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ABSTRACT

A multi-security level distributed database system was

designed based on database parameters and system require-

ments provided by Readquarterst Space Divi-sion. :-As the

primary step in the analysis of this problem, a thorough

investigation intothe current state of the art of software

verification techniques was*,ade-,in order to determine

exactly what a computer system's software and hardware could

"be "trusted" to perform correctly.

Furthermore,(a selection was made from available secure

local area network alternatives which would yield a solution

that would be operational in other than a system high"

mode. The system chosen is currently being researched at

the Univei.ty of Newcastle upon Tyne in Great Britain.

This approach involves locating a single security partition

on a system which is physically and logically separated from

the rest of the network. This separation is performed by a

number of software and hardware mechanisms which can be

formally proven correct.

Once the distributed secure system design had been

suitably tailored for this application, a partial implemen-

tation of the design was successfully accomplished upon a

local area network being developed at-the Air Force

Institute of Technology. Thetest results support the

feasibility of this approach to the multi-security level

distributed database problem.
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ANALYSIS AND DESIGN OF A MULTI-SECURITY

* LEVEL DISTRIBUTED DATABASE

I. Introduction

Background

Over the past twenty years, computer usage has grown to

the point that it influences almost every aspect of our

lives. Concurrent with this growth has been the development

of such system users' needs as the need to share system

resources, the need to more effectively utilize system

components, and the need for intercomputer communication.

This need for the controlled sharing of system resources has

grown, not only in the number of people involved, but in the

geographic dispersion of both people and resources and their

need for increasingly fast access to and transfer of such

information. This tremendous expansion has presented new

technological problems in many areas, but particularly in

that of computer system security.

Recent efforts to build secure computer systems have

resulted in limited success. Secure system models have been

proposed and several systems have been implemented based on

these models. The primary objective of each of these

systems is to ensure that a system user has access only to

such information for which he is both cleared and has a need

to know, an objective which must be proven attainable.

However, it is the verification requirements placed on these

systems which prevent them from fully achieving their

1



primary goal. Currently available verification techniques

simply cannot provide adequate verification assurances for

large software programs such as a computer operating system

or a database management system. So as the need for inter-

system communication becomes stronger and the number of such

systems increase, solutions to the security problems will be

sought even if such solutions provide only temporary relief.

Currently, the four modes of secure computer operation

within the Department of Defense are dedicated, system-high,

* controlled, and multilevel, with each mode providing a

different level of system flexibility (11:86). Perhaps the

most inflexible mode, yet the mode with the greatest degree

of trustworthiness, is the dedicated mode. Systems

operating in the dedicated mode process data at one specific

security level at any given time. If jobs with both a

higher priority and a more sensitive clearance are presented

to an installation for execution, the computer system must

be completely sanitized, both before and after the new job

is allowed to run. The second mode of operation, system-

high, provides relief to the previous mode's obvious limita-

. tions. Within this mode of operation jobs of differing

levels of sensitivity may coexist on the same system,

thereby eliminating the time consuming sanitation require-

ments. However, all system outputs are classified according

to the most sensitive information on the system. At some

installations, each user is provided the opportunity to

downgrade his own output, an often tedious and potentially

2



p
error-prone operation.

The final two modes of operation are the most flexible.

• °Systems operating in the controlled mode are authorized to

process information at up to three levels of classification

concurrently. Furthermore, systems operating in the

controlled mode are not required to classify all output

according to the highest classification of the data

maintained by the system. This ability to distinctly

classify its output is given to controlled mode systems

because of the additional assurances provided by verifiably

secure software. The multilevel mode of operation provides

for concurrent processing of any number of levels or

categories of classified information and the system provides

a high level of assurance that all information of the

various levels will be segregated during processing.

Additionally, the multilevel mode must guarantee that

information provided to system users is only information for

which the user has been properly cleared. It is one of the

primary objectives of this study to examine the degree of

trustworthiness that multilevel mode systems currently

provide.

At this time, it seems appropriate to define terms used

throughout this study to provide a common understanding of

what this project will attempt to accomplish. First, a

database is an organized collection of data stored, more or

less permanently, in a computer. A distributed database is

a database which is kept at dispersed locations with two or

p 3



more computers controlling access to the different parts of

the database and several computers may be used to interface

with users, who may be at different locations from the data

itself. A computer network provides the necessary

communication links between the computers on which the

database resides. Finally, security, in both a network and

a database sense, involves three basic aspects of

protection. These aspects include providing controlled

access to resources, providing controlled use of those

resources, and providing assurance that the desired level of

protection is maintained throughout the system (12:6). With

"* these definitions, the following problem statement should

become clearer.

The analysis and design of a multi-security level

distributed database entails the resolution of three

distinct, yet related, problems. The first problem is to

define the topology of the computer network upon which the

database will reside. Specifically, existing computer

networks, along with their security characteristics, will be

examined to determine an optimal network configuration.

4. Concurrent with the network examination will be an

investigation of the methodologies available pertaining to

the design of the database. This problem concerns the

strategy to be used in dividing the database among the

various nodes of the network. Again, the security aspects

+ of the individual items within the database will play a

crucial role in determining the partitioning strategy. The

* ~ 4



final problem, once it has been decided how the computers

within this local area network will be communicating with

one another and how the database will be divided among the

various network nodes, addresses internetwork communication.

This area of the study will determine which node or nodes of

the local area network will act as the interface, or

gateway, to an external communications network.

Problem and Scope

The objective of this study is to propose a database

design which will meet the specific requirements of the

thesis' sponsor, Headquarters Space Division, Air Force

Systems Command. These requirements include the actual

database parameters and the operational environment in which

the database will reside (For a complete description of

these requirements, see Chapter II). In other words, a

comprehensive architecture will be defined for a specific

database in a particular installation. Furthermore, the

study will be limited by the currently available hardware

and software or some variation thereof and the methodologies

in use today to verify the degree of trustworthiness each

system component may assume.

Once the design has been accomplished, its implementa-

tion will be attempted, using existing Air Force Institute

of Technology (AFIT) facilities. The AFIT Digital

Engineering Lab's (DEL) local area network and distributed

database management system will provide a good, although

5
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limited, environment to implement the design which will be

proposed by this study. The DEL facilities are limited to a

single local area network architecture with the majority of

the network nodes being microprocessors using single task

operating systems (9:5). Furthermore, the distributed

database management system is the result of a recently

completed thesis and provides limited query capabilities

(3:73). However, limitations aside, the DEL facilities will

provide a good hands-on experience for the implementation of

the design to be proposed by this study.

Assumptions

The outcome of this project will be based substantially

on the following assumptions:

1. The physical environment is secure; that is, system
operations are performed in physically hardened or
guarded facilities.

2. All personnel having authorized access to the system
have been cleared through appropriate background
investigations to handle classified information.

3. No unauthorized, intentional penetration attempts
into the system will be made; in other words, a
nonmalicious environment exists within the local
area network.

4. The external communication network's transmission
lines are physically secure.

5. The program to implement the recommendations of this
study will be well funded but will not have
unlimited economic resources.

The above assumptions are based upon the problem specifica-

tion provided by, and through subsequent conversations with,

the thesis sponsor. These assumptions direct the study to

specific security related areas, primarily software

6



security, while avoiding other security areas not considered

important at this time. Assuming certain system safeguards,

particularly a nonmalicious environment, emphasizes the

specific direction this project will take and limits the

types of potentially compromising situations which may

occur. One of the goals of this study is to prohibit situa-

tions in which a user of the system unintentionally has

access to information for which he is neither cleared nor

has a need to know.

Approach

Deriving the final database design involved several

interrelated steps. The first step was an extensive

literature search to examine alternative designs of secure

local area networks. During this phase, the study defined

critical issues and problems that related to network

security, described the various mechanisms implemented in a

particular security policy, discussed the tradeoffs which

related to these mechanisms, and finally, selected a par-

ticular architecture which both met the installation

requirements provided by the thesis sponsor and provided the

most trusted system available today. A related issue

concerned the manner in which the local area network

interfaced with the external communications network. This

area is of particular importance due to the fact that the

interface must be one of the most secure components of the

entire design.
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Once the network architecture alternatives had been

investigated, the study addressed the distributed database

design issues. Integral to the examination of multi-

security level distributed database design issues was the

degree of trustworthiness existing operating systems may

assume. Therefore, before resolving the database design

problem, this study must address not only the present state

of secure database management systems but also the unre-

solved issues in secure operating systems. Finally, given

either a complete or a partial compatibility between the

proposed design and existing facilities within the DEL, an

implementation of this design was attempted. In the case of

only partial compatibility, all variations between the ideal

design proposed and the system implemented were fully

annotated in this study along with the associated simplifi-

cations these modifications entailed.

Sequence of Presentation

The remainder of this thesis is presented in six

chapters. Chapter II describes the system requirements,

specifically, the database parameters and the secure

operating environment in which the database resides. This

chapter also addresses the overall installation require-

ments, particularly the message traffic flowing into and out

of the local area network. The third chapter discusses the

present state of computer software verification methodo-

logies as related to secure computer operating systems and

secure database management systems. Chapter IV examines

8



alternative secure network designs and proposes a local area

network architecture suitable for the required operating

environment. The design of the database is presented in

chapter V, a design which is almost totally dependent on the

information presented in the preceding chapters. The sixth

chapter includes all the details of the attempted implemen-

tation of the database on the digital engineering lab's

local area network. The final chapter presents a design

summary which includes all conclusions and recommendations

generated by this study.
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II. System Requirements

Introduction

The proposed distributed database design must satisfy

both the network and database requirements as presented by

the thesis sponsor. These requirements describe the nature

of the environment in which the final product will be

operating. More importantly, the requirements provide the

author an excellent starting point from which his research

could proceed, particularly in the system security aspects

of the thesis problem.

Network Requirements

The organization requiring the development of this

Ssystem, known from this point on simply as the user, has a

need for a multi-security level distributed computer system

to aid in the planning of aircraft flight paths. This

distributed computer system, or local area network, consists

of a minimum of three computers, with security levels of the

data contained therein ranging from level zero as the most

restrictive to level two as the least. The local area

network will be connected to a second network, an external

communications network, through which queries and updates to

the aircraft flight path database are made. These queries

and updates are in the form of messages pertaining to an

aircraft's planned flight path and associated weather and

surface-to-air missile threats.

Computer A{LI, the first of the three primary hosts,
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maintains the weather related portion of the database. (For

the remainder of this study, whenever one of the principal

database computers is mentioned, it will have either a "H",

"M", or "L" in braces appended to its single letter

identifier. The "H" indicates the computer maintains level

zero information, the "M" indicates level one information

and the "L" indicates level two information.) The weather

data is classified at level two and is received via messages

either directly from the external communications network or

through an intermediary processor within the local area

network. The weather messages describe actual weather

conditions within geographical regions by altitude and time.

Weather related queries are sent to computer A{LI through

the local area network primarily by computer C{H} and

involve requests for weather conditions for a specific

flight path. Computer A{L} calculates what region(s) the

flight path covers and provides computer C[H} all associated

weather information.

The second primary host, computer B{M}, maintains the

surface-to-air missile (SAM) portion of the database. The

SAM data is classified at level one and is received

similarly to the weather data. However, SAM data is

received in two different message formats. The first

message format provides a SAM site's operational status and

contains such information as location, status, and missile

type. The second SAM message format describes the charac-

teristics of a particular type of SAM and includes both

11



altitude and range parameters. SAM queries are sent by

computer C{HI to computer B{M} and involve requests for the

hostile regions a planned flight path covers. Computer B{MI

analyzes all legs of the flight path to determine both

"free" and "kill" zones. If the flight path covers only

"free" zones, computer B{Mi's response is simply "NO

DANGER". Otherwise, a "DANGER" message is sent along with

the number of SAMs within the zone and all associated site

and missile data.

Computer C{H}, perhaps the most important of the three

primary hosts, maintains the flight path portion of the

database. The flight path data is classified at level zero

and is received similarly to both the weather and SAM data

above. Once computer C{H} has received a flight path, it

queries both computers A(L} and B{MI. Based upon the

information received back from the other primary hosts,

computer C{H} generates an updated flight path to include

the associated weather and SAM data. The updated flight

path is then sent either directly to the user via the

external communications network or to an intermediary

processor in the local area network.

In addition to the network requirements described above,

each computer has a terminal from which a user may sign on

and query different parts of the database depending on which

particular computer he is signed on. I all cases, the user

V is allowed to access only such information that he is not

only cleared for but which is at or below the security level

12



of his computer. For example, a user logged on to computer

B{M} may view both level two and level one information

provided he has been properly cleared for such access.

However, even if this same user is cleared to view level

zero information, software security measures prevent such

access since computer BiMI is only capable of processing up

to level one data. Other facilities provided local users

includes reviewing message logs, reviewing the actual

messages themselves, and composition and transmission of

messages through the external communications network.

-b The final requirement placed on the local area network

is the creation and maintenance of an audit trail. This

audit trail is required so that the network security officer

will have the necessary information to reconstruct any

activities which took place throughout the local area

network. The network audit trail must be available for

regular or on-demand security reviews of both the entire

network or individual host activities. The audit trail must

include, at a minimum, the following information:

1. Host identifiers, user identifiers, and session
security level.

2. Identification of protected resources accessed
during the session.

3. Session starting and ending times.

4. Any exceptional conditions occurring during a
session.

As just introduced, the term session for this work will mean

any network activity for a period of time involving communi-

cation both across the network between two active entities

13
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or one entity actively querying system resources within a

* single host.

Database Requirements

The two most important requirements related to the

design of the database are the multiple levels of security

classifications of the data contained therein and the pro-

cessing requirements placed on the various hosts of the

local area network. The specific security classifications

are maintained strictly at the file level; in other words,

each record and the fields it consists of are classified

according the classification level of the file in which they

reside. Security classifications are also integral to the

partitioning strategy discussed in Chapter IV. The pro-

cessing requirements of each of the primary hosts mentioned

above are such that the database must be distributed to

provide necessary response times to user queries, as

specified by the thesis sponsor. No analysis will be made

of these response times or host workloads since the thesis

problem is structured to be of a distributed nature.

The specific database parameters are generically grouped

as weather, surface-to-air missile sites, surface-to-air

missile types, planned flight paths, incoming and outgoing

message logs, and audit trail. The weather portion of the

database includes the following parameters:

1. Region Names - 10 characters maximum.

2. Northeast latitude - 90.000 to 90.000 degrees.

14
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3. Northeast longitude - 0.000 to 360.000 degrees.

4. Southwest latitude - 90.000 to 90.000 degrees.

5. Southwest longitude - 0.000 to 360.000 degrees.

6. Weather conditions by time and altitude to include:

a. Julian day - 0 to 366.

b. Seconds since midnight - 0 to 86,400.

. c. Altitude - ground, 10,000,20,000,...,100,000.

d. Wind speed - 0 to 200 knots.

e. Wind direction - 0 to 360 degrees.

f. Cloud cover - clear (C), partly cloudy (P),
broken clouds (B), cloud
cover (X).

g. Precipitation - none (N), rain (R), snow (S),
hail (H) , thunderstorms (T).

Only the most current weather information will be maintained

within the database, with updates being received approxi-

mately every six hours. Historical weather data is simply

discarded.

As was mentioned above, the surface-to-air missile data

is grouped as both sites and missile types. The sites

parameters include:

1. Name - 10 characters maximum.

2. Missile name - 5 characters, SA-I to SA-19.

3. Latitude - 90.000 to 90.000 degrees.

4. Longitude - 0.000 to 360.000 degrees.

5. Operational status - fully operational (0),
under construction (U),
closed (X), destroyed (D).

The missile type parameters include:

"' I. Name - 5 characters, SA-l TO SA-19.

15



2. Minimum altitude - 0 to 100,000 feet.

3. Maximum altitude - 0 to 100,000 feet.

4. Missile range - 0 to 900,000 feet.

Both SAM site and SAM type data are updated from messages

received through the communications network. All historical

missile data will be maintained even if a site is closed or

a missile type becomes obsolete.

The most sensitive information maintained within the

database is the flight path data which is classified at

level zero. This information consists of the following

parameters:

1. Name - 10 characters maximum.

2. Path leg - an array of up to 20 entries:

a. Julian day - 0 to 366.

b. Seconds since midnight - 0 to 86,400.

c. Latitude - 90.000 to 90.000 degrees.

d. Longitude - 0.000 to 360.000 degrees.

e. Altitude - 0 to 100,000 feet.

Once the flight path has been analyzed by both computers

A{L} and B{MI, this information will be expanded to include

the pertinent weather and SAM data.

