues reading in individual characters until a valid
decimal character (@ through 9) is read. the validity of characters is checked by
the function routine VALID_DECIMAL_CH. The first valid decimal character
received becomes the first character stored in the local array INPUT_STRING.
READ_DINTEGER continues reading in characters. The reading process stops
with the first invalid decimal character or when a total of five decimal charactes
have been read. When an invalid character is read or after five valid characters
have been read, a blank is inserted into INPUT_ STRING. The valid decimal
charactes are insterted into INPUT_STRING in the order they are received.

READ_DINTEGER then enters its third phase, the translation of SIGN
and INPUT_STRING into the return parameter NUMBER, of type Integer. The
bulk of the work is done by general routine VALUE_LOOP which translates the
characters of INPUT_STRING into the base ten value they represent. This value
is checked for over- flow and then, if SIGN is "-", the value is negated. NUMBER
is then returned to the calling routine.

Enhancements Module 110

................

5. Routine Relationships Di

Any PLZ Routine

READ_DINTEGER

GET_ASCIII_CH

VALID_DECIMAL_CH

VALUE_LOOP

Figure 28. Relationship of READ_DINTEGER to Other
Routines.

6._Invocation

a. Invocation Statement

READ_DINTEGER is invoked from a calling PLZ program through:

NUMBER := READ_DINTEGER(LOGICAL_UNIT)

where LOGICAL_UNIT is of type Byte and NUMBER is type Integer.

b. Parameter Passing Schema

LOGICAL_UNIT is READ_DINTEGER's only input parameter. It holds
the number of the device the characters are input from.

¢. Routines Which Call

READ_DINTEGER can be employed by any PLZ program linked with
the Enhancements Module and the PLZ STREAM.IO Module.

Enhancements Module

...........................
PP MR R R N R T T R N S S e S S A,
............
.....

[Y

l." IO

a. Global

No global variables or constants are used by READ_DINTEGER.

b. Module

READ_DINTEGER uses the Enhancements Module constants BLANK,
TRUE, and FALSE. No module level variables are used.

¢. Rodutine

READ_DINTEGER has four internal variables. INPUT_STRING, type
ASCII_STR (a string of 8 bytes) is used to hold the input characters. INDEX, type
Byte, is a placekeeper for the array INPUT_STRING. CHARACTER, type Byte,
hold each character as they are read in. Lastly, SIGN, type Byte, holds the chara-
cter representing the sign of the input string. READ_DINTEGER uses no locally
defined constants.

8. Other Routines Called

READ_DINTEGER employes three internal routines from the
Enhancements Module, GET_ASCI!I_CH, VALID_DECIMAL_CH, and
VALUE_LOOP.

a. GET_ASCI_CH

This routine reads single characters in from a specified logical unit
and returns them to the calling routine. GET_ASCII_CH returns only valid ASCII
characters. The routine is invoked by:

CHARACTERS := GET_ASCII_CH(LOGICAL_UNIT)
where both CHARACTER and LOGICAL_UNIT are of type Byte.

b. VALID_DECIMAL_CH

This function routine determines whether a character is a @ though 9.
it yes, VALID_DECIMAL_CH returns with a value of TRUE. Otherwise VALID_

Enhancements Module 112

PR

. :3' DECIMAL_CH returns with a value of FALSE. The routine is invoked with:

N VALID_DECIMAL_CH(CHARACTER)

3 where both CHARACTER and the returning VALIDE_DECIMAL_CH are type
» Byte.

c. VALUE_LOOP

VALUE_LOORP translates a string of ASCII characters into the value
they represent and returns that value to the calling routine. Being a general
purpose routine, VALUE_LOOP must be told what base the representation is in.
In general, VALUE_ LOOP is invoked by:

MAGNITUDE := VALUE_LOOP(INPUT_STRING, MULTIPLIER)
where NUMBER is type Word, INPUT_STRING is type pointer-to-Byte, and
> MULTIPLIER is type Word. As the output of READ_DINTEGER is of type Integer,
g for READ_ DINTEGER, VALUE_LOORP is invoked with a type conversion. As

“ READ_DINTEGER is converting a decimal string, MULTIPLER is passed in as 10
A for the base.

:-j 9. Quiut of Routing
a. Parameter Passing Schema

READ_DINTEGER has a single return parameter, NUMBER (type
Integer), which holds the value transiated from the string of input characters.

e B!

HEMENE N Y

b. System Configuration Changes

No system configuration changes are caused by READ_DINTEGER.

3 ‘t l Q B I. I l.
a. Description of Test

READ_DINTEGER was tested with a version of TEST_IT module. In
this version, READ_DINTEGER was called from TEST_IT to read an decimal
integer in from the system keyboard. The return from READ_DINTEGER was

o then output to the system console. Thus the operator could input a variety of

o

AN Y

Enhancements Module 113

characters and observe the response of READ_DINTEGER.

b. Results of Teét

READ_DINTEGER performed as expected.

. Ref to Listi
The listing of READ_DINTEGER is on pages 304 - 305 in Appendix A.

Enhancements Module 114

-
i

LAy

- ’. \‘\"x.‘.' ‘

[<3 2%

1. Routine Name: READ_HWORD

2. Output routine of Enhancements Module.

3. Written in PLZ; 14 lines of executable code.

L S is of Routi

READ_HWORD is an Enhancements module routine whose function
is to input a sequence of characters and transiate that that sequence into the
hexidecimal value it represents. The routine begins by reading in characters,
one by one, until a valid hexidecimal character is received. The input is handled
by the routine GET_ASCII_CH. The characters are checked by VALID_HEX_CH
to determine whether the character is a @ to9 or A to F. Once a valid hexidecimal
is received, it is the first character stored in the internal array INPUT_STRINT.
READ_HWORD then continues reading in chracters, one by one. Each succes-
sive valid hexidecimal character is stored in INPUT_STRING until four character
are stored. If a nonvalid character is read, a blank is placed in INPUT_STRING
and input is ended.

READ_HWORD next proceeds to translating the characters stored in
INPUT_STRING into the hexidecimal value they represent. The work is done by
routine VALUE_LOOP. The derived 16 bit value is returned to the calling routine
in the output parameter NUMBER, type Word.

5. Routine Relationships Di

Any PLZ Routine

READ_HWORD

VALID_HEX_CH

GET_ASCIII_CH

VALUE_LOOP

Figure 29. Relationship of READ_HWORD to Other Routines.

Enhancements Module 115

NN A, Qo o @ v %" LS R 2 S N ML S AP SO) N L - 2 ceT e c e T U S T
' ‘N’ ot B '\\ \ .~ S ‘-“ * .'h.'.' "b\‘\(.'.) ST ."‘."-\ RIS -.".-\ n“':\'."..“:".a.'- -‘-.“-:'.\‘ e "‘.

s te®a

(W \p

R

| TulbEnagrg

[2 D" D B

..A.

"
b
<
¥

6._Invocation
a. Invocation Statement
From a PLZ program, READ_HWORD is invoked by:
NUMBER := READ_HWORD(LOGICAL_UNIT)

where NUMBER is type Word and LOGICAL_UNIT is type Byte.

b. Parameter Passing Schema
READ_HWORD has a single input parameter, LOGICAL_UNIT.
LOGICAL_ UNIT, type Byte, holds the number of the device from which the
characters are read.
c. Routines Which Call
Like the rest of the Enhancements Module routines, READ_HWORD is
an supplement routine ment to ease the 10 burden on PLZ programmers. READ_

HWORD can be called from any PLZ program linked with the Enhancements
Module and the PLS STREAM.IO Module.

1. Variables and Constants
a. Global

No global variables or constants are used by READ_HWORD.

b. Module

READ_HWORD uses the Enhancements moudle constants TRUE and
FALSE for logical true and false. No module level variables are used.

¢. Routine

Three variables are local to READ_HWORD, INPUT_STRING (type
ASCII_ STRing), INDEX (type Byte), and CHARACTER (type Byte). INPUT_
STRING is an eight Byte array used to hold the up to five characters (four hex
characters and a blank) read in. INDEX is a place keeper for the current location

Enhancements Module 116

=

~ s - - . - Y. Y . - - -, - N e W, .,

being used in INPUT_STRING. CHARACTER receives the individual characters
read in via GET_ASCII_CH. READ_HWORD uses no locally defined constants.

8. Other Routines Called
READ_HWORD uses three internal routines of the Enhancements
Module: GET_ASCII_CH, VALID_HEX_CH, and VALUE_LOOP.
a. GET_ASCII_CH

This routine reads in a single character from a specified logical unit,
checks to ensure the character is valid ASCII, and returns the character to the
calling routine. GET_ASCII_CH keeps reading in data until a valid ASCll chara-
cter is received. GET_ASCII_CH is invoked with:

CHARACTER := GET_ASCII_CH(LOGICAL_UNIT)
where CHARACTER and LOGICAL_UNIT are both type Byte. The input para-
meter, LOGICAL_UNIT, indicates the device to be used for input. CHARACTER,

the return parameter, holds the valid ASCIl character read in from the LOGICAL _
UNIT.

b. VALID_HEX_CH
This Enhancements module internal function format routine, checks
whether a character is a @ to 9 or Ato F. If yes, VALID_HEX_CH returns to the
caliing routine with a value of TRUE. If the character passed to VALID_HEX_CH
is not a valid hexidecimal character, VALID_HEX_CH returns to the calling rou-
tine as FALSE. VALID_HEX_CH is invoked through:
VALID_HEX_CH(LOGICAL_UNIT)
where LOGICAL_UNIT, type Byte, identifies the device from which data is to be
read.
¢c. VALUE_LOOP
VALUE_LOOP is a general purpose translation routine. It takes a
string of characters, in any base from 2 to 16, and translates the string into the

value they represent. VALUE_LOOP is invoked by:
MAGNITUDE := VALUE_LOOP(INPUT_STRING, MULTIPLER))

Enhancements Module 117

SRR
o« .

where MAGNITUDE (type Word) is the value represented by the characters,
INPUT_ STRING (type pointer-to-string) is the string of characters, and
MULTIPLIER (type Word) is the base of the character representation.

9. Output of Routine

READ_HWORD has a single output parameter, NUMBER, of type
Word. NUMBER holds value translated from the input characters. The defined
range of NUMBER is @930 to FFFF hexidecimal. READ_HWORD causes no
configuration changes.

10, Routine Testing
a. Description of Test
READ_HWORD was tested through a routine in version of TEST_IT
Module which uses READ_HWORD to read in characters from the keyboard and

translate them into a value. This value is then displayed to the system console.
This way, the function of READ_HWORD can be immediately observed.

b. Results of Test N

READ_HWORD worked properly.

1. Ref Listi
READ_HWORD's program listing is on page 306 in Appendix A.

Enhancements Module 118 :

DAY 1. Routine Name: READ_DWORD
2. Output routine of Enhancements Module.

3. Written in PLZ; 14 lines of executable code.

¢ Synopsis of Rout

READ_DWORD is an Enhancements Module routine whose function
is to input a sequence of characters and translate that that sequence into the
decimal value it represents. The routine begins by reading in characters, one by
one, until a valid decimal character is received. The input is handled by the rou-
tine GET_ASCII_CH. The characters are checked by VALID_DECIMAL_CH to
determine whether the character is a @ t09. Once a valid decimal is received, it is
the first character stored in the internal array INPUT_STRING. READ_DWORD
' then continues reading in chracters, one by one. Each successive valid decimal
character is stored in INPUT_STRING until six character are stored. If a nonvalid
character is read, a blank is placed in INPUT_STRING and input is ended.

P

READ_DWORD next proceeds to translating the characters stored in

INPUT_STRING into the decimal value they represent. The work is done by rou-

() tine VALUE_LOOP. The derived 16 bit value is returned to the calling routine in
the output parameter NUMBER, type Word.

5. Routine Relationshios Di

Any PLZ Routine

READ DWORD

GET_ASCIIl_CH

VALID_DECIMAL_CH

VALUE_LOOP

Figure 30. Relationship of READ_DWORD with Other Routines

Enhancements Module

............

nv ion

a. Invocation Statement

From a PLZ program, READ_DWORD is invoked by:

NUMBER := READ_DWORD(LOGICAL_UNIT)

where NUMBER is type Word and LOGICAL_UNIT is type Byte.

b. Parameter Passing Schema
READ_DWORD has a single input parameter, LOGICAL_UNIT.
LOGICAL_ UNIT, type Byte, holds the number of the device from which the
characters are read.
¢. Routines Which Call
Like the rest of the Enhancements module routines, READ_DWORD is
a supplement routine ment to ease the 10 burden during PLZ programming.

READ_ DWORD can be called from any PLZ program linked with the
Enhancements module and the PLS STREAM.IO module.

Z.Variables and Constants
a. Global

No global variables or constants are used by READ_DWORD.

b. Module
READ_DWORD uses the Enhancements module constants TRUE,
FALSE, and BLANK. No module level variables are used.
c. Routine
Three variables are local to READ_DWORD, INPUT_STRING (type
ASCIl_ STRing), INDEX (type Byte), and CHARACTER (type Byte). INPUT_

STRING is an eight Byte array used to hold the up to seven characters (six deci-
mal characters and a blank) read in. INDEX is a place keeper for the current

Enhancements Module

'»'.: -,' i

T

location being used in INPUT_STRING. CHARACTER receives the individual
characters read in via GET_ASCII_CH. READ_ DWORD uses no locally defined
constants.

. her Routin 1l

READ_DWORD uses three internal routines of the Enhancements
Module: GET_ASCII_CH, VALID_DECIMAL_CH, and VALUE_LOOP.

a. GET_ASCII_CH

This routine reads in a single character from a specified logical unit,
checks to ensure the character is valid ASCII, and returns the character to the
calling routine. GET_ASCII_CH keeps reading in data until a valid ASCII chara-
cter is received. GET_ ASCII_CH is invoked with:

CHARACTER := GET_ASCII_CH(LOGICAL_UNIT)

where CHARACTER and LOGICAL_UNIT are both type Byte. The input para-
meter, LOGICAL_UNIT, indicates the device to be used for input. CHARACTER,
the return parameter, holds the valid ASCII character read in from the LOGICAL _
UNIT.

b. VALID_DECIMAL_CH

This Enhancements Module internal function format routine, checks
whether a character is a @ to 9. If yes, VALID_DECIMAL_CH returns to the
calling routine with a value of TRUE. If the character passed to VALID_DECI-
MAL_CH is not a valid decimal character, VALID_DECIMAL_CH returns to the
calling routine as FALSE. VALID_DECIMAL_CH is invoked through:

VALID_DECIMAL_CH(LOGICAL_UNIT)
where LOGICAL_UNIT, type Byte, identifies the device from which data is to be
read.
c. VALUE_LOOP
This Enhancements Module routine is a general purpose translation

routine. It takes a string of characters, in any base from 2 to 16, and translates the
string into the value they represent. VALUE_LOORP is invoked by:

Enhancements Module 121

MAGNITUDE := VALUE_LOOP(INPUT_STRING, MULTIPLER)

where MAGNITUDE (type Word) is the value represented by the characters,
INPUT_ STRING (type pointer-to-string) is the string of characters, and MULTI-
PLIER (type Word) is the base of the character representation. VAUE_LOOP
performs a crude overflow checking and returns the maximum 16 bit value
(65,535 decimal) if overflow is detected.

9. Output of Routine

READ_DWORD has a single output parameter, NUMBER, of type
Word. NUMBER holds value translated from the input characters. The defined
range of NUMBER is @ to 65,535 decimal. READ_DWORD causes no config-
uration changes.

10. Routine Testing

a. Description of Test

READ_DWORD was tested through a routine which used READ_
DWORD to read decimal characters in from the keyboard and translate them into
avalue. This value was then displayed to the system console. Thus, the function

. of READ_DWORD was immediately observed.

b. Results of Test

READ_DWORD worked properly.

11 ren isti

The listing of routine READ_DWORD is on page 307 in Appendix A.

Enhancements Module 122

PSS AN

|‘l’"'.’ P ".f‘f

A (A ‘0

¥ Ve Y
LA/URAN | PV

e

e L.

P e

.

-

f N

e
ARV

PR
- ¢

Ty o

Y

.
‘P

.

Enhancements Module

This page is intentionally blank

123

I‘,'

l1l. Utility Module

Introduction to Utility Module

Utility Module is a collection of nine Z-80 assembly language routines
designed to give PLZ language programs direct access to input/output ports, spe-
cific memory locations, the CPU interrupt enable/disable, the system date, and
the RIO Operating System memory manager. These assembly language routines
are called as subroutines from PLZ programs. The routines of the Utility Module
and their functions are:

IO0UT: Outputs desired value to desired 10 port.

IOIN: Reads input from desired 10 port.

MEMSET: Writes a desired value to a specific memory cell.
MEMREAD: Reads the value stored in a specific memory cell.
DISABLEINT: Disables the CPU maskable interupts
ENABLEINT: Enables the CPU maskable interupts

DATE: Reads the six characters of the system date.
ALLOCATE: Calls the memory manager for allocation of

a specific sized block of memory.
DEALLOCATE: Calls the memory manager for the deallocation
of a specific block of memory.

Figure 31 below shows how these nine routines relate to the their calling PLZ
routines and to elements of the development system.

Seven of the nine Utility Module routines share several common
features mandated by the PLZ subroutine call and parameter passing procedures
(Ref 6:Sec 7). These features are:

1. Saving the current IX register value,
2. Placing the stack pointer value in the IX register and using
offsets for access to input and output parameters,

3. Code to accomplish the routine's specific task,

4, Restoring of calling routine's IX register value,

5. Deallocating of input parameter space on the stack, and
6 Returning to the calling PLZ routine.

The program listings for the seven routines are organized like the above feature
listing with blank lines setting off the PLZ overhead from the routine's function

Utility Module 124

AR

B oy

A

o WA e e

o~ code. Two routines of the Utility Module, ENABLEINT and DISABLEINT do not
s share the common fea- tures listed above. This is due to their lack of input and
output parameters and their sim- plicty; they just do not require the overhead of

- the other seven routines. The reasons for and the form of this overhead of the
)¢ other seven routines is detailed below.

ot

)"

K Any PLZ Language Routines

UTILITY Module

\ Routines

v RIO Operating System

g ALLOCATE &) M

- DEALLOCATE} Smory vanager

N MEMSET &

= MEMREAD

L DATE

]
: IOIN &

h I00UT
, ENABLEINT &

« DISABLEINT —pi Z-80 CPU

<

3

Figure 31. Relationship Between the Routines of the Utility Module to

< Calling Routines and System Elements.

3

Y

< The first action of the seven routines is to save the current value of the

IX register by pushing it onto the stack This is vital. The IX, upon entry to the

2 Utility Module routine, points to the calling routine’'s parameters and must be
4 restored if the overall pro- gram is to properly execute upon return from the Utility
3 Module routine. ENABLEINT and DISABLEINT do use the IX register and thus
" do not have to save its contents.

N ;;:?.* Next, the current stack pointer value is placed in the IX register. Off-

Utility Module 125

‘l‘_- « ‘((.-' - - -t
. .\x,s_-. N

-------------- o . O AT i
'.!quu‘n-{.).)}f.‘f_y ' .;.t‘.\..L-“ \.\- NOCYR)" A CSORORRR

XA sets from IX will be used throughout the routines to access and save input and ,
output parameters respectively. PLZ uses a table called an Activation Record

(AREC) to pass parameters between calling routines and subroutines. The

AREC is placed on the system stack by the calling routine. The AREC contains

(from high address to low address):

Output or Return Parameters,

Input Parameters,

Local Parameters (of the called routine), and

A Mark-Stack Record (MREC) consisting of the return address of the
| calling routine and the IX register value of the calling routine.

hon

For the Utility Module routines, there are no local parameters. Upon entry to the
b called routine, the stack pointer will point to the low memory boundry of the
[AREC. Thus by loading it into the IX register, offsets can be easily used.

The amount of offset from the IX depends upon the number and size
of values present in the AREC (Ref 6:7-2). For example, variables of PLZ type
Byte require only one location (one byte) in the AREC while variables of type
) Word require two locations. Return parameters however, are always passed in

sixteen bit forms, reguardless of type. Strings are handled by passing pointers

(sixteen bits) to the beginning of the string. Figure 32 below gives an example of

") the AREC for ALLOCATE, the Utility Module routine having the most complex set

: of parameters. Note that the return parameter RETURN_ CODE is passed in a
sixteen bit space dispite it being of type byte and requiring only eight bits.

The third section of the seven Utility Module routines is the unique
code of each routine uses to accomplish its function. While different in purpose,
the code of the seven Utility Module routines share the use of offsets from the IX
register to access input parameters and to load output parameters.

L 3na s 3

! The fourth common feature of the seven routines is the restoration of K
the calling routine's IX register through a POP X instruction. This instruction flags

the end of the routine function code and the beginning of the final three PLZ over-

head management steps.

The next to last step is the deallocation of input parameter (in PLZ
parlance these are out parameters) storage space on the stack. As with saving
the IX value, this action is vital. Upon return to the calling routine, PLZ expects -
to find the return, local, and all other parameters needed by the calling routine as
off sets from the stack pointer. It the dealliocation of input parameters isn't ac-
complished, all the stack pointer offsets will be invalid. ENABLEINT and DIS-
ABLEINT do not go through this step as they do not have input parameters. How-
. ever, all the routines do pop into the HL register the return address of the calling
NAY routine.

e B RN SR

Utility Module 126

--------- D R I R R o R N T Tl Tt I T Tt T T O I T s SR
\\\"\ Lot Lot Ty "%’; DRSNS, €% -'- +tal. -.‘-.‘-‘s-,"-. N e 5N -."'\' LY LRSS ANA RN -.‘,-."\'\, y

&

B s » v

The sixth and final step, common to all nine Utility Module routines, is
the return to the calling PLZ routine. This is accomplished simply by a JP (HL) for
jump to the address in the HL register instruction, the return address having al-
ready been popped into the HL register. With that action, the Utility Module rou- g
tine ends. .

PLZ Activation Record (AREC) for :
Utility Module Routine ALLOCATE :

Higher Memory -

Output Parameters

Beginning_Address
Stack Pointer + OF Hex

Ending_Address

Available_Block_Size

Return_Code

Input Parameters

AT

Block Size Requested

Lower Memory Bound

Mark-Stack Record Upper Memory Bound
Return Address f
Calling Routine's IX <«@=—STACK POINTER ‘
Figure 32. Example of PLZ Activation Record — ALLOCATE. ,r
Thus, the nine assembly language routines of the Utility Module give g

PLZ language routines direct access to input/output port, system memory, the
- system date, the Z-8Q interrupt enable/disable, and the RIO operating system

s
D

L
L)
-'.

L 4

Utility Module 127

-
-
-
.
-
-
-

-

LA RS atl JFh LB 9

Y

>t .
-

N

E?: w memory management routine. The following pages detail the nine routines. For
& each routine the following information will be presented.

e 1. The name of the routine.
™ 2. The name of the routine's module.

¥ 3. The language the routine is written in and the number of lines of

" code in the routine.

4. A synopsis of the routine.

N 5. A Routine Relationship Diagram showing the relationship of the

< routine to the PLZ routines that call it and the elements of the system
o that it calls.

6. The invocation statement for the routine, its input parameter passing

schema, and the routines called by the routine.

' N 7. A description of the global, module, and local level constants used

N by the routine.
. 8. Descriptions, including parameter passing, of all routines called by
N the routine.

- 9. Adiscussion of the output of the routine, both output parameters and
- effect on system configuration.

10. The testing of the routine.
& 11. A reference to the pages of the routine code listing.

" (‘”' The code listing of the routines of Utility Module are in Appendix B.

v

"

<

4
l.
)

JRERG

:.',

<

Utility Module 128

B

1. Name: IOOUT
2. Part of Utility Module
3. Written in Z-8@ Assembly Language; 22 bytes.
L S is of Rout
IOOUT is an assembly language routine which gives PLZ language
routines direct access to the input/output ports of the system. Through IOOUT a

PLZ program can write directly to the output registers. IOOUT has three sections
of code, AREC save, write to 10 port, and return to calling routine.

Any PLZ Language Routine

256 10 Ports

FFh
Address
& Data
80h
Z-8@ CPU
) %]%])

Figure 33. Relationship of IOOUT to Calling PLZ Routines and the
Central Processing Unit
6. Invocation
a. Invocation Statement

IOOUT is invoked in a PLZ routine via:

Utility Module 129

ALY (M

2

¥

=

. N . 80
N ':':‘-.'-.'- ‘s “a

'.ﬁ’"

- -
-

(AT EREN A

Y

IOOUT(IO_PORT, VALUE)

where both IO_PORT and VALUE are of type BYTE.

b. Input Parameter Passing Schema
IOOUT has two input parameters, I0_PORT and VALUE, both of type
Byte. IO_PORT is the number of the input/output port to which the data will be
output. The defined rage of IO_PORT is 0 to 255. VALUE is the quantity to be
output to the designated I0_PORT.
¢. Routines Which Call
Though IOOUT call be called by any PLZ routine, it is not used by any
of the final software in this thesis effort.
Z_Variables and Constants
a. Global
IOOUT uses no global constants or variables outside the defined uses
of the IX and HL registers for subroutine entry / exit.

b. Internal to the Module

IOOUT uses the module constant ZERO, value 9939 hex. IO0OUT
uses no module level variables.

c. Internal to the Routine
None
8. Other Routines Called

IOOUT calls no other routines.

Utility Module 130

B AN ek i B dias s Dt sl Jaufiai gt et M sk iy 3 A

‘ _,t\d f

The output of IOOUT is the writing of the desired VALUE to the desired
IO_PORT. There are no other effects. IOOUT has no output parameters.

i in
a. Description of Test

I0_OUT was tested with a simple PLZ routine which writes predeter-
mined values to predetermined 10 Ports. The ports were monitored with a logic
analyzer.

b. Results of Test

The desired values were written to the proper ports. Conclusion:
IOOUT works.

11, Reference to Listing
The listing of IOOUT is on page 317 in Appendix B.

P

Utility Module 131

(. ‘Q

. * e u” YA oV R T Wyt T, 0T, e R [S R R U T Co et Nt
0 .H‘;(‘- “~ 'i,s - '..~ N "‘p . -"-.\ ~ "‘- . .\ . '-'- \-“"'. ,'\."d',(\"."'\' \' -."..! DRIIEL I O X "~‘\.".‘.'. ",.-‘ DA ¢

Y

. Routine Name: I0IN

—h

2PN XYY

N

. Part of Utility Module
3. Written in Z-80 Assembly Language; 25 bytes.
4 nopsis of in
IOIN is an assembly language routine which gives a PLZ language routine
direct access to the input/output ports of the system. Through IOIN a PLZ pro-

gram can directly read from the 1O ports. IOIN has three subdivisions, AREC
save, 10 port read, and return to calling routine.

SRS I Al et

Any PLZ Language Routine

256 10 Ports

P

FFh
Address

TData
[_Z-BQ CPU_I

Figure 34. Relationship of IOIN to Calling PLZ Routines and the !
Central Processing Unit.

80h

@oh

a. Invocation Statement
IOIN is invoked in a PLZ routine via:

VALUE := IOIN(IO_PORT)

PPN S W . -

Utility Module 132

..................................

P s >

where both IO_PORT and VALUE are of type BYTE.

b. Input Parameter Passing Schema.

IOIN has one input parameter, IO_PORT, the number of the input / out- :
put port dafa is to be read from. P
¢. Routines Which Call IOIN
IOIN can be called by any PLZ routine. In this thesis effort IOIN was
not used in the final software.
Z._Variables and Constants ,
a. Global

IOIN uses no global constants or variables outside the defined uses of
the 1X and HL registers for subroutine entry/exit.

b. Internal to the Module >

The module constant ZERO, value @003 hex, is used by IOIN; there
are no module level variables.

c. Internal to the Routine

None

in 1

IOIN calls no other routines.

. Bout 3
a. Output Parameter Passing Schema. L

e IOIN has one output parameter, VALUE (type Byte), which holds the R
Utility Module 133)

~
-

A P A S SR T Tt T Tete atetena “p I N e P
M 'lg R R N S A T A L A A
N l‘ N, (- ,Q...n .hf- .f--.;f .,Ili' -.n'—,.n-'.-.‘f..n'}j’.i‘ -.L';lfgjf...g'; 'Nf..l'L;‘.AJ ..L..;‘L_LA L:‘L‘J—‘A A.-'A.‘} A.:.A-‘.-.‘\ > e .12\-&$.A:'.E:\-l}:l\.‘:l.'.4.'_l‘f_h i

data read in from the 10 port indicated by the input parameter |O_PORT.

v

b. System Configuration Changes
Beyond the impact of the read upon the IO port's status, IOIN causes
no system changes.
10. Routine T
a. Description of Test
IOIN was tested with a simple PLZ routine which read (via IOIN) from a
serial IO port which was connected to a terminal. Characters were typed in at the
terminal. The characters (VALUESs) read were then displayed to the system con-
sole.

b. Results of Test

, The characters typed in at the terminal appeared on the system con-
) sole. Conclusion: 10IN works.

1. Ref Listi
The program listing for IOIN is located on page 318 in Appendix B.

Utility Module 134

......................

....... .i . - - . - N N
’ rl '. .l - .- R
'.L(L('A_ﬁ_(!_'.ﬂ_(&' ‘Lt\-(“ "‘Ah % ‘- PR N ‘n .JL.-.: 2 _&r'. LAYV PR A'.L.‘h'.s h.; PRI RO W T

1. Name: MEMSET

;*:"'.}
' 2. Part of Utility Module
3. Written in Z-80 Assembly Language; 24 bytes.
4. Synopsis of Routine
MEMSET is an assembly language routine which permits PLZ lan-
guage routines to write to or set specific random access memory (RAM) locations
to specific values. MEMSET's code has three major subdivisions: AREC save,
write to a memory location, and return to calling routine.
Routin lationship Diagr
, Any PLZ Language
g System Memory
- FFFFh
v COoh

MEMSET

Any of the
61 K RAM
Memory Locations

80D0h

3% %1%

%%, % %))

Figure 35. Relationship of MEMSET to Calling PLZ Routines.

. Invocation
a. Invocation Statement
MEMSET is invoked in a PLZ program via:
MEMSET(LOCATION, VALUE)

where LOCATION is type Word and VALUE is type byte.

Utility Module 135

2 b. Input Parameter Passing Schema

o
»
v

MEMSET has two input parameters, LOCATION (type Word), the ad-
dress of specific memory location, and VALUE (type Byte), the quantity to be
stored in the location. These parameters are passed via standard PLZ methods.
¢. Routines Which Call MEMSET -
MEMSET can be used by any PLZ routine needing direct access to
memory locations. MEMSET was not used by the final routines of this thesis
effort.
7. Variabl n
a. Global)

No internal module variables or constants besides the registers used
by PLZ subroutine calls.

CLry ..

) b. Internal to the Module

MEMSET uses the constant ZERO of value 3093 Hex; no module
level variables are used.

L A A A

c. Internal to the Routine ¢

MEMSET uses two of the CPU registers to hold variables. The HL reg- .
ister holds the address of memory location to be read and the A register holds the ~
value read from memory location. No routine level constants are used. u

8. Qther Routines Called
MEMSET calls no other routines. -
2.Qutout of Bouting -
a. Output Parameter Passing Schema Y
e MEMSET has no output parameters. N

Utility Module 136

AP A A e i g B A b Sy bt bel B B i st dg aaad i Jd T A S B A

AN b. System Configuration Changes
MEMSET changes the quantity stored in the desired memory location
to the specified value.
1 i in
a. Description of Test
MEMSET was tested by having a simple PLZ routine setting specific
memory locations to know values via MEMSET. Then the debugger was used to
display the same memory locations.
b. Results of Test
MEMSET set the proper memory locations to the proper values. Con-
clusion: MEMSET works.
1 feren isti

The program listing of MEMSET is on page 319 in Appendix B.

Utility Module 137

» 1. Name: MEMREAD

DNy g
2. Part of Utility Module _,
3. Written in Z-8@Assembly Lanugage; 27 bytes. ._
| :
3

MEMREAD is an assembly language routine which permits PLZ lan- e

guage routines to read specific memory locations, RAM OR ROM. MEMREAD o
has three major subdivisions: AREC save, read of memory location, return to o
calling routine.]

in | hip Diagr: '

Any PLZ Language :

Routine System Memory X

Coo0oh

800h N
Any of the 4000h %

64 K RAM and 0o 2

ROM Memory Locations -
1%,%%,%)] %
Figure 36. Relationship of MEMREAD to Calling PLZ Routines.)
by

6. Invocation =
a. Invocation Statement e

MEMREAD is invoked in the calling PLZ routine via: %

.

. VALUE := MEMREAD(LOCATION) .
s :
%

Utility Module 138 '

where VALUE is of type Byte and LOCATION is of type Word.

b. Input Parameter Passing Schema
MEMREAD has one input parameter, LOCATION (type Word), the ad-
dress of specific memory location to be read. LOCATION has a defined range of
@ to 65535 decimal.
c. Routines Which Call MEMREAD
MEMREAD was not used by any of the final data collection routines of

this thesis effort. However, it can be used by any PLZ language routine needing
direct access to memory. :

Z._Variables and Constants
a. Global

MEMREAD uses no global constants or variables.

b. Internal to the Module
Besides the registers used by PLZ subroutine calls, MEMREAD uses

no module level variables. The module constant ZERO, value @990Q hex, is
used by MEMREAD.

c. Internal to the Routine

MEMREAD employs two CPU registers to hold variables. The HL
register holds the address of memory location to be read and the A register holds
the value read from memory location. There are no routine level constants.

MEMREAD calls no other routines.

Utility Module

-

9. Qutput of Routine

a. Output Parameter Passing Schema

MEMREAD has one output parameter, VALUE, which is the quantity
stored in the memory location specified by the input parameter LOCATION.
b. System Configuration Changes

MEMREAD causes no system changes.

10. Routine Testi
a. Description of Test
MEMREAD was tested by setting memory locations to know values
with the debugger. Then a simple PLZ routine, which reads the same memory
locations (via MEMREAD) and displays them on the console, was run.

b. Results of Test

The values stored in the memory locations were properly displayed.
Conclusion: MEMREAD works.

1. Ref to Listi
MEMREAD's program listing is on page 320 in Appendix B.

Utility Module 140

Sh RS aAe o AP S SBet AT R e N e Jiraler o

o 1. Name: DISABLEINT
b

2. Part of Utility Module

3. Written in Z-80 Assembly Language. Three bytes.

L S is of Routi

DISABLEINT is a very simple assembly language routine which enables a
PLZ routine to disable the Z-8Q interrupts. This routine is a companion to
ENABLEINT.

5. Routine Relationship Di

Any PLZ Language Routine

DISABLEINT

DI Instruction

Z-80 CPU

Figure 37. Relationship of DISABLEINT to Calling PLZ Routines
and the Interrupt Setting of the Central Processing Unit.
Inv ion
a. Invocation Statement
DISABLEINT is called from a PLZ program via:

DISABLEINT

Utility Module 141

'
ol

Y

YISy b. Parameter Passing Schema

. DISABLEINT has no parameters.

8

¥,

;? c. Routines Which Call DISABLEINT

o DISABLEINT was used by the AIO.PLZ.S Module routines which
& served as precursors for the Sampler Module assembly language routines.
>

D>

- The only "variable” used by DISABLEINT is the HL register which
o stores the address of the calling routine.

s

A 8. Other Routi Called

2 DISABLEINT calls no other routines.

) @ 9. Output of Routin

“

- The result of DISABLEINT is the disabling of the Z-80 interrupts.

v,

25

‘ 1 in in

. a. Description of Test

)

3 DISABLEINT is called by another routine which causes interrupts.
B With that routine running, a logic analyzer was used to monitor the CPU lines.

" b. Results of Test

. Before the invocation of DISABLEINT the CPU responded to the
Y interrupt signals. After the invocation of DISABLEINT the CPU ignored the
7 interrupt signals. Conclusion: DISABLEINT works.

g

i 11, Ref to Listi
; i The program listing for DISABLEINT is on page 321 in Appendix B.

3

\'

Utility Module 142

‘. A " s l‘.'q-."' R § . DR * P T o Ve Vo, "ol N . - . . - . - - . . - e - o
LA N e T g L R R R TR R At N O R S N S S A A N IR

;} 1. Name: ENABLEINT

< % "0 2

{ 2. Part of Utility Module

:
3. Written in Z-80 Assembly Language, three bytes. by
Y
L S is of Routi
ENABLEINT is a very simple assembly language routine which en-
ables a PLZ routine to enable the Z-8Q interrupts. ENABLEINT is a companion to
routine DISABLEINT.
in lati ip Diagr.
Any PLZ Language Routine
¥
e
‘L
© ENABLEINT
El Instruction

Z-89 CPU]
Figure 38. Relationship of ENABLEINT to Calling PLZ Routines 2
and the Interrupt Setting of the Central Processing Unit. B
K
Invocati 4
a. Invocation Statement '
ENABLEINT is invoked from the calling PLZ routine via: r
ENABLEINT. '
A -
Utility Module 143 i
L e e A e e e e 8 e e o)

T

L

b. Parameter Passing Schema

ENABLEINT has no parameters.

c. Routines Which Call ENABLEINT

This routine was not used by any of the final version routines of the
data collection system. However, ENABLEINT was used by the AIO.PLZ.S
Module during initial software design.

7. Variabl n nstan
The only "variable” used by ENABLEINT is the HL register which
stores the address of the calling routine.

her Routin I

ENABLEINT calls no other routines.

9. Output of Routine
The result of ENABLEINT is the enabling of the Z-80D interrupts.

10._Routine Testi
a. Description of Test

ENABLEINT is called by another routine which uses interrupts. With
that routine running, a logic analyzer was used to monitor the CPU lines.

b. Results of Test

Prior to the invocation of ENABLEINT the CPU ignored the interrupt

signals; afer invocation, the interrupts were acknowledged. Conclusion:

ENABLEINT works.

.....

2l feren i

The listing of ENABLEINT is on page 322 in Appendix B.

ty %s %3)

-
0
~
.
S

R R
TN TN A -
A I I A N RIS

. Routine Name: DATE

P
%
-~b

2. Part of Utility Module

3. Written in Z-80 Assembly Language; 33 bytes.

. Procedure DATE is an assembly language routine which permits a
& PLZ language routine to call the operating system an obtain the current system
date. DATE has four major subdivisions.
y First, DATE saves the IX register for later restoration.
Second, DATE prepairs pointers to both the stack and the memory
locations where the date is stored.

‘ Third, DATE copies the six characters from the date storage iocations to

> the stack.

N . Fourth, DATE restores the IX register, gets the return address, and returns

» control to the calling PLZ routine.
j 5. Routine Relationship Di
”
Any PLZ Language Routine
System Memory
- 2000h
13B1h

-.; 13ABh

Y

“~

N 1%,%,%%]y
RSN Figure 39. Relationship of DATE to Calling PLZ Routines and
S Memory Locations of Date Characters.

7

Utility Module 146
e e e L]

.........

...

Invocati
a. Invocation Statement
DATE is invoked in the calling PLZ routine by:
YEAR1, YEARQD, MONTH1, MONTHQ, DAY1, DAYQ := DATE '

where these return parameters are of single character type.

b. Input Parameter Passing Schema
DATE has no input parameters; it uses the six system date characters
stored in memory locations 13AB —13CQ.
c. Routines Which Call DATE
Any PLZ program which has been linked with the Utility Module can
call DATE. For this thesis effort, DATE is called by GET_DATE of the
Collect_Data Module.
rigbl nstan

a. Global Constants

ZERO: 03D Hex, just a constant for zero 3
DATE_ADDRESS: 13AB Hex, the first of six system date memory N
locations

b. Variables Internal to the Module
Named module variables per say are not used, however, some regis-
ters of the Z-80 are used by the subroutine call schema. The return address is on
the top of the stack at the onset of the called subroutine. The IX register is used
by PLZ to point to the Activation Record (AREC), a table of pointers created for
subroutine calls. Thus, it is important to save and restore the IX register.
c. Variables Internal to the Routine

Though no named variables are used, several of the Z-8@ CPU regis-

Utility Module 147

-

-

%
S LS ters are used to hold variables. The C register is used to count down the 6 chara-
X cter-transfers. The HL register points to the system date storage location for each

character. The DE register points to the output storage location for each chara-

cter, the destination location.

N
1
- Routin i DAT

" DATE calls no other routines.

’ 9. Output of Routine

¥ a. Output Parameter Passing Schema
3_; DATE outputs six parameters, the six ASCII characters of the system
: date. These six parameters, YEAR1, YEARQD, MONTH1, MONTHQ, DAY1, and
) DAY, are all of type Byte.

b. System Configuration Changes

@ DATE does not modify any system configurations.

5 10.Routine Testing

' a. Description of Test
DATE was tested by loading the system date (via RIO routine DATE
j.j with known values and then running a simple PLZ routine which called DATE
- and output the returned values to the screen.

,‘ b. Results of Test

A It worked properly.

, 11, Reference to Listing

ah

The listing of DATE can be found on page 323 in Appendix B.

Utility Module 148

T

@

Lo 4
L
?

- l‘ -l
2

{I

1. Name: ALLOCATE

2. Part of Utility Module

3. Written in Z-80 Assembly Language; 82 bytes.

4. Synopsis of Routine

ALLOCATE is an assembly language routine which permits PLZ

language routines access to the system memory manager. The specific purpose
of ALLOCATE is memory allocation; DEALLOCATE is a companion routine.
ALLOCATE has seven subdivisions.

a. AREC save
b. Load of input parameters into Registers for OS call.
¢. Call to memory manager to allocate memory.
d. Load of two OS response parameters into subroutine return
locations.
e. Error Code evaluation.
f. Load of remaining OS response parameters into subroutine return
locations.
g. Return to calling routine.
. Routine Relationship Diagr:
Any PLZ Language Routine
System Memory
Memory Manager
RIO Operating System
Figure 40. Relationship of ALLOCATE to Calling PLZ Routines and
the RIO Operating System.
Utility Module 149

L S
e . S
29 YOI ST o W J N D0 N NIRRT WP S

K 4 X a a2

PN e

e 2 2P TS

a

t
1

Y . _Inv ion
a. Invocation Statement
ALLOCATE is invoked in a PLZ program as follows.

RETURN_CODE, AVAILABLE_BLOCK SIZE,
BEGINNING_ADDRESS, ENDING_ADDRESS =
ALLOCATE(BLOCK_SIZE_REQUESTED,
LOWER_MEMORY_BOUND,
UPPER_MEMORY_BOUND)

where RETURN_CODE is type Byte, and the remaining parameters are type
Word.

b. Input Parameter Passing Schema

ALLOCATE uses three input parameters and follows the standard
subroutine parameter passing methods. The input parameters are:

BLOCK_SIZE_REQUESTED: This is the size of memory block, in bytes, for
(7 which memory allocation is being requested.
As this is is of type Word, its defined range is @

to 65,536 (64K). Type Word.

LOWER_MEMORY_BOUND: The memory location that allocation must be
above. Defined range @ to 64K. This para-
meter is used to fence out areas of memory for
other use. Type Word.

UPPER_MEMORY_BOUND: The memory location that the allocation must be
below. Defined range @ to 64K. This para-
meter is used to fence out areas of memory.
Type Word.

c. Routines Which Call ALLOCATE

The current versions of the data collection software do not use ALLO-
CATE. However, ALLOCATE would be used by an improved SIZE_DAT_BUF-
FER (Collect_ Data Module) to provide direct access to the RIO Operating System
Memory Manager.

,
A

Utility Module 150

.................

-

.....

LA RS g AR ok e RS Vs s Bt Pt oty et b Ve e dhpurutongny ahe diy gty pta ghe Bh gt bty she abs st dte Ate el sle sty st i sl o e ale JEESTL ATLAT SECREETES

P ag e

T ANERS

*.:: riabl n nstan

a. Global

. There are no true global variables or constants used by ALLOCATE.

b. Constants Internal to the Module

ZERO: QDD Hex

ALCT_MEMORY: @9 Hex, the code for allocate memory passed

- to the memory manager.

MEMORY_MANAGER: 1409 Hex, the address of the memory manager
entry point.

OPERATION_COMPLETE: 8@ Hex, the return code for successful memory
allocation.

s, SERRN

Jaf Y NN A AR

3"

c. Internal to the Routine

Besides the use of the CPU registers to hold parameters (see below),
ALLOCATE has no internal constants or variables.

e O

|
‘G"

._Other Routin Il

ALLOCATE calls the RIO Operating System Memory Manager. The
CPU registers are used to pass parameters between ALLOCATE and the Mem-
ory Manager. For the call to the Memory Manager:

BC holds the BLOCK_SIZE_REQUESTED in bytes;
HL holds the LOWER_MEMORY_BOUND address;
DE holds the UPPER_MEMORY_BOUND address;
A holds the request code for memory allocation, @9 hex.

YT AL,

¥ The Memory Manager returns:

BC holds the AVAILABLE_BLOCK_SIZE (which may be that
requested);

HL holds the BEGINNING_ADDRESS of the allocated or available
block;

DE holds the ENDING_ADDRESS of the allocated or available block;

A holds the RETURN_CODE.

)

The values placed in the registers and returned by the memory manager are

PO Y

Utility Module 151

TUHEENTS" s O F T

VAt AN

2. Output of Routine

Tt

are:

RETURN_CODE:

BEGINNING_ADDRESS:

ENDING_ADDRESS:

s

2

Utility Module

% 9 functionally the same as the input and output parameters of ALLOCATE.

a. Output Parameter Passing Schema

The four parameters returned by ALLOCATE to the calling PLZ routine

Type Byte. The return code is the operating system's
message on its success in allocating the desired block
of memory. If a block of memory was successfully allo-
cated the RETURN_ CODE will be zero. On the other
hand, if a contiguous block of the desired size could not
be found, RETURN_CODE will have the value 4A hex
which means insufficient memory.

AVAILABLE_BLOCK_SIZE: Type Word. The value returned in this parameter

depends upon whether the BLOCK_SIZE_REQUES-
TED was available. If it was, then AVAILABLE_
BLOCK_SIZE is the number of bytes requested. If
however the BLOCK_SIZE_REQUESTED was not
available, AVAILABLE_BLOCK_SIZE will be the num-
ber of bytes of the largest available block in system
memory.

Type Word. This parameter has three possible values.
Iif memory is successfully allocated, BEGINNING_AD-
DRESS will be the memory address of the beginning of
the allocated block. If sufficient memory is not avail-
able, BEGINNING_ADDRESS will be the memory ad-
dress of the beginning of the largest block of memory
that is available. If not even one single byte of memory
is available, BEGINNING_ADDRESS will be zero.

Type Word. This parameter has two possible values. If
memory allocation was successful, ENDING_AD-
DRESS will be the memory address of the allocated
block. If there was insufficient memory for the BLOCK_
SIZE_REQUESTED then ENDING_ADDRESS will be
zero.

PP —

b. System Configuration Changes

. If memory allocation was successful, the Operating system will have
3 the requested block of memory reserved. If allocation was not successful, no
X system configuration changes will have occured.

10. Routine Testi
a. Description of Test

2 A simple PLZ program which calls the memory manager via allocated
was written. This program outputs to the console the return code from the call to
the memory manager and the other output parameters of AOLLCATE. The pro-
gram was run a number of times with different input parameters. Between runs,
the operating system memory status display was displayed to see the current
memory allocation. DEALLOCATE was tested concurrently.

}.' .’. .'c "c ‘.. 'n “l ‘l

b. Results of Test

- When the request was valid, ALLOCATE successfully conveyed the
' (Q requests to the memory manager; memory was allocated. When unsatisfiable
) requests were made, ALLOCATE received and correctly interperted the respon-
ses from the memory manager. Conclusion: ALLOCATE works.

.

p T NS Wy G R N .

1, Referen istin

-

The program listing for ALLOCATE is on pages 324 — 325 in Appendix

N

N

y B
.
- o

Utility Module 183

PEALR AP

L

LR |

PP LD

(T e _ T Ta CaY. Tuw i YAl g 3 ~ oy Ve We W - . 4 - « Wy Raffal A e Ain . Salh Al

Al 0,

................

é.
()
:
5 B 1. Name: DEALLOCATE
2. Part of Utility Module
3. Written in Z-80 Assembly Language; 38 bytes.
. S is of Routi
~
A DEALLOCATE is an assembly language routine which permits a PLZ
" program access to the operating system memory manager for deallocation of
s specific blocks of memory. DEALLOCATE has four major sections of code:
. a. AREC save
N b. Call of Memory Manager
~ c. Output Parameter setup
> d. Stack clean up and return to calling routine.
3; 5. Routine Relationship Di
@ Any PLZ Language Routine
System Memory
~ Memory Manager
4000h

RIO Operating System Coooh
“ Figure 41. Relations of DEALOCATE to Calling PLZ Routines and
- to RIO Operating System.
,: (":“
o -

Utility Module 154

Y

.* ;‘:

R - R UL T L S L I S AR L T T S P et T T TN
SN " o o -,,'_‘q‘- \q\w \.\n\. \.0\ ‘-\,.“...." <. N ety e -

Jr= "

-
o

l""‘*‘l‘

(e 2]
A

4 4 v
LNDEA

LN NI,

AAANAAN

Y

e

a. Invocation Statement
DEALLOCATE is invoked in a PLZ routine via:
RETURN_CODE := DEALLOCATE(BLOCK_SIZE, BEGINNING. ADDRESS)

where RETURN_COPDE is of type Byte and BLOCK_SIZE and BEGINNING_AD-
DRESS are of type Word. The Utility Module must be linked in will the calling
program.

b. Input Parameter Passing Schema

DEALLOCATE has two input parameters, BLOCK_SIZE and BEGIN-
NING_ ADDRESS. BLOCK_SIZE is the number of memory locations to be de-
allocated. BEGINNING_ADDRESS is the address of the first memory location of
the block to be deallocated. The block to be deallocated must be fully allocated
at the onset of this routine.

c. Routines Which Call

DEALLOCATE can be called by any PLZ program linked with the
Utility Module. Though it is not used in any of the current data collection software.
An improved SIZE_DATA_BUFFER that uses ALLOCATE would force the use of
DEALLOCATE near the end of module execution to free up memory.

Variables and Constan

a. Global

There are no true global variables or constants.

b. Constants Internal to the Module

ZERO: @0 hex
DEALCT_MEMORY: @1 Hex, the code for deallocation of memory
passed to the memory manager.
MEMORY_MANAGER: 1409 Hex, the address of the memory
manager entry point.

Utility Module 1565

¢. Internal to the Routine

Besides the CPU registers used to hold parameters (see below), DE-
ALLOCATE has no internal variables or constants.

her Routin i

DEALLOCATE uses the system Memory Manager routine. CPU regis-
ters are used to pass parameters between DEALLOCATE and the Memory Man-
ager. When DEALLOCATE calles memory manager:

BC holds the BLOCK_SIZE to be deallocated;
HL holds the BEGINNING_ADDRESS of the block;
A holds the request code for memory deallocation, @1 hex.

The Memory Manager returns to DEALLOCATE register A holding the RETURN_
CODE, 89 hex for successful deallocation or 43 hex for memory protect violation.
Memory protect violation occurs when the block identified for deallocation is not
completely and continuously allocated. Note that these register stored values are
the input and output parameters of DEALLOCATE.

9. Output of Routine
a. Output Parameter Passing Schema

DEALLOCATE returns a single parameter, RETURN_CODE, which
indicates whether the deallocation was successful. If the deallocation was suc-
cessful, RETURN_ CODE will have a vaiue of 80 hex. If the deallocation is un-
successful the RETURN_ CODE will have a value of 43 hex.

b. System Configuration Changes

If memory deallocation was successful, the block of memory specified
by the input parameters will no longer be allocated. If deallocation was unsuc-
cessful, no configuration changes will have occured.

B A

g b g

10, Routine T
a. Description of Test

DEALLOCATE was tested in conjunction with ALLOCATE through a
simple PLZ routine. This routine used ALLOCATE and DEALLOCATE to alter the
system memory allocation. In between calls, the status of the system memory
was checked via an operating system utility.

b. Resuits of Test

Whenever the deallocation request was valid, DEALLOCATE suc-
cessfully deallocated the specified block of memory and returned the successful
operation return code. When invalid deallocation requests were made, DEALLO-
CATE was unable to deallocate memory (as it shouldn't) and returned the proper
return code for memory protect violation. Conclusion: DEALLOCATE works.

11. Ref to Listi
DEALLOCATE's listing can be found on pages 326 — 327 in Appendix

Utility Module 157

o \.._ ..\.
a B o i o

LYy e e ot Bte Aty 470! " gt \l *
4) 3 R g b 4 Yo Bt - oy vag i g tah dod VXY TU Y N o (] g
i Sf (h L g" TWUR VRN

3 This page is intentionally blank.

e Fa%a e

Lo el S

J

IR e i

O

[i} JA.'.' o

“"J“‘

Yy

» N

Utility Module

& V. Sampler Module]

Introduction to Sampler Module

The Sampler Module is a collection of twelve assembly language
routines which implement a real-time clock paced data collection system. The
module uses periodic interrupts from the CTC (counter/timer chip) of the MCB
Board to initiate analog to digital conversions by the AlO (analog input output)
board. When each conversion is complete, the digital data is read from the AIO
board and placed in a buffer. The process continues until a specified number of
samples has been input and stored in the buffer. This interrupt / convert / store -
process is preceeded by a series of initilization steps and is followed by a set of o
shut down and deallocation routines.

In the following paragraphs, the organization, program flow, interrupt
routine selection, invocation, language, call overhead, testing, and known pro- -
blems of Sampler Module are discussed. Following these discussions are the R
detailed descriptions of the twelve routines of the module. 2

rganizati Function r | in R

Sampler Module is organized into an executive rouine, nine subor-
dinate routines, and two interrupt service routines. Sampler Module could have
been written as a single sequence of assembly code plus the two interrupt ser-
vice routines. This approach was rejected in favor of the executive / subordinate .

organization for three reasons. First, the executive/subordinate structure is far .
more readable and maintainable than a long single string of code. The executive -
clearly shows the high level program flow and all the module control branching; R

this detail would have been obscured in a large single string of code. Second, a
number of the subordinate routines are complete functions developed originally
in PLZ (A10.PLZ.S Module) or used eisewhere; these routines were already func-
tionally separate routines. Third, the functions needed in the module logically S
follow a building block organization, particularly the interrupt service routines. -
For these reasons, Sampler Module is organized into an executive routine, nine "
subordinate routines, and two interrupt service routines. N

The twelve routines of Sampler Module and and a description of their
their functions fpllows.

£

CIRCIN T DI,

Sampler Module 159

UL IR S, S et A S ST YA SRR WL "N SN AU

SR P O LR 7 IO P i e

VPR NPT S

-~ —Routine Name Function of Routine
3 SAMPLER Executive routine of Samper Module. Calls routines
‘s VALIDATE through DEALLOCATE in turn.
:; VALIDATE Verifies the correctness of the module input parameters.
ATODINIT Initializes the AlO Board by putting the board Into polled

mode and clears the analog to digital input registers.

A CTC_PROGRAM Initializes the CTC timer chip by loading the desired
prescaller for the timing count and the interrupt vector.

INT_SET_UP Establishes the parameters for the interrupt service
routine including selection of TO_SAMPLE or
TC_SAMPLE for the interrupt service routine.

I A

INIT_COLLECTOR Loads control parameters in to the CPU registers.

'-: USER_READY? Querries the user via the system console and keyboard for
: a signal to begin data collection.

START_TIMER Loads the CTC timer with the selected time constant
which complets its programming and initiates the real time
clock.

PRPLAAPRIEN

COLLECTER Loops, polling the AlO board status register and reads In
converted data when an analog to digital conversion is
complete. Counts the collections and ends, exiting loop,
when last sample has been read.

B CTC_OFF Deactivates the interrupts and timing of the CTC.

', DEALLOCATE Loads the output parameters and deallocates stack space
- of the input parameters.

TO_SAMPLER Interrupt service routine for sample periods of &.A1
seconds or less. No counter is used. Initiates an analog
to digital conversion each time called.

z |
Tt et S

TC_SAMPLER Interrupt service routine for sample periods greater than
.01 seconds. Decrements a counter each time called.
When counter reaches zero, initiates an analog to digital
conversion and resets the counter.

-‘\\"

Sampler Module 160

v e e

-E"-L X i low within Sampler Modul

The flow of program execution between the executive routine SAM-
PLER and its nine subordinate routines is shown by Figure 42 below. SAMPLER
calls its nine subordinate routines in succession with two possible branches.
§ These branchs occur within SAMPLER and are based on the output (state of the
CPU zero flag) of subordinate routines VALIDATE and USER_READY?. In both
cases the branching is to abort the execution of the remaining module steps.
From VALIDATE, Sampler Module execution is aborted if the input parameters
supplied by the calling PLZ program are invalid. From USER_READY? execu-
tion is aborted if the User signals to abort data collection. Abortion of execution
from USER_READY? requires a call to CTC_OFF to disable CTC timing and
interruptions. DEALLOCATE is called from both execution abortion paths to pre-
pare for the return to the calling PLZ routine. For more information on the internal
execution and interfaces of the Sampler Module routines, please consult the de-
tailed routine descriptions.

The interrupt service routine, either TO_SAMPLE and TC_SAMPLE, is
not called by SAMPLER. Instead, the interrupt service routine executes out of
routine COLLECTER. INT_SET_UP selects which interrupt service routine will
be used and loads the address of the selected routine into the interrupt vector

location. When a CTC issued interrupt occurs, program execution jumps to the
fv selected interrupt service routine. When interrupts are not being serviced, the
-code of COLLECTER is being executed. The logic states of COLLECTER, in-
cluding the jumps to the interrupt service routine, are shown in Figure 43 below.
COLLECTER primarly sits in READY? checking whether an analog to digital con-
version has been completed and data is ready. It is during this READY? state
that interrupts will occur. The interrupt service routine, either TO_SAMPLE or
TC_SAMPLE, initiates the analog to digital conversion. When data is ready from
the AlO board, COLLECTER shifts to the DATA_READY state. There, COL-
LECTER reads in and stores the data. COLLECTER then checks to see how
many samples have been read in. If there are more samples to be collected,
execution shifts back to state READY?. If all the samples have been collected,
execution shifts to the FINISHED state. FINISHED corrects all pointers and

returns program execution to SAMPLER.

| Routine Selecti

Which interrupt service routine is used depends upon the sampling
period required. The CTC timer alone can generate periodic interrupts every
6.515 microseconds to 26.58 miliseconds (Ref 7: Sec 3.7). The interval between
the interrupts is determined by the prescale factor (16 or 256) and the time con-
stant given to the CTC during programming. For sampling periods within the
v above range, the interrupt service routine simply writes to the AlIO channel select

Sampler Module 161

N register each time an interrupt occurs. This is the procedure used by TO_SAM-
v PLER, the "TO" standing for "Timer Only."
N
; Calling PLZ Routine
. 4
N
3
) SAMPLER VALIDATE j
: Invalid CTC_PROG RAM
Input
- Parameters : '
X INT SET UP
T ussn READY?
User
‘: Aborts T conweef & |ntefrupt :
Data | Service
Collection Routine
X
J DEALLOCATEj
- Sampler M@d@ﬂ@ /
'j o J
Figure 42. Relationship of SAMPLER and its Subordir i‘2 Routines, the |
N Interrupt Service Routine, and to the Calling Houtine.
o, [
--" b
1
|
Sampler Module 162 I

»
b
»
»
E
b
4
P

A
ted
o

Calling Routine (SAMPLER)

Interupt from CTC

Data
Is
Not
Ready

Interupt
Service
Routine

ﬂ

Return from

Interupt
Data
Ready Not
DATA Finished
_ llectin
READY Collecting

All Data Collected

= ”: ., CO LLECTER

Figure 43. Operation States During Subordinate Routine COLLECTER Including
the Interrupt Service Routine.

To obtain longer sampling periods, a counter must be added to the
interrupt service routine. Each time the CTC issues an interrupt, the interrupt
service routine decrements a counter. When the counter reaches zero, the

service routine writes to the AIO channel select register and resets the counter.
Sampler Module 163
% 5052 AT N, 55 AR o N T T et e e ~ '.,;:., R AP Ay

DAY

T MR Rl g VIR PERPEE S S a A A £ A IR W KL W _K_0_~_"

s ammmem o . . . ous e -

{ a4 am B 20

L Ba

o

et 'Ate 2%n 2%, 2% 4 ‘aka) 3o Rty b d + A (ghonad $ad Vol Vo0 bo) Aap” T TN 2 ate " *

For this method of generating sampling periods, three parameters are required,
the CTC prescale factor, the CTC time constant, and the counter value. This
method is used by TC_SAMPLER, where "TC" stands for "Timer & Counter.”

Given a sixteen bit counter in addition to the CTC timer, sampling periods of
1.688 miliseconds to 29.3 minutes are possible with the timer and counter
combination.

Figure 44 below shows the sampling period ranges of the various
combinations of CTC timers and sixteen bit counters. Slow Timer refers to a CTC
timer using a prescale factor of 256. Fast Timer refers to a CTC timer using a
prescale factor of 16. As shown in the figure, the sampling period ranges of the
timers and the timer/counter combinations overlap.

For this thesis effort, aribritrary break points to choose between the
four different timing methods were selected. For sample periods below @.01
seconds, the CTC timer only (interrupt service routine TO_SAMPLE) is used. For
periods less than ©.9@1 seconds a prescale factor of 16 is loaded into the CTC;
for periods ©.991 seconds to ©.01 seconds , the prescale facter is 256. The
timer counter combination (interrupt service routine TC_SAMPLE) is used for
sampling periods ©.91 seconds and above. For periods from ©@.@1 seconds up
to 1.Q second, a fast timer (prescale factor of 16) is used with the 16 bit counter.
For periods from 1.9 second to the maximum time possible of 29.3 minutes, the
slow timer (prescale of 256) is used. The shaded areas on Figure 44 show the
employed ranges for each timer/counter combination.

The parameters which program the CTC and the sixteen bit timer are
input parameters to Sampler Module. The calling PLZ routine establishes these
values based on the user's desired sampling period and the routine break points
discussed above. Routine INT_SET_UP looks at the input parameter COUNT,
the sixteen bit down counter value. If COUNT is zero, INT_SET_UP selectes
TO_SAMPLE as the interrupt service routine. If COUNT is nonzero, TC_SAMPLE
is used. Please note that the calling PLZ routine does not use the full range of
the fast timer only combination. To allow sufficient time for the analog to digital
conversion to take place, the shortest sampling period actually employed is 58.0
microseconds.

vocati f I I

As shown by Figure 42 above, Sampler Module is called from a PLZ
program. The PLZ program supplies the three values needed to program the real
time clock , specifies how many samples are to be collected, and names the
analog input channel is to be used. The executive routine SAMPLER is the
program interface between the calling PLZ routine and all of Sampler Module.

Sampler Module 164

[

¥
'y
v

"™ T w

Counter/Timer Combinations Used for Real Time Clock ’

Timing Period in Seconds

-l - - - .
2% 2% 0% 122 22 7 82 " W*? 1B"® %

Slow Timer & 16 Bit Counter

(TC_SAMPLE)
26.68 mSec 29.3 Minutes -
1 | "
Fast Timer & 16 Bit Counter | | i :.' ‘
(TC_SAMPLE) \ : o
]] 1 :‘
1.688 mSec: 109.3 Seconds N
\ .

Slow Timer Only
(TO_SAMPLE)

! 26.68 mSec
: Full Range of
ij A Timer Combination
Fast Timer Only '
(TO_SAMPLE) :
]

Employed Range of -

| Timer Combination

1
6.515 uSec 1.688 mSec

Figure 44. Counter/Timer Combinations Used for Real Time Clock

SAMPLER, and hence all of Sampler Module, is invoked from a PLZ routine with

ERROR_CODE, LAST_DATA := 5
SAMPLER(I0_CHANNEL, CTC_MODE, :
TIME_CNST, COUNT,

NUM_SAMPLES, FIRST_DATA) F
The purpose and type of the input and output parameters is:
Parameter Name Type Parameter Purpose -

10_CHANNEL Byte Selects which one of the 16 possible AlIO
o board analog input channels is to be used. g
) :-
Sampler Module 165 .

LR
- . . . t e "a . - L) - - - - - - - . - . "
F;SI""" L R T e T T L I R P TP SR S T
[SO P WP IS P I Y S T S ey *

.},‘::-

Parameter Type Parameter Purpose

CTC_MODE Byte Passes the first half of the command used to
program the CTC to issue interrupts at the
desired rate.

TIME_CNST Byte Passes the second half of the CTC

programming command.

COUNT Word The number of CTC interrupts required
between data collections. This parameter is
used only for long timer periods.

NUM_SAMPLES Word The number of data samples to be read in.

