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ABSTRACT

This paper describes a successive overrelaxation (SOR) method for computing a class

of bivariate C' piecewise cubic polynomial interpolants. Given a collection of points in R2

together with a triangulation of those points, the schemes described require only the values

of the function to be interpolated at the given points. The result is a c/ interpolant which

is a cubic polynomial over each of the triangles in the triangulation. Numerical results are

presented for a typical scheme in this class.
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SIGNIFICANCE AND EXPLANATION

This paper describes a class of bivariate C1 piecewise cubic polynomipi interpolation

schemes for scattered data. Computation of this interpolant requires the solution of a

linear system of equations which is extremely sparse. Since the triangulation of scattered

data may allow for any number of triangles to meet at a vertex, the matrix corresponding

to this linear system need not have a nice structure. This means that the ordering of the

vertices of the triangulation may be of critical importance whenever a direct method of

solving the linear system is to be employed. In this paper, an iterative method of solving

this system is proposed in order to eliminate this difficulty. Numerical evidence suggests

that this iterative scheme is an extremely efficient and effective way of solving the linear

system.
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AN ITERATIVE METHOD FOR COMPUTING BIVARIATE C1

PIECEWISE CUBIC POLYNOMIAL INTERPOLANTS

Thomas A. Grandine 1' 2

Interpolation of bivariate scattered data by smooth piecewise polynomials is a problem

which has received a great deal of attention in recent years ([A84-1], [A84-2], [A84-31,

fBF81], 1BL841, [F80J, [F831, 1L771, [L841, [Z70], and elsewhere). The case of C' cubics

(piecewise cubic polynomials with one continuous derivative) has received a good deal of

this attention. In this paper, a method of cheaply constructing such interpolants is given.

The idea is to take any old piecewise cubic interpolant (which need not be C 1) and compute

a perturbation of it which satisfies the desired smoothness conditions.

The method outlined in this paper is based on the B-form representation of bivariate

polynomials, as given in [B861 and [F80]. Readers not familiar with the B-form should read

[B86] for a detailed description of it in its most general form. In any case, the features of

the bivariate B-form required to establish the schemes in this paper will be reviewed. See

-B861 for proofs of these facts.

Consider the points u, v, w E R 2. An arbitrary point x E R 2 can be expressed as

an affine combination of u, v, and w, i.e. x = a,,(x)u -- a .(x)t, - - aw(x)w, where au(x) +

a,,x(x) + au(x)- 1. The numbers au(x). a,(x). and o,.(x) are called the barycentric

coordinates of z with respect to u, v, and u, and they are, in fact, affine functions of their

'Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
2This material is based upon work supported by the National Science Foundation under
Grant No. DMS-8210950, Mod. 4.
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argument. Denote by a the vector of barycentric coordinates, and consider the multi -,dex

i E Z+ with i. + i,, + i, = n. It is clear that

a ua . (Ia,

is a bivariate polynomial of degree at most n (since each component of a is affine). The

n+) valid choices for i give rise to the same number of linearly independent bivariate
(n

polynomials of degree < n. Since the dimension of the space of bivariate polynomials of

degree < n is also ( n2 ) the functions a' must form a basis for that space. Thus, any

polynomial p of degree < n can be written in the form

i

for certain coefficients ci. This is the B-form of a bivariate polynomial.

This form is so useful because it has a nice geometric interpretation. Consider the

triangle given as the convex hull of u, v, and w. Then all the valid choices of : can be

viewed as occupying locations on a certain mesh over the triangle. This mesh is the one

generated by considering all of the points in the triangle with barycentric coordinatzs t, n,

for each of the valid choices of i. For the case n = 3, the locations are given in Figure

1. For example, the point corresponding to u itself has iu = 3, iv = /. = 0. The point

nearest u along the edge from u to v has iu = 2, i, = 1, and i.. = 0. The point in the

center has iu = i, = iu, = 1.

This form has the nice property that the values of the coefficients say something about

the local behavior of p. For example, if iu = n, with i, = iu. = 0, then c, - p(u), i.e.

the coefficient associated the each of the vertices is just the value of the polynomial at

2
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that vertex. Moreover, if the restriction of p to the line determined by one of the edges

is considered, then that univariate polynomial is uniquely determined by the coefficients

associated with that edge. These properties make it possible to discuss representations of

piecewise polynomial functions using a generalization of the B-form, namely the B-net.