The final three database groups together provide the

information necessary to maintain a record of all the

activities which have taken place both within the local area

network and between the local area network and the external

communications network. The first of these groupings,

incoming message log, includes the following parameters:

16



1. Message identification - IYYNNNN, incoming (I),
year (Y) , number (N).

2. Originator - 10 characters maximum.

3. Date-Time-Group - DDHHMMSSZMMMYY.

4. Subject - 40 characters maximum.

5. Security level - level 0 to level 2.

The outgoing message log is identical to the incoming

.! -message log except for the Originator parameter. In place

of this parameter, the outgoing message log has a To para-

meter, which is also a maximum of ten characters long. The

'V audit trail group parameters include:

1. Host identifier - 2 characters maximum.

2. User identifier - 6 characters maximum.

3. Session identifier - 5 characters maximum.

4. Resource accessed - 11 characters maximum.

5. Session start time - 0 to 86,400 seconds.

6. Session end time - 0 to 86,400 seconds.

7. Exceptions - 40 characters maximum.

The Exceptions parameter provides a brief description of any

irregularities occurring from the moment a logon is at-

tempted until the user logs off the system. Examples of

such irregularities includes errors made during the identi-

fication/authentication process or an attempt to access a

file for which this particular user does not have access

permission. Obviously, this is not an exhaustive list of

error conditions which may occur. As was mentioned

previously, these audit trail facilities enhance the network

17
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security monitor's chances for reconstructing any unapproved

activities by recording all network activities.

Summary

This chapter has provided a brief glimpse at a number of

issues which are addressed in much greater detail throughout

the remainder of the thesis. Perhaps the most important

issue raised concerns the security classifications of the

data. This single issue influences not only how the

database will be partitioned among the local area network
t44'0

nodes but network architecture and network topology issues

as well. The installation unique requirements were also

.presented in in this chapter along with the database

parameters. The presentation of these requirements was a

W necessary prerequisite since the design of a comprehensive

security architecture is almost totally dependent on each

system's peculiarities. A better understanding of security

policy, local area network design, and security mechanisms

provides an awareness of the tradeoffs to be considered when

designing distributed computer systems, particularly multi-

security level distributed databases.

18
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III. Secure Computer Systems

Introduction

In order to more fully understand the fundamental nature

of the secure computer system problem, this chapter investi-

gates several related topics beginning with an introduction

to the most prominent secure operating system design

technique, the security kernel. Integral to the security

kernel presentation is a thorough discussion of the Bell and

LaPadula model, which provides the security model upon which

the security kernel approach is based (1:15). Subsequent to

this discussion is a brief presentation of the Grohn model,

which extends the Bell and LaPadula model to database

management systems. Finally, a survey of existing computer

software verification methodologies is presented

Security Kernel

For the past fifteen years, government and industry have

investigated techniques for developing computer systems upon

which a given set of security rules can be reliably en-

forced. The results of this intensive investigation have

produced many different approaches to the design of secure

computer systems. At present, the most widely used design

strategy incorporates the concept of a security kernel

(11:87), a concept which includes all the hardware and

software mechanisms which enforce the authorized access

relationships between the subjects (users) and objects of a

.~computer system. The primary motivation behind the develop-

19
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ment of a security kernel, from the Department of Defense's

point of view, was to provide an environment in which

multiple security levels of information could reside on a

single computer system with a user only having access to

such information as he was both cleared to use and had a

need to know. Obviously, the objective of the security

kernel approach is for the kernel to perform in an opera-

tional environment such that the separation of different

levels of classified information is accomplished by the

operating system and associated hardware. In other words,

the security kernel provides the capability for a truly

multilevel mode of operation. Whether or not such an

approach does indeed meet this objective will be discussed

in the final section of this chapter.

Before describing the specific principals which are

important in a security kernel's design, it is appropriate

to define more fully the relationship between a reference

monitor and a security kernel. A reference monitor is a

conceptual notion which involves the checking of each

reference by a subject (user or program) to an object (file,

device, user, or program) and determining whether the access

is valid under the system's security policy (11:88). A

security kernel consists of those software and hardware

components of the computer system which implement the

reference monitor concept and includes all relevant security

software. As envisioned by the United States Air Force's

Colonel Schell, who first introduced the idea of implemen-

20
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ting the reference monitor concept with a security kernel in

1972, a security kernel was a "compact security 'kernel' of

the operating system and supporting hardware such that an

antagonist could provide the remainder of the system without

compromising the protection provided (1:15)."

I Reference I
Subjects e>feonce Objects

---------------------
Access Control Database

-------------------------------------------------I

Figure 1. Reference Monitor

The two basic security kernel design principals are

first, that a security model should be formally defined, and

secondly, that the security model should be faithfully

implemented. The formal definition of a security model is

based upon a specific set of protection policies. This

requirement is a distinguishing factor between a security

kernel based system and other approaches to the design of

secure operating systems. These other systems, such as
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capability based machines, provide general purpose

mechanisms, whereas the security kernel approach specifi-

cally addresses both policy and mechanisms (1:14).

The security policy aspect of the kernel approach is

divided into two major categories, nondiscretionary and

discretionary. Nondiscretionary policy involves security

rules which are imposed on all system users while discre-

tionary policy is the set of security rules specified

arbitrarily by each user. In other words, the specification

of the rules is discretionary in the sense that a subject

with access permissions is capable of passing those

permissions to any other subject. Both the nondiscretionary

and discretionary policies are translated into a security

model which is composed of a set of mathematical rules. The

security model must define the information protection

behavior of the cystem as a whole and include a "security

theorem" to ensure the model's behavior consistently

complies with the nondiscretionary and discretionary

policies described above. The model enforced by most

security kernel designs is the Bell and LaPadula model

(2:15), which is described in in the next section.

The second security kernel design principal, faithful

implementation, requires that a set of formal verification

techniques be applied at each stage of the design and

implementation process. The different classes of formal

verification methodologies as applied in the kernel design

process include techniques to prove that a kernel's intended
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behavior is secure with respect to the policy model, tech-

niques to verify a correspondence between the mappings of

the various design and implementation specifications, and

finally, techniques which simply show a correspondence

between the kernel's specification and its implementation

(10:17). Each of these different classes, along with

specific verification techniques, is discussed more fully in

a later section within this chapter.

Typically, an operating system is broken up into

functional areas such as processor, memory, device, and

4 information management. In designing a security kernel,

each functional area must be analyzed to see if it performs

any security related tasks. If so, these specific functions

become candidates for inclusion within the kernel. Most

importantly, any part of the operating system which manages

resources shared by multiple users, such as memory, must be

included within the kernel. As pointed out in the Ame's

article, the design of a security kernel is really a

balancing act among the various design issues, such as

deciding which functions are security related, performance

and functionality tradeoffs, and consideration for operating

V system complexities. The objectives in such a design

environment are twofold. The kernel must be foolproof and it

must not degrade system performance. Unfortunately, as will

be discussed later, present systems do not effectively

achieve this second objective.

5', *There are four architectural areas in which specific
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hardware and software mechanisms have proved useful or

necessary to support kernel based operating systems. The

first area concerns the notion of explicit processes. Each

system user initiates one or more activities within the

system which act on his behalf. These activities, or pro-

cesses, must each be explicitly identified as belonging to a

specific user so that each process may be associated with

the user's specific access privileges to a particular

object. The user's identification and access privileges

must be nonforgeable. Directly related to the explicit

process idea is the need for the security kernel to provide

support for multiprogramming and interprocess communication.

A Since each reference request must interface directly with

the kernel, and in a multiprogramming environment there are

several processes making such requests simultaneously, it

would be advantageous if all such requests could be handled

through system hardware. With both context switching and

interprocess communication being supported through hardware

mechanisms, kernel simplicity and performance would

substantially improve.

The second architecture area addresses memory protection

issues. The most important kernel facility required is a

mechanism for mediating memory accesses. This mechanism is

achieved through a virtual memory system in which each

logically distinct memory object has an associated descrip-

tor with attributes such as size, access mode, and access

class. These objects are referred to as segments and are
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allowed to dynamically increase in size up to some system

maximum. The security kernel's software manages a segment's

descriptor, which in turn manages or controls the virtual

address mapping hardware. Complete access mediation is

provided since the hardware must interpret the relevant

descriptor for each access to memory (1:19).

Perhaps the more novel security kernel architectural

idea of the four is the concept of execution domains. The

most common operating system structure consists of a two

level hierarchy in which the supervisor and user domains are

distinct. However, in the design of a security kernel

operating system, the kernel also requires a distinct

domain. Due to the unacceptability of including the super-

visor mode with the user mode, it was proposed that a third

mode be supported in a secure kernel environment. In order

to ease the transition between execution domains, entry into

the most privileged domain must be limited to a few well

defined entry points. However, in an effort to design both

a secure and a simplistic kernel, a hardware mechanism which

supports multiple entry points, similar to a procedure call

in that each kernel function has a distinct entry point, has

usually been implemented.

The final architectural issue concerns the mediation of

input/output (I/O). The resolution of kernel related I/O

issues must address the two most frequently used I/O tech-

niques in use today. The simplest of these two techniques

.* is programmed I/O, synchronous transfer, in which the
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central processing unit (CPU) is instructed to transfer each

byte between main memory and the I/O device itself. In a

secure environment, the start I/O instruction would be main-

tained in the most limited domain, the kernel domain.

Therefore, the user and supervisor domains must request I/O

actions to be made by the kernel on their behalf. The

second I/O technique involves the asynchronous transfer of

information between memory and secondary storage. Usually

this technique requires the CPU to notify an I/O processor

when I/O is to be initiated. Once the I/O processor is

.N awakened, it handles the transfer of information, only

notifying the CPU when it terminates. In a secure environ-

ment, the I/O processor works entirely within the kernel's

domain and uses physical memory addresses supplied by the

53 kernel. This restriction of the I/O processor necessitates

the inclusion within the kernel of the virtual memory

system's translation algorithm.

As described above, the security kernel is a complex

mechanism which performs many functions. In order to con-

ceptually reduce this complexity and at the same time

provide a means to effectively demonstrate the system's

security, several formal models have been developed.

N,! Because of the difficulties of trying to capture the

complexities of the real world in a formal structure, each

model deviates from reality in certain respects. However,

the different security models all base their interpretations

of a computer system on the finite state machine model. The
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finite state machine consists of a finite set of states in

which a transition function provides a means to move from

one state to another based upon the machine's current state

and an input value. The transition between states may also

generate some output values as determined by the transition

function. The three most common computer security models

include the lattice, the information flow, and the access

matrix. Much has been written about these particular

models, so in the interest of keeping this discussion as

brief as possible, only a few comments are made regarding

the access matrix model, which is the basis for the Bell and

LaPadula model.

The access matrix model was developed as a generalized

description of computer operating system protection mecha-

nisms. The model depicts controls on users' access to

information without regard to the semantics of the informa-

- tion in question. The particular mechanisms used in the

model include a reference monitor and an access control

matrix. However, when classified information is involved,

the semantics of the information becomes very important.

For this reason, models based on the access matrix have been

extended to include rules concerning the classifications of

the information maintained by the system. In systems based

on this extended model, the protection of information is the

responsibility of the information's owner. The owner can

grant access to this information to any user, who, in turn,

may distribute the information in any way he pleases. Such
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a policy makes it very difficult to prove any theorems about

the flow of information without specializing the model.

However, the primary advantage of this model is that it

neatly separates the mechanisms for enforcement from the

policy enforced. The simplicity of the access matrix model

"' makes it very appealing, particularly the way it defines

subjects, objects, and access control mechanisms (10:257).

%: Consequently, it has served as the basis for a number of

other models, one of which is the topic of discussion in the

next section.

The Bell and LaPadula Model

The Bell and LaPadula model (2:5-70), here after

referred to as simply the model, consists of two major

facets: a descriptive capability and general mechanisms.

The model has the ability to abstractly represent the

elements of a computer system which are relevant to the

treatment of classified information. The computer system is

viewed as a finite state machine in which a request for

,- transition from one state to another generates an appro-

priate response (decision) based upon an associated rule

(2:9). However, before discussing how these decisions are

made, it is necessary to describe the model's more fundamen-

tal aspects.

The descriptive phase of the model begins by introducing

the notion of subjects and objects, where a subject is

considered an active entity (process) and an object is a

passive entity (file). The model depicts the control of
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access by subjects to a set of protected objects based upon

some predetermined security policy. As defined in the Mitre

Corporation report, the "system" is all sequences of three-

tuples consisting of system states, requests (input), and

decisions (outputs), along with an initial state, which

satisfy some relation on successive states. Associated with

each passive entity (object) are a set of access attributes

which includes the following modes of operation:

1. e(execution) access - neither observation nor
modification

2. r(ead) access - observation with no modification

3. m(odify) access modification with no observation

4. w(rite) access - both modification and observation.

The set of access attributes associated with each object is

only one of the many characteristics required for the com-

plete description of a system state.

The model's description of a system state consists of a

four-tuple of. the form: (current access set, access permis-

sion matrix, level function, hierarchy). The current access

set is a collection of three-tuples indicating a subject an

object, and the current access attribute of that subject

toward an object. In other words, this set represents all

the current accesses of all currently active subjects toward

all objects maintained by the system. The access permission

matrix is a two dimensional table in which all the rows of6 the table represent all system users (subjects) and the

columns of the table represent all system objects. The
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intersection of a particular row and column contains the

S.?.. explicit access attributes of a row's subject toward the

intersecting column's object. In actual computer systems,

~.. the access matrix would oe very sparse if it were implemen-

ted as a two-dimensional table. Thus, implementations of

the access matrix table are more likely to be in the form of
either a capability list or a access control list (10:.57).

Perhaps the more interesting notion within a system

state's description is the concept of level function, the

foundation of security classifications within the model.

41 The description of a level function begins by introducing

what is meant by a security level, a classification and a

category pair. In this context, classification is used in

its usual sense, such as "a document has a certain classifi-

cation" or "a user is cleared up to a certain level". A

category is specialized compartmental information such as

"NATO" or "Nuclear". Also introduced is the notion of

security level dominance. A document's security level

dominates a second document's security level if and only if

the first document's classification is greater than or equal

to the second document's classification and the security

category of the second document is a subset of the first

document's security category. This idea proves important

when addressing the model's security related properties.

The level function itself is defined to be the triple of the

maximum security level of the subject, the maximum security

.=-. level of the object, and the current security level of the
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subject.

The final component of a system state, hierarchy,

concerns the structure imposed on the objects. To take

.3 advantage of both the implicit control conventions and the

wealth of logical data objects structured in a hierarchical

manner, a parent-child relationship must be maintained in

which only directed, rooted trees and isolated points are

allowed (2:12).

The system characteristics which the model desires to

maintain are collectively referred to as security. These

characteristics are described implicitly by the ss-

property, the *-property, and the ds-property. The ss-

property, simple security, stipulates that if the three-

tuple consisting of (subject, object, observe-attribute) is

a current access, then the maximum security level of the

subject dominates the maximum security level of the object.

In other words, a subject cannot observe any object over

which it does not dominate. The *-property states that if a

subject has simultaneous observe access to one object and

modify access to a second object, the security level of the

second object dominates the first object's security level.

This property prevents any subject from allowing any more

highly classified information from flowing into a lower

classified file. Together, these two properties constitute

the nondiscretionary policy, as described in the previous

section. The final security property, the ds-property

allows an individual to extend to a second subject discre-
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tionary access to a document, an access restricted only by

. the aforementioned nondiscretionary properties. A system

state satisfies this property provided every current access

is contained within the access permission matrix.

The second facet of the model, general mechanisms,

introduces the inductive nature of security along with rules

for the specification of system capabilities. The basic

security theorem, which states that system security can be

systematically guaranteed when each individual change to the

current state does not in itself cause a breach of security,

is the first general mechanism. In other words, the

inductive nature of security is established by the basic

security theorem in that it shows the preservation of

security from one state to the next guarantees total system

security (2:20). The second general mechanism provides a

framework for isolating individual transitions within the

model. This framework depends on a function, referred to as

a rule, for specifying a decision and a next state for every

state and request.

rule
(request, current state)-> (decision, next state)

Figure 3. Rules (2:21)

Each class of requests is analyzed separately in a rule

which is designed to handle that particular class. Further-

more, total system response to the (request, current state)
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.4I 5 pair is defined as the response of the rules written to

.. . handle that specific request.

The final mechanism, which Bell and LaPadula term a

general development, centers on the relation of rule proper-

ties to the system properties. Basically, this development

shows that the entire system specified by a set of rules

satisfies all three security properties provided each rule

does not introduce an exception to one of the properties.

Together, these general mechanisms bound the scope of inves-

tigation to single state transitions.

One aspect of the model, not previously addressed,

concerns the notion of trusted subjects. Trusted subjects

are essentially hardware or software system components which

are able to perform actions not otherwise permitted by the

model's security properties. For instance, a system

security manager must be given access to the access matrix

to properly maintain access control. The software per-

forming these actions on the security manager's behalf are

considered trusted subjects. It seems that when tailoring
* p.

4. .'the model to a specific environment, the model always allows

for trusted subjects.

Grohn Model

The Grohn model represents a mathematical model of a

.1*4" generalized, protected data management system which uses the

Bell and LaPadula model as its starting point (8:6). The

Grohn model was built upon the essential components of the

i Bell and LaPadula model, changing or extending those com-
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ponents where required. This section describes the major
-0

'B , deviations from the Bell and LaPadula model and then

demonstrates the consistency of the Grohn model with the

relational approach to data management.