FIRST_DATA Pointer- A pointer to the first memory location for the
to-Byte stroage of the data read in.
LAST_DATA Pointer- Outputs the pointer to the last memory
to-Byte location that data was stored in.
ERROR_CODE Byte Passes back to the calling routine an error
message if the calling routine's inputs were
improper.

Although the executive routine SAMPLER is the sole program exe-
cution interface to the calling PLZ routine, SAMPLER does not use any of the
subroutine call parameters. Instead, the input and output parameters are em-
ployed only by the subordinate routines which need them. From the calling PLZ
routine’'s perspective, Sampler Module is simply a single subroutine; the exe-
cutive/subordinate organization of these assembly language routines is neither
visible nor important.

i I mpl I

The routines of Sampler Module were written in assembly language
primarly to gain a speed of execution advantage. Given the access to the system
provided by the Utility Module routines, Sampler Module could have been written
in PLZ. In fact, some of the PLZ language routines of the AIO.PLZ.S Module are
precursors of some of the assembly language routines in Sampler Module. The
only problem with PLZ is speed. The overhead required by a PLZ routine would
have precluded the shorter sampling periods achieved by using assembly

Sampler Module 166

42“' language routings. With PLZ and the Utility Module routines, the polling of the
AlO status register would have required a PLZ call to IOIN, execution of IOIN (11
instructions), and the return to the PLZ routine. This sequence would have
required approximately 2@@ microseconds to execute (see Appendix C). With
assembly language the whole loop is just four instructions requiring about 16
microseconds to execute. Another example is the calculation of the CTC timer
and sixteen bit counter values for the sampling period. These could have been
done in assembly language with the addition of some math utilities. However, in
PLZ the math and high level logical branching instructions were already present.
By having the assembly language Sampler Module interface with a PLZ parent
routine the best of both worlds was obtained, the speed and direct hardware
access of assembly language coupled with the higher leve! programming of PLZ.

verh for i | i

The overhead for an assembly language routine to be called by a PLZ
routine was extensively discussed in the introduction to the Utility Module. Rather
than repeate that discussion here, please refer to the Utility Module discussion
and sample AREC for more information of PLZ parameter passing schema. The
figure below shows the PLZ Activation Record (AREC) for the parent routine's call

® of Sampler Module.

m i {

The routines of Sampler Module use no other subroutines. However
the RIO Operating System and several hardware elements of the MCB develop-
ment system are called. The items called, the calling routine, and the purpose of
the calls are fully detailed in the routine descriptions.

in mpler Modul

Three types of tests were perforrmed on the routines of Sampler
Module. First, one of the routines, ATODINIT, was individually tested. Second,
portions of Sampler Module were tested using the RIO debugger. Third, a short
PLZ module was written solely to call and test Sampler Module. ATODINIT was
an established routine which functioned properly. Its individual testing was its
prior use. The rest of the testing was far more involved.

The testing with the debugging routine was limited in application and

w8y

Sampler Module 167

gl e]

nan e e -
AN g 4™

PLZ Activation Record (AREC)
for Sampler Module

Output Parameters
LAST_DATA

Higher Memory

ERROR CODE Input Parameters

IO_CHANNEL

CTC_MODE

TIME_CNST
COUNT

NUM_SAMPLES

Mark-Stack Record

Return Address

FIRST_DATA

Calling Routine's 1X <@ STACK POINTER
“ Stack Grows Down

Figure 45. Activation Record for Call of Sampler Module.

somewhat cumbersome to accomplish. The debugging routine is interrupt dri-
ven; Sampler Module is interrupt driven. Thus, the debugger could not be readily
used to test the interrupting portion of Sampler Module. The debugger was used
in conjunction with a logic analyzer to examine the Sampler Module routines
which set the Z-8Q registers and worked with the AlO board. The CTC related
routines which delt with interrupts were not tested with the debugger. The logic
analyzer was used to trap the input/output port calls. One of the more difficult
actions was to manually insert the parameters that a calling PLZ would normaly
have placed in the system stack. This action was aided by the symbolic capa-
bilitites of debugger which allowed access by name rather than hexidecimal
addressses. The debugger testing showed that the tested protions were func-

Sampler Module 168

tioning properly. The AIO board was receiving the proper commands and infor-
mation could be obtained from it.

5 Things didn't go as well with the PLZ routine testing. For this test, a
e short PLZ routine was written for the sole purpose of calling Sampler Module.
N The routine consisted of the necessary variable definitions, a call of SAMPLER,

\ and screen output of the return parameters. Post-test, system memory was then
examined with the ROM monitor routine to see that data had been loaded into

. memory. During the test a slowly varying square wave was fed into the analog
"y input. A square wave was used so that only two digital values should appear in
X the memory. Well, the program executed, Sampler Module requested a go

signal, interrupts began, data was collected in memory. However, program
execution never left Sampler Module to return to the PLZ routine. A whole
- bunch of time was spent trying to find out why this occured. No answer was
. found.

- Known Probl i mpler |

As discussed in the testing section above, Sampler Module never
- properly interfaced with a calling PLZ routine. The cause of this problem is still
= (' unknown.

nt of Detailed Routi ri

> Following are detailed descriptions of the twelve assembly language
& routines of the Sampler Module. With a few exceptions, the following items will
! be presented for each of the routines.

. 1. Routine Name
- 2. Module Name and Role of Routine
- 3. Language and Length of Routine
3
B 4. Synopsis of Routine
N 5. Routine Relationship Diagram
)
6. Invocation of Routine

W 7. Variables and Constants Used by Routine
e 8. Discussion of Other Routines Called
"’
<,
g

Sampler Module 169
’
Cal
»
» D S A O U R AT S P P P

omee T T Batat a2t 1 2t e 4 @ 0 : Al ®08 40y e’

Wy 9. Output of Routine
10. Routine Testing
11. Reference to Routine Listing

The routine testing discussions are limited to activities beyond those addressed
in the module testing discussion above. The listing of routines of Sampler Mod-
ule are in Appendix D.

".‘l
\lﬁl:

Sampler Module 170

I DO A e R T A RIS e Y P N ettt e el
%.ﬂ.\‘b’ah".&!‘h}.aL;M)A:Ahb_}:i !:,,.'z:“g_.,‘- adaar .'-‘.‘5 .';I kot AR R AR R S e S

7o &
€

S
X
q :& 1. Routine Name: SAMPLER
¥ ’
2. Executive Routine of Sampler Module
o
:ﬁ 3. Written in Z-80 assembly language; 16 lines (42 bytes) of code.
X
- ! s . [B Ic
e
-_;Z SAMPLER is the executive routine of Sampler Module. This assembly

language routine is the entry routine of the module and is in effect the routine
called by the PLZ program. It manages overall program flow within the module
by calling nine subordinate routines an by using conditional branching based on
, error checking and user readiness checks. SAMPLER also handles a portion of
v, the PLZ subroutine call overhead and performs the jump back to the calling PLZ
i routine. Figure 42, in the introduction to Sampler Module, shows the flow of
“ SAMLER, the conditional branches, and the routines called by SAMPLER.

, The following discussions are specifically restricted to the 16 lines of
£8 code which are called SAMPLER. This is a rather arbitriary distinction. While
& SAMPLER does little more than call nine other routines, without SAMPLER those
routines would not function. It is perhaps best to view SAMPLER as an organizer

(® of the Sampler Module rather than a complete software routine. The discussion
:I) that follows centers on this organizer function.
L
(e
W .
35 5. Invocation
¥
'j Since the first line of SAMPLER is the entry point for the Sampler
oA Module, SAMPLER is the routine called by the parent PLZ program. Thus, the
2 invocation of SAMPLER is the same as the innvocation for the Sampler Module
O discussed previously. However, SAMPLER itself uses none of the input and
- output parameters of that invocation; these parameters are used by the subor-
e dinate routines in the Sampler Module. The subordinate routines do depend
. upon SAMPLER to load the IX register with the stack pointer value so they can
oY reach the parameters with offsets.
‘N
;’. SAMPLER uses no declaired variables or constants. It does place the
¥ current value of the stack pointer into the IX register so that it's subordinate rou-

tines can access the input and output parameters with offsets from the IX value.

0 e SAMPLER also uses the Zero Flag of the Z-8@ CPU to determine whether to
:: RS branch upon the completion of VALIDATE and USER_READY?
>
N

Sampler Module 171

P2 a a2 e,

P

[T

...........
--

Y4 h in Il

As discussed in the introduction to the Sampler Module, SAMPLER is
the executive routine for the module. As such, all other routines of the module
are called, either directly or indirectly, by SAMPLER. The names and functions of
these routines was also presented in the moduie introduction. Figure 42 in the
introduction to Sampler Module shows when in the flow of SAMPLER each sub-
ordinate routine is called.

There are no true parameters passed between SAMPLER and its sub-
ordinate routines. The only communication SAMPLER uses is the status of the
zero flag upon completion of VALIDATE and USER_READY?. For both of these
routines, a nonzero flag tells SAMPLER to abort. From VALIDATE, SAMPLER
just jumps to DEALLOCATE to satisfy PLZ subroutine termination requirements;
from USER_READY? SAMPLER must call both CTC_OFF (to clear the counter
timer chip) and DEALLOCATE. SAMPLER expects DEALLOCATE to load the HL
register with return address of the calling routine.

8. Qutput of Routine

As stated above, SAMPLER, the entry routine of the Sampler Module,
does not pass parameters. The output parameters for the module are loaded by
VALIDATE, USER_READY?, or COLLECTER. Similarly, SAMPLER by itself does
not cause any system configuration changes, though the unaborted execution of

the Sampler Module will result in a number of analog to digital conversion and
storage of those conversions in system memory.

9. Routine Testing
SAMPLER was not independently tested.

10. Ref Listi
The program listing of SAMPER is on page 318 in Appendix D.

Sampler Module 172

[
A

ol an

(3) 2'x0 a7
MY Ry b3, 0y
‘...r.‘.'\. 2 ee

b, '
P A

[

/A

AN AN

L}
W
.
.
.
-

.‘- }- .‘A .‘nl '. I\ ID

. ‘? <
Loy

Y% N

AN

1. Routine Name: VALIDATE
2. Subordinate Routine of Sampler Module

3. Written in Z-80 assembly language; 14 lines, 3@ bytes, of code.

L S is of Routi

VALIDATE is a defensive error checking routine for Sampler Module.
Upon being called by SAMPLER, VALIDATE compares the input parameters
against their defined ranges and values. If an out of tollerance parameter is
detected, VALIDATE loads a descriptive error code into the output parameter
ERROR_CODE's location and returns to SAMPLER. The Z-8& CPU zero flag, if
reset by the comparisons, informs SAMPLER that the input parameters were not

valid.

VALIDATE looks at two input parameters, |IO_CHANNEL and CTC_
MODE. I0_CHANNEL has a defined range of zero to fifteen. If [O_CHANNEL
has a value greater than fifteen, ERROR_CODE is set to the constant CHANNEL _
INVALID. CTC_MODE has two possible values represented by the constants
FAST_MODE and SLOW_MODE. If CTC_MODE has any other value, ERROR_
CODE is set to the constant MODE_INVALID.

SAMPLER

J SCPU 2 Flag
—3

VALIDATE [3

System Stack

Figure 46. Relationship of VALIDATE to SAMPLER and the System Stack.

Sampler Module 173

T

6. Invocation

VALIDATE, as an assembly language subroutine, is invoked by SAM-
PLER solely by its name through the Z-8@ CALL instruction. Though VALIDATE
has no formal parameter list upon invocation, it uses two of the input parameters
to the Sampler Module, |0_CHANNEL and CTC_MODE, and one output para-
meter, ERROR_CODE. VALIDATE accesses these parameters through offsets
from the IX register. This is in accordance with PLZ paramter passing procedures
discussed in the introduction to the Sampler Module and in the Utility Module
discussion.

VALIDATE also uses the Z-8Q zero flag to inform SAMPLER whether
the input parameter were correct. In the four comparisons are performed by
VALIDATE, a nonzero result means the input parameter is out of range. The
CPU's zero flag is set by the nonzero result and is not altered by the load and
jump relative commands which follow the compairson. Thus, upon return to
SAMPLER a true zero flag means the input parameters were correct and a false
zero flag indicates flawed input.

ri n n
a. Global
Béyond the input and output parameters I0_CHANNEL, CTC_MODE,

and ERROR_CODE, VALIDATE uses no globally defined variables. The globally
defined constants used by VALIDATE are:

—ConstantName = _ Value

Definition

CHANNEL_INVALID CA hex Error Code for bad channel number code
FAST_MODE 87 hex CTC command for prescale of 16
SLOW_MODE A7 hex CTC command for prescale of 256
MODE_INVALID CC hex Error Code for wrong CTC command

b. Module

VALIDATE uses no module variables beyond employing the CPU
zero flag to indicate acceptable input parameters. The module level constants
used by VALIDATE are

Sampler Module

......
a e M
- .

-

''''''''''''''''''
.......

& LXK T

“5, Constant Name Valye Definition
IO_CHANNEL QE hex IX register offset for the input parameter
3 IO_CHANNEL
? UPPER FOUR 11110000 A mask to find higher order one's.
ERROR_CODE 1D hex IX offset for output parameter
ERROR_CODE
CTC_MODE 2C hex IX offset for input parameter CTC_MODE
& 8. Other Routines Called
§
; VALIDATE calls no other routines.
P
- 9. Qutput of Routine
a. Parameter Passing Schema
v L
’ Q; VALIDATE loads the output parameter ERROR_CODE with the appro-
- priate code when it detects an invalid input parameter. The Z-80 zero flag
N passes back to SAMPLER whether the input parameters were valid or not.
) b. System Configuration Changes
:\I VALIDATE produces no system configuration changes.
.;,
1 10. Routine Testing
2 a. Description of Test
3 VALIDATE was tested in conjunction with the rest of the Sampler
Module. Specifically for VALIDATE, invalid channel numbers (greater than 15)
and CTC commands were passed into Sampler.
:
;i b. Results of Test
e VALIDATE caught the invalid input parameters; VALIDATE did not ||
RO reject valid input parameters.
Sampler Module 175
. .
: i
S A o s B € LR SRRy

et
_a
Y

S

11. Reference to Listing
The listing of VALIDATE is on page 339 in Appendix D.

Sampler Module 176

b 4

V]

K
~
-
o
<

1. Routine Name: ATODINIT

2. Subordinate Routine of Sampler Module

3. Written in Z-80 assembly language; 13 lines (21 bytes) of code.

4. Synopsis of Rout

ATODINIT initializes the analog to digital converter of the AlO board.
This assembly language routine is based on the PLZ language routine AIO_INIT.
Upon being called by SAMPLER, ATODINIT performs five operations as shown in
the figure below. First the AF registers are saved and the Z-8Q interrupts are dis-
abled. The AF register save is an artifact of the routine's use in booting the de-
velopment system. The interrupts are disable to prevent inadvertant interrupts
from the AIO board during its programming. Next, ATODINIT sets the two AIO
ports to input mode by writing the command INMODE to both ports’ command
registers. Third, the AIO is placed in polled mode by writing the command INT-
DISABLE to the command registers. Fourth, the data registers (upper and lower)
are cleard to ready the board for input. Last, the Z-8Q interrupts are enabled, the
AF register values restored, and control is returned to SAMPLER.

Routine Relationship Diaar

SAMPLER

VAR

ATODINIT

N .

Command Registers Data Registers

AlO Board

Figure 47. Relationship of ATODINIT to SAMPLER and AIO Board.

Sampler Module 177

................

<

AD-A172 823 DESIGN AND PARTIAL IMPLEMENTATION OF R COMPUTER
CONTROLLED DATA COLLEC"ON SYSTENCU) RIR FORCE INST
TECH WRIGHT-PATT 8 OH SCHOOL OF ENGI.. L E
UNCLASSIFIED FEB 86 ﬂF!T/GE/ENG/OSH- G 9/

<
-y

---- g

S]
~N
B .

=

122

———
E———
S——
——

e

1.25

EEER

FrECEEE R

rr
Ee

[3

|||||'

IS

=

I

g
o

pos

7#
>

AP TN

..’u ,u

........

ATODINIT is invoked simply by name. It is self contained, having no

input or output parameters.

Variables an nstan

ATODINIT uses no variables. It uses six global constants for com-
mands and |0 port addresses. Their names, values, and definitions are

Definition

AlO Command for Polled AtoD Conversions
Address of AlO Port A Command Register
Address of AlO Port B Command Register
AlO Command for Disabled Interrupts
Address of AlO Lower Data Register

Address of AlO Upper Data Register

ATODINIT calls no other routines. It does write commands to the AlO

—ConstantName _ _Value
InMode 4F hex
CMD_A_PORT 22 hex
CMD_B_PORT 23 hex
INTDisable @7 hex
Datal.ower 20 hex
DataUpper 21 hex

8. Other Routines Called

Board.

9. Output of Routine

ATODINIT has no outputs. Its impact upon system configuration is that
the AIO board in now in polled input mode.

). Routine Testi

ATODINIT was not individually tested. ATODINIT is based on AIO_
INIT and is used in other programs where it functions properly.

Sampler Module

- e AT N L R et et et et ettt e e e e et At e et -
\. \\Q‘.' x\“._‘.t_'. -\.'*,'p‘u.}:. LTINS :.'. e SNt TN e -t

Appendix D.

¢
3
[}
goe
Sampler Module
h

|($fsf .’$I".".' > J-.f.' .'.l--f~.'\f f«.

istin

PP

(oo AT

‘v‘-\‘ﬁ-%

The listing of ATODINIT's assembly language code is on page 340 in

"t

et
\~ BERY

U

oINS

-

LK 1. Routine Name: CTC_PROGRAM

()

2. Subordinate Routine of Sampler Module

3. Written in Z-8Q assembly language; 5 lines (19 bytes) of code.

+ Synopsis of Routi

CTC_PROGRAM performs the initial two thirds of Counter Timer Chip
One (CTC1) programming by writing the timer mode command and the CTC
portion of the interrupt vector to the Channel @ Command Register. CTC_PRO-
GRAM obtains the mode command from the system stack as it is the Sampler
Module input parameter CTC_MODE. The remaining one third of the CTC
programming is accomplished by START_TIMER.

SAMPLER

@ J ‘\ System Stack

CTC_PROGRAM

v

Channel @ Command Register

Counter Timer Chip 1 (CTC1)

Figure 48. Relationship of CTC_PROGRAM to SAMPLER, the CTC1, and
the System Stack.

o

W

Sampler Module 180 !

L

6. lnvocation
As an assembly language subroutine, CTC_PROGRAM is invoked by

name only with the instruction CALL CTC_PROGRAM. There are no parameters
formally passed.

Z._Variables and Constants

CTC_PROGRAM usses one variable, the input parameter CTC_MODE,
which it obtains from the system stack using module constant CTC_MODE.
CTC_MODE (the variable) has two possible values 87 hex and A7 hex for fast
timer with interrupts and slow timer with interrupts respectively. The fast timer
uses a prescale factor of 16; the slow timer uses a prescale factor of 256. The
calling PLZ routine selects which command is to be used and loads CTC_MODE
appropriately.

CTC_PROGRAM uses three module constants. Their names, values,
and deficitions are

Constant Name _Value Definition
CTC_MODE @C hex IX reg. offset for input parameter CTC_MODE
CTC1_CMD 84 hex Address of CTC#1, channel @, command reg.

INT_VECTOR 49 hex The CTC's portion of the Interrupt Vector
Note: the other half of the interrupt vector is in the Z-8@ CPU and is a system level
constant of 14 hex. The combination of the two halves yields the address 1440

hex, the location in the interrrupt jump table where the address of the interrupt
service routine will be placed by INT_SET_UP.

8. Other Routines Called
CTC_PROGRAM calls no other routines.
9. Qutput of Routine

CTC_PROGRAM has no output parameters. Upon completion of
CTC_PROGRAM, the CTC is dormant, two thirds of the way programed to issue
periodic interrupts.

Sampler Module 181

~
- D)
. " a ol ' - . D L S S T T T T S S S U e I L .
-] . e a any m w o Vo IR RS T .. RIS S I P R S
» ® . ‘!- A -, o\ p) * 8 "~ ‘.' - - - U™ ¥ n® g -

A 3

10. Routine Testi

CTC_PROGRAM was not individually tested. It was tested with the
rést of the Sampler Module routines.

11. Ref Listi
The program listing of CTC_PROGRAM is on page 341 in Appendix D.

Sampler Module 182

B A S T T O o O O A O I O T S I R S

o %y

.~ A v
o " a A

LA AN

A 4

o o'as

P 0 v 4

pOAN Yr ' 4

-

e WO 2 .

-t

. Routine Name: INT_SET_UP

. 2. Subordinate Routine of Sampler Module

3. Written in Z-80 assembly language; 9 lines (19 bytes) of code.

4. S is of Routi

INT_SET_UP establishes the interrupt service routine for Sampler
Module. There are two parts to this action. First, the analog input channel num-
ber is loaded into the alternate A register (A°) of the Z-8@ CPU. INT_SET_UP
gets the channel number from the input parameter IO_CHANNEL. The alternate
register set is used by the interrupt service routine. Second, INT_SET_UP sel-
ects which interrupt service routine will be used based on the input parameter
COUNT and loads the address of the selected routine into the interrupt jump
table. If COUNT has a value of zero, routine TO_SAMPLE will be the interrupt
service routine. If COUNT is nonzero, TC_SAMPLE will be used and INT_SET_
UP loads the counter values into the BC" and DE’ registers. The starting address
of the selected routine is placed in memory location 144Q hex, the interrupt jump
table location for CTC1, channel @ responses.

Sampler Module 183

T A SR ARV S S 8 S S e T R YN RN W RN T AN Tt T e
gLk B A0 8 3 3 . . Ko X v

SR M N RS A iy A S b AL RAL e 2 AN A Bt A I T ek L,) AR 0 b B s ot by el)

Routi lationships Di

/.
.

-
'
L)

".

SAMPLER

J R System Stack

INT_SET_UP

\L Interrupt Jump Table

A’ Register
BC" Register
DE’ Register

Z-80 CPU

Figure 49. Relationship of INT_SET_UP to SAMPLER, the System Stack,
the Interrupt Jump Table, and the Z-8@ CPU Altemate Registers.

6. Invocation

INT_SET_UP is invoked with "CALL INT_SET_UP". Being an assem-
bly language routine, there are no formal parameter passing lists. INT_SET_UP
does expect SAMPLER to have properly set the IX register so that input para-
meters can be obtained via IX register offsets.

L._Variables and Constants

INT_SET_UP uses the input parameters IO_CHANNEL and COUNT. It
uses six global constants for IX register offsets, interrupt service routine ad-
dresses, and the interrupt jump table address. These constants, their values,
and their definitions follow.

Sampler Module 184

.

.- - - .. .-, e .\ - .'- - .'.‘ g . -.' " . L te L " .-. ‘-‘. "‘ R
Selata Attt Aty \.'|""-\"" SN AT TR R L

T Palietlior e gt Sl St e Sk i g

& _ConstantName ~ _Value Definition
I0_CHANNEL OFE hex IX offset for input parameter IO_CHANNEL
COUNT D8 hex IX register offset for input parameter COUNT
ZERO 9D hex Just zero
TO_SAMPLE | undefined Beginning Address of Interrupt Service

Routine TO_SAMPLE, defined upon
program load

TC_SAMPLE undefined Beginning Address of Interrupt Service
Routine TC_SAMPLE, defined upon
program load

INT_JUMP_TABLE 1440 hex Address of Interrupt Jump Table location fer
CTC1, Channel @ Interrupt Services

8. Other Routines Called
W INT_SET_UP calls no other routines.
INT_SET_UP has no output parameters. Its impact on system con-
. figuration is the loading of the selected interrupt service routine's starting address
. into the interrupt jump table and the loading of the CPU's alternate register set
n with the values needed by the interrupt service routine.
10. Routine Testi

INT_SET_UP was not specifically individually tested. However, dur-
ing the overall testing of Samper Module, it was verified that the proper ad-
dresses were loaded into the interrrupt jump table and the CPU alternate regis-
ters were loaded with the proper values.

11. Ref List
PR The program listing of INT_SET_UP is on pages 342-343 in Appendix
e D.

Sampler Module 185

-‘._-\‘-. .-. ‘..'-\- -.-._. U.“f.;f -‘. '.-._ ~.. ‘-, - -'. - ‘ \\.‘.
AN AT AT {.A)}t:‘f_'r:‘t.\.n_ o l_.n_.e.:‘.g:‘)_ .n_‘ AR CE

- SAMPLER

IO 1. Routine Name: INIT_COLLECTOR

4
A AJ

2. Subordinate Routine of Sampler Module

3. Written in Z-80 assembly language; 5 lines (13 bytes) of code.

L S is of Rout

INIT_COLLECTER loads into the Z-8@ CPU's primary register set the
values required by routine COLLECTER to load data into the memory buffer and
to count the number of samples collected. The address for the first storage loca-
tion, FIRST_DATA, is loaded into the DE register and the number of samples to
be collected, NUM_SAMPLES, is loaded into the BC register. INIT_COLLECTER
obtains the values from the system stack as they are input parameters to Sampler
Module from the calling PLZ routine.

i lationship Di

{ ‘\ System Stack

INIT_COLLECTER [—

\)

BC Register
DE Register

Z-80 CPU

Figure 50. Relationship of INIT_COLLECTER to SAMPLER, the System
Stack, and the Primay Registers of the Z-80 CPU.

A

Sampler Module 186

“ BN

.y

WG IR AL SO SRS
¥ 4 - .

nv

INIT_COLLECTER is called by SAMPLER though the Z-89 instruction
CALL.

Variabl n
INIT_COLLECTER uses two input parameters, FIRST_DATA and NUM_

SAMPLES, which it obtains from the system stack with two module constants.
These constants, their values, and their definitions are

Constant Name Value Definition
FIRST_DATA @4 hex IX offset for input parameter FIRST_DATA

NUM_SAMPLES @6 hex IX offset for input parameter NUM_SAMPLES

._Other Routin il

INIT_COLLECTER calls no other routines.

9. Output of Routine

The sole effect of INIT_COLLECTER is the loading of the BC and DE
registers with the values of the input parameters NUM_SAMPLES and
FIRST_DATA.
10. Routin

INIT_COLLECTER was not tested apart from the rest of the Sampler
Module routines.

f istin

INIT_COLLECTER's program listing is on page 344 in Appendix D.

Sampler Module 187

S A, e oy
AL ARG T e i S A S N R g N

........

. .

(7

1. Routine Name: USER_READY?

2. Subordinate Routine of Sampler Module

3. Written in Z-80 assembly language; 33 lines (86 bytes) of code.

4. Synopsis of Routine

USER_READY? asks the user of the system whether all is ready for
data collection. It serves as the "trigger” to begin the data collection. Figure 51
below shows USER_READY?'s relationship to SAMPLER and the operating
system. For this thesis effort, the user typing a "Y" on the system keyboard tells
Sampler Module to begin data collection. If other types of triggers were desired,
alternatives to USER_READY? could be written and substituted into Sampler
Module.

The sequence of operaions in USER_READY? is shown in Figure 52
below. USER_READY? begins by loading the output parameter ERROR_CODE
with FALSE, indicating no error. Then USER_READY? calls the operating sys-
tem to output the message "Collection system ready. Begin ?" to the system con-
sole. This call requires extensive preparation and loading of a transfer buffer.
Next USER_READY? again calls the system to obtain the user's response from
the system keyboard. This call also requires extensive preparation and loading
of the transfer buffer. Execution will remain with the operating system until the
user types in a character. Thus execution of Sampler Module is suspended until
the user responds. When the user responds, USER_ READY? checks to see
whether the character typed in is a "Y". If it is, USER_READY? exits to SAM-
PLER. Otherwise, ABORT is loaded into the output parameter ERROR_CODE.
The failed compairson of the input character with "Y" puts the zero flag to zero.
The zero flag's status will be retained during the return to SAMPLER and will
indicate to SAMPLER that the user has aborted the data collection.

Sampler Module 188

..........................

;
T Routine Diagram ;
LYo

SAMPLER :

System Stack D
CPU Z Flag -

USER_READY?

Registers

Z-80 CPU

Operating System)

Figure 51. Relationship of USER_READY? to SAMPLER, the System 2
i} Stack, the Z-80 Primary Registers and the RIO Operating System.
.

Sampler Module 189
.................. Wt Tt e e e e e e T e T e e e L s R S TR
R P O Y, (N N N N A O P L R R A P A s A A LT R O AL o

DR A ol b

USER_READY?

Prepare
Message

Operating System

Message to Console

Prepare
for User
Input

TMros=>0n

Operating System

Input from Keyboard

Begin
Data
Collection

Abort
Data
Collection

{- To Other Sampler Module Routines

Figure 52. Program Flow within USER_READY?

Sampler Module 190

USER_READY? is invoked from SAMPER simply by its name.

Z._Variables and Constants
a. Variables

USER_READY? uses three variables. USER_READY? loads the A
output parameter ERROR_CODE with either FALSE or ABORT to indicate to the
calling PLZ routine whether and error abort occured or not. The second variable
used is the character returned from the operating system call to the system key-
board. This variable is located in the buffer location RTN_MESS. The last vari-
able used is not a true variable, rather it is the state of the Z-8@ zero flag. The
state of this flag is used to indicate to SAMPLER whether Sampler Module should
continue execution or be terminated.

b. Constants

USER_READY? uses a host of module constants. Their names, g

values, and definitions follow. Of particular interest are the definitions of the N

6 Operating System Call Vector constants. -

—Constant Name = _Value Definition 3

FALSE 0D hex All is OK Error Code. :
ERROR_CODE 19 hex IX offset for output parameter

ERROR_CODE. .

A_VECTOR undefined Beginning Address of the Buffer for the N

Operating System Call Vector, de-
fined during Module linking.

A_LOGICAL_UNIT A_VECTOR + Call Vector Position for Logical Unit '-
0 hex Desired.

A_REQUEST_CODE A_VECTOR + Call Vector Position for the System
@1 hex Request Code. See WRITELN and
READLN below.

R AR

A_DATA_TRANS A_VECTOR + Call Vector Position for Pointer to Data
. @2 hex Transfer location. See MESSAGE
: and RTN_MESS.

4
]
L2

~ > DECR g5 FSOMNE AELNE S P o A _".‘]
OO AN A 2 el AR A S G T L SRS HUT PN L ¥ R

Sampler Module 191

& Y

ol —Constant Name =~ _Value Definition
A
A_BYTE_COUNT A_VECTOR + Call Vector Position for Number of Bytes
@4 hex to Be Transfered.
A_RETURN A_VECTOR + Call Vector Position for the No Error
@6 hex Return Address.
A_ERR_RETURN A_VECTOR + Call Vector Position for Error Return
08 hex Address
A_COMP_CODE A_VECTOR + Call Vector Position for Operating
QA hex System Completion Code.
CONOUT @2 hex Logical Unit Number for System
Console.
WRITELN 10 hex Request Code for Output.
MESSAGE undefined Address of first character of message
"Collection system ready.. Begin 7"
Address defined upon Module
6 Linking.
L_MESSAGE 21 hex Length of MESSAGE.
SET? undefined Address of a Section of USER_
READY?, used for A_RETURN and
A_ERR_RETURN. Defined at Time
of Module Linking.
SYSTEM 1403 hex Address of Operating System Entry
Point.
CONIN 91 hex Logical Unit Number for System
Keyboard
READLN @C hex Request Code for input.
RTN_MESS undefined Address of a buffer used to receive the
User's response. Defined during
linking.
<%
e’
Sampler Module 192

P el g W g, «

4

Constant Name Valye Definition

GO undefined Address of a Section of USER_READY?
used as the A_RETURN and
A_ERR_RETURN. Defined at Time

of Module Linking.

Y_ASCII 59 hex The ASCII character "Y".

ABORT AB hex Error Code for User Aborted Data
Collection.

8. Other Routines Called

USER_READY? calls the operating system to output a message and
to receive user go ahead for data collection. The call to the operating system is
accomplished by loading a transfer buffer know as an Operating System Call
Vector with the information required by the operating system, loading the ad-
dress of the buffer into the lY register, and then calling the operating system. The
call vector's content is shown above in the A_VECTOR definitions in the list of
constants used by USER_READY?.

9. Qutput of Routine
The output of USER_READY? is the status of the Z-80 CPU's zero
flag. If the Z flag is set (a one), then the user responded with a "Y" and data

collection should proceed. If the Z flag is not set (a zero), then data collection
should be aborted.

0. Routine Testi

USER_READY? was tested along with the other routines of Sampler
Module.

11. Ref to Listi
The listing of USER_READY? is on pages 345-346 in Appendix D.

Sampler Module 193

.....................

. Routine Name: START_TIMER

I 2

&

2. Subordinate Routine of Sampler Module

3. Written in Z-8@ assembly language; 3 lines (6 bytes) of code.

a2

L S is of Rout

This sole purpose of this very short routine is to supply the final third of
the CTC programing begun by CTC_PROGRAM. The effect of this is to turn on
the CTC timer and interrupts. START_TIMER obtains the command it writes to
CTC1, channel zero, from the system stack. The command is the input para-
meter TIME_CNST.

»

\S/AMPLE\R
: @ | System Stack
: START_TIMER [

; ¢
. Channel @ Command Register

Counter Timer Chip 1 (CTC1)

Figure 53. Relationship of START_TIMER to SAMPLER, CTC1, and the

System Stack
¢ .
6. Invocation

N v START_TIMER is invoked by name only through the Z-8@ instruction

by CALL. There are no parameter passing lists in assembly language subroutine
‘ Sampler Module 194
4
WL '.\-.'-.\'.-. --.‘;_..‘_*. ;,\'_:_'\. .’..\:‘..:...;. I P ‘:‘._ e e e RN

‘_' s A . - . g . AP s P AS AR LIS . y y g ',

.&; calls. 3y
3
Variabl

START_TIMER uses one variable, the input parameter TIME_CNST.
This variable is obtained from the system stack via the module constant TIME_
CNST (value DA hex) which is the IX register offset to the input parameter's loca-
tion on the stack. START_TIMER also uses the module constant CTC1_CMD
(value 84 hex) which is the address of the CTC1, channel @ command register.

N '-_-l_‘ A B

8. Other Routines Called
START_TIMER calls no other routines.
9. Qutput of Routine

The impact of START_TIMER is significant. By writing the time con-
stant to the CTC, the CTC programming is complete and it begins its timing and

‘ interrupting.

10. Routine Tesfing 3

No individual testing was performed on START_TIMER. A

11, Reference to ising z
The program listing of START_TIMER can be found on page 347 in :

Appendix D. ‘

*

w5 .
Sampler Module 195 |

&2 1. Routine Name: COLLECTER

2. Subrodinate Routine of Sampler Module

T)

3. Written in Z-80 assembly language; 15 lines (3@ bytes) of coda.
4 nopsis of Routi

COLLECTER is the heart of Sampler Module. COLLECTER reads in
the data from the AlO board and stores it a memory buffer. COLLECTER con-
tinues to read in data until the specified number of samples have been collected.

The executation states of COLLECTER were shown in Figure 43 in the

introduction to the Sampler Module. COLLECTER primarly sits in a loop, check-

ing the AlO board status register until the least signinficant bit becomes a one .

signaling that data is ready. The lower eight bits of data is then read in and 2

stored in a tempory buffer whose address is stored in the HL register. The lower 5

G data is then transfered into the data buffer. The rather complex Z-8@ instruction
LD! handles the transfer of the data (HL & DE registers), the decrementing of the

sample count (BC register) and incrementing the pointer to the next buffer loca- .
tion (DE register). The upper four bits are then read in (in an eight bit word), X
stored in a tempory buffer, and then stored in the data buffer, again with the LDI “
instruction. If the down counter (BC register) has not reached zero, COLLECTER
returns to its AlO status register checking loop. If all the samples have been
collected, COLLECTER ends, returning program execution to SAMPLER.
;
.
:

Sampler Module 196

O T Ry et N e et A
RS NG N GO L S LN AU N '\'\"'L'\'\‘.'\\ BT LTS RO RGNy R R TR AL LR T TR SR v

[2 280

- A

.
&

Routing Relati ip Di

&

SAMPLER

VAR

COLLECTER

System] \

Memory Data Registers
BC Register AlIO
DE Register Board
| HL Register
Z-80 CPU
o

Figure 54. Relationship of COLLECTER to SAMPLER, System Memory,
the Z-89 Primary Registers, and the AlO Board.

6. Invocation

COLLECTER is invoked by name only. There are no parameter lists.

Z._Variables and Constants ‘
a. Variables

While COLLECTER uses no named variables, the primary registers of
the Z-8@ CPU and some memory buffers are used to hold the values necessary
for COLLECTER to execute. The interrupt service routine, operating concurrently

) with COLLECTER, uses the alternate registers of the CPU to hold the values it
RO needs. The registers and memory buffers used by COLLECTER are

Sampler Module 197

‘v\ ORI D e T e e e W T S LT e e e . et P R -_.‘ I L R L L, S s
WG N d R A A O A R R AL O SORRYY X \.':'f!-':'.’t'-':'.ri"',)

-, 1"-:1.;::.-_,.-__

‘{x Register Register Function - Quantity Stored

A Receives the data from the AIO board via the IN,A instruction. The
data is then placed in the temporary buffers.

BC Holds the down counter for the number of samples. BC is loaded by

INIT_COUNTER. BC is decremented by the two LDI instructions

y used in COLLECTER. An INC BC is included in COLLECTER to

o keep the BC value the number of samples, not the number of data
) bytes written to the memory buffer.

2 DE Holds the address of the next memory buffer location. INIT_COL-

LECTER loads DE with the beginning address of the buffer. DE is
‘ incremented by LDI. So that DE holds the address of the lower half
) of the last sample stored, DE is decremented by COLLECTER upon
its termination.

HL Hclds the address of the tempory buffers in which data bytes are
placed. HL is loaded with the address of lower temporary buffer
(DataLower) in COLLECTER's AIO status loop. The first LDI in-
crements HL so it points to the upper temporary buffer (DataUpper).

(1) L_BUFFER A memory location used as a temporary buffer for the lower eight
bits of data read in from the AlO board. HL holds the address of
DatalLower.

H_BUFFER A memory location one above DataLower which is used as a
temporary buffer for the upper data byte read in from the AIO board.
After the first LDI, HL holds the address of DataUpper.

LSNP

b. Constants

COLLECTER uses five module constants to refer AlO registers and

buffer registers. These constants, their values, and their definitions are listed
below

LA NS

-

Constant Name Value Definition

L_BUFFER undefined The address of a memory location used for
temporary storage of the lower AlO data.
The value of L_BUFFER is defined
when Sampler Module is linked.

H_BUFFER undefined The address of a memory location used for
temporary stroage of the upper AlO
data. This location is one above
L_BUFFER.

ATODSTATUS 29 hex The address of the AlO board status
register.

DATALOWER 20 hex Address of the AlO board lower data
register.

DATAUPPER 21 hex Address of the AlO board upper data
register.

8. Other Routines Called
COLLECTER calls no other routines.
9. Output of Routine

COLLECTER reads in a user selected number of sixteen bit values
from the AlO board and stores them in memory.

10. Routine Test
COLLECTER was tested in concert with the rest of Sampler Module.

11. Reference 1o Listing
The code listing for COLLECTER is on page 348 in Appendix D.

. Routine Name: CTC_OFF

%
-
-

-
-,

2. Subordinate Routine of Sampler Module

X

3. Written in Z-80 assembly language; 5 lines (7 bytes) of code. hy
L S is of Routi

N

The sole purpose of this little routine is to turn the CTC timing and ‘

interrupting off. s is accomplished by writing the off command to the command 2:

register of CTC number one (CTC1). Prior to writing to the CTC, Z-80 interrupts R

are disabled to prevent inadvertant interrrupts. Z-80 interrupts are enabled by
CTC_OFF prior to its return to the calling routine, SAMPLER.

SAMPLER

c v N
CTC_OFF
W

Channel @ Command Register

Counter Timer Chip 1 (CTC1)

'
ty 4y % "

T
2,8

Figure 55. Relationship of CTC_OFF to SAMPLER and the CTC. :

)

6._Invocation ;

..

CTC_OFF is invoked by name. It has neither input nor output R

parameters. 2

3 5
Sampler Module 200 B

X

WL WP o P e MM uty et aw . N T, Attt P T T R P S P
A‘\" RGNS R RS ’.“.._‘.r..\....'-...4.. L o .'_..,-_..’.....‘._..._J,,._._ e T e T e e e T

.......................

-.'l5 :"ﬁlﬁl

0o . i xl." .‘: :'..

X XN

PRI

RANAIED

NNAANS

-

r~."ﬁ (‘a %S

M)

— .

riabl nstan

CTC_OFF uses no variables. It does use the following two global
constants.

Constant Name Value Definition
CMD_CTC_OFF 78 hex Command to hault and disable interrupts
CTC1_CMD 84 hex Command port address for CTC1, channel @
._Other Routin Il

CTC_OFF calls no other routines.

9. Qutput of Routine

CTC_OFF has no output. lts impact on system configuration is to turn
off the CTC1, channel @ timer and inhibit CTC1 from issuing interrupts.
1 i in

A variant of CTC_OFF was successfully used in another program
yielding some faith that CTC_OFF would function properly. For this effort CTC_

OFF was tested in conjuction with the rest of Sampler Module as described in the
module discussion.

11. Ret List
The program listing of CTC_OFF is on page 349 in Appendix D.

Sampler Module 201

........

1. Routine Names: TO_SAMPLE and TC_SAMPLE
2. Interrupt Service Routines of Sampler Module
3. Written in Z-8@ assembly language;

TO_SAMPLE: 4 lines (6 bytes) of code;
TC_SAMPLE: 19 lines (25 bytes) of code.

4 nopsi in

R AN

TO_SAMPLE _or TC_SAMPLE is the interrupt service routine for the
Sampler Module. TO_SAMPLE, for "Timer Only", is used for timer periods be-
tween 50 microseconds and 10 milliseconds. TC_SAMPLE, for "Timer and
Counter, is used for timer periods between 10 milliseconds and 29.3 minutes.
Which routine is used is determined by INT_SET_UP based on the input para-
meters to Sampler Module. INT_SET_UP loads the starting address of the sel-
ected routine into the interrupt jump table. The two routines service the CTC
timer interrups differently.

TO_SAMPLE swaps CPU AF register banks, outputs to the AlO chan-
nel select port the desired analog input channel, swaps the AF register banks
6 back, and then returns from the interrupt. The register banks are swaped to gain

Interrupt Return from

from CTC x 7, Interrupt

TO_SAMPLE

N

A’ Register Channel Select Register

Z-80 CPU AlO Board

X

Figure 56. Relationship of TO_SAMPLE to CTC Interrupts, the Z-80
Alternate Register A, and the AlO Board.

Sampler Module 202

4 PR
N Q
Ta <
-
l-.
A
)
& -
vl
x
- "

oA

AN

e

(AR

) DN o 49
. ‘-’,-,'._.

YN

’\I'o' ."' a &Iﬁ “

-“'
f-'..’-‘ » .“q.. T ..'-.. *-"
! o '

SO

access to the A register of the alternate register set which holds the desired ana-
log channel number and to prevent interference with COLLECTER. By selecting
an AlIO input channel, an analog to digital conversion is initiated on that channel.

TC_SAMPLER is more complicated. To achieve the longer timing
periods, TC_SAMPLER has a sixteen bit counter decremented by each interrupt.
When called, TC_SAMPLE first swaps the AF, BC, DE, and HL registers to protect
the contents of the primary bank of registers and to gain access to the counter
values stored in the alternate bank of registers. The counter is then decrement.
When the counter reaches zero, TC_SAMPLE writes the desired analog input
channel number to the AlO board, initiating an analog to digital conversion, and
resets the counters. Just prior to returning from interrupt, TC_SAMPLE swaps the
primary register bank back.

Interrupt Return from

from CTC N 7 Interrupt

TC_SAMPLE

| \)

A’ Register Channel Select Register
BC’ Register AlO Board
DE" Register

Z-80 CPU

Figure 57. Relationship of TC_SAMPLE to CTC Interrupts, the Alternate
Registers of the Z-8@ CPU, and the AIO Board.

Inv i

Neither TO_SAMPLE nor TC_SAMPLE are "invoked.” Rather, when a
CTC initiated interrupt occurs, one of these routines will begin execution.

Sampler Module 203

AT AT

R R I N

"Q" - ‘-~’ LN . - i
B N B AP AR AL VR 7R AT DAL AL PO A

. - . .

X . _Variabl nstan

-
o
L

Neither TO_SAMPLE nor TC_SAMPLE use any named variables.
Rather, these routines make use of values saved in the alternate register set of
the Z-80 CPU. Both routines use the alternate A register (A°) to hold the number
of the user specified AlO board analogue input channel. Both routines write this
number to the AlO channel select register to initiate an analog to digital conver-
sion. TC_SAMPLE also uses the alternate BC (BC’) and DE (DE’) registers. BC’
holds the current down counter value that is decremented with each call of TC_
SAMPLE. DE’ holds initial value of the down counter; DE’ is used to reset BC’
when the counter reaches zero.

--‘
> L)

[l. 55 X 53

Both TO_SAMPLE and TC_SAMPLE use the module constant
< CHANNEL_SELECT value 28 hex, for the address of the AIO input channel
- selection register.

Z_Other Routines Called
TO_SAMPLE and TC_SAMPLE call no other routines.

ARATARS

G 8. Qutput of Routine
In the single execution of Sampler Module, TO_SAMPLE or TC_SAM-
PLE can be called hundreds to thousands of times. Each time TO_SAMPLE is
called, an analog to digital conversion is initiated. Each time TC_SAMPLE is

called the down counter is decremented; when it reaches zero an analog to digi-
tal conversion is initiated.

AL

-.l‘
PR RS

9. Routine Test

N Both TO_SAMPLE and TC_SAMPLE were tested in conjunction with
. the rest of the Sampler Module routines. Being interrupt service routines there is
X no way they could be tested independently.

i r isti

The listings of TO_SAMPLE and TC_SAMPLE are on page 350 in
Appendix D.

Ry

P resdd

Sampler Module 204

LN

...

¢
RN R e .- e AT T
s‘.,)) W 7. Lo Lt :‘."~f-."’-."\-‘.

il

P ¢S e AT

AR

w

s

PRSI

LY » . _ P - _
L, -. "-."'\.\..""\\ €y 0 Y -‘.q‘ ..\-\.'._._ . -

‘N

R 1. Routine Name: DEALLOCATE
2. Subordinate Routine of Sampler Module

3. Written in Z-8Q assembly language; 11 lines (16 bytes) of code.

L S is of Roui

DEALLOCATE is the last subordinate routine of Samper Module. DE-
ALLOCATE handles all prepartions for the return to the calling PLZ routine. Spe-
cifically, DEALLOCATE loads the addresses of the last data values stored into the
output parameter LAST_DATA's storage location in the system stack. Then DE-
ALLOCATE pops the calling routine's IX regester value (into IX) and the return
address (into HL) from the system stack. Last, DEALLOCATE pops from the sys-
tem stack the storage locations for the input parameters. Having completed its
actions, DEALLOCATE returns to SAMPLER.

SAMPLER

v N

DEALLOCATE

System Stack

Figure 58. Relationship of DEALLOCATE to SAMPLER and the System Stack

6. Invocation

As an assembly language subroutine, DEALLOCATE is invoked by
name only. There is no parameter passing.

‘.‘.;«.,
*e ’\

Sampler Module 205

o I A TN S T S

L7

Mo T e g m e
\:'.'\ r..-.. .

Variabl n
DEALLOCATE uses no variables. It does use the module defined
constant LAST_DATA, value 12 hex, for the IX register offset to the storage loca-

tion of the output parameter LAST_DATA. DEALLOCATE does load the HL re-
gister with the return address for the calling routine.

8. Other Routines Called

DEALLOCATE calls no other routines.
9. Qutput of Routine

At the end of DEALLOCATE's execution, the HL register holds the
calling routine’s return address, the IX register holds the calling routine's original

IX value, the return parameter LAST_DATA is in place in the system stack, and
the input parameter storage locations in the system stack have been deallocated.

10. _Routine Testing
DEALLLOCATE was tested with the rest of Sampler Module routines.

11, Reference to Listing
The program listing of DEALLOCATE is on page 351 in Appendix D.

Sampler Module 206

R IR g .. Tt v D N P e e N s

cresd

!35 This page is intentionally blank.

ORI R

LAY

¥y e Cew X, %,7 %"

PRI,

o 26 2
(RN I

L,y

A

-/ 'l' "' -'. .‘. -.' .

Sampler Module 207

2 4

~
S

.

.« L. .« a¥ e JRET et e et . et - - V. LG I N L A R S o OO RO S S S
Py W ARy),,\ \-.“_..','.._.,.{.-_.__..._.J,'.‘,:., A Y A SRR ".r'.r*'-""" O N A Tt B AT .\.. sowae, LS TR Y

‘;Er"

V. Buffers Module

Definition of Butffers Module

Buffers Module is unique among the modules of the data collection
system in that it contains not one line of code. Rather than code, the Buffers Mod-
ule holds the definition of the memory buffer that Sampler Module loads data into
and that routine LOAD_DATA_FILE, of Collect_Data Module, reads data from
and writes to a disk file. The global buffer established in Buffers Module is
named DATA_BUFFER. It's declaira- tion statement sizes DATA_BUFFER as an
array of BUFFER_SIZE words (sixteen bits). BUFFER_SIZE is a Buffers Module
constant having a value of 1999 decimal. Thus, DATA_BUFFER holds 20909
bytes. When the whole data collection system is linked together, Buffers Module
is the last module linked in.

The listing for Buffers Module is in Appendix E.

r?v.v:ﬁtr;v:m.v”ww.mn AN R Nt i sal, Al rb il Bl S R A AL S KAE ARSI e g £ ot gAl A A Skt At R R il o i i

& VI. Collect Data Module

Introduction to Collect_Data Module

Collect_Data Module is a set of PLZ language routines which, along
with some external routines, implements a portion of a data collection system.
The portion implemented is the reading in of data from the AlO board and storage
of that data in a disk file. Collect_Data Module is intended to be called from a
high level user interface routine.

The routines of Collect_Data Module presented here are not com-
pletely developed. They have not been assembled nor linked in with the external
routines called. These routines do fully represent the design of the data collec-
tion system.

In the following sections the organization and function of the routines
of Collect_Data Module will be presented. Following that will be a listing of the
external routines used, a description of the invocation of Collect_Data, the varia-

, bles and constants of Colect_Data Module, and the known flaws in the module.
ﬁ Descriptions of the fifteen routines of Collect_Data Module are then presented.

Orqanization of Collect Data Madul

The fifteen routines of Collect_Data Module and the thirteen external
routines used by Collect_Data are organized into a hierarichal structure. There is
one executive routine, SAMPLE_DATA, which calls seven subordinate routines.
Five of these routines are primary subordinate routine ; they control the five major
functions of Collect_Data. The routines of Collect_Data and their functions are
listed below. The numbered routines are the primary subordinate routines.

Routine Name Function
SAMPLE_DATA Executive routine of Collect_Data Module.
GET_DATE Via an external routine, reads the system date

and loads the six characters into a string.

1. PREPARE_COLLECTOR Finds programming commands for the CTC, the
down counter value, and sizes the data buffer.

N
DA

Collect_Data Module | 209

— Boutine Name

Function

FIND_TIME_CNST

FIND_CTC_COMMANDS

SIZE_DATA_BUFFER
ERROR_IN_PREPARE
2. CREATE_DATA_FILE
ASCII
(7 STRING_COPY
VALID_STRING
ERROR_IN_CREATE

3. SAMPLER

ERROR_IN_SAMPLER

4. LOAD_DATA_FILE

5. CLOSE_DATA_FILE

Collect_Data Module

s
v

Rounding division routine to find the CTC time
constant.

Based on user inputs, calculates the three
values needed to set up the CTC paced
interrrupts.

Based on user inputs, establishes the data
buffer.

Manages error checking and error messages for
PREPARE_COLLECTOR.

Opens a disk file to hold the data read in by
SAMPLER,; loads header information into the file.

Translates a numeric value into the string of
ASCII characters that represent it.

Transcribes a string of characters into another
string.

Checks the contents of a string to ensure all
characters are valid for a file name.

Error determination and error message routine
for CREATE_DATA_FILE.

Turns on the CTC interrupts, programs the AlO
analog to digital converter, and reads in data
from the AlO Board into the memory buffer
(external routine of Sampler Module)

Checks the output of SAMPLER for errors; writes
error messages to the system console.

Transfers the data stored by SAMPLER in the
memory buffer into the disk file opened by
CREATE_DATA_FILE.

Closes the disk file holding the data.

210

........

User Sampling Instructions

Prepare
Collecter

Analog Input Data

User "Start” Command

Sample Error Code
Empty Memory Buffer D atpa 7

Sample
Programming

Qmands

Messages

Falled Memory Buffer

Create

Data File

T

(RIO Operating System)

Drawing Name

Collect Data

Load
Data File
Empty Data File /

Filled & Open Data File

<9 Close [—
Data File ==
Raw

(Ri0 Operating System) Data File

arent Drawing

Collection System

Figure 59. Data Flow Diagram for Collect_Data Module

The data flow diagram above shows the functional relationships be-
tween these five primary proccesses of Collect_Data Module. It is not coinsi-
dence that the names of the five primary subordinate routines match these five
processes. The inputs to Collect_Data Module are

the user sampling instructions,

Collect_Data Module

.........
"""""""""
.

211

A

P o PR

[A

.

'@ the user "start" command,
analog input data (via the AlO board)
and the system data.

The outputs of Collect_Data (assuming all goes well) are messages written to the
system console, error codes to both the system console and the calling routine,
and a disk file filled with data. The sole controlling factors are the inputs from the
user. The mechanisms employed to accomplish each procedures' purpose is
either the RIO operating system or the AlO board.

TTEETeTY T ¥V ¥ XD

External Routines Called By Collect Data Module Routines

Thirteen external routines are used by Collect_Data. Their names,
invocations, functions and modules are listed below.

Enhancements Module Routines
a. WRITE_HBYTE(LOGICAL_UNIT, VALUE)
where LOGICAL_UNIT (type Byte) is the number of the device to which the hexi-
e’, decimal representation of VALUE (type Byte) is to be output.
b. WRITE_HINTEGER(LOGICAL_UNIT, VALUE)
where LOGICAL_UNIT is type Byte and VALUE is type Integer. This routine is
used to output the ASCII characters that form the hexidecimal representation of
VALUE.
c. WRITE_DWORD(LOGICAL_UNIT, VALUE)

where LOGICAL_UNIT (type Byte) is the output device and VALUE is the number
whose decimal representation in ASCIl characters is to be output.

d. WRITE_RCODE(LOGICAL_UNIT, RETURN_CODE)
where both parameters are of type Byte. LOGICAL_UNIT is the number of the

output device driver. RETURN_CODE is the RIO Operating System return code
whose text descritption will be written to the desired device.

Collect_Data Module 212

E
\
t
:
N
A
)

........................
.............

LIRS SR AR s [ﬁ ' """" e e T e ~
L:;JA:‘L';' .rﬁ.JL."‘.:‘.f. uf‘. L.-ul; A; P . i.!l‘..d'.‘. JML{..(o, ._1' hﬁ_(ﬂ.._x_ha. ‘ﬁs.'fh_s. _\Jugx. PRI A I C R AL AP AR SR ST

........

KA

LYW e. WRITELN_RCODE(LOGICAL_UNIT, RETURN_CODE)
performs the same function as WRITE_RCODE with the same parameters but
adds a carriage return on the end of the text description.

f. WRITE(LOGICAL_UNIT, TEXT_POINTER)
where LOGICAL_UNIT, of type Byte, designates the device to which output is
directed. TEXT_POINTER, type PByte for Pointer-To-Byte, points to the first
character of the text string to be output. Characters will be output until a carriage
return is encountered. The carriage return will not be output.

g. WRITELN(LOGICAL_UNIT, TEXT_POINTER)

is identical to WRITE except WRITELN does output the carriage return.

--------- PLZ.STREAM.IO Module Routines

h. RETURN_CODE :=
® OPEN(LOGICAL_UNIT, FILE_NAME_PTR, MODE)

where RETURN_CODE, LOGICAL_UNIT, and MODE are type Byte and FILE_

NAME_ PTR is type PByte. The purpose of OPEN is to open a disk file. RE-
TURN_CODE passes back the RIO operating system completion code. LOGI-
CAL_UNIT passes in the desired logica unit number for the file. FILE_NAME_

PTR points to the first character of a text string which holds the desired file name.
MODE pases in the type of opening desired.

i. RETURN_CODE := CLOSE(LOGICAL_UNIT)

where both parameters are type Byte. CLOSE's function is to close an open disk
file. RETURN _CODE passes back the operating system's code descriptor of
operation performance. LOGICAL_UNIT is the logical unit number of the file to
be closed.

j- RETURN_CODE := PUTSEQ(LOGICAL_UNIT, BUFFER_PTR,
NUMBER_OF_BYTES)

where RETURN_CODE and LOGICAL_UNIT are type Byte, BUFFER_PTR is type
.. PByte, and NUMBER_OF_BYTES is type Word. PUTSEQ outputs the string of

Al

Collect_Data Module 213

.............

o characters (or byte values) pointed to by BUFFER_PTR. If no errors occur, NUM-
BER_OF_BYTES bytes will be output to the designated LOGICAL_UNIT. The re-
turn parameter RETURN_CODE passes back the operating system completion
code.

---------- Sampler Module Routine :

k. ERROR_CODE, LAST_DATA :=
SAMPLER(10_CHANNEL, CTC_MODE,
TIME_CNST, COUNT,
NUM_SAMPLES, FIRST_DATA)

T

- where ERROR_CODE, I0_CHANNEL, CTC_MODE, and TIME_CNST are type
) Byte, COUNT and NUM_SAMPLES are type Word, and LAST_DATA and
FIRST_DATA are type PByte. SAMPLER is a collection of assembly language
routines which activates an interrupt driven data collection effort that yields a
memory buffer full of data. IO_CHANNEL is the AlO board input channel desired.
CTC_MODE and TIME_CNST are the programming values for the CTC chip.
COUNT is the value required for a down counter. CTC_MODE, TIME_CNST, and
COUNT jointly define the sampling interval. NUM_SAMPLES is the number of
12-bit analog to digital conversion values to be read in. FIRST_DATA points to
the beginning of the data bufter. Upon return, LAST_DATA points to the last data
location in memory. ERROR_CODE returns a sing byte code for routine perfor- :
mance indications. K

Invocation of Collect Data Module

As indicated in the introduction, Collect_Data Module is intended to
be called from a higher level user interface routine. The executive routine
SAMPLE_DATA is the interface between the calling routine and Collect_Data
Module. Its invocation is

ERROR_CODE := SAMPLE_DATA (TESTID, USER_MESSAGE,
PERIOD_VALUE, PERIOD_UNITS,
INPUT_CHANNEL, SAMPLES)

the type and purpose of these parameters is listed below.

Collect_Data Module 214

E
:
)
!

|
)
»
.
.
]
a
.
.
.
.
.
.
]
4
3
]
v
.
>
»
f
.
.
.
N
'
.
»

e e e P e T IR et e e e N
h T T et T T - ;> . St \
AR AR RN PO N A S S W

e -
- -t .
P -

LN R

X371 DB

—Parameter Type

Purpose

TESTID ASCII_STRING

USER_MESSAGE
ASCII_STRING

PERIOD_VALUE Integer

PERIOD_VALUE Integer

INPUT_CHANNEL Byte

SAMPLES Word

ERROR_CODE Byte

A six character string (plus a carriage
return) that is a unique identifier for the
data file, a test identifier.

A free field string of characters (up to 32) of
user message for inclusion in the data file.

The number of time units (units given by
PERIOD_UNITS) in the sampling period.

The units of PERIOD_VALUE. Three are

" defined; microseconds, milliseconds, and

seconds.

The AlO board input channel (©-15) to be
used.

The number of data samples to be
collected.

A one byte code passed back to indicate
the degree of success of Collect_Data
Module.

For SAMPLE_DATA to be called and function, Collect_Data, Enhancements,
Sampler, and PLZ.STREAM.IO modules must all be linked in with the calling

routine.

Collect_Data Module Variables and Constants
There are no module level variables used by any of the Collect_Data
routines. Other than the input / output parameters and the global buffer DATA_

BUFFER, no global variables are used by any module routines. Quite a few con-
stants are used however. Their names, values, and definitions are listed on the

following page.

Collect_Data Module

215

Constant Name
MICRO_SECONDS

MILLI_SECONDS

SECONDS

SLOW_MODE

FAST_MODE

END_OF_STRING

END_OF_FILE
MINIMUM_TIME

CONSOLE_OUT
DATA_FILE

BUFFER_SIZE

G
T

.....

Value Definition

-6 dec A possible value for the input parameier
PERIOD_UNITS.

-3 dec A value for the input parameter
PERIOD_UNITS.

J dec Third possible value for PERIOD_UNITS

87 hex A programming word for the CTC indi-
cating an interrupting timer with a pre-
scale factor of 256. It is one of the pos-
sible values passed to SAMPLER via
its input parameter CTC_MODE.

A7 hex A programming word for the CTC indi-
cating an interrupting timer with a pre-
scale factor of 16. It is one of the pos-
sible values passed to SAMPLER via its
input parameter CTC_MODE.

7C hex The ASCII character " | " which is used to
indicate end of string.

FF hex MCB standard end of file designator.

50 dec The minimum number of microseconds
permitted for the sampling period.

2 hex The logical unit number for the system
screen.

7 hex The logical unit number chosen for the
disk file.

100 hex An arbitrarly selected maximum for the

MAX_BUFFER_ADDRESS

Collect_Data Module

9ADD hex

data buffer.

The upper memory address allowable
for the data buffer. The value is based
on where the operating system and the
data collection routines are loaded.

216

L % S DR '."- .

I e BN 4
&

v S Y YARRY S

B Constant Name Value Definition

-------- Error Codes of Collect_Data Module

FALSE 0D hex No error.

FATAL FE hex Things have gone very wrong. Fatal
error.

ABORT AB hex The user has signaled to hault data
collection.

TOO_MANY_SAMPLES EO hex The user specified more samples than
there is buffer space for.

BAD_CHARACTER BC hex A character in a file name string is
invalid.

PERIOD_RANGE_ERROR
E1 hex The user specified the sampling interval
improperly or selected an invalid range.

i‘, REDO 22 hex The user input was not correct.
STORAGE_ERROR 23 hex Something went wrong during the

transfer of data from the memory buffer
to the disk file.

Constant Name Value Definition

OPERATION_COMPLETE

89D hex The requested action was successtully
executed.
DUPLICATE_FILE DO hex The file name passed during an open

new file operation already exists.

INSUFFICIENT_MEMORY
4A hex A memory manager return if a memory
allocation request cannot be satisfied.

o

Collect_Data Module 217

s
A

Constant Name Value Definition
DEVICE_NOT_READY C2 hex Code for a device, such as a disk drive,
being unable to respond.
FILE_NOT_FOUND C7 hex Return for an OPEN request, other than
create, when the desired file isn't on the
disk directory.

Note: no constants are defined at the routine level.

Elaws in Collect Data Module

Aside from the fact that this module was never assembled, there are a
number of flaws present in Collect_Data Module. Most of these flaws are pre-
sented in the discussions of the individual routines. Two errors are present in the
module overhead however. First, in the introductionary comments, the third rou-
tine listed should be SAMPLER not SAMPLE_DATA. SAMPLE_DATA is the exe-
cutive routine for Collect_ Data Module. The second error is more serious. In the
externals definition section, the order of parameters for SAMPLER is in error. The
SAMPLER definition should appear as

SAMPLER PROCEDURE(IO_CHANNEL CTC_MODE TIME_CNST BYTE,
COUNT NUM_SAMPLES WORD,
FIRST_DATA PBYTE)

RETURNS (ERROR_CODE BYTE, LAST_DATA PBYTE)

In attition to these two specific flaws, the comments of the Collect_Data Module
routines just is not sufficient. This is particularly true of the later routines. Last,
some of the constants defined for Collect_Data Module and one extemal routine
(SEEK) are not used by the module.

n il i ription

In the following pages are detailed descriptions of the fifteen routines
of the Collect_Data Module. In each description, the following information will be
presented.

Routine Name
Name of Module and Role of Routine
Language and Length of Routine

1.
2.
3.

Collect_Data Module 218

™ Ty B v s s

LAY RN AL L At oL A Al A R e Rl e Jfe - te

Synopsis of Routine

Diagram of Routine Relationships
Invocation of Routine

Variables and Constants Used

Other Routines Called

Output of Routine

Flaws in the Routine

Reference to the Routine Program Listing

~oovENOC

-t b

The program listings of Collect_Data Module are in Appendix F.

Collect_Data Module 219

7
.