W

V

Figure 1

Consider more generally 4 points in R 2 , say u, v, w, and z, whose convex hull is a

quadrilateral. Suppose that this quadrilateral is divided into two triangles, one of which

is the convex hull of u, v, and w, and the other is the convex hull of v, w, and z. Let

the quadrilateral be the domain for some piecewise polynomial function of degree < n

with two pieces, each of which has as its domain one of the triangles. It is clear that each

polynomial may be described in B-form on each triangle. If, as is generally the case, the

pp function is continuous, then the univariate polynomials which are the restrictions of

each polynomial to the common edge, in this case given by v and w, must be the same.

Since these polynomials are determined by the B-form coefficients along those edges, and

3

" , ', . ', , . C ' ,, .. '. '. '. -. . . , . ,,'.-'.,..' .,'._;'. -. ,- .. Z Iz1.. -.'2?



the polynomials must be the same, the coefficients must also be the same. The B-form

representation of continuous pp functions is called the B-net. The B-net for the above

example, with n 3, is given in Figure 2.

W

U V

Figure 2

In this paper, the goal is to construct C1 interpolants with cubic pp functions. Thus,

simple continuity of pp functions is not enough. Fortunately, the conditions for C' smooth-

ness in terms of the B-net are both simple and elegant. In Figure 2 there are three quadri-

laterals marked with a dashed line, each of which is similar to the domain. For the pp

function given to be C 1 , it is necessary and sufficient, that for each small quadrilateral, the

four B-net coefficients associated with its vertices satisfy a certain linear relationship: If

the four coefficients are viewed as function values at the points u, v, w, and z, related by

the similarity of the small quadrilaterals to the big one, then the graph of the four points
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must be planar. In general, n of these conditions will be required for pp functions of degree

< n,

To turn now to the main topic of the paper, consider any collection of points in R 2

at which the values of some function which is to be interpolated are given. Assume that

a triangulation of these points is also given. If not, one can always be computed by the

method outlined in [GS781. The so-called Delauney triangulation produced by this method

is viewed by many as being a good one for the purpose of interpolation, and it has been

shown ([Si78]) to be the same triangulation as that produced by a very different method

in [L72J. In any case, if there are d points in the interior of this triangulation and e on the

boundary, then there will be 2d -- e - 2 triangles in the triangulation [BL84j. From this

fact, it follows that there are 3d + 2e - 3 edges in the triangulation, of which 3d + e - 3

are interior edges.

Given this collection of points, consider piecewise cubic polynomial functions defined

over the triangulation, i.e. functions which are locally cubic polynomials in each triangle.

The B-net for these functions consists of 9d + 6e - 8 coefficients. However, not all of

these coefficients are variables in the situation considered here. Only those functions

which actually interpolate need to be considered. This uniquely determines the coefficients

located at the vertices, leaving only 8d + 5e - 8 variables. Making the interpolant C1

amounts to imposing three linear conditions at each interior edge, for a total of 9d + 3e - 9

equations. Thus, computing a bivariate C1 cubic pp interpolant for scattered data boils

down to solving the linear system

Ax b (2)

* 5



for some 9d+3e-9 by 8d+5e-8 matrix A and an 8d+5e-8 vector b, both of which depend

upon the location of the vertices and the structure of the triangulation. The vector b also

depends upon the function values which are to be interpolated. The smoothness conditions

are homogeneous except when one of the four coefficients is known. This happens exactly

when one of the four points is a vertex of the triangulation.

A great deal is known about A and b. It is known, for example, that A is extremely

sparse, having either three or four non-zero entries in each row and no more than three

non-zero entries in each column. Exactly one third of the entries in b are zero, and these

correspond to the rows in A which have exactly four non-zero entries. It is also known

([MS771, [S791, and [S84]) that the row rank of A is no larger than 7d + e - 9, which

guarantees that the linear system (2) is underdetermined. It also means that (2) might

not be solvable. As of this writing, the solvability of (2) remains a conjecture. No one

has been able to prove the existence of a solution or to produce a set of points (and a

triangulation) for which there is none. For the remainder of this paper, the existence of a

solution to the linear system (2) will be assumed.

In order to construct C I cubic pp interpolants to the data, some way of eliminating the

extra d+ 4e + 1 degrees of freedom which arise because of the rank deficiency of A is needed.