One of the primary differences between the two models

concerns the set of access modes or attributes. Grohn

states that the execute access is to be considered as a read

(observation) access because the execute attribute is

subject to the simple protection property, the tranquility

principle, and the discretionary control principle.

Similarly, the write access, described in the previous

model, was shown to be a combination of an observation and a

'S modification access. The observation access is defined to

be the extraction or utilization of data from an object

while the modification access involves modifying the object

without any observation of it.

An important property for both of these models, although

not explicitly mentioned in the earlier Mitre Corporation

study, is the tranquility property. Essentially, this

property states that the security levels of active objects

will not change during normal operation. This property

prevents both the over classification and the under classi-

fication of data. Furthermore, the tranquility property

ensures that the clearance matching and the formal need-to-

'* know requirements are observed.

The Grohn model introduces an additional property in

order to maintain adequate controls over modification
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- access, mechanisms determined to be deficient in the Bell

- " and LaPadula model. This new property, the integrity

property, requires that the initial "soundness" of a system

be maintained throughout its activities. Similar to the *-

property, which was discussed as part of the Bell and

LaPadula model, the integrity property requires that the

integrity level of an observed object dominates that of a

modified object, since otherwise, data subsequently modified

with high level integrity may contain data of lower inte-

grity. The requirement for direct and indirect modification

control mandates that the integrity mechanisms be defined

similarly to the aforementioned security mechanisms.

In order to simplify the procedures responsible for

checking authorizations for every data access, the security

and integrity mechanisms are combined, resulting in proper-

ties invoking a minimum of entities. To overcome the

complexities such a combination entails, the properties are

redefined in terms of the current levels of the subjects.

4 As a result of these combinations, the complete set of

mechanisms which cause data access in a system to comform to

an access authorization policy are referred to as protection

properties (8:26). All four previously defined properties,

simple security, *-, tranquility, and discretionary, are

similarly defined for the protection mechanisms. For

instance, the *-property states that a subject may modify an

object only if the protection level of the object dominates

the current protection level of the subject.
&4



In the Bell and LaPadula model, the basic access control

* mechanisms relied heavily on the directory system's hierar-

chical structure. In the this new model, the directory will

serve the same purpose, yet accessing an object only

involves one directory. Unlike the hierarchical structure,

the new directory system permits searching for all dominated

objects, a facility which is important for a general data

management system (8:23). As a result of the elimination of

the hierarchical directory structure, naming uniqueness

problems arise because the Bell and LaPadula model used the

path of the object to serve as a unique identifier. To

overcome this problem and avoid violations of the *-

property, the Grohn model includes the object's protection

level as part of its identifier. Thus, similarly named

objects but with different protection levels may coexist in

the same directory. Additionally, an indication of the

creating subject may also form part of an object's

identifier, which would allow some validation of deletion

operations to be performed. Although the directory system

is transparent to the user, the modeling of its components

*ensures adequate consideration of this invaluable mechanism.

The final characteristic which distinguishes this model

from the Bell and LaPadula's model concerns the nature of

the object being dealt with in a data management system. In

order to provide a database which is self descriptive and

system independent, it is useful to distinguish the descrip-

tive and value characteristics of the object. To make this
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distinction, a three-tuple of the form (M,D,V) is used to

. ,represent every object. The M component depicts the column

of the access matrix particular to the object and will

contain all the accesses authorized for this object. The D

component represents the descriptive aspect while the V

represents the value aspect. Together, these three

components provide a convenient way in which all active

system objects, as well as the object's current status, are

modelled.

The Grohn model, as just described, uses the relational

approach to data management to demonstrate the consistency

of the model for a number of reasons. Perhaps one of the

most important reasons is the high degree of data indepen-

dence provided by this particular approach. Furthermore, an

equally important consideration is the simplistic and

consistent approach used by the relational model. In the

next few paragraphs, several data management mechanisms are

depicted through the Grohn model. However, no introduction

to the relational approach is presented as the reader is

assumed to knowledgeable in this area.

An important issue regarding the consistency between the

- model and the relational approach to data management

concerns the decision on how to translate a relational

database into a set of protection levels. The alternative

mapping options for choosing a data structure ranges between

a data element, the most elemental object, up to the entire

j .database itself. As a compromise between the simplest and
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most the complex structures, this model chose the relation

as its basic structure to which to assign protection levels.

The justification given for this decision involved the fact
that no restrictions on either tuple-oriented or domain-

oriented activities occurs. Furthermore, the choice appears

consistent with the notion of relations as units of data,

since the relation will become a table of data classified at

a single level. However, there are problems with this

scheme such as the potential for data item overclassifica-

"V tion and inconsistencies caused when low-level relations are

deleted in spite of references made to them by high-level

relations. In spite of the problems, the Sharp Corporation

report states that using the relation as the model's basic
object will not cause unauthorized disclosure (8:60).

The directory system, as described above, manages the

unique identification of relations in terms of the

relation's name and protection level. Besides a relation's

name and protection level, the creating subject's identifi-

cation and the relation's type (primary or derived) provide

unique identification characteristics. Furthermore, each

relation has an associated access matrix and a set of

descriptor tuples for each domain. The domain descriptor

tuples include such information as the domain's name,

maximum length, and data type. Each relation also maintains

a special tuple which contains status and size information.

The allowable requests in the system include directory,

'T-h access matrix, descriptor or value, observations and modifi-
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cations. In response to these requests, a number of

different operations are performed such as create, observe,

and delete. The complete set of operations implement the

union, intersection, projection, selection, and join

operators common to the relational approach to data

management.

The final point regarding the consistency of the Grohn

model to the relational approach to data management concerns

multilevel activities and the protection level which should

be assigned to views, which are derived relations composed

of potentially different protection levels. Since the modi-

fication of a view only changes the view's definition and

not any data, the Grohn model considers the view as an

observation mechanism. Thus, the simple protection property

becomes the criterion against which to make the protection

level decision. Therefore, the protection level of the view

must dominate all the protection levels of the base

relations from which it is derived.

The Grohn model, as well as the Bell and LaPadula model,

certainly provides for a rigorous description of a secure

computer environment. However, how can one be absolutely

sure that the model will actually provide the intended level

of security? The answer lies within a number of recently

developed techniques aimed at producing correct and reliable

software.
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Verifying Security

' ,"The protection of sensitive information is a difficult

task, particularly when the data is maintained within a

computer. Since one of the primary functions of a compu-

ter's operating system is to control and provide access to

this sensitive information, the operating system often has

the responsibility of enforcing the security policy. Thus,

Aoperating system security is the study of how to design

software systems that successfully protect classified infor-

mation and how to verify that a proposed design and its

implementation actually provide the required protection.

The requisite mechanisms for proving the consistency in the

" development process include specification and verification

systems which explicitly support a hierarchical development

of specifications. The hierarchical approach provides for

the system's verification to be carried out at the different

stages of development, from the abstract representation to

the specific implementation of the system. In a typical

system development, the primary representations included are

the security model, the formal specification, and the imple-

mentation. Design verification shows the consistency

between the formal specification and the security model

while program verification shows the consistency between the

formal specification and the implemented program (4:282).

To aid in the production of reliable software, automated

specification and verification environments have been

developed. These tools provide the methodology by which the
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aforementioned security properties are proven. The

verification environments include the following components:

specification language processor, verification condition

generator, and theorem prover. Typically, each environment

has its own unique specification language, which is derived

from the language of mathematics, logic, and programming

(4:280). The specification language allows for the system
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designers to state formally the functions provided by a

., given system of programs. The specification processor uses

the formal specification as its input and generates logical

expressions expressing security and consistency.

The verification condition generator is similar to a

specification language processor in that it also produces as

its output a set of formulas. However, the verification

condition generator uses as its input a computer program and

some assertions about that program. These assertions are

inserted into the program at various points, indicating what

program variable values are supposed to be at that parti-

cular point. The verification condition generator creates a

.- verification condition for two successive assertions in the

program, stating that the second assertion will be true if

the first assertion was true and the code between the asser-

tions was executed. A program is partially correct if all

the verification conditions can be proven. However, total

program correctness requires that the program cannot be

caught in an infinite loop (4:281).

As the final component in the specification and verifi-

cation environment, the theorem prover uses the logical

expressions and formulas generated by the other two

components as input. In one of the contemporary systems,

Hierarchy Development Methodology (HDM) developed by the

Stanford Research Institute, the theorem prover also uses as

input any axioms or lemmas which might be useful to assist

the proof. The final output of HDM's theorem prover is a
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detailed English-like description of the proof process. The

systems available today vary considerably in the degree of

user interactiveness with the theorem prover. With the HDM,

the user is totally out of the proof process. If the prover

fails, no attempt at backtracking is made. The designer may

input additional suggestions to the system to assist in the

proving process before it is started over, obviously a time

consuming operation. Other systems permit the user to

interact with the theorem prover to assist in the more

complex proofs.

In order to provide a better understanding of the

specification and verification environment, an analysis of

the previously mentioned Hierarchical Development Method is

presented. The purpose of HDM is to produce highly reliable

and verifiable software. In order to achieve this objec-

Ptive, the Stanford Research Institute has broken the system

development process into several steps (see Figure 5). The

entire development process is divided into two major stages

consisting of the design specification, which is shown on

the left side of Figure 5, and the implementation stage,

which is shown on the right side. Data structure

refinement, which maps data structures from higher to lower

levels, is expressed in the mappings between the specifica-

tion. Moreover, the algorithmic refinement is expressed

within the implementation stage. Both the data structure

and the algorithmic refinements express relationships which

must be consistent between successive levels of the
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development process. Once the system's requirements have

been described in terms of a model and a top level

specification (TLS), the HDM uses a software tool called the

multilevel security formula generator, along with the Boyer-

Moore Theorem Prover, to perform an information flow

analysis and prove correspondence between the multilevel

security model and the TLS (4:286). The TLS should be the

most complete description of the systems external behavior.

To help achieve this level of detail, the TLS is written in

SPECIAL, the specification and assertion language. The

intermediate level specifications describe "abstract

machines" where each successively lower level contains more

primitive functions of software and hardware. Between

adjacent levels of specifications, mappings written in

SPECIAL define how data structures are translated from a

higher level into the lower level representations. However,

implementation is necessary before lower level operations

can be shown to provide the primitives to carry out the

upper level requirements.

The second stage of the HDM, implementation, involves

writing source code in some high-order language for which

there is a compiler available for the target machine. In

order to accomplish program verification, a verification

condition generator (VCG) must be available for the chosen

programming language. In the HDM, the implementation is

written in Modula and is then translated into the Common

Internal Form language used by the VCG. As with the multi-
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level security formula generator, the Boyer-Moore Theorem

Prover is used to prove the verification conditions

generated by the VCG. The implementation consists of

several procedures defining how each of the operations

performed in a given "abstract machine" are implemented in

terms of the data structures and operations in the next

lower level "abstract machine". Using these two specifica-

tion levels and the mapping between them, the Common

Internal Form representation of these procedures is verified

correct.

The specification and verification methodologies seem

quite complex and require considerable effort and training

to completely understand and properly use them. However,

these specialized systems truly enhance the secure computer

system designer's capabilities to prove the correctness and

reliability of "trusted" software.

A final topic, not previously addressed in this section,

concerns the notion of secure computer system evaluation and

certification. In this regard, the Department of Defense's

Computer Security Center issued criteria against which to

evaluate the specification and verification procedures used

to develop trusted computer systems. The criteria, as

established by the Computer Security Center, serves three

purposes. First, the criteria provide a standard with which

to evaluate the trustworthiness of a computer system for the

processing of sensitive information. Additionally, the

criteria provide guidance to manufacturers as to what
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security features should be built into future systems to

o .- , satisfy the trust requirements for classified applications.

The final reason for establishing these criteria is to

provide a basis for specifying security requirements in

acquisition specifications (7:2).

The criteria establish four divisions into which a

particular computer system may be classified. The first

division, D, with only one class, provides minimal protec-

tion. Division C, with the two classes of discretionary

protection and controlled access, provides need-to-know

protection and through the inclusion of audit capabilities,

provides for a subject's accountability for the actions they

initiate. The third division, B, contains the three classes

of labeled security, structured domains, and security

domains. This division uses the notion of a trusted

computer base (TCB), which is defined as the totality of

protection mechanisms within a computer system responsible

for enforcing a security policy (7:114). Computer systems

within division B must ise security labels with all major

data structures. The system designer must provide the

evaluator not only the formal security model on which the

TCB is based but also the TCB specification. The last

requirement for this division is that evidence inust be

demonstrated that the reference monitor concept has been

implemented. Finally, division A, which at the present time

has only the verified design class, is characterized by the

use of formal security verification methods. Extensive
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documentation is required for this division to demonstrate

that the TCB meets the security requirements in all phases

of design, development, and implementation. As envisioned

by the Computer Security Center, the use of formal verifica-

tion techniques will be extended to the source level as

better techniques become available. Consideration will also

be given to the correctness of the tools, such as compilers

and assemblers, used in the TCB development.

Computer evaluation and certification, as described

above, is an extremely challenging task which is taken very

seriously by the Department of Defense. Each successive

division provides tougher and tougher requirements to meet

in order to "prove" the trustworthiness of a perspective

system. As the tools for demonstrating the system's

security mechanisms are perfected, one would expect not only

tougher criteria, but also a more thorough attempt at demon-

strating the security of the entire development process.

Conclusions

The Department of Defense seems to be confident that the

design of secure computer systems using the kernelized

approach is the best short-term solution to this complex

problem. This opinion is confirmed by many notable computer

scientists, including Stanley Ames, when he states that "the

security kernel design approach is the most promising

methodology currently available that can provide both the

internal security and the functional capabilities that many

of today's computer systems need (1:22)." Based on both the
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number of currently existing systems and those in the

'"development process which use the kernel approach, this

author would agree with their optimism. However, there are

a number of unresolved problems.

One of the most significant problems associated with the

kernel design is the confinement problem, which is described

as the prevention of a program from leaking sensitive infor-

mation. The kernelized approach does not address "indirect"

information leakage channels, which work through the

operating system, by means of response codes and other

intended paths (4:284). However, a procedure to detect

"indirect" information flow was implemented at the Stanford

Research Institute (4:285). A second type of security

model, proposed by Denning, specifically addresses the

confinement problem and can be certified capable of

verifying partial or total confinement of a procedure

(6:511).

A second important problem concerns the current state of

the specification and verification methodologies. Most of
.1

these systems are considered experimental and should not be

regarded as a final product (4:280). Again, Mr. Ames even

supports this view in his article when he states that

- solutions for the program correctness problem are still a

long way off, particularly for large programs such as an

operating system. However, the Ames's article also stated

that "even if there was no intent to complete a full mathe-

matical proof, we still have the rigorous review,
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documentation, and kernel development guidelines that most

verification methodologies enforce. These alone will ensure

a more secure and reliable system" (1:21). This opinion on

Mr. Ames' part raises another, perhaps unanswerable,

question, "How secure is secure?"

A final comment of the kernelized approach relates the

desired performance objectives with the results observed to

date. Naturally, one of the primary objectives of the

kernel approach was for the enhanced operating system to

minimally degrade system performance relative to its non-

kernelized counterpart. Unfortunately, performance has been

a serious problem for early attempts at kernelized secure

operating systems. In fact, some of these early systems

have provided only 10 to 25 percent the performance of

similarly configured nonsecure systems. Recent implementa-

tions have been more successful at producing systems with

"adequate" performance (11:87). Again, the question could

be asked, "How minimal an impact on system performance is

truly minimal?"

The bottom line to this entire discussion is that

providing a verifiable, secure operating system is a complex

problem which is not completely resolvable with the tools

which are available today. The use of the kernelized

approach is, at best, a partial solution to one of the most

challenging problems in the field of computer science.
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IV. Network Design

Introduction

This chapter examines the alternative design strategies

" ~for the development of the secure local area network

described in Chapter II. Each approach is analyzed with

respect to the specific security mechanisms it requires for

'" implementation, particularly those mechanisms which are

attainable using currently available technology.

Additionally, four different local area network topologies

are investigated with particular emphasis on their security

related mechanisms. However, before addressing the specific

design alternatives, requisite background material is

presented.

Background

The two major issues which must be addressed when

considering various secure local area network (LAN)

architectures are user/subscriber separation and data

protection. User separation refers to the ability of the

LAN to provide segregated subscriber communities. In other

words, some network component must ensure that a user

cleared for level zero information receives only that

information classified up to level zero. The enforcement of

such a user/subscriber separation policy provides the

necessary protection against the accidental disclosure of

sensitive information to the authorized but uncleared LAN

user. The second major issue, data protection, refers to
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the ability of the network to provide protection against

" -malicious attempts to access or modify network resources.

Currently, there are two approaches to providing such

protection, protected wireline distribution systems (PWDS)

and data encryption. A PWDS is a telecommunications system

to which physical safeguards have been applied to permit

safe electrical transmission of unencrypted data while

encryption renders all communications unintelligible except

to the intended recipients of that data (16:B-3). However,

recognizing the importance of both of these issues, the

efforts of this thesis are concentrated on user separation

due to the nature of the specified operating environment.