N 1. Routine Name: STRING_COPY

% 2. Internal routine of Collect_Data Module.

el

e 3. Written in PLZ, seven lines of code.

;-

. L S is of Routi

)

%2 Procedure STRING_COPY transcribes a string of ASCIl characters
N from one memory location to another. Since PLZ cannot directly refer to absolute

b

memory addres-ses, pointers to the source and destination strings are used. The
. beginning of the source string is pointed to by the input parameter SOURCE; the
,.' beginning of the destination string location is pointed to by the input para meter

:;'- DESTINATION. The transcription begins by copying the character at location
}-' S_INDEX of SOURCE to location D_INDEX of DESTINATION where S_INDEX
and D_INDEX are offsets from the beginnning of the strings. Both S_INDEX and
- D_INDEX are input parameters to Procedure String_Copy. Transcription
continues character by character until the ASCIl character "|" (7C hex) is copied
- from SOURCE to DESTINATION. The "|"is thus used as an end of string de-
- limeter and is the module constant END_OF_STRING.
>
= 5. Routine Relationship Di
» CREATE_DATA_FILE
3
STRING_COPY
by Figure 60. Relationship Between STRING_COPY and
. CREATE_DAT_FILE
6. _lnvocation
STRING_COPY is invoked from CREATE_DATA_FILE with
STRING_COPY(SOURCE, S_INDEX, DESTINATION, D_INDEX)

. Collect_Data Module 220

‘».g—w where SOURCE and DESTINATION are of type ASCII_PTR (a pointer to an
ASCII string) and S_INDEX and D_INDEX are of type byte. S_INDEX indicates
which character in the SOURCE string is the first to be transcribed to the
D_INDEX position in the DESTINATION string.
7. Variabl n

a. Global

No global variables or constants are used by STRING_COPY.

b. Internal to the Module

Beyond the input and output parameters, STRING_COPY uses no
module level variables. The module constant END OF STRING, value 7C hex
the ASCI! character "|", is used to indicate end of string.

¢. Internal to the Routine
ﬁ STRING_COPY uses no routine level variables or constants.
8. Other Routines Called
STRING_COPY calls no other routines.
9. Output of Routine

Upon the completion of STRING_COPY the contents of the source
string has been copied to the destination string.

10. Routine Flaws

STRING_COPY is completely acceptable in its current form.

11. Ref to Listi
STRING_COPY's program listing is on page 374 in Appendix F.

Collect_Data Module 221

N T e P A P Lo e

L UL IR IR

Yo% ¥ “s =~ 3¢

s e Y, 0,0,

P S N L ST
Sara bt

ATt o

4

s &

0
v
»
y
1§

PP

C4
AV w

e

1. Routine Name: ASCII
2. Internal routine of Collect_Data Module

3. Written in PLZ; 28 lines of code.

L S is of Rout

ASCII takes value and translates it into a string of ASCII characters
that represents the value. Also input to ASCII is the base of desired representa-
tion. Thus ASCII can be used to translate the input value into binary, decimal, or
hexidecimal strings. This ASCII routine of Collect_Data Module is a combination
of the ASCII and PLACE_LOOP routines of Enhancements Module. The differ-
ence between this ASCIil and the combination of the Enhancements Module rou-
tines is that ASCII puts the individual characters into an string where the En-
hancements Module combination writes each individual character to a desired
logical unit.

ASCIl accomplishes its task with a loop and a large Case statement.
The loop steps through each place of the output representation, beginning with
the most siglnificant place. For example, if the number 274 was to be represen-
ted in decimal, the first place to be checked would be the 19@'s. The contribution
of each place to the total value is determined and translated into a character by a
sixteen possibility ("@" to "9" and "A" to "F") Case statement and the character is
placed in the output string. If the contribution is outside the define characters, a
"?" is placed in the output character string. The loop then drops to the next signi-
ficant character (or place) and determines the next contribution. The fooping
continues until the 1's place has been determined. The return ends by placing a
carriage return on the end of the string of characters.

5. Routine Relationship Di

CREATE_DATA_FILE

I
ASCII

Figure 61. Relationship of ASCIl and CREATE_DATA_FILE

Collect_Data Module : 222

ASClIl is called only by CREATE_DATA_FILE and is invoked with
CHANNEL := ASCII(WORD(INPUT_CHANNEL), 19, 10, CHANNEL)
which corresponds to the ASCIl parameter definitions
TEXT_STRING := ASClI{ NUMBER, INDEX, DIVISOR, INPOINTER)

TEXT_STRING and INPOINTER are of type ASCII_PTR (or pointer to ASCII
string) and NUMBER, INDEX, and DIVISOR are of type Word. INPOINTERA*[Q]
passes in the starting location of the output string. Strictly speaking, the return
parameter TEXT_STRING isn't necessary. It was included to make clear the out-
put of the routine. NUMBER is the value to be translated into its character string
representation. DIVISOR is the base of the representation, and INDEX is DIVI-
SOR raised to the highest anticipated factor.

Z,_Variables and Constants

Two locally defined variables, VALUE and POINT, are used by ASCII.
ﬁ VALUE, of type Word, holds the value contributed to NUMBER by each place of
' the character string representation. VALUE is obtained by integer division of
NUMBER by INDEX. POINT, of type Byte, is a place keeper for the current loca-
tion in the output TEXT_STRING. POINT is incrimented for each character or

place.

ASCIl uses one constant, CARRIAGE_RETURN, to represent the
ASCII carriage return (value @D hex).
8._Other Routines Called

ASCII calls no other routines.
9. Output of Routine

At the end of ASCII, TEXT_STRING is filled with the characters that
represent the value of NUMBER in base DIVISOR.

Collect_Data Module 223

T S T _]
AN v e e e N e T AT N N T T _.\A\ \.'?uh_.\'.'i.. ."-h-- e

k&% 10. Routine Flaws

ASCIll is acceptable in its current form.

11 f_r

. The program listing of ASCII is on page 374 - 375 in Appendix F.

(.2

AANIING

¥

.
.
.

-~ e Y

Collect_Data Module 224

¢

,'n’s'f.. -"'/‘.I.'-'..-’,'- R CATL N ~
o N s X

......................

[oON 1. Routine Name: GET_DATE

2. Internal routine of Collect_Data Module

3. Written in PLZ; 19 lines of code.

4. Synopsis of Routine

Procedure GET_DATE interfaces Collect_Data Module with the Utility Mod-
ule, asembly language routine DATE. DATE obtains the current system date from
its storage location in memory and passes back six Byte valued, the six chara-
cters representing the day, month, and year. GET_DATE takes these six chara-
cters and places them into a single ASCHl string. The releationships of these rou-
tines is shown in the figure below.

. Routine Relationship Di

[SAMPLE_DATA

L}
(ToDAYS_DATE)é—

GET_DATE
System Mory

DATE

Utility Module

Figure 62. Relationship of GET_DATE to SAMPLE_DATA and DATE.

Collect_Data Module

..........

.........

L J I Y e e e - A U N I T AL L

‘‘‘‘‘‘

VT Y

LR S e

YTy Y o _wr

~ alEpE s s ¢ R T NSNS L. A NN W T 7YY ¢ ¢ WS T e Ty N T W TR

6._Invocation
GET_DATE is called only by SAMPLE_DATA and is invoked with

TODAYS_DATE := GET_DATE(IN_POINTER)

where both TODAYS_DATE and IN_POINTER are both of type ASCII_PTR for
pointer to ASCII string. The output parameter TODAYS_DATE isn't really neces-
sary as IN_ POINTER supplies all the information necessary for GET_DATE to
load the character string. TODAYS_DATE was included to make clear the output
of the routine.

Z._Variables and Constants

GET_DATE uses six local Byte valued variables. These six variables,
YEAR1, YEAR2, MONTH1, MONTH2, DAY1, and DAY2 are used for the return
parameters in the call to the external routine DATE. GET_DATE uses one mod-
ule level constant, CARRIAGE_RETURN, of value @D hex.

8. Other Routines Called

GET_DATE calls DATE, and external routine of the Utility Module, to
get the six characters of the system date. DATE is invoked with

YEART1, YEAR2, MONTH1, MONTH2, DAY1, DAY2 := DATE

where each of the six output parameters are of typeByte and hold an ASCII
character.

9. Output of Routine

GET_DATE results in the text sting TODAYS_DATE begin filled with
the six characters of the system date, ending with a seventh character, a carriage
return.
10. in

GET_DATE 's current implementation is acceptable.

Collect_Data Module 226

-

f istin

The listing of GET_DATE is on page 375 in Appendix F. The listing of
DATE is in the Enhancements Module section.

Collect_Data Module 227

T ~ IS
. o . PR

AR AR A TR AR j
Y SANIATHS WAL VR TIRG ~as

R L O B I
C e te v «
ARG

)

St
\-}.v

AR L Sl fal Sl Srh Ml Rl Sab Nl Al Sat \at b Al At ‘ol ik P a0 Sl Sall S

1. Routine Name: FIND_TIME_CNST
2. Internal routine of Collect_Data Module.

3. Written in PLZ; 5 lines of code.

This little routine is used to more accurately find the CTC program-
ming time constant. Normally, division in PLZ produces a truncated result rather
than the more accurate rounded result (Ref 6: 43). FIND_TIME_CNST, via an
intermediate term and modulo division, determines whether the best time con-
stant is the truncated division (equivallent to rounding down) or should be incre-
mented by one (equivallent to rounding up). The rounded TIME_CNST is then
returned to the calling routine FIND_CTC_COMMANDS.

FIND_CTC_COMMANDS

I
FIND_TIME_CNST

Figure 63. Relationship of FIND_TIME_CNST to
FIND_CTC_COMMANDS
Invocati
This routine is invoked from FIND_CTC_CMDS with
TIME_CNST := FIND_TIME_CNST(TIME, MULTIPLER, DIVISOR)
where the input parameters are all of type Word and the output parameter is of
type Byte. TIME corresponds to Period_Desired, MULTIPLER corresponds to

Clock_Rate, and DIVISOR corresponds to Prescale_Counter. FIND_CTC_COM-
MANDS is carefull not to pass to FIND_TIME_CNST input parameters which

Collect_Data Module 228

'J LR el faf Bat Gt bt bot bl Lot Rt Dt p ol Ro Dot I0E 08 " D faf Bt oV byt Ial b Bo ot et Bo= dot byt Dat et et Sa= " Jia’ Ra\ at AP Ra® jis' Nt e oie AR he o A0 'l o' a b e &a b ¢

would cause overflow.

7, Variabl n n
FIND_TIME_CNST uses one internal variable, INTERMEDIATE, of

type Word. INTERMEDIATE holds the product of the Period_Desired and the
Clock_Rate.

8. Other Routines Called
FIND_TIME_CNST calls no other routines.

9. Output of Routine
FIND_TIME_CNST passes back to FIND_CTC_COMMANDS the time

constant required to achieve the desired timing period given the CTC prescale
counter value.

10. Routine Flaws

FIND_TIME_CNST is acceptable though it perhaps should be named
ROUNDING_DIVISION to better reflect its basic function rather than its employ-
ment.
11. Ref to Listi

The listing of FIND_TIME_CNST's code is on page 376 in Appendix

-

[PRI v NN
o ORI IR AT)
s .LMMA.L:"M_‘&\Z

ST T T e ~
X .

1

)
3
%
V] 1. Routine Name: FIND_CTC_COMMANDS
A 2. Internal routine of Collect_Data Module.
A
& 3. Written in PLZ; 35 lines of code.
\)
N LS is of Routi
* This routine determines the values of the three parameters required to
- establish the desired sampling interval. Two parameters are needed to program
the Counter Timer Chip (CTC) which issues periodic interrupts, the prescale
. counter and the time constant (Ref 7: Sec 3.7). One parameter is required for the
N additional sixteen bit down counter used for longer sampling intervals. FIND_
o CTC_COMMANDS uses FIND_TIME_CNST to determine the CTC time constant.
- The overall formula for the sampling interval is
Sampling Period =
0 Clock_Period X Prescale_Counter X Time_Constant X Counter
+ where
. Clock_Period = @.4072 microseconds,
- @3 Prescale_Counter = 16 or 256,
Time_Constant = . @to 255, and
Counter = 1 to 65535.
.r,:
‘.::; Since the user selectes the sampling period and the clock period is fixed, the
w three variable parameters available to FIND_CTC_COMMANDS are the prescale
" counter, time constant, and counter value. As discussed in the introduction to the
- Sampler Module, the timing periods have been divided into four ranges. Figure
_‘i 64 below (a duplicate of the Sampler Module figure) shows the ranges. Within
Ny these ranges the Prescale_Factor is fixed; within the longest two ranges the
o Time_Constant is also fixed. The sampling period ranges and the values of the
) variable parameters are
w
s Sampling Period Range Prescale Value Time Constant CTC Period _Counter
s minimum to 1.0 msec 16 variable variable not used
1.0 msec to 10.0 msec 256 variable variable not used
Z‘_-:_ 19.0 msec to 1.0 sec 16 154 1 msec variable
~
5 1.0 sec to maximum period 256 240 25 msec variable
A,
For the first two ranges, only the CTC Time_Constant needs to be de-
o termined as the counter isn't used. The time constant is a counter used by the
- R
N Collect_Data Module 230
e
.}l

AN

» Yo . . I IR T I S P I S Ca e T L
IR N AR e e e B O I I

..

P CTC. In advance of the time constant counter is a prescale counter of either 16
or 256 which correspond to the "fast mode" and "slow mode.” Given the MCB
clock rate of 2.547 Mhz the timing constant is found with (Ref 7: Sec 3.7)

Time_Constant = (Period_Desired X Clock_Rate) / Prescale_Counter

The time constants are found by calling FIND_TIME_CNST, a routine which
performs rounding division rather than the standard PLZ trucating division.
Depending upon the time period desired, one of four calls to FIND_TIME_CNST
is used. These calls are discussed later.

Counter/Timer Combinations Used for Real Time Clock

Timing Period in Seconds

2% 102° 1?* 18° 0?2 ' B2 " w2 ? "

Slow Timer & 16 Bit Counter

6 (TC_SAMPLE)
29.3 Minutes
Fast Timer & 16 Bit Counter I
(TC_SAMPLE)
=
1.688 mSecy l 129’3 Saconds

Slow Timer Only
(TO_SAMPLE)
[}
26.68 mSec ‘
: Full Range of
" Timer Combination
Fast Timer Only !
{ TO_SAMPLE) ' Employed Range of
| N Timer Combination

'
6.515 uSec 1.688 mSec

Figure 64. Counter/Timer Combinations Used for Real Time Clock

Collect_Data Module 231

Bl b e e el A R S ME A AR R P L A AL SN A SR O OO M AT A S L AL R AT el S L ST TRl A e

4
]
v

\

4

For the longer timing periods, the CTC timing is fixed and only the
counter value is used to set the timing period. The formula used is

td

Counter := Period_Desired / CTC_Period

where CTC_Period is either 1 msec or 25 msec. In the code implementation,
multiplication by the inverse of the CTC period, with adjustments for period units,

T e

is used.
< Having determined the CTC_MODE, the CTC_TIME_CONSTANT,
a and the COUNT for the counter, FIND_CTC_COMMANDS ends.
3
5. Routine Relationship Diagram
: PREPARE_COLLECTOR
: FIND_TIME_CNST
»
Figure 65. Relationship Between FIND_CTC_COMMANDS and
PREPARE_COLLECTER and FIND_TIME_CNST
6. Invocation
FIND_CTC_COMMANDS is invoked from PREPARE_COLLECTER
via
ERROR_CODE, CTC_MODE,
; CTC_TIME_CONSTANT, COUNT :=
. FIND_CTC_COMMANDS(TIME, UNITS)

where TIME is the desired sampling interval measured in UNITS, both input para-
meters being type Integer. The output parameter ERROR_CODE, type Byte, re-
turns an error message if an out of range sampling period was requested. CTC_

.:,
‘e
-
"y
7
"4

Collect_Data Module 232

\j-. MODE, type Byte, returns the CTC command for "slow mode” (interrupting, pre-
scale factor of 16) or "fast mode" (interrupting, prescale factor of 256). CTC_
TIME_ CONSTANT, type Byte, returns a value between 0 and 255, for the CTC
counter (counter range 1 to 256). COUNT, type Word, passes back the additional
counter value required for longer sampling periods. COUNT has a defined range
of @ (signaling no counter is required) to 65535.

Z. Variables and Constants

FIND_CTC_COMMANDS uses no variables beyond the input and
output parameters discussed above. The routine makes use of several module
constants. Their names, values, and purposes are

— Constant _ _Value Purpose
MICRO_SECONDS -6dec UNITS input to indicate units of TIME input.

MILLI_SECONDS -3 dec UNITS input to indicate units of TIME input.
SECONDS @ dec UNITS input to indicate units of TIME input.
‘7 MINIMUM_TIME 50 dec Minimum allowed microseconds for
sampling.
PERIOD_RANGE_ERROR
E1 hex Message for Out of Range Sampling Interval
FAST_MODE 87 hex CTC command for interrupting timer with a
prescale factor of 16.
SLOW_MODE A7 hex CTC command for interrupting timer with a
prescale factor of 256.

The MINIMUM_TIME of 5@ microseconds was selected to allow the AlO analog to
digital converter to settle and allow for the interrupt service routine cycling.

8. Other Routines Called

FIND_CTC_COMMANDS calls FIND_TIME_CNST to determine the
TIME_CNST. FIND_TIME_CNST is used because it performs a rounding divi-
sion rather than PLZ's standard trucation division. FIND_CTC_COMMANDS
contains four calls to FIND_TIME_CNST all of the form

Collect_Data Module 233

SCC PR Py 'c o <.
Setnts .'.p_.pL.A ‘}.; 2" i\.p"

e w ¥

5 v e -

\

YR P L

f -
W

S0
A ,‘,

TIME_CNST := FIND_TIME_CNST(TIME, MULTIPLER, DIVISOR)

Both MULTIPLER and DIVISOR are passed to FIND_TIME_CNST as constants
using different constants for each of the four calls. The timer periods, constants,
and units of TIME used are

Sampling Range TIME Units MULTIPLER -DIVISOR
mimimum to 26 usec microseconds 2457 16000
26 usec to 266 usec microseconds 246 1600
226 usec to 999 psec microseconds 25 160
1 msec to 9 msec milliseconds 2457 256

The values passed with MULTIPLER and DIVISOR are selected to keep FIND_
TIME_CNST from having a multiply overflow and maintain the maximum accur-
acy possible.

9. Output of Routine

At the end of FIND_CTC_COMMANDS, the three parameters neces-
sary to program the CTC and set up the down counter have been determined.
However, if an out of range sampling period was requested, and error code will
be returned to the PREPARE_COLLECTER.

10, Routine Flaws
The code and organization of FIND_CTC_COMMANDS is acceptable

with one exception. ERROR_CODE needs to be set to FALSE as the first execu-
table statement. The comment lines in the code need improvement though.

1. Ref to Lisi

The program listing of FIND_CTC_COMMANDS is on page 377 -378
in Appendix F.

Collect_Data Module 234

W VW B RO A X 5",

=7

by 1. Routine Name: SIZE_DATA_BUFFER p
2. Internal routine of Collect_Data Module.

3. Wiritten in PLZ; 19 lines of code.

.

\ <
This routine is largely a place keeper, intended to be replaced by a .

routine which calls the Utility Module routine ALLOCATE. SIZE_DATA_BUFFER -3

compairs the number of samples requested by the user with the storage supplied
by Buffers Module. If the number of samples is less than 130@ decimal, then all
is ok and the routine will proceed. Otherwise, SIZE_DATA_BUFFER will output 3
an error message to indicate that too many samples were requested.

Ultimately, this SIZE_DATA_BUFFFER would be replaced with a rou-
tine which calls ALLOCATE, an assembly language routine which gives PLZ pro-
grams access to the RIO operating system memory manager. Though ALLO-
CATE, this "new" SIZE_DATA_BUFFER could make a real time request for data

storage and not be limited to preformated buffers. 2
& o, Boutine Relationshio Di
PREPARE_COLLECTOR]

I
SIZE_DATA_BUFFER

Figure 66. Relationship Between SIZE_DATA_BUFFER and
PREPARE_COLLECTOR

6. Invocation
SIZE_DATA_BUFFFER is invoked from PREPARE_COLLECTER via

XLy

LSO

| Collect_Data Module 235
|

St

s
. L L

PN IR e v

ERROR_CODE, SAMPLES_ALLOWED :=
SIZE_DATA_BUFFER(SAMPLES_REQUESTED)

where SAMPLES_REQUESTED and SAMPLES_ALLOWED are of type Word
and ERROR_CODE is of type Byte.

Z_Variables and Constants
a. Global

SIZE_DATA _BUFFER uses the globally defined DATA_BUFFER to
determine how much storage area is available. The routine uses no global
constants.

b. Module Level

SIZE_DATA_BUFFER uses no module level variables. SIZE_DATA_
BUFFER uses three module level constants to define error codes and give the
highest possible address for data in the buffer. FALSE (value @@ hex) is the
error code for no errors occured. TOO_MANY_SAMPLES (value ED hex) is the
error code output when the number of samples requested by the user exceeds
AVALIABLE_WORDS. MAX_ BUFFER_ADDRESS is set to a high memory value
(9AQJ hex), above the code of all the modules of the data collection system but
below the system stack. This is used in conjunction with the beginning address
of DATA_BUFFER to determine how much space is available for data storage
(above the define range of DATA_BUFFER. This is a cludge; a call to ALLOCATE
would be far superior.

c. Routine Level
SIZE_DATA_BUFFER uses a single, routine level variable AVAIL-
ABLE_WORDS to hold the number of words (one word is two bytes) available for
data storage.
8. Other Routines Called

This version of SIZE_DATA_BUFFER calls no other routines. An
improved SIZE_DATA_BUFFER would call ALLOCATE.

Collect_Data Module 236

9. Output of Routine

If the number of samples requested by the user does not exceed the
storage available, SIZE_DATA_BUFFER will return ERROR_CODE as FALSE
and SAMPLES_ ALLOWED as the number of samples requested. However, if
too many samples are requested, ERROR_CODE will be returned as TOO_
MANY_SAMPLES and SAMPLES_ALLOWED will be set to AVAILABLE_
WORDS.

10, Boutine Flaws
SIZE_DATA_BUFFER is ok, but the function it performs would be far

better served by calling ALLOCATE. That Utility Module routine would allow
SIZE_DATA_ BUFFER tc interact with the operating system memory manager.

1. Ref to List

The listing of SIZE_DATA_BUFFER can be found on page 379 in
Appendix F.

Collect_Data Module

R AR

%

b 1. Routine Name: ERROR_IN_PREPARE ¢
2. Internal routine of Collect_Data Module . 9

3. Written in PLZ; 14 lines of code.

L S is of Rout

ERROR_IN_PREPARE writes error message to the system console if 0
an error code other than FALSE is returned by any of the routines under PRE- .
PARE_COLLECTER. Two error messages are possible. If TOO_MANY_SAM-

PLES is returned by SIZE_DATA_BUFFER, a message is written to the console

identifying how many samples will be collected. f PERIOD_RANGE_ERROR is X
returned by FIND_CTC_ COMMANDS, the defined ranges will be written to the -
console and ERROR_MESSAGE will be reset to FATAL.

5. Routine Relationship Di

& PREPARE_COLLECTOR

|
ERROR_IN_PREPARE

: S

WRITE WRITELN WRITE_DWORD :

Enhancements Module

Figure 67. Relationship of ERROR_IN_PREPARE to Its Calling
and Subordinate Routines.
6. lnvocation
ERROR_IN_PREPARE is called from PREPARE_COLLECTER with
OUT_ERROR_CODE := ERROR_IN_PREPARE(IN_ERROR_CODE)

A

‘g w8 v ¥

Collect_Data Module 238

e : e O S S R T L L R R
. K " . » -, ~ T t. v ™o K T L}
O G O N SO AT A 20 B Y A S

where both the input and output parameters are of type Byte.

Z._Variables an

ERROR_IN_PREPARE uses no variables. It uses four constants,
TOO_MANY_ SAMPLES, PERIOD_RANGE_ERROR, FALSE, and FATAL which
are the possible error codes within PREPARE_COLLECTER and its subrodinate
routines. The values of these module level constants are EQ hex, E1 hex, @O0
hex, and FE hex respectivally.

r i i

ERROR_IN_PREPARE calls three external routines, WRITE, WRITE_
DWORD, and WRITELN all of the Enhancements Module. These three routines
are used to output text strings and decimal values to the system console. The
routines are invoked with

WRITE(LOGICAL_UNIT, Pointer-to-Text-String)
WRITE_DWORD(LOGICAL_UNIT, NUMBER)
WRITELN(LOGICAL_UNIT, Pointer-to-Text-String)

where LOGICAL_UNIT is of type Byte and NUMBER is of type Word. In ERROR_
IN_PREPARE LOGICAL_UNIT is all ways passed as the constant CONSOLE_
OUT. Pointer-to-Text-String could be a variable of type ASCII_PTR or could be
a constant string. In ERROR_IN_PREPARE the constant string form is used.
NUMBER is a sixteen bit value which WRITE_DWORD will translate into the
ASCII characters of its base 10 representation. WRITE and WRITE_DWORD do
not output carriage returns at the end of their output; WRITELN does.

2. Qutput of Routine

The output of ERROR_IN_PREPARE are messages to the system con-
sole which tell the user that the input parameters provided are out of range. If the
error was an out of range sampling period, ERROR_IN_PREPARE returns to
PREPARE_ COLLECTER the FATAL error code. Otherwise the FALSE error
code is returned.

Collect_Data Module 239

_;c
2

10. Routine Flaws

ERROR_IN_PREPARE's error message to the system console is
wrong. It lists the mimimum time range as 7 usec; 50 usec is the correct value.
Also, PREPARE_COLLECTER calls ERROR_IN_PREPARE only when errors
occur. The alternate structure of having ERROR_IN_PREPARE determine
whether an error has occured would be superior.

&

- - e - e e

11 fer isti

ERROR_IN_PREPARE's listing is on page 380 in Appendix F.

Collect_Data Module 240

Ry G SR S, I Gt A G U i o S N S At X G DN 350 i, 15 AL Ts G4 G GRRNY e 1, 5, SO A

" $at_agt Y i - v gy L ¢ Ba® . © dat ke sa uda AR Jdn PR Bu’ 0 o a?p oM » 5 T e 5.0 dan 0.0 bl K ok ‘o . L

1. Routine Name: PREPARE_COLLECTER

P
I

2. Primary subordinate routine of Collect_Data Module

3. Written in PLZ; 13 lines of code.

4 S is of Routi

PREPARE_COLLECTOR is the second routine called by SAMPLE_
DATA, the executive routine of Collect_Data Module. PREPARE_COLLECTER
takes the user supplied sampling instructions and translates them into the CTC
commands and other parameters needed by Sample_Data. As shown in the
figure below, PREPARE_COLLECTOR accomplishes its functions through calls
to three subordinate routines, FIND_CTC_COMMANDS, SIZE_DATA_BUFFER,
and ERROR_IN_PREPARE. The last routine is the error service routine for PRE-
PARE_COLLECTER.

PREPARE_COLLECTOR is rather simple in implementation, consist-
) ing of one do loop. Within the loop, FIND_CTC_COMMANDS is called followed
6 immediately by ERROR_IN_PREPARE to see if FIND_CTC_COMMANDS suc-
cessfully executed. If an error is detected, the output error code is loaded, the do
loop is exited, and PREPARE_ COLLECTOR ends. If no error occured, SIZE_
DATA_BUFFER is called, again followed immediately by ERROR_IN_PREPARE.
It an error is detected, th output error code is loaded, the do loop is exited, and
PREPARE_COLLECTOR ends. If no error was detected, the do loop is exited

and PREPARE_COLLECTOR ends. The do loop is executed only once.

Collect_Data Module 241

"y ‘e
1
A

PP -
‘‘‘‘
.......

R I O TR I S R T T T Tt T T TR T S P STy DTS Wt et v .
o DA G \"-..'-.'.\"x"-."'\‘ S R AR L G O .

@,‘ 5. Routine Relationship Diagram
SAMPLE_DATA

PREPARE_COLLECTOR

FIND_CTC_COMMANDS| | SIZE_DATA_BUFFER | |ERROR_IN_PREPARE

FIND_TIME_CNST

@

Figure 68. Relationship of PREPARE_COLLECTOR to SAMPLE_DATA and its
‘ Subordinate Routines.

nv i
PREPARE_COLLECTOR is invoked from SAMPLE_DATA with

ERROR_CODE,
CTC_MODE,
TIME_CONSTANT,
DOWN_COUNT,
NUMBER_OF_SAMPLES =:
PREPARE_COLLECTOR(PERIOD_VALUE,
PERIOD_UNITS,
SAMPLES_REQUESTED)

where these parameters are of the following type and purpose.

Collect_Data Module 242

R]

L)

’f‘" NN

1.‘ '-.'I‘-’l’q‘."..'..“..’.-‘q' '-.'- . e T -l‘ -. t. " .. . ‘. . - . T . LR T N > N . . - - ~"
b ".r VOIA I NGNS R A e e e PR T e e e e e e e e e e e

\
"- AN
v Variable Nam Type Purpose of Parameter
input parameters
: PERIOD_VALUE integer The desired time duration of the
, sampling period in PERIOD_UNITS
b ‘ units.
\ PERIOD_UNITS Integer The designated units of PERIOD_
- VALUE. The possible values are three
N constants MICRO_SECONDS, MILLI_
£ SECONDS, and SECONDS.
SAMPLES_REQUESTED Word The number of analog to digital con-
- " verisons the user wants collected and
9 stored.
| output parameters
ERROR_CODE Byte A code to tell SAMPLE_DATA how
) things went within PREPARE_COL-
< = LECTOR. Two values are possible, the
T constants FATAL and FALSE.
N CTC_MODE Byte The first of two commands to the CTC to
N program its interrupts. CTC_MODE has
a two possible values SLOW_MODE and
FAST_MODE.
s TIME_CONSTANT Byte The second CTC programming com-

mand. it tells the CTC how many times
to count before interrupting. Values of
L @ to 255 are possible with @ meaning
to count 256 times.

- DOWN_COUNT Word The number of interrupts the down

o counter (used longer sampling periods)
' must receive before commanding the
AlO board to initiate an Ato D
conversion.

, NUMBER_OF_SAMPLES Word The number of samples to be collected.

Collect_Data Module 243

T R T w

b B e Snge,

7. Variables and Constan

PREPARE_COLLECTOR uses no variables beyond the input and out-
put parameters discussed above. PREPARE_COLLECTOR uses two module
level constants, FATAL and FALSE, as error codes. Values: FE hex and @@ hex.

8. Other Routines Called

PREPARE_COLLECTER, as shown in the figure above, calis three
subordinate routines FIND_CTC_COMMANDS, NUMBER _OF_SAMPLES, and
ERROR_ IN_PREPARE. Theirinvocation statements follow.

ERROR_CODE, CTC_MODE, TIME_CONSTANT, DOWN_COUNT :=
FIND_CTC_COMMANDS(PERIOD_VALUE, PERIOD_UNITS)

ERROR_CODE, NUMBER_OF_SAMPLES :=
SIZE_DATA_BUFFER(SAMPLES_REQUESTED)

ERROR_CODE := ERROR_IN_PREPARE(ERROR_CODE)

Please consult the descriptions of these routines for more details.

9. Output of Routine

There are two sets of possible outputs for PREPARE_COLLECTOR. If
something went seriously wrong, PREPARE_COLLECTOR will return the FATAL
error code. This will cause termination of SAMPLE_DATA. If nothing went seri-
ously wrong, PREPARE_COLLECTER will return a FALSE error code and the
programming values for the CTC, down-counter, and the number of samples to
be collected.

10. Routine Flaws

As it stands PREPARE_COLLECTOR is ok. It might be better to call a
modified ERROR_ IN_PREPARE after each subroutine call and then check the re-
turned error code.
11 f istin

The listing of PREPARE_COLLECTER's code is on page 381 in
Appendix F.

Collect_Data Mcdule 244

1. Routine Name: ERROR_IN_CREATE
2. Subrodinate routine of Collect_Data Module.

3. Written in PLZ; 16 lines of code.

+_Synoosis of Rout

ERROR_IN_CREATE is one of the support routines for CREATE_
DATA_FILE. This routine checks the error code generated during CREATE_
DATA_FILE, outputs messages to the system console based on the error codes,
and sets the final error code. As ERROR_IN_CREATE is called only if a FATAL
error occurs, invocation of this routine signals termination of Collect_Data
Module execution.

5. Routine Relationship Di

CREATE_DATA_FILE

l
ERROR_IN_CREATE

WRITELN WRITELN_RCODE

Enhancements Module

Figure 69. Relationship of ERROR_IN_CREATE to its Calling
Routine and Subordinate Routines.

6._lInvocation
ERROR_IN_CREATE is invoked from CREATE_DATA_FILE with

OUT_ERROR_CODE =
ERROR_IN_CREATE(IN_ERROR_CODE, RETURN_CODE)

Collect_Data Module 245

A A B i ol N el i bl
LAY A S ARSI A0 i it et B A it et il g MR A AT U AN Vi G A S A 3 R hecini e e A Anie dadle iaf o IR

Y where all three parameters are of type Byte.

Z._Variabl nstan

ERROR_IN_CREATE uses no variables other than the input and
output parameters. Several module level constants are used. Their names,
values, and definitions are

Constant Name Value Definition
BAD_CHARACTER BC hex Error code for invalid character in a file

name string. See VALID_STRING.

CONSOLE_OUT @2 hex The logical unit number for the monitor
screen.
FATAL FE hex Error code for fatal error.

DUPLICATE_FILE DA hex RIO return code for duplicate file name.

© . Other Routines Galled

ERROR_IN_CREATE calls two of the output routines of Enhancements
Module to write messages to the system console. The routines called and their
invocations are

WRITELN(LOGICAL_UNIT, Pointer-To-Text-String)
WRITE_RCODE(LOGICAL_UNIT, RETURN_CODE)

where LOGICAL_UNIT (type Byte) is the number of the logical unit to be written
to, Pointer-to-Text-String (type ASCII_PTR) points to the output text or is a con-
stant text string, and RETURN_CODE (type Byte) is the completion code passed
back from calls to the RIO Operating System. WRITLEN outputs a string of text
followed by a carriage return to the designated logical unit. WRITE_RCODE out-
puts the text translation of the RIO return codes to the designated logical unit.
WRITE_RCODE is used to output unexpected RIO return codes.

9. Output of Routine
ERROR_IN_CREATE writes messages and operating system return
<3 codes to the system console. In its current form, ERROR_IN_CREATE always
Y

Collect_Data Module 246

PR S RRCE - o~

T "..'.w‘ PR {'.1" A T T - - o .‘;
O R o G S B 1, S AR S T A S SRS GG 2, 51, SU SRR

returns the output parameter OUT_ERROR_CODE as FATAL.

10. Routine Flaws

ERROR_IN_CREATE would be improved by by using the IF state-
ments within a DO loop structure like that used in PREPARE_COLLECTOR or the
CASE statement structure like that used in ERROR_IN_PREPARE. Even if the
structure isn't changed, ERROR_IN_CREATE needs to initially set ERROR_CODE

to FALSE.

Referen istin

The program listing of ERROR_IN_CREATE is on page 382 in
Appendix F.

N Ta Yt N
LIPL DR e o
- oY

- .- &

1. Routine Name: VALID_STRING
2. Subordinate routine of Collect_Data Module.

3. Written in PLZ; 1D lines of code.

L S s of Routi

VALID_STRING checks the content of a text string passed to it to see
whether it is a valid file name. Specifically, VALID_STRING ensures that each
character in the string is a © through 9 or a A through Z. This check is accom-
plished by examining the ASCII value of each character against the ranges de-
fined by the acceptable characters. Each character in the string is checked until
an end of string is detected or 32 characters have been checked. |f VALID_
STRING finds any invalid charactes, the output ERROR_ CODE is set to BAD_
CHARACTER. Otherwise ERROR_CODE is returned as FALSE, indicating no
error.

5. Routine Relationship Di

CREATE_DATA_FILE
| |
VALID_STRING

Figure 70. Relationship of VALID_STRING to
CREATE_DATA_FILE.
6. _Invocation
CREATE_DATA_FILE calls VALID_STRING with
ERROR_CODE := VALID_STRING(TEST_STRING)

where TEST_STRING is of type ASCII_PTR (for pointer to ASCII string) and
ERROR_ CODE is of type Byte.

Collect_Data Module 248

i p'e 7. Variabl

VALID_STRING uses one internal variable, INDEX (type Byte), in
2 addition to the input and output variables. INDEX is used as a place keeper for
I the string TEST_STRING.

VALID_STRING uses two constants FALSE and BAD_CHARACTER.

FALSE, value @@ hex, is the error code for every thing is ok. BAD_CHARACTER,
value BC hex, is the error code to signal that a invalid character was found.

8. Other Routines Called .
VALID_STRING calls no other routines.

9. Output of Routine
VALID_STRING has two possible outputs. The output parameter
OUT_ ERROR_CODE is either FALSE or BAD_CHARACTER. FALSE if no

invalid characters were found in the string; BAD_CHARACTER if one invalid ;
character was found.)

! 1 in W

VALID_STRING is acceptable, though its listing format and comments
could be improved.

11, Ref to Listi
The listing of VALID_STRING's code is on page 383 in Appendix F.

et
b

Collect_Data Module 249

1. Routine Name: CREATE_DATA_FILE

2. Primary subordinate routine of Collect_Data Module.
3. Written in PLZ; 29 lines of code.

4 Nopsi in

CREATE_DATA_FILE is the third routine called by SAMPLE_DATA,
the executive routine of Collect_Data Module. Using instructions passed into
Collect_Data Module, CREATE_DATA_FILE opens a disk file into which the data
collected by Sampler Module will be transfered. This requires the formation of a
valid file name and a call to the operating system. As shown in the figure below,
CREATE_ DATA_FILE calls many routines to accomplish these functions.

The file name formed has three fields separated by periods. The first
field is the test identifier, passed into CREATE_DATA_FILE from the user. This
field is six characters long and is susposed to be unique. Routine VALID_
STRING is called to ensure the user input has only valid file name parameters. If
any of the characters are invalid, an error message is written to the console by
ERROR_IN_CREATE and CREATE_DATA_FILE ends with ERROR_CODE being
FATAL. The second field is the channel number. CREATE_DATA_FILE is pas-
bsed the input parameter INPUT_ CHANNEL, type Byte. The routine ASCII is
called to translate INPUT_CHANNEL into the ASCII characters that are the base
ten representation of INPUT_CHANNEL. The third field is the phrase "RAW_
DATA". Thus the file name looks like

testid . # . RAW_DATA

where "testid” is the unique test identifier and "##" are the characters that repre-
sent the input channel number.

With the file name formed, CREATE_DATA_FILE calls the operating
system via OPEN, an external routine of the PLZ.STREAM.IO Module. If for any
reason the opening is not successful, an error message is writen to the console
by ERROR_IN_ CREATE, CREATE_DATA_FILE ends, and ERROR_CODE is
returned as FATAL. If the opening is successful, CREATE_DATA_FILE proceeds.

With the data file open, CREATE_DATA_FILE continues by writing into
the file the header information. Five extenal routines of the Enhancements Mod-
ule are used by CREATE_DATA_FILE to write the header information to the disk
file. The following is the content and format of the header.

testid:testid
| input_channel:channel
| peroid_value: period_value

Collect_Data Module ' 250

FERRE

- e u

P IR SRR

- ‘- ‘. !F V-‘. ‘,.. '..- ‘.- .. .\ ." '.“' .".. ‘. .-. .- \ -“'.'- ..\ ‘-. ‘\ ..- .‘ -. ... ~b \
L I A A AN N LA A A 2O A S P

Lol

2L EELEE

\
i

h

4 w
S

i3

LAy

YNV YYIA

- o

SIS0

o | period_units: period_units

|#_samples: samples

|#_samples: samples

| date_of_test: todays_date

luser_message: user_string

|[beginning of data:||
where the italized items are the names of the text string variables. Most of these
text string variables are input parameters passed into CREATE_DATA_FILE.
CHANNEL is formed in CREATE_DATA_FILE through the call to ASCl!. The |
character (ASCIl C7 hex) is used as a field marker. With all the header informa-
tion written into the data file, CREATE_DATA_FILE ends.

ine Relationship Diagr

SAMPLE_DATA

CREATE_DATA_FILE

AN

ERROR_IN_CREATE

ASCCli

STRING_COPY

WRITE

WRITE_HBYTE

VALID_STRING

WRITE_HINTEGER

WRITE_HWORD

WRITELN

Enhancements
Module

PLZ STREAM.IO
Module

Figure 71. Relationships Between CREATE_DATA_FILE, SAMPLE_DATA, and
o Subordinate Routines.

Collect_Data Module 251

PR

6. Invocation

CREATE_DATA_FILE is invoked from SAMPEL_DATA with

ERROR_CODE := CREATE_DATA_FILE(INPUT_CHANNEL,

DATA_FILE,
PERIOD_VALUE,
PERIOD_UNITS,
SAMPLES, TESTID,
USER_MESSAGE,
TODAYS_DATE)

This routine has many input parameters, most of them passed in to become part
of the data file header. Their types and purposes are

__Parameter Name
INPUT_CHANNEL

DATA_FILE

PERIOD_VALUE

PERIOD_UNITS

SAMPLES

TESTID

USER_MESSAGE

TODAYS_DATE

Type

Definition

Byte

Byte

Integer

Integer

Word

ASCII_PTR

ASCII_PTR

ASCI_PTR

The number of the analog input
channel, 1 to 16, data will be collected

from.

The logical unit number for the file.

The desired sampling interval (in

PERIOD_UNITS units)

The units of PERIOD_VALUE. The
valid values are MICROSECONDS,
MILLISECONDS, and SECONDS.

The number of samples to be
collected.

A pointer to a six character (plus car-

riage return) string that is the
test identifier.

A pointer to a free field string
characters.

A pointer to a six character string (plus

unique

of

a carriage return) that represent the

date.

The single output parameter, ERROR_CODE (type Byte), passes back an error

Collect_Data Module

252

BN N ST L R SRS CHES (RS AN

IR

‘;'?: '&} code to SAMPLE_DATA.
I..
p 7. Variables and Constants
$.
;:1 CREATE_DATA_FILE uses several internal variables in addition to
h the parameters discussed above.
:; —Parameter Name Type Definition
S
N FILE_NAME_BUF ASCII_STRING A 32 character buffer to hold the
| completed file name. 19 characters
o are used.
' , CHANNEL_BUF ASCII_STRING A 32 character buffer to hold the
e completed channel number. Only 3
X4 characters are used.
‘:- FILE_NAME ASCII_PTR A pointer to FILE_NAME_BUF.
2y
) CHANNEL ASCII_PTR A pointer to CHANNEL_BUF
2P
i @ RETURN_CODE Byte Receives the operating system return
2 code from the call to OPEN.
In addition to these variables, CREATE_DATA_FILE uses two con-
: stants, OPERATION_COMPLETE (value 802 hex) and FATAL (value FE hex).
Z OPERATION_ COMPLETE is the RIO Operating System return code for all went
- well. FATAL is the Colect_Data Module error code that signals fatal errors.
\l
";f: As was shown in the figure above, CREATE_DATA_FILE calls ten
N routines. Their invocations and parameters follow. Unless otherwise stated, the
“e routines are part of Collect_Data Module.
Xy
_ a. TEXT_STRING := ASCII{ NUMBER, INDEX, DIVISOR, INPOINTER)
:f where TEXT_STRING and INPOINTER are type ASCII_PTR, and NUMBER,
';Z INDEX, and DIVISOR are type Word. ASCI! converts NUMBER into the string of
N ASCII characters which represent it.
S
O
b3
L2,
W Collect_Data Module 253
D A R A S G L T T G 8 N e T NS]

e
U
i
U

Paret it

b. STRING_COPY(SOURCE, S_INDEX, DESTINATION, D_INDEX)

where SOURCE and DESTINATION are type ASCII_PTR, and S_INDEX and
D_INDEX are type Byte. STRING_COPY transcribes the characters of SOURCE
string into the DESTINATION string.

c. ERROR_CODE := VALID_STRING(TEST_STRING)

where ERROR_CODE is type Byte and TEST_STRING is type ASCII_PTR.
VALID_ STRING ensures the characters in TEST_STRING are valid for inclusion
in a file name.

d. RETURN_CODE := OPEN(LOGICAL_UNIT, FILE_NAME_PTR, MODE)

where RETURN_CODE, LOGICAL_UNIT, and MODE are type Byte and FILE_
NAME_ PTR is type PByte for pointer to byte. OPEN is an external routine of the
PLZ.STREAM.IO Module. OPEN calls the operating system to open a disk file.

e. WRITE(LOGICAL_UNIT, TEXT_POINTER)

where LOGICAL_UNIT is type Byte and TEXT_POINTER is type PByte. WRITE is
an external routine of the Enhancements Module. WRITE outputs the text pointed
to by TEXT_POINTER to the desired LOGICAL_UNIT.

f. WRITE_HBYTE(LOGICAL_UNIT, VALUE)

where both parameters are type Byte. WRITE_HBYTE is an external routine of
the Enhancements Module. WRITE_HBYTE outputs the two ASCII characters
that represent the VALUE.

g. WRITE_HINTEGER(LOGICAL_UNIT, VALUE)

where LOGICAL_UNIT is type Byte and VALUE is type Integer. WRITE_HINTE-
GER is an external routine of the Enhancements Module that outputs the chara-
cters which form the hexidecimal representatio of VALUE to the designated
LOGICAL_UNIT.

Collect_Data Module 254

e cbeiondan

-
.

-

& h. WRITE_HWORD(LOGICAL_UNIT, VALUE)

A Y

.“f'

where LOGICAL_UNIT is type Byte and VALUE is type Word. WRITE_HWORD is
an external routine of the Enhancements Module. WRITE_HWORD outputs the
four characters which form the hexidecimal representation of VALUE to the desig-
nated LOGICAL_UNIT.

i
-

-

B

. ‘o

i. WRITELN(LOGICAL_UNIT, TEXT_POINTER)

where LOGICAL_UNIT is type Byte and TEXT_POINTER is type PByte. WRITELN
is an external routine of the Enhancements Module. WRITELN, like WRITE
above, outputs text; WRITELN adds a carriage return at the end of the text string.

j, OUT_ERROR_CODE := ERROR_IN_CREATE(IN_ERROR_CODE,
RETURN_CODE)

where all three parameters are type Byte.

Please consult the descriptions of these routines for more information on their
function.

9. OQutput of Routine

If something goes wrong during the execution of CREATE_DATA _
FILE, the output of the routine is ERROR_CODE filled with FATAL. If all goes well,
the output of CREATE_DATA_FILE is an open disk file with the header informa-

tion written in. The output parameter ERROR_CODE will hold FALSE indicating
successful operation.

10. Routine FI
The major omission in CREATE_DATA_FILE is that VALID_STRING
isn't called to check the TESTID or the CHANNEL number. Both VALID_STRING
and ERROR_IN_CREATE calls should follow the STRING_COPY calls. The
second problem in CREATE_DATA_FILE is that STRING_COPY is improperly
called COPY_STING. The routine also badly needs commenting.
fer isti

CREATE_DATA_FILE's listing is on page 384-385 in Appendix F.

Collect_Data Module 255

1. Routing Name: LOAD_DATA_FILE

2. Primary subordinate routine of Collect_Data Module.
3. Written in PLZ; 16 lines of code.

4 nopsi i

LOAD_DATA_FILE reads the data loaded into memory by SAMPLER
and loads that data into the disk file opened by CREATE_DATA_FILE. Were it
not for error checking, LOAD_DATA_FILE would simply be a call to PUTSEQ, an
external routine of the PLZ.STREAM.IO Module, to write the data to memory. Two
error checks are present however. First, a check is made after the call to
PUTSEQ checking that the number of bytes that should have been written to disk
were written to disk. If the numbers don't match, an error message is written to
the system console via the external output routines of the Enhancements Module.
The output parameter ERROR_CODE is set to STORAGE_ERROR. The second
error check is on the operating system retumn code from the PUTSEQ call. If the
code is no OPERATION_COMPLETE an error message is again written to the
console. In this case, the returned ERROR_CODE is FATAL. The figure below
shows the relationship between LOAD_DATA_FILE and the external routines.

5. Routine Relationship Di

SAMPLE_DATA
]

LOAD_DATA_FILE

PUTSEQ WRITE
WRITE_DWORD
PLZ STREAM.IO
MODULE WRITELN

WRITELN_RCODE

Enhancements Module

Figure 72. Relationship of LOAD_DATA_FILE to Other Routines.

Collect_Data Module 256

........
- S,

LN

)
Sh
‘.

6. Invocation
LOAD_DATA_FILE is invoked from SAMPLE_DATA by
ERROR_CODE = LOAD_DATA_FILE(DATA_FILE,

BUFFER_BEGINNING,
LAST_DATA)

where ERROR_CODE and DATA_FILE are type Byte and BUFFER_BEGINNING
and LAST_DATA are type PByte for Pointer to Byte.

7. Variabt! nstan

LOAD_DATA_FILE uses three internal variables. Their types and
purposes are listed below.

Variable Name Type Definition
NUMBER_OF_BYTES Word The number of bytes of data in the

memory buffer

BYTES_WRITTEN Word Receives the retumn parameter from
PUTSEQ that says how many bytes
were actually output.

RETURN_CODE Byte Receives the return parameter from
PUTSEQ that holds the operating X
system return code. N

LOAD_DATA_FILE also uses a few constants. They are

_ Constant Name Type Definition

STORAGE_ERROR- 23 hex Error code for mismatch in number of
bytes written vs number of bytes in
memory buffer.

CONSOLE_OUT @2 hex Logical unit number for the system
console.
Collect_Data Module 257

W et et p et AT 4 Rty f At A YT A A ®a' B " e W W " mTavu"." W At taTeTa " - P " m ' a T e w e et e e ma e Nk .
e Lr o (et 1-'¢L{.1.,'.'.q . o e D WIS A L RPN S A T e e
}Ll:t:':ﬂ:'i A S S DA R A T R M A TR B N A A A S A SR L Sl S O A A RL S ST LA R S gt A

..............

NN

—: _Constant Name Type Definition
w OPERATION_COMPLETE

b 80 hex RIO return code for successful
operation.
; FATAL FE hex Error code for a fatal error in
Collect_Data.
8. Other Routines Called

LOAD_DATA_FILE calls five external routines. Their invocations,
parameters, and functions are listed below.

RO DR IR

‘2 a. RETURN_CODE := PUTSEQ(LOGICAL_UNIT,
BUFFER_PTR,
NUMBER_OF_BYTES)

where RETURN_CODE and LOGICAL_UNIT are type Byte, BUFFER_PTR is type

- pointer to Byte, and NUMBER_OF_BYTES is type Word. This external routine of

{I the PLZ.STREAM.IO Module is used by LOAD_DATA_FILE to write the data
stored in memory into the disk file.

b. WRITE(LOGICAL_UNIT, TEXT_POINTER)
3 where LOGICAL_UNIT is type Byte and TEXT_POINTER is type PByte for pointer
. to byte. LOAD_DATA_FILE uses WRITE to output error messages to the system
console. WRITE is part of the Enhancements Module.
¢. WRITE_DWORD(LOGICAL_UNIT, VALUE)
where LOGICAL_UNIT is type Byte and VALUE is type Word. This external

routine of the Enhancements Module is used to output decimal values to the
system console.

YRR

d. WRITELN(LOGICAL_UNIT, TEXT_POINTER)

o A

DATA_ FILE uses this Enhancements Module routine to ou ot strings of chara-

where LOGICAL_UNIT is type Byte and TEXT_POINTER is tv-e PByte. LOAD_ H
cters to the system console. WRITELN, unlike WRITE, output. a carriage return at

N
\\

Collect_Data Module 258

...

L g

e v

-

VA

. “ N
‘.hﬁ «

the end of the character string.

e. WRITELN_RCODE(LOGICAL_UNIT, RETURN_CODE)

where both LOGICAL_UNIT and RETURN_CODE are type Byte. LOAD_DATA_
FILE uses WRITELN_RCODE to translate the operating system return code into
text and then output the text to the system console. WRITELN_RCODE is an ex-
ternal routine, an element of the PLZ.STREAM.IO Module.

9. Qutput of Routine

If all goes well in LOAD_DATA_FILE, the result will be a data file load-
ed with the data from the memory buffer and an ERROR_CODE of FALSE. If
things don't go well, error messages will be written to the console, the data file
will be in an indeterminant state, and the ERROR_CODE will be FATAL or
STORAGE_ERROR.

1 ine Fl

LOAD_DATA_FILE is flawed in that ERROR_COQODE is in an indeter-
minant state if every thing goes well. To fix this flaw, an additional statement
initializing ERROR_ CODE to FALSE (error code for no error) should be added to
LOAD_DATA_FILE. This statement should be inserted prior to the PUTSEQ call.
Also, LOAD_DATA_FILE is devoid of commenting.

11, R istin

The program listing of LOAD_DATA_FILE is on page 386 in Appendix
F.
Collect_Data Module 259

RSN A

s |

B RN

’Q& 1. Routine Name: CLOSE_DATA_FILE

2. Primary subordinate routine of Collect_Data Module

3 3. Written in PLZ; 7 lines of code.

L S is of Routi
. This short routine closes the data file opened by CREATE_DATA_
» FILE and filled by LOAD_DATA_FILE; it is the last routine called by SAMPLE_

DATA, the executive routine of Collect_Data Module. CLOSE_DATA_FILE
closes the file with a call to the external routine CLOSE. If the operation was

successful, CLOSE_DATA_FILE ends. Otherwise, CLOSE_DATA_FILE outputs
X an error message to the sytem console and returns the FATAL error code. The
. relationship of CLOSE_DATA_FILE to its calling routine and its subordinate
‘ routines is shown in the figure below.

3 : Relationshio Di

3 . .

SAMPLE_DATA

CLOSE_DATA_FILE

CLOSE

': PLZ STREAM.IO WRITELN_RCODE

MODULE

WRITELN

Enhancements Module

Figure 73. Relationship of CLOSE_DATA_FILE to Other Routines
6. Invocation

o~
l'-.'

Collect_Data Module 260

AL SL LN

-

XY
.\"

P

N

. et

CLOSE_DATA_FILE is invoked from SAMPLE_DATA via
ERROR_CODE := CLOSE_DATA_FILE(DATA_FILE)

where both ERROR_CODE and DATA_FILE are type Byte. ERROR_CODE re-
turns to SAMPLE_DATA a code indicating success or failure. DATA_FILE is the
logical unit number of the data file.

L _Varables and Constants
CLOSE_DATA_FILE uses one internal variable, RETURN_CODE
(type Byte). This variable receives the return parameter from the call of CLOSE.

Two constants are used by CLOSE_DATA_FILE, OPERATION_COM-
PLETE (value 8@ hex) and FATAL (value FE hex). OPERATION_COMPLETE is
the RIO Operating System return code for successful completion. FATAL is the
Collect_Data Module error code for failed operations.

Routi I
LOAD_DATA_FILE calls four external routines. Their names, para-
meters, and functions are listed below.
RETURN_CODE := CLOSE(LOGICAL_UNIT)

where both parameters are type Byte. RETURN_CODE is the operating system's
message on success or failure of the file closing procedure. LOGICAL_UNIT is
the number of the unit to be closed. CLOSE is a routine of the PLZ.STREAM.10
Module.

WRITE(LOGICAL_UNIT, TEXT_STRING)
where LOGICAL_UNIT (type Byte) is the device number to which output is
directed and TEXT_STRING (type PByte) is a pointer to the string of text to be
output. CLOSE_DATA_ FILE uses WRITE to output an error message to the
system console. WRITE is a member of the Enhancements Module.
WRITELN_RCODE(LOGICAL_UNIT, RETURN_CODE)
where both parameters are of type Byte. LOGICAL_UNIT is the device number to

which output is directed. RETURN_CODE is the operating system code that
WRITELN_RCODE will translate into its text definition and output the text to the

Collect_Data Module 261

..............

0% designated LOGICAL_UNIT. CLOSE_DATA_FILE uses this external routine from
the Enhancements Module to output the translated return code to the console in
the error message.

WRITELN(LOGICAL_UNIT, TEXT_POINTER)

where LOGICAL_UNIT is type Byte and TEXT_POINTER is type PByte. LOGI-
‘ CAL_UNIT is the device number for the output. TEXT_POINTER points to the
| string of characters to be output. WRITELN, like WRITE, is used by CLOSE_
DATA_FILE to send error messages to the system console. Unlike WRITE,
WRITELN concludes the text string with a carriage return. WRITELN is an
external routine from Enhancements Module.

9. Output of Routine

CLOSE_DATA_FILE closes the disk file into which the data collected
from the AlO board was stored.

10. Routine Flaws
‘; Like several other routines of Collect_Data Module, ERROR_CODE is
not initialized. An additional line of code to initialize ERROR_CODE to FALSE is

needed. Also like tha later routines of Collect_Data Module, CLOSE_DATA_
FILE needs commenting.

11. Ref to List
CLOSE_DATA_FILE's code listing is on page 387 in Appendix F.

RN
)

Collect_Data Module 262

L T

% ".{'. 5% wR L% .’~’-‘. \ "-"‘n‘ -'_b' . -'-.F'-‘.'-)"‘- _‘..,_'. ;'.-‘_‘-,'-.. ORI '-._'-.:- N S Ve ;n._‘. ,'-'.'- Je, _‘.._ RO N I
B e et e e e e T e e A e e Sy e T o e e T e e e e e

A\ T,

AR A IR AR L A AT S O SR L RS ol el af el gt A D bl Nl Dl A A B DN T AN i Rty ARC) i SR A% dia bl a8 WWWW“

{

«

PN 1. Routine Name: ERROR_IN_SAMPLER
! 2. Subordinate routine of Collect_Data Module

3. Written in PLZ; 8 lines of code.

N C S is of Rout

ERROR_IN_SAMPLER is a error detection / error message writing
routine that SAMPLE_DATA calls after the call to the external routine SAMPLER.
SAMPLER returns an error code to SAMPLE_DATA. If the error code is other
than FALSE, SAMPLE_DATA calls ERROR_IN_SAMPLER to send the proper
error messages to the system console. ERROR_IN_SAMPLER also calls
CLOSE_DATA_FILE and returns to SAMPLE_DATA a FATAL error code.

5. Routine_Relationship Di

SAMPLE_DATA

: ERROR_IN_SAMPLER
CLOSE_DATA_FILE WRITELN

Enhancements Module

Figure 74. Relationship of ERROR_IN_SAMPLER to
SAMPLE_DATA, CLOSE_DATA_FILE, and WRITELN

6. Invocation
The invocation of ERROR_IN_SAMPLER from SAMPLE_DATA is

2 Collect_Data Module 263

: ;

TR T I R g I T N N o T A N U R D J T T T S
h 5 4~ ~¢' t‘ q‘ s AR \ \‘1-.' - 54. s‘.’.'ﬂu_ ‘.~'ﬂ '.4 . L . '. cete O IR o_'.- ":._‘\._'.-_"-.'. LN ._".-.’-\"’."i - \-‘._-f‘._- ot -_'f-.' \“4.'.: h-: ’*'\:’

v

~

o

1

-

4

4

4
" []

’0

1]

1

" -
. A
» " ety
4

Y,

»

»

L}

L]

Q
Sl

OUT_ERROR_CODE := ERROR_IN_SAMPLER(IN_ERROR_CODE)

where both parameters are of type Byte.

7. Variables and Constants

No variables other than the input and output parameters are used by
ERROR_IN_SAMPLER. Four constants are used. ABORT (value AB hex) is the
error code from SAMPLER that data collection was terminated. CONSOLE_OUT
(value @2 hex) is the logical unit number of the system console. DATA_FILE
(value @7 hex) is the logical unit number of the disk file opened by CREATE_
DATA_FILE. Lastis FATAL (value FE hex), the error code for a fatal error.

h in I

ERROR_IN_SAMPLER calls two routines, WRITELN and CLOSE_
DATA_FILE. Their invocations, parameters, and functions follow.

WRITELN(LOGICAL_UNIT, TEXT_POINTER)

where LOGICAL_UNIT (type Byte) indicates the logical unit and TEXT_POINTER
(type PByte for Pointer to Byte) points to the string to be output. This external rou-
tine of the Enhancements Module also outputs a carriage return at the end of the
text string. ERROR_IN_SAMPLER uses WRITELN to output error messages to
the system console.

ERROR_CODE := CLOSE_DATA_FILE(FILE_UNIT)

where ERROR_CODE (type Byte) indicates whether the closing was successful
and FILE_UNIT (type Byte) is the logical unit number of the file to be closed.

2. Output of Routine

ERROR_IN_SAMPLER is called only if SAMPLE_DATA finds a non-
FALSE error code returning from SAMPLER. Thus something has already gone
wrong. ERROR_IN_SAMPLER's output is messages to the system console and

the closing of the data file opened by CREATE_DATA_FILE. ERROR_IN_SAM-
PLER always returns a FATAL error code.

Collect_Data Module 264

B G e e N v B 1 S e R S R T R O A

XN

[T

Bk 10. Routine Flaws

The only flaw is that SAMPLE_DATA calls ERROR_IN_SAMPLER
only when jt detects an error. A superior organization would be to have SAM-
: PLE_DATA call ERROR_IN_SAMPLER immediately after SAMPLER without
: checking the error code. ERROR_IN_SAMPLER would determine if any error
had occured and return an error code of FALSE for all nonfatal errors. The IF
statements inside a DO loop structure used by PREPARE_COLLECTOR would
be one approach with IF statements for each expected error code and a "wild
error"” message for the unexpected.

11. Reference to Listing
The program listing of ERROR_IN_SAMPLER is on page 388 in

Appendix F.
¥

; ’

' U

)

l

o

N

%
Collect_Data Module 265

........
.......
.] I e U A L LI S

ORI - . o Le s
ot N AT m A At Tt e a W Ve, Py A SN e S . PO o, LI
S ~J.}.*«-~..'A x"\.& .0\.0-'\.;' \.& - v 'A‘]'A Ln Xa » ',A -« u"y J\‘I\J\'i‘P P g e T T T S R I L TS R AR

T

&’ 1. Routine Name: SAMPLE_DATA
2. Executive routine of Collect_Data Module.
3. Written in PLZ; 17 lines of code.

4 nopsi

SAMPLE_DATA is the executive routine of the Collect_Data Module.
All the other routines of Collect_Data Module are called either directly or indirect-
ly by SAMPLE_DATA. The figure below shows the basic execution flow of SAM-
PLE_DATA and the principal subordinate routines it calls. Included in this list is
SAMPLER, the executive routine of Sampler Module, the assembly language
module that performs the actual data collection.

T A T L A T Y T AT

The execution revolves around five major processes. First User sup-
plied instructions are translated by PREPARE_COLLECTOR into the command
necessary to program the CTC driven interrupt timer. Next, again with user in-
puts, a disk file is opened in process CREATE_DATA_FILE. Third, the analog
6 data is read in and stored in memory. This process is the responsibility of the

Sampler Module. The data stored in memory is then written into the disk file by
" LOAD_DATA_FILE. Lastly, the now filled data file is closed by CLOSE_DATA_
FILE. Thoughout this process, if anything goes wrong an error message is output
to the system console.

N

| .

SAMPLE_DATA, and hence all of Colllect_Data Module, is designed
to be called from a superior PLZ routine. The responsibility of that superior rou-
tine is the interface with the user.

Collect_Data Module 266

W Routine Relationshi

: Calling Routine

3

5 A

» GET_DATE

> PREPARE_COLLECTOR
&

CREATE_DATA_FILE

j\-f

N ' Sampler
¥ f'. SAMPLER Module
- ERROR_IN_SAMPLER
W

- LOAD_DATA_FILE

<

3 CLOSE_DATA_FILE

> Figure 75. Relationship of SAMPLE_DATA to its Calling Routine and to
; its Subordinate Routines.

