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Preface

This report examines circular error probable (CEP)
approximation methcdologies. The approaimations and
methodologies explored in this report use statistical
distributions and mathematical methods that may be
unfamiliar to some people. It is assumed that the reader
has a general understanding of statistical distributions,
and their associated parameters as well as how to manipulate
these distributions.

This thesis was suggested by persons from the 4220th
Weapon System Evaluation Squadron, Strategic Air Command and
should be useful to all offices interested in calculating

CEPs for missiles, rockets, bombs, bullets, etc.

Before I begin this report, I would like to acknowledge
some people without whom this thesis would never have been
accomplished. Thanks go to Captains Paul Auclair and Dave
Berg for sponsoring this effort and furnishing me with much
of the information that was necessary to start and complete
this study - I hope they find 1t useful, Also I would 1like
to thank Major Bill Rowell, my faculty advisor, for
believing in this toplc and for his patience, criticism,
help, and support. I thank my parents for always having
believed in me and given me the foundation on which all else
fs bullt. Finally I would like to thank my fiancee, Gileen
Gleason, for her unwavering support especially during the
last month.

Richard L. Elder

iid

“-vaTe"

RN R I e e -...- -. - L AN ‘.‘ T T R e N e N A T A et e e e e e e e e
PGNP O S QY G S R rN S AN 7 GU LR L N T, 08 G S N gy R R

|



1 ot Bok ot X TR ba® Ao 3 3 - 4 * aoe gt t aaé et Baf? But . Rt g ma? §° e aa i ¢

<SSR

y Table of Contents

- an e
Tt T

-

e

Page

Preface . . . & ¢ v v e v e e e e e e e e e e e e e 1114

elelts

k List of Figures . . . .« ¢ ¢ v ¢ o v o ¢« ¢ o o« « o o o vi
l.,
- List of Tables . « « « & o « o o o o o o v o o o o o . Vit
L
‘ AbPSLtract . . ¢ s ¢ v e e 4 e a e e e s e e e e e e e o.ovitd
‘
4
5 I. Introductionmn . . . . . .+ . ¢ . 4o 4 v e 4 e v e v 1-1
; Background . . . . . . .+ ¢ v ¢ 4 e e . 0. 1-1
X3 Problem Statement e e 4 e e e e 4 e 4 s e . 1=5
< Purpose of the Study e e e e e e e e e e e 1-5
< Sequence of Presentation . . . . . . . . . 1-7
,i II. Literature Review . . . . . . . . . .« ¢« .+ + . . 2-1
Theoretical Work . . . . + « ¢« o« o o o + o« o 2-1
VL Applied Work . . . . . . . + .+ o o L. . . . . 2-3
» III. Methodology . .« « « ¢ ¢ ¢« o & o o« o o o o o 2 o+ o« 3-1
' The Variables . . . . . . « ¢« ¢« ¢ &« o o« « « « 3-1
o Grubbs-Patnaik/Chi-Square . . . . . . . . . . 3=2
.. Grubbs-Patnaik/Wilson-Hilferty . . . . . . . 3-4
) Modified RAND-234 . . . . . . . ¢« + ¢« « « « . 13-4
: Correlated Bivariate Normal . . . . . . . . . 3-5
. "Exact” Method . . . . . . + . + . o« + . . 3=7
Regression Analysis . . . . . . . . . « . . . 3-9
. The Computer Program . . . . . . . .« . . 3-10
. Data Collection . . . . . . ¢ +. + ¢« + « « + . 3-11
:' IV, Analysis and Discussion of Results . . . . . . . . 4-1

Grubbs-Patnalk/chi-square . . . . . . . . . . 4=1
: Grubbs-~-Patnaik/Wilson-Hilferty . . . . . . . 4=2
‘ Modified RAND=-234 ., . . . . . .+« v « « « o « . 4-4
- Correlated Bivariate Normal . . . . . . . . 4-5
} "EXACE" .« v v 4 i e e e 4 e s e e s e e e .. b-6
Regression analysis . . . . . . . . « . . . . 4=-10
X V. Ccnclusions and Recommendations . . . . . . . . . . 5-1
} Comclusions . . . .+ . . ¢ & ¢« ¢« ¢« ¢ « &« o« &« « 5-1
v Recommendations . . . . . . . . . . « « .+ . . 5-3
L)
.t
Appendix A: Circular Error Probable Tutorial . . . . . A-1l
l‘
\
A
N iv
2]
X
3)

M Tep e ™ R BRI
*\ < ’*iﬁ&h&ﬂfﬂa;m¢- ot 4

.....