Since a comprehensive architecture must be defined in

terms of a specific installation, an extensive examination

of the vulnerabilities peculiar to that site provide the LAN

• -- designer an awareness of the tradeoffs to be considered

during the development process. Vulnerability, in this

context, is defined to be a design or implementation flaw

which may cause any component of a LAN to operate in a

*, . manner that differs from its specification. This potential

flaw is realized through either the intentional or

unintentional action of some LAN process or subscriber.

Moreover, such conditions exist within all systems,

regardless of architecture, access method, or physical

protections. Various design methodologies afford differing

levels of protection which are equal to the design

>: . characteristics minus any inefficiencies in the
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implementation of the security mechanisms (16:2-1).

Generally, the actions which exploit these apparently

inherent LAN weaknesses are classified under one or more of

the following categories: disclosure, modification, and

denial of service. Perhaps the most important category of

the three, as far as this study is concerned, is disclosure.

As defined in a recent System Development Corporation

report, disclosure is "the resultant product of events in

which any person, group, or entity views, records, or gains

unauthorized access to system resources (16:2-2)."

Disclosure is accomplished either through accidental or

malicious means. For example, suppose a user was logged on

to computer B{MI and requested level two information from

computer A[LI. However, due to some unique combination of

events, the user is actually presented with level zero

information from computer C{H}, an unauthorized yet

accidental disclosure.

The second category of LAN weaknesses is the

unauthorized modification of system resources. For this

study, as was mentioned in an earlier chapter, the

environment is assumed to be free of both accidental and

malicious instances of this LAN weakness. Denial of service

is the final LAN weakness category. Although this category

generally includes any act which precludes system

users/subscribers from authorized resource utilization, it

also encompasses impairment of LAN resources. A question

which now must be considered during the design process is,
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does a LAN security component which noticeably impairs

system response time constitute a denial of service weakness

in and of itself? This author believes any unreasonable

delays do constitute such a weakness, although a very subtle

weakness at best. Furthermore, it is hoped that an

implementation of the proposed design will not impose any of

the weaknesses just discussed; although, disclosure is the

specific weakness this study attempts to eliminate.

The network security problem, like all security

problems, exists because authorized or unauthorized network

users could potentially "misuse" LAN resources if given an

opportunity. The nature of these "hostile elements" and the

resources to be protected, leads to the development of an

appropriate security policy. A security policy, which is

the formal expression of a set of strategies for countering

all recognized threats, when properly implemented, leads to

a prescribed level of protection specific to each LAN being

designed. As was pointed out earlier, this protection is

never absolute and in most cases doesn't extend beyond some

predefined set of threats. However, the security policy and

requirements issues related to how these threats are to be

countered, establish the high-level constraints for this

V study. Furthermore, these policy issues define what

functions the security mechanisms provide. Subsequent

sections of this chapter discuss specific security

mechanisms; however, before proceeding, general LAN

protection issues are discussed.
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The primary protection issues when developing a LAN

include identification/authentication, access request/

authorization, access control, security monitoring, and

security assurance (12:11-38). The first of these issues,

identification/authentication, involves procedures for

determining and verifying the identity of the person or

device requesting access to the network resources.

Generally, the identification of the requestor is done

through an administratively assigned login identifier such

as the initial of the user's first name prefixed to the

letters of his last name, up to some maximum length. The

authentication issue involves the verification of the

requestor's identifier, typically through the use some user

defined password. Resolution of the following authentica-

tion issues must be accomplished before the LAN design is

completed: means of authentication of persons and devices,

process authentication, and distributed versus centralized

authentication verification. Access request/authorization

issues concern the user/subscriber capabilities to read

from, write to, or execute on a specific LAN resource once

his identification has been determined and verified. As was

discussed in Chapter III, the information which defines the

requestor's rights to protected system resources is

maintained in a "capabilities" list. This list consists of

a user's profiles which identify the objects this particular

user has access to and the explicit actions the user may

t-.n take in regards to these objects. A number of different
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access request/authorization techniques are described in the

literature, with the most common technique being the use of

a reference monitor. Briefly, the reference monitor is a

software mechanism which monitors access requests to system

resources by requiring its invocation every time an access

attempt is made. The software mechanisms which constitute

the reference monitor are considered trusted components as

discussed in Chapter III and are the arbitrators in all

access decisions.

The third protection issue involves access control as

related to the establishment of additional connections

within the network and the necessary security mechanisms to

detect unauthorized connection attempts. The designs of

network security mechanisms gain a substantial part of their

strength by their ability to control the creation of

communication paths between the requestor and the resource.

The establishment of network connections in a controlled

manner concerns the creation of a logical or physical path

through the network, the use of appropriate control

disciplines including encryption mechanisms, as well as the

flow of identification and authorization data between

requesting and resource computers. The key is to present

"multiple barriers through which a potential penetrator must

pass (12:25)." Security monitoring, the fourth issue

concerning network protection, provides the wherewithal to

detect and resolve security problems should one of the other

mechanisms fail to detect improper network use. Basically,
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security monitoring is the provision of an audit trail which

records all LAN activities. Again, the network designers

must consider the tradeoffs between local and global

security monitoring. One global approach has been the use

of a network security center which supports the needs of

correlating and interpreting audit information. The final

network protection issue involves security assurance.

Fundamentally, assurance issues concern both hardware and

software reliability and the degree of confidence LAN

. designers can have in these network components. Even though

.r. this issue was discussed in great length in Chapter III, let

it be said again that the software assurance issues are the

critical part of this study.

This background material has provided a brief look at

the many issues to be addressed in the design of any secure

local area network. All of these issues are considered

before a choice is made of a particular design but only a

few of them are actually documented in the next section

dealing with the specific LAN architecture.

Secure LAN Architectures

Over the past few years, many secure local area network

architectures have been proposed by both government and

industry. These designs, being by necessity very general in

nature, provide a good foundation upon which to tailor the

specific network being developed in this study. The

architectures studied in this section include a multiple

. channel network, trusted interface units, a security
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controller, and a distributed secure system.

Multiple Channel Network. A multiple channel LAN

provides for user separation by dividing up the frequency

spectrum among the various logical channels. This frequency

division multiplexing provides a frequency band dedicated to

a specific data classification level for the exclusive use

by each particular user/subscriber group. This design,

using a single coaxial cable, is incorporated into a

broadband network using either fixed frequency or frequency

agile modems (16:2-12). Figure 6 depicts the various

computers as described in Chapter II with both the hosts and

the cable being installed in physically secure locations.

As depicted in this figure, each host is connected to the

LAN subnet through a bus interface unit (BIU). Each BIU is

responsible for the appropriate modulation/demodulation

activities. I

The basic model for this design uses a fixed frequency

modem with each different data classification level using a

different fixed frequency. However, for the application

being considered in this study, this is inappropriate

because of the inability of the hosts to communicate with

each other due to the potentially different data

classification levels each would maintain. However, a

variation of this basic model overcomes this difficiency.

The extended multiple channel network architecture includes

frequency agile modems; thereby providing the capability

to access a number of logical channels. Using this
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Figure 6. Multiple Channel Network

variation would allow computer C{H} to communicate with both

computers A{LI and B{M} while computer B would be able to

communicate with computer A{LI. In other words, computer A

would have a fixed frequency modem while computers BtM} and

C{H} would have frequency agile modems. Computer BtMI's

modem would be able to access computer A's channel in a non-

simultaneous mode using either local or remote switching

control. Similarly for computer C{H} except it would also

be able to access computer B{MI's logical channel. Support

- of computers B{M} and C[M}, which require access to multiple

channels, is provided through the use of a bridge which

links a single host channel to a number of segregated

- .'-*" channels, thereby providing for simultaneous monitoring of
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all access channels accessible by each respective host

(16:2-16). In the case of a host which is multiple level

secure, each port is dedicated to a single security level

(channel) and a separate modem will be supporting that port.

The question now arises as to which component of the

architecture provides the requisite security mechanisms.

Besides the logical separation of channels provided by

frequency division multiplexing, the entire burden is the

responsibility of each host's operating system. As reported

in the System Development Corporation study, each host is

"assumed to provide protection against unauthorized

disclosuru of restricted information (16:2-14)."

Trusted Interface Units. In this architecture, special

interface units enforce the data security policy. These

special units, referred to as "trusted" interface units

(TIUs), perform security label checking on both data placed

upon and received from the LAN subnet. In those

environments where tapping into the subnet is a potential

problem, physical protection of the subnet is required to

ensure the TIUs only provide contact between authorized

network subscribers. As was described in Chapter III, a

"trusted" interface unit implies a device with sufficient

hardware and software integrity to allow for its

simultaneous processing of multiple levels of sensitive

k. information. Generally, a trusted interface unit allows an

untrusted subscriber/process to access the LAN. To enforce

the policy that only equal security level processes
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communicate, the TIU checks the data received from the LAN

" < ' - to confirm the equality of the received data's security

level and the security level of the TIU's associated host.

The TIU also ensures that all data placed on the LAN medium

by the untrusted process is correctly labeled. In those

cases where classified processes in different secure

networks want to communicate, bridges connecting the two

networks must enforce similar security policies.

As the means of gaining access to the LAN, the TIU is

responsible for at least the functions performed by the

physical and data link layers of the International Standards

Organization's Reference Model of Open Interconnection

-. (16:2-27). In other words, the TIU is concerned with

< transmitting raw bits over the subnet medium and

transforming those transmission into a line which appears

error free to the higher layers in the ISO model. The TIU

is also responsible for the processing of security labels

- - which are consistent with attached, untrusted processes as

was described above. Figure 7 illustrates the logical

construction of the multifunction TIU.

Besides the assurances that the physical channel performs

correctly and that the data link layer never modifies the

security labels, the TIU must, most importantly, be trusted

to enforce the security policy of internode communication.

For example, if the TIU handles a single security level,

this security level can be permanently integrated into the
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, Figure 7. Trusted Interface Unit Logical Construction

TIU's hardware or firmware. However, if the TIU handles

multiple security levels, each time there is a change of

classification, all sensitive residue must be eliminated

from the device before communication is allowed at the new

security level. Existing security policy dictates whether

this sanitization is user controlled or performed by an

access controller.

As was mentioned briefly above, bridges are required for
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internet communication. For the purposes of this study, a

bridge would be used to connect the LAN to the external

communications network (see Chapter II for a description of

this external network). Functionally, the bridge resembles

back-to-back TIUs; that is, one TIU on the LAN side of the

bridge to ensure properly labeled messages are sent to and

received from the external network and a TIU on the external

network side of the bridge to perform similar functions as

those of its counterpart on the LAN. The construction of

the bridge in such a manner maintains each network's

internal integrity more so than if the bridge's functions

were performed by an individual TIU. Additionally, the

bridge may be functionally more complex due to the fact that

the internet routing algorithm may differ from the routing

algorithm used internally to the LAN. Similar to the TIU,

the bridge must be trusted to properly perform its security

filtering and to manage the integrity of multiple data

streams.

Security Controller. The design for this architecture

requires the three host computers (A, B, and C) to be under

the control of a security controller (see Figure 8). The

security controller (SC) is a host-level computer which

provides the majority of the network security mechanisms.

The specific functions performed by the SC, an independent

third party mechanism, include validation of users/sub-

scribers, providing authorization for access to LAN

-* resources, providing secure communications paths, and
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Figure 8. Security Controller Architecture
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security monitoring (12:42).

* . The security controller performs the necessary authenti-

cation and authorization functions which were performed by

the individual hosts in the previous two architectures.

Thus, the SC must check the identification for all

users/subscribers of the LAN. Obviously, due to this large

responsibility, identification and authentication mechanisms

would be developed as a separate and self-contained module

within the SC. Once the SC has authenticated the user's

validity, the SC must send this information to the LAN node,

referred to as the serving site, maintaining the requested

information. However, this necessitates the SC being able

to identify itself to the server site. The two approaches

to this problem are first, by providing each network node a

unique password only known by that specific site and the SC,

and secondly, by the use of an implicit scheme which takes

advantage of the security controller's responsibility for

remotely keying each of the cryptographic devices depicted

in Figure 8. (More will be said about the details of this

second scheme later in this section.)

Once the user/subscriber has been identified, the SC

must determine if the user's request to LAN resources is

authorized. As was discussed earlier in this chapter, this

is accomplished through a table look-up. Questions such as

what information should be in the table, table organization,

-' and table updates are not addressed in this study. However,

the answers to these questions concern not only how
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efficient the SC performs its functions but also how complex

* its software resources become which in turn impacts the

software verification actions required to assure the LAN

designer that the SC can properly perform these functions.

One of the most important functions performed by the SC

is in establishing the connection between the requesting and

server sites. Since the SC performs a reference monitor

function necessitating that the SC must always be invoked,

the SC would set up a temporary set of working keys to

protect any subsequent requestor-to-SC communication. The

keys would be used in the encryption devices located

logically between the SC and the subnet and between the

requestor and the subnet. The next activity performed by

the SC, once the request has been authenticated and

authorized, is to set up a protected working connection

between the requestor and the serving site. This is

accomplished by providing working keys to the cryptographic

devices at both requestor and server nodes via special

control messages. Again, as there are several techniques

for the communication of these special messages, the

*specific technique chosen is not addressed in this study.

Any number of anomalies could occur during this connection

process; therefore, all actions throughout the network are

logged by the security monitoring software within the SC.

An equally important function performed by the SC is the

protection of the working connection from misuse. Two

potential problems originating from within either the
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requesting or serving hosts are attempts to mul-iplex multi-

.--. user data over a single user connection or improper labeling

of sensitive information. Some controls over these

accidental misusages are provided by the network since

checks can be made on the validity of addressing and

classification fields. However, the primary responsibility

for the resolution of these problems remains within each

host. In other words, each host's operating system, as was

the case in the two previous architectures, must be

certified that it can provide the necessary assurances that

these problems cannot occur. Once the communication between

the requestor and server sites is completed, the SC is

notified and the connection is broken.

The cryptographic devices play an important role in this

architecture. In addition to the simple point-to-point

protection provided by these devices, the cryptographic

units provide protection against unauthorized connections

between network nodes. Furthermore, these devices must be

capable of being remotely keyed by only the security

controller, as well as the provision for protection against

the piggy backing of unauthorized users once a requestor-to-

server dialogue has been completed. In order to provide

these protection mechanisms, the cryptographic devices

require a certain amount of logic. The control logic built

J into these devices depends on a number of factors including

whether the cryptographic devices are multiplexed or

.' -* .dedicated and whether there is is a master-to-slave
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relationship between cryptographic devices (12:104). These

intelligent cryptographic devices (ICDs), as they are

referred to in the National Bureau of Standards report,

forward authentication and authorization information to the

SC. In those instances where hosts dynamically change their

security level, the ICD must be provided with two or more

identifiers and authenticators so that it can serve in

multiple roles. Obviously, this adds to the complexity of

the device. Additional complexities are due to the required

communications when a requestor-to-server dialogue

terminates. Once the ICD is notified by its associated host

that the communication has been terminated, the ICD must

notify the SC so it can complete its audit record. This

notification is accomplished by requiring the ICD to first

establish an enciphered connection similar to the request

initialization message described earlier. Then a

preformated message would be sent indicating the termination

of the dialog. After the notification to the SC, the ICD

must be reset to receive its new private key.

The gateway to the external network in this architecture

is handled in a very straightforward manner. The gateway is

considered as an intermediary host which happens to reside

in two networks. Typically, one of these networks is a

local area network while the other is the global network of

gateways that connects various LANs together. For the

purposes of this study, the gateway would directly connect

the LAN to the external communications network without the
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benefit of the global network.

.'.." Distributed Secure System. The distributed secure

system architecture (DSS) approaches the network security

4 problem as a combination of the security mechanisms proposed

in the three previously discussed architectures (13:55-67).

However, the primary distinction of the DSS approach from

the other architectures is that each host within the LAN is

untrustworthy. Therefore, the security of the overall LAN

must not depend on assumptions concerning the hosts'

behavior. An important implication of the untrustworthiness

of each host is that the unit of protection concerning host

behavior must be the host itself. In other words, each host

is dedicated to a single security partition. Before

introducing the specific architecture, a general approach to

the LAN security problem, as relevant to the DSS, is

.presented.

The DSS approach to the design of a secure local area

network involves four separation techniques. The first of

these techniques, physical separation, is achieved by

allocating physically different resources to each security

partition. To achieve security in a distributed environment

such as the one described for this study, reference monitors

must provide control of communications between the LAN

components. Physical separation is also provided between

each host and the security processors which host the

reference monitors. Temporal separation, the second

separation technique, allows the untrusted hosts to be used
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for tasks in different security partitions by separating

these tasks in time. The system state is reinitialized or

3anitized between tasks belonging to different partitions.

