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ABSTRACT

The Chinese Remainder Theorem is as follows: Given integers ai
(i - 1,2,...,n) and corresponding moduli mi , which are pairwise relatively
prime, than the n congruences

(1) x ai mod m (i -

have a unique solution x mod m, where m - mlm2 ***' n .

Sometimes in the 1950s the late Hungarian-Swedish mathematician Marcel
Riesz visited the University of Pennsylvania and told us informally that the
above theorem is an analogue of the unique interpolation at n distinct data
by a polynomial of degree n - I.

It follows that (1) can be solved in two different ways:

1. By an analogue of Lagrange's interpolation formula.
2. By an analogue of Newton's solution by divided differences.

This analogy gives sufficient insight to furnish a proof of the theorem
that V(mim2 ... mn) - V(Ml ) ... (sn), where 1(m) is Euler's function.
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SIGNIFICANCE AND EXPLANATION

The Chinese Remainder Theorem is one of the most important results of

elementary Number Theory as it was used by Kurt G~del in one of his most

fundamental papers in Logic. The paper uses the analogy with the theorem of

polynomial interpolation to solve it in two different ways.
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The responsibility for the wording and views expressed in this descriptive
summary Iles with NRC, and not with the author of this report.
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THU CHINESE REMAINDER PROBLEM AND POLYNOMIAL INTERPOLATION

Isaac J. Schoenberg

For given Integers ai (1 a I 5 n) and positive integers mj1 (1 S ± S n)

that are pairvise relatively prime, the Chxinese Remainder Problem (abbreviated

to C.R.P.) my be stated as follows:

2be Problin. To find an integer x satisfying the congruences

x S a I (mod m I), (i - 1,2,...,n) . (1)

If we have found one solution x then clearly all solutions of (1) belong to

a residue class modulo N - m Im 2 **mn

Sometimes in the 19501s the late Hungarian-Swedish mathematician Marcel

Ries: visited the University of Pennsylvania and told us informally that the

C.R.P. (1) can be thought of as an analogue of the interpolation by

polynomials: Given real values y I (1 5i n) and distinct real values i

*to find a polynomial P(x) of degree n I such that

we can solve (2) by Lagrange's formula

P(x) - Yi yiL(x) (3)

where the fundamental functions

n1 x-x*
Li (x) -H
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are such that they satisfy the equations

Lj(xj) ' Sij (ij - ,.,).(4)

Here the Sij, called the Kronecker deltas, are defined by

I if i - j

8i 0 if i 0j(5

To solve the C.R.P. suppose that we proceed similarly, letting the

integers a i be the analogues of the yi, and defining integers bi such

that

bi~ =45i (mod i.) (i,j -1,...,n) ,(6)

as the analogues of the functions L i(x). This leads to

Theores 1. A solution of the system (1) is given by

n
x a i ib 1(7

Indeed, as the bi satisfy (6), we find from (7) that

n n
x a aib i ai6ij-, aj (mod mji) for all j =1,.n

3xaxple I. To find x satisfying

x -=2 (mod 5), x E6 (mod 7), x 5 (mod 11) .(8)

we are to solve (6) which in our case is

bi 1 (mod 5), b, 0 (mod 7), b1  0 (mod 11),

b 0 (mod 5), bs 1 (mod 7), b 0O (mod 11),

b 0 (mod 5), b 0 (mod 7), b3  1 (mod 11),

from which we obtain that

bi=231, b - 330, b3  1

By (7) we find that all solutions of (8) are given by

x 527 (mod 385), where 385 567 11.
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The solution (7) of the C.R.P. (1) is essentially the solution as given

by G. E. Andrews in [1], and by E. Grosswald in (2), without mentioning the

analogy with Lagrange's formula. My colleague Richard Askey tells me that

Riesz' remark is well known to computer scientists, but apparently not to

mathematicians.

Besides recording Riesz' remark, the author's contribution is the

following remark: Newton solves the interpolation problem (2) using

successive divided differences ci to obtain

P(x) = c1 + c2 (x - x 1) + c 3 (x - x 1 )(x - x 2 )

+ *.. + Cn(x - xl)(x- x2 ) ... (x - Xn.i) , (9)

where the coefficients ci are obtained by solving

Yl Cl

Y2 cl + c2 (x2 - x1 )

Yn C 1 + c2(Xn xl) + c 3 (xn " Xl)(Xn " x 2 )

+ 000 + Cn (xn - xl)(x n - x2 ) ... (xn - Xni) * (10)

Applying Newton's idea to the solution of the C.R.P. (1), we consider

the mi to be the analogues of the x - xi and seek to determine the integer

di (1 1 i j n) from the system of congruences

I  a I (mod m1 )

ad
1 + d 2m1 _ a 2 (mod m2 )

d 1 + d 2m1 + d 3m1m 2  a 3 (mod m3 ) (11)

d1 + d2 m1 + d 3m 1m 2 + .. + dnmlm2 ... n- a n (mod mn )

In this way we obtain

-3-
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2heoren 2. A solution of the C.R.P. (1) is obtained as follows: We

first determine the inteqrs di as solutions of the congruences (11), and

then a solution of (1) is given by

x - d1 + d 2m I + d3mIm 2 + *'" + dnmlm2 ... _ • (12)

Indeed, notice that by (11), the x given by (12), satisfies all

congruences (1): For any k, 1 I k I n, from (12) we get that

x = di + d2ml + oo, + dkmlm2 ... ik. I (mod mx )

and therefore, by the k-th congruence (11), 4e have that x - ak (mod mk).