LRI IR S Y



Appendix B: Correlatico . . . . . . . . . . . .+ . « . B-l1
Appendix C: Secant Method . . . . . . . . . . . « . . C-1
Appendix D: Sample Data . . . . . . . « « « + + « « . D=1
Appendix E: Computer Source Code . . . . . .« « « « « » E-=1
Bitliography . . .+ & ¢ & & 4 o « « 4 4 s 4 4 4 e e o« . b-1 y

i VIEA v v v v 6 o 4 e e e e e e e e e e e e e e e e e . 6=3

7,
[

% 9,

£ 4
g ‘v

TR

Pe
(]

& % .; 5y

L

P
-~

(MAKKIEAY

,1';'.' '.‘ '{ *

<
"

Y




o List of Figures
Kl
Figure Page
1 4-1 Grubbs-Patnaik/chi-Square "Best” . . . . . + . . . 4=2
(
’
: 4-2 Grubbs-Patnaik/Wilson-Hilferty "Best” . . . . . . 4-3
¥ 4-3 Modified RAND-234 "Best"” . . . . . . « « « o . . . 4=4
A 4-4 T"Exact” Does Not Converge e e e e e e e e e e e 4=-7
i
$ 4-5 "Best" Method Across the Bias/Ellipticity
Parameter Space . . . .+ . 4 + ¢« 4 ¢ « o & « o« « . 4-8
A-1 Sample Impact 1; ., . . . . . . . . . . . « « .« « . A-=3
' A-2 n -~ Sample ImMPAacCLS . . « +« ¢ « o o o o o o« o o« o« « A=3
A-3 Mean Point of Impact . . . . + &+ ¢« « &+ + o o« + « « A=4
; A-4 "Best” Method Across the Bias/Ellipticity
y Parameter Space . . ¢ « 4 + o « o o & o o« o o« o+ . A-13
» C-1 The Secant Method . . . . . « & v « &« « « & « « « C=1
]
Y
g
)
¢
»
Ca
l
W
L)
by
¢

vi

0

RN L N Rt L e i R TR
RIS I3 2300 M S P I A A S RS OO

g;m- PN
h

h
g
2
3

L/
./
:
:

]

At S e e




List of Tables
y Table Page
2-1 Cases e e e e s e e e e e e s e e e e e e e e e . 2-4

. 2-2 Results e s e e 4 4 e e e e e e e e e e e e e e 2-5

L
! 2-3 Relative ETrors . . v ¢ ¢ 4 & o o o« o« o o o « o« + 2-6 d
A-1 Sample Impacts For A Theoretical
ICBM Warhead . . . ¢ ¢« ¢« « v + &« o o o &« « +« « « + A-10 A
J
A-2 Sample Order Statistics For
Radial Miss Distance . . . . ¢« . . ¢« ¢ . + . . . . A-11

D-1 Sample CasesS . . « + « « & « « « &« o s & o o o« « « D=2 ;

y ”
, D-2 Sample CEPs e s e e 1 4 e s 4 e e e e e e e e e D-5 '
. D-3 Sample Relative Errors . . . . « ¢« « « « « o« . « . D-8 :

)’ h
t

\

. : }
i .
i

vii b
L]

LI

- . T U e . .o B

. CIP I e T A TR R

' - L » L] . > 3 - L) - . - < ~. - - o)
SN e, M T AL A A N AR T A ARAS AR &



LN gt N Batodaft b b s CEGEUR LS R TN STNTTS e Al ALY LAY AAR At sl o A ot sty A‘r.“;‘r.t.".-“:'.-'.'.*.r?_‘,";."".."."!