One way of doing this is to begin by ignoring the linear system (2) and to construct any old

interpolant. For example, the piecewise linear interpolant may be considered. It is very

easy to construct, since the value of each of the cubic B-net coefficients is simply the value

of the piecewise linear interpolant at that point ([B861 and [F80j). In any case, suppose

that some interpolant is given, and let X be the vector of B-net coefficients corresponding

to it. It is clear that, in general, A- - 6, since A and b were never considered in forming

6



1. However, this does provide a way of eliminating the extra degrees of freedom inherent

in (2). A C' piecewise cubic interpolant to the given data can be computed by solving

min JIe!J2

(3)
subject to Ae = r,

where r b- A2, and A and b are as before. If e solves (3), then A(i-+ e) = b, so solving

(3) amounts to computing a perturbation of the original interpolant in order to make it

C 1.

The problem two may be solved by many different techniques. One way, for example,

would be to compute the singular value decomposition of A. While this method has

many highly desirable numerical properties, it is inappropriate here because it fails to

take advantage of the sparsity of the matrix A. The same is true of Lemke's method and

other pivotal methods, which, even if they make use of sparse matrix techniques, will still

4depend in some critical way on the ordering of the rows and columns of A. This in turn will

depend upon how the vertices of the triangulation (and the triangles themselves) happen

to be ordered. In this paper, this difficult question will be overlooked by using an iterative

method, namely successive overrelaxation (SOR), to solve the problem.

The space in which e lies can be decomposed into two orthogonal subspaces, namely

ker(A), the nullspace of A, and ran(A T ), the range of AT. Any solution to Ae = r has a

unique decomposition e - ek + e,, where ek - ker(A) and e, : ran(A T ). In order to obtain

a least norm solution to Ae = r, i.e., to have e solve (3). .t is necessary and sufficient to

SS have ek 0. Thus, if e := ATy, then solutions to

AATy = r (4)

"-,V -''.-.':':.-; -, '':'' .-',- " ."% "'', ' '- '" ,. "%' . .' - % :'. '"". .' . .:."" '" ." .'. -"." " .-'",. , .. - -" .
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will also provide solutions to (3).

Let L be the matrix the same size as AAT whose entries are the same as AAT below

the main diagonal and zero everywhere else. More straightforwardly, L is the strict lower

triangular part of AAT. Let D be the diagonal part of AAT, so that L + D + LT = AAT.

It is clear that D has strictly positive entries on its main diagonal, since each of these

entries is just the inner product of a row of A with itself. Then the iterative scheme

yn+1 = yn + wD-l(r - L -y+1 _ Dyn - LT (5)

converges for any choice of 0 < w < 2. Here y' is the vector which is the n-th iterate of the

-scheme, and the convergence is to any solution of the system (4). Since A is rank deficient,

it is clear that AAT, although symmetric and positive semi-definite, may nevertheless be

singular. The convergence is a consequence of the following theorem, due to Keller:

Theorem 1 rK65]: Let S be a symmetric matrix of order m and let N be a non-

* singular matrix of order m for which

P := N -t NT-_ S

is positive definite. Then the iterative scheme-"
Ai11 I (A S) x b (6)

converges if and only if S is positive semi-definite and b ran(S). ''le convergence is to

a solution of S = b.

8
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The iterative scheme (5) is of the form (6) if N is chosen to be L + - D. For any finite

choice of w, this is non-singular. Then

P N + N T - AAT

(L +-D) + (L + D) _ (L + D + LT)

2 - w D ,

which is positive definite if 0 < w < 2. Hence, SOR converges to some solution of the

linear system (4).

As it turns out, it doesn't matter which solution to (4) is obtained. Any solution y

has two orthogonal components, yk E ker(AA T ) and yr E ran((AAT ) T ) = ran(AA T ), so

that y = Yk + y,. However, no matter what yk is, ATyk = 0, since ATYk E ran(A T ) and

ATyk C ker(A). Thus, e = ATy depends only on y,, and not on Yk. This uniquely solves

the system (3).

The only remaining step in the interpolation process is to take e and add it to 2. This

will provide B-net coefficients which satisfy the conditions for C' smoothness, interpolate

the given data, and are, in the 2-norm sense, as close as possible to those in the original

interpolant. Since the polynomials (1) are a well-conditioned basis for the space of pp

functions considered [H82], it is reasonable to expect that the resulting interpolan, will

also, in some sense, be as close as possible to the original interpolant. This means that

if the original interpolant was constructed to satisfy certain shape requirements, it is at

least conceivable that the resulting C' interpolant may satisfy those same r juirements.