In order for each of the security processors to support a

number of different separation and reference monitor

functions, a separation kernel (13:57) is used to provide a

logical separation of these functions. Simple security

kernels whose only function is to provide separation can be

relatively small and uncomplicated with verification simpler

and potentially more complete than for general purpose

security kernels (14:144-155). The final separation

*, technique, cryptographic separation, involves encryption and

uses checksum techniques to separate different uses of the

shared communications and storage media. These four

separation techniques, physical, logical, temporal, and

cryptographical, provide the basis for the distributed

secure system. The primary aspect of this approach is the

enforcement of the prescribed security policy on the flow of

communications between components of the LAN.

As was mentioned above, the security processor for each

host is physically separated from the hosts themselves.

These processors, referred to as trustworthy network

interface units (TNIUs), mediate all communication between

its associated host and the LAN subnet (see Figure 9). The

I basic model for the DSS architecture places the restriction

on the LAN such that the TNIUs could only communicate with

similarly classified TNIUs. However, as will be described
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HOST A <=== TNIU ===> LOCAL <=== TNIU ==> HOST C

NETWORK

* II
TNIU

4II

HOST B

* Figure 9. Distributed Secure System Incomplete

later, a variation of this basic model provides true

multilevel security. To provide legitimate host-to-host

communication channels and to protect the LAN from being

• 'subverted or tapped, even though this is not a problem in
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the environment described for this study, the TNIUs encrypt

S'. "-' all communications sent over the LAN. Since hosts are

untrustworthy and may attempt to accidentally thwart the

cryptographic protection, the encryption must be managed

carefully.

Although encryption enforces separation between

authorized and unauthorized LAN users, it does nothing to

prevent an incorrect delivery because the LAN hardware

accidentally misinterprets message destination fields, which

are in clear text. In order to prevent the accidental

disclosure of sensitive information should such an

occurrence happen, the DSS uses two techniques which

securely separate communication channels belonging to

different security partitions. The first technique uses a

checksum to assure the integrity of each message unit.

Before encrypting each message, the TNIU calculates the

message's checksum and then encrypts the checksum and the

message as a single unit. The TNIU receiving the message

must first decrypt the message and recompute its checksum.

Only after the two checksums have matched will the TNIU

accept the message for further processing. Thus the message

integrity is guaranteed which implies the TNIU can trust the

security partition identifier associated with each message

the TNIU receives and reject those bearing a noncompatible

identifier. The second technique to prevent accidental

disclosures uses a different encryption key for each

* [partition. Each TNIU is provided an encryption key unique
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to its security partition which prevents any dissimilar

partitioned TNIUs from communicating with one another. If a

TNIU accidentally receives an unauthorized message, the

different encryption keys will render the message

unintelligible. Together, the checksum along with the

differing encryption keys, prevent an accidental disclosure

from ever occuring as a result of a misinterpreted message

destination field. One further enhancement of the TNIU

includes the provision for sequence numbers and timestamps

to prevent spoofing. However, as the nature of this study's

environment is nonmalicious, the last two enhancements are

not used, thereby simplifying the TNIUs software.

Due to the interposition of the TNIU between the host

and the LAN subnet, assigning functions to the layers in the

protocol hierarchy is quite complex, especially when

encryption is performed. For this reason, the TNIUs perform

all protocol functions except those associated with the

highest layer (13:61), thus relieving the hosts of the low-

level network load and improving overall host performance.

*The top level protocol provides a remote procedure call

(RPC) service which involves a reliable datagram facility

serving as the host-TNIU interface. Essentially, all

requests for services result in procedure calls. If the

required object is remote, the top layer protocol intercepts

the procedure call and substitutes a remote procedure call

in its place. Once the remote call has been substituted,

S-<-' the host sends the procedure call to the TNIU. Upon receipt

7
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of the RPC, the TNIU must validate the call because only

specific RPC's are allowed in the LAN being developed in

this study. For example, all database queries are valid,

perhaps not fulfilled for security reasons, but at least the

request is forwarded by the TNIU. Requests to access other

remote resources, excluding the LAN activitites logs and the

external communications logs, are disallowed by the TNIU.

In other words, only predefined requests for remote

resources are accepted by the TNIU. This limitation is

imposed because in those instances where similarly

partitioned hosts are communicating with one another, 'the

access control lists are maintained by the host's untrusted

operating system. Therefore, in order to prevent an
5,

unauthorized disclosure because of the absence of a need-to-

know for a particular resource, such remote requests are

prohibited.

In order to simplify the TNIU's software, the datagram

service only provides the facility for the transmission of

data on a "best effort" basis (15:60). This service does

not include either the provision for datagram flow control

or end-to-end acknowledgements because of the assumption

made in regards to the high reliability of the underlying

hardware. If any of the features of the transport layer are

desired, such features must be implemented specifically

using the datagram service. Obviously, such enhancements

improve the efficiency of the datagram service but also

increase the complexity of the required software.
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As was just described, the TNIU performs numerous

functions; however, as argued in Mr. Rushby's article, these

devices are similar to cryptographic front ends already in

use in long-haul networks. The addition of a single chip

implementation of the Data Encryption Standard algorithm

along with a separation kernal including appropriate memory

management chips to the already existing hardware make the

construction and verification of the TNIUs a realistic and

attainable project. Furthermore, since disks are not

required for a TNIU, all software could be maintained in

read-only memories.

Thus far, the DSS design has restricted the flow of

information between similarly partitioned hosts. To provide

for the secure flow of information across partition

boundaries requires a second type of trusted intermediary.

The services provided by this intermediary include

multilevel secure storage and retrieval of files. In the

DSS, the only objects allowed to cross security boundaries

are files; which, for the purposes of this study, would be

no larger than a file since only requests for and responses

to database queries are being passed between the LAN nodes.

The trusted intermediary, referred to as the secure file

store, has the ability to communicate with hosts of all

security partitions. For example, the secure file store

would receive computer C{HI's query on the weather portion

of the database which is maintained by computer A[L]. The

query, which is made through a remote procedure call, a
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mechanism to be described later in this section, is

forwarded to computer ALI, once all the appropriate checks

have been by the secure file store. Computer A'{L}s

response to this query follows the same step, just in

reverse. Subsequent to the receipt of computer A(LI's

response, the secure file store will forward this file to

computer C{H).

In order to make the construction of the secure file

store as simple as possible, it is physically housed in two

separate components. The first component, which is trusted

and is referred to as the secure file manager (SFM), is

responsible for enforcing the security policy; whereas, the

second component, which is untrusted and is referred to as

the isolated file store (IFS), provides the SFM storage

facilities. The SFM is a reference monitor responsible for

monitoring communications which attempt to cross security

partitions. Basically, the SFM is nothing more than an

enhanced TNIU, whose internal structure is slightly more

complex because of the multiple encryption keys required for

the SFM to communicate across security partitions. If

communications with different partitions occurs simulta-

neously, clear text belonging to logically different

channels should be managed by separate virtual machines.

Furthermore, temporal separation must be provided for

different uses of the SFM Date Encryption Standard chip

(13:63).

'--. The specific tasks the SFM must perform are monitoring
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access references and guaranteeing file integrity. To

accomplish these tasks, the SFM is logically decomposed into

a file access reference monitor (FARM) and a file integrity

guarantor (FIG). The FIG performs its tasks through the use

of checksum techniques similar to those used for LAN

messages by TNIUs. Additional FIG responsibilities include

time stamping all files sent to and received from the

* isolated file store. The FIG's tasks, along with those

assumed by the FARM, are not significant complications and

would place only a small additional burden on existing TNIU

construction. As was mentioned previously, the enhanced

TNIU housing the SFM would include a separation kernel in

which the FARM software would be maintained. Therefore, all

SFM functions can be integrated into existing TNIU designs

which would require little additional development and

verification costs over and above what is currently expended

on the unenhanced TNIU.

The IFS, as was mentioned earlier, is an untrusted host-

level machine. In order to maintain the integrity of files

sent to and retrieved from the isolated file store, the

secure file manager calculates a checksum and encrypts the

checksum and the file as a single unit before sending it to

the IFS. The FIG checksum mechanism allows files to be read

from or written to the IFS only in their entirety. As an

additional measure to ensure that the file requested by the

SFM is truly the one it receives, each file is time stamped

*....:- and encrypted along with the checksum and file (13:64). The
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Figure 10. Distributed Secure System Complete
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IFS, in order to be truly isolated from the LAN, has a TNIU

placed between itself and the subnet. Again, the IFS's TNIU

is provided with a special encryption key that is shared

only with the SFM's TNIU.

Perhaps the best way to tie all this information

together is through a simple illustration (see Figure 11).

For example, suppose computer C[H} requires the surface-to-

air missile threats for a particular region. Computer C{H}

would compose a remote procedure call (RPC) and send it to

the SFM. (If the computer maintaining the surface-to-air

missile database was in the same security partition as

computer C[H}, the two computers would communicate directly,

thus avoiding the communication with the SFM altogether.

However, for the purposes of this study, computer C{H} is in

the level zero partition while computer B[M} is in the level

1 partition.) The SFM examines the RPC sent by computer

C(H) to ensure that it is authorized under the existing

security policy. Once the identification and authorization

functions have been performed by the SFM, the SFM reencrypts

the RPC using the key it shares with computer B and then

forwards the RPC to computer B{MI. After executing the

query on its database, computer B(M} sends the results of

the query, after the appropriate processing by both computer

BIM} and its associated TNIU, to the SFM. After further

processing, the SFM forwards the query response to the IFS.

Subsequent to the storage of computer B{MI's response in the

IFS, the SFM reencrypts the file using computer C[H}'s key
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A{LI <==> TNIU_<==>t S..
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1,16 2,15 E 8,11,13 9,12
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IC{H} (I==>j TNIU 1<==> <==> TNIU_ <==> - IFS

1. C composes a RPC requesting SAM data and forwards the
RPC to its TNIU.

2. C's TNIU attaches a level 0 label, checksums and
encrypts the RPC, and forwards it to the SFM.

3. SFM verifies the message's address, decrypts using C's
key, validates the request, attaches a level 1 label,
checksums and reencrypts using B's key, and forwards the
request to B.

4. B's TNIU verifies the message's address, decrypts and

verifies the security label, and forwards it to B.

5. B performs the database operation and forwards the

results to its TNIU via a RPC.

6. B's TNIU, after processing, forwards it to the SFM.

7. Similar to (3) except the SFM forwards the response to
the IFS, using a key unique to the IFS, under the

[ assumption C cannot receive the response immediately.

8. IFS's TNIU verifies address and forwards response to the
IFS.

9. IFS stores response without any processing on the file.

10 - 14. When C{H) becomes available, the SFM requests the
response file from the IFS. Once it has received it,
the SFM validates the file's integrity, attaches a level
0 label, checksums and encrypts the response using C's
key, and forwards the file to C.

15. C's TNIU verifies address, decrypts response, verifies
the security label, and forwards the response to C.

16. C's application resumes flight path planning.

Figure 11. Database Query Data Flow Diagram

81

Ad'



and sends the file to computer C[H}. The question now

arises as to why does computer B{M} send its response to the

SFM instead of directly to computer A{H}. Besides the

obvious reason that computer B[M} does not have the proper

encryption key, such actions would violate the logical

separation of the communications channels. This separation

technique is one of the four upon which this entire design

is based. The response to the query must also be completely

stored in the IFS prior to the SFM forwarding the response

in order not to violate the temporal separation of different

encryption keys required for the encryption chip used in the

SFM's TNIU. During this entire process, both computers B

and C are recording their actions in a local audit trail

log.

The final topic considered for the distributed secure

system architecture is the internetwork bridge. Connecting

the secure LAN to the external communications network is

rather straightforward. The bridge consists of a TNIU

similar to the one used for computers A{L}, B[M}, and C{HI.

All incoming messages and database updates would be sent

directly to the SFM once the message has been properly

encrypted using a key shared only by the gateway's TNIU and

the TNIU associated with the SFM. Once the SFM has properly

stored the message in the IFS, the SFM forwards the message

to the intended host; again, after the appropriate

reencryption had taken place. Messages originating within

the LAN would be handled in a similar manner, simply

82



reversing the process.

In conclusion, this section has introduced four secure

LAN architectures. Each one was presented in a manner which

made no presumptions about the particular local area network

topology being used. The next section of this chapter

presents several topologies and examines the tradeoffs

involved when each of these topologies is implemented iri a

secure environment. Subsequent to this section, a complete

summary of this chapter is accomplished resulting in the

recommendation of a LAN architecture and topology which

provides the required operationally secure environment as

specified by this thesis' sponsor.

LAN Topologies

As the development of local area networks has become

* more commonplace, the number of different LAN topologies has

grown. In order to limit this discussion, the following

four common topologies are analyzed: linear bus, star, ring,

and radio broadcast (see Figure 12..

Linear Bus. The linear bus topology is the most widely

employed in LANs. Typically, either a baseband or a

broadband bus is utilized in this topology. In either case,

the configuration uses a single coaxial cable or dual cablesp..

which serve as the main trunk of the network. Network

r.-. subscribers are attached to the main trunk either directly

via a smaller cable which extends to the user location or

indirectly via an alternate trunk branching out from the

main trunk. Bus interface units (BIUs) provide access to
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the network and all the BIUs receive the network traffic

simultaneously but ignore those not specifically addressed

to them.

The baseband variation of the linear bus topology is

based on a coaxial cable which has high propagation velocity

and low transmission losses at small distances. The network

size is limited to about 3 kilometers due to insertion loss

where spurs are attached to the main bus. This problem can

be overcome through the use of bridges which link together

multiple baseband networks over a large geographical area.

On the other hand, the broadband bus is based on community

antenna television technology using radio frequency

. transmission. The use of frequency division multiplexing

allows the simultaneous use of multiple carrier frequencies.

A broadband system also provides the ability to connect

nodes to the bus and allows splitting of signals along

multiple lines rather than configuring them to a single

cable backbone as in the baseband system. Both the baseband

and the broadband systems usually control access to the

cable by a contention algorithm incorporating carrier sense

multiple access with collision detection. Although the

brr idband bus provides greater throughput and larger

., geographic distribution, the baseband is much less expensive

for networks with only a few subscribers and requires a much

smaller initial investment. However, the advantages of the

broadband system include both greater flexibility and

expandability. But most importantly from a security point

85A * , A * .



-- -w

of view, the broadband system allows for multiple channels,

with each channel being used for a different security

partition.

Star. The star topology consists of a central switching

processor which provides interconnection for all the LAN

components. Each node is connected to a central point where

tandem switching is carried out to interconnect outlying

nodes by trunk groups. Perhaps the greatest disadvantage of

this topology is its vulnerability should the central node

become disabled. To a lesser extent, the central node

provides a potential bottleneck should LAN traffic become

sufficiently active. However, this topology does provide

security advantages not offered by the others discussed

here. For instance, each node within the LAN is connected

to the central node by a physically different cable which

provides some measure of physical separation of the

communications over the LAN. Additionally, the central node

would be an ideal location for the reference monitor

function required by most of the architectures described in

the previous section. Finally, the star topology's central

node would be a suitable location from which to establish an

internetwork bridge. Obviously, the above mentioned

advantages would only be realized if the LANs workload was

such that it would not overload the central node.

Ring. The ring topology is one in which all LANi,.
•

resources share a common communication bus which is closed

upon itself. Because of its structure, each transmission
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returns to the originator, delayed by some amount dependent

.. .', upon the propagation delays of the network components.

Messages which are not addressed to a the interface unit

currently receiving it are then retransmitted to the next

interface unit in the same sequence. Moreover, a

vulnerability common to not only the ring but also both the

linear bus and the star is that these topologies are highly

susceptible to unauthorized traffic analysis; however, as

has been mentioned before, this study assumes a nonmalicious

environment. Physcal line loss vulnerabilities can be

overcome by providing for backup paths throughout the ring.

The advantages of.the ring topology include the relatively

low implementation cost of the interface between the hosts

and the subnet and the simple communications technology

which utilizes only digital devices. Whether the low cost

is actually realized, particularly after the security

enhancements some of the aforementioned architectures

require, is still an unanswered question. Similar to the

star topology, one node in the ring could act as a central

A reference monitor since LAN traffic passes by all the

network nodes.

Technically, the ring topology has two variations. The

first, referred to as a loop, passes messages between the

nodes in their entirety. Each node in the loop stores the

message until the required output line is free to transmit

the message to the next node in the scheme. The second

* •variation, referred to specifically as a ring, transmits
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each bit of the message propagating around the ring on its

own, not waiting for the rest of the message to which it

belongs. The advantages and disadvantages of this topology

apply to either of these transmission schemes.

Radio Broadcast. Similar to the ring topology, radio

broadcast networks allow each node to view every message and

to contend for a common communication resource. Differences

from the ring network include the ability to have separate,

asymmetric data rates for the two sides of a dialog and the

way in which requestors attempt to gain control of the

subnet. Rather than using a contention based algorithm, the

radio broadcast topology uses a "transmit and see if it gets

through scheme." The lack of available frequency spectrum

and geographical coverage problems restrain the usage of

CIO this particular topology. Although the geographical

coverage problem is not relevant to the problem this study

is trying to resolve, the frequency problem narrows the

bandwidth which potential "tappers" of the LAN would have to

search. In other words, this topology is vulnerable to

unauthorized use of the LAN, thereby introducing severe

denial of service threats along with the potential for

jamming.