&

Collect_Data Module 267

e Pl R T T et e . e e .)
ERCT SRR CR KPS . e e e e A L e I e e S e e J
.AJJJJ~MRMM¢4k‘~¢‘J~.‘LJM ~ A'.-_'..',": - .-\.- ‘.r te ‘.a-\ -\.n_ Y _-5_- ‘.r,_ ™ .n (9 ‘l

B ol - I A RS B SN RN S A Ry e S0 2 s WL AL DL Al l
SAMPLE_DATA is invoked from its calling routine with
ERROR_CODE := SAMPLE_DATA(TESTID, USER_MESSAGE,
PERIOD_VALUE, PERIOD_UNITS,
INPUT_CHANNEL, SAMPLES)
The type and purpose of these parameters is listed below.
‘E __Parameter Name Type Definition
ERROR_CODE Byte Return parameter to indicate to the
{ calling routine whether execution was
g successful.
” TESTID ASCII_STRING A string holding the six character
sequence that uniquely identifies the
{ test.
E USER_MESSAGE ASCII_STRING A string holding a free field message.
() ' PERIOD_VALUE Integer The number of time units desired for
the sampling period.
PERIOD_UNITS integer The units of PERIOD_VALUE. Defined
, - units are MICROSECONDS, MILLI-
SECONDS, and SECONDS.
INPUT_CHANNEL Byte The number of the desired analog
input channel on the AlO board.
A
SAMPLES Word The number of data samples the user
wants collected.
E 7. Variabl n nstan
SAMPLE_DATA uses three variables in addition to the parameters
addressed above. They are
—Variable Name Tvpe Definition
TODAYS_DATA_BUF ASCII_STRING A buffer to hold the characters that
/ .:,’. represent the date (yymmdd)

A

Collect_Data Module 268

..........

Variable Name Type Definition
TODAYS_DATE ASCII_PT A pointer to TODAYS_DATE_BUF.
LAST_DATA PByte A pointer to the memory location that

holds the last byte of the data
collected.

SAMPLE_DATA also makes use of a number of constants. They are

Constant Name Tvpe Definition
FALSE DD hex The error code for nothing went wrong.
FATAL FE hex The error code a fatal error.
DATA_FILE D7 hex f1_'Ihe logical unit number for the data
ile.
8. Qther Routines Called

SAMPLE_DATA calls seven subordinate routines and uses one
buffer. Six of these are members of the Collect_Data Module. They are

GET_DATE,
PREPARE_COLLECTOR,
CREATE_DATA_FILE,
ERROR_IN_SAMPLER,
LOAD_DATA_FILE, and
CLOSE_DATA_FILE.

The invocation, parameters, and functions of these routines will not be discussed
here. These items are detailed in the descriptions of these routines. One impor-
tant note however. Several of the above routines call input/output routines of the
PLZ.STREAM.IO Module. The PLZ.STREAM.IO Module must be linked in with
Collect_Data Module. The routines called, OPEN, CLOSE, and PUTSEQ, must
be declaired external routines.

The other subordinate routine called by SAMPLE_DATA is SAM-
PLER, an external routine of the Sampler Module. SAMPLER sets up the CTC
interrupts, programs the AlO analog to digital input, polls the user for a "GO" sig-
nal, and then reads in data from the AIO board and stores it in memory. SAM-
PLER is invoked from SAMPLE_DATA with

Collect_Data Module 269

.....

Al .A-
IR S 2 h N

. .{ "‘ -{ " v‘.n' s 8 :. ,.' 1

s

FUNS

rd

0

&
3

NN 2

-
«

Py
&

At w4

>

VNS

o

ERROR_CODE, LAST_DATA :=

SAMPLER(1O_CHANNEL, CTC_MODE,

TIME_CNST, COUNT,
SAMPLES, FIRST_DATA)

The type and purpose of these input and output parameters follows.

—_Parameter Name _Type

Definition

ERROR_CODE Byte
LAST_DATA PByte
IO_CHANNEL Byte
CTC_MODE Byte
TIME_CNST Byte
COUNT Word
NUM_SAMPLES Word

Collect_Data Module

o

PP L Pt O O PO

ATON BRI Tt T AR A N T e e T e e e
"\r.:.-ﬁh-b.rbl&‘ﬂ#:&'&ﬁt} -,:} :A.!.':.(hf:&!':f :{ ::-: P x'.,-':\'.:l'.;f: oo Lq':q‘..-(': \':-.‘.'q’. P S T I S I ST R TP 'j

Returns a code which indicates whe-
ther data collection was successful or
tells what went wrong. Five codes

are defined. FALSE: no error; ABORT:
user abort; FATAL: complete break-
down; CHANNEL_INVALID: channel
number was out of range; MODE_
INVALID CTC commands were invalid.

Returns a pointer to the memory loca-
tion in which the last byte of data was
stored.

Passes in the number of the AIO
Channel to be used for data collection.
(D to 15)

The first of two programming bytes for
the CTC passed into SAMPLER.
CTC_MODE has two possible values,
FAST_MODE (87 hex) and SLOW_
MODE (A7 hex). Both set the CTC to
generate periodic interrupts.

The second CTC timing value passed
in. Its defined range is @ to 255
decimal. This byte tells the CTC the
value of the internal counter.

The number of CTC generated inter-
rutps per AlO analog to digital
conversion.

The number of twelve bit samples
(stored in two eight bit locations) to be
collected.

270

-

4

L A A

. ‘l “l -" ..\ .\ '(‘

_,.
R 'y LA
‘ ‘."-'c_"-‘:.-

a’a

%) LVt tad an- Ol Sl At ' W g

___Parameter Name Type _Definition

FIRST_DATA PByte A pointer to the memory location
where the first byte of data collected is
to be stored.

In order for SAMPLER to be called by SAMPLE_DATA, it must be declaired exter-
nal and Sampler Module must be linked in with Collect_Data Module.

The third external structure used by SAMPLE_DATA is DATA_BUF-
FER, a 2,990 byte memory allocation set up by Buffers Module. This buffer is
used inconjunction with routine SIZE_DATA_BUFFER (an internal routine sub-
ordinate to PREPARE_COLLECTOR) to define the storage space used by SAM-
PLER to store the data read in from the AIO board. This simple approach is only
indended for initial checkout of Collect Data Module. Ultimately, SIZE_DATA_
BUFFER would work directly with the RIO operating system memory manager.
Then, the data buffer would be dynamically allocated rather than limited to some
arbitrary preselected size. Access to the memory manager from SIZE_DATA_
BUFFER would be provide by ALLOCATE and DEALLOCATE, external routines
of the Utility Module.

9. Output of Routine

There are two classes of SAMPLE_DATA (and hence Collect_Data)
outputs. First, if all goes sufficiently well in both Collect_Data Module and Sam-
pler Module, the output will be a new file on the system. That file will contain
header information on the data collected and up to 2,909 bytes of data read in
from the AIO analog to digital converter. The second class of outputs covers the
outcome when fatal errors or user aborts occur. For most errors, execution of
SAMPLE_DATA will end. For a couple of cases, a data file will have been
created and filled with header information but no data will be present.

1 ine Flaw

There is one structural flaw in SAMPLE_DATA , a number of listing
errors, and a lack of comments. The sturctural flaw is that if a fatal error occurs
during LOAD_ DATA_FILE, the current logic flow has SAMPLE_DATA just end,
leaving the data file open. Reguardless of the error, the data file should be
closed by calling CLOSE_ DATA_FILE. The conditional exit following the call to
LOAD_DATA_FILE should be eliminated.

Collect_Data Module 271

I NPNOENDR

R

NS The listing of SAMPLE_DATA has three mislabled parameters in calls
to subordinate routines. First, in the call to CREATE_DATA_FILE , the third input
parameter should be the constant DATA_FILE rather than FILE_UNIT. Then in
the calls to SAMPLER and LOAD_DATA_FILE, the parameter currently listed as
BEGINNING_OF_ BUFFER should either be changed to *ADATA_BUFFER[J] (a
pointer to the first location of the data buffer) or be defined as local variable of
type PByte and set equal to "DATA_ BUFFER[Q] early in SAMPLE_DATA.

The final flaw in SAMPLE_DATA is its lack of comments. The use of

an alternate format for the rather lengthy subordinate routine calls would also aid
readability of the routine.

: Listi '
The listing of SAMPLE_DATA is on page 389 in Appendix F.

PR SRR

Collect_Data Module 272

\
“ This page is intentionally blank.

3TLTF A

Collect_Data Module 273

AD-A172 823 DESIGN AND PARTIAL IMPLEMENTATION OF A COMPUTER
CONTROLLED DATAR COLLECTION SYSTENCU)> RIR FORCE llST OF
TECH WRIGHT-PATTERSON AF8 OM SCHOOL OF ENGI. L E LUT2

UNCLASSIFIED FEB 86 AFIT/GE/ENG/86N-1 F/6 972

<

o

WZEZ

=T

- :!M{"t&})

i

et Ll

B3
-

Er A, S

:ﬁ

i e N T e T L P

N A R . e . a Gk d Py A g gt Al gLy VoA A R S U ‘a $h ! Yy e v

10 &M
=g
P

| =
fl22

F
=

lI=

e e o L L o o . o e s ars sy e AR A AR BNREY S YR v ol

' VII. Conclusion

o

i

‘2' The system designed around the hardware of the Zilog MCZ Z-8Q0
':", Development System is a reasonable, general purpose data collection system.
‘ The design supports the requirements for acuracy, data integrity, flexibility, and a
simple user interface presented in Section 1. The design is based on having an
.. data storage unit located with in the item under test. This internal unit would store
the data until post test when the data would be transfered out to an external
s control and data storage unit.

"

The purpose of the thesis effort was to examine and develop the
% % software required to implement such a data collection system. The first step was
~ to provide some improvements to the PLZ language. The software written to
:i improve the Pascal-like PLZ language proved quite useful and effective. These
\: 10 routines, written in PLZ, of the Enhancements Module were fully developed
. and tested. Hardware and operating system access routines were also written
\ to supplement PLZ. These assembly language routines of the Utility Module
’ were also fully developed and checked out.

b

N Like the PLZ improvement software, the software written for the data
:.- collection system was written in both PLZ and Z-8@ assembly language. Since a
' single development system was used for both the internal data coilection / temp-
A orary storage unit and the external control / archive unit, the division of software
M between the units became some what blurred. The software of the Collect_Data
J Module, and its subordinate Sampler Module, implement one of the five pro-
” cesses of the data collection system, the collection and storage of data. The
z.; "‘3: Sampler Module software is that of the internal data collection / temporary
K

Conclusion 274

\

.

g

N .:‘: TS

AN

P T

{‘3} storage unit; the Collect_Data software would be resident in the external control /
data archive unit. This software was never fully functional. The problem appears

v,

to be in the interface between PLZ language calling routines and the Z-89
assembly language Sampler Module. Though the software was not functional, it

>

did fulfull the purpose of examining the software required to implement a data
collection system.

oy pw, -
s N

SAI

Recommendations

Two courses of future action are clearly open. The software of the "
data collection system could be completed and thoroughly tested. This would ;:'
include integration of the Set Up Scale Factor File software and implementation
of the three processes (Scale Data, Output Data, and User Data Manipulations) v
not implemented during this effort. The second course of action would be to build

‘j one of the internal data collection units. This activity should not be started until
the software portion of the system is complete.

Conclusicn 275

Lk o 2l 4,0 Fat bt tpt wte o® Ted iad wod gt

10.

11.

4y 0'a da A" b B a0t ata ake 2 At R0 20 “ad 'R g’ T T W I

Bibliography

Zilog. Z-80-CPU, Z-80A-CPU Product Specification. Zilog, Inc.
19460 Bubb Road, Cupertino, California 95014, March 1978.

Zilog. Z80-MCB Hardware User's Manual. Revision A. Zilog, Inc.
1246Q Bubb Road, Cupertino, California 95014, 8 May 1978.

Zilog. Z-80 MCB Software User's Manual. Revision H. Zilog, Inc.
19460 Bubb Road, Cupertino, California 95014, July 1979.

Zilog. Report on the Programming Language PLZ/SYS. Zilog, Inc.
19460 Bubb Road, Cupertino, Califoria 95014, undated.

Zilog. PLZ version 3 User Guide. Revision H. Zilog, Inc. 13460
Bubb Road, Cupertino, Califoria 95014, July 1979.

Zilog. 2802 SIB User's Manyal. Revision B. Zilog, Inc. 19460 Bubb
Road, Cupertino, California 95014, 28 July 1978.

Zilog. Z8@-AIQ/AIB Hardware User's Manual. Revision A. Zilog, Inc.
19460 Bubb Road, Cupertino, California 95014, 28 April 1978.

Barden, William Jr. The Z-8@ Microcomputer Handbook.
Indianapolis, Indiana: Howard W. Sams & Co., inc., 1978.

Grogono, Peter. Programming in Pascal. Reading, Massachusetts:
Addison-Wesley Publishing Company, Inc., 1978.

Cave, Stephen. Telephone Interview, 3 April 1980. EG&G
Corporation, Albuquerque, NM.

Aeby, Charles A., Project Officer. Telephone Interview, 5 May 1980,
Air Force Weapons Laboratory, Kirtland AFB, NM.

276

|-

by Yy v v e

€ 5. *

- ¢ T _8_°
l:LQ:- Ta'al

¢$

Appendix A:
Enhancements Module Listings

The following 36 pages are the compiler listing of the Enhancements
Module, the DEBUGS Module, and TEST_IT Module. DEBUGS Module is a
special subset of Enhancements Module used for debugging of PLZ programs
which interact with the RIO Operating System. TEST_IT Module is one set of
routines used to test the routines of Enhancements Module. The following is a list
of the routines found on each page.

Page Number Contents
279 Constant, Type, and External Declarations of Enhancements
Module.

280 Procedure ASCII

281 Procedure VALUE

282 Procedure VALUE_LOOP i,

283 - Procedures PUTCH and GETCH

284 Procedure GET_ASCII_CH

285 Procedure PLACE_LOOP

286 Procedures VALID_BINARY_CH and VALID_DECIMAL_CH

287 Procedure VALID_HEX_CH

288 WRITE and WRITELN Procedures

289 WRITE_DBYTE and WRITELN_DBYTE Procedures

290 WRITE_HBYTE and WRITELN_HBYTE Procedures

291 WRITE_BBYTE and WRITELN_BBYTE Procedures

292 WRITE_LBYTE and WRITELN_LBYTE Procedures

293 WRITE_DINTEGER and WRITELN_DINTEGER Procedures ;

294 WRITE_DWORD and WRITELN_DWORD Procedures

295 WRITE_HWORD and WRITELN_HWORD Procedures
;1
4

Appendix A 277

R T T et SN et e e e
R SR O CR AR SR Gt AL ENRS LR LU RN !~."-.'-. LSS AR A S R R L L LR R R _3'_.:_‘_.:*\\:\

o, A PR RANNIG W F O 2L G T I B 2 T LR S B v S E e Rt it 3 8y L4 vie bip ¢ dn i W A 9l A TRV Y. « T o WL ¥ 0 g4 e u 8% g 33 -

EX 4Ny

ﬁ;« Page Number Contents

296 WRITE_POINTER and WRITELN_POINTER Procedures
297-298 WRITE_RCODE and WRITELN_RCODE Procedures

LN ERAINY

299 Procedure READLN

300 Procedure READ_HBYTE
301 Procedure READ_DBYTE
302 Procedure READ_BBYTE
303 Procedure READ_LBYTE
304-305 Procedure READ_DINTEGER
306 Procedure READ_HWORD
307 Procedure READ_DWORD

IACAT AN

(»

308-309 DEBUGS Module

~ Q
"

310-314 TEST_IT Module

P LA

et e o

Appendix A 278

2 1 G I T T T T T T S S O o L S O T S e e g e o e am e . - . e . .
A UL S PP AN R AT LR R R I (N R R R R RO G S L PR LR A LA
Lﬁﬁm&h&.ﬁ;{uxlﬁ.&; A R T R ITIRA L S Nt gt R S S P 1P I P P P P S e Y I W,

(A1x9 30 NINLN ‘eioM SALAT NINER) SN 143

(IOM SALXE 3NN ‘ALASd WA AL ‘319 LIND DI Y RNEDRK HSIED £e
rAY

_ (319 3000 NINIR ‘GIM SILAT RNEN) SN £

(IOM SALXE HEIN ‘30X9d 314 Y34Id ‘A1Xd LIND TIDID0T) RNIDod (IS 0g
6C

"NNSALXA 8¢

dISTIIOSV, ¥Id TIDSV
[A1x8 8] AVRN IS 1SV
AL, AIXad

ddAL

i *uorjerado [NJSSAOONS J0J 9PCO UNMPI ORM | (8% =% MU NOLIVAD
0 = ASNd

T=: 3L
0z% =2 MINH
i] Touwp) | 9% = SADSA
i WTOTU0) | 0% = NMNIIY IWRRND
i £ TOIUD | Vo% = Q334 HANT'T
i I TOIUoO ~ e, TeW2zTIoH | 60% =¢ L
i H To13uw) § gog = RIS O
I D T013u00 - TROTS TR | /0% = T
JINEISNDD
l *SUOTIOUN] NXWR Ppue ‘v ‘NHELDRIM ‘SLIM §

1 'NONd a3 ‘a1qrssod se yomu se ‘sqerrue 03 paubTssp upsq 9ARY SSUTIN0I |
1 93yl °s3Tun Teotbor Aue 03 sbutils x93 pue ‘iM ‘YERINI ‘4LXd §
! 30 andno pue ndut 103 s9INPa00id Aueut sutejUCO ATNPOW T STYI, 1

Nm<un © o N@ w0 CAO HNM LW
e e SASAS28RRARARNAINER

i W6T Arenigpa 1T - 8ZET TIXON SINBEONTHNA

LT TIZOB 0°€ SASTH

1 abad B6T Yoaey ¢ THXAOW SINSEONHNG

T G A S O A S e A T S SR S A 0 SR U SORE T SIo00 % 35 005 A0 18 o0’

NI

wh =2 WRUNNMID NIHL 3% 3SYD T 1L
oy =3 WIONNHD NHL 3% Asv) 0C 0L
de =2 MAINMNVID NAILL g% 3SWD 61 69
O = WALVEID NFHL 0% dAsW) 8l 89
& =3 WRIOVNID NGHL 9% 35 TAGA
W = HIORNHD NAHL W A4S 91 99
160 =3 WD NIHL 6% dSWD ST S9
84 = WIOWNWID NIHL 8% ASWD PT %9
el =3 WEAIDVHD NIHL L% SO ¢l €9
. 19 =3 WIOWNHD NEHL 9% dsWD ¢l 79
1G9 =% WIOWNID NTHL 6% 35D m 19
oy =2 WAIDNNVHD NIHL §% 3S\WD 0T 09
16 = BIONNMID NIHL €% 35D 65
G = WBIOVIVID NIHL 2% 35D 8%
O = EIDWHD NEHL 1% 350 LS
10 = WIMID NIHL 0% IS 95
ATNA A

SN = ONDINWE LD
s
MNWHE =2 JIONND NIHIL
(3L = ONDINVE NI) JIGW (0% = ATNA) JT

~~ N SNO~NDN
¥s)
(Vo]

AML =2 ONDIWE D 0S
RNG 6V
17
i ‘URTq ' st pauInial aq [1TM YALOWIVID ‘dArMI, se | Ly
I uy psssed ST ONDINVK NI JI *anTen ST} sauesaidal yoTyM Iojoeleyo | 9%
I IIDSY a3 SWwmp1 pue (X3y 4 03 () anTeA Jndut Sy Soye3 suTInol STYL | Gb
144
(ALXg ONDINVE D LIOVIVID) SN 3/
(SIxg ONDIVT NI ‘GIOM ATNA)RINED 1ISY o
144
o
: 6€
:____:_____:________________:_m8§_8E%%Eﬁﬁ&ou&bﬁmgu@!ﬁau________: TNRIAINT 8¢
. Le
9€
GE
¢ 9bad B6T Yotey 77 TIOW SINBEONHNG
& P i

tﬁ'i.v‘“_ -t

e

B e

JTNA ONH
14
¢ ANLINKW NIHL ,d, IS
¢ ONLINKWW NAHL 43, 3SW0O
¢ JONLINKWW N3HL .d, 3ASWD
¢ IONLINKW NGHL ,J, 3SWO

N
r—t

P o IR P P

¢ AANLINNW NIHL ,9, 3SW0
: IIOLINKW NAHL ¥, JSWD
: AINLINKMW NAHL ,6, JdSWD
P JANLINNW NIHL .8, SO
: AUNLINKNW NJHL 4L, 3ASD
¢ AONLINYW NOHL 9, dSWD
¢ JONLINW NEHL 4Gy dASWD
: JNLINKW NTHL ¥, d9SYD
¢ JANLINNW NAHL €, ISWO
: JMNLINNWW NJHL .2, 3SWD
P AONLINMW NGHT, T, 3SWD
¢ AULINYW NAHL ,0, 3SWD
WRLOVNHD J1

0% =: INLINWW

NG

o—cwmvmof\mmgmoomm

OP 0P O 0P OdP 0P OF 0P OF o

(L | | (IO | S I |

N NMTN OISO~ ANMTNOSND
P B o I e B B e Mo B

ReRRT ST 8B RBRANIINREIRESSS

i *S19300TRYD PAUTFSpUN |
i 10J 019Z JO aNTeA © UITM PSWIMDT 3q [TTM HUNLINWW °3T 03 possed |
1 I930RI0UD IIDSV AU} JO aNTeA [eoTieubipell 3y} SUmgal SuTInod STYL |

(3LXd JANLINKWW) SNINIFY
(AIXg YRIOWVIVID) TR ATNA

¢ obad B6T UoTew 72 TN STNSDNMHNE o

A
@ 3
. - B M Pelpp ey i > S et g

SOt
Fot

[
3
- .-’ ";-";-‘..- oy e '.'.'-'_ -!.:‘." '.f'-'.\'.".—\._.'-. '-';.-. L ‘-'.'-' ‘-l.‘u- R/ LK
A A S I P IO A RN R s » ﬁ.‘fﬂf&‘(‘s” R

A SN ---,J}V_ v,b\ LA

v obad

GEGG9 =t AANLINDWW

i SISTXd MOTJI3N0 | NIHL ¥OIONS > SANLINNW J1
((([X3) ONDEIS JENT)ATNA)REM » ¥0INd) + JANLINGM =: SANLINOWW
Id IIXd NGHL 8 = XJONI JRID XMWH = [XJONI) ONDMIS JJdINT J1

éggéa

QIOM ¥OIWI
dLAd XIaNT
"NOOT

i *AYNA SUTINOT SOIMDSI auTINo STy, *burils Jrdut aul §
i 4Aq pojussaxdal IANLINOWW U3 Se anTeA Wrurxeu STy} SuIngal aurnol |
i 9yl ("GESGY) anTen uruTXew pioM K UYI SPOdOXS BuTIIS I9j0eIeyDd |
i 9P Aq pojuesaader Jequnu 3 J1I °Iseq pa1TSep AR 103 sI9joRIRYD |
1 PrTea Afuo surequoo BUTIIS Indut S eyl PoInsw sey auranol but |
i ~1Te0 33 eyl SaUNSSe SUTINOT Y], °*UTIN0I STYY AQ pajepouncoe aq |
i Weo dn g 9seq uo1y aseq 196Ut Aue stYL “STHLLTW Se Surinol a3 |
i 03 possed ST uoTaeuesaadel ayy Jo aseq 3y, *juesaiddl Ay entea |
[OTIaunu a3 ojuT Ssi1930eIeyd IID6Y JO BUTIls b s3aaAL0O aUuTINoa ST, §

(GIOM JANLINWW) SNNER
(QIOM WHLYIIW ‘dId TIDSY ONRIS JWANT) RINTDRH 0T AYNA

B6T YoreW 22

A
.\

Tt

ot

(=)

~ N ™ LPNO~D

ovtl
6Ll
8tl
LeT
9t1
GET
Pel
tel
(4%
TeT
0tl
6C1
8Cl

a3y D
LR) AN (I
ACEEPE AR B ‘

o Cy g & "

w0
W, o iy

XS
L T,

-‘- -
ERENTA

AT
N, e oL Ye v v

*. P e e e e
AR T S S T TR TR

HED aa
14 MNTH = WIOVIRD NIHL X0 NDLIVEIO < 300 NIt JI
(1 ~§c§ LINDTTWDIO0T)JESIAED = 30 RINLR HIONTT

LN
GIoM HIONITT
AlAd 3a00 NINLT

TNOOT

i *ywe[q b se pauImial ST I3joeleyo a3 (HOB < 9poo wimal) MIsSs3oNS |
i Jou ST butpeea Sy JI °*surIN0oa BurTTed AP 03 I9joeiRyD IPYF SUNMAT |
i pue 3Tun TeOoTPOT pot3jtoads syl WD1J 1930RIRyD U0 SPEST UTINOI ST, |

(3LXd MBIOWMD) SN
(3Lxd LIND TTDISOT) RINEDOMd HALED

HOLM ad
(HIONTT “YAIOVID ¢ ‘LIND "RDISOT JTESH =2 3a00 NINLRN HIONTT
T = HIDNHI
pvAlc
ALAE 3000 NN
QIOM HIONT'T
TNOOT

i *suoTierado prTeAUT Joj ueye3 ST UOTIOR ON *3ITun Teotbot |
i pP313103ds ay 03uo 3T 03 psesud 1930eIRUD R SOITIM UTINOT STY, |

(3Lxg MWIOVWWID LIND TIDIOOT)N HOL

B6T YoIew ¢¢

. P et e e e AN e
T S A S S S A A L TR

H 1DV LD aNd £ %I

@® 61

14 LIX3 N3HL 61

VDS = YALNNID 061

JRD NINER ENRAUYD = YAIONNID JRI0 @34 aNI'T = YIOVMID 681
JRD L = WINMWD DD THd = YIOVNID 881

JRO (dL% > WIONNHD JIGAW 02% =< WINMD) JI ¢ 1

(LINNIWDISOT)HOLD = YRIONMD T BI

(04] KT

RILNG 81

B1

{ ‘powImgar st (HOZ) yuwetq i Bl
1 e aSTMISUI0 ‘Butinol BUTTTeO 3yl 03 pswmdl ST WRIONWWD ‘I1930eTeyo | B
i TOIuoo 10SIMO UoUMo 30 BUTUTA © ST YIDWMD 31 *3Tun Teothort | 81
i PoT3T0ads ayy upay 1930RINYD A (HOIID PTA) SPES] JUTIN0T STY, | 6L1
BLI

(3xd WIOWNID) SN LT

(A1xd LIND 'INDISOT) RINTD0Md O 1SV 1D 9.1

SLT

vLT

£LT

9 sbed B6T UoTew gg FTINOW SINBEONHNG

van *
X ﬁ

0T INd N L 8T

@ LT

WSIAIA / XHANI =° XAINL 9 9[¢

1d LIXd NGHL T = ¥9aNI JI S SI

(WIOWID “LINDY TIWDISD01) HOId v v

(ONDINGH ‘AYNA) IIDSV = YHIOVED ‘ONDINVE £ tk

XAANI AOW TSN = MISN ¢ Ik

XTI / YN =2 JATNA 1

od (1) td

RN 60C

@M AYNA 802

ALXD HAIOWNIVID Loz

™01 02

S0Z

i *AMRL ST ONDINVTE JT poyue[q aie uoTjejuesaidal e JOo s019z burtpest | {4
I YL °I930RTEOUD JURDTITUTHTS jsaw ayy Jo soerd syl Jo anfen AP YITM § €0z
i sutheq XaANI °XAONI JO anTes o Aq pautwiaisp ST saojoereyo ndjno | A\ 4
i 30 Iaqunu 34], °*YOSIAIA JO anTea ayy burdjroads Aq aurinoa BUTTeO AP | 102
1 Aq po309719s ST UOTIEUSAIdRT sy JO aseq YL “WHEWN JO anTen a3 | 002
i s3usaadea YoTym BuTIls 1930RIRYD ayl (HOL °TA) sndano sutInoa STy, § 661
861

(RIOM MOSIATA XAANT Y9N ‘AL ONDINV LIND TWDISOT) RINEDoNd 00T T d 61
%1

G61

v61

B6T YoIeyw 7T TINACW STNCBEONVHNA

o e
o8 T s
AL

N WP S T

AR

4
ks
0 TWIDEd ar'vA Qg v €sC X
14 A “M
dSNd =% ALIQI'NA 3SH € 1s¢ "
AML =* ALIQINA NIHL Z 0st oA
16 = WIONMD JdRD 8, = YWITVNID 6% ”.\”m
dRD L = WINID dRD 9, = WD 8vC X
dRD 4G = WIOVNID JdRD ¥, = WINNWD [74 M
JRD 1€ = YWIDRNID dRD (2, = WEAIWNNID Wwe
dRD Ty = WINND dRD 0, = WIOWND JI T e "
RN 474 A
3 74 A
i *dSTNd ST ALIAI'NA SSTMISNO ‘ML Se powimpal ST ALIAINA OS i e o
1 31 “uw6u © 03 ,0. ® 3T ‘IJoqINu TaUTOSP © bUTSS9IdXe J0J 1930eTeyD | we x|
I PITeA © ST 1330e3eyo Idut a3 JSUIayM 995 03 SHOYO BUTINOI STYL, | ove ,..M
6t R
(4IXg ALIGINA) SN 8¢z ...”u
(AIXG YAIOWWID) N0 HO "TWWIEd ariA LT m
174
S€C ,.M..m
H RvNId Q'NA aNA v v N4
14 374 d
ST =% ALIArNA 45T € I« g
drML =* ALIAI'NA NIHL (AR {7/ ..m
T = WIOWNID JRD ,0, = WIKND JI 1 o X
RN 62¢ X
82¢ “d
i ‘dSNd ST ALIGI'NA 9STMISRO ‘I(ML Se pouwimal ST ALIAINA OS | Jrad “3
i 31 ‘uI. ® 30,0, © 3T ‘Ioqunu Areutrq e butsseidxe 103 I9joeIRyD | A o
1 PITeA © ST J930eTeyo Indut Y3 JSUR3UM 998 03 SHOSUD BUTINOI STYL, | 4 »
vee
(3L ALIAINA) SNIISy a4 -
(AL MERIOWMID) RINED0M Y ANNIE ar A e ;
we)
0z
61T
B6T YoIey 77 TUXW SINSONHNG
LAY
6 SRS

Dl B

‘e ST W ey \;.‘:" LR
fﬂf AN AT A S

&d
e
e
BT "
o 2
oz i
s
10 X3 arMA o vz X
13 GLZ
95TNd =* ALIAINA 3SH € vz ..“”..h
AML =% ALIQINA NAHL Z
Wi = WOV RO 3, = WIONND [Ara ,
JRD G, = MWIONWID IRD O = YEIOWVNHD | (74 v
JRD 8, = WIONND JRD ¥V, = YWIONNHD 0Lz
dRD 16, = WIONWID JRD 8, = WIOWNNID 6% A
JRD (L = WIDRWWID JRD 19, = YEIONND 8% RS
JRD 1S, = WINNID JRD b, = WIONNID X 4
g.m.ﬂgg.N.ug 997
JRD T, = WIONMD INRD ,0, = WIONNID JI 1 S®
paivfic 114
1% 4
| *ASNJd ST ALIAI'NA SSTMIUI0 ‘drR], S pauImd1 ST ALIAINA 0S JI X
i "wdy © 03,0, 0 9% 215qunu TewrTospexay e butssoadxe 103 1330RIRYDO | 1%
| PITRA ® ST I930eTeyo InduT 3Y} JIUM 39S 03 SHOSD UTINOT ST, | 0
6SC
(AIXd ALIAI'NA) SIS 8SC
(ALXg WIDNMID) NI O X3 I'NA LST
962
SST
474
6 obed B6T UOTeH 7T TIIOW SINGREONARE

. 3 - -
: y XA
27 P 2

NTILTIM aNd

Le

€
(4%, ‘LINNTNDI90T KO ¢ 91t

(MAINIO IXAL “LIND OISO)ALRM 1 Sle

RiNg 12¢3

1%(3

} °3andjno sT wimaa dSber1ied ¥ MAINIOT AIX3L Aq 03 psjutad sa93oeIeyo | rAL3

I IIDSV Jo Buriys ay3 3tun [eotbor poritosds ap 03 sindjno supnol swy, | 11€

(1]

(FLXSd YLINIOY IXAL ‘AIAd LINT OIS0) RINID0Nd NHELRWM 60€

80€

L0€

dLRIM AN 8 ¢

14 (HISNTT “SRAINIOd IXAL ‘LIND TIDISOT)HESIHAH =2 3100 NN ‘HIONTT NIHL 0 < HLONTT J1 9 G0E

® 113

XAONId ONI =% XaONId S €0¢

T + HIONFT =: HISNZ1 { 24113

1d IDE NEHL NINLR ENRRYD = XKINId J1 £ T0¢

B od 00€

MAINIOT IXAL =% XIINId Z 662

0 = HIONFI 1 86¢

RN 162

ALXSd XAINId 9%¢

AL 330 NN G62

QIOM HIONTT ¥6Z

™NOO1 .74

_ /YA

I *Indano ST w331 sberiied oN “YAINIOI IXAL 4q 03 pajutad s19jcereyo | 162

i II6V 3o Buriis a3 3vun Teotbo petrjtoads ayy o3 s3ndano aufInoa ST, | 062

687

(3LAad WHINIOS IXAL ‘A1Xd LINN 'WOIN0T) RNTDRE ALRM 88¢

82

BT

) 98T
PEOVE R e e e e R R R LR D) saususaess 931am Jo buruutbaq ||} fH] i ¥8Z
€8¢
E VU EOLERRERRER T e e i i 111 sompow 130 ut ssutanox Aq atqerreo saurinoa (|| [{|iil1 "NOD o 14
01 abad B6T UoTen 2 FINIOW SINSEDNHNG
(A%

T e

RN
L A N

~
A\.{L{._L

I R S
oo

i
~Yete

MR I U I I TR I VR P N e
e e T At T e L
wty ® VLA L A PO ANNLS AL AT oL

“
ALAAT NTALTEM ONT € 8¥E &
(%, “LIND VOISO)KL r AN 43
(YN “‘LIND 'TIOIO0T)ALXAd LM T ¥we o
RN Ghe :
1249 .
i vwv_:mﬁ ai1e so19z butpesr] *3Ind3ino ST WIMB1 SbRTIIRD | €&we
Pv (*/10)=p dI3yM *pPP JTLI0F 33 UT g adky Jo aTqetIes | Ve :
{eJjo H.ms wﬁ m:ﬂ:@ﬁ.&mu s1930RIRO IIDSY A sIdIno auTINoT ST, § we e
ove 2
(ALXd YISION LINT "ROIO0T) NEO0HE LT NIRLRM 6€€ B
8€€ L
LEE
AL LM aNE S 9te H....
(+*y ‘LINTDISOT)HOLH b Seg o
(0T ‘X9ONI / (WHEWN)M “ONDINVE “LINNT'IDIOOT) 00T awld € Vvee 1o
00T =% XAONI AN 333 ¥
AL = ONDINVE 1 zee "
RAINA Tee 5/
(1133 e
GIOM XINT 62¢ o
ALAH ONDINEH 8Z¢ "
"NOOT e Sy
xE ~
{ @wv_ﬁ.ﬁ ale S019z butpeo] *Indino ST WIMDI aberiIed | GZE X
i oN °(a */1°0)=p 213yM °*ppp R0y 3y} ut ALXY A3 Jo afgerea | 1249
i e Jo anfea mﬁ Eﬁﬁmuu&u sI930eIRYP ISV 3yl sIndIno suIno1 STy, | 1743
A4S L
(S1Xd YEHSON LINT OIS0) RINCD0E ALAAT ALRM e W
0ce A
61¢ B
81¢ A
&
B6T WTeH 27 TINOW SINSEONHNT e
iyl
\wv & R
hJ ”-
e B g x e ls e csc Rk 4 3t ta . . e v ek B v b pm R cacar - o

1 9bad

ALXS NTALIIM aNd £ 6LE
(4%, ‘LINT'NDISOT)HOLM ¢ 8Lt
(N ‘LIND 'TWDIOOT)ALAGH ALTM 1 LUE
pteflc| 9LE
GLE
i *poxyuRTq J0U 3Te 5019Z butpea] *Ind3no ST WIM31 aberiIed § (703
i ¥ (0 o'3°°T0)=1 235yM Uy Jeurod 33 ut Arxd adAy jJo argeraea | €L”
i e Jo aaTeA ag) mn._..nugkvu s1930eIeyo IIDSV a3 munxmua UTINOa sTYL, | CLE
e
(3LX9 YWSN LIND 'T’OID0T) RNEDRK LA NHLIM 0LE
69¢
89¢
ALXH ALRIM aNE S L9E
(JH, “LINTTNDISON)HOLd vy 99¢
(0T ‘XaaNI ‘/ (WIaWN)RIOM ‘ONDINVE “LINT 'IWDIDOT) 3001 SWd € 69t
O1% =! X3mI T vot
ISNJ = ONDINE 1 €9¢
' RINE 9€
19¢
@M XAANT 09¢
AL ONDINVH 65E
OO 8G€
LSE
i ‘poyUeTq J0uU d1e S0I3Z HUTPE] *andino ST wIgal aberixeo | 9G¢
T ON “(n »3°°'T70)=4 @33uyM *yy FeuI0] U} uT ALXA adAy Jo orqQerIRA | GGE
i © Jo anteA ayy buTiueseadaa s1930eIEYO IIDSY 2YF SINAIN0 SUTINOI STYL, § pSE
1399
(AL YIBN LIND 'RWOIS0T) RO SIX8H SLRM Z5€
15€
0SE
(314
B6T YoTeW TT TINAW SINSEDNIRNG
AN
At

S T A
AT BT, SO

LR g
way
ofaal

AT I
'.‘&H;f‘, A.

4.-‘1 . N S -

a%

. "‘(..'_ . ~;"

ALAd NTALRIM GG £ 60

(4%, ‘LINTIOISOT JHOLH Z 80p

(MEN “LIND TNDIDOT)AL JLRM T Wb

RINg 90%

SOv

i *payue[q Jou I8 S019Z BUTpEs] *andyno s WM abetiieo | pOov
i ¥ *(1'0)=q 2I5yM *8qoaAq Jewiod sy ut dxg adky Jo atgetiea | 130, 2
i © Jo anTeA a3 Buruesaidss sIvYoRIEY IIDEV AP SIdINO AUTIN0T ST, | AV, 4
o

(ALX9 ¥IGION LINDTWDIDOT) RNEEORE 1289 NIRLRM 0ov

66€

86¢€

AL 3LDIM N S I6F

(8, ‘LINTDIOUT)HOL ¥ %€t

(2% NI / (MEISIN)GIM ‘ONDINVEL “LING TIDIDOT 00T aN'd £ G6t

8% = XINI TN (33

ASTNA =2 ONDINNH T B¢

RN 6E

GIoM XAANT T6€

4LXd ONDIN'H 06€

T™NOO1 68¢

88¢

i *poyUeTq 30U 3T 5019z BuTpee] *IndIno ST WIMP1 abetired | (8¢
i ON °(I‘0)=Q 213ym *GQOACAY JBwiod a3 ut Alxd adky jo atgerrea | BE
{ © Jo anTea 3y butjuessadel sI13oRIEYD ISV 3y SIdINO SuUTINOIT STYL, | BE
8¢

(ALXG ¥WRON LINY "hNDID0T) RNED AL dLM 13:13

&BE

BE

08¢

B6T YoIeH 2T FTHAW SINGDONHNA

o
nnnnnn
s

KON

p1 abad

o

-t ume

vvvvvv

AIX9T NTLRIM aNF

(A% ‘LINN "WDISOT)HOL

(7l ‘LINNTINDISOT)ALAST LM
RN

*3ndino ST wigax sberrred v *, AN o ‘WISNA, ‘AL , 0
:BUTMOTTO3 aU3 3O 3uo ST IdIno &Yy, *3ITun TeoThot petjroads ayy |
03 a1xd adA3 jJo arqetriea e jJo anfea TeOTbOT ay3 SN0 BUTINOI STYL, |

(31X 9914 LINDT "IRDID0T) RNEDON] ALXIT NTALRM

JIX9T LM ANA
14
14
(% AN ‘LINDTNOISOT)ALDIM 3SH
(NSy ‘LIND 'IOIO0T JALRIM NIHL
ASNd = W1ld I 3SH
(% AWMLy ‘LINDTOIO0T)ALRIM - NAHL
ML = N1 JI
RIINE

*ndjno ST wima1 3berareo o °, N . ‘WISTNS, ‘LAMIL , §
:BuTMOTT03 AR 3O auo ST IdNo YL, *3ITun TeOTbOT pPatdToads a |
03 a1ad A3 Jo argeraea e jo anpea TeOTBOT 2yl sINAINO BUTINOT STYL, §

(A OW1Ld LIND "TTDID0T) RNEO0 SIXIT ALIM

B6T Yoxew T

D

- N

~ NN

) B .-Q -
.lh~l§
Q-l a2
v
Il-
o
. 1}
w4
- -
. P

)
~‘ -

WISHINIA NTALRIM 0N

(%, ‘LINYTIOIDOT)KL

(WEORINI NI “LING'IWDIOOT) HESRINIA ALRIM
RIINT

"pNRTY |
1@ 50192 butpes] *Indino ST wImax 36RTIIRO ¥ * (4mu’s u)=8 PUR |

i

i

I /(s w’6"°/1°0)=P 213ym *ppPPPs Jewioj sy UT YIRINI adA3 Jo ITqeriea |
1 & Jo antea ay3 butussaidel s1930ereyo 1106V 9yl sndano surinoz STYL §

(WIOHINT WESRINT NI “AIAd LIND TIVOIDOT) Snaod MAoRINId NTRLDM

YIRINIA ALIIM (NG
(+* ‘"JINDT"NWDISOT)HOLd
(0T X3ONI “WE9WN ‘ONDINVE “LIND 'WDISOT)d0oT TNl
14
(¢ o ‘LINI"NDIDOT)HOL ISTE
14
(WOBINU NI 5 (T-))M =@ ¥HEWN 3SH
89/Z€ =° WIWN NIHL
89/2¢~ = WERINI NI JI
(o= “LINTDIOOT YHOLA
NIHL
0 > YIHINI NI J1
00001 =% XINI
ML = ONDIW'H
RIINT

AL ONDINCH
QDM IEIN ‘XA
T™NOO1
i *paYuUeTq |
1 31e so1sz burpesr *IndIno ST WIMP1 96eTIIR0 ON * (4= 'y)= DU |
T (u «'6"°'T°0)=P 9I5UM *pPPPPS JeUUI0] 33 UT WoRINI 2dA3 JO o[qeriea |
1 @ jJo 3nTeA ay3 furuesaidel s1vroeIRYD ISV Ay sIndiro UTINOI STYL, |

(CIAINI YISRINE NI “31X6 LIND 'WDIS0T) RINED0Nd YIoRINId HLRM

B6T UoIeW 2T

— N™m

NO
4 e

- N ™M <T WO~ (-]

»

91 abad

i
i
i

*pajqURTq 91e so19z buTpes]

QIOMT NTALI¥M GNA
(8% ‘LINTTTOIO0N)DL
(I8N “LINT'TWDISOT)QIMT BLRIM

-~ N ™M

RN

*3nd3no ST WimBal aberiIed y §

"(w #’6°°'T/0)=P 933yM *ppppp J2uLIo] Y3 uT @M adk3 Jo argerea |
e JO snTes a3y burjueseadea siajoeIvyd IIDSY oy sandano auTINOI STYL, §

(IOM NI “41Xd LINDTTOI00T) SIS QIoMT NITELRM

et

QIMT QLM aNd
, , , ‘LINN"IDIS0T)HOLNM
(0T "XaONI “MaagN ‘ONDINVE “LING "IDIOO1)aoOT TNH
0000T =* X3ONI
A =2

~ NN

ONDINTH
AINA

oM XXNI

a1

ONDINGH
NOOT

‘pPoOjURTq a1 S013Z butpeo] *3ndIno ST UIMPR1 IbeTIIRD ON |
*(u #’6°°'1/0)=p 913yM *pprpp Jeu10] 33 utr QM adA3 Jo aTgerIEA |
e Jo snfeA a3 bupuesaidel siajoeIeyd ISV sy sandano 3UTINOI STY, §

(@IOM YIS ‘31X LIND TWDIDOT) RINTDR GIoMT ALRM

B6T Yorey 7¢

vvvvvv

Ll ani®ail e) lllj
B
.
'

"

..a.a

..Tu

T

]

2

o4

A

%

I'sd .nm

-{A

s “

115]

0T1s o

605 o

805 0

L0S Ry

505 o
oS
€05 o~
205 -~
105
005 ’

66¥ . ;
86¥ B

16V o

%% :

Sev 4

14 g

&

27 £

oV &5

06¥ K

68Y o
88y

B@ .-"'“

By 4

@Y "

¥8¥ o
331

By 0y
N

]

X

- b
5% &
e Y

...........................

A QIOM{ NTALRIM aNd € s
v (A% ‘LINNTNDIOON)DL (AN 4 4%
“ (WaIN ‘LINITOIO0T)Q@IMT LM T s
5 AAINT orS
z 6€S
. i ‘pPaxuRTq J0u 31 S0I3Z BuTpRo] *Idino sT win3ax aberiIeo y | 8¢S
y i *(u «'6°°'1°0) =4 333UM HUYU U0 3yl Ut @M adky Jo afgerzea LES
3 I € 3O anteA a3 buruesaadel s1930eteyd ISV Syl SIdINo JUTINOI STYL, § 9€%
GES
m (GIOM WIENN ‘ALXE LINTTTWOIO0T) RINED0Nd GIOMI NIEBLRM 1239
3 £€5
. (43
2 CDM ALRIM aNd S IS
3 (He ‘LINIT'NDIOOT)HOLM b 085
5 (01% ‘XIONI “MFaWIN ‘ONDINVE “LINN'TDIOOT)01 TN £ 6
. 000[% =2 XXINI Z 8%
. STNd = SNDINVEH 1 &S
L. RN 92s
. 114
m. M XIONL | £A"]
: AL ONDINVH 1749
g "0 s
3 w©S
3 i ‘pPaXuRTq Jou 91 S019Z BuTpeo] *3dano s1 wimax aberiieo oy 0zS
. i *lw #’6°°'T/0) Y S19yM YUY FeuLI0] AP uT oM dA3 Jo arqetIea | 615
b, i © JOo anTeA ayy burjuasaidel s190eIeyo ITDSY apy sandyno SUTINOI STYL, | 815 ¥
£ LS !
4 (GIOM TGN ‘AL LINYT'RWOISOT) SUNEDoNd QoM BLRM 91§ X
9 STS .
: 215 v,
4 Ve
W.
3 obed R
4 L1 B6T YoTeW z2 FIOW SINSEDNARE =
gl

WINIOI NHELRIM ad € ¥LS
(4%, “LIND "TWDIDOT)DL Z ELS
(NOLIMDOT ‘“LINO'IDIOO0T JHAINIOE BLRM 1 s
RN 1S
0LS
I "IndIno ST WMl aberiaedo y *(J°°°/T1/0)=Y 2I3um Yuyy J8uIo3 i) Uy ST | 695
1 andjno ayL *NDLINDOT Aq 03 psjurad uoTiecoT Alousw ayy Juesaidel UYOTYM | 895
| sI90eIeyd IIDSV Y3 ITun Teotbor per3toads ayy 03 sandino sutanox s, | L9
995 -
(@M NOLIYDO1 ‘AIXd LIND "RDIDOT) SunaDodd ¥AINIOd NTRALRIM G995
v9s e
€95
YAINIOS 4LRIM AN S 7% Ry
(0T% ‘YA ‘NOLINDOT ‘ONDIWE “LINTNWOISOT)d00T IWNH v 1% %
000T% =¢ XIONI € 0% ~A
ASTNd =: ONDIWH T 6SS A
(oo “LINTINDISON)HOLOI 1 8sS A
RINg LSS i
95
@M XL SSS
AL ONDIN'H ¥SS
TO1 £56
ess K
i *Indino sT wiMmal dbetaIed oy °(4°°*/1°0)=4 913ym YUY JLUIo] A} UT ST | 155 -
1 Indano sy *NDLLVDOT Aq 03 pejutad uoTiecor Alousu sy uesaadel YoTuMm | 055
i s1930ereyd IIDGV 3yl 3Tun TedTbor potjroads ayy 03 sndino sutInoa STYL | 6YS ..1
. 8vs .
(QIOM NOLINDOT “EIAd LINT'NOISOUT) SUEDRE HAINIOT BLINM s x
%S X
SbS oy
144 o
.I
81 abud B6T Yorey 7z FINAOW STNBIDNHNT .,....
..’t
‘*\l

e
l‘-

6T 2bud

(% 101337 9114 JO P,y “LINY 'TDIOUT)ALTNM NAHL 6D% ASWO Iz 1y

{ 4% punod ION 31T,/ “LIND "WDISOT)ALRIM NEHL (D% dASWD X 019

(4% 10117 193sURL], ©IE],s ‘LIND 'INDISOT)3LTYM NEHL 90% ASWD SZ 609

(4% 10113 ¥39S,¢ “LINTIDIOO])ALTHM NIHL SO% ASWD vZ 809

(% I0117 SS9IPPV 103095,/ ‘LINN TINDISOT)ALIIM NHHL $0% dSWD ©7 109

(% UOTI09701d 3TIM. “LINN 'TOIN0OT)ALRIM NIHEL €£0% 3SWD T 909

(4% Apeany JON 201A,4 ‘LINT 'IDIOOT)ALRM NAHL 0% ASWD 1 S09

(% (3s9nbo1) uotieaadp pITeAU] ¢ ‘LINT'NOIOOT)ALRM NEHL TO% 3sw) 0Z %09
(,4% pegeounyy, ISTT ANQTINV, “LING 'INDIDOT)ALTUM NIHL ¥8% IS 61 €09

(4% pojeounyy, BN 3TV ,4 “LINT'INDIOOT)ALIIM NIHL €8% aASW) 8T 09

(4% P93ER1) BT YOIeIos,yy ‘LINT 'INDIDOT)ALRIM NIHL 8% ASWD LT T09

(% J0113 Jeutiog A10300110,4 ‘LIND "TOID01)ALRM NAHL 8% 35D 91 009

{ 4% 9391duo) wReIaDe ‘LINNTNOISOT)ALTUM NIHL (8% ASWD ST 665

(% 70123 O/144 “LIND 'TOIOOT)ALNYM NAHL Ob% ASWD 1 86S

(4% seTAtTadold S1Td PITRAUL 10 BUTSSTW 2 “LINT 'IVOIOOT)ALRNM NIHL g% ASWD €T 16S
(g% AJows JUBTOTIINSUL .44 “LINN TIWOIO0T)ALRNM NIHL Wb% 3SWD U %S

(4% 3300 weiboid 4 ‘LINN "TTWDIOOT)ALTIM NIHL 6%% SO IT 965

(% AL 9T11d TeBOTTI ¢ “LIND WOIS0T)3LIYM NIHL 8%% ASWD 0T 65

(W% praun) JUeISTXS-UON “LIND TIVOISOT JALRMM NIHL (F% SO 6 S

(% sueN STTd TeBOTIIw “LINY 'IWDIDO1)ALRM NIHL 99% ASWD 8 65

(% 0113 WBISAS .y “LINN TWDIDOT)ALTYM NIHL G ISV L T6S

(% (s)preiado prTeAUT 10 BUTSSTH.# ‘LING 'IDISOT)ALRIM NIHL pp% aSWD 9 06S
(% VOTIRTOTA 309301d AIouBl, 4 ‘LINT'IWDISOT)ALRIM NEHL €F% dSWD S 68S

(A% ITUN PTTRAUL, 4 “LINT 'TOIO0T)ALRM NEHL Zh% 3SWD ¥ 889

(+8% 30TASQ BATIORUL 10 PYTRAUL, ¢ “LINN 'IDIDOT)ALRIM NIHL Tv% dSWD € (8S
(% SWeN SATAQ PITeAUT, # “LINN 'WDIOOT)ALRM NIHL Q% 3D Z RS

3000 NN J1 1 98§

petife ¥85

8BS

i *abessaul a3} JO pue 9y} 3 INdINO JoU ST WIMDI SbeTiIeO Y | &S
1 *aurinox ButTTed 3y Aq patItoads ITun TeoTbol sy3 03 Sbessaw e se WY | BS
I =TUTJsp Spoo WM O prepuels ay} sIndjno sutnoa butbbngep 7 ST § 085
61(S

(ALAd 30 NN LING TOID0T)R 000y 3LM 8.(S

LIS

9(S

SLS

B6T Yooy 7T TN SINSONHNT

w

A0 NTALTIM aNA € 9

(%4 ‘LIND "TTODIDOT)INTHLTM Z W9

(9000 NINLRE LINDTOI90T) 3a0oy ALRM I 0b9

RILNE 6€9

8¢9

i *obessaul oy JOo pue a3 e INdINo ST UIS1 9BRTIIRD Y | L€9

i *sutInox burireo ay Aq perztoads jrun Teotbol auR 03 sbessaw e se uoTy | 99

1 —Turjep Spoo uIMBal O pIepuels iy sndano auTInoa butbbngep 7 STYL | SE9

vE9

(3LA9 3D NN LING TWDIOOT) SWNaTDRd 300y NIELRIM ££9

cg9

1€9

Ja00d JLRIM aNE Sy 0£9

14 629

(;4% sdew UOTIECOTTY 103 AJOUB|W IUSTOTIMSUL & “LIND 'IWDIOOT)ALTYM NIHI VI3 ASWD v 879
(4% 3senboy uado PITRAUT,, “LINN'INDISOT)ALRMM NEHL 60% 3SW & (29

(4% POYOOT OTld et “LINN "WDIDOT JALRIM NEHL 843 ASWD & K9

(4% STTJ YoeIog 03 ULUBY PTTRAUL 4 “LINT "ROIO0T)ALTYM NIHL (d% ASWD W S¢9
(9% 3TUN 1340 Uo uRdD ApedITy aTld g “LIND "ROISOT)ALRUM NEHL 90% ISWD ov ¥79
(4% 30137 3TTJ Jo BUTUUTESH,4 ‘LIND WDIDOT)ALTMM NIHL Sa% IS 6€ €29

(% pA00 AJ030911Q 183d0old UT pUNOg ION 3TTd.¢ ‘LINN WOISUT)ALRM NIHL pd% dSWD) 8t 779
(% T ST ¥1d,4 “LIND 'WDIDOT)ALTYM NIHL €03 3SWD L€ TZ9

(g% S9INQTIA PITRAUL 7 “LINN TINDIOOT)ALINM NIHIL 2% JSWD 9¢ 079

(4% 10113 A 9NWYSI,# ‘LINTTNDIO0T)ALRIM NAHI, 1A% 3SWD GE 619

(% 9113 33e0TTdNq,p “LING'RDIDOT)ALRM NIHL 0d% 3SW) ve 819

(M% T 3TgRL 3T Teotbolyy ‘LINN TWDIDOT)ALTMM NAHIL JO% 3SW) €€ L19

(4% LOTAROTITOIS BATIQ PTTRAUL 4 “LINT TWDISOT)ALTUM NEHL D% ASWD € 919

(H% TTNg 193Jnd UDTSSY,¢ “LINN TNDISOT)ALTIM NIHL D% 9SO 1€ S19

(g% (uwd:) aaTIoy ApealTy 3TNy “LIND 'WDIDOT)ALTMM NIHL D0% 3SWD 0f t19
(W% usdo 0N STt “LIND 'RDIDUT)ALTYM NIHL D% IS 62 €19

(4% 10133 oD IUTOd,# “LINN TNDIDOT)ALRNM NIHEL D% 3SWD 8¢ T19

0z 9bed B6T Yorey zg TINAOW SINBEDNANG

s !. .

‘e £ A

' Yo
A S

ROIERST. "%

-

']

.

4

A

&

i

NIV aNg 9 1.9 .m

XAINId =* ¥AINIOS D S 009 =

@® 699 Y

XIANId ONI =% XXINId v 899 ¥

1 LIXd NEHL NINIE AN = X3NId J1 € (99 Y

(LINTWDIOOT)HD 1DV IaD =! _XANId Z 999 A

od G99u

WAINIOT IXEL =% X3NId T %99 w

RINA £99

ALX8d XIANId 299 wHM

"0 199 5

099

i *butays ndur 659

i Y3 3epowooor 03 ybnoue abrel 133InQ I¥O3 SIT PSUOTSUMTP SARY ISTW § 8G9 .

i suTInol BUTTTeO YL “MAINIO (D ‘Butiis syy jo pwe a3 03 19jutad LS9
i © oeq sassad auTInol Y3 {3utInol ayl 03 psssed ST YAINIOT IXAL i 9%9
i butiys s1y3 Jo butuutboq auy 03 19jutad ¥ *uIMyaa Sbetiied 3ISITI AP | GG9
| butpnTouT pue [T3un SI93orIRyD %93 JO BUTIIS B UT Speal suTinold STYL | ¥S9
€59
(A1X9d YRINIOT IfD) SNINL 259
(AIXGd YWINIOT IXAL ‘&IXd LIND TNDISOT) RN NXNR 1599
059
6¥9
. 8¥9
ACE R TR TR e e e e e e e e e e e e e e e b e L i il syususess pesa o buruutbaq |11 11 9

¢ 9bad B6T YoIey 7¢

7 AN R S Ry
't-. Tntala €

e e T N Y
ARV SR O

LRI, TR

¢ obad

L)

AIXH v aNd L S69
d 69
A§l§V§+AA§I§mV§*o$v|.§§ 9 9
(WREL ISYId)ATNA = YI9dN NIHL S 69
AL <O Aggvﬁﬁﬁnﬁg& vy 19
(LINDTDIOOT D 106V 4D =¢ VREL GNDDES £ 069
@ - 689
Id LIXd NGHL 3L = (WEL IS9Id)HD Xai d'NA A ¢ 899
{ LINTTOIO0T VD TSV 1D =% WRHEL JISHId 1 89
aa B9
prarfich B9
AL WAL ONDDAS WL JSHId 89
™NOT1 B9
a9
*s1930eTey0 Idut Y3 Aq | B9
_ pouesaidon m3m> Hgaomnsg an PIM m:ﬂ:ﬁ butTTRO Y3 03 powImal | m9
T ST WIIN ° (uda *° " uTn’u0u)=1 23344 ‘Y, JQUI0] 3 UT SI9FRIAP | 6.9
i IIDSY OM) 30 auo 3Tun dwo.nmoa uodao&m 3L WD1J UT SPeSl UTINOT STYL | 8.9
L9
(21xd AN) SNININ 9.9
(AIx9 LIND TOIN0T) RNTDRH LA (VR SL9
VL9
€L9
(4]
B61 Yoy z¢ FINON SINSCONVHNT
3 q...s
,»v oy

- ‘.‘.':‘\--.. RS -.'.- AR .

L

14 7L

Id L P

- (RALGIHL J3TNA + ((RELTG0ES JATNA » 0T) + ((WRLISYI)ATNA « 001) =: YN 35T 6 TL z
(WEL®OES)AYTNA + ((WAL ISHId JATNA ¥ 0T) =t 30NN N3HL 8 oczL .
AL O (WEL QOHL) I TWIDET a'NA J1 L 6L B

(LINIT'TOIS0T)HO TIDSV 13D =2 WEL GMIHL 9 8l Y

4SH LIL ;

(WEL ISYId)ATNA = YIGN NIHL S 9L "

ML O (WRELGN0ES)H TRWIDET QI'NA JT v SWL "y
(LINTTIWDIOOT JHO 1I0SV 1D =% WAL GNODES € v "4

@® €L s

14 DA NIHE SML = (WEL ISYId)H "WAIDAd arNA JX ¢ u

(LINIT'TOIS0T)HD TIDSY &30 = WHEL ISHId T 1 B%

o (1174

LNE 60L o

31X WEL QTHL WAL ONODAS WAL IS 80L 0
01 LOL ..ww

0L A
i *S1930TRUD JrduT A3 | QoL o

i Aq pejuessades snten TeW[OSp BUY YATM SUTINOI BUTTTEO SUY3 03 pauwimes | VoL ot
i STHIEIN * (60 "’ wTu’u0u)=P 33U ‘,DpD, JQULIO] A} UT SIDF0RIRYD | coL .@
i IDSY € 03 T 3Tun TeoTboT poTgroads aup uoay uy SPesl suTInol STy, | zoL oy
0L ok

(arag WEIN) SNINLEN 00L

(QLAY LINTNDIDOT) SO0 ALXEAT (VR 669 -

869

169 "

%9 .

£z obad B6T UYoTeH 2T FINAW SINSEONMNT .

dLxaT v aNg 0t wvZL

D b

o

AL VR aNd £l %L

((2 'ONIUS IANT)dDO0T JYNA)AIAT =t ¥39WN ZT SSL

@® bSL

14 IIX3 NEHL 8 = X3INI J1 T &L

1+ XN = X3aNI 0T 2sL

WAIOWNID =¢ [XIONI JONTMIS LdINT 6 1SL

14 0SL

LIxd 8 6¥L

MNVH =2 [X3ONI]ONIWIS TAdNT L 8vlL

NEHL T, O WDV JIGN ,0, O WIONVMD JI 9 (¥L

(LINTTOIO0T JHY TSV I =2 WDV S WL

od = 78

0 =% X3IINI v oL

WIDNNID =2 [0 JONRIIS IANT £

@® L

1d DA NEHL T, = YRIORNID SRD 0, = YRINND JI 7 WL
(LIND'WOIOOT D TSV D =2 HAIOWNNID T ovL

aa 6€L

RN 8€L

ALXF YAIONMID X9 LEL

dIS 1106V ONIHMIS JAaNI 9EL

OO GEL

vEL

i *q U0 ISEIT e ST I3y pue (T ‘0)=q 333y 1xd A3 | 1374
| 3O STCgeTieA B 0] INTeA B SUTUISISP 03 O JRuLio au3 ut Jpun | rAY A
| Teo1bo1 petitoads ayy woaj si9joerRp g 03 T UT SPeSl SUTINOI STYL | 1€L
otL

(41X TN) SNINLN 6CL

(31xd LIND TWOISOT) RN LA VR 8¢L

zZL

KL

SeL

B6T YoIeW 72 TIOW SINSCONANG

ALXIT TR AN
(0 0)
13
LIXA
dGSNd =° HLUML
NEHL 104/ 43,/ds ASDO
LIXd
AL =3 HI(MIL,
MNIHL +Ts/43,¢ oLy 3SWO
WRIONWNHD JI
(LINITIDIOOT)HD 1108V D =2 YAIOWWIO
aa
priific
ALAY YLIOWNINHD
TNOO1

i *dSNa 10 |
1 JML I9Y3Te Se pauniaa ST HUMIL ‘peea 19joeaeyo ayd uodn Butpusdeq 1
i °3Tun Teotbor potjroads sy upaj 1930eIRyYO B Speel ainpxooid STy, |

(Arxd HLURML) SNINEN
(Anx€ LIND TROIDOT) RINTDORK LA VR

B6T YdoTeH 2T TION SENBDNHNE

»

— N "< [To RV}

BL
8L
6LL
8LL

9LL
SLL
vLL
tLL

TLL
0oLL
69L
89L
oL
99L
S9L
boL
t9L
9L
9L
09L
6SL
8GL
sL

>
b

LIPS

\..-" .‘\ \ :.'\

)

a “w» e .A' T .’i -
WO SO TN

Al - -
AN

RN

~

", .Mf.;i':w{-‘;;-

~
o

R I S e
Lo Lot '.s"-.’\'\%”

-
o 3%

N’ 2R ey .
r"" ﬁ"

14 LB
RAY.<| ST 9m

MNWH =2 [X3ONI]ONDIIS IdINT ¥1 SIB

NIHL S = X3INI a1 £l B

1+ XXINI =° XIINI 1 £

WLIONNID =3 [XaONI] ONIWIS LOIND R OEA]

14 1B

LIxd 0T oW

AMWHE = [X30NI]ONDIIS I ANT 6 608

NIHL IS = (EIDWND D TTWDDAd d'NA 1 8 80

(LINNTTIDIOUT KD 1SV I = YALNGWID L (08

o 98

0 =2 XIINI 9 G0

YLOVMMID =2 [0 JONIMIS 1ANK S vos

® €08

14 m

14 LD NEHL 3i = (YIOWNID) HD "TMIDad ariA J1 v 1.

(LINNTTRDIOOT)0 ISV I = WINMD € 008

NIHL 4=y = NDIS A 4+, = NDIS 1D , 4+ = NDIS IO ¢ 66L

(LINDTNDISOT MDD IIDSY 3D =2 NDIS 1 86L

oa 6L

RN 96L

6L

AIX9 NDIS YAIDWMWHD X3aNI v6L

YIS IIDSV ONIEIS IOIND %L

TOO1 ®BL

BL

i °p WO | 06L
fIseeresTaP PR ‘(6 ***'T0) =P (4=’ +1'y +) =S 2I3yM | 68L
I °PPPpps JRulo]) Ul YITHINI © JOJ SneA e Ul Spesl sutInol sTY, § 88L
8L

(ISHINI MI9WN) SN BL

(LA LIND TNDISOUT) IO MERINIA v 8L

L

BL

3L

9z 2bed B6T WI1ey 72 FINAOW SINBDONZINT

. L
o e
.....w.-._ .‘ P.... !