3

9 Abstract

¢

¢

! Several approximation techniques are currently used to

‘} estimate CEP. These techniques are statistical in nature,

; based on the bivariate normal distribution of the crossrange

’ and downrange miss distances of sample impacts of weapon

i systems. This thesis examines four of the most widely used

% approximation techniques (Grubbs-Patnaik/chi-square, Grubbs-

- Patnaik/Wilson-Hilferty, modified RAND-234, and correlated

E bivariate normal), compares'their results with the results

3 and computational effort required by established numerical

y Integration techniques, determines the relative accuracy of

AE each technique in various regimes of the bias/ellipticity

L

; parameter space. Included in this report is a tutcrial on

" the subject of CEP meant to serve as a general introduction

:; to how tocalculate CEPs with some of the popular

? approximation techniques,

y In general it was found that each of the approximation

i; techniques 1s best in some regime of the parameter space

% with the Grubbs-Patnaik/chi-square technique being the most
reliable.estimator. For fast calculations of CEP, the

i correlated bivariate normal and the ;exact" method may not

'é be feasible because both are computationally rigorous and

> require from 2 minutes to several hours of computer time (on

g a perscnal computer) to give an estimate of CEP.
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EXAMINATION OF CIRCULAR ERROR PROBABLE

APPROXIMATION TECHNIQUES

I. Introduction

Background
Circular error probable (CEP) is defined as "... the

3 radius of a circle centered at the target or mean point of

impact within which the probability of impact is 0.5"

// F(x,y) dx dy = 0.5 (1.1)

Ccep

{ (16:1). That is:

v

N e e A

where
Ccegp = a circle centered at the target with radius CEP
F(x,y) is the bivariate normal density functionm
x i1s the crossrange miss distance

y 1s the downrange miss distance.

Given this definition, circular error probable (CEP) is used
to measure a weapon system” s impact accuracy. The CEP {is
determined by taking test impact data and approximating the
actual CEP of the missile system. Of course, the more data
points - or weapon system tests - collected, the better the
approximation of CEP.

There are several ways to approximate CEP. One group
of techniques is non-parametric approximation methods.

These approximation techniques make no assumptions about the
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underlying distributions of the impacts. One non-parametric
method simply uses the sample median as an estimate of CEP.
Non-parametric estimations are only useful in cases where
one has available a large number ( greater than 30 ) of
sample impacts. When flight testing missiles it is not
practical to expect to have a large number of data points
(usually no more than 15 are available) (2), sc non-
parametric tests are of limited use and are not presented in
this study.

The most common parametric methods for estimating CEP
are based on the assumption that the impacts are normally

distributed: closed form integration of the bivariate

normal function, numerical integration of the bivariate
normal, or algebralc approximations of the bivariate normal
function (16:2-4). Closed form integration of the bivariate
normal distribution Is of l1imited use because it can only be
accomplished for the case of non-correlated samples with
means of zero and equal standard deviations (16:2-3),

On the other hand, numerical integration techniques are
useful in estimating correlated samples with non-zero means
and unequal varlances. Numerical integration techniques
yleld a probability of impact given a circle of known
radlus., However in approximating CEP {t is of interest to
derive a radius given a known probability (i.e. 0.5).
Therefore >ne must come up with an initial estimate of CEP

and then iterate the numerical Integration until a
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probability of 0.5 is achieved (3).

It is impcrtant to note that numerical integration
techniques for estimating CEP are in fact estimates of CEP.
They are the most accurate estimates available under the
assumption of normality. Because of the fact that they are
most accurate they are often referred to as "exact"”
solutions. Although the use of an "exact"” method provides
the most accurate results, there are advantages and
disadvantages to its use,.

While numerical integration methods provide good

estimates of CEP, and can be used to evaluate the

accuracy of the other CEP approximation methods, they
require considerable computer time, and are usually

impractical in flight test analysis (16:3).

The key point i{s that numerical integration can be used as a
standard to evaluate the accuracy of other CEP approximation
methods.

The preferred method of approximating CEP using
numerical integration of the bivariate normal density
function is infinite series expansion. When calculating
CEP, one is solving for the radius within which the

probability of hit {is 0.50.

(x - 802 (y - $?
P(R) exp| - = —2—— + —-2—— dxdy (1.2)
ZnS SX Sy
where,
(x, y) = downrange and crossrange miss distances;

(x, y) downrange and crossrange sample means;
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(Sx, Sv) = downrange and crossrange sample standard
’ deviations.