Each of the local area network topologies just described

provides the secure LAN designer several advantages and

disadvantages to consider. Of the four topologies

discussed, perhaps radio broadcasting offers the greatest

../ disadvantages when considered in the environment described
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for the purposes of this study. Each of the remaining three

. provide relatively similar security advantages, although the

star topology provides a greater degree of physical

communication security because each message is not examined

by every other node in the network. However, the

vulnerabilities of the central node in the star requires a

more complex redundancy scheme should the central node fail.

When the advantages and disadvantages are considered

strictly in relation to the thesis' operation environment,

this author feels that either the ring or star topological

configurations are appropriate.

Conclusions and Summary

5. . The primary emphasis of this chapter has been to

describe alternative secure local area network

architectures. The architectures presented included a

multiple channel network, trusted interface units, a

security controller, and a distributed secure system.

.* Before identifying the specific architecture considered the

V. most appropriate, a discussion of the reasons behind the

decision was presented.

". The computer network security problem is not merely a

communications problem, but rather a complex set of problems

that are due to the multi-system structure of LANs. In

effect, the network environment adds a new dimension to the

multi-resource problem of a single system; thus adding an

additional level of complexity to a problem which was

already quite complex. The solutions to the security
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aspects of this thesis' problem could be applied at any of

the several layers at which the problem exists. For

instance, solutions could have been proposed at either the

database management system, operating system, or network

levels. In the first three architectures examined in this

chapter, the designs used a multiple layer approach. These

architectures provided some security mechanisms at the

network interface level. But most importantly, each of the

first three architectures made the assumption that each

host's operating system was trustworthy. Perhaps, some time

in the future, this assumption will be attainable but for a

design which is going to be implemented in the near future,

such an assumption is unrealistic. The distributed secure

system, when contrasted with the previous architectures,

provides a much more realistic and attainable approach. The

only assumption the DSS made in regards to each host's

operating system was that it was untrustworthy, which is

probably closer to reality, given the current state of

software verification techniques.

Although several other issues, such as hardware and

software costs, LAN complexity, and system performance,

could be addressed in detail, this discussion stresses what

this author feels are the two most important issues. The

first of these issues is feasibility. Each of the

architectures present the LAN designer with sound approaches

to the security problem. If the decision were to be based

upon feasibility alone, the designer would have a tough time
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deciding. However, as was briefly discussed above, the

second issue is the timeliness of the proposed

architecture's implementation. The DSS is proposed with all

the necessary tools for its implementation available today.

The multiple channel network, trusted interface units, and

security controller architectures depend on advancements to

be made in the art of software verification techniques. As

was discussed in Chapter III, current software verification

tools are not capable of providing the necessary assurances

for large, complex computer programs such as computer

operating systems. Therefore, as the goal of this chapter

was to propose a secure local area network architecture

which could be implemented in the near future, the obvious

choice is the distributed secure system.

Naturally, the choice of the DSS involves many tradeoffs

particularly with respect to total LAN cost and complexity.

The truly incremental costs of the DSS relative to the other

architectures presented is the cost of the host-level

isolated file store. Yet the IFS's cost would be much lower

than the cost of the additional host-level machine required

Ain the security controller architecture. The issues of

system complexity and performance degradation remain

unanswered. This author believes the DSS performance factor

would be no worse than the degradation currently being

experienced on systems which are being implemented with the

addition of a security kernel.

Finally, the last topic considered in this chapter
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involved the different topological configurations being

2"\ implemented in local area networks. Again, either the ring

or star topologies would be appropriate for the needs of

this study.

.1*
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V. Database Design

Introduction

The database design process involves two separate, yet

interrelated, stages. The first stage begins with an

examination of the parameters described in Chapter II. In

order to provide a better understanding of the kinds of

information the database is supposed to store, these

parameters are presented using the informal entity-

relationship model. During the second and final stage of

the design process, the database's conceptual scheme, as

depicted through an entity-relationship diagram, is

translated into the relational data model.

Entity-Relationship Model

The entity-relationship model (ERM) provides an easy-to-

understand means to explore not only the various

individually distinguishable things within the database,

referred to as entities, but also the relationships which

exist between these entities. However, before presenting

the ERM of this thesis' database, a few terms used in the

model must be thoroughly defined.

The notion of an entity is all encompassing. Simply

put, an entity is something which exists and can be

distinguished from other, possibly nondistinctive objects.

For example, an aircraft is an entity. So is a missile

site. The grouping of "similar" entities into entity sets

is one of the primary steps in the modeling of the database.
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All entities have properties which describe the object in

detail. These properties, or attributes, associate a value

from a domain of values for that attribute with each entity

in an entity set (5:13). A key is the attribute or set of

attributes which uniquely identifies each entity within a

given entity set. The term relationship, as formally

defined by Ullman, is simply an ordered list of entity sets.

For instance, suppose SITES and MISSILES are two entity

sets. Also assume that the relationship set LOCATEDAT

describes the relationship between SITES and MISSILES. Each

tuple of the form (e1 , e2) in the set LOCATEDAT implies

that el is in SITES and that e2 is in MISSILES. The last

term to be addressed, and perhaps the most important, is

functionality.

Functionality concerns the classification of

relationships between entities according to how many

entities from one set can be associated with the entities of

a second set. Typically, the relationships between entity

sets are classified as either one-to-one, one-to-many, or

many-to-many. Continuing with the SITES and MISSILES

example, suppose each missile type could only be located at

a specific site and that this site could only have the

aforementioned missiles located there. Thus, the

relationship set LOCATEDAT would describe a one-to-one

relationship. However, if more than one missile type could

be located at a specific site, than the LOCATEDAT relation-

ship set would depict a one-to-many relationship. Finally,
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assume not only that a site may contain more than one

missile but also that a missile may be deployed to more than

one location. In this last instance, the LOCATEDAT

* relationship set now describes the more complex case of a

many-to-many relationship.

In modeling the database, a diagrammatical tool, which

* greatly simplifies both the author's manner of presentation

and the reader's ability to more fully understand what it

being presented, is used. This tool, known as the entity-

relationship diagram, uses a variety of symbols to

graphically describe the database being designed. One of

the most important symbols used is the rectangular box,

which depicts entity sets. Equally important are the

diamond and elliptical shapes. The diamonds represent

relationship sets while the elliptical symbols depict both

entity set and relationship set attributes. The entity-

relationship diagram also depicts the functionality between

entities through the use of numbers or variables, as

annotated along the vectors leading into or out of the

relationship sets.

The complete conceptual design of the database is

presented in Figures 13-16. Basically, the entity sets were

those presented in Chapter II. The two principal entity

sets, not previously described, include MISSION and

AIRCRAFT.
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Relational Data Model

Of the three predominant data models in use today, the

relational data model was preferred for several reasons over

both the hierarchy and network models. The most important

reason for selecting the relational model was the high

degree of data independence this model provides. Regardless

. of the application being developed now or being considered

. for the future, the relational model provides a sound basis

which should not require the rewriting of existing programs

just because the physical implementation of the conceptual

scheme by the physical scheme has changed. Another

important reason for selecting the relational model was the

relative ease of understanding relations. The number of

basic constructs within this model is just the relation

0itself, a construct which is both simple and familiar.

Furthermore, the number of distinct operations is small

because of having only one data construct to deal with.

Finally, the data manipulation language used within the

relational model provides for "symmetric exploitation",

which is defined by Codd to be the ability to access a

relation by specifying known values for any combination of

its attributes, seeking the unknown values for its other

attributes (17:478).

The transformation of the entity-relationship diagram,

as presented in the previous section, into the relational

model is rather straightforward. Each entity set is mapped

directly into a relation, with each of the entity set's
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attributes becoming attributes of the relation. The

relationship sets are also mapped into relations, taking as

attributes the key attributes of each of the associated

entity sets. Figures 17-20 depict the results of the

entity-relationship diagram to relational data model

transformation. The relations are presented in these

figures according to the particular computer system each

relation is maintained on, either A(LI, B(M], or C{HI.

Conclusion

The design of the thesis' database, both conceptually

and physically, was presented in this chapter. The use of

both the entity-relationship model and the relational model

greatly simplified this task. One topic not specifically

addressed before involves the details of the algorithm used

1W in partitioning the database amongst the various nodes of

the local area network. This was not an intentional

oversight but rather an omission of discussing a problem

made trivial due to nature of the network designed in

Chapter IV. As a final note, each relation is classified

according to the level of sensitivity of the computer on

which it is maintained. For example, all relations stored

on computer B{Mj are classified as level one relations,

likewise for computer A{L} and computer C(H) relations.
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VI. Implementation

Introduction

A partial implementation of the database designed in the

previous chapter was successfully accomplished. Although

the implementation was simplified for this thesis, it

provides a strong argument for the validity of the local

area network proposed to support the multi-security level

database which was provided by Headquarters, Space Division.

The specific objectives attained in this phase of the thesis

effort were threefold. First, the effects of data

encryption on overall database performance were found to be

minimal. Secondly, the additional network overhead

necessitated by the central position of the secure file

manager was found to be substantial but its effects were not

so burdensome as to render this design unmanageable.

W Finally, the total lines of code required for the

construction of the secure file manager was found to be

within the realm of currently available software

verification techniques. However, no attempt was made to

prove the correctness of any of the programs written for

this project. Each of these objectives are discussed more

fully in the remainder of this chapter, but before

proceeding with this discussion, the local area network

architecture and the computer software's configuration are

presented.
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Local Area Network Architecture

S.-Figure 21 shows a pictorial representation of the archi-

tecture used to implement the network designed in Chapter 4.

. .The computer architecture chosen for this partial implemen-

tation consists of two S-100 microcomputers running dBASE

II; two LSI-11 microcomputers connected into the local area

network via the Network Operating System (NETOS) (2:1),

where System L is a front end to computer A{L} and System S

is a front end to computer B{L}; three LSI-11 micro-

computers, Systems C, D, and K, which act as computer C,

Secure File Manager, and Isolated File Store; and a final

LSI-II, System B, acting as the central system in NETOS,

through which all encrypted network messages are passed.

The implementation described here deviates from the

original design in two ways. First, due to the limited

resources of the LSINET, none of the systems are connected

to network through the use of "trusted" network interface

units. (The software implications of this are discussed in

the next section.) The final deviation from the original

design concerns the interface to the external communications

network. Although the facilities of the LSINET could

simulate such an interface, it was not attempted in this

implementation.

Software Configuration

The computer software used for this study can be divided

into four major categories: operating system software,

J.A network software, application software, and database manage-
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ment system software. However, as was mentioned before, no
4..

attempt was made at proving program correctness for any of

-- these categories.

The operating system software used on the LSI-lls was

Digital Equipment Corporation's (DEC's) RT-11 Version 5.01 C

whereas the S-100s used CP/M Version 2.2. As was discussed

in Chapter 4, the trustworthiness of each host's operating
I.

system was insignificant. However, the Secure File Manager,

which is an enhanced "trusted" network interface unit in the

design, was implemented on an LSI-11 and uses the

facilities provided by its operating system. Although this

is a major deviation from the original design, this
I l

implementation was not intended to provide an operational

model. Furthermore, this deviation does not substantially

detract from the original objectives of the implementation.

The network software (NETOS) used by this study was

developed through course work and special student projects

at the Air Force Institute of Technology. The NETOS

incorporates the International Standards Organization's

(ISO's) Reference Model of Open Systems Interconnection

(2:6). This software was used as developed except for the

modifications made to layer 5 of the ISO model to allow for

encryption. The encryption algorithm chosen was simply one

of exclusive or'ing each byte with the system's key as it

was either received from or transmitted to the network. All

of the systems which interfaced with the network, with the

7.. exception of the central system, had its own key with which
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it communicated with the secure file manager (SFM). The

session layer of the SFM, layer 5, was modified so that it

could both encrypt and decrypt the information it received,

regardless of the information's source.

The application software which was used in this project

was developed by a number of sources, although this author

tailored it to the specific needs of the study, given the

limited time which remained to provide even a simplified

implementation. Perhaps the most significant deviation from

the design was the manner in which the database queries were

made. As implemented, only computer C{HI queries the other

two computers. Computer C{H}'s application was written so

that the user interactively requests that a specific dBASE

II command file is sent to either computer AtLI or computer

B(M}. While the request is being serviced, the user is

prohibited from performing any further actions. Once the

database request has been satisfied, the user is prompted to

determine if he would like to view the results. There is

not a flight path application, as described in Chapter 2,

which would use the response to the query once it had been

received by computer C{HI. Both computer A[L}'s and B{M}'s

application were also greatly simplified. These two

computers simply wait to receive database queries from

computer C[H} via the SFM. Once the query file has been

received and decrypted, the file is downloaded to the S-100s
'p

for dBASE II execution. While the file is being executed on

by the S-100, the user is prohibited from further actions.

a11.
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Once the query has been serviced, the response file is

,.,,+ uploaded to its respective host, encrypted, and forwarded to

computer C{HI via the SFM.

The most important software written for this thesis was

the Secure File Manager. Perhaps the greatest task of this

program was to ensure that only the proper query file was

received and then forwarded to its true destination.

Although all of the program listings are available in

Volume II, a brief description of one of the Secure File

Manager's most important modules, ValTransfer, highlights

some of the tasks this software must be proven to perform

correctly.

Before computer C{H} could send a query to either of the

other two host computers, it first had to request permission

from the SFM. The contents of this request included the

identifier of the sending computer, the name of the command

file to be sent, and the size of the command file. Once the

SFM had received these three parameters, the module

ValTransfer would ensure that the sending computer had the

authority to be making such a request. Once the request had

been approved, the SFM would notify computer C{H} that it

could forward the query. Again, after the SFM had received

the actual command file, val-Transfer would check the

command file's size and a label, internal to the command

file, to ensure that it had received the proper query. If

4either the file's size or label did not match with what the

Y% request had provided, the SFM notifies computer C[HI and the
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M.> transaction is terminated. Additionally, ValTransfer

checks a second label internal to the command file to ensure

that the query is being made on the same computer as

indicated with the network control information received with

the file. Again, if any discrepancies exist, computer C{HI

is notified and the transaction is terminated. These tasks

are but a few of the checks which must be built into the

code in order for the secure file manager to properly

perform its role in multi-security level distributed

database problem.

4! The final software category concerns the database

management system (DBMS); which, for the purposes of this

study, is the relational DBMS dBASE II. Both computer A[L}

and computer B[M} in the implementation act as front ends to

the actual database machines which, as was depicted in

Figure 21, are S-100s. Once either computer A[L} or

computer B{M} has received a query (command file) from the

SFM, it automatically downloads the query to the S-100 for

execution. The relations upon which dBASE II is executing

are presented in Figure 22. These relations were con-

structed in accordance with the design presented in Chapter

5. obviously, only the relations which reside on either

computer A{L] or computer B{M} were included for data

manipulation by the command files used in this implementa-

tion. After the query had been downloaded and executed by

dBASE II, the S-100 notifies the front end, either computer

... A{L) or B(M}, which in turn uploads the results and forwards
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STRUCTURE FOR FILE: SITES.DBF STRUCTURE FOR FILE: MISSILES.DBF
NUMBER OF RECORDS: 00002 NUMBER OF RECORDS: 00002
DATE OF LAST UPDATE: 09/19/85 DATE OF LAST UPDATE: 09/19/85
PRIMARY USE DATABASE PRIMARY USE DATABASE
FLD NAME TYPE WIDTH DEC FLD NAME TYPE WIDTH DEC
001 NAME C 010 001 NAME C 005
002 LAT N 006 003 002 MINALT N 006
003 LONG N 007 003 003 MAXALT N 006
004 STATUS C 001 004 RANGE N 006
** TOTAL ** 00025 ** TOTAL ** 00024

STRUCTURE FOR FILE: LOCATED.DBF STRUCTURE FOR FILE: REGIONS.DBF
NUMBER OF RECORDS: 00002 NUMBER OF RECORDS: 00003
DATE OF LAST UPDATE: 09/19/85 DATE OF LAST UPDATE: 09/19/85
PRIMARY USE DATABASE PRIMARY USE DATABASE
FLD NAME TYPE WIDTH DEC FLD NAME TYPE WIDTH DEC
001 NAME C 010 001 NAME C 010
002 MISNAME C 005 002 NELAT N 006 003
** TOTAL ** 00016 003 NELONG N 007 003

004 SWLAT N 006 003
005 SWLONG N 007 003
** TOTAL ** 00037

STRUCT FOR FILE: CONDS OF.DBF STRUCTURE FOR FILE: WEATHER.DBF
NUMBER OF RECORDS: 00003 NUMBER OF RECORDS: 00003
DATE OF LAST UPDATE: 09/19/85 DATE OF LAST UPDATE: 09/19/85
PRIMARY USE DATABASE PRIMARY USE DATABASE
FLD NAME TYPE WIDTH DEC FLD NAME TYPE WIDTH DEC
001 RGNNAME C 010 001 DAY N 005
002 DAY N 005 002 SECONDS N 005
003 SECONDS N 005 003 ALT N 006
004 ALT N 006 004 WNDSPD N 003
** TOTAL ** 00027 005 WNDDIR N 007 003

006 CLOUDS C 001
007 PRECIP C 001
** TOTAL ** 00029

Figure 22. Implementation dBASE II Relations Structure.
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them to the SFM. As was the case for all the previous

software categories, no attempts were made at proving

program correctness for the DBMS. However, in both the

proposed design and its implementation, the trustworthiness

of the DBMS or lack there of, has no bearing on the security

aspects of the problem.