WK T CURIAY W

etk

Y
a"s"

e e

AT

e e T T

YTHRINIA Qv aNE ¢ 8! e
14 LB e
14 93
1 *snfea Jebojuy aatytsod wnwpa ayy ndano ‘oN 1 [9(Z€ =% WIGAN ISH 2 s& .
i *antea 13bojuy aataebou uwrumxew iy ndiano ‘sex 1 89/Z€- = YIBN NIHL 0z v b
I ¢ oaTgebau 1oqunu ayy ST *SMOTJISN0 ISqUIU ‘sof | = = NDIS AI IS 61 €3 W
I *UBTS 3y 1091100 SATIEHOU ST 18U 9} I1 | Id (T-) » MAGWN =% WIGIN NEHL ,-, = NDIS dI L1 B “
i *sbuex 13693UT MOTJISNO JOU SSOP J9qUNU A ‘ON | NAHL = ;
1 ¢ 9buex 19693ut a3 MOTJIoN0 ISCUINU BYF S=0q | 89.Z€ > YIN JI 9T 0B =3
((0T ‘ONRIIS IMNI)dOOT ATNA)JYEBING =% YIGAN ST 618 b

Lz 9bed B6T YoIoH 2T

»

et

9%

o ¢}

%8

GIM vy aNd VT €B

(OT% ’ONIMIS LIANI)a0OT WIYNA =3 TN £l I8
® 198

1d 098

LIx3 £l 658

MNVH =% [X3aNI JONTHIS NI <1 898

NIHL ¥ = XaINI JI I (B

T+ XXNI =2 XKD 0T 958

WIOVNID =2 [X3INI]ONIMIS IdNT 6 S8

14 b8

LIxd 8 €8

MNWH = [X30NI JONIMIS WANI L =8

NIHL 3STNd = (RIOWNWID D X3 aI'NA JI 9 1R
(LINN "TDISOT D 106V LD =2 WIONMD S 08
aa 618

0 =t X3INI v 88

WIDNNID =: [0 JONIMIS™ IdNT £ U8

@® 98

14 IDE NEHL 3R = (SIOVWID D XaH aI'NA a1 ¢ S8
(LINDTTWDIOOT)0 IIDSV LD =3 YEIOVEWID 1 s
(04| &8

RN FA L]

w8

AL YRIONNID XN o8

WIS 1ID6V ONIMIS IAANT 6€8

TNDOO1 8¢8

LB

i *yauo jsesT e sTatap puwe (Jd *°*'1'0) =41 963
1 9I3yM HUYYY Jwuio] Y3 uT (RIDM B 10J anTeA e ut speal autinol sTYL | GeB
149:]

(QIOM ZIEIN) SN 1%19¢]

(319 LIND "NDIDOT) RN RIOMT (VR rA43:]

138

0e8

628

B6T YoreW ¢ JHXIOA SINSEONHNA

R L R AR SR SRR R AT j
DI - S
DRI PR P O AT AT A o

TINI V1 ITNL DARAS S3IXd 30-Z 61T SALAD YL 086

(S)ONINM O (S 0 :NOLIVIIdWD J0

SINBEONMNT aNd 206

106

006

668

QIMT N Nl ¥T 868

(OT “ONIMIS IANI)dDOT GYNA =t JHI8IN €1 168

@® %8

14 G68

I €1 v68

MNVH =2 [XXINI]ONIMIS INAND Cl 68

NIHIL, 9 = XXINI J1 1T 768

T+ X3ONI =% XINI 0T 168

WIOWNHD =2 [XIONI JONRIIS JAdANT 6 068

1d 688

L3 8 888

MWH =2 [XN JONTIS IINK L (88

NSHL 3STNd = (YEAIOWNID)H "TWIDEd AI'NA JI 9 P8

(LI TINDIOOT D TSV 1D = JIIONNID S 98

o ¥88

0 =3 X3aNI v 388

WAOMNED =% [0 JONIMIS LdAND g 88

@® B8
14 LDE NIHL 3L = (YEIOVWMID)HD MWD arNA J1 ¢ 088 5
(LINDTINDIOOT JHO TIOSY 4D = WRIOVID 1 68 R
o1 - 818 A
XN L8 o
9.8 %
ALAY WEIOVIVHD XN (8 0
YIS T1IDSVY ONIMIS JABNI ¥(8 2
NOO1 €18
[4}:] oA
i *P U0 ISEAT IR ST AIBYI PR (6 *°°*'T/0) = P 9IMYM | us Wy
i *PrPPpp jeuwiol ay3 UT M © 103 anTeA B Ul Speal sufInol sTYL | 048 .
6% ~
(IOM YE3GIN) SNINER 8% M
(ALA9 LINTTOIO0T) RINEDOSd GIOMT GV LB %
A

“

6¢ 9bed B6T YoTeW ZZ TN SINGEONHNA “..““
B2 X K .

1 wbed

oA
A

(

1Jd%

clebve bbb bbb et er e et b R b i

- a - -

(2§s pa3edI) BTTd Yd3R3d8,¢ ‘LN0_IT0SHOD)ILIUL: HUHL L% dSND L1
(sds 3011 JLWIOS AJOIDDITU,§ ‘LU0 GUUSLIOD)3LIdN &l Td% aSVD 91
(dv 230Tdwoy uot3zesadp,$ ‘Lu0 JIOSHOD)3XIdn NNl 08% dSVD ST
(Wdv 20333 0/1.,¢ ‘LNO”J7I0SHLD)ALIdN HIHL Dve ISV vl
s2731109d0lg ST¥d PITPAUL 10 DUTSSTH,§ ‘LGOTSTOSHOD)ELIdN Wuid €% HSVO €1
(4% AI0Ud;; JUITDTIINSUL, § ‘SNOTGEHOSHOD) ALIdl KdHL VYL LsSVD ¢1
(g% 310qV we1boiad,§ ‘LNO”II0SHOD)ILIul: HULL 6V$ &sSVD (1
(d% 9a4L 9TTd TeLATTIvé ‘SO0 WTOSHOD)dlIais HGHL 8Vy G8VD 01
(4% PURULOD JUBISTXO-UOH, ¢ ‘L0 UTVUSLUD JELIUN KEHL Lve d5VD 6
(vd% 2uei 91Td TehoITI, ¢ ‘WLO0_dI0SU0D JdLIdis Lubl $¥% dsVD 8
o (.ds J03IG walShs, i ‘GLNO_ETOSHOD) ILlail el SVe UsVO L
{ «us (s)pueisdg PITRAUI IO DUTSSTU,¢ ‘LN0_JT0SH0D)ELIVUl Wdill ¥y's 3SVD 9
(4% UOTILTOTA 3003034 Aloudyl, ¢ ‘LNO”IATOSHOD)HLIdK LUBL Eve 35YD S
(8% 3ITUN PTITEAUI,§ ‘LO0”UTUSHOO)dLTall Ridd Cvs 38V ¥
(va% ©0TASQ vA4TIORUL IO PITRAUL,{ ‘LN0 WICSHOD)ALIdi il Tvs E8Y¥O €
(vd% ouel 9ATIQ pITLAUL, ¢ *LN0TETI0SHOD Judlue icdHL v SUVD z
wlud THallade dI 1
RERANE
*9LeuCou PUO BYJ 3T 3INC3NO 30U 1 LZ i
-I¢d | * (LIIVIWD) DOTADY INAINL TICLUOD JTLT.LL oU3 UL Lolltol i
~TUTJog O0D UInL el JIu pdCyuvie «dl L3l TRNGCI LdTo LD i
{ Gueb el siimmee Jochdeboue Llobe dmie..
VLU
bid SUCGUTe 20 LuTINTeU J it
(GUALd YELLIVELHNIL ULAY GTOLTIVOIOOT) LLAULDUME WJTLLTNG
(GLiCd dELLIVE Gdud ‘Llal GLLOTIVOIDOT) Luiduduud daidl
IVddd e
woAd, Swliud
ddAL
1 UIN3oT LoUTaaVDd IIoSV uv T3U9T2ICLYI wlGe 1
¢ =0 Lo LIUSLOD
WiN G510
CPOAUTT 994G CUSTs FSUW (iwlIv. pue 2o ld.. mvu:(i
-2002d SUTR2IUOD YDTYM) OTNPOU SLLUNUDLVELY 943 IRy} pub 20Ts8p JOGLITO |
2TOSUOD uWd3ISAS 343 03 Sobessauw ITIY3 Indlno SvUTINOT 2S9Y3 Iey3 930K |
*COTISTUODLRIP 103 PSTTRD 9 AL SOUTINOT LUCGIP 9SBYF TVLLALNG SDUTIINOT
poITsop oyy DUuTITeId®p PUP 3503 Z9pun UCILOIU U Y3Tii uT SOLJIG SIhjouw |
bUTYUTT Ag °*su2aboid ('iq DUTbbugap 103 SOUTIN0I SUTIUIULD 2[NPOL STYL i
SI0CUL SLRGEG
6V¢I°LOTOT8 0°€ S&

16 GT aienuep ¢

PR A IR ot

2AIOAUL. Co

PR LRI 8>

[

S R R Ea R R

U, AL ~CCC i Ol U

Ll rtimy =
e

5071d .

[RYOTRvY

¢ °bud

Wm0, %, ..‘....;..;

TIind sT

-
|
~
[}
REINT)

o
Jjop Lpod uinzwl y

(“uid

{ yle SGUL UDTZED0TTY 302 el wisT
(1w 30Ul Couy piieani,

{ 1ww £ULD0T BT

(sd% 9TTd YO3vaA0y 07 wluoy pITLAUT,

(,¥% 3ITULD I0Y3Q uo uddp ~pERITV 9114,

{ 4% 10134 91714 jo Dutuutbey,

(,d% DI0D3Y AI03001T(¢ Iadolg UT punogd 30y 21Td,

(+de TINd SI 4s1q,

(4% S93nGTI33V pPII=aul,

(+ds 20113 JI 93333STq,

{ +duv 2174 93e2TTANG,

(44 TING OT4RL 3TUl TedTbod,

(,d% UOTIROTITOOUL OATIY DPITLLUT,
((g% TTna 19530y ULISSY,

(.d% (UDUC) &4TIOV ~PRLITVY 3TUfd,
(Jdv UDLY 204 BTTS,

(Ju% 303134 40dYZL IDIUTOE,;

(,d% 10115 2114 5C bug,

(+us PUNOG 30K @11,

(..,d% 10115 Tozsuely o3,

A cus 101335 Yesy,

(,d% J0I1H SSvIPpy 103005,

(4% U0T3IDO30Id O5Ta,

{ US apedy 304 90ThRAU,

(4% (3Sanbai) uOT3LIAUQ PITeAu],
(,4% po3edouniy 3IsTT 93nQIalav,

(,d% po3iedouniy ouwel °171d,

e Laenury L

A . oSt

LR ST

L

LTS

-t

é
¥
#
%

et AN

(

* (LIOULUD) 221ADL 3NG3IN0 ITOSUCD WOZ5.E
Id pATPUTLT 0Y3

IS

. —_

il wdve..

Siw J

'

4
4
4
4

w0 E S

JOUMLS Sdliu
(S)OLILYL 0 (

3a0o-1
$)dudad

ZUCOu Wl
(1Sk u.UDC alo

LAoD T HunLdY

s
uy3 €3 ousec

CINUING CUTIOLI LUTen

SOCD neulue) Tdacoy

Lo Joliva.

sl e
SHUT LG oD emans
Lo v.[,.LHrL.
NG EHIOSIUD Yalldi.

o007 EUSH0D) ELIGl

4 - P et v
S N0

5100 Jiwlai.

o007 ETOSHOD) ELIGkh:
4 LG0T EI0SH0D) EaaTdd.
LUOTETOSHOD) Luoldl.
LO0TEIUSHCD)ELIdil
LLUTA'IOSK0D) Edluis
LGLTEI0SL0Y) GL T
AHOIU (ST TN W RO CTVN
{LLUT RGOS0)dLTua
fLUUTANUSIOD)3T,
LU LU0) dL Tl
L0 EUsWD YaoIiiz
CLDUTETONNUD Y uLIdh
CL00TEM0BL0D) dwIals

PLO0TETUELOD ud .
L0 S TULIRUD dwIu
LU ETUSLCT Judiae.
FL00TECLLGCD) allia
FON0TLIUSL0D Y dLTdl
‘L00TEI0BKUD) dLTud

‘LO0TEI0

SLHOD) doTdd

Su0d)l
RSN

mevett wmwdar, Leaa =
.y
PRI UV
et L e ww .
e nras obad [V N r\o;

Leatas Ldw

a1l
[y
sekad
JRNO¥ I
b tid
taabiw
Wil
fvdiid
PRI
Leladits
Jy
v-L batad
[RRSW

FRSPR R

Lavitaww
sidiew
L 80
Wl VO
Wlia TO
[RETH o)
Ldid 10
vy
ty

€t e er ¢ 0" ¢ ¢

T6v Saddd YoVe CYo

0 SLOIAYTILNI0D

Suild3d Uld

LTdel AR3 £

a'lildo..

oo}

86
L6
J0
56
Vo

.
[

Uo

Sy
vy

1 G
&

Y

uY

SS
Vs

Sy
wdiiaa

63 Pout

R

h- ..

n.. L]

.-\-

..... e 5 - muw

(3LAS 949WON ‘319 LINQTIVDIODOT)3A¥NAAD0¥d FLAET NTILIHNM Sy A
{ 31x€ YIGWON ‘3LA€ LINOTIVDIOOT)3¥NA3ID0Nd ILAGT 3LIdM MM
(31A9 ¥3gWON ‘3IAg LINNTIVOIOOT) FHNAIIO¥d JLAEE NTILIUM mw
(31X€ ¥ZEWaN ‘3IA8 IINATIVIIOOT) 3¥NAID0¥d JLAGE JLINM mw
{ 31A8 ¥E8WON ‘3IAg IJINDTIVOIOOT) 3¥NA3D0Ed FIAEH NTILIUM wm
(31ig d3EWON ‘3IA€ JINNTIVDIOOT) 3¥NAID0¥d JLAGH LTHM mm
(31x9 ¥99WON ‘IR IINNTIVDIOOT) F¥NAIDO¥d FLAYQ HTIILIYM MM
(91A€ d49WNN ‘dLAE LINNTI¥DIDOT) 3¥NAID0¥d ILAEQ 3LIUM mm
{ 91Agd ¥3ILWIOA ‘ILXE IINNTYDINOT) 3WNAIDDHd WIILIHM Mm
(913194 YIILRIOd ‘JdLAg LINATIVDIOOT) 3¥NAID04&d 3LIu WN

___________________________________.__ ARARRARRRRRRARE TYNIILX3

d1ST1I0SY, ddd 1IDSY <
[319 8)AVHYEY ¥1STI10SW 12
JLA9, ILAgd 0C

._______________________________,___ RERRRARRNARE 3AdAL

i ¥% 2714 °uin3al abeTiied 103 OTIdqUNU IIDSV i dO% =: NYNLIY IOVIYHEVYD 91

2 AR A AN 4 8 e
. -

[a} r~ @ o AN e i Ta R Vel

— et NNNN N

7 *20T1A3p 3S1T wW93lsdAs ay3z 103 13qunu 3Tun 1es1bo i € =% ISTSZiS v
\ ;{ *3ndano aTosuod ay3 J03J 1a2qunu 3ITun TedTbOT ;| Z =i LNONOD £1
, i *3ndut aTosuod 8yl 103 Iaqunu JTun Teo1bOT | I =: NINOD 21
3 11
M__~_ __m LNVYLSNOD 01
6
' i *2UTINOI STY3 Ag pIaiIse} i 8
\ i sle s3juswailels 93TJs pue ped jo sadi3y Iy °S3uswalels pesr 3yl i L
) i oy3z ®1s e3Ep 2y3l jo 3dT8091 AJTIaA 03 SIULWSILIS UTIITIM pUB S3TIA i 9
i @9y3 Buisn ‘patil 33 SIUBWIILIS PEII BYJ IXIN “SUTIITIM DUR 33TIH i S
i Jo §9T1195 ® U3iTa SuTbaq aur3inor sTYL *3Tnpoul SINIWIDNVHNI SY3 Ut i 4
i sautanox 3ndino 3Indut ay3y jo purlsay ay3l 103 ATST0s ST 3uI3Inox sTYL i €
z
i 1861 Arenigagd 0T i 3INA0OW LI 1S3l T

0S9T°0T20T8 0°€ SASZUd

R R S S R 2t i Al S gt ol gt

FEYEW TS O

of o MUNENN €A r L ol Ad . [l . o, 8 _a_ege - . . -
gt TR A Y& T AAARASS- AIOARICSE RRANIIC R AN

“
;
:
:

RN TN

WONUWTRT N

ARSI

S

A

8

e LV

e

"

LRt M "5 T "0 Y01

A

(R Jaf

L

-

WLV LNTURURT,

P eveoL T W)

ok

TR

(QoM d3dunn
(3LXx9 LINNTIVDIODOT

(QJoM Y¥agdWaN
(3Lx8 LINNTIVOIDOT

(dLAd IINNTIVOIODOT)3I¥NA3ID0¥d ¥IoILNIA~avay

{ 31x9 ¥IEUAN
(dLAg LINNTTYDID0T

(31xg ¥aguon
(31i€ LINQTTIVOIDOT

(dLx9 ¥3gHNN
(3LA9 ILINNTIVDIONOT

(3LAY Jadunun
(JLX9 LINM IYOIDO1T

)

)3¥NAID0Yd QIOMH™ avay

)

)3¥NAa3Idodd QIoMa ™ avad

)

)339NQ3doy¥d dLAGT qvad

)

)3¥NA3Id0Yd IJLAdd”avad

)

)3¥Na3IdoUd ILAEAqVad

)

)3¥Na3008d JLAEH™ AVay

SNINL3IY

SNINL3IY

SNanLIy

SNINLIY

SNYNLIY

SNYINLIYA

(3TLA€d IX3IL 10O) SNINLIY

{(3LXdd LXdL ‘3TLAE LINNTIVDIOOT)3¥NAID0dd NIAv3d

FPELLLEEDP SRR e r i b i bbb bbb

(ayoM NOILVDOT ‘3LA€ LINNTTIVOIDOT)I¥AQID0¥d ¥IILNIOA NTILIYM

(QoM NOILVDOT ‘3IX€ LINN IVOIDOT)IUNAIDOUd ¥YILNIOL JLI¥UM

(q4oM ¥dgWNN ‘JLA9 LINNTIVDIOOT)J¥NQID0o¥d QUOMH NTILIUM
{ G4OM Y38WON ‘3LA8 LINQNTIVOIDOT)540GE00dd GSEOMH FLId¥M
(gyoM ¥IEWAN ‘JLXE LINNTIVOIOOT)IYNAID0¥d QYOMd NTILIUM

(qyoM ¥3gWNN ‘ILAE LINOTIVDIDOT)3IUNAIO0Ud QYOMA dLIUM

(¥3OIINI YIEWON ‘3ALAL LINQTIVOIOOT)IUNQIDIOUd YIOILNIA NTILIYM

(393INI ¥3gWAN ‘3IAE LINOTIVOIODOT)3HNG3ID0¥d YIDILNIA ALIYM

’ - P oy -

. ”

NN ERE NN E

RN RN RN

X, v e e eV e aa

2 O

L

.t

A

A IR T T
e

ﬁfﬁ

p

9tT -

ao SET
Id LIX3 N3IHL 0 < JLA€ LSYId 31l 17 ¢E1
T + JLAG LSHId =% dLAG LSHId 07 ¢€f£1
(3LXETLSYIA ‘LNONOD)ILXAGH NIILIdM 6T Ctl
(3IXE87LSYIA ‘LOONOD J3LAHH 3LIUM 8T 1€l
(3LXE7LSYIJ ‘LNONOD)ILAGA NIILIUM LT O0fT
(3LAE7LSYII ‘LNONOD)3LADA™ILI¥M 91 6C1
(JLAE"LSYId ‘LNONOD)ILAGE NIIALIYM ST 8¢T
(ZLAE7ISY¥Id ‘LNONOD)ILAEL ALIYM A NAA
(dLAETLSEId ‘LNOKOD)3LAGT NTIILIUM €T 921
(JLAETLSEId ‘LNOKN0OD J3LAYT 3LIdM Z sZ1
(,d$23AQ73S1T3 3JO OnTes 3IXdN, 4 ‘LOONOD INIILIYM 1S S 24 _
od £21
(,d%°saur3nox 234Qqc UTe3TIM pue 93AQE 93TIM 3yl JO S3IS3L,# ‘LNONOD)NTILIIM 01T 271
0% =% ILAG LSIII 6 121
0zZ1
(¥%,# ‘LSTISAS)NTILIUM 8 6TT
(4% - 3YD0Tq PITUI, 4 ‘LSISAS)3LIdM L 811
(1d% - %201Q pu0dss,# ‘LSTISAS)ILI¥M 9 (LTT)
{ 8% - Y00Tq 351713, # ‘LSISAS)dLIyM S 91T |
1T
(,9%°20Th9p 3STT wa3isds ay3z ay3j o0b pInoys 3Ixd3 STYL ,4 ‘LS'ISAS INTILIYM 4 A !
€11
(,¥%°31 pua prnoys sTU3 puy ,¢ ‘ILNONOD)NTITILIYM € 11
(,d4%°2UTT dwes ayjl U0 3q pnoys STyl pue ,¢ ‘LAONOD)ILIUM t4 111
(,Y4%3LIYM :S3UdWAOURYUD BY3 3O 3IS®] © ST STYL,# ‘INONOD)ILIYM T 011
60T
R4LNT 80T
(0T
JLA9d dld HLYNOJ ¥LdAEIHL ¥Ld-ANOD3IS ¥ld LSdId 901
QIOM QUOM HLYUNOd QYOM™ A5IHL QYOM~aN0JDIS A¥OM LSYIJd 0T
dIOILNI YIOILNITHLENOS dADILNITQEIHL dADILKITANOD3S §IDALNITLSYId voT
3LAL 3LA9THLYNOS FTLAG QYIHL 3ILACTANODIS ZLALG LSY¥Id €01
19001 201
101
i *autanocl Hur3lsaIl 3yl ST STUL i 001
66
3dNQ3ID0Yd SHNATLSIL 86
L6

RN RN RN R RN R RN R R R RN RN R R RN RN NN NN RN ER RN R E R E R AvaAma --

O\
g
oo

~

(,¥$SALTYM YIOILNI 40 LSAL JO ANI 4 ‘LSTISAS INTIILIYM
ao

14 LIX3 NIHL 0007 < ¥3DSILNITLSHIJ 41

00T + ¥IDILNILSYII =: ¥3IDILNILSHIJ

{ Y393ALNITLSHId ‘LIS7ISAS)dIOILNIA NTILIYM

(4% Y % ‘LSTISAS)3AlliM

(dA9IINITLSYIJ ‘LIS7ISAS YYIOILNIA ILIUM

(,d%:anTesa Jewidsp 18ba3uT 4,4 ‘LSTISAS) dllds
oa
(,4%°S23T1sM 19b33UT JO 3IS3L,# ‘LSTISAS INTALIUM
SPei~ = dADILNITLSdId

(,¥%S3ALIYM dIDILNI JO LS3AL 40 ani ,¢ ‘LNONOD)HIILIFM
ao

14 LIXd NIHL 0002 < d3aDILNI-LS4Id 41

T + dAD3ILKITLSdId =: dd03LNI LSd1d

(43DALNITL5EId ‘LAUN0D J4EE03LiNIG WIALIHM

(,¥% ¢ ‘IDOKOD 1dLIdn

(¥IOILNI LSAIA ‘LOOHOD Y¥IDILNIA 3L1dM

(,d%:anTea Tewidap 19ba3ul,4 ‘LNONOD)3ILIYM

oda
(,4%°S23TaM 18Db33UT 3JO 3S3L,4 ‘LNONOD IHNIILIUM
SPET- =% dIOILRI LSl

{ ,4% 3IsTSAs 03 93AQ 3O S3S33 JO pud,4 ‘ISTISAS)NTILIYM

ao
I1d LIX3 NIAL 0 = dALA9 LIS¥Id 41
T + JLAETLSHIA =t JLAG LSYIJ
(3LAE7LSYId “1STISAS)ILADH NTILIYM
(dLX87LSYId ‘ISTSAS)ILXGH 3LI¥M
(3LAE7LSYIJ ‘ISTISAS)3LABA NIILIYM
(3LA97LSYId ‘ISTISAS)dLADA™ILIYM
(ALAE7LSY¥II ‘1STSAS)ILAEd NTILIYM
(dLX9 1SYId “‘LSISAS)ALAdL dLIdM
(3LAE ISYIJ ’‘ISTISAS)ILAET NIILIUM
(dLA9LSYIE ‘IS7ISAS)ILALET IALIYM
{ ,¥%234AQ73S31J JO OnTeA 3IX3N,# ‘ISTSAS)NTIALIUM
oa
(,¥%°sautanol 934q¢ ura3Tim pue 234QiT93TIM 343 JO S3ISOL,# ‘ISTISAS)NTIALIYM

(+¥% TOSuOd> 03 33AQ JO S3ISd] JO pud, 4 ‘LAONOD }NIILIUM

€S
49

0S
6F
gb
Ly

9y
Sy

vy

137
(44
184
ov

6¢

Le
9t

St

ve
te
t
1¢
0t

8¢
e
9z
4
ve

[44

081

8Ll
LL1
9L1
StLt
viLt
€Ll
Ll

€91
91
191
091
6¢1
8st
LST
9¢1
Sssl
vel
€6 T
[4°N
151
061
61
8¥T
i
91
SP1
1A A
£t
[4 A
1829
oyt
6€1
8¢eTl
Lel

acT

<\

| Pl | N RO [B pa ity & 4 A al QRSO IS MR s

P TI0d v T I19YL TOAWXS S3aLXd 3JA0OD-Z 99¢ S3LXY YIVA €1L
. (S)ONINYVYM 0 (s)¥oyuya o *NOILVTIIdWOD 40 aN3
L171S3L aNn3 Loz
, 902
SHN3TLS3l agN3 L S0z
. ¥02
A (+M%LSAL QYOM J0 ANT ¢ ‘ISTISAS)INIILIUM 1L €0cC
, ao z0z
2 Id LIX3 N3HL 000%9 < QUOM™LSHId 4l 0L 102
; 0007 - QYOM™ LSYId =*: QYoM ISdId 69 002
\ (QUOMTLSYIJd ‘ISTISAS)QUOMA NIILIWM 89 661
. {(+d% ¢ ‘ISTISAS)ILI¥M L9 861
. (QYOM™LS¥IA ‘LSISAS)QUOMH 3IIdM 99 (61
i (9% :saniea piom ¢ ‘ISISAS)ILIuM 9 961
oa S61
; { \¥%°S23T2M paom Jo 3531, ‘ISTISAS)NTILIdM ¥9 ¥61
X 000¥9 =3 QYOM™LSYId £9 g6l
. 261
A { +U%LSIL QUOM J0 QNI ,# ‘LOONOD)NIILIUM 79 161
ao 061
9 Id 1IXd NIHL 00099 < QUOM~LSYIJ 41 19 681
; 0T - QYOM™LSHId =: QUOM 1SY¥Id 09 88T
L - (QIOMTISYIA “INONOD) QUOMH NTILIUM 65 (81
g (3% (& ‘ILNONOD)ALI¥M 8S 981
3 (QIOM™LSYId ‘IOONOD) QUOMA™ ALI¥M LS 68T
x (1y% :sanlea pioM ,¢ ‘INONOD)ILI¥M 95 8l
h oa €8T
- (1M%°S33TIM pIOoM Jo 359T,§ ‘INONOD)NIILINM Ss 8T
N 000%9 =: QUOM™ ISY¥IJ ¥S 181
i 081
% . D.n”-v.
3 s % (X
rd

(¥

v e T T TR

pages is :
Page Number Contents
316 Introduction Comments
317 IO0OUT Routine Comments and Listing
318 IOIN Routine Comments and Listing
319 MENSET Routine Comments and Listing
320 MEMREAD Routine Comments and Listing
321 DISABLEINT Routine Comments and Listing
322 ENABLEINT Routine Comments and Listing
‘j 323 DATE Routine Comments and Listing
324-325 ALLOCATE Routine Comments and Listing
326-327 DEALLOCATE Routine Comments and Listing
328 Equates for Utility Module
329 Symbol Cross Reference Table for Utility Module
Utility Module Testing Routines
330 TESTS Module
331-332 ASMTEST Module

& Appendix B: Utility Module Listings

The following 17 pages are the assembler listing of the Utility Module
routines and listing of two modules of testing routines. The contents of these

Appendix B 315

Y
s

-
&J

o
W WD,

‘s
R
‘s,
~- ‘II
ﬂ‘-

L]
4
S
-
v [

I.
L
;
L}
»

.
S
-
R
.
.
e
’
v
Ao
.
‘e
’
[
s

*aUTINOI 7 Y3 JO seTnpow Uy ¢ 9

UITM UT PONUTT aq Istur (Spoo Joofqo) aThpow Bulamsax 3y, ° (UoT3oes sojenbs ! 67
ayy BuTtpnTouT) pepssu sautinol ayy Auo BurArquesse Aq 921s UT psompel oq ¢ ¥
UeD 9NpoU AU} {juspusdsput S1e SSUTINOI SUTU IS °*SUTINOX BuTITRO a3 ¢! &«
BUTUTAUCO STNPOW Z7d SUR UT Teulalxd poITe(osp 3q Ismul suTinol ALITLIA 3R ¢ T
autInol Zd © AQq paTTeRo 3 QL *SSUTINOI SUTU SUTE3UOO ALITLIA STNPOW “ | (4

*sautInoa Afquessse asau pue ¢ 61

aupnol BUT{TeD AR Usemaq Burssad UM s19jaweid JO JUSULIDITAWR Tedtboy ¢ 81
3091100 33} UTejuUTEw 0} 3ucp ST S193ST0e1 srotiea Jo butdod pue Butysnd ¢ (1
YL °)}Oe3Is S eTA S3UTINOI 714 BUTTTeo ayl 03 sisjauwerad winyax pue uwbijy ¢ 9T
sisqoueied aATa091 SauTinol abenbuer ATquesse osayy *seurinol 7 Aq ! 61

PoITeo 3q 03 poubysep sauTInol dbenbuer ATquesse jo 3as e ST ALTILIA !y
€1
A
113
ZSHT - B6T YT 7 (1]
6
8
L
9
S
v
€
F4
ALI'ILIN oTpoW butpesyy T
8°S WSV INSEIVIS TRM0S JWIS W 30 (0 201
1 TRd rA411) 1] ALT'ILIN ALI'ILIN STNPOW

B‘
e
e
-

P TIENEAXN T ARNSICE U ICIININ - LS e e gl R L e 8

. TN W TR AT
D

i 3 mwrwwmmw ol tad
- - M A - LA S a3 N RN AR 10 A E tat Sat Sed tedo S
g

"I{D0I 3uTIno1 Jo pug !

*UNOI 714 BurTTeo oyl o3 winjsy ¢ (m)

*aouds abe103s s,403 1939urIed N0 3y} ajecorTeeq ¢ xi
*souds afe103s 8, AYNA Iojauered 3no sy Sjeocorteed ¢ «a
*SSaJppe wInlal sy 399 ¢ ™

*anTen X1 s,weiboid butiTeo ayy 910359y !¢ XTI

*IMOd 330d OI AP 03 193STHaT Y 9y 93 TIM ¢ ¥’ (D)

*RI0d entea 310d OI 33 Jo sseIppe Ay 39D ! (9+X1) ‘D

*33cd 3 03 UNITIM B 03 ATNA P YATA 19351691 v o peo] ! (H+xX1) ‘v
I93utad joers JBIIND AR 39D ¢ ds’x1

*193sTb31 X1 a3 ree) !¢ QIIZ ‘X1

XI §,3ut3nor bur{reo ays aaeg !¢ XI

dr
dd
dd
d0d
dd

JO0I 'MaOD

(arNA ‘DI0F 01)aooI

4
:Aq paxoaut st suTInoa sTYY, ¢
4

(BIxd JYNA RIOT OI)RNEDoM 00T

*SMOT[0F Se THNMAIXA PITeTosp o] PINOYS aurnol sty *3iod ¢

OI o1370oads e 02 anfeA ZAd e IO 03 UTIN0I FTIH © SMOTTe JDOI

SaUTINOY SSIOON 3Jad OI Burpeay,

8
¢ I (440})]

- - e B S W W W I

6S
8S
LS

GS
14°

[A"
15

6v
Ly
14

63
1a
1a

6,@
90daa
voaLaa

6taa
0000TCaa

JNFEINIS TS JWIS W 3a00D M40

ALI'TLIN

N

»¥e
« .
Kes
s>

S100
y100
£100
¢100
0100

J000

4000
8000

<000

201
SSUTINCY SSIOOY 3303 OI

T S ST O N T et
PHYNAL AR St Ay ,. MDY

SR

SRS

*NIOI 3urInox jJo pud ¢

*auTINOI Zd buTTTEO SR 03 WMy ¢ (TH) ar
*a0ads abe103s s,RI0d I9jauried N0 Yy Seoortesq ! o dod
*SS9Ippe w1 ay3 399 ¢ ™ dd
*antTeA XI s,aumnol Zd buriTeo ayy aio3ssy ¢ X1 dod
*abue1 1addn ay Iee) ¢ Gz’ ([+X1) a1
*wT3ec0T burssed 1sjaueawd ay3 utr ATNA oeTd ¢ v’ (9+XT) al
04 310d OI 3y woiy peoy ! 0) ‘v NI
*I¥0d anTea 31ad Of Sy JO SSIIppe AP 39D ¢ (+x1) D ai
*I9JUTOd OEIS AP JO SNTRA IO Y 9D ¢ ds’x1t aw
*193S1691 X1 ayy Ieo) ¢ o'xx al

*)oels AR uf anfes XI S,3uTnol burTedo AP anes ! XI HSd ! NIOIT

NIOI 'NIUD

(MOF OI)NIOI =% FATNA
tAq payoaut ST NIOI SutInoy

(3l aTNA) SNIOLR
(dIxd OJ0I) SIaEDodd NIOI

o fm fm tu fn tn R Su S

© o ® x
BB C T 88 e RRARINRRAN SN IBELEERAS

*SMOTT0J Se STNpoul S,3UTIN0T ZId BUTTTeO 8yl ur TRWISRXD PoITe[osp ST NIOI
*330d Jeyy Jo antes 3yy SuIMd1 NIOI ¢I9qunu jiod QI ap se13Toads aurInoa g !¢
ButTTeo 3y *330d O We upa3 peoa AT3I001TPp 03 3UTINOI ZTId B SMOTTe NIOL !

309(dy

[A431] 1] ALTTLIN

*a "2 3.y Y V- V- R o A A L b NI 2 2 A L 2a a"™

6d
1a

00409taa
90LLad
8L
Poavaa

680a
0000TCaa

3200
acoo
00
L (ALY

00
£200
T¢00
J100

o100
8100
9100

JNSEINIS TOM0S JWIS W 330 a0 01

SIUTINOY SSIONY 3] OI

&z

TN AT TR

JASWEN duT3Ino1 Jo pug ¢
*aurInol Z1d BUTITRD U3 03 WMy ¢ (H) Ty
*aoads abeiols S,NOLLY)O1 193=aueiad no sy ajeoorteed !¢ x dod
*soads abe103s s, AYNA 193auried N0 Ay deoorTeeq ¢ € dod
*SS3ppe wme1 ayy 399 ¢ ™ dod
*entea XI §,9UT3nol but{Ted ayy 810359y ! X1 dod

*anTeA pa11ssp 9U} 03 UOTIeooT Azouwsw pa1Tsap 9y} 39S ¢ v/ (TH)
*ssaIppe Azousu NDLINDOT JO JTey Jaddqg ¢ (L+X1)*H

*JTey I9M0T /SSSIppe NDLLVOU1 Aiousul poitssp auy3 399 ¢ (9+xT) “1
*yore3s ay3 upay Azousu ut psoerd aq 03 ATNA U3 399 ¢ (+X1) ‘v

*193utad pEIS AR JO nTes JWBIIMO A} 39D ¢ ds’xI
*19391691 XTI a3 1w ¢ [03C/AD ¢ |
*30e3sS SY3 UT anfeA XI S,3uTIN0I BuTTTED AP anes ! Xt S TASWAN

JHASWHN NP

(FYNA NOLINDOT) LASWIN

:Aq poYOAUT ST JASWIW SuTInoy ¢
4

(413 ATNA ‘GIOM NOLINDOT) FINTDH JASWM

*SMOTTOF SB FINAW S,8uTInod Zd BuTTTeo syl 03 "WNMEIXT ¢
POITeToop ST JHASWHN °TTeO SUTINOIONS © BTA jsey aues ay3 saystiduoooe ¢ gQf
JASWIN UTINOY *I93utad Jety eTA UOTIROOT SU3 39S UBYR pue Ssaappe doTJtoads ¢ 66
a3 o3 19qutod e 398 PINOO BUTIN0I Z YL *SuoTIoof Azousw oTIToads ¢ ge
39S 03 SuTINOl 7 10J POyl SjewIjre ue septaoid JASWEW SUTINGY ! 16
%
6
6
SaUTINOY S0y ATousy Butpeyy 66

JNBEIVIS 0SS WIS W 3D A0 01
ALTTLIN SaUTINOY SSAON Aousyy

: .J

.. \-;_..

A
A
., \J‘_
je
B
“GZTWE SUFNOT JO pud ¢ 651 iy
8s1 "
*3uTIN01 Zd BUTITeo a3 03 wnay ¢ (H) ar (ST 63 1900
*souds abe103s NOLIVDOT Iojaueiedino ayy a3jecorreeq ! aa dod 951 a 090
*SSoJppe WIga1 a3 399 ! H 4 6T ™ 500 R
*30[RA XI 8,3UTIN01 BUTTTED AR 210359y ! X yST HH @00 A
131§ ve
*sbuea 1addn ay xes) ¢ oz’ (L+X1) ai ZsT 0009600 6500 m
*aurinol 74 A3 03 %oeq butssed 103 yoels syl ur AYNA deid ¢ ¥’ (9¢XT1) ail 1T 90L/ad 9500
*NDLINDOT Atousu psssoippe a3 Wwolj FYNA 3 399 ¢ (H) ‘v ail 0ST L SS00 .M
*NOLIYOOT Jo 3Tey 1addp ¢ (S+XT) ‘H al 691 G0990d ZS00 o
*3Tey 30T ‘SS3Ippe NDLINDOT Atousw poItssp a3 399 ¢ (r+X1) 1 a1 8yl v0d90a Av00 o
Lt
*193utad spe3s ay3 Jo anTeA JUBIIND A IO ¢ ds’xI am %1 6600 @00 \m.
*19351691 XI AR TeS) ! gz 'x1 al SYT 0000 6¥00 £x
*3¥0e3s 3 UT anTeA XI S,9uTInol ButiTeo s ases ! XI H™ VR VYT X L¥00 _.”..Jd
1528
QVRII NP 441
, Wl
a Qv._” “~
(NOLINDOT)QVaBd =2 ATNA ! 6El y
¢ gel ~
:Aq SuTIN0I 7 BYI UT PINOAUT ST (NRIEW £ oLeT
¢ o9et
(axa AYNA) SNINLR ¢ oel
(GIM NOLINDOT) IR QURBG ¢ opet

¢oeet

*SMOTTOJ Se ITNPoUl S,3UTINeT 71d BUTTTED 3yl UT TMNMALXA PoITe(osp ST autInol ¢ zg[
sWyL °sidjutad 03 HUTII0S31 INOUFTM UOTIEoOT AJousui O1310ads © Jo SUUoO ¢ 16T
Y3 pesl 03 3UTIN0I Z1d © SMOTTR (N auTIno1 abenbuer ATquessy ¢ ot

6C1

8¢ct

walay (21

WSY INBGRINIS TRMS IKIS W 30 D 001
mu& NNBE EFS gﬁ&mgg

a...m.\A w#v b

A -y e~ AL L AP LN MMM A I NS AL PPN T TRBDANIN AN Ty et SPUPRNRING |

RN B il Sl ' S's - Bt BB Sd

. 0

*INIFTEVSIA SuTInol Jo pug ¢
*autinol Zg BuriTed a3 o3 wmey ¢ (M) ar
*SSaJppe uImma1 3y} 399 ¢ ™ dod
*sydniasjut srqes1q ¢ 1a SINCITVSIA
INITIENSId TNaOD
!
INTTEVSIA !
4
:Aq suranox 7z Burireo sy3 ur peyoaut !
ST auTIno sTYL *sisqauweiad ndino Jo Jrdur ou sey INIFIEVSIA U3 930N ¢
TINTDOM INLTTEVSTA !
I
*SMOTTOF Se FINAOW ¢
S,3uTIN01 BUTTTED 3R JO UOTIOSS "NALXA 9U3 UT paiTeTosp ST INIIMVSIA ¢
*53dN1I93UT g SPOW 10J 395 3q PTNOYS (D A, *SNIISIUT STqeysRU (M) 8-Z !
a3 TqesTP 03 auTInoa benbue] 71 e JoJ ayqrssod 3T SONW INTFTNSIA t

SsUTINOY [0I13U0) Ynaasjur Butpesy,
8°g
9

WSV
TN
®

L. - A A A A 20 Bata' s a K

81
BT
a1
BI
®|1
6L
8Ll
LLT
9Lt
SLT
1748
YA
L
LA
0LT
691
891
L9t
991
G991
1218
£9t
[4°]§
19T
091

63 V900
T3 €900
t¢d 2900

JNBAAINIS TS JHIS W 30 A 201
f4AT1 R} ALT'ILIO saUTINY Toue) Ynaasgur

MR
U ot al s

SIS
L I TR

i
ARSI ¢

*INITTIVNG auTinox jo pud ¢
*auTIN0I 2 BUTTTR0 ayy 03 wmay !¢ (H) dr
*SS9Jppe WIMal A I ¢ ™ dod
*sydniisqur afqeny ¢ K| S INTT TaVNA

INITTNNE "NIUD

JNLI VNG
tAq poyoaut ST auranox sy *sigjaueiad Indino 10 Idur ou d1e AIAMP Jeyd 3PN

N0 INTI TN

tn fm tm Snm Su Sn n Wn

*SMOTTOJ SE STNpoll §,3UTIN0T BUTTTED 3y UT TNMAIXY POITe[osp ST INITHEVNG ¢
*UTINOT Z7d BUTTTED SY3 03 PaUIMIdT aARY 30U TTTM TOIUOO fuoTIONIISUT H 4od ¢
ap 193Fe 3snf Iooo [1TM WNIISJUT Sy ‘S9INOOXd SUTINOA ST usym Butpusd ¢

st Wn11ajuT Ue JT JeYl 30U ISLSTd *NdD (8--Z Y3 Jo synazsuUT STqeNSA ¢
AR SOTgA JUTIN0T STYI, “INITFHEVSIA Jo 31ud1aqunco ap ST INITTHNG

0003,

60C
80C
e
90¢
S0C
voc
£0C
414
10¢
00
661
861
61
%1
Ss61
1218
61
61
To1

¢ 061

681
881
81
B1
B1

63 (900
3 9900
a4 G900

WSY JNGBINIS IR0S JWIS W 300 (D 01
a& NNSE Eébggaobéguﬁﬁ

*3IM] SUrno1 Jo pug ¢ 8vC

e
*upi1boid Zig buriTeo 9yl 03 WMy ¢ (H) dr we 6d 8800
*SSoIppe uImel ayy 399 ¢ ™ dod She 3 (800
*anfen XI S,3aUrinol bur{Teo ay3 2103s9y ¢ X1 dod vve ™Ta 800
13 Z4
*sutynol pw ‘sax !¢ e
*butpeo] SnUTUCO ‘ON ! 00T AINI‘ZN ar we VIZ €800
*pproT UBRq aArY s19joeIRyd 9 TTe IT Yo !¢) e ove 6d 28O0
*13ysueiad andino Jo ybueT oM 203 3Isnlpy !¢ c ONI 6€C £l OO
*uoTyeoo] J3jauerad nd3no ayy ojuUT Jajoelivyo ajep A prog ! Ial :d00T 3IMd 8€C owd JL00
LEC
*3unco 334Aq auy 03 Od 39S ¢ H9’Od ai 9z 009010 JL00
*UOT3e00T AlouBuw 9521038 AL 9YI 03 H I9S ¢! SSTIKN AIMI‘H al 174 tETNTC 6L00
*uoT3eoo] IFawerad ndyno 3ISITI SYY JO UOTIEOOT Y3 03 & 398 ¢ XM N vee 61 8.00
*dod pue ystd e era 193sTHO1 XTI oy Jo ¢ X dod 1374 a LLoo
JO s3USqUOoO AN YITM S193sTHO1 3 9yl prod ¢ XI HSiM (A4 SXd Su00
*J03ReTIUIOOR Y} 1e9]) ¢ (03 cvAd') al [£74 00d€ €100
*g1ojaurtad ndino 103 395330 Hoels Yy peod ¢ HYO ‘M al 1174 00v0TC 0LDO
6CC
*13qutad ¥oe3s P JO SnTeA JUBIIMD AR 39 ¢ ds’xt aw 8¢c 6801 3900
*193sTbo1 Y1 oy 197D ¢ o3z /X1 ail (ZZ 0000120 V900
°*30e3s AP UT anTeA XI S,3uT3Inol butITeo ayy anes ¢ XI HSfd LCTA (O 4 SIx1 8900
1144
41 "NOD vee
| YA
ALV =% 0XA ‘TANT ‘OHINOW ‘ THINOW ‘OWVAX ‘ TaVEK ¢!
4
+ 1T
:Aq sutInox Zd BUTTTEO B3 UT poYoAUT ST AIMd ¢ 0CC
! el
(QIxd O0AY TAVI OHINOW THINOW OWAK TIVIX) SNINIR ! 812
RNEDRA ALK “ Le

*SMOTT0J Se STNpowl buTTTed SY3 UT TRUWIgNXe POITeTdsp ST AIMI URoY °*jooq { ST
we3sAs uadn 395 B st 93ep ULISAS Sy ‘TnJosn 29 03 UTINOI ST 104 ¢! T2
*AATT 21e senTeA IIDSV-UOU ‘pOTquRIOS USdq sey uoT3eco] Ajousw a3 JI ¢ €T

*3uTinoa BUTTTED a3 03 (a1e Aoyl Jeym 1333euwl OU) sISPRIYD IIDSV XIS a3 ¢ 2T

sumal pue AJousut up1j 33ep UuBJSAS JURIINO Y3 SUYoleJ ALW] MUTINoY LI 4 1

SUTINOY SSIOW AL WRISAS butpeayy 0TC

8°G WSV JNGHAIVIS TMDS JWIS W 3D D 201
8 I A1)] AITLIN SuUTIN0Y SSS00y ALWd uB3sis

e .“6 v,
S e

I R I W N S T
A S Ss S BBl BB B o a ke B A) o

(QO RO H3ddN ANIDE RIOWEI SEMDT @ILSINCE AZISSDOH) ANDOTN ! sz
=% SRV DNIANT “SSRIOAY DNINNIOEE “‘AZIS YO H THVINVAY ‘3000 NI ¥ rd
{9z

:Aq duTINOI 7 BUTTTED Y3 UT PSYoAUT ST ANDOTN R T74

*OI9Z JO aNTeA © (ITM pouImal ST SSIHN ¢ §(2

“ONINNISH] USY3 ‘019z ST F2IS YOO FEVITNAY JI “Atousu JO %ooTq aigeirese ! ¢/z

3sabie] ay3 Jo sSoJppe Sy} ST SSIRIKN DNINNISHE UWRU3 ‘019z ueyd 193wa1b ! gz

ST 9ZIS YOUN IEVINAY JI *spunoq patIroads st utyyts Aiousw Jo yoorq ¢ Tg

pejecol teun 3sable syl JO SIIAQ JO I2UNU AR 39 TTIM J2IS DUE TEVINAY ¢ 0.2

*Aaoustr JUBTOTIINSUT 103 SPoO WIMST ORI SUI Hyp JO NTeA © UJTM poummal ! 6oz

3q TTTA 3A00 NINLA Pue O¥dZ JO anTeA e YITM paumdT aq TTTA SSTIV DNIGNE ¢ 89T

WY 3218 00H TEVIVAY eyl 193ee1b ST @ISIHTR 3218 00H 31 990N A 4
[

LI 4

(@M SSRIXW DNIANT SSTRIOAY DNINNISEE 3218 D0 H v IIVAY { g

_ ‘AA 30 NRINLN) SNINEAY LI 4 4

(@M QUDE RO Y3dN aNNod RIoREW M1 @ISINTY AZIS YD0H) RNTDRH N0 TN ! €
! X

*SMOTTOJ Se NPl S,3UTIN0T BUT{Ted Sy3 UT [eu193Xe paiITerosp ST AINDOTN I (4

‘uoTiRIIoJuT J3Y3INg 10J Tenuely s,19s() ub3sAs bupieaadp ! oo

OT¥-08Z 3y3 30 I xTpusdde 99g *autinol ZId BUTTTED 9yl 03 WMLl 103 oeas ! 65C
B3 0quT pSpeoT S1e SanTeA IsAYL “SessoIppe Bulpue pue Butuutbaq Ayl pue ! gz
‘az1s 9TqeTTeAR ‘Spo0 LISl SanTeA U} suwImsl Iabeuan Azouout L °*paITeo ¢ (ST
ST Jobeuan Xiousw a3 pue s51935THo1 1adoxd ay3 ojut PSproT ale senyea ! 9G7
95, °pajedolTe 8q 03 Alousw JO ¥0OTq PIITssp oYy JO punoq Jaddn pue ! gz
punoq"IaMoT “921s AR ALVDOTIV ssssed auTInol 77 BuTTreo 3y *Jobewew ¢ | 474
Kaousur up3sis oy eta Azousu S3e00TTe 03 SUTINOT © ST ALOTN ! g5z

ASTA

114

0sc

SaUTIN0Y Ssaooy 19beuryy Aiousy butpeay, 6pe

WSV JNTRINIS SN0S JHWIS W X0 (80 U1
mu& NNBB E.Ebcﬁammgugbgﬂ

- "
P X

8's
6

o
ot
S0

DO IS S S ‘s.‘
L I R
e 5. LR N

St oW L

‘.‘J.
%

- bl'. ‘.-. : .“‘.“ ‘...‘ .\ .--.
3 I\A\:“\A\;.A.:\LJ

“m
S
IS

. A _\".-‘;.-\'.'_‘u_‘.‘\ﬁ-,' -,
PRI S Y S N S K)

C e N
P, TR T S
¥

WP)

PN S R R Rt
WM ':('.-"- "

WA

NIRRT
..\-‘Tl P

» - AP R Y
YR,

. .':Q’ *‘q.(ﬁi)

..............

‘anTen gzIs 'IINAY 93 1ea) : 1 &3

TqeTeae Aiousuw ou ST 21ty ‘019z ST FZIS ‘Sox : (0.3 cvAdd it a1 A4S 0000TC 9000
*alqeTTene Alousw JO ¥OOTq € ST 313y} ‘ON ! JMAL0 Qvo1’ 20 ar €le €00C $200
¢ Olc. 9bue1 3aMOT B3 SI : (03 cvA dd zie 0034 ZO00 "
*d2IS Jo dbue1 oMol A Yooy ‘sax ¢ 'Y al 1443 6L 100
*algertene Aiousdl JO 30OTq e ST a19y3 ‘oN !¢ IO Qw01 2N ar 01¢ 800C 00 5
¢ 019z 3Z1S Jo 9bue1 1addn a3 sy ¢ CRLAZ K0 60€ 0041 (HOO
*193sTD91 ¥ a3 ojuT yzIs Jo 9dbuex 1addn ay peop ! a'v al 80€ 8L 0400
*Ssolppe butpue ay3 se 013z WMy ! o crAd ai o€ 0000TT 6400 4
- "bumjosyd snuTiUco pue anTen ONIGNA U3 Jea[d ‘oN ¢ W€
- sanTeA I13YRo Y3 eSO Jou op ‘sof ! INALD avo1'2 ar S0€ 0BT (800 g
¢ TNJSSI00oNS uoTIeooT e Y3 sey ¢ ALAHND NOLIVHAIO D]S |34 GHOO i8¢
MOM A.‘..L
*Ataerdoxdde Indino ay3 utoj pue 3ssnbel sy 03 ssucdsal s, 10beueu Azousw By suTuIS}aq ! 20€ _
10¢ -]
*UOTIE00] JZIS 'TINAV 3 OUT Y00Tq p3jecolTe 1o ¢ g’ (HIo+X1) ail 00€ ao/ad zdoo "y
s[qeTTene 3sebier a3 Jo 5z1s ap peo1 ! o’ (HDO#XT) a1 66 0T@ 200 B
*UOTIRCOT A0 MNINLA Y3 ojurt ! Iz’ (Ha0+XT) al 86C 004096 €W00 B
ssucdsa1 Jebeuau Aousw auy peot ! V' (HIO+XT) ai 16T V0L/Q0 8W00 w.,.u
* 9%c S
* 39beuan Atousw ue3shs ays 1D ! HIRNW IO TTD S6C P60 GWO0 3
v6¢
*s133s1H91 Dg 3y ojut ¢ (H60+XT) ‘g al €62 609vad Y00 o
9ZTs 3o0Tq po3senbe1 ayy peo1 ! (HB0+X1) ‘D al 62 80arA 3600 o
*s193S1691 3Q ay3 ur sseippe ! (HSO+XI) ‘a ai 16¢ S09%5a1 2600 By
punoq Alousw ybty a3 peoy ¢ (H0+X1) ‘3 ai 062 p0dsad 6600 R4
*519351601 TH 33 Ut SSAIpPpe ! (HLO+XT) ‘H a1 682 £099ad 9600 =
punoq Alousit J9M0T U3 peoT ¢ (H90+XT) "1 a1 88¢ 90d90d €600 o
19353691 ¥ Yy 0UT puRwDO F3E0OTTR Ay pro] ¢ RO ION’V ail (82 00dE 1600 _..u.u
Bl A
*I33UT0d %0E3S AR PTA 193STHSI XTI ap peot ¢ ds’X1t aay 214 6£0d0 B00 .m
, 19351691 X1 a3 Ieay) ! OL2 X1 al ¥8C 0000TCAT €800 .ﬁ
*enTen XI S,3uTanol BuT[Ted ayy aneg ! XX HS AIDOTN €82 SId 6800 ..P
[4:14 e
- ANDOTN "WAOD 1:14 .M__
082 -
03y 642 P
- .(L
8°S WSY INTEINIS TM0S WIS W 300 [0 01 3
0T IRd [A431)}:) ALT'ILIN UTINOY SS300y Jabeueyy Kiousy .«u
X
5 . AN .
2 i %
"y

%

S S Ao L A SRR M3 A aa MR . | . N "ma a A e NN IR NIRRT I W YR P ey a 'blﬂlEvttE"PP

(SSTRIOQV DNINNIOHY “JZIS YOUH)ALVOOTNAI =2 0D MNINLT

1Aq BuTINO1 Z1d BUTTTEO Y3 UT PAYoAUT ST ALVOOTNAA !

*UCTIRULIOJUT I18Yy3inj 103 Tenuey S,13s1 ub3sAs burieaadp onE-ggz ay3 Jo I xTpuaddy a9s ¢
*uoTeToTA 309303d AzouBwt 103 9poo WIMAI Oy 943 HER anTeA 3y YITm pswmal oq ¢
TITA 3000 RINIER ‘Asousul psjeoo]Te JO ¥00Tq SNONUTIUCO STBUTS B 30U Sem STV ¢
HNINNISHE pue 32IS YOO Aq psous1sel Aiousw ay3 JI *9337dwoo uoTierdo 103 ¢

9po0 WNMe1 Oy SY3 HOB 3O SnTeA e YRTM pouImasi sT 3D RN ‘ misssoons

sem vwoTieiado 3 31 AD NALR 303 senTea afqissad omy aie a1y, !

(31X 30D NINIAY)
(OM SSRIIAY DNINNIOE] JZIS SDOH) RINEOOW ALVOOTNAdD

*SMOTTOJ Se STNpaUl §,9UTIN0T 73 But{Teo ayg ut ¢
TNMAIXE pPO1TeOosp ST aurjnol sty *Alouswt ajecoyTesp pue Jobeuaw Aaousw !
upjsAs R [Te0 03 surinoa dbenbue] 714 © SMOTTe AINDOTNA SUTIN0Y

*RLDOTN suTInol Jo pug ?

*sutnol 74 buriTeo sy o3 wimsy ¢
*d21IS IS J03 9be1oys ajeocoresq ¢

* RENMOI $aMOT 103 9be1o3s sgeocorreeq ¢

* RINMOE ¥3IdN 103 9beIols jecorreeq ¢
*SSoIppe uImeaa ayy oo !¢

*anfen XI s,3UTIn0I BUTITed Uy 91039y ¢

~aurInol 7|9 ButTTeo 9Y3 03 wnygax JoJ uoTieanbryuco 1adoad ay3y ojur 193STHRI pue oels 9yl 39S ¢

*UOTILOOT ONIANT 93 ojut Aiousw ¢

30 3001q 3y JO sSeIppe buTpue a3 peo]
*UOTIROO0T ONINNIOHE 33 ojuT Azoumw £

3o ¥ooT1q ay3 Jo ssaippe butuutbeq ayy peor

a‘ (HI0+XT1)
4’ (HIOHXT)
H’ (HTHXI)
T’ (HOT+XI)

JOAL0 @01

Tet
1123
6ct
8ce
1zt
xE
1 TAS
| 743
£ce
cce
Tce
0ce
61¢
81t
L1t

=09 91€

INBHIVIS DN0S JWIS W 300 f90
ALT'ILI] UrInoy SsSooy Xabeuen Aiousyy

*ADOTIVAA 8uTIno1 jo pug ¢ 5219
rs:13
*3uTINOI BUT{TED a3 03 WImMm3y ! (M) dr BE 63 T0T0
*UOT3Ro0T AZIS T2 ay3 93eoolreq ¢ a dad ®E a 0010
*UOT3R00T NISEY =43 JroolTeeq ! aa dd 6LE a 4100
*SSeIppe uImal a3yl 399 !¢ 7H dod 8LE ™ 43100
‘anTeA XI s,9UIInol burieo ayg 210359y !¢ X1 dd LLE T 2400
9LE
*3uTINOT Z BUTTTe0 93 03 WImMPal Jo3 uoTyenabrjuco 1adoad ayy ojut oels syy Ingd ! GLE
FLE
*asuodsal s, 19beuaw ayy ¢ oIz’ (64X1) al €LE 00609¢cad 8400
Y3ITM UOT3R00T 30D MNNLN 943 peo1 ¢ ¥’ (8+X1) ai cLE 80L/aa Gd00
TLE
* xebeuan Azousu ayy TTeD ¢ NN RIOE 'TID 0LE v16000 2400
69¢
*s19381b91 Dg ay3 ojut pajeocorTesp ! (L+x1) 'd ai 89¢t O9ya J00
aq 03 AiouBw JO ¥0oTq 3Yy3 JO 9z1s ayy peol ¢ (9+X1) “0 ai L9€ 903rad 400
*s93SThS1 TH 93 03UT PSjROOTTed A ¢ (g+x1) ‘H ai 99¢ S0990d 6300
03 Aoust 33 JO SSIppe ONINNISHd U3 peo1 ! (+xT) 1 al G9¢ 2080 € CI C(0]1)
*193STHA1 Y 39U} OJUT puaulino 938007 [edp Ayl peod ! RO IONA'Y ai 413 dae vaoo
A €£9¢
., Azousut 3 03 [Te0 B Jo3 s193s1691 1adoxd oy ojur sutinol 77id 9y3 upiaj sagjaweiwd syy peog ! 29¢
19¢
*19351691 X1 a3 ojut Iajutad yoeis sy peoq !¢ ds’xa aay 09¢ 6600 400
*193s1b91 X1 3y Ieer) !¢ oz xa a1 6SGE 000020 X0
*anfeA XI S,3ulino1 774 burrreo ay saeg ! XI HSId *ALNDOTNA §S€ GXII Jano
LSE
ANOTNK DD 95t
GGt
3090ey pGE
8°G WSV JNINAIVIS TR0S JWIS W 3D (D 01
2T TRd 226018 ALI'TLIN UT3noy sssooy Jsbeue Azousy

Tt et : T - PRSI TN L Y . St e - . S et e R [
. i T T S T T A T T e i T AL S A P R L S TP et St B
ML&M.LMM‘M:ML:A:AAA:AQ:A: T e T T etk ™ e Lt m e e e T et N N T e

™
‘.

PRI AT R UL AP S N
A A -
N O ey

SILLI'TLIA STNPOW Jo pud !¢ ad 6t

%€

3 G6€
r *AouBut JO UOTIROOT (9P J03 Jabeuraw Alousul 03 pueuno) ! I nd SRIGE IO F6E
" *Kjoumut 3o uorjecoTTe J03 I9beusu Alousu 03 puewn) ! 00 nod RO LN £6€
"shes 31 a1 ¢ 00 0 ‘Oz T6€
*a3ep uB3IsAs JUAIIND AU} JO SSAAPPY ¢ HavET g ISSTIIN AL T6€
*39betaw Azousw ue3sAs 103 sseappe jurad Arjug ! H60V T 4 SEIOUNW RIOE 06€
*uoTjerado TNISS0ONS J0F 9Poo wImadl Ony 4 HOBO yoci ALTWD NOLIVIAIO 68€
88¢€
SIUSUCO JO aNTeA ummum:mxm 4 8¢
@BE
BE
ALT'ILIN 103 Samn{d butpesy, 8¢

8°G WSV INBEINIS EM0S IAIS W X0 (80 201

3 < A1) 1] ALI'TLIN ALI'TLIN 703 SAVKH

* ‘ “
% »

. » e J* Ry
o - - . . . - . - a) . . .
A R RSN Ty e

N

AT

SRR ST R OV LR A g

ot

o

BRIty

g ‘.'_.I../sf_'f.

...,\,- w*.\\\\.! AN) f.v.n.{.-... L A O T Tt

:

.
.
a nd
L4
a
s
g

o

ey

€LE 6GE VIE CTIE 60€
(0€ 86C V8T 1€ (Z¢ TST SYT €11 B % 26€ 0000 OMIZ
p0E 68€ (800 IV
OTT ZIT 9 200 JASWM
T YT O LY00 VRIGEW
0LE S6T 06E 60VT RIOWI
£I€ OTE SOE€ 8IE ¥ 6200 O (WUI
€& Sb 90000 LMOOI ®
9, 8L D I9W0 NIOI
€0Z SOZ D S900 TTVNE
8LT 0BT 9 7900 TAVSId
9G€ 8S€ 9 W0 OTNA
¥9€ ¥6€ T000 JONAQ
WZ 8€¢ ¥ 400 T AL
Gz T6€ &VET YV HIW
¥ KT D890 I
BZ B D 6800 YDOTN
182 €€ 0000 WION

.

l..

R TR TR S Y
.,- ..n'"...

o
X »

FACALS)

T a2y

N

o,

SIN NIXI W 'NA ‘DIWAS ®
b1 I 7260 ALI'ILIN EONNAIR SSRD

@
ORI PO M

)

Tind w2

(31x8d ¥ILNIOd IXIL

(3LA8 30T¥A

378Vl TOHHAS
(S)ONINYVM 0

S3lig 3A0D-Z BY
(S)d0¥¥3 0
SLS3L AN3

11S3L QNd

ao
Id JIX3 NIHL 444S% => NOILVOOT JI
I =- NOILVDO1T
(43LOVYVHO# ‘1NONOD)NIILIHUM
{ NOILVYDOT)QVI¥WIAW =3 ¥ILOVYVHO
oa

ao
Id LIX3 NIHL 0Z09% =< NOILVDOOT dI
T =+ ana
1 =+ NOILVDOO1
(dnI¥A ‘NOILVD01 }LISWINW
oa
anva
NOILVDOT
AdLN3

0, =3

0009% =

JLAY ¥ILOVUVHI

3LlAd d0TvA

Q¥0oM HNOILVIOT
T¥207

3¥1a33048d TLS3L
V80710
‘gLxg LINOTIVOIOOT) 3¥Nd3D0¥d NTILIEM
{ 3Lz INIVA) SNENLIY
(Q4OM NOILVYD07) 3J¥NA3IDOUd QUIYWINW
‘@OM NOILVD0T) 3¥N3ID0¥d L3ISWIK

TVRY3ILX3

¢0% =% 1NONOD

INYISNOD

3LRd, 3lAgd

3dAL

3T0QOK SIS3IL

S3LAY VIVA 0
INOILVIIdWOD JO aNa

184

~ono

o T nNo

-

o
.
~”™

IR e . ..
22 r W 2 RS v s I N

(5]
>4

6S

8% ;
LS T ‘

o« o

NN Y

3]
o1
-7

8*

g

DTSR

P R P B

s ol o N s P I e - PhyCaf "\ oy - y . e

P e
<,
e

48U L _ .

e R e
LT

LNoLd0od anNd
{ anIvA VIvg YdINI¥d)LNooI
ao
Id LIXd NIHL XQULIKWSNVIL = XQULIWSNVYL ANV SAIVLS dI
(QWD TYIINIYUd)NIOI =: SAIVIS
od
A¥LNd

-. i-;

S
L2
Py Ty

.-\‘-..-- =
CAGIGS

YIOALNI SOAIVLS
T¥O0T

N
RN

L)

P
‘.t

R
P R

(¥39ILNI 3NTIVA)I¥NAID0¥d INOLIOd

“o =,

I

NILJYOd ON3

{ YIVQ ¥3INIYd)NIOI =: 3JNIVA
ao ~

Id LIX3 NIHL AQUIAIIDIY = AQYIAIIOAY ANV SNLVLIS JI
(QWOTYAINIY¥d)NIOI =: SNLVLS
oa
AdLNI i

‘-' o

>

x

A

YIDILNI SQALVLS
Y001

PR Sy

L)

(9g93IINI IONTIVA) SNINLIY
JdNa3Iooydd NILYOd

L
I-‘I

.