Whea P(R) is equal to 0.50, then R is the estimate of the
CEP. Smith suggests an iterative approach to solve for CEP
(17:1-6). One approxifagates this integral (1.2) with an
infinite series and expands 1t until the innmer terms
approach zero. This method of approximating CEP is referred
to as the "exact"” method. The calculations required by the
"exact” method can be extremely rigorous as will be
illustrated in Chapter III. The number of iterations for
the series to converge can use much computer time.

Another numerical integration technique in current use

is the correlated bivariate normal method (CBN). The CBN is
sometimes a faster approximation than the "exact"™ method,
however, it also requires considerable time to converge to
the CEP.

Since numerical integration techniques may be
impractical, it iIs essential to have fast approximation
techniques that are fully tested and validated. The
algebraic approximations give fast results and are accurate
over certain regimes of the parameter space (Three
parameters can be used to characterize the probability
distributions of impacts: bilas, ellipticity, and
correlation. It will be shown that correlation can be

removed from sample data so that one is left with two

parameters). Many different algebraic approximations of CEP



exist., Three of these algebralc approximation methods are
of particular interest to this study of CEP methodologies:
Grubbs-Patnaik/chi-squared
Modified RAND-234
Grubbs-Patnaik/Wilson-Hilferty
These three methods were suggested bty the sponsors of this
study (4220th Weapon System Evaluation Squadron, Strategic
Air Command) as the most frequent methods used. No work has

been accomplishbed to fully compare these approximations with

each other and with the numerical integration methods.

Problem Statement

Given non-correlated sample impacts, how do common CEP
approximation technicques (Grubbs-Patnaik/chi-squared,
Modified RAND~234, Grubbs—-Patnaik/Wilson-Hilferty, or CEN)
compare in accuracy and computational effort (measured by
computer time) to the "exact” method (numerical integration)
over the possible range of the parameters bias and

ellipticity.

Purpose of the Study

It has been suggested that the "exact" numerical
Integration method of approximating circular error probable
(CEP) is not practical for flight test analysis because of
the inordinate amount of computer time {t takes for this
method to produce an approximation of CEP (16:3). This
study examlnes four methods of approximating CEP and
compares them to the "exact” method.

While examining these approximation methods this study

1-5
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determines which method gives the "best” estimate of CEP
when compared to the "exact"” methodin various regimes of the
bias/ellipticity parameter space. Additionally, a tutorial
on CEP and the various approximation techniques for
calculating CEP 1is presented.

The general approach to this thesis is to:

-~ Apply the three algebraic approximation techniques
and the CBN over a wide range of the bias/
ellipticity parameter space;

—-- Compare accuracies and computational effort
(computer time) of each of the four approximation

techniques with the "exact” numerical integration

method;
-- Analyze results to determine:

- which technique 1s most accurate (compared to
the "exact"” method) in a given regime of the
bias/ellipticity parameter space;

- where any of the techniques may fail to give an
accurate estimate of CEP,.

-- Use regression analysis to estimate the error
generated by each approximation technique over the

bias/ellipticity parameter space and add a

correction factor to the calculations.
This study does not use actual test data for validating
the approximation techniques. Non-dimensional values of

bias and ellipticity are used. Therefore, correlation 1is

1-6
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assumed to be equal to zero. Given actual test data, the
correlation can be removed from the data by translating the
data to principal axes (See Appendix B for details on ftow to
remove correlation from sample data) (10:20-21). The units
(feet, meters, etc.) for CEP or any of the parameters do not
affect the calculation of CEP, as long as one is consistent

with the units used.

Sequence of Presentation

Chapter II presents a review of related literature in
this field. Chapter III describes the three algebralic
approximations, the CBN, and the "exact"” method. Also

Chapter III explains the data collection process, computer

program and the regression anélysis used to estimate the
errors between the algebraic approximations and the "exact"”
solution.

Chapter IV discusses the results of this study in terms
of which approximations of CEP are "best,” and in what
regimes of the bias/ellipticity parameter space each should
be used. The results of the regression analysis are also
discussed in Chapter IV, Chapter V summarizes the findings
of this study and makes recommendations for the
implementation of these results and for further research.