3xmple 2. Let us solve the C.R.P. (8) by the Newton approach. For (8)

we have n - 3, a1  2, a2 - 6, a 3 
= 5, m I - 5, m 2 - 7, m 3 - 11. As we can

always choose d1  a1 = 2, the remaining n - 1 - 2 congruence (11) are

2 + 5<2 6 (mod 7),

2 + 5d2 + 35d 3  5 (mod 11)

The first has the solution d2 - 5 and the second now becomes

2 + 25 + 35d3 - 5 (mod 11) whose solhv ion is d3 - 0 (mod 11). From (12),

for n = 3 we obtain that x - 27 is a solution of (8).

A consequence of Theorem 1, or of Theorem 2, is the following

Corollary I. The Chinese Remainder Problem (1) has always a unique

solution x, mod M, where M = mlm 2...mn -

Moreover, either of the theorems gives a method of finding this unique

solution.

Let us keep fixed the n pairwise relatively prime moduli mi'm 2 , ... n .

How many Chinese Residue Problems (1) correspond to them? Evidently their

number is M for we may restrict the ai to assume the values of a residue

system mod mi, for instance

For every choice of the n-tuple (a,a 2, ...,an) there corresponds a unique

-4-
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solution x of (1) which assmes one of the values

x C ),1,...,M- 1} (14- , ) . (14)

Corollary 2. There is a one-to-one correspondence between the n-tuples

(a1,...,an), subject to (13), and the M possible values (14) of x.

For if two distinct n-tuples

(a ,a2 ,...,an ) JO (a' a 2... .. (15)

lead to equal x's: x - x' we would get from (1) that

ai = a,' (mod mi), (i - 1,...,n) ,

in contradiction to our assumption (15).

Rzale 3. we choose the simplest possible example: Let n = 2, m, = 2,

M2 = 3, hence M = 6. Here, by (13) we may choose a1 = 0,1 and

a2 = 0,1,2. Denoting by xr the solutions of the 6 C.R.Ps. we find theseir

C.R.Ps to be

(a) x1 = 0 (mod 2) (b) x2 - 0 (mod 2) (c) x3  0 (mod 2)

x 1 = 0 (mod 3) x 2  1 (mod 3) x3  2 (mod 3)
(16)

(d) x4  1 (mod 2) (e) x5 " I (mod 2) (f) x6  1 (mod 2)

x 0 (mod 3) x5  1 (mod 3) x6  2 (mod 3)

4-6

Their solutions are easily found to be

x1 = 0, x 2 " 4, x3 = 2, x4 = 3, x5 " 1, x6  5 , (17)

which indeed form a residue system modulo M - 6.

We wish to close our note with an elementary application of the one-to-

one mapping expressed by Corollary 2. For this we need

Corollary 3. In the Chinese Remainder Problem (1) we have

(ai,mi) - I for all i - 1,...,n (18)

if and only if for the solution x of (1) we have

(x,mIm2 ....mn ) 1 . (19)

-5-
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Indeed, by (1) we see that (18) holds iff (x,mI ) - 1 for all i, which

is equivalent to (19).

As usual we denote by 9(m) the Euler function giving the number of

positive numbers < m which are relatively prime to m. The application we

had in mind is

Corollary 4. r'or the pairwise relatively prime mi we have

(P(mlm2.. .m) = (ml)(m 2 ) ... 4(mn ) . (20)

Because the left side is = number of solutions x of (1) satisfying

(19), while the right side gives the number of C.R.Ps. (1) satisfying the

conditions (18).

Example 4. For the moduli m, = 1 and m2 = 3 of Example 3 only two

C.R.Ps. (e) and (f) satisfy the conditions (18). Also notice that their

solutions x5 = 1 and x6 = 5 indeed form a reduced residue system mod 6

as they should.

Remarks. 1. The second Newton approach is slightly more economical then

the first approach: while the first requires to determine the n integers

bi (i = 1,2,...,n), the Newton approach requires only to find the n - 1

integers di (i = 2,3,...,n).

2. I owe to Gerald Goodman the reference [3] in which Ulrich Oberst

shows that appropriate abstract formulations of the Chinese Remainder Problem

can be made the basis of much of Modern Algebra including the main theorems of

Galois theory.

4V 3. My colleague Stephen C. Kleene informs me that Kurt G8del uses the

solution of the Chinese Remainder Problem (without its name) in his

fundamental paper "On formally undecidable propositions of Principia

Mathematica and related systems 1" in (4], 145-195, especially Lemma 1 on page

135. See also Footnote i on page 136.
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4. Originally I wrote this note very briefly, even tersely. I owe to

the Editor an expanded version of this note which I found very helpful in

casting it in the present form.

5. In a sequel to the present paper it will be shown how to apply the

Chinese Remainder theorem to obtain indices for moduli which do not admit

primitive roots. These indices will be vectors.
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20. ABSTRACT - cont'd.

Sometimes in the 1950s the late Hungarian-Swedish mathematician Marcel

Riesz visited the University of Pennsylvania and told us informally that the

above theorem is an analogue of the unique interpolation at n distinct data

by a polynomial of degree n - 1.

It follows that (1) can be solved in two different ways:

1. By an analogue of Lagrange's interpolation formula.

2. By an analogue of Newton's solution by divided differences.

This analogy gives sufficient insight to furnish a proof of the theorem

that ( 1 m2 ... m = p (ml )v(m 2 )...p (m ), where 'p(m) is Euler's function.
n 1 2 n
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