- Before proceeding to the numerical experiments, there are a few features of this scheme

that are worth noting. The first is that the matrix AA is extremely ,arse. Since cach

row of A has at most four non-zero elements, each row (and column) of AAT has at mosi

9
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eight non-zero elements in addition to the entry on the main diagonal. Because it is also

symmetric only half ot it needs to be stored in memory in any computer implementation

of the scheme.

It is also worth noting that the assumed solvability of the linear system (2) is an

essential ingredient in Theorem 1. Without this, the iterative scheme cannot converge.

Since this is the only condition in the theorem which is not ironclad, the appearance of a

problem for which the method fails to converge provides a candidate for a counter-example

to the conjecture. In all experiments performed so far, non-convergence has never been

observed.

The numerical experiments which have been performed have all used a local imple-

mentation of the scheme (for piecewise linear initial-guess interpolants) on a VAX-11/780

running VMS. This implementation is in the form of a FORTRAN subroutine which takes

as input an array of points in R 2 and an array of corresponding function values. It begins

by calling a Delauney triangulation routine to determine a suitable triangulation of the

region of interpolation. Next, it determines the piecewise linear interpolant for the given

data, i.e. the vector i. After forming the matrix A and the vector b, the matrix AAT and

the vector r = b - A- are computed. SOR is then used to solve the system AATy = r to

a tolerance specified by the user with the parameter w also specified by the user. Finally,

the vector i + ATy is computed, and its components are put into an array which contains

the B-net for the interpolant.

One of the most important features for any interpolant to have is that it be local,

which means that a change in one of the function values will only change the resulting

interpolant near the location of the function value. This property has been investigated

10



for a number of different data sets by choosing all of the function values to be zero except

at one point where it is chosen to be one. The graphs of the resulting interpolants are all

very similar to the one shown in Figure 3. It is clear from this that the interpolant is not

local, but might be essentially local, meaning that the effects of a change in a function

value decay with distance.

If, in fact, the interpolant is essentially local, the error in the interpolant should be at

least as good as O(p 2), where p is the maximum diameter of any of the triangles in the

triangulation. Here, diameter means the length of the longest segment which is contained

within a triangle. The error estimate should be this good because the interpolation scheme

used reproduces linear polynomials. In other words, if the given data describes a linear

function, then the interpolant will be precisely that function.

For the bivariate function f(x 1 , X2) =z 2 + X2 - 2zxz 2 + z 1 + 2x 2 + 3 defined over

the square 10,112, interpolants on successively finer triangulations have been computed. In

each case, the interpolation points are located at the vertices of an m x m square mesh

placed over 10, 112. The following table summarizes the results. The column labelled k is

the observed rate of convergence between each entry and the subsequent one. Here k is the

exponent if the error is assumed to behave like 0(pk). The errors listed are the maximum

absolute differences between the function and its interpolant which are encountered.

m Error k

3 0.14779282 1.939

4 0.06732988 1.989

5 0.03799295 1.994
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6 0.02434874 1.994

7 0.01692724 1.998

8 0.01243925 1.998

9 0.00952625 2.015

10 0.00751376 2.135

12 0.00489593 1.831

14 0.00360560 1.993

16 0.00271082

The observed rate of convergence is very nearly the 0(p 2) which had been hypothesized.

It would have been shocking, in fact, to have obtained anything better, since the function

is quadratic and is clearly not being reproduced by the scheme!

Also deserving of mention is the fact that the m = 16 case, which is interpolation

of 256 function values with 450 (perhaps) different bivariate cubic polynomials, required

less than 321.94 seconds to compute. Given that this involved the triangulation of the 256

points (a needless waste, since the mesh is regular anyway), the construction and solution

of a 1935 x 1935 linear system of equations, and the evaluation of the interpolant on a

51 x 51 grid (2601 interpolant evaluations), this seems quite reasonable. Certainly much

larger problems are possible even on the VAX.

Of course, the method works well independent of the regularity of the triangulation.

CQnsider the function g(Xz,x 2 ) = (xI - x1)(x 2 - X2)e 3 1 7 . A contour map of this

function over the square [0,112 is given in Figure 4. For this function, its interpolant has

been computed over the triangulation given in Figure 5. This triangulation is the Delauney

12
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Figure 4
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triangulation for a collection of 54 random points. (Actually, only 50 of them are random.

The four vertices of the unit square were thrown in for luck.) A contour map of the

interpolant is given in Figure 6, and a surface plot of the error function is given in Figure

7. The maximum difference between the function and its interpolant is 0.021338049.
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Figure 6
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