YIOALNI XIANI TVALNO TVANI r
TYNIILNI

(¥IOFINI INIVA)SNINLAY .

(YI93ILNI L¥0d)3I¥NQIdodd NIOI

(¥393INI INTIVA LH0d)IJNAII0dd ILNOOI
TYNYILXA

0%
10%
16 %
06%
aT%
V0%
aos

AQYIAIIDTY A
AQULIWSNVYL .
aQWD YIINI¥d o

VIVATYIINING ;
3dvDS3 O
aIdJANIT

IOV INEVD . 3
LNVLSNOD N

L}
s 00 g6 se se es e

dTNA0OW LSILMSY

g A e g = fTITS A X W Wy > o

P A

N o MG ¢

LS3ALWSVY gN3

>

.

NIVW N3
; ao
. (@3a4aNIT)1noIyOd
! (FOVINYYD)1noryod
’ ao
Id LIX3 NIHL S = XIANI 41
T =+ X34NI
(T¥ALNO) INOLYOd
oa
TVANI =: TIVALNO
0 =: X3JANI
Id LIX3 NIHL IdV¥DST = TIVANI JI
ao
Id LIX3 NIHL TVALNO <> TYANI JI
NILIO0d =3 TIVANI
oa
Qa
00% =: TTYALNO
AYLNT

dd0a3308d NIVHW
V401D

.

Ay
L}
)
L
LY
\"}.}
'v‘-’
A
. Wt e
IR

SRV e & o) _FL. W P 2

Appendix C:
Time Compairson Using PLZ

As discussed in the introduction to Sampler Module, assembly language was
selected primarly for a speed advantage. In Sampler Module (routine COLLECTER)
only four assembly language instructions are needed to read a value in from an IO port
and check the value against a constant. The alternative was to use a PLZ routine which
calls the Utility Module routine IOIN. The listing below is an estimate of the assembly
language coding required to accomplish the read and compair with PLZ and the Utility

Module IOIN.
_Lable Instruction Cycles Comment
i to 1OIN f

LOOP: LD HL,RETURN_ADDRESS 4 Save the return address

on
PUSH HL 3 the system stack
LD HL, IX+OFFSET 5 Put the 10 port number

(input
PUSH HL 3 parameter) on the stack
JP IOIN 3 Go to IOIN

Utility Module

10IN: PUSH IX 4 Save Calling Routine's IX
LD IX,ZERO 4 Clear IX register
ADD IX,SP 4 Get Oftset for Parameters
LD C.(IX+4) 5 Get 10 Port Number
IN A,(C) 3 Call 10 Port
LD (1X+6),A 5 Load Return Parameter
LD (IX+7), ZERO 5 Fill upper byte of return

parameter.
POP IX 4 Get calling routine's 1X
Y POP HL 3 Get Return Address
POP DE 3 Clear Parameter Space
JP (HL) 1 Return to Calling Routine
NS ____Backto Calling PLZ Routine

Appendix C 333

Lable Instruction Cycles Comment
POP IX 4
LD IY,ZERO 4 Set offsets for return
AD IvV,SP 4 parameters
LD r.(IY+dp) 5 Save return parameter in
LD (IX+dq),r 5 Local AREC.
LD Iy, (IX+dq) 5 Get the returned value
LD ry,(|X+d) 5 Get the check value
CP Meoly 5 Compair the values
JRZ LINE1 2 They don't match
LD (IX+d3), TRUE 5 They match, logical TRUE
JR LINE2 3 Continue
LINE1: LD (IX+d3),FALSE 5 They dont'match, FALSE
LINE2: LD ry.(1X+d3) 5 Get result of compairson
LD ry,(IX+d4) 5 Get compairson value
cpP Moly 2 Check the values.
JRZ BRANCH 2 Datais in, go to next
section of code.
JP LOOP 3 Data is not ready, cyle
through again.
Sum of Cycles 129: Data is Ready
139: Data is Not Ready

With a clock period of 1.56 usec per cycle (Ref 2), the estimated times
for execution are 21 psec when data is ready and 203 psec when data is not
ready. In compairson, the four lines of assembly language used in routine
COLLECTER require only 16 usec. This substantial difference in time is due to
the overhead of parameter passing between routines and the overhead of PLZ's
activation records (AREC) used to keep track of parameters. (Ref 6 and 9)

Appendix C

oW,

e N S e S ad a T e

.....
o

ok}

3
¥4
>
(]
<
=
-'* Ry
SR Appendix D: Sampler Module Listings
| 3 The following 21 pages are the assembler listing of the Sampler Mod-
3 ule. In addition, there is the 9 page listing of TEST3, a routine used in the initial
" work with the AIO board. Some of the code in TEST3 is repeated in Sampler
':-.fj Mod- ule. The contents of these pages is
O
o Page Number Contents
. 336 Blank
o, 337 Introduction Comments
- 338 SAMPLER Routine
=~ 339 VALIDATE Routine
&
o 340 ATODINIT Routine
3 341 CTC_PROGRAM Routine
@ 342-343 INT_SET_UP Routine
o 344 INIT_COLLECTER
N, 345-346 USER_READY? Routine
N 347 START_TIMER Routine
. 348 COLLECTER Routine
» 349 CTC_OFF Routine
350 TO_SAMPLE and TC_SAMPLE Routines
= 351 DEALLOCATE Routine
., 352 Definition of Storage Locations for Sampler Module
- 353-354 Equates for Utility Module
~ 355-356 Symbol Cross Reference Table for Utility Module
- 357-366 TEST3 Module
l_:;
RN
oo
t_
= Appendix D 335

o gt

]

<TeTa e

i TAA WA]

L LY et P M W &

shdy T

INGHINIS A0S JWIS W 300 M0 001
HTHWS

~
.

“
L)

-
»

e e
... ¥ '-}'

<l --u‘
0

._..'-..‘.\\

O

.~ .
SRORIRIANA NSRS

*auTInol burrTed Ayl ¢
Aq pouTaIalsp ST YoOTO AT T8I ay3 Jo porrad oy, *SPuUCOISOIOW QG ST ¢
pasn poriad 3IS93INS A YFHWVS UL *SoInumil gf ATIuHU 03 SpUcoIsOIoMt 9 ¢ ¢
w1 butArea potiad e sey yooT10 AUT) [ee1 Yy, °*suoreotrdde ipo Auvew o3 ¢
poyder aq ued aUTINOI-0TAISS-NTIDIUT / HOOTO-UTI-TLaT STYY JO Jeuog ¢
otseq 3y, °Tenuew SOUBIJS1 7 AR IMSUCO 03 p-d-b-1-n ST 18sn YL °*Tre0 !
ampeooid Z1d © JO peayIano 9yl ST SuTIN0I SIYY Ut Buldod pue Bumsnd L

{ ALX YLVT ISV “SIAd S00D RE) SN
{ ALA VLW ISId
‘a4 STHIWS TN JNCD

314 JSND HWLL 30U QD 'ENNGHD O) RINEDG] SRS
TN

\

:3UTIN0I 7 BUTTTEO U3 UT "IMRIAIXI POITE[O9p o] ISTM YTHWGS

[
.
]
.
4
.
]
.
.
]
H
]
H
]
.
4
.
]

*pauojzad oq {TTM eyl SUOTSIBAUCK Te3Tbm 03 GoTe Jo Iaqunu ayy st ¢
STHWYS WIN “PO[1e0 ST auTjnol S0TAtas Hni1ajur ay3 1ojsq ssed st yorym ¢
sydnIISUT QIO JO Io¢ YY) SITEAANS ATNA INNQD 1933uered a3 (Arreordky oos ¢
100°<) spotiad burpdues Buoy 104 *QID ay3 jJo potrrad buwumy s weiboxd o3 ¢
PSpeau uoTIAWIOJUT BuTuTEWR1 Y3 ST ISND WMLl *opow 1auTy Burxdniasjur we ¢
03 21D 2y3 pueuuoo pue potiad butrdues oy weaboxd o3 pssn st 193auerdd sy, ¢
*PUEIlIno D) B JO JRulioF Y3 Ul anTeA 31q g Ue ST AW M:MLL ST O3 0 ‘posn !
8q 03 TaUweYS 19318AUcO Te3TBIP 03 Boreue Ay Jo Iaqunu AP ST TNWID OI ¢
*934q 19r0(‘ordwes 3ser a3 Jo woTeoOT Y3 03 sjutod VIMI ISV pue ‘ajAq ¢
IaMo[‘aTdues 35113 Y3 JO uoTIR0OT AUy 03 sUTad WIMT ISHId “adoM adKy axe ¢
STHWYS WIN pue JN0D pue {arxd adky aie SN0 @WLL pue ‘3aD Yo ¢

A0 O TEINNHD O ‘3nXad adA3 Jo a1e I ISV pue YIMI ISHId d1aym ¢

(WINMTILSYId STHWVS WIN JNICD JSND SWLL 3AUW Q10 ‘IINNVHD O) ST IS
=3 WM ISV] 9000 9O

$ST S9UTINOT asY} JO UOTIEOOAUT ¢

ay *surInol 7id bur{Ted ayy 03 aanpsooxd e se sieadde ‘aTr3 sTUR 03 Jurod !¢
Anw ap ‘grdwvs *danpaooxd e se ueaboxd 7 Y3 Ag pITIRO ST S8UTINOI 3O ¢
WIIS[T0 STL “ueiboxd abenbue 711 Se YITm TINAOW © Se uf payury oq ¢

03 pSpuB3UT ST 3T STYL *3UTIIT UOTIOBT [00 BIep Te3TbIp 03 boTeue paoed ¢
Y0010 JWTI-Tea1 B SIUBMBTANT YOTYM SAUTINOT JO UOTIOBTTOO © ST YTHWS 1
B6T Arenagpyg (['

uoT3NpoIul Butpeayy

JNSEINIS S0S JHIS H 3000 [01

8°G WSV
¢ Id 81" 220 NS uoTIoNpOIUL

p.
,
¥
b
b,
"4.
o
8
A

"
b
X

i alal el et Jiacu

A At Aat el gl gl

“dTHWYS autjnox Jo puy ¢
*auTInol 714 burrtes o o3 wnydy ¢ M) dr
*8uT3No1 BUTTED 33 03 uInjal Joj aredaid ! AIVOOTNGG TRD SHTWS G
*s3dn1193uT Q1D AIQESIQ *peIdS[I00 WBaq Sey BlEp TV ¢ d0 AL TrD. taNDa
"3UTIN0T UOTIODT100 B auy I193ug ¢ WHATID TID SANLIO NIwW
*burdnazoqut pue Bunuty utbeq 03 Q1D Y3 puawn)) ¢ LHLL IS TD $NIOEd
‘uImsl pue 3jo butypnAIaas wmy pejaoge 1asn ayg 31 ¢ HNOd'ZH ar
*utbeq 03 puawnd 19sh Jo3 JTeM ! AT U TRD 3ASTTN
*aUTIN0I UOTIOITTo0 e3ep paoed dnitajul sy Apeey ! WIOATID LINEL TIVD
*s1gyauerad ssucdsel ydnizsqur 1Te 39S !
pue autnoa sotarss dnuasgut 1adoxd Yy sutuelaq ¢ AN I TR
*9pout peAtssp 9y3 03 D ay3 weiboiq ! WA QD TID
*19319AU00 (@ 03 V) Tealbip 03 bofeue ap oz1TeyTUL ¢ LINIQOIN TID
*3uTIN01 A3 pus ‘prreaut st Jndur I ¢ WHNS @a’ 70 ur
“HTHWYS 03 InduT Y3 JO SSARDDII00 A} I3epTTep ¢ AMONA TIOD
*burssed 19jaueied 103 19jutTod YoEIs JUBIIND AR 9 ¢ ds’x1 awN
*193s1b91 XTI ayy Ieap) ! o‘xt ai
‘anreA XI S,3uTINod 714 bur{ieo aypy aaeg ¢ X1 HSId SLTHIWNS
YIHINS TOD
COE R R e e ree et teernay suranox teaotb |1 [111111¢

t

YTHWYS JO auTinol utey butpekyy b

8T 20 m

6d
TP
plecties

004XD

® o =T 4

006D

9002
4 00TV

d 00b6@

4 0069M
4 00450
4 o0V

v10Z
4 008D

680
0000Tzaa

JNBEINIS TS JHIS W 3D A0 01

YTHWS YTHWYS JO SuTInoI utey

Dt s il ae: g T

S DO S 0l Jhab i

BT
P e

Rt

FE

A A

‘ungal J0J Spoo 10113 A} pro]
*pITeAUT ST J0W JID ‘ON
"PITeA ST U L) /SIK

& 9pou FOTS 3T SI

*3I0W UDS Yoo ‘oN
*wIma1 ‘prres ST X ALY ‘S9k

¢ dpow 3sej 31 SI

*pIoM puRIDO QLD Y3 39D

‘wn3ax 103 aaedaig

*uIMmd1 103 3POO 10113 A} pro]
pud *obuel pouTJop puoAsq ST JaqunU [ARRYD ‘Sox
*BUTHOD anuTIUCO ‘O
¢ "sauo s31q ¢ 1addn oy Jo Aue a1y
*1ogunu [auueyo Jndur o 399 ¢

ALWIITYA 3uT0o1 Jo pug !

*3UTINOI uTEW 1) 03 wIn3ay !

n tu Sm m tm Sn am 0n

[
H
[
.

4
H

[}
.
]
-

WS
£H |

V/ (GA0D HRRI+HXT)
UNANT 3a04‘V
ALMITNA N ‘2
A MNB

ALAOTNA QN ‘2
SA0W LSV
(3A0W 2IOHXT) 'Y

ALV TNA QN

Y/ (D URREHXI)
AQUNANT TINWED 'Y
O ODAED ‘2
UNDd HAIdN
(TRENHD OI+XI) ‘v

L

a1

*ALVAINA N

SALNITNA

*3UTINOT uTEl 3y 03 wnmdl vodn 338 ST berF Z A uwayy o ST TR IT Syosyo andur yroq 104 ¢
TNAHT GA! 03 395 ST JD WRRE SonTeA 9saud JO IAPTaU ST (W A1 JI
nlea oMy 03 POIOTIISII ST FWW AL Idug
ue1 sTyy puodaq ST TINWID OI 31

*HOW MUTS pUe a0 ISV ¢ |
*AITANL "EHNNGD S0Tes 93 Y3TM pauIngdal ST 3000 YOG ¢
*Tewtosp G 03 (Uiy burbuer ‘934q e se pauTyop ST TAWID OI !
pue sobuel pautrIsp 1Teyl Isutbe HOOW DID PUe TINNGHD OI S1ojoweiad jndut sy3 syosuo SIMIITTNA !

FEREREE R R e e R e R R R PR TRV EERR T) ssuTanoa pwsqur [f1Le

AIMIINA uTInoy butpeay,

8ect’ Zeowm

I WS

801
wt
90T
SOt
12000
€01
01
101
00T
66
86
6
%
56
¥6
€6
143
6
06
68
88

&

B
8
1]
132
a
B

&

6L
8L

60
01L/aq

S08¢
vad

608¢
o0d4ad
0mB1
otLcaa
hacty

049
40d4aa

6¥00

*00
¥¥00
¢v00
000

4800
Jt00
6£00

L£00
14104
200

gcoo
€200

INBEIVIS TM0S JWIS W 3a0 (0 201
ALVIINA SuUTInGgy

Dt s s pe Rt el LRSS
.

LINIUOLY sutinol jo puy !¢ 6t1
' . 8cl
*3UTINOT uteW 03 WIN3ay! J3q LET 60 3500
*santea 19351091 gy 943 910359y! <N dxd otl 4 @600
*sydnigjur upIsAs arqeuy! I SET a4 0600
Per
19351691 eaep 1akin ayg 1ea()! (1addneyeq) ‘v NI £el ™ vs00
*193S51691 P3RP J9MOT AP JP9T)! (1900T070) 'y NI Zet 0zea 8500
1tT
*393s1091 puaBWo 3104 g SYJ O PURWIO JY3 93TX4! V! (MO H anD) D 0€t €©7ea 9500
*J393STHO1 pURIMDO Y 310d SYY 03 purunmoO Y 2T ¥’ (D4 ¥V aD) hipe] 621 ZZed ¥S00
*V 03uT purwupo 3TgesTp dN19uT OId 2yl peol! ATAeSTAINI ‘Y al 8T (03€ TS00
71
39351691 puawoo ¢ JJ0d SY3 03 PURICO AN} DITIM! v’ (P07 9 aD) I A £€Z€d 0S0V
*I9]STLOT puaulno ¥ 310J Y} 03 pURod Y3 33TIM! ¥ (Y aD) I TA [AAT I 1711 4]
‘puewioo T 9poW OId 943 YITM 193sTHal Y alp peold SPOWUL 'Y ail 174} dvae ov00
1741
*sydnIajut we3Ishs arqestq! Ia [AA | €3 900
*joe3s syl ut SI9ISTHOI Jy oYy anes! e S SLINIAOIV 21 Sd W00
(1748
611
‘AUTINOICNS STYY 03 TTe0 aYd! gI1
ButpouT Jou ‘spucoasolom 06°ZS SIEI LINICDIY *UoTIoe 3503 upsks! /11
Aue 18330 UN1 aq 03 spEA AUTINOT STYL *spou paTTed e ojuT pavoq OIV! 911
34} JO 13313AUCO d 03 ¥ A3 SOZTITeTITUT JLINIAOLIY SUTINoY ! STl
Vit
, £l
W.., ua
N Tt
X o1t
L JINIQDIVY uTInoy butpeayy, 601
2
. 8°G WY JNBHIVIS IHN0S JWIS W 300 M J01
. S TXd 8¢C1" (20T W HWS LINIAQQIN SuTINoy

‘e
.. \.

n'(\4' .._f PR

y -."-.:',\'" -.'*."

'fv. L e { N._\'-‘.

- " Canthe 2m & - ——— e
...... gt pudageg e . i i re s pe ! aOnCiebein gnt M ptatmptaust il aa - OO o

WREOW QLD 3uTIno1 jo pug ¢ (st
Kl
*ueiboxd utew sy o3 wnjay !¢ I S6T 60 8900
14°] 4
*JID 93 03UT 10309A Y3 peo] £ ¥’ (@D T2ID) ID ts 1 y8EA 9900
*10309A naxajut iy Jo uot3iaod O Yy prod ¢ HOIOAN INL ‘Y ai AR | ovac v900
1St
*9powl poITSSp S 03 TALD pu=ukiD) ! ¥! (@D T2ID) D 0sT v8€a 2900
*3933ueied puaioo Spout 43 399 ¢ (A0 AIHXT) ‘Y al IR Q1D 61 a0 J500

vl
*aUTIN0I ISROUR AQ POpEOT ST JURISUCO ATy ¢ /T
YL 19351691 107109A HNIISIUT QLD A PR (KW JL)) SUTINOT Butyreo o Aq ¢ opt

@OAMHO&m anTea a3yl Ymm uwumamva JO9T=s 9poul 3D =AY} speot E%HHE A { Gh1
1221
1321
Al
Wi
WRIDORH DID sutanoy butpesyy opt
8°G WY INBHEINIS @H0S JWIS W 3a0 (0 01
9 99 82¢1°(zZ01B HTHWYS WRECRH JLD 3UTInoy

.............................

VA .‘-. \..‘.:.‘A'_-.':..‘.'_: _:-...._: - \A._‘ .‘..-.)1 \w;:-‘.': NCSRN \.'\-. R '.1\\ _‘.~\. _‘. :“.\.“. -~ \:. .".

_aF i oNh QIR Al Ve Yl R S n ba OB Vel ot Vet tal et S at it A ba S Culat a Rirhd BNl Sl o A AR ANy N
d

T SO

*19dniiaqur Sy JO uoTsIAA Afuo-1auTy ! B1

9U3 95M] °013Z ST aNTRA IIJUN0O Y ‘S H Bl
*193dN1133uUT IJUNCO-IATY AYF S0 ‘ON ! INNCD N AMLLY ZH ar 2] 00 ¥(00
¢ O19Z anTea 193unco 3y} JO 33Aq ybry ayy SI ¢ 03¢ V4 d 6L1 0043 8(00
**e34q ybTy 3 Yoy ‘sax ¢ (THhINNODHXT) 'Y ai 8LT 60d(0d /00
*19dn1193uT I9JUMOO-JATY 3Y3 8sn ‘oN ¢ JINNOD N 3HLL Y ZN ar LL 3002 €00
¢ 019Z anTeA JISjUnco 3y JOo :NAq M1 oW ST ¢ Qqz D 9LT 00dd 100
*anTen I9IUNCO UMOp JUNcO Ay 399 ¢ (INCOHXT) ‘Y ai SLT 803/ad0 3900

1 ZA
*s193s1ba1 gV Y3 10359y ¢ NN < €LY 80 {90
*1a0unu SuURyD Boteue Sy YRIM 193sTHO1 ¥ 9yl peoj ¢ (TITNID OI+X1) ‘v al w 309/00 Y900
*519351691 4¥ 2yl obueyoxy ¢ N p<| AN IAasINL TLT 80 690

oLt

*auTINox a0TA19s Ynazoqut ayy Aq asn ¢ 91

103 3o uwuw,.ngu eIl Te ayj ojur Awum..axw A0 .uz JUNOCO IJUNCO UMOp ! 891

S} puR 19319AUCO (] 03 ¥V PIITSSp AP JO ISgnu TaUURYyo ay3 speol ¢ L9T

d I3S LINI TTRUOTITPY *0 TSuUURyp [OID 203 uoTieoof a1qed duml dnaisqur ¢ 991

SR o3uUT BuTINOI JEY} JO SSOIppe YR speo pue S[qeoTdde ST YoTym seupundyep ¢ 91

dNJ3S INI ‘SsuTinol S0TATSS oMy ayd saatnbel sauty butrdwes jo sbuex ayy ¢ p91

30UTS “ UTINOT 80ATSS ANIIUT Y} JO sajauwered [Te SI8S dn 1as JNI ¢ €91

291

191

09T

65T

d I3STIND SuTInoy Butpesuy 8ST

P
[SRR ~ -

8°G WSV INFEIVIS S0H0S JWLS W 300 (a0 201
L 334 8TCT (220 STWES dil 13T INI SuTany

VISV

dfl JdSINI 2uTInox Jo puy ¢ ‘GTC
AT
*ue1boid utew SR 03 WINJIY *JUTINOI OTAISS ¢ \ €1C
Wnuasqut J93unco/1suTy 103 93910 SUOTRRZTRTITUT ¢ fife| A TA 60 €600
1
*s519351691] pe ‘I ‘D 94yl 910359y ! X 1114 6d 7600
*39s21 103 g ‘suorjeiado 103) ’S193S1691 !¢ o | ail 602 6S 1600
d % D ot ‘aig yby ‘anTes IoUnco LMop Sy peor] 4 (TRINMODHKT) #D a1 80 603Ya1 AWO0
*39591 103 @ ‘uoryeaado 0] g ‘sieysiboa ! d‘d a1 102 0 @800
a3 € o3ur ‘a3Aq Mo ‘sares I193unco UMOp 3 peor] ¢ (INDCDHXT) “d ai 114 80900 V80O
*sated 19351691 *H pue ‘Aq ‘Dd ap abueyoxy ! xd S0C 6d 6800
14174
°0 Tauweyo I JOJ uoT3eocof !¢ t0C
Y (e 2] asﬁ dni1193ut 8y3 UT SSOIppR Y} doeld ¢ ™! (T VL AN INI) ai 0z pIObZC 00
*THWYS AL SUIIN01 Y3 Jo sseappe buriiels ayy 3 ¢ TS AL TH aql :JNOD NS@LL 102 4 10 €800
00¢
“TUEWYS L 9 TTTM dUTIN0T SOTAIaS [NIIUT Y, °*pasn aq ! 661
TTTM I93UN0O B puR J3WiT3 € {J0d *SpUooss T00° UPU3 1930016 ST poraad burpdues ayj, ! g6l
6T
%1
s6l
F61
‘ueiboid utew SU3 01 UMITY *SUTINOT JOTANLS ¢ %1
dn11squy 33wty 3 103 933TAUDO SUOTIRZTTRTATUT ¢ k| 61 60 2800
*0 Tsuueyo TAID I0J uotieool ¢ _ 61
a1qe3 dun(dn1isqut Ay OJUT SSIPPE I pro] ¢ M’ (TENL JNNLINT) al 06T viovez 400
*THWYS QI SUTINOT AP} JO SSOIppe a3 YA Ty peo] ¢ JHWS QLM al ANDON 68T ¥ T0SCTZ OL00
881
*3uTIN01 SOTAISS WNIIIWT A 3] [TIM THWYS OL utnoy *poraad burpdues ¢ g1
STy} jersweb 03 A1ess30su Jou ST ISIUNOO ¥ *SPUCOSS [00° YR mm.a ST potaad Durplues ayp, ! @1
DI
181
PSUTIUCO dN JAS INT Butpesy, €8T
8°G WsY INBEINIS TMM0S JWIS W 300 D 001
8 I 82¢1° (22018 UTHWS peanuTIU00 dn 1as INI

P s Ce

[. L3
.IW. 6 LA
mmmmrsrsagrn ® BF - ey o imag e o o e . B e e e v —

- .. .!‘--.'

B
-I ..' ‘-l - . - . "- . ' . O * “‘ s, -7 ‘.q < '-. '-. o Ly
Py R N g T TR T D P L. Y, W, N M P U U PR L L L

R Gy

e e T e e S

e
e e el

W

et a Lot y

I— .<'..t. 'n‘ ‘-‘ NI-
NIV D LRI ST LN DN

-

e R e %

e

<

*d

RO

¥

o,

v

h
)
b
)
4
ﬁ
E

' i U o I ST R U B o SR S

MG g

WIDITID LINI 3ufnox jo pug ¢ (474

*we1boxd utay ayy o3 urmIy ¢ 1174 60 (V00

*D> ut & aaddn ‘g ur J9MOT ¢ (T+STHWNS WHHXI) ‘D

‘uBye] aq 03 SoTdwes e3ep Jo Jogumu A} peo] ! (STHIWVS WNHXT) ‘d
*ated 19351691 AQ ayy 03uT UoTIROOT ¢

*3 ut 3aAq 1addn ‘g ut 4Aq ¢ (LT ESHIHXT) ‘3

LI aeo0
e 0% Y600

aesE

1A S0as 600
19007 ‘abe103s piom eqep 3173 Y3 103 SSOIPPR AP peo] ! (VD ISUT+HXI) ‘d a1 2WIOATID LIND ¥2C ¥095d ¥600

J

L
p
I
[y
b
¥
A
!
:

(YA

*s19351691 1adoxd a3 ojur aurInoa e

‘paord dni1sjur ‘18sn Ay Joj sisnaueted Yy SpeoT MAIDFTID LINI ! e

. 144

‘ 61C

81¢

L

— " AT Y T IRl v gé

WILATID LINI uTInoy bumpesy, 91z

8°S WY INSHEIVIS TM0S INIS W 3D [01
6 39 8¢21° (2208 UTHINS HOIOITID LINI UTInoy

: R .,
R, A R .‘n.,..}v.. ..
oy . e e ., R .\)\o\.) vy RADOLOC | q.u....-...f\n..”..q. e, <o 4y 4~ ;-q,- Q gﬂ‘ g g _]
- A v = A ~ K A - L

*up3sAs buryeaado ayy 11 ¢

*10309A [Te0 uB3IsAs) jJo ssaippe !¢

wingal 10119 3y} puR SSaJppe wimalx O !

S} 0uUT 4IFS JO SS9Ippe Ay peo] ¢

303090 TR0 3y} Jo Juwxo 33Aq ayy ¢
ojutebessau a3 Jo \bWPT ayYy peod ¢

*303084 TR0 uB3sAs ayy Jo uotirsad 1ajsuely ¢
elep A} ojur sbessau Ay 03 Igutad ay peoq ¢
©30300A 11w up3sAs ayy oqur ¢

SUTT 9311M 103 9pco 3sanbna ayy peoy ¢
*303004 [Te0 wB3sis ayy ojut Indyno ¢

9T0SUCO JO3J 1aqunu JTun TeotboT a3 peot ¢

*307000 [Te0 uBgsis ayy 03 1jutad ayy peod ¢

WAISAS
TH (NI WA V)
! (NINLFY)
SLAS M

V! (IHNOD 3LAT V)
IANSSHI 1Y

T (SAIL LR V)
ANSSM ™

vV’ (3000 IS V)
NRLIa'Y

¥ (LIND TDIDOT W)
JONOD ‘Y

WOLDEA W/ XT

TID
ai
al
al
al
al
al
a1
a1
al
al
al

[+ = - -1 [- - - -

ail
¥/ (3000 HRREHXT) al
aSNA'Y a1

*UOTIPOOT UM Y3 OUT Jpoo 10113 AP peo] ¢
*19351691 ¥ A3 0JUT Spoo JO1IB 3O BT (TR A3 peoT ¢ AR YISN
*utbaq 03 ssaocoxd apy ¢
103 Apea1 ST 19sn Ay eyl SSTITULTS lajoereyo Jndur STYL, °ITOSUCO AHp .E..w
133021210 © SpEol WD) pue ITOSUCO 3 0 96eSsatt @ S93TIM ¢RI IS

SCAQNRT RS auTInoy butpesy, €67

JINFAINIS TH0S JWIS W 3I0 f 201

87¢1° (2708 HTHWYS AN SN suTInoy

) O
........

SANR YIS UTINOT Jo pud ¢ 414

*auT3nol ButITeD 3ys 03 wMmsy ¢ IR 13:]4 6> 8300
*{UTINO1 Ut Yy 03 wInisy ¢ I s 14 60 LI00
*UOTIE00T WIMa1 30O 10119 ayy ¢ Y (3000 MRRLHXT) a1 1214 0TLL0a $300
OJUT 9pPoO JOIID OUY) pro[‘oN ¢ DN 'Y a1 08z &IE TI00
*auTinol utaw ayy 03 wimaa1 ‘sox ¢ / I3 6LC 80 1400
é JKy eSS ISV X D 8Lz 6Sdd L300
*1930exeyo Jndut Josn AR 9 ¢ (RINLR V) ‘v a1 ® LiZ 9 T00WE JH0O

9Lz
up3sks butiezado ayy 1D ¢ WAISAS IO SiZ PIED 6300
303090 TTe0 uP3shs ayy Jo pratyd ¢ W (RNET R) ai ¥z ¥ 1035¢C 900
sselppe UIn}9l JO119 Y} pue pIaTJ ssaappe ! T (NINLRTY) al €2 ¥ T00GCZ €300
uIMaI ¥O AYF OJUT OO JO SSOIppe ay3 peot ! O a1 L ¥ 00 0d00
*J0309A A3 3O PTaTI Iunco ayiq ojut ¢ ¥/ (INOD AL V) ai TLZ ¥4 109ZE Qo
pee1 aq 03 S93Aq JOo I19qunu Yy peot ! Al | al (1]F4 de 8o
*uoTyeooT 193juted 13JSULI) BREp Sy} Ojur ¢ TH! (SNIL LT V) ail 6% H T108SCZ 8@0
abessaul uIMPB1 Y3 103 SSaIppR AR perl ¢ SSA NI “H a1 8% ¥4 T10BW SAO
303004 [Te0 uL3sAs ayy oqut ! ¥’ (3000 LSENT V) al (% ¥ 710528 CTA00
SuIT pes1 103 8poo Isanbo1 sy peoq ¢ NXNRI'V al 9K J0d€ 0ADo
*303098 (20 WLISAS ey ojur ndut ¢ ¥’ (LINT'NDIDOT W) ail S ¥ T109%2€ Q@00
970suUCO 107 FTUN Ted1boT AR peo] ! NIND'Y al IS Y 0dE €00

PONUTIU0D ¢ XAV MASN Butpesyy 662

8°G WY ANSBINIS TS JHLS W 3000 0 01
T 3 14 A W FAAV UTHWS PAUTIU00 (AN IS

ML RIS auTIno1 Jo pug ¢

*upiboxd utew ay o3 WMy ¢
*3UeISUCO AT} AR WPTM Q1D AN peoT ¢
*J333auetad Juesuco auTy IUTy AR 399 ¢

66¢
8€Z
I 162 6 3X00
¥/ (@D D) D 9%¢ $9ed 2300
(ISHD MLIHXI) 'V ai SIMLL IMNIS G6C V3/ad 6300

¥6
*burydnuasquy ¢ g6

pue bumm) utbsq 03 JID S} SISNED JURISUCO ATY Y} Jo dT3091 ‘piom STYy oadxe 03 paavadexd ¢ zgz

LGS L LG (UL LI,

o
'

.
Al sy

~
=

ORI

Ve

T .'

o I-.. - " v .
SR S

nYy

P
Tl Ty

.
-

LS
Se n®

Apsrorsexd weeq sey OID AR SOUTS IO Y3 03 PIOM JURISUCO AT Y SINAIN0 YL TANIS ! 162
06C
68¢
88¢
N 182
UBLL NS surnoy butpesy, 982
8°G WSV " INSEIVIS TMDS JHIS W 300 () 01
¢l I 82¢1° 220 YT HWS UL DNLS 3UTIncy
o s
o ¢
el Sty 51'!131.-.)!.:;4)11'.nﬂ.,i‘.;..: - —— Land ——— - han s L 0 e o L atebrr e ;i

PNt

. o
IS
- - . -

YAIDETID 3UTInoa Jo pug ¢ 9¢€

See
*ueiboxd utew ayy 03 ummdy ¢ Ja3d bee 60 d1i0
‘PIOM EIEP POIO]S ISR AP JO YA IdMOT ¢ . X33
ay 03 jutad o3 193S1BA1 FU A JuuBIORQ ¢ k2 o 100 | (EHSINIS €€ 131 e) § (1)
1¢ce
‘peel aq 03 sOTdues 3i1cu a1v I, °I19IJNq 13jsueny ! SRR ur (1159 eBT VIO
*3UTINOI By} pLe USY3 peel ueaq aney sorduwes [re 31 ¢ @HSINEI ‘01 ar HOMD GNd 62€ ¥ T00Ted LITO
8CE
*19351651 Dg a3 ut Junod atdues ¢ {ZE
a3 JuauBIosp ‘ (3a) Ag psssaappe HoTIedl ! we
a3 ut ‘a34q 1addn ‘ejep o aneg ! 1d1 5ee owm STIo
*19330q 34q ybry A ut BIEp AR oeld ! v (340 H) a1 LZATER: B (1. 1T4A S A L (1]
*pIoM E3Ep AP Jo S3Iq p Iakin ayy peey ! {1addpereq) ‘v NI 1743 Toad OTT0
‘sutiaseq 03 pawmaa rou / (0g) ¢ (443
Junco atdues sy JusuBIoYP 4 (3a) A pIsseIppe ¢ e
UOTIE00T 3} UT 3G I9M0 ‘e Ay daeg ¢ 1d1 0t OWH 3010
19130q 334q MOT Y3 UT e3ep a3 aARS !¢ V! (MALIE 1) ail 61€ ¥ 10VSZE 8010
*PIOM E3Ep 3} JO S3YQ 8 I9MOT AP peey ¢ (1omoTeneq) ‘v NI 81t 0220 6010
*s934q Roq Jo I193sueny ¢ L
303 juncooe 03 T Aq 3unco apdwes sy3 395330 ¢ o 3| o Ui § SRV AT 9T€ €0 8010
*fpee1 sT piom mep MU v ‘sog SIE
‘utebe yoayo ‘oN ! A ‘2 ac b1e LB 9010
(°*31q smels ay }oaY) ¢ v'0 LId 1243 D 010
¢ dTgeTTese pIoM mep MU e ST 4 (smsaoy) ‘v NI FARY 6dad 7010
*1933Nq 19JsURI} Y JO SSSIppe Y peo] ¢ JIH 1 H al AW TIE ¥ TOpSTZ 4900
NMAETIO 0T1€
60t

*sutanoa burtred ! gog

R 03 w31 [T ue1box syl pue 019z 3] TTTM 193STH01 D AR ‘pPatoa[oo ueaq sey ¢! (0¢
e3ep [Te UsyM *AJousul Ut 3T S9303S PUR BJEp PIISAUCO JO SITQ ZT SYI UT Speal aurnol ¢ gog
Y3 STqerreAR ST PIOM BIED MBU B SMOUS SMENS i} usyy °*13319AUCO 0 03 ¥ X3 Jo smes ! 6of
A3 sTIcd sutInoT STYL °*SUTIN0I UOTINSTToO e3ep psord ¥in1IeuT oYy ST MALETID ! voe

; 10€
EEQSSQEESM

8°G WsW JNFEINIS TR0S JWIS W 3300 (A0 J01
€T Ixd 8CCT L0 B TS WRIDATID UTIny

! . ‘2 _ i, f . . AR pees 13 2 . '
S A a o T Y L Y I M IV VoS N K SR IR & 4 A A A PEIATe Iat et e) AN S] A% Y » L
APIP ELLELeS St iw-™ YYgHWEEN: YRXIER 2 2222 R e QAL MY < Ptk e b S WY =

J430 01D U101 Jo pug ¢ 6vt

*aur3nol BUTTTEo Y3 03 wmsy ! I 1143 60 ¥Z10
*sydnaaajut up3sis atqeuy ¢ I3 Lve 4 €10
*paTdesTp 21 sydniIequl ‘QI) A Jjo umy, ¢ ¥’ (@D TOW) A7 0) 9e Bta T
*PURIMDO 39591 Q1D 9y 399 ¢ 400 21D DY ail She gae J110
sydn1193ut aqestq ¢ 1a DA bYE 17 B £ 4 (1)

1343

[A4%

we

ove

6tt

QLD aYy3 3o uotzong Bumumy 3yl 3 sNAISUT QD AP JJO SWM 0 I ! gee

A0 A UTIN0Y butpesy, LEE
8°S WV INBEIVIS TS JWIS W 30 M0 001
PT Id 8¢C1° 127018 HTHWYS 430 QD uTINY

. 27,
> el

A AL ARC AR A < i I AR ol b At A A i dinnodiah e~ dia

rurwmwm ML o f ot it 20e AR

0" 2t ait A off 0" a0t Sl A WS- o A 4 P o

.......

*THIWS L SuTIno1 Jo g ¢
*xugajur wp13 wmay ¢

*s191sThoa Axeurrid g9 oy 2103s9y ¢ A
*s19381691 Arewtxd Ty pue ‘31 ‘4 oY) 210359y ¢
*9a1Aq MoT 193unco UMop) 3959y ¢ a'y
*934q Yoy ‘I93unco UMop Sy 3959y ¢ 1)
*T3UURLYD BITSTP 343 U0 UOTSIDALIO (] 03 ¥ Ue jeTyful ¢ v’ (309195 [auump)
*ydniiajuy !
unII UIMIBI1 pue ! LR
‘s1oys1bea liaumad sy 2103591 !
‘anren 133uN0o S3Aq MDT AU 39591 IASTAINAD H d’s
*daNDa 03 ob a3aTdwoo sT U0 I ¢ QAEZ WIND'2
*334Aq ybwy ‘anTen 133unCo UMOP By JUSUBIDS] ¢)
*dniqur ¢
UD1J WImal pue s193stbea ! NN
Areuntxd a3 2103891 ‘asTMIBgID !
Yyouel(0192 ST 33Aq J9MOT a3 J1 !¢ OR1Z M1’
*31Aq MT ‘snTen 193UNco UMOp Yy JUSUBIOA] ¢ q
*S193ST691 I pue ‘aa ‘Og SymweyTe Yy 1) ¢
*s19351691 gy ojewIalre ayy 3 ¢ NN

[

LI

$Re¥nE Hxafx

X1

. 2

Lo tcrAticile)

STHWYS L

*19351691 309195 Tauueyo Indut FoTewe OIY U3 03 JSgUNU T3UURYD pO1TSap ap ¢

M Aq poeTaTUT ST UOTSISAUCO (] 03 Y UR 0192 S3UOLl JISIUNCO UMOP U3 By *auo Aq antea amunco ¢

Y3 SIURUBI0SP WNIISIUT ISWTY yorg *potiad BUTTAWES Uy W0 03 Posn a1e 193UNcO b pue ‘a1 ays ¢

AT ¥ °"Spucoss 100° uerd 123e91b sporaad ardwes 103 aurinoa vraes Yinisjur a3 ST THWS 3L ¢

THWS QL auTIno1 jo pug ¢

*dn119quT woay wmsy ¢

519351693 J¥ oy 210359y ! N
*TSUURYD PRITS3P Y U UOTSIAAU0O (] 03 VY B JjeT3Tuf ¢ ¥’ (309185)
*S19351691 gy ayauTe 9y 39 ! WINN

LI
) <]
D
X3

SIS QL

‘19381621 309138 [auueyo ydut Hopae ory a3 o) Isqunu TauuRyd paIt H
burytam Aq pojenyTur ST WOTISIBAUCD (O3 V¥ e Yniraqur Jawry yoes uady *pesn muuwﬂ..wmwﬁz !
"Spuooss 100° ey ssoT spotiad apdues 103 surInoa 1AIS Hnizsjur auy St THWS OL !

FECCLERERETECERR VDR R LD R VR LTI E 1| souTanos sotates ydnuasqut Ve
S3UTINOY soTANSS WniIsjul Butpesy,

8°G WV

ST Id BT 220w

> ,
L) .A\f -
\P A ‘

st
41
0st

80
6d
(A 4

8zea

80

A
S082

80
60
14014
S0

80

80
8cta
80

adnad,

.
FFFFFFFF

vio
wio
orI0
dET0
ae10
OL10

VETO
610
8¢l0
Le1o
SET0
12310

(AR
(83 ()
OL10
KAl
@10
X110
o910

6210
8cio
x10
SZ10

INGEINIS TRDS IMIS W 330 (D J01
ETHWYS SaUTINOY 30TATS Wnatajug

fre

-t

P R I S

“—’.l‘.
DN

e

-

. i
“
oy
., v!l.
3
i
o

PR
L

*RAINDOTIVAQ SUTINOI Jo pug !

*3UTINOI UTAU A} 03 WY ¢

n s Su tn em

*s1sqaueIed pessad ayy 03 abeiogs Bmuo:mom ¢
*SSeippe uwInjal1 ap 390 ¢
*anTen 133ST691 X1 S,auTnoa DUTTTED aHyy 399 ¢

doi

EEEEEEE
g

dd

*UWOTIECOT 1933Ng AR 03 s3utad YOTYM YING ISV1¢ 3’ (LT LSV HXT) ai
I93auered wima1 ay3 Jo nfeA A peo] ¢ Q' (VLI ISYHXT) ai *ALDOTNX
*unnoI Zd BuTITeo ayy o3 burwimaa alojoq ¢
s1gauered Jdut 3y Jo abe103s S9ECOTTesp pue s1vjaweIwd ndno Ay S9I01S AINDOTNX !

AINDUTNA 3utInoy Butpeauy,

8°G WSV
9T Ixd 8CZ1° Z20M STHWS

60

1a
1a
1a
1a
Ta
a

te
[Adied

£s10

Zsto
1ST0
0sT10
10
avio
ario
n10
wio
v
¥v10

JNSEINIS DS WIS W 300 0 01
AINDOTNAQ sutInay

1
1
i

TSP AV O O ST S

R I
- - -* .
-l afics R 00

AN
N

>
- %

STATSY S R

SRS
oo o,

]

TN A

PN o

:('-.".

“
'

»
¥

PRSI YO
PO AL

e

W

AP A RN
s 7 o ®y P L Lo,

MR SR

1w et et

VNN ARV HIKa

*yabueT abessau o autieq ¢

IRSSHHS na

& utbog “Apeol1 upasAs uwoTIPT(0), WIKd

*apoo uoraTduo ayy 103 Sbeamg ¢
*SS9Ippe U9l 10119 a3 Jo abeioig !
*SS9Ippe uImdl Yo AP} Jo abeioyg ¢
*J19JsueI} R3Ep Jo PRBWLT ayy Jo abeimg ¢

*UOTIR00T I3J5URI} B3Ep 3yl 03 13jutad ayy jo abeiols ¢

*3poo jsanbel aipy ioj aeimg ¢
*3TUN TROTBOT AR JoJ afeimg ¢
°10709A 110 uB3sis buryeaado ayy 103 abeioyg ¢

*24Aq ybry ‘1935URI) EIEP J0J 19IJNg !¢
*334q M7 ‘I9JSURI] eREp 103 19Ny ¢

sobessaw Jo abeamg

21K
MIX1
MIIa
MIIa
MIxa
1K1
941

(=K = o R oo Jn Bl =)

a€d
a9

[~ =

3D dWD ¥
NN WE Y
NNV
$INNOD ALAd ¥
SSNVAL I v
:3Q00 ISI ¥
SLIND TNDIOOT W
oEA v

MIHH
EAE 1

PEEERTERREE R R R R R R I T T) sesoas e

8°G WSV

L1 3 871" 220

abe103s wyeq Burpey,

INSHIVIS THIDS JWIS W 300 [

HTHWYS

o ,

S
rw
1444
(44

jLalat gty
290949¢¥

0000
0000
0000

88

a1

1910

0910
as1o
610
A+ ()
8s10
(STO
9510

Ss10
¥Sto

01

abe1mg eqmy

.

¢

4

P
S
)

Nt e et e e
A SR . .

.'J.... ‘.Q' .-

VR TR TR RN VS G IR TRV IR R W G VR TR, B L LA R A O R AR O TR L O

e e

. bl ."" P
S AL

',

A IR I A A
D S O A U R L L AR

........

1910059 se 957 Y3t JauTy Burydniisjur 1o3 puewwno QL) 4 HWO X" AWM by
*191e0sed sw 9T yITM J3uT3 Burydniiajut JoJ puaumro I ¢ 12} 004 S04 ISVd €9
*3tey pue sdniisqur SgRsSTP 03 puewnd AL ¢ IBL nd A0 AD WD 29
*sdniIajur aTgesTP 03 puruno OId ¢ HLO 00d :ITAESTAINI T9%
*spow Jndut J03 puAmoo QId ¢ 387 nua $9pOWUL 09%
*0 TaWmEY I 103 ssaappe 3iad Of ¢ Hv8 nd @G0 D 65
*193s1b91 smye3s ndut Boreue OIV 3O SSPIpPPV ! H6¢ nod ISMEIIoW 8SY
*19381691 309795 TauuRyd Jndur BoTeue OIV JO SSAIpY ¢ } {14 nd 130935 (AU (GF
19351691 e3ep abuea 1addn @oav Jo sseIpPY ¢ HIC A :xadderea ocp
*10351H91 Ejep sbuel 19MOT QOIV JO SSOIPN ¢ HOZ n0d tI9MoTeed GGF
*39351P01 puamoo g 3104 0Id JO SSeIppy ¢ HET nd i H D bSy
*39351691 puaumo Y 3304 OId JO sSeIppy ¢ HT nu MMoI V' ad sy
sy
*uoTjecof abeI1ols e3ep jse[¢ | 6414
213 03 burjurol 1a3awerad Jndyno ayy Jo3 335330 ¢ HT Xd NINTISYT 0GP
*uoTyeoo] ofeioys !¢ 6bb
2000 YRRE 13aweIad ndjno sy 303 398330 ¢ HOT nd 300 WRNE 8FY
Lvv
35313 9y} 03 pajurad I3jauwered jndur 8y 103 385330 ¢ i741] na NI ISYId %Y
*s9Tdus Jo aacpnu 1sgaueied Jrdut R 203 398330 ¢ HY o ISTHWYS W SbY
*antes Ja3unco umop Ijauetad Indut a3 103 388330 ¢ B0 (0 8¢ WIND bR
*JuIsuUco awty QIO Jejaueiad jndut a3 103 39s330 !¢ HVO nld 2ISND HWLL €vE
*20W A 193auered ndut 103 388330 ¢ {0 nd AW AL
*1aqunu auueyo Jajaueied ndut ayy 103 398330 ¢ HI0 na CTIWID O Thy
147
PERERERLERT e e e e e R e e e e e e e e e e e e e e e g soenbo j{IHIENTE 6ep
8y
LEY
' 19 7
sojenby Taqel butpesyy Gty

8°S WY INBAVIS TR0S JHIS W 30 f0 01

8T 3N 82Z1° L2208 YTHINVS ssjenty ARl

AN L

e e e larma .
vy '.:r. ‘J\‘\;."X"l'-g

I RN Tl i)

L L

-" ' %
5 ")

e At e e
} o .’-'.’-’:‘h’-"}

) 3‘:.1":\f :.l.:.'f:-!' n'.-l'

AT T
PN A D RS

*.l - --. r
AL

A
ATy e

E
P N

o e
J- o
. o

.
o

AP VRIS o

s

*Xy 103 IIO6V ¢ 165 n0d
*30W QIO PTTeAUr 103 supea (D S ¢ HX0 N1
*I9qUNU TSUURYD PTTRAUT JOJ anTen [XXD YRR ¢ 10 0
°S10119 Te3ej JOJ :KLD HRRH ¢ HLI0 o
*3I0ge I19SN J0J InTe JA0 YRMH ¢ HNO 98¢
*¥0 ST [Te JoJ anTen uaD doRd ¢ Ho nd
*aurT pea1 Jo3 9poo jsanbey ¢ 1o na
*uTa3TaA JoJ 9poo Isanbey ¢ HOT g
‘0 TAUURY ‘T-QID 03 !
uoTyeoco] o1qel dunl ydnazojutr ue3sAs ayy Jo sseIppy ¢ HOVY T foec)
*jutad Anwe upgsAs burjezadp ¢ HEOVT (§.8¢]
*30309A Yn1aagur a3 Jo uomyaad QrD ¢ Hov o
*30T1Asp BUTISTT WBISAS Ay Jo3 Jaqunu 31un TeoTboT ¢ HEO 00d
*3ndjno a7osuco 103 JaCNU JTun TeoThoT ¢ HZ0 0"
*3ndut 9T0SUCO J0F IS¢nu JTun TeoThoT £ HIO n|
*Kreurq ut 000QTTIT ¢ H0.30 yoc|
*ITe s,3epy oy ¢ HO nd

6T ad 892C1° L2208

ISV X

@ NANT 3o

ANANT TNNVID

SNING
*ISNA

NITNR
SNTILTYM

$TEEL JNCIND
‘WAISAS

SOAA TN
{ISTSES

SLIONCD

NINDD

W0I Y33dn
0 <74

penuTjuco sajenby atge] Butpeayy

UTHWVS

JNBEINIS DS JHIS W a0 M 01
panutjuco senty arge]

0c Ixd

>

8CCT° (220

we ¢
o1

e %L

80C 90¢

Lz

UTHWS

1A 4

vo1
66

1743
81t

i8¢t
148
138

L1

0el
621

€&
4
v
69

1z

9
vce
clz
| {44
(YA
86
149
5

£l
434

£L
86¢
LS
1L
051

SLT

¥ b600 O LINI
¥ GSTO A4nd o
¥ 2600 03]
000 ~ISd1d
o JIT0 HSINIA
4300 NIV
(800 W 1SVd
0000 dSTd
0100 ¥
¥ 600 YA aNd
d (200 VS ON3
¥ LTT0 D 4
200 dneaeg
0200 OTeIEg
¥ $200 AN
d #P10 OTNX
¥ 8010 ¥ d1na
8200 auuD)
H 3500 W A
d 310 0 2
2000 QW 21D
¥800 O T
d €10 AIND
8000 JINND
2000 I/OND
1000 NIND
¥ 4300 HTID
8.00 ID @D
€200 ¥ aD
2200 Y aD
¥ 6200 YDID
D00 BINWHD
¥ 3100 NIoEd
6200 3ISMOW
d 9610 LAY
¥ J6T0 nEH' V¥
d /ST MKV
d 9510 I0T ¥
¥ 4570 W W
1 8510 o W
d 0910 IND W
d VS10 g ¥
d ¥w00 NIQOLY
4 6100 IS IN
00 RION

SIR NIXI W 'NA DEWAS
ONREAIN SIRD

T Iod

87T’ (ZC0™8

HYIWNS

6LT

081

Sl

0te
i144

1234

61¢
66t
Lt

414

L9

1ot
§5¢
154

8%
vie
9%
@Ze

€01
¢

314
1te
tLe
86¢
¥l
06

(A}
65

061
8Cl

SIN NI WA "DaAS
ORI SSRD

w

0000 OYIZ
6500 IDSV X
0100 TELTM
¥ €200 WII'NA
¥ TV0O ¥ ¥Isn
000 HHdn
¥ GZT0 WS QL
d 800 N EWIL
Y000 O ALL
¥ €210 WS L
€0V T WAISES
£000 ISTSAS
¥ 600 ~INIS
(Y00 W MOS
d €00 LIS
9 0000 IHWS
A B0 I N
d A0 AN
2000 NI
9000 VS N
4 200 MO N
000 I HAM
¥ 1910 WSS
¥ T¢00 ¥ NI
1200 SSaW 'I
d $ST0 J4d 1
4 ve10 ¥Ml
2100 dISvI
Jr00 SpOoWII
g000 VD OI
0v00 JA NI
¥ 6900 IS INI
obvT NUTIND
{000 STAINI

ANENDEHD* ¥a1no ‘ ApesysIeieq’ ¢ AAVay ‘31835doo T/ LINIGOLY ‘ €1S3L

8°S WSY

T

3ovd

[4AX DL

dON

TYd0TO

FELSAL

LNIWILVLS 3DUN0S
£LSdL

00

HONMYEO~OD

IWLS W 300D (80

0000

201

N

.'-'.“(

-

e aratarutatal

;;:

05§
6¥
*s3dniisjuT waisds ajqeul! 13 8t a4 $ 100
Ly
323s5T631 pueWWOd DID dY3 O3 IUBISUOCD dWTI dYF IITIM! v (auWd00Ld) 0o '} 4 pgga Z100
*3UBR3SUOD BWTIY DLD @Y Y3ITM 193s1Hax v 3yl peo? 3URISUODAUTIL’Y a1l Sy 093¢ 0100
124
+133s7H21 puswwos O HID Y3 03 puURLWOeD Y3 IFITIM! ¥* (aNd001D) 00 £y o8 €ed J000
*puURWWOD 3pOW 1dWTI3F DLD 3YI Yita 183s1b81 ¥ 9yl peoT! SpoyIdWTL ‘Y an 44 L93¢ 2000
184
+393s81b21 3dn1a3UT JID 943 03 103094 3AnIId3IUT Y3 dITIM! ¥ (LNIODLD) Lno [/} 4 08€Q Y000
«10309a 3dnIa3ur JID 9Y3d Y3iTs 12351631 ¥ 3yl peot! 3da1193UI0dOLD ‘Y ait GE 8vs¢c 000
8¢
547 JO 5S2Ippe 943 Y3TM UOT3eDO] asuodsal 3dn1193uT 9Yy3 peoq! 18 (dsayg3ul) a1 LE £18v22 5000
5010 awl3 {eal 3Y3 3JO SS2Ippe 3yl Y3iTa 19351H31 TH ay3l peoT! ¥00TOLY ‘ TH atl ¢ 4 00291z Z0o00
e
*s3dnaisjuT walsAs o19qes1g! 1a SLIIADOTD vt €4 1000
€t
LININDOTD TVEJTY ct
1¢
spaT1ed 29 TTIM 2uT3nol adrazas 3dniidjur ay3 potaad 13wT3 DLD Ydes 103 aduu!)Y
*p9309[ds JI9sn ST 3JURLISUOD awWll aYyj pue ! 62
(poatsap 3T 9T-°q oSTe ued 31) *96¢ ST ioTeosaid syl ¢ 8T
*SpucoasoIdTW 9T1p0T0690%° ST poTiad 201> wo3sAS syl 91aym :we
o9
* (3ue3suo) BdWTL) & (x19Te0S31d) « (%2070 wd3sAs) = potiad H 3
coowd
:ST w3 Jo poraasd 3yl °IULISUOD BWTI 5TY3 uodn 3uapuaiep! €7
ST 2UTIN01 ¥D20Td STY3y AQg painseau STl 3O poriad 2yl °"DLD dY3I SIILIS UOTIIDT 31aa! e R
*193s1ha1 jue3suod swTl DLD @Yl 03 JuURISUOD SUIY P9309T9S 2Y3l burlTam AQ spus LI IAdovldod: 2 - o
*¥00TD oWIg Te2¥ 103 ¥J0TOL¥ PATTed ST 3UI3IN0OI 3IBY3 weiboid s1y3y I04 *autInoil J7 i
201a198 3dNI23UT 943 3JO SSS3pPe SY3 3O S3q 3yb13 I9MmOT 9y3a se 103d3a 3ANIINUT DLO! 61
3y3 puUe S31q 3YBT® YBTY oyl Se J0308a 3IANIIIIUT S3IT 3N [TTA AdD YL *adD 343 03f 81 g
10309s 3dNIajUT DID 9U3 puSs pue Ndd oU3j 3IAniISJUT TTIM IT 0I9Z SIYDEIT AUWTI LD syl ¢
19A3 uoyy ‘we3sks ayj jo osuodsal 3ANIIBIUT 3Y3 JO TOIJUOGD UT ST TVLOL Uv jutrod?! 31
STy3 wolj *10309a 3dni11dIUT DID Y3 SPEOT pue Ipow Isuil 03Ul DID @Yy spurwwod?! GJ }
IININD0TI) ‘*opou idwT3 aYy3j uT pasn ST pieoq dIS 22Ul Uo 10192 Tauueyd ‘013z JLD! I 1

-w53SAS 9Y3 3JO ¥oOTD SWIITe3 9y3 S3I1LIS puk S32TTRIITUT LININDOTD UOTIOLS t g1

H“HH"HH“HHHH"HHHH..hH"HHH"HuH"HHHHHHNHHH"HHHHHHHHHH"HHHHHu...Hu..HMHHHHHHHMNHHHH“H"HH" ==L ININJOTD * C..ahv@ﬁ.. 11
3033y 01

8*G WSV LNIWILYLS JOUN0S IWLS W 3Q0D 80 201
A 3ovd 728018 t1S3L

VAL

AnALs COERRAA Mo

Ll

-~
“

[

B
«
.
-n
l(
L
i
-Q
]
.
.-
/
-

0L -
*SpuodasoIdIW {4 06°CS x} S83e3 IINIQGOLV “UOoTl3o® 1591 Wa3sAs! 69 _
Kue 1a33e uni aq 03 $pPIadU JuTIN0I STYL sopou paftod e 03jUT PIEOq OIV! 89
8°S WSY INIWALVLIS dD¥N0S IKWLS W 3q0d rdo 201
€ adnd 77€018 LS 3L
L]
1
]
1
243 3O 193 33AU0D Te3161p 03 Hboreur Byl sp2TTRIFITUT IIHIAOIY UDT3IO°3 E L i
! 99
HnuuHHHHHHHHHHU"“ﬂ”"“"HH“HHHNHHHHH““HHHHH“"HNH"HHNHHHHHHH"H"HH"MHHHHHHHNHHMHH“M"HH.H.HZHQO.H_ﬂ ..Eﬂmvmﬂu (=)
¥9
. . mm -1.‘”
H““U"HHH“HH"H“HHH"HHHHHH"HHHH”"HH“HHHHHHHﬂHHHHHH“"HH"HH"H"H"HH"”"“"“H"HHHNI*IIH"HH"""H.H.ZHMUO-HU uUCQ- 9 ...¢
19 P
09 .ﬁd
f *ssaippe asuodsaz adniza3ur 0OLD 943 IO ssaIppV! H3VET no3 :dsayglivl 6§ Vg
*51) 943l 103 3Jue]ISUOD ENTE v HO9 nov3a uwcmumcoume..ﬂ. 8s \..u.
*0132z 3uuRYD 103 103034 adnia3jut JId¢ H8 ¥ 003 :3dn1133UI0dLD LS K
K - puRWHOD dpOW IBWTI IID? HLE0 folok| 1opoyIauWTL 9% Kk
". *19351693 303994 3dniia3ur 0 04O U3 Jo ssai1ppV! HOB nd3a SINIOOLD SS -
n._ “193sTbs1 puewwod § DLJ d43 3° SS®IpPV!? 008 no3 SAWD02LD %S .._3
—~ Mm v -J.
g LININDOTD 303 s@jenbd ¢S Ll
4 15 - -
Ny 0§ 1
. Ab |
- 1
: k2
5 Ad
v r&J
; "
e
-. .Jm
... 7
.
; <4
, N ﬂﬂm
: .aﬁ l\.:d- -qn.g
. -1“\1 ..il.«
L]
i e i o . -u~
I P S R e

oo

LS
TR N S S S S S E S SRS S S S S S S IS S S S S S s s S S S s E S S SIS S sES = s IS S SsssE =SS ==ssszs=s L INIQOLY umvﬁmu 86
S6
*193s1H631 eyep obuei 1addn go3y JO Ssaippy! H1Z noda ta1addpeaeq v6 _
*3193sTba1 ejep 3buzi 13MO] QOIY JO SSIIppPV! HOZ no3 tIamoTeieq £6
*19351691 puewwod g 3104 QId 3O SS81pPV! HET nod 1LY0dTd auWd 4
*133STH91 puedusd g 3104 OId JO SS91ppV!¢ HZTZ noa 2L¥0dTY T aud 16
*s3dni113jul 9[geSIpP 03 pPuURBWWOD OId! HLO noa 9TYeSTALNI 06
*apou 3ndutr 103J puewwod QId! HdY noa $9pONUI 68
88
LINIQDLY UOT3ID3S 103 sajenbgz : L8
98
*s3dniiajur wa3sds arqeum! I3 S8 a4 9200
f8
*193s1b31 ejep 1addn ayjy iesad! (1addpejeq) ‘v NI €8 124a ¥200
*193s1631 elep a3MOY Syl IeID! (39moTezeq) ‘v NI [4:] ozda ¢200
18
*133s1581 purwwod g 3104 Y3 03 pUBWWOD 2y3 aj3TaM! ¥’/ (L9049 ard} L0o 08 £cea 0200
*193s1ba1 puewwod ¥ 3Iod 9Yy3z 03 purWWOD Y} I3ITIM! v/ (I30d™¥~aWd) . &no 6L zzea 3100
*Y O3UT pueuwod afqesTp 3dniaajur 0Id 243 peoT! 91qesTQINI‘V at 8L L03¢€ o100
LL
*193s1ba1 puewwoo g 3104 9Y3l 03 puewWOd 3Yy3j I3ITimM! ¥V’ (Z30d "8 and) L0no 9L £zed Y100
*193s51691 purwwod ¥ 3l1od 9yl 03 pueWWODd dY3 IITIiM! v/ {33047V aud) LOO SL ceea 8T00
‘puewuod T 3poW OId 343l Y3ITM 1393s1DB3x v ay3y peoT! apoyul ‘v al vL dyae 9100
€L
*s3dn1133uT wo3sks aTgesiqg! 1d SLINIQOLY L £d ST00
1L
0L
*SPUO0DISOIDTW {4y 06°CS x} SOYe3I LINIAOLY °UOTIOE 3S81 Waishs! 69
Aue 133je unl aq 03 SpPIdU AUTINOI STYL °*apow parrod ® o3jul pieoq QIV! 89
8°S WSY LNIWILYLS 3DUN0S LWLS W 3IA0D £€0 201
£ 3ovd [4ANAL] €LS 3L
5
22
e e TERAPPAL, SONIE | OnBieY hARARERS URRARERE Srroy RN, PNV

s i d L - Ll

R

Nt

-

AR 8

"

Mt

AL A= - et ek of

.

v

o

- ™

H“HH"HH"H"HUHHHHHHHH"HHHHHNHHH"H“HH“HHHHH"HH"H"“"H"HHHM“HHH"HH"HH"H"HHHH"“""H""HHQOB<Q<MM nCﬂOND

lllIIMN"“HHHHNHH"H"""HHHH”HH""HH"HHHHHHMHUHMhhHMHHnnHM"UHNHHHHMHHHNH"“HHHHH"H"H“QOH<Q¢NM n@ﬂmu
©193s1b21 e3ep 1addn sy3y jo ssaippy! HTZ noa :1addpejeq?
*193s1bax ejep i19MOT 3y3 JO SSaappy! HOC noa :aamoJezeq!
*123s1631 snie3s ayz 3o Ssa1ppy!¢ H6C nod3 :sn3ie3sqgolv
doIvavad Uol3lones 103 sajenbg H
8°S WSV LNFWILVYLS 3D¥N0S
4 advd CZEOTS €153.L
*3133s1621 g sy3 03uT s31q 12ddn ayjy peoq! Vg al
*s31q y 1addn ay3y peay! (1addpejeq) ‘v NI
*19351691 D 3Yy3 O3UT S3TQ 33MOT dy3 perOT! v'D a7
*$31q ¢ Ia9mMOT 9y3y peay! (19moTR3RQ) ‘Y qI :Apeaysieaeq
*3nUT3UO0D ‘s3x ¢
‘urebe A13 ‘oy ¢ SAUV3d’ 2 ar
¢ 2337dwoD UOTSIdAUOD 2Y3 SIf ¥0 IId
*393s51b681 snje3s goiy ayj pesu! (snie3ggoav) ‘v NI PCAQYdY

*paystiduoooe ATsnoTasid usaq sey BurlTIm STY3 3IPY3 Saunsse!

aoLv¥avad *133s1bal 30913STaUURYDAOIVAOIV 2Y3 O3 I2qunu Tauueyd pairsap!