The appendices present the tutorial on circular error
probable, the derivation of some of the mathematical
formulae used in this study, computer program listings, and

some sample output. Appendix A contains the tutorial on

1-7
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k1
CEP. This tutorial is written so that it can stand alone {
from the rest of this document. Appendix B is a discussion ?

of the method of removing the correlation in the samples of

impact data. Appendix C is a discussion of the secant

) method that is used in the numerical integration techniques. X
. Appendix D contains sample results from the data collected ;
i for this report. Finally, appendix E is a listing of the é
computer program writteﬁ in Pascal. h
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IT. Literature Review

Past work in the area of approximating circular error
probable can be divided into two groups: theoretical work

and applied work.

Theoretical Work

The theoretical work in the area of estimating CEP is
concerned primarily with deriving the various approximation
techniques. Chapter III will give the details about the
derivations of each approximation method.

The theoretical groundwork for two of the approximation
techniques of interest to this study was set by Frank E.
Grubbs. He combined the work of Patnaik, Wilson, and
Hilferty to formulate two methods of approximating CEP.
These are referred to as the Grubbs-Patnaik/chi-square, and
the Grubbs-Patnaik/Wilson Hilferty (7). Grubbs defined the
problem of iInterest as:

that of finding the probability of hitting a

circular target ... whether the delivery errors

are equal or unequal and also for point of aim or

center of impact of the rounds either coinciding

with the target centroid or offset from 1it. ... It

therefore appears desirable to record a straight-

forward, unique, and rather simple technique for
approximating probabilities of hitting for all of

the various cases referred to above (7:51).

Grubbs” mathods are being used by several organizations to
calculate CEP: Strategic Air Command (missiles and bombers)
(4), the Army Missile Command (18), and USAF Foreign

Technology Division to name a few,

In addition to Grubbs” two approximation methods the

2-1




Rand-234 method is presented. This method is .ot based cn
Grubbs” work. The RAND-234 method of approximating CEP {s
simply a mathematical expression derived to approximate
RAND-234 tables of probabilities (14). The RAND-234 tables
were contained in RAND Report R-234.

R-234 tables contain the probabllities of missing a

circular target of a given radius with a weapon systenm

of known accuracy aimed at some point offset from the
center of the target. R-234 assumes that the weapon
system accuracy can be described by a radially

symmetric Gaussian distribution (14:2).

A least squares regression was used to derive this formula.
The reason that this method was developed was that "... a
formula facilitates computer calculation of CEP and obviates
the need to look up CEPs in the R-234 tables” (14:2). This
regression resulted in a third order polynomial for
calculating CEP.

Two other CEP approximation “echniques developed in the
literature are numerical integration techniques. One 1is
called the correlated bivariate normal (CBN), and the other
1s referred to as the "exact"” method because it 1is
considered the most accurate approximation (it is also the
most computationally rigorous of the approximations).

The CBN was developed "... to calculate CEP about the
target point given that the center of the distribution of
impacts is located at some distance (range-track) defined by
an impact bias vector” (15:1). The CBN solves for CEP by

expressing the bivariate normal distribution in polar

coordinates and then integrating over r and summing over 8.
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The resulting expression must then be solved iteratively for
the CEP value (r) that results in a probability of 0.5
(15:1-5). Typically 40 steps were used in this integration.
Jones, however, notes the accuracy of the CBN caan be
improved by increasing the number of steps used in the
integration (11:1).

Another numerical inteeration technique fcr
approximating CEP is the "exact" method. The "exact” method
is described 1{n detail by Smith. This method involves
Taylor series and infinite series expansions to estimate a
bivariate normal distribution with zero correlation. After

expansion, one must solve for the radius (r) within which

the probability of hit is 0.5. This 1is done by iterating on
r until the series expansion converges fo 0.5. Whereas the
CBN only involved summation over one variable (8), the

“exact" method sums over both r and 6 (16).

Applied Work

Comparisons of some of these methods have been
accomplished, but never has there been a study to compare
all five of these approximation methods at the same time.