Testing and Results

This section describes the tests which were performed on

the network (hardware and software) just described. Al-

though these tests are not rigorously defined, their results

provide this author's optimism on the verifiability of the

solution provided by this thesis to the security problem as

described in Chapter I. For all phases of testing, the

"' "dBASE II command files presented in Figures 23 and 24 were

used and included two join commands, typically time

consuming operations.

The first objective of determining the impact of the

encryption algorithm on system performance was tested by

querying the database on computer A{L} with the encryption

flag in layer 5 of all programs turned off (see Volume II

for coding details.) In other words, the network was

performing normally except that all files were being

transmitted in clear text. After executing the command file

three times, the encryption flag in layer five was turned on

and computer A[L} was queried three more times.

J 4
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*CA

S* *

* DATE: 09/16/85 *

• VERSION: 1.0 *
- * •

* TITLE: Computer A's dBASE II Query File *
' * FILENAME: TESTA.CMD *
5* COORDINATOR: Ron Moeller *

* PROJECT: Thesis*
• OPERATING SYSTEM: CP/M 2.2
* LANGUAGE: dBASE II Application Language *

• USE: This command file is sent from Computer C *
• to Computer A via the SFM to test the *
• application programs written for the project *
• developed by the above mentioned coordinator. *

* NOTE: The first line in this file indicates the *

* source computer and the destination computer.*
* This line must be included in all command *
• files because this information is validated *
• once it is received by the SFM. *
• •

- *********** ************************************************

set talk off
set default to b:
set alternate to dbresult
set alternate on
use regions
select secondary
use conds of
join to templ for p.name = s.rgnname and. p.name = "London" ;

field name,day,seconds,alt
use templ
select secondary
use weather
join ':o temp2 for p.day = s.day and. p.seconds = s.seconds ;

.'-. .and. p.alt = s.alt field name,day,seconds,alt,wndspd ;
wnddircloudsprecip

use temp2
display all off
set alternate off
clear
delete file templ
delete file temp2
quit

Figure 23. TestA dBASE II Command File.
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* CB

* DATE: 09/16/85 *

* VERSION: 1.0 *
} * *

* TITLE: Computer B's dBASE II Query File *
* FILENAME: TESTB.CMD *

* COORDINATOR: Ron Moeller *
* PROJECT: Thesis *
< * OPERATING SYSTEM: CP/M 2.2 *
; * LANGUAGE: dBASE II Application Language *

* USE: This command file is sent from Computer C *
* to Computer B via the SFM to test the *
* application programs written for the project *
* developed by the above mentioned coordinator. *

* NOTE: The first line in this file indicates the *
* source computer and the destination computer.
* This line must be included in all command *
* files because this information is validated *
* once it is received by the SFM. *

; ************************** **

set talk off
set default to b:
set alternate to dbresult
set alternate on
use sites
select secondary
use located at
join to templ for p.name = s.name .and. p.name = "Moscow" ;

field nam,misname
use templ
select secondary
use missiles
join to temp2 for p.misname = s.name field name,minalt,

maxalt,range
use temp2
display all off
set alternate off
clear
delete file templ
delete file temp2
quit

Figure 24. TestB dBASE II Command File.
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Table I. Testing Results

Clear Text Encrypted

Start: 21:02:00 21:06:52 21:17:53 21:24:09 21:28:11 21:33:10

Stop : 21:05:08 21:10:03 21:21:02 21:27:20 21:31:20 21:36:23
--------------------------- -------- -------- -------- -------- --------

Time : 3:08 3:11 3:09 3:11 3:09 3:13

The average times for the clear text and encrypted transmis-

sions were 3 minutes, 9.33 seconds and 3 minutes, 11 seconds

respectively. With an average time difference of only 1.67

seconds, it is obvious that encrypting the data had little

impact on system performance. Moreover, an operational

implementation of this design would use an encryption

algorithm encoded on an integrated circuit; thus, further

improvements in performance would be expected.

The second objective of determining the impact of the

additional network message traffic necessitated by the fact

that all inter-host communications must be monitored by the

secure file manager was tested. Again, using the results of

the previous tests of the computer A{LI database, it was

observed that it took, on the average, 1 minute, 48 seconds

from the time computer A{LI had received notification of a

pending query to the time computer A{LI had completely

forwarded the results of the query back to the SFM. As was

mentioned before, total execution time from the moment

computer C[HI had notified the SFM to the time computer C{H}

had completely received the results file was 3 minutes, 11

*' seconds. Thus, approximately 43% of the total execution

time was used for the additional message traffic required by
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this network design. Although this may seem substantial,

the dBASE II command files used for testing, as well as the

database itself, were rather simple in nature. Therefore,

as the complexities of the queries increase and the database

becomes larger, the time for query execution will increase,

which will, in turn, reduce the percentage of time spent on

network traffic. However, one fact, not previously

mentioned, is that all testing was performed on a dedicated

network. In other words, there was no other traffic flowing

on the LSINET during the testing periods. In a busy network

environment, total query execution times would surely be

greater than the times recorded during the limited testing
,-.-,,

performed at this time.

The final objective analyzed during the testing phase of

this thesis project involved the size of the secure file

manager program which was developed. The total number of

lines of source code for this program was approximately 1250

lines. Of these 1250 lines, approximately 500 lines were

comments. Given the nature of the development cycle for

this project, another 250 lines of code could be removed by

improving the SFM's design. Therefore, even after enhancing

the security checking performed within this program, the

Secure File Manager would be well under 1000 lines of code.

Thus, this program would be of a small enough size to be

formally proven using the automated software verification

techniques discussed in Chapter 3 (13:95).

-11
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Conclusion

The operational implementation of a local area network

which supports a multi-security level distributed database

is attainable today as evidenced by this thesis' effort at a

simplified version of the LAN designed in Chapter 4.

Although a number of simplifications were included in this

first implementation attempt, the attainment of the above

mentioned objectives makes this solution worthy of further

investigation, particularly in the area of proving software

correctness. Hopefully, as the LSINET matures and more

computing resources become available, a complete

implementation of the LAN will support this author's

optimism on the validity of his solution.

.i1
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VII. Conclusion

Summary

The analysis and design of a multi-security level

distributed database was a complex task. During the course

of the development of the solution presented in this thesis,

several areas within the field of computer science were

discussed. During the analysis of the problem, much

research into the present state of the art of software

verification techniques was accomplished. This research

directly affected the nature of the solution being sought in

that if a solution other than the typical "system high"

approach was to be achieved, the problem would have to

divided into small enough parts so that each of the part's

function would be within the realm of contemporary software

verification techniques.

Once this fact had been realized, the thesis effort was

directed toward possible solutions within the total local

area network environment, rather than a single system

implementing all the required security mechanisms. Again,

researching available LAN security mechanisms resulted in

the discovery of the distributed secure system being

developed by two professors at the University of Newcastle

upon Tyne in Great Britain. Applying the specific require-

ments of this project to the general LAN environment

.v described by Professors' Rushby and Randell, provided an

excellent solution to the problem being investigated.

Having decided on a specific design, the next step
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undertaken was a partial implementation. The specific

objectives which were successfully achieved by this work

included the fact that data encryption has little or no

impact on system performance, that the impact of the addi-

tional overhead necessitated by the secure file manager on

system performance was substantial yet not of a sufficient

enough nature to warrant the disregarding of this approach,

and that the SFM's size, as written in the "C" programming

language, was within the realm of contemporary software

verification techniques. Thus, it is this author's opinion

-." that the distributed secure system, as applied in this

particular environment, is a feasible solution to the

problem described in this thesis.

Recommendations

The initial scope of this thesis was to analyze and

design a multi-security level distributed database. How-

ever, as the research progressed, it became clearer as to

N. the exact nature of the problem, particularly, if the

solution found was to be fully implemented within the near

future. The scope of the redefined problem and the time

limitations with which all thesis projects are placed under

- necessitated cursory examination of certain aspects of this

problem.

With the above statements in mind and from the

experiences of this author gained throughout the project,

the following recommendations, both general and specific,
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are made:

(1) Examine thoroughly the intricate details of formal

software verification techniques and, if the tools are

available, apply these techniques to a specific program.

(2) Investigate contemporary secure operating systems

and provide an analysis of the various systems operational

capabilities, particularly for those systems used in a

military environment.

(3) Implement a complete secure file manager, which has

undergone a rigorous proof of correctness.

(4) Perform a formal analysis of a full implementation

of the system presented in this thesis, to include a

complete application package and the integration of

"trusted" network interface units.

(5) Design and implement a secure file manager which

would run on a "bare bones" machine. In other words, the

program would have to be written so that any operating

system facilities, which were used in the first implementa-

tion, are not available and would have to be encoded in the
-p

'S new version. Once this has been accomplished, encode the

software on a programmable, read-only memory and test its

5performance against previous versions.

(6) Integrate the security mechanisms attributed to the

distributed secure system into a database system which

entails distributed processing as well as distributed data.

Again, subject the redefined secure file manager to formal

software verification techniques.
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Final Comment

S. One of the central themes of this entire effort has been

being able to decide whether or not a certain piece of

software can be "trusted." Verifying program correctness,

or having the ability to prove that a computer program will

do exactly what it is designed to and nothing else, is a

complex undertaking for any program not of a trivial nature.

The importance of this task is being realized in all aspects

of computer science and rightfully so. As more complex

tasks are being resolved through the use of computers, the

science of proving program correctness as well as the tools

which facilitate the accomplishment of this task, will

become increasingly important. In the military environment,

where human life is at stake or the security of our nation

is involved, nothing less than absolute, verifiably correct

software should be trusted.

A1.2
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,. The software developed for this thesis is organized into

the following six distinct programs: SFM.C, IFS.C, COMPA.C

COMPB.C, COMPC.C and DBASE.C. Each of these programs

includes a header which details the additional software

required for compilation into executable programs on the

LSINET located in the LSILAB at the Air Force Institute of

Technology. The following steps describe the specific

actions required to operate the distributed secure system as

implemented for this thesis:

(1) Each of the above mentioned programs, in executable

form, must reside on individual 8" floppy disks. All of the

-' disks must be formatted double sided, double density, prior

to copying the application software to them. A copy of

DBASE.C must reside on the same floppies as both COMPA.C and

COMPB.C.

(2) Decide which nodes within the LSINET to locate each

of the six programs. The only selections available for

COMPA.C and COMPB.C, along with DBASE.C, are Syst---i L and

System S, since each of these must be connected to a S-100

which is executing dBASE II. The only node not otherwise

available for the remaining programs is System B, which must

remain as the network's central system. Currently, the SFM

K- . and the COMPC programs have been linked with the VTBIB

library. If you choose an H29 terminal for these two

programs, they will have to be relinked with the H19LIB

library. Similarly, the IFS program is currently
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configured to run on an H29 terminal rather than a VT100.

(3) Once all the nodes for the distributed secure

system have been decided upon, modify the table DDTABL.DAT

so that it corresponds to the systems selected. This table

consists of four columns, of which the first column is the

only one you want to modify. The following three letter

identifiers, located in one of the remaining columns of the

DDTABL.DAT, should correspond to the systems selected: SFM,

IFS, DMA, DMB, DMC.

(4) Copy the updated version of DDTABL.DAT on each of

the floppies containing the programs SFM.SAV, IFS.SAV,

COMPA.SAV, COMPB.SAV, and COMPC.SAV. This table is required

for layer 5 of the network software.

(5) On the S-100 connected to System L, after this

system has been cold booted with a copy of dBASE II in drive

A and a copy of the database for either computer A(L) or

computer B{M) in drive B, enter the following two command

lines:

(a) PORTBAUD 9600

(b) STAT CON:=CRT:

These commands are required before the S-100 and System L

will talk to one another.

(6) Enter RUN COMPA or RUN COMPB, depending on the

computer you chose this node to simulate, on System L after

cold booting the system with a floppy containing the current

version of the RT-11 operating system in drive A and

COMPA.SAV or COMPB.SAV in drive B. The message
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'b.4

"COMMUNICATIONS WITH THE Z-80 SYSTEM NOW ESTABLISHED"

should briefly appear, followed by the message "AWAITING

REQUEST MESSAGE." This is a non-interactive program, so

once these messages appear, the user will not interact with

it any further.

(7) Cold boot the S-100 connected to System S with a

disk containing dBASE II in drive A and a disk containing

the database of either Computer A{L} or Computer B[M} in

drive B.

(8) Follow instruction (6) above on System S. Similar

messages should appear.

(9) Enter the command line RUN SFM on the system you

chose for the secure file manager, with the current version

of the RT-11 operating system on the floppy in drive A and

N the SFM.SAV program on the floppy in drive B. This is not

.. " an interactive program, so once the message "WAITING TO

RECEIVE A REQUEST MESSAGE" appears, this system is ready to

go. (Remember, this program is currently configured to be

run on a VT100 terminal.)

(10) Enter the command line RUN IFS on the system you

chose for the isolated file store, with the current version

of the RT-11 operating system on the floppy in drive A and

the program IFS.SAV on the floppy in drive B. This is not

an interactive program, so once the message "READY TO

RECEIVE A RESULTS FILE" appears, this system is ready to go.

(Again, remember that this system is currently configured to

"... .be run on an H29 terminal.)
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(11) Enter the command line RUN COMPC on the system you

chose for computer C{H}, with the current version of the RT-

11 operating system on the floppy in drive A and the program

COMPC.SAV on the floppy in drive B. This program is the

only interactive program available for the entire distri-

buted secure system as implemented.

(12) Once the program is running, select option A,

since the user is required to be logged in at both computer

A{L} and computer B(MI before either of these databases are

queried. To login on both computer A[L} and computer B{M},

* ensure that the file PWFILE.DAT is located on both floppies

which are in drive B on systems S and L. This file should

contain the five letters or less unique identifier you have

A chosen as your password. Once you have selected option A at

computer C(H}, enter the just described password at the

program prompt. The message "SENDING LOGIN REQUEST MESSAGE

TO COMPUTERS A AND B" should appear. After a couple of

minutes or less, the message "USER LOGGED IN OK - PROCEED

WITH SESSION" should appear and the user is returned to the

original main menu which appeared when the program was first

executed.

(13) Select option B and enter the appropriate informa-

tion when prompted. Always be sure that you enter the drive

prefix to any filenames you are prompted for. For instance,

when prompted for the name of the query file, enter

DXl:TESTA.CMD. Again, remember that this program is

configured for a VT100 terminal. If you chose an H29, you
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-: will have to relink the program with the H29LIB library.

(14) After the query has been answered, the user is

prompted to determine if he would like to view the results

of the query. If so, he enters Y and the response will be

presented on the console. Otherwise, he enters N and the

main menu reappears.

4"-' (15) The user continues to send queries in such a

manner until he is finished. At this time, he must logout

of the databases. This is accomplished by selecting option

C. After a couple of minutes, the message "LOGOUT COMPLETED

SUCCESSFULLY" will appear.

(16) To exit from the program, enter option Q at the

main menu.

After selecting a query file, the user is prohibited

I4 from interacting with the system until the query is either

successfully or unsuccessfully completed. Each node in the

implemented distributed secure system will flash messages to

its associated console indicating the specific action it is
currently taking. If the query cannot be answered for any

reason, the user on computer C{H} will be notified and the

main menu will reappear.

4'..:

161

2.-.'"