3y3 buryTim Aq pauTwidlsp ST WoiJ peai buleq [auueys TezIBIp 03 bHoTeue ayr H
‘utebe ¥09Yo 03 ¢(XQV4d 03 sayouelq dOLvVAvay Apea1 jou sT!

UOTs13aucd (pesiun 9T) #dU © JI *onTRA UOTSIIAUOD MIU 3Y3 UT pedi o3 Apeaysieseq 03!
Saydue1q QOLVAVIY Apedl ST UOTSIBAUOD #3U © JI °*SUT3INOI UTeW ay3 03 o[gefIese sSI1i
UOTSISAUOD MBU © JT 92 03 S3ITQ OM3 9S3Y3 SY09Yd JOIVAVIY °DPSI USSQ Sey UOTSIDAUOD!
943 3T Su0 e ST QU0 3ITd “ped1 UBSQ 3IOU Sey pur 3933TdWOD ST UOTSISAUOD © 013Z!

€ ST pJlos sn3els ay3j 3O 2uo0 319 3JI °Ss21bo1dur ST UOISIBAUOD ® 0132 ® ST piom!
Sn3e3s 34Ul JO 018z 3Td °193STHAI snjels 19318au0d Te3IBIp 03 boreur ayy Huipeai!

Aq STyl sS90p QOIVAVAI *PIe0q DIV Yl JO 19313AU0D [e3ITOIP 03 LoTeus oy3 woij!
JoTjewiozur Te3aTBIp JO $3TQ ¢l DP23II3AUOD 9yl S3INAUT JOLYQVIY UOT3DaS

2
H
¢
.
’
H

dON :31ie3sdooq

NH"“MnHHH“HuHHMHHHHHHHH“H"HH""UUHHﬂnHMMHHHHHHHHNHHHHHHHHHH""HHHHHH""HHHHHH“HHHHHH"“BHZHDOF¢ ipua!

©193s1691 e3ep 9buri 13addn aoav 10 ssaipow!? urz nRa srnddanaen

et
Tel
0eT
6CIT
8¢T
Ll
YA

LWLS W 3a0D> rdo

st
XA\
€¢CT
(44}
121
ozt
bll
311
L11
91T
SIT
AN
€Tl
ZT1
111
01T
601
801
L0T
901

LACNY
€01
0T
101
001
66
36
A
96
S6

=r

Ly
T¢dda
0Z4d
ERERA

Lydd
6240

J0

201

€eou
T€00
0¢00
4200

J¢0d
vZoo
3200

{200

\4\\

Jf Y

(W u

*abue1 z1addn om3j Tauueryd yoig JO SS9IpPpPV!? HAC noa
*obuel 19M0T Oom3l TauueYyd Yo3g JO SSaIppV! HdC noa

vaLno :pua!

t1addnzvoag
113MOTZV03d

*OM3 Tauueyd Yo3g JOJ 8T pue T SIPUIT UT SOTUOWAUW 3SaY3Y asn!

*sbue1 1addn suo Tauueyd yolQq JO ssaippv! Haz noa
*9bura Z9MOT duUO Tauueyd yolg JO SS3aIppv!? HOC noa

:1addn1voada
:19M0TTV03d

*3uUo Tauueyd yo3lg 103 8T pu2 y SAUTT UT SOTUOWIUW ISIY3 Isn!

YaLno U0I3O08S 10J saze

*133Ing yo3d 943 03

andano 3o s3tq § 13addn ay3z a3Tim! ¥4 (19ddnivolq) Lno
*193s1ba1 y ayj H

o3uT 3nd3ino 3o s3tq p 1addn ay3y peoT! a‘v a1
*a333ng ¥oidq a9yl o3 {

andino 3O S3TQ 8 I9MO0T 9yl 23Tam! ¢! (I9M0TTV03Q) LNo
*193s1b31 y aya ¢

o3uT 3Ind3ino JO S3Tq § I9MOT 3yjy peod! o'y a1

*81 pue 1 saurl weiboad ut 1addigvolq pue IamoTIVO3IQg 103 13dd

19M0IZY03Q SOTUOWRUW SSIIPPR ayjl 23IN3TISNSs ‘0M3 Tauueyd 19313AU0D boteue
SseIppe O] *Spuo33soIdIW (T ST 2wT3 DBburTlIlas 3nd3ano wnuIXew aylL °*[Ied
9Yy3 bUIPNIOUT 30U 33INDAX3 03 SPUODISOIDTW GZ°G SO¥BI VALNO °SIi23sibazx
Aue 7a37e j0uU saop aulanol STYI °*at1ed 183sTHOI Dg 9Y3l UT SUTINOI 3Y3 03
piom 3nd3no 8yl °*pieog QIV 3yl uo 13313au0d HBoleue Jo Te3ITHID duc jauu

Jor3ejuasaidai juswatduod s,z snid ubis 319 ¢ © 3nd3ano 03 JUTINOI ® ST VALNO

nb3 H

$¥axnno

fzvo3ig pue!
03 Te3T1bIp!
suT3noiIgns?
ndd syy jo:!
passed sT!
eyd> ayy o3!

Lt
0L1
691
891
L91
991
591
votl
£91
91
191
091
661
8¢1
Ls1
951
SStl
sl
£st
¢St
ST
0st
671
8¢T
A AN
91
SV
AR
evl
[4A¢
Wi
071
6€1
3¢l
Lel
9¢€1
SEl
Vel

ccT

‘ol

acea 8€00
8L LE00
Jzea SE00
6L €00

%

[30 A XV

REIRTETEN

~

Y e R AR

suoryeiado weaboad aaurjuoy °Sutpuad ST odeosa ON ¢
*jutod A13judss1 pIY oyl o3 duni ‘sax ! 01w’z dr
¢ butpuad adeoss ue SI!¢ v'e L1d
*pIOM SN3IPIS STOSUOD dYF Y3TH 13351631 Y aylz peoT! (8n3e35U0D)’V at
*3NUT3UO0) *PI1INDD0 sey 10118 ON !
] squtod A13juseax OIY ay3l ozdunp *pIINVI0 sey 10118 uy ¢ o1d*zn dr
N *5p0)d(9pod PauUINIdI BYI YITM 3POd YO Y3 11edao)d!? 2podI0 dd
wTje1ado %0 103 apod uorzaiduwod a2yl y3ita 123s1b91 ¥ 3yz peoT! (@popduod)y a1
wa3sds Hurtjersdo ay3z TTeD! WALSAS 1IVD
8°§ WSV INFWILVYLS 3DHNOS
S aovd Z2¢€018 €LS3L
*SS31DpeE 103036 SIOSU0D 3Y} YIta 13351631 X1 ayy peoq! 10303AU0DQ ‘K1 a1 $ANITADAHD
ANIAO2HD Tvd01d

*aur3noIgns B se Us33Tim 3ou!

ST 37 - weiboxd 19biel e 3o 3ied e 2q 03 pIP33UT ST ANMIDIHD SulInoy *WILSAS!

03 TIBO2 8yl ybnoays waysAs Sutrzeaado ayj eta paysTduoode ST pios snjeis 31o0s!

—uod ayy jo buipesa1 2yl “we3Isis putjeiado OIY @Yl O3 pauiIn3a3 sT 133nducd 3yz!

Jo T013uU0d pue pajioqge ST weiboid jua1Ind dYy3 OS JI °passaidap usxq sey Ray!¢
adeosa uUe JT SUTWIAZ3P 03 PIOM sniels TOSUOD dY3 SPeaT QNEADIHD aul3noy

[ESE NS

H“HH""H"HHHHHHHH“H“MHNHHHHH"HHHHHHHHHM“HHHHHHHHHHHHHHHH”HHH"HHH“HHHHM"HHHHHHHHH"HQZMMUWEU u CM@WQ

961
Sel
ol
€61
Z61l
6T
061
631
381
81
98 1
S81
8t

LIWLS

8T
81
81
081
5L1

LT
LLT
9LY
SLT
Ll
€Lt
LT
T/7

7T00YD
494D

d 00TSvE
v1002D
083d

d 0006vV ¢

$1€04D

W 3q0d> rdo

4 00251244

3vo0
ovo00

6v00
9t 00
7v00
1700

3t00

201

veoo

~\

{

A
YERCCLLX CONON

VN L.

#
IR}

NI

ol :K:‘ RV

v, Cas .
et

sy

RENC
e

e
La

e
l,f".

L,
L PCPe

PRIy

2T,

o
.-
.t

R ..n'. La
NN I

.
-

v
'-
.

A

J K o e e V. WU ¢ > > e PP L SR I P LAY e e e . OO R TP I [e 4 " 4 o

SN
.-!s.\m_
oo
uWA
O
..wm
1
...h
-‘-A
3%
St
- .--n‘
Lze “e
9z2Z .xr
HHHMHNHHHHHHHMHHHHHHHHNHHHHHHMhHH"HHHHNNHnnHMnuuhHHHHHH"HH"H""""MHH"HHHHH"HHHHHHHH""“UHMBWNB u@ﬁ@« (a4 ﬁﬁ
vee e
|44 Mf?
sutebe dool £LS3L Y3 oqQ! 31e35do0] ar Zze 4 00LTED dS00 -
|$44 B B!
0¢e tx
e EtmsfZ—E—mmEm=SSS=Sm==—=-oSsSSRZoSSSSSSSSSS-SmSSSSSSS==ISSoc=zSSS=S=sIsSsSssssxsszz=saz=====QNIADIAdD uvcw“ 612 .f
81z ...m
*3utod X13us81 wa3zsks burieiado OIY IO S83IpPY! HOOV T noa 0™ LT :L
*3utod &13us 2uUT3INOI wWa3sAs JO SSIpPY! HEOV T n03 *W3ILSAS 91¢
suotieiado Tnjssa00ns 103 3apod uoridTdwod! HOB noa $19pOIN0 S1¢
*3nduTt 9T0ouUOD I0F Ipod 3Tun Teotbo1! HIO noa 1UIuUo0) A YA
*bulpeay 103 9pod> 3sanbay! HO¥ a03a 19p0DISDILY €12
¢Ie
auaNddIHD dutInol 103 sajenbz : 112
012
{ 0 Md3a 60¢ 0000 asog
*apod uor3aTdwo) jo ss3ippe syl 103 abeiolg! 0 d443d :apopduo) 80 00 2600
¢ 0 Mdaa Loz 0000 VS00
: o maada 90¢ 0000 8500
*yjbusT ®3jep 8yl 103 abeiozs! T maaa 502 00T0 9500
*pioM SN3e3}S SIOSUOD Y3 JO SSIIppe 2yl 103 abeioils! sn3elsuo) Ma3aa yo0z o V0TS $S0D
*apo) 3sanbay sy3l 103 obeioas? apon3sbypy dg43a €02 9% €500
*2p0o5 3TUN TeSIbOT ay3y 103 abeiojzs! ujuo)d gaJ3d $110303AU0D 202 10 2S00
T0¢C
*piom snje3s 9[o0Su0d ay3j Joj abeiols! 1 $33d {sn3e3suo)y 00¢ 1500
66T
aNaDdHD durjnol 103 abeiols H 861
L61
. 961 -
suotieiado weiboid anutjuon *Suinuad st adeosa on !¢ Fex -

ana 1274

£S¢

(474

T EEEEEEESSSSS S S CsIS S S SS S S SIS S IS S S S SS SRS S S S S SR EESSSSSSSSR==SSEssSss=Issss===zz======))070LYd nﬂﬁwu 16¢

0s¢

.hwuwMUWM 309T9S Tauueyd goiy 3yl IO ssaippe aygL! H8C nodo3 $303[eSTUURYDJO0IVY 6%
*193313AU0D HMUAmﬂmu o3 va._HMEM Yy 3jo o019z Td2uuey)!? HOO no3 tTauueyn 8g¥ez
Lve

AD0TOLY UOTIOAS 103 sajenbg {o9pe

Sye

¥ve
*3UTINOI Teutbhrtio ayjy o3 3dnizajul SYy3j WOIF uinzay! 113y £ve aras

ive

8°S WSV LNIWILYLS 309005 LWLIS W 3a0d r€0
9 d0vd [A4 A R¢:] £LSIL

*s3dnzia3jut arqeus’ I3 1424 a4
ove
*3193s1bax 303T73s Tauueyd 3y3z 03 Iaqunu jauueyd IAYI IITIM! v‘ (30995 T2UURYDA0IY) 100 6€C 37¢d
*laqunu [auueyd /¥ PIITSIP 3yl y3Tm 123sT1bax ¥ ayz peoq! Tauueyd‘v a1l $D0TOLY 8€T 003¢
LET
M20701Y V901D 9¢e
€T
°[auueRy) 3IURISUOD a3yl AQ pPIJILOTPUT ‘IdUURBYD PIITSaP 3U3} U0 UOTSISAUO0D! €T
Te3THb1p 03 boreue ue S83RT3TUT pue I3WTI DID 9Yl S3IIS31 YDOIDILY SINDD0 STYI uayy! g€
0132 $3YOdeax I3WII DID 9Y3I SWII Yyoes paTIed ST YHOTOIL¥ *'IVLOL I0F uoTlouny ¥O001d! 7¢Y

QWTI3 Teaa 9yl abeuewr 03 AUTINOI 3DTAIIS HQSHHWOCM ay3 ST YD0TJOLY UOT3D3S H T€2

tooez

""N"“"""“HH""HH"HHH“"”H""HH"H"HH""U"H""HUUU""""HHHHHH"""""HHHH"H““HHH"HH"HH"HH"""""MUOQUB& : Cﬂmwﬂu m N N
3¢¢

Lze

a»7

Y
LI D

AL R A

PR S L6 R Y
.

G LLL
PRAAR

>

XA

L

aovd

7Te01s8

9¢¢
yol
61T

(444

€Cl
Wi

y0¢

)4
08
6L

8T

ELSIL

(44 9g (4090
134 85 0900
9 3 9 0000
68T 912 (XA
€0 ¢€1¢ 0¥ 00
9¢ 8¢ D 7900
631 L1C 00v 1
9 LTIT 9D 82J0
9 8PT D v¢00
88T G1I¢ 0300
9 66 D LZOD
Le 66§ 37¢l
YL 68 3p 00
8L 06 L0003
391 3C00
L9T dcoo
bS1 €91 dacoo
06T <91 2200
£8 143 100
3 £o 000U
9 ¢T D 3¢00
€81 ¢0Z 4 ¢SO0
6T 00¢ 4 1S90
20¢ v1Z 1033
(8T 80Z ¥ 2S00
8¢z 8VC 0000
6¢ LS 8v 00
oy Ss 0800
1% 4 1 2] 0800
9L Z6 €200
SL 16 2200
Z¢ ve D 1000
9 €8T O VYE00
LTT 8CT 62030
6€C 6FC 8C 30
9 L 3 S100
SJ43¥ NJ3a W VYA
JONAYEIqY
o onl PP IS
L84 B Sy Jr ae

Wiauty
0)auTY
gLS4L
W3LSAS
Isbypy
2071014
o1y
CAQV3E
vaLio
3p0oDN0
3sdoo]
394d3u]l
3pojul
SIGLNI
azvo3a
1cvo3g
nivoaa
T1IV03d
daejzeq
oqesed
sjeze]
JIAUOD
©35u0)
uiuod
0oduo)
suuey)
UuIQodLd
NIQJLO
WO0D21D
g4Tand
NTawd
INDOT1D
3MD23HD
35303y
yogeay
NIdoLv

‘108LAS
S50¥0

K
Saceml

e e
u‘.\(.' VY

et

Lt ol o

At et e et
iadal

TRV SIS Y P T

..........

5 Appendix E: Buffers Module Listings

The following page is the compiler listing of the Buffers Module.

Appendix E 367

TINI 3T JTEEL EWAS SALAd 3a0-Z 0 SALAd ¥IMT 0002

(S) ONINNM 0 (S)YapE 0 NOLIVIIAWD J0 Qd
SIAANEd NI 114
144
- X4
44
pRicC2n < QIR CERIN SITAR-. 0 C
074
D 61
8T
L1
91
[@M 3ZIS Hd4Id] AR y3iddH ST
¥1
AL ¢l
AN
11
_ 01
000T = dZIS ¥iia™ 6
8
JINEISNCO L
9
i *UBJ3TaIM ST SI93I2AUOCO @ O3 ¥ 9U3 WD1J ©3ep SUY3 UYOTYM OJUT IIINg B3ep AN | S
i JO ssoippe BUTUUTHIq SY3 SAYSTTORISO pue AJouBW UT soTnpow ay3 JO 3sel ayl i b
i ST 3I ‘uriboid wH3IsSAS UOTIOSTTOO BIEp 3yl Jo uumm ST oTNpod STYL i €
4
i B6T YoIeW ¢ | TINON SYA4A T

9TCT"L0E0B 0°¢ SASZK

1 obad _ B6T UOTeH 727 FTIAOW SYLIIE

4

. 1\..¢v.. . 'y 0...-..,.
"] R)
- o .

A J i S A RA -..ﬂ.-. oo

-

..nuwn.qn. ----- ; .-- wm -------- N Ty ¥ -n.- -o--a'h & .w LRI WY s\q-n-vun-.qo\c.!(v. -itn.c‘.)-lqttwdn e .vn-lc.c.l-.-' v

..... OO A NS AR AL A A €A A6 A S AE AL GEL L tal AL Al it st Sg int ma o

" Appendix F: Collect Data Module Listings

The following pages are a listing of the Collect_Data Module. This is
not a compiled or assembled listing; it is source code.

Page Number Contents
370 Introduction
371 Constant Definitions
372 Type Definitions
373 External Routine Definitions
374 STRING_COPY Routine
374-375 ASCII Procedure
375 GET_DATE Procedure
Y 376 FIND_TIME_CNST Procedure
377-378 FIND_CTC_COMMANDS Procedure
379 SIZE_DATA_BUFFER Procedure
380 ERROR_IN_PREPARE Procedure
381 PREPARE_COLLECTOR Procedure
382 ERROR_IN_CREATE Procedure
383 VALID_STRING Procedure
384-385 CREATE_DATA_FILE Procedure
386 LOAD_DATA_FILE Procedure
387 CLOSE_DATA_FILE Procedure
388 ERROR_IN_SAMPLER Procedure
389 SAMPLE_DATA Procedure
Appendix F 369

....................................
.........

AD-A172 823 DES!BN RND PRRTIRL llPLEHEITﬂTIDI OF A COHPUTE o 3/3
DNTROLLED DATA COLLECTION SYSTEMCU)> AIR FORCE INST OF
TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI. L EzLUTZ

UNCLASSIFIED FEB 86 AFIT/GE/ENG/86M-1

L

§%,

"y e

LR

AT

SRt]

»
R 2

vor deon St b et s o

03 =l

HEEE

o Of of <p : 31
e EEFEFFERY

=

———

I

e
I

——
——
 ——
——
]

i

14

e
 ———
S
—

W

125

———
e —

Y B 2 o D 5DV

Vot e VT

Malb /At Al oA A Bl Sl f

Al Malk At Jin g sedd

(a4

A

Anlack i ags

KR LA T ™

a0 e TR

Lo ST TR

A A

Ml &

&

%

S - - -

-

e et e mms e el S e et m

i 1861 UdaeH ¢ |

£

i e s st LW L Ye Ve a s B Ve s n AR . s N aa's 8 & » & | ™ -
i
CVALVATSIdING Aq pBelivs HLD04L TT ULT.4 I UDLlu g
slieT Ve lTasuiIo s i
SlTNGIGTONW T i
Vvl wfldaNs € i
dULOL'TTIVL GuVCawa ¢ i
wlla VavGTadvaso *1 i
feav g
adyl Y0074 STY3 JOJ s3julawadlagns IATJ 2ie 219y ‘uweineip VAINIVNILE |
wo3sAs UOT3IDATTOD B3IBP a9yl 3JO ¥O0TQ WIVCE IDYTTVD Y3 5T aTnpow STYL i

3710aUr VLVGTL0371700

- wt s et

- et e e e

- e

v g =
VW sh AR,

*YSTp WYYSALS ISYITO uo tr:OA jou @13 pulsSonnsg

*ouTl $TY3 Je suURTTiae 30U LOTAOD BU3ISONLIL

*OTULTwLY ST aJUUdU JUTIDTIINLUI

*SLESTUo L ULITU BURU QuURE I0 BTG

SLOTLUIVL0 TLICCLLIDNG JUI 800 Jluii.

i S9..¢]

SHSTIP O3 4I0LGU WOIZ LIRP Hud Z0 LUCD SUJ DUTARD J0II6 WSISH3 v uh 939yl
*SHOD0IG INUUT wyl 3ecudl ~u:ocﬁ 2950 UT 10318 Ul ULIC(SRy vaeyg

*SPUNOG LOUTIOp 8yl 8pIsuo ST 19cn cnu au POTITOBUS ObURI LUTJIL eyl
*PTidedy oty U UUT4vdl a0) LUldds 2U BTTII U UI £I8JLEIVLT &Y5 IO U
*UORVGS £LIVLAL STCETTILAY £PUsURT JUS wu 40 PUILONDOI SOTAURS 30 JGLLU 4,
*UOTIvIBGO EJubCur Q43 PIY3II0CE Cvy I9LT Ui,

*we1d0ia JOo UOT3IEIBUO JThwYy ‘T8l ST J0Iis ouy,

*RO0TSTIT IR ‘PeIndoo svy 10133 Oy,

*I533INQ 2ILP MRI IY3 WIOJ 03 DPISN &IV SIUBISUOD

oM3 9ssyl ‘uweiboiad 214 ¥ WOl pPITIed ~[3IDVITP 9g 3IoUURD iabeuvu Alousw 9yl OOUTS
.wwmuoum Blep MBI 103 91T1J YSTP Y3 03 paubisse iaqunu 3jTun Ted1bol ayg
82TA3P 3NA3N0 STOSUOD ‘LAOLOD WI3SAS 2yl 103 I3qunu 3TUn TeotboT aug

*203 PYuGzIdOIL BG ULD 38UTY) 3UNIISIUT LY SPUODDSOIDTU UT BUTI 3IS83II0YS Uy

‘uInyax abertireo 103 s3gh osie Z'1d
*io3eubison
9yl oursup o3
mcHquuuouc~ 103 puLLlod

burtjuanzaazu Ul 202 puLuuos

971z 20 pud
®La030vIVYUD IIDSV IO DUTIIS © JO pus
*HOTTOY 03 JUBISUOD UTI ‘9s7 JO ITROSVIC Y3TA IaWI]

*#OTTO3 O3 3Ue3ISUOD QUWT3 ‘Y JO a[20591d Y3jTsa Tauwly

2%

‘.
.l

AP LSS

*uIn3al JbLTIILD IIDHSV

vld

LOEN Jogduiedy

[W]

oA

£ =t et . = -
r
I3

i Tl
i [N
i e
i I
i Ud b
1 N
i LG
i ccr

-
o
<
(=

fun

C ae oo s 00

.

Gaalald S, wlld

ACVea 00T LDiaEu
Jeus.al. rTrHror .

[T

[RE TR

____..ﬁ_-__._.~_~_~_~f~‘_------~*-----------__~§~_-__~_~_~_-*_~___~___~___~______-__~

- »D.r; [SORNEEASTITTN

ROITERRY SRR 40

Lievavawy
wldul JLdeuoy
vliue

wol

[RV I [SRUL
[T S]

[UR (F PRV

v
PRSI
wede
FEwe]

awo'iNa

SIS Yavda

LOOTET0S1E0D

Wl I

ws la

P ouniaud T duTwd
: SUON TS
: aUu T wsvYd
: Lui0DES
P OSGHCDaS IMTIM
: SQUODEsSTouuIN

SINVISHOD

RS Y

FRARIAE

-*\ ¢‘- e,

F . . - - v, "L
RN AR T TR TR Tl Y Iy

\\--
A
AT L

AR R RN RN RN RRRRAR R

aT® 2 & lh-b-\\tu .---IVII
i ~ *dEddnd ' 03 293UTOC ¥
i °*9bepio3ls ejep MRl 103 aRIAY

R RN RN RN R NN RN R NN RN R RN R AR RN R R R RRNERERRNY

e

|

[Quoi

Hely

S A O

saddut,
Cuddiu) AVduY

UIITELSTIIOSY,

[G4X& TE JAvVUYY

RO R

ShiUdTdaddng
da3dang

boa IIDSV
ORIELSTIIOSV
3LAd, dixdd

i a

ST

dAL

. e, RO

[

RODCIG PRI

-
»

L
-

N

N

REXE

LS

i *uwezboid sy3x o aInpOW IS OYI UY ST IuIIng eirp mel Ly | LCadiyg d3dssnyTvava

_ _ (dlab 4UOD NdlLEe) sacolde
{ GYOIi SELAUTIO dEUNNI *8d4A4d Bdd widdlie YESIAd LIKNTIVOIONUT) SuiClolaed U3LLNd

. . = ,
U ocmne oo dicinune 7 IO IO
.~ . P S - - riee 3 /P T R - P B .. -
{(Gohe wlD! 2G€0n i THOILISOd HYIh OIwioud ‘ulie wiads 'IVeibus) Ldliciiued PR
{ aana CUUY awansec) [OEN ST
' SO LSS . N ; .
Vvoawsac wiindd INDIOUL 1 Lo lued [
(coie LO0U ndiine) Lol Lt
PR -~ Y - R T J TTrr e L
(Gwaou SGUN ‘odndd wwa VG Chdd Tadid Gl TINoeuus 1 wliinaivea adU
4

{ diice dbudud Show Ydwal Siad NIV 1 LaliGaoUed daawddd

(Zo7dd duGilod GMed f8L0 QULLTIVOIDUNY) BJAQED0EA SLiul
(348 aQuoTilEhddd LIuNTIVOIONOT) S60ddai0dd EQ0D& LMIGLIuM
(419 340D HENLAY LINNTIVOIDOT) Fu0AaDOdd EAcdY¥ dLI¥H

(a4on d01¥A ‘ELAE LINOTIVDIDOT) 3YNAED0de CuOuG d&Idn

(qyoM 3ANTI¥A ‘ELAE LINOTIVOIDOT) SUNCZOOUd QUOLH ™ ILIBH

(€ELILKI FOTIVA ‘ELAE IILNTIVOIDOT) 540G300ud wEDaOLTIA” Gdldii

(3LAE d07I¥A LINOTIVOIDCT) 4diCEduud Eaadi aonldM

{ 3LAE OVAVE Tavd UndbhiO THLiO. vuVua Taviba) SuwallGua
34d01d300dd &LVd

(d1A8d LKOILIVDOT NIVA &LSYI ‘4LAg 400D~ HOWYd) SHYNLIY
(aLxdd HOILVYDOT VYiVA LSHIJ
'Qu0is SEIGCHVS LiRN0D
‘3oLAu TANNVED LiNLSHOL @HILTOLD HU0W 04D) SubUud0dd <& idilYsS

HER RN NN R R R AR RN RN N RN RN RN ERENNRNEREN RN NN R RN RN RN NN RN R RN NN N FR R P IRt
@
L M GO LY TN gy o g S s P Py A" L A A A o S T, PRV R PARERA % %

£
4
’
v
¢
v

-

THIRTRY

Piveibbbiirid

7.
o

i
i
i
i
i

FEEEE R b TR e b bbb it it

~ s

AR A YR RAEEEE CNODREAE ahiaithiiaAl

oLy =3 [INIOd). OUIELSTLXAL NIHL L% dSVD
19 =% [LNIOd) ONIMISTLXIL EHL 9% dSVD
1S =3 | INIOd) DNIYLSTIXAL NIHL $% I8VD
vby =3 [LIIOd] ONIYISTIXAL HIHL ¥% dsvD
1€ =3 [INIOd] ONIYIS™IXAL NIHL €% 3ISVD
oo =% [LUTOd] UDUIYNISTIXEL HNIHL 2% 25VD
fTe =2 0 SlIod JUoKIEISTIXAL HSHL 1% 25v0
0 =2 [GNIOG . DIIGLET LIRS HdHL U% &5V

I AFAES
e =21 GLI0d) UDRINAS TGS
UCLLD QDL LRl = ULl
O T S L S N T bete d o wda
[N
v =3 [T
,c_(mpsrwce:pn"_cu‘c:»r:rlerue

,.w,.,;.
Gutin .l Lalud
e
R N T P Y
Pt
ERRIR A N

(i@ IIDSV vulawd wuid) Selawac

(¥2aTIIDSV HZLKIOANI ‘QuOL. JOSIAIQ XIGLI LEEHN) LouGLloce 1103

- _ AdODTLIIYLS UNd
ONI¥LIS J40” aNd =3 [X3aHI~G } LOILVLILS3a
ao
1 + X4adl sdalITa
_ T + xuaur NEAUITS
[X3ANI™s],304N0S =+ [xaduI~a_J KOILVIIZsuG

14 LInd HEHDS DIICLS S0 il

I.D =
g =t
I WECLITS Josluioe oo

QU

Alola

*UOTATSuUL 35¢l &L VT (|, B Y31l 10UANZ9T ST

ROILVNILSEG °*PedX €1 |4 §,40dl0S UdYL bLUTpds ~ JuliiITu UOT3Lu0T 3R
butuuibeq) {OILVHILSAU Ad 03 pdjutod butizs wyz ojuo (|, I83dCILYD
buti3zs 30 pud ue HUTUTEIUOD UOTIEBOOT 8YI 3P DUTIPUS - XEAHITS UOTHEDOY

je buruulbaq) FDUNOS 4G 03 PaIUTOd DUTIIS Y3 SOTuOD JLTINOI STYL

P

)

(31A€ X3ANI™Q ‘Y9347 IIDSV HOILVNILSAA ‘JLxd XIANITS ‘UIdTIIOSY 3DUA0S) JuNAzZd0Ed 440D DUIHLS

PATRRCINTS §

\.‘\‘

ce L e
_‘f\f‘l\"

.~ % e
‘.' N‘sf

.

N

.*‘.*
L3

W T A e T T e Y
'q'..\- ‘-'.\(‘-I\-‘*-' [

ML W e o e e
ol {a Lo

~ CNNCCNDRN

PN

LUNLEd” GOVIGUVD

.
H
:
.
H

FLLRCRb it i bbb i

\

{7 ewVl SAYAUL
Le), el 8 ANULW
VU oewVUT S AVGUG
G e .(Ht:_.n..C[

N 2R i)

La

ot

SXSLSRN

e

»

Al

2L

X

Lar'e

e Al A A

P

=
pla,

LT
I RN
A

¥

-, .
.
at

LY

- -t
-
Ca

!

<ol *ala®

AR

»

{ 091 ‘sz

‘(3WIL)Q¥OoIs)ISKDO IHIL GHIJ =
{ 0091 ‘9¥2 ‘(3UIL)QEOL)ISLDTIWILTALIL =

* INVISKODTEHILTDLD 3ST3
t g

tNILSLOD
99t

WUILTOLD LIuL

=>

1d

T30 PRI S SIRCT 6

(000ST “L5¥T ‘(ELIL)QEOL)ISHD ANILTURIE =% WLVISLOO ENIL D6 LEli
) 9¢ => EN1L a1
H .:o.nm.nb.nmv Oc.numuc:uu C3 8np paaInbdl1 st UoT3de STL;, *5abuvl oje 1 mDOT,I.hmFm =3 mQO....IU_HU
i INndde jsouw ay3z o3 uT Umop UOTILUTWI®l3 oD JURYISU0D SUT] eyl MNbudg ‘9T i U =3 L1102
i 30 1063007 chUmcuC 20D B oou .O:wuso“ OOTHIBS JUNIISGIUT HTuL Jodlyg |
Ludal” 2LivuTooidEg =t SCUL elacn
i couy CTEoTTL LNt g i
i USH dven wLO Ly pUTA0C baTLtL edn DL g Vot b 2aZa o 2ooblo el i
i TIOMICL L TITT LG WY L DY SpOTIol ol ol S VY T SR
\nrr-‘v::u
i TV O M N N S I N I
i 00 DT wJTLAVLUN U3 Lol el 20T Id R3NLLO0IL £ TAL Ll hheod 2l i
i i SLOUTAOC DUTWUTY £,30EL 04 1'7&8Te. O ZiUTLIL32L
iowoulL T Lilhul SUDULITD oL D T VT S Y TR
i vl ucﬁﬂu LUN0D wiL UOY,, LT 2LCulil Lhioes JUIULCI =LaUy
i vyl 5 LIUNOD wUZ ULyl fOUTIN0I YL ATILV] *poLn 8q |
i 03 81 mGOL 4 SGLVIGWIODTDLL Ciid *103087 DUTTRUSaIC &3&Td *
i -o1dde ocu osﬂu mcaucsuuoucﬂ 307 SpuBUWOD D) aujl mum 2UOL” 08 i
I PUR FCOI &uVd ©3uULasuod ey *9gg ST 31 apou :oﬂm w:, LT fy7 0T oaotous g
i &1BOS8IU LEL U{3 upul 3SBJI 9U3 Ul *MOTS puR 3sE I3UT3 iy 16 Lgpou |
i DUTWT3 9TUTILOSOL 0.1 I8 219yl °*0IDz JO aniehs © nuﬂ: POUINLLI ST Luf0D i
i ‘popsou ST 1e3uUnco ou II .Umvmmc ST 9UTIIN0T JIBJUTI-I3IUNOCD JUI 29yYy3aun |
i 20 (£DUODOSTIVIV gut [DCTIad) poTiadd 9y 10 Lccaowum:e ST G
i CUOTL wUTINCS SauTs OU SOUTWHIPZOp QUTIINCT STL 00 03 LLTiwl |
: DUTL T ©UI S9XTLou Ll wul Soe o ULTILD 0 JOCURAU 88U ST i ot i
i =L0D TTL 82° YOTYM ‘5UildS J0 ‘SUaulan 29It ‘5l Luylh Gl g
i «C 0TI ULD 3T *POTIVU DUTOUTIY 3UT 0 o_..l fuUubli- ST SLIKA i
i OCPUTIVG POATSOD £,205n 9YZ TODNPOIC 0F DUTIUCI ODTalitn LUAIZTRUT wJ2 21021
i ccﬂu:Ou urcu 0z elcueacer PUR BUTINOI JHLCIC OYT ZLUTUIIVLuL LUY SLIWG i .
i PUL HIIL UT poTiad DUTWUTY INGUT 298D 943 SONTY SUHNVILOD LD Aiid i

(gdoM &KNOD ‘HIAE L.NISHCD dWILDLD “U0n DL

(43LuLiI

340o " d0u
SLItd) di

...
ad
iIL

)
) @

vda

Yid L3y

11GE00dd SAIVIRIOD T DLO UL Id

L3 WP ST OUN ST O

Satulto it &

TEASORIR W

TE-ETE

"V‘_"‘X.‘ |

-

et

, i on..r..;.~ s 20 SeoNU Y
’ i SOLLIA0L DLeDTIT VT L L0 Zeelau g

, i fUOC00US = SLUGLULTTIIN Lo ox ooy fenva g

s i SP-v3e DT 0L LLTLa ILLUDNCL=Ulel wul niy]

i *SRUOGDBETTTU g7 J0I Zuwly Loy |

oliniviinl BLo W e

puy i 135
vl o# (s Juco., =3 wakive
UVe T° iV s ol wi 20 e

B R L VR Ay

P L LI DR N)

id
13
(4EIL)Guo =% LD
Vel =% LiVasiOL G 1d” 040
d4d0iT4SVd = EU0LTOLD
4573

YGHOH Y ISLDT AL 1L Giilg =3 LVES G T 1L 06D

i *SPOTIAU PUODASTTITIW T Zo Iagunu ‘snyea |
i 3BL0JL OuL O3 ONTRA 1IIUNUD-UMOD aYy3 39S |

i *poried pLOLYSITITW [¥ Jog JOWUT3 8Yy3 385 |
i “91 30 103pe3 ateosaiad Hry

' i ‘PYUPIBU ST IUTINOIT I3UTI-JIOJUNOY

(952 ‘Lsve *(4ulg
i *3SC FU Iu3oel 8TUsssIu Lol |
i fonfLs ASL3UNCO UNKODP 8YZ CI0y

i TPBLTOU ST BUTIINCA UL Il

i *POpPYOU ST BUTINOI UDTYHM OUTLIBIAQ |
§ *obDuea zo 3INO ST DUII OYI 3T ;

FCOCMNERY S AL PR e 22 R A N Sy

alls, 100 =9 Luu. UL

v =0 LidlUD
wIHL

0T > 4wid a1

§s814

Y0YYITanuvETAoINad =¢ HG0oTI0EYd KEHT
666 < AMIL JIEO U > i

RELE SCGCiue 10

RO/ NS s.s.«..d\w.«a.hw.dn.

~ %

-

.o
L]

-
et
.Y

Lan'st :uf

»*

Fal 1
i
|
I
|
|
1
_
Coadiie wwmVWi oois S
ity
CoiVE =0 LUl wliee
Cllcniven Bufe, o =8 i wlud e
PO L AUNUU L Ule ILSLond Udy 0 sutle 1
Sleue. S MaVLY =5 Llad T el il
Sl WL T AW e = LGl T ALl
T *0en0TIE OC [TTI& SOTCURS J0LUE *LwiUdus, o Jewbicl Lownotd ol i i 1

, CtEbL:Lm.....Iur.mo..cuvU,Cr,(,_.ryn\.._.c.:(.uH
i *1037 <¢OBLS ST 919Ul SQYOL O 2oQunU ay3z pula i T / ([0)d3IJANE™VEIYAE ~ SSUUCCN CE4ang uVil) =! JCdon CIavIIvAY

AULLE , {
¢ 1
dude: 3000 JINTINAN _
YO0 .
A
i *ouisznoa abenb S
i —URT ATCWISSE urR BTA 18DLURL AJ0WOU Wo3sas 9yl DuTiTed 4q dool pIasoid i ' u;A
- . .
i aprd $¢ pINO3 LUTINOI STUL JU UCTIDURF YL *WUIZSCAC £THF JO LUTHUTT § .:h
i PU3 OACQD LIOWOL UT 934G 9937 358ULTY 349U UYL G S59Iphe eUl 03 S84 i . A
i GQUVTHYIINLTRVI 308 3SnL I8sn 9y *9TQTsTod UnuTxew Hy3 OF LoONDYT ST g s
i S9TduLEs jO Jayunu Yl 3IOoU FI *poiisop mcHQ BS 10 JOGULU BYI 107 9TGR j -l
i ~TT¢al JI0UDL 3UBIODIIINS ST SIayy uccum;~ QUTWITIOY Liddul VoWl <ols i el
i QELSUAUEETSETaHNS 18304U2Ied oyl pue cannsrl<aao 1szzng TTUISIRL GG ik
i ‘SSUCUQVTURSENe LV DUC 3CISTEEdINU SIUTISUOD Ly LT, TUDUL QGOT UIKU | e
i U U7 uUoT3dung Ioboubll JJOUdU B SWIOIIOU ATUPNID &IRpIO0Iu STYL i Y
-- \ll
Y e O - - SieriT e X
(JdUw CHLOTIVTSLEIENNS fadiy dGuo~doeds) Sidlddd ..\-...
(GUOM CGULSENVEE S271dLVS) §dNdID0Gd dhdelu™WaNa d421s '
0 I-I g
.l
.--‘
.
e
"
"
X r
a4
\
‘ ¢ 7
A
ﬂh
»* 4 * p
o
Ry s, 9
L
%
[4
3 o O L > ke . --n-\\-. [-\.o' <4 $f¢’ L N R B " n'-
PP e s 5 [I CENUSAAD NOTNNNRY IO O Y KRR AN,

"y

VY Yo

-y
.
Al onk

<+,

&‘[‘l ‘

il dsn B

g LUVCECd T HITCULCEE Lia 1
14
IVGVd =2 §5dud w0l
' (Jg%¢°potTaod HUTTGUES PITRA B SN 3SLUTd,: ‘OG0 LTOSNOD)IIIELIdr
(1ds°spuodas QLT 03 1 i TORCTE0500D M AasLIY .
4 (+d5%°SpuodasITITU 666 °3 [ve CSN0TEI0810D)iifianl)
(+4%°SpuodasoIdTw 666 03 L 1s9buURl PYUTIOC,w ‘LNUETOSHOD)iiclidn
s (+ds°sobuel pout3ep 3o episino ST paTiToads poriad burrdwes ¢ ‘INCTATOSLOD) LIELINL
s LULS wOUeITaoin TauIvec Eevo
CoGVe =1 adul dudad
((de"De3D0TI00 8 TN & ‘L0U SU0SL0D b iloive.
(SETdRVSTHAK ‘L00TUTGOSKOD) Gd0nG saIdm
(d% ‘pe3sonbaz satauwes Aued 005 4§ ‘L0OTLTUOSLOD)SuI¥n)
Wabd SE9d0nY0 T ALY OuG Go\D ,n@
4 FQudTdoCYd 41 ;L
ACLEE .@
K { 3148 3GCTTLOEda™ LN) sildlubay S d
= (LAY 40007 OddE ™I) duldElOud Govadec i Td0oddd -

U
e e\ o

%

‘A

{

PRI

-4
2 G5 .»Mv x
"~

$ - of 1” - Vn.t.m f \ ., -A..(q.n -1-. by Ay B A »-. J.a-. ..«. .(w-.. Iﬂ. 5 .y ~ At J. R .J-u....-.-.-- \- “y \wt RS .-.-J,,.lw).A‘-\ " \- K \- » . _ -f.a_f-.f.‘u- s.)ﬁ)a‘ -

COL AL

cuowa'unls wuddide Ll
[629]

"R Ne!

id
LIXa
{ 3A0DTY0UYE)advddud LITd04dud =: 3d00~Joddd
NJHL 3sTI¥d <> 300D §ody¥d dI

(Q3LS3N0EL~SET4IVS) Ea4dNE™ VLA™ 3215 =3 SuIdlVS™dOogddRNn ‘1 2aos " sodsd

14

LIX3

(SGCDTUOUUE) adhdued I - duuds =3 £Gul uoddd
TVd <> =GuL widus dI

Lund 43

(solufduldad =0IVA Quiadd)SUMVILIGDTIOL0 Ah1d =3 LLUUL HLOU PLiNwu 0l Tuiis PdCoi old 1etos " wleed

=~ - - S L N

od
AELI
(qdor SdTAWVS™JO GaUNNN LiNODTHHOT
‘ALAE LINLSNODTANMIL &QOL™oOLD 2G00 vodsd) SKEL3y
(QdUui QULSEN0YLTSETElVS
‘Y33l SLINN™UOIYEd 3NIVATUOIEEd) 3¥NA3008d &0LD3TIOS Gdvdddd

MU AT SR e | Cr Y v e W N0 W 2 ey e v v oY Yt % e ey

e
1du

{(veo®n DI RTTI il Uone vodI wosTulntid

A [URGIVI0 IO V04 WIOER

[QEFRIE
A.,n.c.mumﬁ\.w\.cmw:cowbmmhorém:u

4
4

g e T T <
[[rr.fL.L.C((f((

id
TVLVE =0 UdUD duuel it
4 - '} P ey

R U (VIR |

Cllu 2100000) elUle Cliu.
Lot

TUed =% UUoDT COUleTLul

GISSIS #9U ® 980 ¢ ‘uiu” SIUSLOY JurldLIdn
Ti 97T3F e3ep ABRY,# ‘L007Z705LOD) IUTLLIdn

REHL

FT1I474LY0ITENA =2 3JA0D HUNLEY JI

: (.
VOVUETLOETIOD UT HUICIS AlIvVA +9 p

{ doas dQUDTUUGHa Wi)

d4574
INIVE =@ 40D d0EEETLN0

Gy DOIRUTUISY Wribolg 10130 Te3ed,t ‘oN0_SNOTEIOSHOD) LI3LIuA
©30039p DIISDI UT J93DBILYD PITLAUI,{ ‘007 H00T4T0SHOD) ITELIGM

e ey e e fepe e T,

G v wr bid UW = ellud wloun

T

mGhnhod

(ZLAY G007 LEALEYE JGUDHOHEE I) SuULlIZDUEE EAVECD 1 TLodys

PLEEERET et rir e e i e e

SBUTINOT BTT3e3epP~a3edI0d | lti

AR AL .(..L\\-)

. NN
C

N N AT e - L4
Uiddewo I Lo ,..

¢J e
' e .
{(Zgiva <©) ’
7 S1aU { €0 =< JLULI) Y
: S1ed (LIIELS T dU wid = | nNEGUT] DuTlues 0884) &1 o
‘ T + NSl =% R2GII g
Id YGIOVEVELTUVE =% LuLDTE0dEs (8l ;Y
- i 42, 960Qe ST 193DRILYD II i (ves < [xeaul | williasS oSsa ey
. i uoT3@njound ST 13392IeYd I i 4160 ((Tys > [¥IARI] DUT¥LSTISEL) JIANV (VES< [XEANI). Diluis aSEL)) ¢ o
i 10y HOTBQ 3T § JI¥0 (0€% > [waCiI].9PIGls oS3e) dI “
ou 7
. dsIv¥d =: 3000 uouH3 7
0 =7 xgaul , oo
A5a:d b
dLi€ X3GUI . i
ARSIV -u.
' i SDBUTLRIE UdIC LAUY $ILI00IVUD ¢ i ..\...
i TITun I0 U03S ST HYNILLS JO ANF ue TTIUN SURUTIIUCT NISUD YL *£87ve i ¥
f i JOo onfea ® U3T# pauInli@l ST ZG0D JdOUdH PITUA Sav ©I3352aTUs ITY i s
i JI IVAVd 30 oulea v Y3TM pauan3sl ST 3JudTJOual uayl aueu o717 © | 'l
i UT pamoTTe j0u S1930BIEYD 4UR SUTRIUOD HBUTIIS 8yl II “"HLIYIS™CSaAd | 2
3 i Aq o3 pajutod BUTI3s Y3z JO S3US3UOD Y3 SIOUTWEXD 3UTIN0I STYL i ..@...
3 (31X8 400D WOW¥E)} Sliuilyd A Y
, (9L IIOSV ONIYIS™LSAL) 3¥0AIO0ud HUIYLSTAITVA H

h

.\ e

e T

<.

-
.
.

o

"

ool

YN

¥
»
)

] e : : { IpT3ISel ¢ ‘3TIdTVIVE)FIIun .
. I °91T3 e3ep—o3wai1d jo uor3zeiado w::..nucoo mou:uoo 9aeY SI0119 Of § 3s'I3

3 (9GO0 WUNLIY ‘ICGODTHOHYUE)EIVGID LITGWO¥YE =! JQ0d €0o¥dd :
s j *138sn 8Yy3j UIOJUT pueR SISOUDLIP ‘psINDD0 Sey 10119 WIISAS V q<e<m =t 3005 80dE3

s s dida

LaETELODTLOILVGEAY <> FGUoTLLNLEd &1

(GQUILTaEVICED UiV Tid Y8ie VAN Y uldu =% ZCUL Litiuld
g (0T “GuViTa"id ‘o L ldsvavl n&w. Jolliuas"icud
o o= [l i adtd
> (o W TlTad Mo Tl D Juillani TRy
. C Tl 0T ol Ll il Tl Jcen, 1 2I0eY =T Ll Nul
1T =R LS S G St
: (0 WINLTETIE Y0 PCIOCSAS JulivwsTAdUD
: [0]&nEIGiuNiDE =2 TERIVIED '
[olana™@ivil™ 4 T1ds = HHVHTETIS
XULHE {
) _ ch: 50007 iENLaEY
L4 IIDSY TAINVHD SLVLTdTIa ¢
" DRIELSTIINSY aNE I JIVED ane ™ SUVITET1d
IVO0T
. Joil da05TL0tCan) S1.doEC

(8&d IIOSV GaAVG SAVGOL dYVSSIEi. «asSh Cialud
4 Qd0i SETICING

’ 4 4a93INI m4H::loonmm GOTVATAUIUS
‘ELAL STI&VIVA TENNVHD widiil) dUNQEl0dd 4118 VaYd dovaad
1
’,
B
Q + [} .
KPS, 22T LT el NN, LSRR S Y LN e NOBRAS! ODNIL TARSLOLNE \BEOPSy |

a114VIva~aIv3IYD anad

(Jd%jlzezep jJo butuurbaq|,$ ‘ITIATVIVA)HIILIUM

0o

~
A

o,

«
%

{ ONIYIS™d3sn ‘aTI47VIVA)ALIYM
(,ys:obessoauTaosn|, 3 ‘ITIAVIVA)3LIEM

(3LVGTSAVGOL ‘&TI&"VLVA)3i1dn
(«¥$338037 3070300, ¢ ‘8147 Vuld) aLId

(S27dilYs ‘2T167VENd) GEOLEH Gdlul

(Jdessaaues™i| ¢ ‘dTIITVEVE) ELI

(SLINNTAOIEEd ‘ETId VAVU)dEDHLLILTGLIuN
(WESIE3TUNTDOTIOU] 5 WIS VLNC JuLtul

{ S0TVATUOICde ‘o1l wuWG) aiaa
(Wd%300TRATPOTIOG 4 ‘5TI87VLNT) OLivn

{ TILRVED ‘ET147VAVG) EaiCh SLIdi

(JE$3TRUURYD T INAUT| 4 “ETIJTVLVA)3LIdl

(AILSEL '3TI4_Vava)ELIEN
(,¥$:PTISOI, ¢ ‘9114 VIVA)ALI™H

“37T3 e3ep 23e21d jJo uctieiado SNUTIUOD ‘pPOINODO “ARY S3011d Of | JSI4

.t
"'h

.,,.'.‘ -
»

~

1

-
-

D

by =
1V

-

‘e’ @’

e

]

-y

3

e TVOACTUvG L dils
d
-~ eryre

R . ‘ - PR ey ..
{ CUCL vchone Ly Civeaul JLQODE LG

ey . LT) TN - e
(1o folol U3LTed dieayg 'R wiee wUoi U0 tawocl
(yabl 8T Un a8ZoUe iy oiil 0L 30430 Wehead 1839dgs ‘LLU L I0SLOL JiIVIESIG,

GVLUE =0 LOUL QUBdU

HEHL S3d7IdN0D T LHulaVehdy <> LUUL LEdLde &1

14
{ (c%°dSTP 03 poIslsuci ‘5007 3T0800D Y WISLIUL (
{ 8ddIa Sdwat ‘LuU0TETOSHOD) QUOMHGT LI
(Jd$‘floupu Ut paio3s ,: ‘N0 LTIOSHGD) iMIELIEL i
(S3LAg™ 40 ¥3gHAL ‘L0u <TUSLUD) UdoNa™ L IEs
(J&% "3%STp 03 I33JSURI] eIRP UTY 011y, ‘LN0TETOSHOD)3LIsL
wOUCE EOVEOLS =% Q0D do¥uy g

FGLHD wuoia d0 Chdllin. <> Lallidl Saonan LI

{ Sdoat™du dduniii DEINGIsEL T 284d0d $TI8 VLvU) Uasand =3 G000 iy 1iHlbL1ds Sudak
T+ (DLRILISEC CEdNe = VOVCTLsVE) =0 SULALT duT €adilh.

PR

Adubaa

Cwhd 5000 LWdNLIY

dduli WEadias Sdiau SILAY 40~ dIEHON
V001

(3aoo—¥owya) SiGNbsd ¢

(3LA9d VIVA LSV ONINNIDIE ¥3ddnd _ _
‘3LRE ITIANGLVG) ZUNOZO0Ed 21187 VIva GVOT

PECEETE e e ittt e i il seutanoa artseaep peol LI

..
e
"y
II.
AL ABOLDTN | TRRRANE | TINRRN ALy XXRRARRe L / Y YNy OO

{
4
<
.
<
dTIETYLVGTES0T0 aud t
14
IVaVa =: HQ0D 60443
{ 3Q0DTIWNLEYE ‘LACT4T03: 0D)iriLidh
(g% 29pod UIN3LI ULYSAS o PO0O0TCNOSIWOU) sdidi
(vdi"3sonbel 9s01d 91713 ®jep uodn 10110 [L3vy WAISAS,§ ‘LNCTETOSULD)WIZLINHK .
N3HL 31371dH0DL0ILVEId0 <> 30D L<nL3y JI :
STI3TVIVA)ES0T0 =% JGod ™ udNLad
AGGKE
SLAS 8duoTiinLay
V001
{ ZLx4 40007doY4d) SHUNLIY _ _
(SLAE 3TIJVIVA) GYNUED0dd d7TId™WLVG 3S0TD
FERRRRRRINRRRIN bbb bbb 1y} souranoa etz"e3ep™a@soto | i{iiiil]i
A Cn-v.
f
P %
- _A P .lll!.l .- o o i d-o-t\iv. lx|.||..

2
P

R R \$¢'

”r

~aL e,

(LINOTYTIA)3TIdYaNd

dZidIVST1:iITE0dEd dad
_'IYGLvd =@ 3d0D_d0¥dd
€800 =% EdoDTEoddd

{ +d%°DP333Tap 30U 3Ing PASOTd 8q TITH SSTTE TTIV ,é ‘SUOTITIOSIUD g totA i A

(,4$°POILUTWISY ST WeiIDOIGL ‘Ui’'[a. VS 3001 UT POINDUO J0113 TLIRg

ENLY

g

OO0TETI05UY i iawii. uS'G
LNOTETOSKOD) iELICL i

, 8% dEIGIYS dUTInUI Aq ;830D uviboid Jo jaoqe 19

30007 duddE~ano)

sUTINOI I8 fcurs

NN RRRRE

= 30D dudgs i1 41

AGGiid

SHdLIY

005760645 NI) SdNUEI0dd dE1d1VsT0I T v0dEd

(RERRERRRRE

o . by e W] (] = o . - Ve 8 8 8 W W - W W . s e W vy e el V.V e & — ST

f
YIva—LO3TIOD anNd :
;
VIVQ~3TdWVS aud
Go ;
—_ [~}
(3TI37VvaAVd)ETId7VWVUCTE580TD =8 La0s wolile
14 OI¥n ik BETVE <> ZCULTEuLln <1
{ VAYGTOSVT €uddle™d0T0I T I0us ZTI47VOVC) E1IaTVoONVETUY0T =8 §Gud doden
1€ BIZY JEES WSUYE <r LGUU wuddd di .
Id (LIu0d1Id 4000 duads Vpu;m:<u|rW|rc~am =3 ZA0U aOlud il @8IVd <O LluUT elud aid e,
(¥334NE"J0 ONINNIDIL SHT4IIVS 1NN LLNUD HIOG LSO EHIL SAUiT L) TaKIVWHD CiidlI) cEId.VS o
=3 VovGTooun TLCLL T lud e ..\.
_ SO AIND mlame LOUUE <0 BCLLTOOwL I K
(awVCTSAVOUL oUVSSHL SN 9EIdilVS SaTun~adIced Su'iva U0Idbd @iil eTId GZiNalullenl CILoed) ETidmTuil elviedd RN
=3 L30L eludl (\
-.\
_ Is LIKY LES 387Ivd <> 54027 dodyd ai . -
(847141IVS SLINNTAOIdSa diTIvA~ doIddd)doldE1700 " duvdasd * uv.
. =! SYTAUVSTHON ‘LLAODTHIOG ‘ISHD™ SIS ‘uUCOK ™ DID “4a0D-do¥yd N
{ Oy
_ _ 0q o
(2IVvaTSAVAOL)EIvd 13y =3 qwva TSLVA0L s
[0)ana™aavC SAVGQOo:E = TSEVA0L K
LSIVa = v fofm uPlI
Sieona)
- LY
SnAad Ve¥a WSV o
wwd 1IDSV LuvCTS.va00 KA
LITLLSTILISY dNETSWVLTSAVUOL RS
INJ0T >
-
(GoAg “UOD godyd) SIRINLEG m
(ddor SsI6iivs .
‘dLad qm_:amulssm:H .
‘¥3@vuLKI_ SLINNTA0I¥Ed dNTva™ a0Idad n»
‘HORTILLSTIIOSY HOVSSAL UESH GIL3LL) FJNA300dd Vave &'1dRYS nw
N/
AR R R R R R R R A NN R RN A R RN R R R NN R RN R RN R RN AN R R RN R RN R RN RN R AR RN R R RN R R RN R R R R RN IVEOTD .M
-
Vg
l-.
A
'
- ’]
A 5y, v
o0 .._.6 LS 5
) i ..-ﬁ
. [\
- - - g y - - - - - ‘..

Appendix G: AlO.PLZ.S Module Listings

. Introduction to AlO.PLZ.S Module

- To determine how to use the AlO Analog Input Output board of the
MCB Z-80 development system, the PLZ language routines of the AlIO.PLZ.S

. Module were written. These routines permitted the initial operation and checkout

of the board and served as software "breadboards” for the assembly language
routines of Sampler Module actually employed in the final software.

The five PLZ language routines of AlIO.PLZ.S Module and their
functions are:

! nt.kL—Q.k

AIO_INIT: Initializes the AlO board; H

IN_CHAN_SEL: Selects one of the sixteen analog-to-digital input
channels and initiates the conversion;

iy

6 IN_DIGITALP: Reads in data from the selected input channel;
i |
N_DIGITALT: Selects an input channel, initiates analog-to-digital
conversion, and reads data in from the channel; and

AN

OUT_ANALOG: Outputs data on a selected digital-to-analog channel.

To accomplish these functions, these five PLZ routines use four exter-
T nal assembly language procedures from the Utilities Module. The routines and
- their functions are:

IOOUT: Writes a byte to an input/output port,
IOIN: Reads a byte from an input/output port,
ENABLEINT: Enables the CPU interrupts, and
DISABLEINT: Disables the CPU interrupts.

()
RV

' R B 4

The relationship between the AlO.PLZ.S Module routines, calling routines, and
the Utility Modue routines is shown in Figure 76 below.

DO

Three of the AIO.PLZ.S routines, AIO_INIT, IN_CHAN_SEL, and IN_
DIGITALP, were initially used in in this thesis effort. They were replaced with as-
sembly language versions of these routines to yield greater speed of execution.
The AlO.PLZ.S Module routines obtain access to the AlO board through two other

22

»
‘.

»
4

e Appendix G 390

.- - e & 0 >}

3 modules, UTILITY and PLZ STREAM.IO. The assembly language routines
directly communicate with the AlO board. The PLZ routines however, were quite
helpful during initial development of the higher level modules of the thesis effort.

PR
o rd

Calling PLZ

c‘ Routines \
; \OUT_ANALOG

IN_DIGITALT

IN_DIGITALP

AIO_INIT

. . IN_CHAN_SEL

- ENAB,LEINT]

¥

DISABLEINT

. ™ Cortrol] Datain] ChanSelect | Data Out

: Z-80 CPU AlO Board {
. Figure 76. Relationship of AIO.PLZ.S Routines to Their Calling Routines, the)
. Routines of the Utility Module, and to System Elements.

SN [
! e L
-
Appendix G 391

9 ati oA e ot

The following pages detail the five PLZ language routines of the AlO.
PLZ.S Module. For each routine the following information will be presented.

arLON~

o

10.

11.

The name of the routine.

The name of the routine’s module.

The language of the routine and the number of lines of code.

A synopsis of the routine.

A diagram showing the relationship of the routine with other
routines, both calling and called.

How the routine is invoked including parameter passing schema
and a list of the calling routines.

A list and description of the global, module, and routine level
variables and constants.

A list of the other routines called including a description of their
function and their parameter passing schema.

Descriptions of the output parameters of the routine and any
system configuration changes it makes.

A discussion of the test performed on the routine and the results of
those tests.

A reference to the program listing of the routine.

392

O

PR,

(P P N e]

o IR IR PRI

ia o ¢

R

oo
o~h

1. Routine Name: AIO_INIT

Y LA

2. Part of AIO.PLZ.S Module

3. Wrtten in PLZ; nine lines of executable code.

Y,

4. Synopsis of Routi -

AIO_INIT initializes the AlO Analog Input Output board of the Z-80 develop-
ment system. To prevent inadvertent interrupts during this initialization process,
the first action of AIO_INIT is to call the external routine DISABLEINIT. The AIO
initialization is accom- plished by writing commands to the control ports of the
board. The external routine IOOUT is used for this writing. The AIO board is put
into polled mode and inhibited from issueing interupts.. The input registers of the
AIlO board are then cleared by reading them via the external routine IOIN. Lastly,
the system interrupts are enabled by calling the external routine ENABLEINT.

5. Routine Relationships Di

oy Ay By

é Calling PLZ Routines

e 7 | N Utility
\ Module

IO0UT IOIN DISABLEINT | |ENABLEINT

AlO Board | Z-80 CPU

Figure 77. Relationship of AIO_INIT to Calling PLZ Routine and the
External Routines.

T P R

-

Appendix G 393

VNS 6. Invocation

N a. Invocation Statement

", AIO_INIT is invoked solely by its name. To be invoked however, both
" the AIO.PLZ.S and UTILITY modules must be linked in with the calling routine's
" module.
';
[

M7 b. Parameter Passing Schema

P
= There are no input parameters for AIO_INIT.

\ ¢. Routines Which Call

)
» AIO_INIT can be called by any PLZ routine using the AlO board. For this
- thesis effort, AIO_INIT was used during initial work with the AIO board. For the

combined modules of the thesis effort, and assembly language program, AIOINIT,
similar in function to AIO_INIT, was used.
(V) Z_Variables and Constants

:‘ a. Global

.
-”.; AlO_INIT uses no globally defined variables or constants.

:. b. Module

*'.
N AIO_INIT uses six module constants for AIO board addresses and
e commands. The six are:
2 COMMAND_UPPER: value 23h, address of upper AIO command port,
o COMMAND_LOWER: value 22h, address of lower AIO command port,
;.:; DATA_UPPER: value 21h, address of the upper AlO data port,
x DATA_LOWER: value 20h, address of the lower AlO data port,

) INPUT_MODE: value 47h, AIO command to receive input, and
_ INTERRUPT_DISABLE: value @7h, AIO command to disable interrupts.

v,
i(AIO_INIT uses no module level variables.
b

NN
A
™
f

s

Appendix G 394

AR L U I A A S 2t A Pl Sl St AR AN A A et At su i e et s i g Bk i s gk Tt Tk B B A e N <

: P

s A c. Routine

p AIO_INIT uses the variable NULL (type Byte) as a dummy return
X variable for the call to IOIN. There are no routine level constants.

L]

y

.

her i]

AIO_INIT calls four external assembly language routines, DISABLEINT,
N ENABLEINT, IOOUT, and IOIN, to accomplish its purpose. These four routines
o are declaired externals. Descriptions of these routines follow.

. A

. a. DISABLEINT
AIO_INIT uses DISABLEINT to disable the Z-8@ interupts during AlO
. board initilization. This is a Zilog recommended practice to prevent inadvertant
interupts during the initilization. DISABLEINT has no input or output parameters;
it is invoked solely by name.

a
N b. ENABLEINT

(‘i ENABLEINT is the last routine called by AIO_INIT. It enables the Z-80
5 h interupts disable by the earlier call to DISABLEINT. ENABLEINT has no input or
e output parameters; it is invoked by name only.
e
* c. IoouT
. AIO_INIT uses I00UT to write commands to the AlO board. I00UT is
L invoked via:

IOOUT(I0_PORT, VALUE)

E where both IO_PORT and VALUE are of type Byte. 10_PORT passes the address
2 of input/output port to which the eight bit VALUE will be written. For AIO_INIT
.& both I0_PORT and VALUE are passed constants.
. d. IOIN
, 4 AIO_INIT uses IOIN to read the data registers of the AlO board and clear
o them of any value. IOIN is invoked by:

S Appendix G 395

NS VALUE := IOIN(I0_PORT)
where both VALUE and IO_PORT are of type Byte. IO_PORT is the address of

the input/output port from which data is read. The return parameter VALUE
carries the eight bit value read in from the port.