-_ W. vin aWW~ rrtwn.-

AFIT/GCS/ENG/85D-7

CONFIGURATION GUIDE FOR
THE DISTRIBUTED SECURE SYSTEM

APPENDIX C

TO

THE ANALYSIS AND DESIGN

OF A

MULTI-SECURITY LEVEL DISTRIBUTED

DATABASE SYSTEM

RONALD A. MOELLER
CAPT USAF

Graduate Computer Systems
13 December 1985

162



The following guide provides a detailed- listing of

the specific modules which must be linked with the programs

developed for this thesis to generate executable (.SAV)

files:

(1) COMPA.C -Version 1.4, 09/22/85

ISO1C.OBJ, ISO2T.OBJ, ISO2XM.OBJ,
ISO2XZ.OBJ, ISO3D.OBJ, ISO4E.OBJ,

Si. A5E.OBJ, ISO6E.OBJ, ULIB.OBJ, LIB85.OBJ,
CLIB.OBJ, CHDR.OBJ, QLIB.OBJ, RT85.OBJ,
H19LIB.OBJ, DBASE.OBJ

(2) COMPB.C -Version 1.4, 09/24/85

IS0lC.OBJ, ISO2T.OBJ, ISO2XM.OBJ,
ISO2XZ.OBJ, ISO3D.OBJ, ISO4E.OBJ,
B5E.OBJ, ISO6E.OBJ, ULIB.OBJ, LIB85.OBJ,
CLIB.OBJ, CHDR.OBJ, QLIB.OBJ, RT85.OBJ,
Hl9LIB.OBJ, DBASE.OBJ

(3) COMPC.C -Version 2.4, 09/15/85

IS0lC.013J, ISO2T.OBJ, ISO2XM.OBJ,e ISO2XZ.OBJ, ISO3D.OBJ, ISO4E.OBJ,
CSE.OBJ, ISO6E.OBJ, (JLIB.OBJ, L1B85.OBJ,
CLIB.OBJ, CHDR.OBJ, QLIB.OBJ, RT8S.OBJ,
Hl9LIB.OBJ, DBASE.OBJ

(4) DBASE.C -Version 1.3, 09/22/85

IS0lC.OBJ, ISO2T.OBJ, ISO2XM.OBJ,
S.. ISO2XZ.OBJ, ISO3D.OBJ, ISO4E.OBJ,

A5E.OBJ, ISO6E.OBJ, tJLIB.OBJ, LIB85.OBJ,

CLIB.OBJ, CHDR.OBJ, QLIB.OBJ, RT85.OBJ,
Hl9LIB.OBJ, COMPA.OBJ

(5) SFM.C -Version 1.2, 09/16/85

IS0lC.OBJ, ISO2T.OBJ, 1S02XM.OBJ,
ISO2XZ.OBJ, ISO3D.OBJ, ISO4E.OBJ,
SFM5E.QBJ, ISO6E.OBJ, ULIB.OBJ,
L1B85.OBJ, CLIB.OBJ, CHDR.OBJ,
RT85.OBJ, Hl9LIB.OBJ, DBASE.OBJ
QLIB.OBJ

(6) IFS.C -Version 1.0, 09/25/85

ISOIC.OBJ, ISO2T.OBJ, ISO2XM.OBJ,

.55. :...ISO2XZ.OBJ, ISO3D.OBJ, I504E.OBJ,

IFS5E.OBJ, ISO6E.OBJ, LLIB.OBJ,
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CLIB.OBJ, CHDR.OBJ, QLIB.OBJ, RT85.OBJ,

LIB85.OBJ, H19LIB.OBJ, DBASE.OBJ

The modules which are unique to this application other

than the six just described above are the following and can

found on the DELNET archives disk labeled THESIS.DSS:

(1) A5E.C- Version 3.1, 09/11/85

(2) B5E.C - Version 3.1, 09/21/85

(3) C5E.C - Version 3.1, 09/11/85

(4) SFM5E.C - Version 3.3, 09/30/85

(5) ISO6E.C - Version 3.0, 09/11/85

(6) ISO4E.C - Version 3.1, 09/30/85

1
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Abstract

A multi-security level distributed database system was

designed based on database parameters and system require-

ments provided by Headquarters, Space Division. As the

primary step in the analysis of this problem, a thorough

investigation into the current state of the art of software

verification techniques was made, in order to determine

exactly what a computer system's software and hardware could

be "trusted" to perform correctly.

Furthermore, a selection was made from available secure

local area network alternatives which would yield a solution

that would be operational in other than a "system high"

mode. The system chosen is currently being researched at

the University of Newcastle upon Tyne in Great Britain.

This approach involves locating a single security partition

on a system which is physically and logically separated from

the rest of the network. This separation is performed by a

number of software and hardware mechanisms which can be

formally proven correct.

Once the distributed secure system design had been

suitably tailored for this application, a partial implemen-

tation of the design was successfully accomplished upon a

local area network being developed at the Air Force

Institute of Technology. The test results support the

feasibility of this approach to the multi-security level

distributed database problem.
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Introduction

.'. -: Over the past twenty years, computer usage has grown to

the point that it influences almost every aspect of our

lives. Concurrent with this growth has been the development
of such system users' needs as the need to share system

resources, the need to more effectively utilize system

components, and the need for intercomputer communication...

This need for the controlled sharing of system resources has

grown, not only in the number of people involved, but in the

geographic dispersion of both people and resources and their

need for increasingly fast access to and transfer of such

information. This tremendous expansion has presented new

technological problems in many areas, but particularly in

that of computer system security.

Recent efforts to build secure computer systems have

resulted in limited success. Secure system models have been

proposed and several systems have been implemented based on

these models. The primary objective of each of these

systems is to ensure that a system user has access only to

.' such information for which he is both cleared and has a need

to know, an objective which must be proven attainable.

However, it is the verification requirements placed on these

systems which prevent them from fully achieving their

primary goal. Currently available verification techniques

simply cannot provide adequate verification assurances for

large software programs such as a computer operating system

m. or a database management system. So as the need for inter-
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system communication becomes stronger and the number of such

". systems increase, solutions to the security problems will be

sought even if such solutions provide only temporary relief.

* Problem Statement

The objective of this study is to propose a database

" design which will meet the specific requirements of the

thesis' sponsor, Headquarters Space Division, Air Force

Systems Command. These requirements include the actual

database parameters and the operational environment in which

the database will reside. In other words, a comprehensive

architecture will be defined for a specific database in a

particular installation. Furthermore, the study will be

limited by the currently available hardware and software or

*some variation thereof and the methodologies in use today to

verify the degree of trustworthiness each system component

may assume. Once the design has been accomplished, its

implementation will be attempted, using existing Air Force

Institute of Technology (AFIT) facilities.

Assumptions

The results of this project will be based substantially

on the following assumptions:

1. The physical environment is secure; that is, system
operations are performed in physically hardened or
guarded facilities.

2. All personnel having authorized access to the system
have been cleared through appropriate background
investigations to handle classified information.

3. No unauthorized, intentional penetration attempts
into the system will be made; in other words, a

168



.:

nonmalicious environment exists within the local
-. area network.

'U i:"4. The external communication network's transmission
lines are physically secure.

5. The program to implement the recommendations of this
study will be well funded but will not have
unlimited economic resources.

The above assumptions are based upon the problem specifica-

tion provided by, and through subsequent conversations with,

the thesis sponsor. These assumptions direct the study to

specific security related areas, primarily software

security, while avoiding other security areas not considered

important at this time. Assuming certain system safeguards,

particularly a nonmalicious environment, emphasizes the

specific direction this project will take and limits the

types of potentially compromising situations which may

occur. One of the goals of this study is to prohibit situa-

tions in which a user of the system unintentionally has

access to information for which he is neither cleared nor

has a need to know.

Network Requirements

The organization requiring the development of this

system, known from this point on simply as the user, has a

need for a multi-security level distributed computer system

wto aid in the planning of aircraft flight paths. This

distributed computer system, or local area network, consists

of a minimum of three computers, with security levels of the

data contained therein ranging from level zero as the most

" '"restrictive to level two as the least. The local area
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network will be connected to a second netWork, an external

communications network, through which queries and updates to

the aircraft flight path database are made. These queries

and updates are in the form of messages pertaining to an

aircraft's planned flight path and associated weather and

surface-to-air missile threats.

Computer A[LI, the first of the three primary hosts,

maintains the weather related portion of the database. (For

the remainder of this study, whenever one of the principal

database computers is mentioned, it will have either a "H",

"M", or "L" in braces appended to its single letter

identifier. The "H" indicates the computer maintains level

zero information, the "M" indicates level one information

and the "L" indicates level two information.) The weather

data is classified at level two and is received via messages

either directly from the external communications network or

through an intermediary processor within the local area

network. The weather messages describe actual weather

conditions within geographical regions by altitude and time.

Weather related queries are sent to computer A{L} through

the local area network primarily by computer C{HI and

involve requests for weather conditions for a specific

flight path. Computer A{LI calculates what region(s) the

flight path covers and provides computer C{H} all associated

weather information.

The second primary host, computer B{MI, maintains the

surface-to-air missile (SAM) portion of the database. The
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SAM data is classified at level one and is received

similarly to the weather data. However, SAM data is

received in two different message formats. The first

message format provides a SAM site's operational status and

contains such information as location, status, and missile

type. The second SAM message format describes the charac-

teristics of a particular type of SAM and includes both

altitude and range parameters. SAM queries are sent by

computer C[H} to computer B[M} and involve requests for the

hostile regions a planned flight path covers. Computer B{M}

analyzes all legs of the flight path to determine both

"free" and "kill" zones. If the flight path covers only

"free" zones, computer B(M}'s response is simply "NO

DANGER". Otherwise, a "DANGER" message is sent along with

the number of SAMs within the zone and all associated site

and missile data.

Computer C{H}, perhaps the most important of the three

primary hosts, maintains the flight path portion of the

database. The flight path data is classified at level zero

and is received similarly to both the weather and SAM data

above. Once computer C[H} has received a flight path, it

queries both computers A[L} and B{M}. Based upon the

information received back from the other primary hosts,

computer C(H) generates an updated flight path to include

the associated weather and SAM data. The updated flight

___. path is then sent either directly to the user via the

external communications network or to an intermediary

171



processor in the local area network.

Database Requirements

The two most important requirements related to the

design of the database are the multiple levels of security

classifications of the data contained therein and the pro-

cessing requirements placed on the various hosts of the

local area network. The specific security classifications

are maintained strictly at the file level; in other words,

each record and the fields it consists of are classified

I according the classification level of the file in which it

resides. The processing requirements of each of the primary

hosts mentioned above are such that the database must be

distributed to provide necessary response times to user

queries, as specified by the thesis sponsor. No analysis

was made of these response times or host workloads since the

thesis problem is structured to be of a distributed nature.

Secure Software Capabilities

In order to more fully understand the fundamental nature

of the secure computer system problem, several subjects

relating to secure computer systems were investigated,

beginning with the most prominent secure operating system

design approach, the security kernel. Also investigated was

the Bell and LaPadula model, which is the model upon which

the security kernel approach is based. The final subject

investigated, relating to secure software, was the state

of the art of computer software verification methodologies.
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As a result of these investigations, it appears that

the Department of Defense is confident that the design of

secure computer systems using the kernelized approach is the

best short-term solution to this complex problem. This

opinion is confirmed by many notable computer scientists,

including Stanley Ames, when he states that "the security

kernel design approach is the most promising methodology

currently available that can provide both the internal

security and the functional capabilities that many of

today's computer systems need (1:22)." Based on both the

number of currently existing systems and those in the

development process which use the kernel approach, this

author would agree with their optimism. However, there are

a number of unresolved problems.

One of the most significant problems associated with the

kernel design is the confinement problem, which is described

as the prevention of a program from leaking sensitive infor-

1' mation. The kernelized approach does not address "indirect"

information leakage channels, which work through the

operating system, by means of response codes and other

intended paths (4:284). However, a procedure to detect

"indirect" information flow was implemented at the Stanford

Research Institute (4:285). A second type of security

model, proposed by Denning, specifically addresses the

confinement problem and can be certified capable of

verifying partial or total confinement of a procedure

(6:511)73
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A second important problem concerns the current state of

the specification and verification methodologies. Most of

these systems are considered experimental and should not be
regarded as a final product (4:280). Again, Mr. Ames even

supports this view in his article when he states that

solutions for the program correctness problem are still a

long way off, particularly for large programs such as an

operating system. However, the Ames' article also stated

that "even if there was no intent to complete a full mathe-

matical proof, we still have the rigorous review,

documentation, and kernel development guidelines that most

verification methodologies enforce. These alone will ensure

a more secure and reliable system" (1:21). This opinion on

Mr. Ames' part raises another, perhaps unanswerable,

question, "How secure is secure?"

A final comment of the kernelized approach relates the

desired performance objectives with the results observed to

date. Naturally, one of the primary objectives of the

kernel approach was for the enhanced operating system to

minimally degrade system performance relative to its non-

kernelized counterpart. Unfortunately, performance has been

a serious problem for early attempts at kernelized secure

operating systems. In fact, some of these early systems

have provided only 10 to 25 percent the performance of
-.

similarly configured nonsecure systems. Recent implementa-

tions have been more successful at producing systems with

. "adequate" performance (11:87). Again, the question could
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be asked, "How minimal an impact on system performance is

truly minimal?"

Secure LAN Alternatives

Having examined computer system security from the

standpoint of the mechanisms currently available for a

single system, we now turn our attention to those security

mechanisms which are in use within a local area network.

The specific alternatives analyzed included a trusted

network interface, a security controller, and a distributed

secure system. This analysis resulted in the selection of

the distributed secure system as the system upon which the

design of the database described above would be based (see

Figure 1). Basically, this system functionally decomposes

the network security problem into several smaller problems

such that each problem is solvable using software which is

within the capabilities of available software verification

techniques. Thus, the sum of the individually trustworthy

software modules provides the requisite system assurances

that accidental disclosures of sensitive information will

not occur.

Database Implementation

A partial implementation of the database, as designed

using the entity-relationship model, was successfully

accomplished. Although the implementation was simplified for

this thesis, it provides a strong argument for the validity
" of the local area network proposed to support the multi-
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security level database which was provided -by Headquarters,

" "Space Division. The specific objectives attained in this

phase of the thesis effort were threefold. First, the

effects of data encryption on overall database performance

were found to be minimal. Secondly, the additional network

overhead necessitated by the central position of the secure

file manager was found to be substantial but its effects

were not so burdensome as to render this design unmanageable.

Finally, the total lines of code required for the construc-

tion of the secure file manager was found to be within the

realm of currently available software verification

techniques. However, no attempt was made to prove the

correctness of any of the programs written for this project.

Testing and Results

This section describes the tests which were performed on

the network (hardware and software) just described. Al-

though these tests are not rigorously defined, their results

provide this author's optimism on the verifiability of the

solution provided by this thesis to the security problem as

described above.

The first objective of determining the impact of the

encryption algorithm on system performance was tested by

querying the database on computer A[LI with the encryption

flag in layer 5 of all programs turned off (see Appendix C

for coding details.) In other words, the network was

performing normally except that all files were being

., transmitted in clear text. After executing the command file
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three times, the encryption flag in layer five was turned on

and computer A(L} was queried three more times.

Table I. Testing Results

Clear Text

Start : 21:02:00 21:06:52 21:17:53
Stop 21:05:08 21:10:03 21:21:02

Time : 3:08 3:11 3:09

Encrypted

Start : 21:24:09 21:28:11 21:33:10
Stop : 21:27:20 21:31:20 21:36:23

Time 3:11 3:09 3:13

The average times for the clear text and encrypted transmis-

sions were 3 minutes, 9.33 seconds and 3 minutes, 11 seconds

respectively. With an average time difference of only 1.67

seconds, it is obvious that encrypting the data had little

impact on system performance. Moreover, an operational

implementation of this design would use an encryption

algorithm encoded on an integrated circuit; thus, further

improvements in performance would be expected.

The second objective of determining the impact of the

additional network message traffic necessitated by the fact

that all inter-host communications must be monitored by the

secure file manager was tested. Again, using the results of

the previous tests of the computer A(L) database, it was

___ observed that it took, on the average, 1 minute, 48 seconds

from the time computer A{L) had received notification of a
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pending query to the time computer A{L} had completely

forwarded the results of the query back to the SFM. As was

mentioned before, total execution time from the moment com-

puter C{H} had notified the SFM to the time computer C[HI

had completely received the results file was 3 minutes, 11

seconds. Thus, approximately 43% of the total execution

time was used for the additional message traffic required by

this network design. Although this may seem substantial,

the dBASE II command files used for testing, as well as the

database itself, were rather simple in nature. Therefore,

as the complexities of the queries increase and the database

becomes larger, the time for query execution will increase,

which will, in turn, reduce the percentage of time spent on

network traffic. However, one fact, not previously men-

tioned, is that all testing was performed on a dedicated

. .network. In other words, there was no other traffic flowing

on the LSINET during the testing periods. In a busy network

environment, total query execution times would surely be

greater than the times recorded during the limited testing

performed at this time.

The final objective analyzed during the testing phase of

this thesis project involved the size of the secure file

manager program which was developed. The total number of

lines of source code for this program was approximately 1250

lines. Of these 1250 lines, approximately 500 lines were

comments. Given the nature of the development cycle for

S"-this project, another 250 lines of code could be removed by
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improving the SFM's design. Therefore, even after enhancing

the security checking performed within this program, the

Secure File Manager would be well under 1000 lines of code.

Thus, this program would be of a small enough size to be

formally proven using the automated software verification

techniques discussed in Chapter 3 (13:95).

Conclusion

The operational implementation of a local area network

which supports a multi-security level distributed database

is attainable today as evidenced by this thesis' effort at a

simplified version of the LAN described above. Although a

number of simplifications were included in this first

implementation attempt, the attainment of the above

mentioned objectives makes this solution worthy of further

investigation, particularly in the area of proving software

correctness. Hopefully, as the LSINET matures and more

computing resources become available, a complete implementa-

tion of the LAN will support this author's optimism on the

validity of his solution.
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