9. Output of Routine
a. Parameter Passing Schema

AlO_INIT has no output parameters.

b. System Configuration Changes
AIO_INIT produces several changes in the configuration of the system.
First, during the program execution, the system interupts are disabled. Second,

the AlIO board is put into polied mode and the AIO board is ihnibited from issuing
interrupts. Last, the AlO board input registers are cleared.

@ 19. Boutine Testing
a. Description of Test
No tests were conducted solely on AIO_INIT. Rather, it was tested in

conjunction with the other routines which could not function at all if AIO_INIT
didn't work.

b. Results of Test

The other routines worked, therefore AIO_INIT works properly.

11. Referen istin

The program listing of AIO_INIT is on page 404.

Appendix G

...
.......................
...............

...............

AlO board.

Ll

.
'\'&'ﬁ 1. Routine Name:

IN_CHAN_SEL

2. Part of AlO.PLZ.S Module
3. Written in PLZ; two lines of executable code.
4. S is of Routi

This extremely short routine writes to the AIO board Channel Select
register the desired channel number. This forces the AlO board to sample the
specified input channel and perform an analog to digital conversion.
SEL uses the external assembly language routine IOOUT to write the value to the

5. Routine Relationshios Di

IN_CHAN_

G a2

Calling PLZ Routines

IN_CHAN_SEL

Utility
Module

Selected Analog
Input Channel

_

AlO Board

Figure 78. Relationship of IN_CHAN_SEL to Calling PLZ Routine

Appendix G

"t

o B Y S T e

and IOOUT.

397

»

‘l
BRI

a. Invocation Statement
IN_CHAN_SEL is invoked by:
IN_CHAN_SEL(CHANNEL)

where CHANNEL is of type Byte.

b. Parameter Passing Schema
The input parameter CHANNEL is the number of the analog to digital
channel desired.
c. Routines Which Call
IN_CHAN_SEL can be called by any PLZ language routine using the
AlO board. The AlO.PLZ.S and UTILITY modules must be linked in with the call-
ing routine. For this thesis effort, IN_CHAN_SEL was used during initial work
with the AlIO board. For the final thesis effort routines, an pair of interrupt driven
assembly language routines, TC_SAMPLE and TO_SAMPLE, perform the chan-
nel selection, initiation of analog to digital conversion function.
Z_Variables and Constants
a. Global

IN_CHAN_SEL uses no globally defined constants or variables.

b. Module
IN_CHAN_SEL uses the module level constant CHANNEL_SELECT,

value 28 hexidecimal, the address of the channel selection register of the AIO
board. IN_ CHAN_SEL uses no module level variables.

¢. Routine

IN_CHAN_SEL uses no routine level constants and variables.

Appendix G 398

...............

N L T i ST N P A P N L YL L LI IR .. . BRI ST T, .
e e e T T N T e et el e i e g e ST e N NN

8. Other Routines Called

IN_CHAN_SEL calls the external assembly language routine IOOUT
to write the channel number to the AlO board. IOQUT is invoked by:

IOOUT(IO_PORT, VALUE)
where both IO_PORT and VALUE are of type Byte. I0_PORT is the address of
the desired 10 port and VALUE is the eight bit to be output.
9. Qutput of Routine
a. Parameter Passing Schema
IN_CHAN_SEL has no output parameters.
b. System Configuration Changes
IN_CHAN_SEL, by selecting a channel, initiates an analog to digital
conversion on the selected channel of the AlO board.
10. Routine Testi
a. Description of Test
IN_CHAN_SEL was tested in conjuction with other routines using the
AlO board. If IN_CHAN_SEL didn't work, routine IN_DIGITALP would not find the
correct value (from a known, constant input voltage) in the AlO data registers.
Several channels were selected by IN_CHAN_SEL and read by IN_DIGITALP.
b. Results of Test
The digital values corresponding to the analog inputs were found by
IN_DIGITALP in the AlO data registers.
11, Refer isti

The listing of IN_CHAN_SEL can be found on page 404.

Appendix G 399

......

W 1. Routine Name: IN_DIGITALP 1
2. Part of AIO.PLZ.S Module ¢
3. Written in PLZ; four lines of executable code.
4 i i

IN_DIGITALP reads the data registers of the AlO board to obtain the
digital value converted from the analog channel selected by routine IN_CHAN_
SEL. IN_DIGITALP loops, polling the AlO status register until an analog to digital
conversion is complete. Then IN_DIGITALP reads data from both AlO eight bit
data registers and combines them into a single sixteen bit Integer value. Note
that AlO analog to digital conversion yields only 12 bits of information. Thus the
upper data register holds only four bits of information.

5. Routine Relationship Di

- .

Calling PLZ Routines ;

IN_DIGITALP

Utility
Module

Status

Selected Analog K
AlO Board Input Channel X
4 - :
{ Figure 79. Relationship of IN_DIGITALP to Calling PLZ Routine
and IOIN.
y
% ¢
v :
+
Appendix G 400 y

L S N AN DT S S T P Pl N T O A T UL S P T N S T T L P
S aTAL L A \"\'"\."\‘-.'\‘\‘-«. ORI ROTRALLY AT R AL TR PR RGO AR

.
»

a. Invocation Statement .
IN_DIGITALP is invoked from a calling PLZ routine by: g
VALUE := IN_DIGITALP

where the return parameter VALUE is of type Integer.

b. Parameter Passing Schema

IN_DIGITALP has no input parameters. The input channel is selected X
in advance by IN_CHAN_SEL. -

« %

!

c. Routines Which Call

Any PLZ routine needing to obtain analog to digital conversions from r
the AIO board can use IN_DIGITALP. The AlO.PLZ.S and UTILITY modules must .
be linked in with the calling routine's module. IN_DIGITALP is not present in the -
‘ final routines for this thesis effort. IN_DIGITALP was used during initial work to -
learn how to use the AIO board. . In the final theis effort routines, an interrupt- 5
paced assembly language routine, COLLECTER, is used read data in from the .
AlO board. i
Z_Variables and Constants
a. Global
IN_DIGITALP uses no globally defined variables or constants. o4
b. Module \
Four module level constants are used by IN_DIGITALP. Their values N
and uses are j
.
;e
.{::-. -

Appendix G 401

™

N

STATUS: Value 29 hex, the address of the AlO board status register

MASK: Value @1 hex, a logical masking word to retain only the
least significant bit .

DATA_UPPER: Value 21 hex, the address of the upper AlO board data
register

DATA_LOWER: Value 29 hex, the address of the lower AIO board data
register

IN_DIGITALP uses no module level variables.

¢. Routine

IN_DIGITALP uses no routine level variables or constants. The expli-
cit constant 199 hex (represented by %1QQ) is employed in the combining of the
upper and lower data values from the AlO board.

8. Other Routines Called
The external assembly language routine IOIN is used by IN_DIGITALP
to both check the AlO board status register and to read in the converted values.
IOIN is invoked with:
VALUE = IOIN(IO_PORT)

where both VALUE and I0_PORT are of type Byte. The input parameter 10_
PORT is the address (@9 hex to FF hex) of the input/output port from which the
output parameter VALUE is to be obtained.

2. Qutput of Routine
a. Parameter Passing Schema
IN_DIGITALP returns to its calling routine a single, type Integer, return

para- meter called VALUE. It holds the twelve bit value formed from the upper
(four bits) and lower (eight bits) read from the AlO board's two data registers.

Appendix G 402

b. System Configuration Changes

The configuration of the system is not changed by IN_DIGITALP aside
from clearing the AlO board data registers.

). Routine Testi
a. Description of Test

IN_DIGITALP was tested by having it read from an AlO channel that
was fed constant voitages.

b. Results of Test

IN_DIGITALP provided correct digital values to the calling routine.

| Ref Listi
The program listing for IN_DIGITALP is on page 405.

Appendix G

o2 1. Routine Name: IN_DIGITALT
2. Part of AlIO.PLZ.S Module
3. Written in PLZ; three lines of executable code.
' 4 is of
IN_DIGITALT is a combination of IN_CHAN_SEL and IN_DIGITALP
and con- sists simply of calls to those two routines. Its purpose is to select an AlO

channel for input, then wait for the analog to digital conversion to occur, and
finally read in the con- verted value. IN_DIGITALT was written for those PLZ

e e

programs that:
i a. can afford to wait, or
i b. do not need to accomplish other tasks during the analog to
digital conversion period.

: 5. Routine Relationships Di

Calling PLZ Routines

IN_DIGITALT

IN_CHAN_SEL IN_DIGITALP

_, Utility
IOOUT I0OIN Module

Data

Channel Status

Selected Analog

AlO Board Input Channel

Figure 80. Relationship of IN_DIGITALT to Calling PLZ Routine,
IN_CHAN_SEL and IN_DIGITALP.

Appendix G 404

R A

"
)
¢

6. lnvocation
a. Invocation Statement
IN_DIGITALT is invoked by:
VALUE := IN_DIGITALT(CHANNEL)

where both VALUE and CHANNEL are of type Byte.

b. Parameter Passing Schema

The single input parameter for IN_DIGITALT, CHANNEL, is the same
as for routine IN_DIGITALP, the number of the AlO input channel on which the
analog to digital conversion will be made. CHANNEL has a defined range of @ to
F hexidecimal.

¢. Routines Which Call

Any PLZ routine needing to get analog-to-digital values from the AIO
board can use IN_DIGITALT. To call IN_DIGITALT, both the AIO.PLZ.S and
UTILITY modules must be linked in with the calling routine. As with the other
routines of the AlO.PLZ.S Module, IN_DIGITALT was used during initial work with
the AIO board. IN_DIGITALT does not appear in any of the final programs of this
thesis effort.

Z. Variagbles and Constants

IN_DIGITALT uses no variables or constants.

8. Other Routines Called

IN_DIGITALT calls IN_CHAN_SEL to select the analog input channel
on the AIO board and IN_DIGITALP to read in the converted digital value from
theAlO board.

a. IN_CHAN_SEL initiates an analog to digital conversion on a specific
analog input channel. It is invoked via:

IN_CHAN_SEL(CHANNEL)

Appendix G 405

IRUORIN | JEACR

\E‘ where the input parameter CHANNEL, type Byte, specifies the desired analog

channel. CHANNEL is the input parameter for IN_DIGITALT.

b. IN_DIGITALP reads the converted digital values from the AlO data regis-
ters and combines them to form a single integer type value. IN_DIGITALP is
invoked by:

VALUE := IN_DIGITALP

where the return parameter VALUE, type Integer, holds the converted, single
value. VALUE is then the output parameter for IN_DIGITALT.

9. Output of Boutine
a. Parameter Passing Schema
IN_DIGITALT has a single output parameter, VALUE. This sixteen bit

parameter passes the twelve bits of information read from the AlO board data
registers back to the calling PLZ routine.

e b. System Configuration Changes

IN_DIGITALT initiates an analog to digital conversion on a specified
AlO input channel. Later, IN_DIGITALT clears the data registers of the AlO board
when it reads the converted analog values.
10. Routine Testi

IN_DIGITALT was not tested as it is simply the combination of IN_
CHAN_SEL and IN_DIGITALP. Both of these routines were tested and found to
function correctly. Testing was considered unnecessary.
11, Ref List

The program listing of IN_DIGITALT is on page 405.

Appendix G - 406

L

o2, Ay 4,

S 1. Routine Name: OUT_ANALOG

-

s, 2. Part of AIO.PLZ.S Module

3. Written in PLZ; nine lines of executable code.

-
.

. 4, Synopsis of Routine

L

Yy OUT_ANALOG takes the integer value passed to it, splits the value

) into two bytes, and outputs the digital values to the AlO board for conversion to an

4 analog signal. OUT_ANALOG can output on either of the two digital to analog
channels of the AIO board. The writing of the bytes is accomplished with the

A external routine IOOUT.

.

: 5 B i Bll. hi D.

3

\ . »

: Calling PLZ Routines

¥

w

’ OUT_ANALCG

A

::.

b

>

3

Selected Analog

o AlO Board Output Channel

:: >

. Figure 81. Relationship of OUT_ANALOG to Calling PLZ Routine

2 and IOOUT.

v

NN

Appendix G 407

5

"5

6. lnvocation
a. Invocation Statement
QUT_ANALOG is called from a PLZ routine with:
~ OUT_ANALOG(CHANNEL, VALUE)

where CHANNEL is type Byte and VALUE is type Integer.

b. Parameter Passing Schema

The two input parameters CHANNEL and VALUE pass to OUT_
ANALOG the digital-to-analog channel desired for output and the twelve bits of
digital information to be converted to an analog signal by the AIO board. OUT_
ANALOG assumes that VALUE has only twelve significant bits; as an Integer it is
a sixteen bit value.

¢. Routines Which Call
OUT_ANALOG can be used by any PLZ routine which needs to output

analog values. The AIO.PLZ.S and UTILITY modules need to linked in with the
calling routine. OUT_ANALOG is not used by any routines of this thesis effort.
Like the other PLZ language routines of the AIO.PLZ.S Module it was used for
initial investigations of the AlO board. An assembly language version of OUT_
ANALOG, routine OUTDA, was written but is not a part of the final thesis effort
routines.
Z.Variables and Constants

a. Global

OUT_ANALOG uses no globally defined variables or constatnts.
b. Module

OUT_ANALOG uses four module level constants. Their definitions
and values are on the next page.

Appendix G 408

LROL, N S IC A Cr A Y I PR P A e T T T T e
L&.-.-::m,mnhmmx.ir}mﬂrmmmx:g:_,-,;...-;..-:1-.;,;-;:;@-:&‘-:\-:,;,-:,.-:.ﬁ..-&._-u.-.4,--5--

P PR A" S AR

.........
O R

e vl

W
<y

&’

DA_CHANNEL_1_UPPER: Value 2D hex, IO port address of AlO digital to
analog channel one, upper four bit register.

DA_CHANNEL_1_LOWER: Value 2C hex, O port address of AlO digital to
analog channel one, lower eight bit register.

DA_CHANNEL_2_UPPER: Value 2F hex, IO port address of AlO digital to
analog channel two, upper four bit register.

DA_CHANNEL_2_LOWER: Value 2E hex, |0 port address of AlO digital tc
analog channel two, lower eight bit register.

These constants are used by OUT_ANALOG when calling IOOUT. OUT_
ANALOG uses no module level variables.

¢. Routine

A single routine level constant, OUTVALUE, of type Byte is used by
OUT_ ANALOG. ltis set to the lower eight bits of the input integer VALUE and is
then used to output to the lower data register of the AlO output channel. OQUT-
VALUE is next set to the upper four bits of the twelve bit input value. OUTVALUE
is then used written to the upper data register of the AlO output channel. OUT-
ANALOG uses no routine level constants.

her Routin I

OUT_ANALOG uses two PLZ type conversion functions and one ex-
ternal routine, IOOUT. The type conversions, integer to byte and byte to integer,
are used in the splitting of the input parameter VALUE in to the upper four bit and
lower eight bit byte values passed to the AlO board via IOOUT. I00UT is an ex-
ternal assembly language routine of the Utility Module. It permits PLZ language
routines direct access to input output ports. IOOUT is invoked via:

IOOUT(IO_PORT, VALUE)
where both IO_PORT and VALUE are of type Byte. 10_PORT is the number or

address the input/output port that VALUE is to be written to. IOOUT has no return
parameters.

Appendix G 409

9. Output of Routine

a. Parameter Passing Schema

OUT_ANALOG has no output parameters.

b. System Configuration Changes
OUT_ANALOG sets one of the digital to analog channels to a value.

That value will continue to be output by the analog channel until either another
value is written to it or the AlO board is turned off.

10. Routine Testing
a. Description of Test
OUT_ANALOG was tested through a looping routine which read in an
analog to digital conversion value, via IN_DIGITALT, and then output that value
back through OUT_ANALOG. A low frequency sine wave input was applied to

the analog input. Both the sine input and the output of the digital to analog
channel were monitored by an oscilliscope.

b. Results of Test

The output channel tracked the input channel with the time delay
produced by the processing delay.

11. Ref {0 List
The listing of OUT_ANALOG is on page 406.

Appendix G

ety Wy, Ay 4 gl @Y -gh Uaiavataiabor ol fad U Abel o Aot HYNTU NUANNU NG NS T Vi CLU) M et et S Bat dab LAa? bat B B ® ogv y)

Program Listings of AIO.PLZ.S Module

The following pages are a listing of the AlIO.PLZ.S Module routines
This is not a compiled or assembled listing; it is PLZ source code.

Page Number Contents
412 Introduction, Constant Definitions, and External
Definitions
413 AIO_INIT and IN_CHAN_SEL Procedures
414 INDIGITALP and INDIGITALT Procedure
415 OUT_ANALOG Procedure
(s
Appendix G 411
A e e e e e S T ST Ay B ARV S oA

AR X) (i 2 T B B PRIRF I MR o A A S Tl Wl o

d

(A3xxd 3JNTIVA
(azxg Iy

AR 4.0,

dLxd TION

dnagoodd LNIJITdVSIA
d40adI00odd LNIITIYNI

NI) SNINLIA
0d) 3¥Na3doyd NIOI

(ILx9d dJNTVALOO LYO0d) FANAID0¥d LNOOI

LO%
LY %
T0%
CYA-
dZ%
%
acs
6C%
8C%
0%
1%
tl%
£C%

LI T | ¢ O T Y (|
*0 68 00 00 S0 S0 S0 L s 20 se S0 ¢

471dYSIA LdNYYILNI
dAOW LNANI

MSYW
dAMOT ¢ TANNVYHD vd
¥3dddn ¢ TINNVHD vda
¥IMOT T TINNVHO vd
d43ddn” T TINNYHO Vd
SNILVLS
ID3TISTTANNVHO
dIMOT VIVa

¥3ddn vLvd

dIMOT ANYHKWOD
JIddNTANYRHOD

*UT PaNUTT a9 03

LNOOI pue NIOI Saur3noa abenbuerT ATquasse ay3z aatnbsa ssutinoa asayg
*139U30 Yoea ulaamiaq saniea Q/I pue asaqunu jauueyd ayyz ssed sauTinoa zId

BUTTTED 9yl pue S3aUTINOI IATJ ISy

* (50TYNYLNO

) andano boyreue o3

Te3T1btp pue ‘(JLIDIANI ‘TISNVHONI ‘ITIVLIOIANI) 3Indul pue uoISI3AUOD
Te3tbtp o3 boTeue ‘(LINIDQOTIVYNY) Pieoq dYyj JO UOTIRZTTTIITUT dYy3 3afpuey
sauT3inoa1 38sayl °pieoq 3ndino purp 3ndutr boreur QIV 2y3 Jo jJjuswaiordws

@Yl 103 sauTrinol abenbueT ZI4d JO UOTIDS[IO0D ® ST S°ZTd°0OIV i

d10dOW S

B
LR WP 8

TYNYILNI

TUNIILXT

LSNOD

*2T1d°01IV

" e
e"e s @ 8 2 »

Lt St Adinh A S A0l it a8 st |

TISTNVHO NI aN3I

(TANNVHD 4 103 TIS TANNVHD) LNOOI

*paurjap aie 6T ybnoayz o sTauuRyd

AYLNI

*UOTSIIAUOD
*IN000 03 ST UOTSISAUOD

® 03 P 943 S923BTI3TUT UoIldoe STYL
Te31b1p 03 boTeue 3xau ayl YsIym 103 193sThai ay3z jo asqunu
ay3 133stbax 3oaTes Tauueyd ayjz o3 sindino TISTNVHD NI i

-

P A o L S A i

ARG

~

~e

(3LX9 TANNVHD)IUNAID0Wd TIS NVHD NI

LINI OIV aNd

LNIJTIVYNI

AmmmmDHEB<DVZHOH =: TINN
(943MOT ¥IVA)NIOI =: TION

(3T4VSIA~ LdNYUILNI ‘JIMOT_ANVWWOD) LAOOI
(379V¥SIA™ LdNYIFINI ‘93ddN_ANVRWOD) LNOOI
(ZAOW_LNdNI ‘YIMOT_ANVWHOD) L00OI
(3QOW~LNANI ‘¥3ddN~ ANVWWOD) 1NOOI
LNIZTI9VSIq
X4LN3
i ‘wayy woaj buipeaax Aq si133sTboai ejep

andut ay3l siealdo OsTe 3JI °SI193319AUOD Ie31b1p 03 boTrue 3Y3
103 spou parrod o3jul pieoq QIV 8yl s31ds 2anpadoad sT1yj i

JINAI00¥d LINI OIV

g) 4-.-I-
e ® X

J\--Q.n..d.-i- -J‘.J...n
PR

R Tl S A i s RAKRASAL

AR

......

- -

IIVLIOIANI aNad
(TANNVHD)dIVLIOIANI =: JNTIVA
(TANNYHD)T3S NVHD NI :
X4IN3 ;o

rUWITLY.

i *paurjap aie

ST ubnoayy o sTauuURYD ‘TISTNVHO NI Y3ITM SY °e3ep 3yl uiejqo o3
: dTVIIDIANI TTO PINOYS SUTINOI 9U3 UYL *B3EP 2Yy3 IO pasu s31 03
1071d TISTNVHO NI TTIeO PINOYS DuTI3lnol z1d BuiTied ay3 asuodsai
5 133se3 buraatnbai suorjeoridde ssoyj 104 “*SOUT3I UOISISAUOD asbuoTt
by jeymawos a1tnbaar TT1TM aur3inos afburs sSTy3z BUTTTED °*dTIVLIDIANI pue
4 TISTNVHO NI 3o suorjeiado sy3l saurtquwod ainpasoird STy i

NG

D h

7

(¥ID3INI dNTIVA) SNANLAY
(31x9 TINNVHD)I¥NQID0¥d IIVIIDIANI

02t %% 4%0 gt

dTVLIDIANI aNng
(4IMOT YIVA) NIOI YADIINI + 00I% » ANTIVA =: INIVA

P (43ddN™VYIVA) NIOI ¥a9IINI =: JNTIVA
= ao
3 Id LIX3 NIHL JSYW ANV (SALVYLS)NIOI 41
0d
o AJdLNI
i ° Iauueryod

Po171sS9p 5Yy3 AJTIUS3T puUR UOTSISAUOD 9Y3l 33RTIITUT O3 pPa1TeOD u33q
ApeaiTe sey TS NVHD NI 3oyl Saunsse aui3jnol STy cweiboiad ay3z ojzur
TeubTs boreue p9313AU0D 9Y3l peal 03 BUT3INOI © ST JTYLIDIANI i

tg ats of

tar et
-

APALY)

(4393LNI 30IVA) SNINLIY
h J4nado0dd dIVLIOIANI

LI] L Py
OO

kg

ta
~)

>

oy

hr s)
<, . o
% Nﬂ«é . mw..n,
K
S P S S L ST AR T RARSS | FIPRIIEY ZARANAYS MNNNEC AP SIANRE AT PRALIrr Y e

faf tar Rt

&

gLt

S°*21d4°0IV AN

SOTYNY LNO aNd

(ZNTVALNO ‘¥3addN~ ¢ TANNVHD " ¥d) LNO0I 3IST13
(3NIVALNO ‘¥3ddN" T TANNVHD ¥d) LNOOI NIHL
T=TINNVHD 4I -
00T%/(3NIVALNO JIDILNI - INTIVA) =: INIVALNO
14

(INTYALNO ‘¥aMOT ¢ TANNVHD V¥d) LNOOI IST3
(INTVALNO‘H4EMOT T TINNVHO VA) IN0O0I NSHL
T=TINNVYHD JI
JNIVA ILX9 =: JNTIVALNO
AdILN3I

i *T Tsuueyd uo 3nd3ino UT 3[NSaI [[TIM Iaqunu Tauueyd I13aYy3io

Aue y3TM aur3inoa sI1yl burTie) °3TXd 7 pue T sTauueys ATuQ s
*Koeandooe 31q Z1 3Ieyz 193esib 30adxe jouued aurjnol buriieo

93U} OS S3DTASP 3TQ ZT 21 S19313AU0D Te3ITDBIP 03 boTeue By
*aniea UOTSiIaAUOD 03 boreue a9yl s3ndjino auUT3INOI STYL i

(4353INI aINIVA ‘dILA9 TANNVHD)I¥NAID0Ud SOTYNY LNO

L3 D s

P 4
A
w

e,

Appendix H: Scale_Factor Module

Scale_Factor Module is a compiled set of PLZ language routines
which implement the Set Up Scale Factor File process shown in Figure 3 in the
introduction. With the routines within Scale Factor, a user can create or modify a
disk file of scale factors. Due to the difficulties encountered in debugging the
Collect and Store Data process routines, Scale_Factor Module was not integra-
ted in with the other software of this thesis effort.

The routines of Scale_Factor Module are listed here to show how the
10 improvements of the Enhancements Module can be used. The module is
organized into an executive / subordinate routine structure as shown by Figure
82 below. The module executes the subordinate routines in sequence. The most
complex of the subordinate routines, CHANGE_SCALE, makes extensive use of
the Enhanacements Module routines. The program flow within CHANGE_
SCALE is shown in Figure 83. Both figures are present to aid reader understand-
ing of the execution of Scale_Factor Module.

The listings of Scale_Factor Module routines are on the following pages.

Page Number Contents
419 Constant, Type, External, and Global Variable
Definitions.

419-420 INITIALIZE Procedure
420 WRITELN Procedure
420 READLN Procedure
420-421 WRITE Procedure
421 READ_CH Procedure
421 WRITE_CH Procedure
421 ACCEPTABLE Procedure
422 GET_IDENTIFIER Procedure
422-423 FORM_FILE_NAME Procedure
423 CREATE_SCALE_FILE Procedurs
423-424 OPEN_SCALE_FILE Procedure

Appendix H 416

D IR N S T N I g T i R R

.......

PP EP

el AN Aied:

........

:i.':; Page Number Contents

424-426 NEW_SCALER Procedure
426-427 CHANGE_SCALE Procedure 7
428 CLOSE_FILE Procedure -
428 MAIN Procedure "3
Scale_Factor Module

@ /
INITIALIZE ;
GET_IDENTIFIER 3
FORM_FILE_NAME
OPEN_SCALE_FILE

CHANGE_SCALE ;
CLOSE_FILE :
s Figure 82. Hierarchical Organization of Scale_Factor Module :
:

Appendix H 417

[S I S T I A P T e R |

R B Nen A - Lt - wmes e T A ST A e 1N Aa A
..

Y

>

-

[}
B ‘.. .
3 . ‘\\-
f oy

L A N S A LTSS RO DR SRR I L S B B i

"’"?QCHANCL_SC s

SR AR PR R

"WM“"}'.""

‘

=<
>
prs

R o

a

"’
s eﬁﬁ«q %
1’ .,.

E: ’ ?
‘d i
2 %
E) s': \

v . N List N\ |
- List All
C Selected \ - i
-, urrent d i
2 Values i
:i%: _ ;
-2 X/ A f E
S List Next Change . b
i Channel Scale =/ i
n Values Facter g
. Write

- Buffer

- to File

AY .

-

el Figure 83. Program Execution Flow Within CHANGE_SCALF

2

2

Appendix H 418

oW
J

’ -

1 abed

”~

Yy

(dLAC OV'1d ‘QUOois L01S0d

(S1AE FUODTLENLEE
‘dlicd ¥ld
(GLA8 JAOD WUMLSY

‘AlAud ULdTdESSNG

(Q€O SILAE™gdulion

{ Qdou SELAE €ETLNL

(GLag WIs

1851 AIacnagad (T

IRARAIA | VPP

‘qdoi HOIHSOd

‘3Abd SWVIE3T11S

X8LIE £S5
Zs

3¥Na3ID0&Ed SZIIVILINI 15
0sS
14
a8y

aLiad 115144 Ly
{ dLxg 11] aAvaav LIvid 17

[33X8 8¥] Avgdv dna " LOdRI %4

[3248 6) avddv Y3I13ILiE0T 124

[3LXx8 Z€] Av&dv 3NV a1Id (3

4
i IVNYE3LRI 7 IvE0T1O 18
oY
6¢
8€
(3LA8 3Q0D7KUINLIY)IENQ300¥d JA0DU IS IuL LE
(3LA9 JA0DHdNLIY) SKYNLAY 9¢
‘dLAd LINNTIVOINOT) 5YNUED0Ed H53s St
‘A0t SILAGTINdNLIY) Sugillda ve
Td3AINE ‘YELAE LILnTIVIINUT) FUNGIDVUE uaSLdd te
‘QuOll STLAGTIGALEE) SLLnLEe S 1
‘BlAn LILOTIVOINUT) ZUOGLDULE UIELGD 1¢
{ SLAS HQODTHENLLE) Shailad 0¢
(diin LINGTIVOIODUT) E80GED0GE 538riD Y4
(ULad GQuOTHENLSY) Sindidlad 2T
‘3LAd LIRUTIVOIVUT) 5400300Wd 1ad0 Lz
$z

IVIEILXE 4

v
€z
44

LAS. &liad 12
0¢
ddad 61
8T

L1
91
T =% L00T3T0SLOD ST
T =% LIT410SHOD vI
IT =% 271372 IVOS £T

LO% =% ALNOA™L0iT411d z
¢ =% E113nal 1440 1t
0 =% LOdKITKEdO 01

80% =% LUDVES.iIVU ¢

0% =@ HiuLdy~dd 8

s s =% LN L

; =% 38TV 9

1 =% 3Jnds S

v

IINLSHOD €

(4

0861 I3queaol 1T i a10aok J0LOY3TaIvos 1

I-T¢T108 0°¢ Siszia
S710001 JOLINATETVOS
[.A-a.\- r-.(l'l!‘l. -lQWAI\\A\s; _ J'l...ll@ v _y_v

: L1
(3lZ8d dId IX3L ‘3LAE LINNTIVOIOOT)3UNAIO0Ed ILIdM 90T
S0t
§01
€01
KLIavad ang S A0 .
GO Wt
R YIdTOUIYLS OKI =% 3147 YLIELS y ot P
Id LIX3 NSHL NJALId™E) = dLd OHI¥LS 41 € 66 N
(T ‘4I¢7ONIYLS ‘LINNTIVOIDOT)03ISLID =: IFA0D NEALIY *HIOLNIT 4 86 ..
< oa L6 .
OUNINGIDIL OHRIYLS =: HId DNIYULS 1 96
AdLNE 36 Y
7 dlAdd dLd TORIYLS V6 o
y 3LAE 4A0D RuUNL3Y £6 2
Qa0 HILONAT 26
190071 16 ‘s
r 05 /
, (SLA9d DUINKIDIE OHIYELS ‘FlAd LIiWTIVDIDOT)3dnd3dodd wIavsd 63
L0
: Ly
‘e - 98 \-
% WIZLIGE QT L 58 o
P (HIDUIAT ‘dId7LXEL ‘LIKOTVIIDOT)udSofd =@ @l0D LkufluSs ‘noviad ¢ Vo ...
o ao €5 ’
: REGRIE ORI =% XsaNId s 4 o
y T+ daDilET =t Habuddd v 13 ¥
b IS LI4E Luils Wehdde™dd = _uzGule 4 ¢ U N
ou 6L N
dLdTLHEL =% XOUUId z 8L P
P T = 4o5uE1 1 LL ..n\
< AYLNE 73 i
: 43294 X3duid SL g
4 FLA9 da00TddALEd viL s
GOl HLOKIT €L s
i VY501 Tt o
y 1L ..
4 (31X8d ¥Id LXEL ‘JLA€ TIHNTIVOISCT)S€NAED0dd 1FISLIUM oL *
; 69 A
89 RN
K LS
3 SZITVILIGI Qg €T 99 e
£ {0lilIotas = LIviad PAET) A
ANTd =1 | 0T JLIDIU 1T 9 o
P 60 =F | o JiIvig 0T €9 by
‘ 8 =3 [g JaIdld 6 Y A
> . oLy =3 | L JaIdia 8 19
) 90 =% [9 JiIdla L 09 A
. Sy =t [5 JuInia 9 6% X7
s =% [¥ 13IDIC S 85 .
A €0 =2 [£]3IDIG 7 LS .
2o =2 [T JaIDIa € 95 >
I =2 [T J&IDIA Z 3] &
W0, =2 [0 JiIdla T ¢S
¢ ebed 1861 Aaenigag 01 21000k J0LOVEETNOS
2

: \ 3
£ 3 & 2

Peer s rle 0 r q A »_». .ﬂ\.k A L, T _ﬂn-.'-.\!.i.u.q.-ﬂl X .-}.A;-va.l.»m-w.. J,'J JH¢J-H- . N N L. .-.--.-........--.‘,.-.) .Inf.fo.l.-ﬂil- .lltl'lb.ﬂ.#cl.’,}. CL.;\JU&.%

- - - - T « 2

. ¢ obed

27TdVLdEd0V ana

Id 3MEL =¢ 37EVLdIDOV RNIHL d0% = JILDIVUVHD dlI

I4 3sIVd =& dTEVLIIIOV

HIHL (TP% > Y3ILOVIVHD JIAKY 6€£%¢ < HILOVUVHD)
JId0 (T9% > JAIOVYVHD JIANV V$%s < ¥ELOVEVHD)

JdI40

0€% > YIIOVUVHD JIYO Vie < dILOVYVHD JI

Jnal =: J78YLIIOOV
AYLud
(dLxd 379YLdIDOV) SNANLEY
(31X dILOVEVHD) 3UNAIO0Ed H1EVLdEOOV

uUDTIL TN A3

(T ‘¥3L0VEVHD ‘LINNTIVOIONOT)0ESINd =: 3A0D Lundidy ‘SILAGY

Xdond
SLAE d@odTneNLEY
daurt SILALL

TNDUT

(§LA€a QHILIVEVHD ‘JIAU LILATIVIIOUT)Edui03ED0ES WD aLIdl

ao
(T ‘HO¢# ‘LILOTIVDIDOT)USSLIY =3 SGOD LLLIIY ‘S5Liss
04U
A¥aild
SLAS HQODThdELIY
Ao SELA8d
V001

(_d434¢ HO) SKénNLad
(ZLAE IIHO IYSIDOT)AYNQEO06d HOTGV3Y

Swlde Qi3

(HIOUZT ‘¥Id LKAl ‘IINATIVOIN0T)udSoid = Fauo udnidy ‘1ivisi

1861 AIenigag 0T

NEdIda Ol =
T + LIOIET =
I8 LIXE NYHE LYAL3Id™ED = u

dLAdd X3aKld
dlLAS 3Q0DTHUGLIY
QY0:1 ULHNIT

Y201

31000k d0LoVa wIVOS

— o [ag Tt i Xe]

o

mo<n O~

La i}

191
0971
661
8ST
LSt
951
SST
vsl
€Sl
st
161
06t
6v1
R A
(vl
gv 1
Sl
ARt
vl
vl
ISA
0vI
etl
del
Ll
9T
Stl
vel
£el
it
itl
LET
ocl
8¢l
Lt
921
gecl
vel
gCcl
il
icl
Ol
oll
311
LI1
ST1
SIT
AR
elt
¢lI
IT1
R QY
60T
30T

-' .-*.I'

»

I RERTLRET
y

-"(

Lalas

AR

b
b Id LIX3 WYHL HdaL3gd™ 40 = { X3aul JYsIdrsinadl 21 8 19 ¢4
b v12
. L £1¢
ﬁ o= A ¢4
Y. 1 dy =3 M S 112
w Ty =2 ¥ 012
g Ve =0 | £ 602
T. 1Jy =3 ~ 4 802
b Se =% 1 L0z
b 902
r d393oNI X3anl s0¢
N T¥D01 ¥0C
, £0¢
T JdNazdoyd kv 31Id7LEod 62
N 16T
3 19Y4
N 00T
. GUISILNi3l wiw Qi ¢ sol
“u i sxxssrxxxxesxsss O0N430 0 ([olanve"aTIas ‘oN0CT3905LH0D) TELId. ¢ Lol
" Cu %61
k, (CITLSEL ‘I 5708500)uIClla ve 3ol
w_ folane™ancaIs =% CITLSEl T SN
p (,d%s ¥PW sS3830e°Ieyo g ‘CI 3ISOY I9IUZ,i ‘L0007 TIUS.UD)WIddlIdn T €l
3 HEER I Ne{oie ¢ LT Col
R I4 LIMZ L3l Sudd = ACVdE <1 ¢1 Wil
9 ac ol
o CI avad O0I =3 QI LEle ST oul
p.' 12 vl
N Ia LT
g LINE tT 2T
f S =t ACYOd ¢l 36T
" REALEE ™D =3 [XEGII JdossITLEG ¢1 wsl _
b, Kdul L € X3aul a1 1T €21
h 1 + Z#3AiI =% X3GEI 01 It *
N 13 81 .
L IIXZ 01 J
, IJ 30493 =% ACV3Y NdHL 0 < X34KI &I 8 oLl
N NIHL zmpammlmu = QI Salk 41 L 8Ll A
9 LAI71S4d =3 [_¥3Qul)daIsILuEcI $ LT _
. NHHL andgs = (CI pmma)574¥LCLDoV AT S 9LT v
b cd <Ll
. qu vLT \
, Gl :mma Di.I =% gITavad v €Lt L
b 16 LIXG K4l Ve <> CITWSEL &I ¢ LT oy
h 0q el "+
v =} xuanl < 0LT i
oa [V_m
557vd =% ACGVLY T 9l 2
d Adond L91 74
HLAG AGVEY YILOVEVHD 551 vy
GUDEwI Yudal $91 "
VD01 791 .uu
f €91 A
”) (33A8d QITLSEL)3UNQUD06E §EIJILndal™Lao 291 um
_ 2

YN T

1861 Aaenigagd 91 4772400k §0ILOVETIIVOS

S 2k

AREAA REN SN

g

w

£l

T

A

e RS 9 S I reey

e

.

T41Ids *aTI4TETIVOS) FTI4TSIVIS TALVAED KAHL QRROITION &TId = 300D kulldu &I L
(LAOD™KUNLIY)8A0DE 3LIdn 9
(,d% = @pod~uin3a1 uado aTT13 oTeOs™uddo,4 ‘LN0TATOSUOD)ALIdH S
{ SOAKITHId0 ‘1 [0]anvN™a1Idé ‘37147 31V0S VHmmo =3 G000 LENLdE y
([0lauvii™d113% ‘oN07S7T0SHGD }3LIYH €
(,d% 3 ouweu 5113 ,% ‘LNOTUTOSHOD vmpHm: 4
{ 1dg @23Inpoooad BTT3 " vIrdos~UDdO ,§ ‘LNOTETOSKOD Y WIALIUL 1
»mzzm
3LAd 40007 Hy¥NL4Y
V201
34NaId0Ed 47137 s1vds™ Hado
H1I8TATVOSTELVEdD GHa L1
ao
T + #%a4ul =% ZacilI ST
I3 LINE L4id ST = XN4Gul &I 5T
{ 9% =044 ‘LILDTLIId v:qupHua vl
{(vd% 00 4 0UL°T T =9 % ‘LIu0CTIIs Jaolun €1
(Ge 3.8 ‘2100721138)aulidn e
id
(I 0T - X8dKI JLIDICE ‘LLun”e1Id Yud~aalc 11
(culed ‘LIRN™STIE Vasidii vl
st
([%8GHT JLIDIQE ‘LIun™s'1la)HDTELICH 6
(sav o ‘1007 wiie ULl 5
JENSY v
01 » «“uGnd &1 L
(yds & TPUURYD, & ‘LILGT U718 YeoTlun Y
od
(QU0 nwdNWLEd) Edeod alIdn S
{ (d$ = 9podTuIn3lada uaddo, ¢ ‘LNOTEIOSHOD)ILIui ¥
(ZUIaM3N"KId0 ‘UEdT AWV ITIE ‘SIRAT3TIS) NddO =@ dUOD™LGNLaEy €
(,d% 2Inpaooiad S[TIT2TLISTo3EID ,§ ‘LN0TETOSHCD I IIELIEn T
0 =% Xzanl 1
pRWA M
SIAE 2A0DTLUNLEY
CIDIT wEa.sl
TwoUd
{ 3Li8d YIS ALVKTETIE ‘3LAd LIKNLT3TI&)3400E00ad STI47aTV0STEavEL
TUVLTETI3THE0S A ST
Texxexssxssxvsevvrvse ONE3A ([oJarvN a714d% ~v:o|mQCmrou YUTIEL TGN t1
HUNL3s™yd =% [3 + XZARI Janvi 3113 £l
o= L+ Ll uzcnl;qu z
T =3 — G + ALULI JE LV G'IIS 11
ao
1 =+ }NICKI 0t
[#3dul J¥IISILiiaal =: [9 + XICLI JaNiiu1la 6
1861 Aaen1gad 0T 2712401 GS0LOVSTS

69¢
39¢
L9Z
$9¢
S9¢
¥ 9C
T4
¢St
19¢
V514
6S¢
86¢
LSC
96¢
SS¢
AT
£s¢
4
Tee

Usz
S

Cdv
Lvd
wum

4

LI
A
TN

vy

.
[SHE]

WT.C'rmic ey
[
[atE S AN

o~
el
cCIioNo

<
™
o

tEc
e
1§ %4
JE
ved
B¢c
Lou
9cc
5¢C
ved
€cc

cce
¢
0¢
61T
s 1¢C
L1c
91Z

S'INDOS

) m e S ™

Ny

P

P AN et N s s A Y AN A S T A i et LT T T, W 4 Arl Aol LA e e TV VT, .
ao £€Ce
T + LLN0D =% LKAOD L e
Id LIKd WdHL .y = [LL0OD 113sdvud 41 v 1¢€
T + XUAuI =: pectites 3¢ 0¢¢E
HOILYDUT DKI =3 LOILVYIVT Lz 61t
[LknOD JA3sdvilo =: _HOILVOO1T 9 8 1¢
od L1¢g
0 =% LiNOD €T 91t
ao S1g
T - SHANYIETOLIAVET =: SHINTE ™ LLIAVIT ve vlg
1 + %3gul =: X3AnI £C flg
HOILWO0T JHI =3 HOILVYDOOT ‘e Tle
AWV =f _HOILVOOT ¢ 11¢
IS LIXZ 1EEL 0 = SAwWNIg™ oUIgval 41 [T 4
0G Go¢
INNOD - € =@ SUHNTu OLIaVET 531 ¢©ot
ao JAVEY
LORIGLS LNART =3 [Li00D 1LUSEvid ¢T sug
ORIVLSTLAdRT ORI =¢ LildLs ondil LT sut
13 Lt
T + Lol =3 LiaiCD vT Cui
Id % =% [€ Jauguvid sGna £ = LD &l 7 GEECIVES
LEhd 6Ee => | LLOOD JLUSuUVEHD GIG.W Ufs =< [LJILUD 13Es3Vud &1 <l 1ot
Id LIXE Uil « "y = [QoD Jdusuviid Sl ¢l wug
ou vl
U =3 Jiwd Tl odul
JondaasToLidaI =20 [0 JLEguvio o1 Lul
T+ LLlnI = R ¢ < Sou
HOI&YOUT Sl =t Wuladould S FIvs
SIS TOHERT = n01uVouT L Ul
o Lo
cersqIUQQnH OLT =% DUILLL LUl 6 vt
I3 LIXE Rdiid iVTe = _DUIHLSTINGUI JI890 - = JOLIEIS &AENI JIE0 o+, = SkIudS odail <1 S ¢
oG 06¢
ao 0dC
T + Xudni =: X3GIKI v w6l
HOILVDOUT DI =% [0ILVOU1 € L8
Id LIXT HGHL o1 = XEdilI JI < 93¢
od 59T
HEERIPNEH I 1 VET
Auold ot
JLAE CEOLOVEVHD TE3LOVeNHD Cde
dEDELUT XuGRI &LGoD c::aqm TULIGVET ®e
[GuLag ¥] AVEUL LIsUViD Jdl
TUOU" vt
gLl
(JoAdd 9NISLS COdNI ‘Jdide LOUILVIOT)UGiUGouUdEd dSINDSTamak LLT
“LT
SLT A
vL N
S1157STVOSTHAG0 UiE el £LL o
(3G0OTHEALEY) EEuouT neHr: 11 <Le rJ
(d% = d9podTuInlai 34o9os wHHuuchomucwco.“ L0 z;Cm:cu JELIYM 0T 1.2 ﬂw
{0 ‘0 ‘0 ‘G143~ <IVDS)N3ZS =: o ﬁc NAct. 6 0.LT mm
Y
9 abed 18671 431801934 (1 SI0A0H JOLOVaTLIVIS o
X
VX
v A
I

L abed

.
-

14 LIXY WdHL 2T

1d LIX3 NJHL

£

X ALe 4 %S850

10y =% _HOILVOOT 69 LLE
4513 9L¢
TYILOVIVHD =3 _HOILVDOT 89 SLt
T + X3UNI =: pecleithe L9 vLE
ROILYI0T JNI = HOILVD01 99 ¢Lt
TdaLOVEYHD =3 _LOILVO01 89y oL
HEHL 1L€
6E% => TAILOVYIVHD JIAUV 0E% =< TUILOVUVHD dI v9 0Lg
CORIYLS™LAAKI =% ZdELOVEVHD £9 6Y¢
OHINIS LAdNI ONHI =: 9LIGLS oAdNI ¢Y 89t
CORIYLS LAGHI =% T[dEIDOVHVHD 19 Lye
ao 99¢€
ONIYIS INdNI ORI =: ORIBIS ondul U9 Syg
Id LIX3 NIHL 6€% => _ONIYLS LOANI JIAWV 0€% =< _ORIGLS LO4GRI JI 85 vYEg
oa £9¢
T + Xaaul =: X3aanl LS T9¢
HOILVDOT JUI =: LOILVD01T 96 Ts¢€
CORI¥LS ™ SAdNI =3 _KOILVOUT $5 0yt
ao 5S¢
DRIYIS GAdUI ORI =@ Lilldas oidil vE o ousg
JOLKIYIS IAAHI JIH0 =, = _DHIULS CNEHI JId0 W+, = _bilcas oaciil oI tS Lwf
oa T
DHIYLSTLAGLT DL =f YLICas widil Cs o ust
T+ ®4GI =: peeteiiy | T8 vt
LOILVOUT LI =% LUILWDUT us Is¢
de =0 _LVILYOUT G ¢St
ao (£33
ORICISTLOALT D8I =% Lu.Iele oadill A 5
I8 LIR: Liud 4. = JOKIIy CuelI dI Lv 5w
¢] Jve
GO Lve
T+ XdARI =: XJAKI 9y IvE
HOILVYDOT OKI =% LOILWDOT 57 sve
Id LIX3 NAHL LT = X34l 4I vy wrve
(o]et EveE
[4'2%
ao e
T + LinOD =% LKAOD €y ove
T + XN3AKI =: X3AiI 4 2N 3
HOILYO0T DKI =@ {OILVIOU1 v 8ed
00 =% LOIEVO0T Uy Leg
I8 LIXd WEHE € = &inoud &1 6T vt
0ad cEg
ao vEE
DRIYNLS™LAdUI JUT =32 OLIELS ORI 8€ geg
T + IKNOD =% LKNOD LE Cet
T+ X3ULI =: XEAKI 9 T€g
HOILVDOT ORI =: HOILVDOT St Jgg
CORIYLS ONARI =: _L0IIVI01 ve ol
= LHNOD JI¥0 6€% < ONIYLS LNAUI JIYO O0€% > OUI¥LS oldlkI JI €€ 8CE
0a LLE
0 =% LoD Z€ 9c¢e
ONIYIS LANI DRI =: ORIdasS LOdKI 1€ sct
vee

1861 Aleniqgag g1

W

I7T000H €OLOVA aINDS

-,

\.v\)

AN

‘-‘ s\w’

\

WS RS ¢
»

-\.-.
L}

f\‘
.

oy o,
'.‘

T4t

1447

H .G. ased pua i oty

LIXd vZ 6Iv

I sssvsxvexyx ON930A 1 (+d% P®309718s 3Inb,¢ ‘LN0~370SHOD)WIALIUM €2 8Iv

N3HL 0, 4dSVD Ly

K Y4/

i i, 9sed pua j (%42

k ([8% » TIUNVHD]3DVASTNYOME ‘N0~ ETOSHOD YHIILIUM ¢ vew

I3 0 =¢ "M3RHVHD NIHL ST < TINNVHI JI 0 €zv

T + T3YHD =: "TIHNVHD 61 v

‘ i ss»xsexs DNHIA i (g% Po309TdS 3IX3U 3ISTT,¢ ‘SN0 HTOSHOD INTILIYM CROE €4/

HIHL W, dSVD ozy

Y 6Tb

i ¥, 9sed pus j 81v

4 ao LIV

k Id LIX3 HEHL ST < TINNVHD 4T LT 9Ty

T + TIHWVID =: T3LNVED 91 S1¥

([8% » TITLKVHD JADVAS HYOLE ‘LNOT3TOSHOD) LIILI¥M ST v1¥

; oa £1%

E 0 =% 'ISKLVHD vl CT¥

= isxxxyesaxy ONGAQ | (4% P93D9TI98 T2 3ISTT,+ ‘SN0 HTIVSHUD INTILIGEH €r 1y

- HaHL Vo JSVO o1y

¥, 60Y

N LOUTELSTOndIT S NdHD <1 8oy

® (6€% => _LRILLS™INGLI JIALY 0€S =< DLIELS LRI) Lo

s dI4O Sy = JUUHINLS LOdKI JI60 40, = _uualcds™ondil 99v

ke dI40 41, = OHIYLSTANdUI STd0 &, = DUIdLSTLAGKHT dId0 WV, = _oNICLS ondill oI 1T s50%

4 (cnunmmlpum:a .ﬁleqcmnou)L IGVE el Vo

(Jd%d puvLuLOoD,{ ‘L0, »cv:,u YLTELIEN 6 cob

(4¢% =1 10 ‘I8 (-’ ‘+)=7 uuE uui(-’ ‘+)=g5 .» ‘o007ETI0SL0D) TALIUL 8 ot

{ +d% ‘asqunu Tauueys gi- 0 3TRO “3ISTT I3 .uaﬂa v .-:0|nqomzou Y13 TGk Lt 1ov

4 (,d9%°=0 20 ‘=5 *GT 03 0 ‘0 ‘L ‘V :pueuwuod uumawm.* ‘L00TATOSLOD) HTIALIUN 9 00F

oda 66¢

0 =% TANNVHD S 86¢

K . (dgoo r:apam 1300087 3LIyM ¥ L6t

; (4% = 9pod uin3la1 bas3ab aTrosTabuvYD,§ ‘IN0TITOSHOD)ALIUH € 96¢

b (¥20T ‘ORINNIOIT “IFTIJ"FTIVOS)0E68L3D =2 IAOD WEOLIS ‘SILATY ¢ S6t

P [0)40VdS™H0L4 =2 DUILKIDAG T v6¢

AJLUG £€6€

K qdot SaLAGYH 6 €

JLa8 3Q00THUALIY TdELOVEVED TYEIOVUVHO 16€

g GELALRI X3QuI JRIT TINWVHD 06¢€

= JIXad ONRILESTINGUI OKINLIDGg o8 €

[31Xxg ¥Z0T] AVEEY 3DVASNYOM 38¢

Y001 L8t

K 98 €

: JUNGIO06Ed ETVOS™ AVKVHD S8 €

¥8¢

\ €8¢

45IVIS hAN ang €L I8¢

13 I8¢

TdILOVIVHD = _HOILYDO1T ¢L 08¢

T + XN3AKI = XEQANI IL 6LE

A 1I0ILVYD0T JHI =3 HOILVYDO1T 0L 8LE

a g obed 1861 Aaenigaad 07 4710001 Y0LOVA~3IVOS
u. ¥ d o
K, vy, s N3,
3 e “nwv b

PR W / g PP Y A APATSTRR AL, . PANGATAE SN o ST, e, o Ay N O R L -y X AT Tom SO e e]

W

{ 30007 1dNLEY)3Q0Dd™aLIuM as Ss8f

- ot

[AL

9]

{ +d% = 9pod uin3ai bas3ynd srrosTebueyo,§ ‘IN0HTOSLOD)ILIYUM LS b8y

(vZ0T “ONINNIOIE ‘JTISEIVOS)0asSLNd =: FQ0D HYNLIE ‘SILACY 95 €8¢y

(2QO07NYNLAY)dA0DY " aLIdM LA R 4

A .MW = w@oo UInlaa 3yoas wﬂmumlmwcmzo.n ~DDC|MACWZOU vaHmﬁ S 8%

(0’0 ‘0 ‘37137 4IVOS)NAES =% 3JACDI HINLIY €S 03¥%

ao 6LY

8Ly

ao LLy

(NITITOSNOD JHO~avad =: _OuI¥dls ondil rAN VA 4

I3 LIXJI N3IHL NYNL3¥~dD = u?Hmem INdNI a1 s siy

oa LY

1d eLy

Ly

i S3juswoje]ls oskd | Id 1LY

oLy

i 1647/, 14’40, 3sED pUd | 69v

([8% » TANWUVHD JIIVASTMUOM: ‘00T ST0SKOD)lI3LIdL: 05 389¥

(0€% - TYILOVAVHD) dIOIINI + TIKWVHD =3 TILWVED 6y L9b

13 ENY

1d _ SsSh

ZEILOVEYHD =% T4aLIVEYiiD 3v v

I4 0T =@ 'JJLNVHD dbHL s€% => CUIIOYUVED SIALVY T = TE3LIVEVED SI 9y g£uv
HAHL 6€% => CUILINVIVHD JIAW 0€s =< TUEILOVIVLHD JI Sy TYv

OUIYLSTLACKI =2 ZUZLOVAViD vy TSy

ONISLS Z0dUI DLI =¢ DUINLS wOdLI £ USv

HEHL 2Ty = JOLIGES GOAKI SId0 U, = JOUIESS oGl dI v 6SY

JOLTEOS NalI =f TeEoOVTli0 v 36V

0 =2 JULLVHED 0F LSV

T sxyxyyysxverxaey OO93Q | (+d% po3daTes Tauueyd OTITOAAE 3O 3ISTT, 4 ‘00 3T0SHOD YWIGIIuis cf 9sv
NI HL .m.-.m.u.h.-.w.;.m.;.v-~.m...N.~.H.~.c. a8V g5¥

1257

i 0, @Sed pud j 1337

([87 » TINWVHD)EOVASTMYO!LE ‘oS00 37T0SHOD) LI3LIdL 3¢ TSy

ao 1534

1d (1]

T + 23AKI =: X3qul LE &v¥

JONI¥NIS oAUl =3 [XAARI + 3KIT 130Vas™xy0n 9¢ 8vy

NEHL 0T% =< _ONIUAS LNdRI JI St Lvd

dLSTo060I ORI =1 LiITYIS LNanI A1 4

Id LIXE 8EhHG vy =< XUGRI J3I €€ Svv

oa X%

DHINISTLOLKRI DRI =@ OLIYIS oNEWI e Evy

vE =% XIAKRI 1€ vy

8% » TILLVED =% ZUl1 0E Tvy

I xxxxrxyxxxsx D030 i (.d% pa3datras burils situn jJo abueyo,i TDO SIOSNOD) KkI8LId8k 6 0Ovb
- NZHL .0, 45¥D 6EF

gEY

i 1S, 9sLD pud | LEY

([dNIT)3OVdS™XU0HE ‘SN0 ZTOSHOD) WIZLIGM 8T StV

(OHIYIS TO&GNRI ‘[JNIT JEOVaS™MUOLE)JETVIS HAN LT SEv

87 x TEHNVED =i NI 9Z btV

i sxxxxrsaxsvsy ONE3A i (,¥% P2ID2TOS J03DRI BIROS JO dbuvYd,# ‘Ln0”IIOSHOD) WIILIUN ST €ty
HIhd 1S SO [4% 4
obed 1861 Aavnigag 91 27000l dOIIVETITIVIS

V" ' Y o "0 GG 8 T RPN O CARAIIS WA PO P Wy rre.: RPN

2

TIn3d $TT1 3TdYL TOGHAS S3LA9 3JA0D-Z 6061 S3aLAd VLVQ €£€€3

(S)OUINYYL 0

B0LOVd 5IVDS ana

LIV UKs
(&II47ETIV08)&11d as0I0
a'I¥DS TULLVHD
GII1ETSIVIS HEd0
SHVITETIS TR0l
(dLaTLXILUT) EEISISEHAI LD
SZITIVILINT

P NPT

— O WU

(JLA68d YId LUEELI) EENE3D0d LIIVi

i I¥EoId i

Fhbbb bbb bbb bbbt bbb bbb bbb bbb bbb bbb bbb bbb bR R b bbb bbb bbb bbb b bbb bbb bbb bbb b b4+ STRUIDQUT JO PUD ++++tttttti

07 9bed

\\\J\
w5

LA

-

Ll o o

(,d4% = @2pod ux

1861 A3eniqgad 01

STI57280T10 Wil
(GODTHYEAL3Y)3Q00% dLIdw
n3vx 3SOTO 2TT3F 9S0T0,¢ ‘CNO ZTIOSHOD)ELIdn
(LINQTIVDIDOT)ISOTID =: 5Q00 HUNLIY
Agana
dLAE 300D HUNL3d
Y01

~ N

(JLA€ LILNTINDIDOT)3AuUNdadoyd I1Id”d3S01D

STYOSTILIVHD aN3 6§

aT0Aok COLOVS ™3 TNOS

L T PR X AAAR. 0,0, 00,0, v RN,

(S)dod¥s 0 *HOILVTII4IOD dJ0 dH3

ics
1¢s
06Zs
618
31§
L1S
915§
S1s
¥ 1S
{9 8
cis
115
01s
60§
80S
L0S
508
S0S
v0s
£0S
oS
T0S
Jos
vov
56V
Loy
96 ¥
S6¥
vev
gtov
cov
1834
06V
68¥%
88¥
A3 4
9% v

o basiN

e e e
SN

.
BN

N

N

i

,,A.
s Dl A A A A

R AP A 4 4 4

P

-p
Lo
b s

a’

D
..

Vita

Lloyd Edwin Lutz Jr. was born on 7 November 1951 in Marion, Ohio.

He attented high school in Sidney Ohio and graduated in 1970. In March 1975
he graduated from The Ohio State University, receiving a Bachelor of Science in
Electrical Engineering degree. Following graduation, he was commissioned into
the US Air Force though ROTC. In August 1975 Lloyd E. Lutz Jr. entered active
duty at the Air Force Weapons Laboratory, Kirtland AFB, New Mexico, as
Program Manager for Satellite Systems Support in the Analysis Division. He
entered the School of Engineering, Air Force Institute of Technology in June
1979. Beginning in April 1981 he served as a Staff Scientist in the Electronics
Vulnerability Divison of the Defense Nuclear Agency, Washington, DC. In June
1984 Lloyd E. Lutz Jr was assigned to the Electronics Systems Divison,
Operations Analysis Directorate, of the Air Force Operational Test and
Evaluation Center, Kirtland AFB, New Mexico.

Permanent Address: 2800 West Russell Road
Sidney, Ohio 45365

Vita 429

LR 'y P M)

A

[

8 2T e At e

(e

ave & a &

.

"

] - A at] v T AN K gk v sn R i RNk A% BO 20, o la L SA DAY ol AR DAL ACE OGSO AAR S

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE
rf e LI
RS REPORT DOCUMENTATION PAGE
.- ‘I .
‘e:'_.'ﬂ'awoav SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNCLASSIFIED
2s. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for pubkic release;
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE distribution unlimited.
4. PERFCRMING ORGANIZATION REPORT NUMSER(S) 5. MONITORING ORGANIZATION REPORT NUMBERIS)

AFIT/GE/ENG/86M~1

6a. NAME OF PERFORMING ORGANIZATION 6. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
School of Engineering (If applicable)
Air Force Tnstitute of Tech AFIT/ENG

6¢c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City, 5tate and ZII Code)

Air Force Institute of Technology
Wright~Patterson AFB, OH 45433

8s. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (I1f applicable)
Bc. ADORESS (City, State and 7ZI1P Code) 10. SOURCE OF FUNDING NOS.
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

11. TITLE (fnclude Security Classificatiaon)
See box 19
2:PEASONAL AUTHOKI(S)

j.lovd E. Lutz Jr., Captain, USAF
13a. TYPE OF REFONT 13b. TIME COVERED 14. OATE OF REPORT (Y:., Mo., Day} 15. PAGE COUNT

MS Thesis FROM __ To ——1 1986 Fcbruaryv 1 !
16. SUPPLEMENTARY NOTATION

i

I:17. COSATI CODES 18. SUBJECT TETNMS (Continue on reverse if necessary and idertify by block number)
Fl HOUP SUE R. PR o .

i)LgD G o5 ve 6 Data Acquisition, Analog to Digital Converters,
E Digital Computers, Ilata Storage Systems

19. ABSTRACT (Continue on reverse if necessory and iacntify by block rumber,

Title: DESTGN AND PARTIAL TMPLEMENTATION OF A
COMPUTER CONTROLLED DATA COLLLECTION SYSTE}

DT R AR I, T

Thesis Chairman: Dr. Gary B. Lamont
Profescsor of Electrical Enginecring '

ved for \l‘} telease: IAW AFR X
l%’sﬁlo VER QWMey ¥¢
©ean for Reseaich and Professional Developmend
Air Force Institute of Technology (ASO) !

Wright-Pettommen AFR OH 5433

--‘ _—
‘-j".:‘I'JISTRIBUAION.’AVA:LI.L’ILITV(:F SEFTRAC) 2V ARST O CT SECUT Y CLALDLI ICATION {
Q‘ -
i:JNCLASSIFIFD/UNLIMlTED © same as rer. D oTicusers 0 UNCILLASSTFTED t

%25. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHGIE NUNMCER 22c OFFICE SYMEOL i

tinclude Aroe Code)
Dr. Gary B. Lamont (513)-2549-20457 ATTT/ENG
'f?."——'-.x*"v i A AT, WY PIRE Lo SRR Sl A e d - L R LTS ES T YR Y 3 ﬂ’lm‘:fvvm:r,&
BD YORM 1473, €3 APR EDITION OF 1 JAN 7315 GUROLE 1y LUONCLASSTELED
SECURITY CLALRIFICATION OF THIS PAGL
o S O O R e T A TP I R T T T T T L TR L. e e Tt T et RIS
.,.n}p -' AR R P ".'V' 'l g ¢.- % ..-‘ g '.‘ J"‘. ‘.- SO Co e :’(\-’ “I‘.I.‘- ,'--\.' _-_.J.,‘ N

‘_'q e’ o

Y

UNCLASSIFILED

e CURITY CLASSIFICATION OF THIS PAGE
peas

A computer controlled data collection system was designed and
partially implemented in software. The design concept is for a data
collection unit to be placed inside the system being tested where it
stores the test data in an internal memory. Post-test this internal
unit is connected to and polled by an external control and data storage
unit which archives the data. Both units are computers. This combina-
tion of an internal data collection unit and an external control and
storage unit is intended for testing applications where it is either
undesireable or not possible to connect the system being tested to
external data recording devices during the test event.

The partial implementation of this dual unit data collection system
design was performed on a Zilog MCZ 2-80 development system in PLZ, a
Pascal-like language, and Z-80 assembly language. Routines to improve
the input/output atid hardware access of PLZ were written and used. The
software to implement the internal data collection unit and portions of
the external control and data storage unit were also written. The in-
ternal unit routines employ a Zilog Counter Timer Circuit to generate
sampling period interrupts. The analog to digital conversion is accom-
plished via a Zilog Analog Input Output (AIO) board. The data collection
system is not fully operational. '

'>.
) o

N

UNCLASSTTTED
SECURAITY CLASSIFICATION OF THiS PAGE

. - . Ce - - - - - - - - - - . ~ too .
G NI RON “‘,.; T R T A A R R

PO Y ¢ 5

-
o

ﬁ"“:‘:‘:eq“««mmmﬂ ‘\ Aibgh pato) A eal 18,0901, 1R Ml Pl o I oo 8% ity Aty Rty LS b & A DAL R T Ma g dy S0 Np I do B be Aot S Ml S B B A o A N Rt ot X
&
DA

s L e XY 2

)

e AR ‘9:- <

t:‘-‘-'-%'b‘u
SPRINOAY.

3 !

fA‘

2 1T T %
'...‘-‘-‘-‘L

o
~ -

P

é

- PR 7 B
(RO Gl C LU (A K
LA S AU Al AT 2N, 4 RN A "