Smith compared the RAND-234, Grubbs—-Patnaik/chi-square,
and the Grubbs-Patnailk/Wilson~Hilferty methods with the
fnfinite series, "exact” approximation (16). In this work
Smith showed that one can produce a very significant error
in calculating CEP by neglecting the rotation to principal

axes in the case of correlated samples. This error was as




much as 237% in one case. Also Smith varied eccentricity
while holding bias constant and vice versa. She did not,
however show the effect of varving toth bias and .

eccentricity at the same time (15:9). J

T
-

-7 Other works have also compared approximation methods.

Jones compared the RAND-234, CBN (with 40 and 400

L Ix an wr BF o g

iterations), Grubbs-Patnaik/chi-square, and the "exact.”
Table 2-1 shows the values of ellipticity and bias used in

the 16 cases examined by Jones.

N
»
[
: Table 2-1 .
J 4
1 Cases (11:3) N
: X
| Case Ellipticity Bias N
1 0.25 9.5 -
2 0.30 0.6
3 0.35 0.7
4 0.40 0.8 o
5 0.45 0.9 \
6 0.50 1.0
7 0.55 1.1 >
8 0.50 1.2 .
9 0.65 1.3 -
10 0.70 1.4 ~
11 0.75 1.5 :
12 0.80 1.6
13 0.85 1.7
14 0.90 1.8 .
15 0.95 1.9 y
16 1.00 2.0 -
(Note: the units in this analysis do not matter as long as L
one 1is consistent with the units -- once in meters, always
in meters, etc.) :‘
]
Table 2-2 shows the CEPs calculated for each of the y
techniques (RAND=-234, CBN with 40 steps, CBN with 400 steps, ]
-
o
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Grubbs-Patnaik/chi-square, and "exact"”) for each of the 15 f
3
cases In table 2.1. Table 2.2 illustrates that the "best” :
approximatinn varies depending on the values of ellipticity Ry
and bias. However, this paper did not explicitly delineate E
')
where one method becomes more inaccurate than another.
Table 2-2 o
Results (11:4) ?
Case RAND | CBN(40) | CBN(400) Grubbs Exact 7
1 801.18 805.98 818.81 824 .41 820.27
2 830.73 833.54 845.20 847.12 846.56 T
3 865.21 866.81 877.67 876.89 878.97 4
4 904.28 905.23 915.57 913.48 916.82 z
5 947.60 947.08 957.09 954.52 958.34 .
6 994.80 992.51 1002.37 999.71 1003.61 }
7 1045.55 1041.44 1051.28 1048.37 1052.55 )
8 1099.48 1093.69 1103.67 1100.02 1104.97 2
9 1156.25 1149.01 1159.28 1154.41 1160.62 ;:
10 1215.51 1207.01 1217.72 1211.11 1219.12
11 1276.90 1267.24 1278.54 1269.88 1280.01 o
12 1340.08 1329.22 1341.24 1330.47 1342.30 .
13 1404.,69 1392.53 1405.40 1392.65 1407.04 }
14 1470.39 1458.07 1471.90 1473.64 1457 .47 .
15 1536.82 '1521.86 1536.68 1521.02 1538.52 :
16 1603.64 1587.43 1603.32 1586.85 1605.27_l a
Pl
By calculating the error of each approximation relative to :
¢
the "exact” metho@, one can determine which approximation 1is é
"best” for each case. Equation 2.1 is used to determine the -
relative error (RE) (16:9). o
l:\
"!.
CEP ~ CEP
approx t
RE = 2P £xac (2.1)
CEPexact ﬁ
o
For example, table 2-3 contains relative errors for five of f
the example cases. ?
¥
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Table 2-3

Relative Errors

Case RAND CBN(40) | CBN(400) Grubbs |
1 -0.023 -0.017 -0.002 0.005 |
5 -0.011 -0.012 -0.001 -0.004
10 -0.003 -0.010 -0.001 -0.007
13 -0.002 -0.010 -0.001 -0.010
16 -0.001 -0.011 -0.001 -0.012

For all cases the CBN with 400 steps is the "best.” However
as stated before this method is computationally rigorous
much like the “exact” method. So {f one needs a "quick"”
estimate for case 1 the Grubbs~Patnaik/chi-square is the
"best.” However, by case 10 the RAND~234 gives the "best”
estimate of the fast methods, and by case 16 the RAND-234 is
as accurate as the CBN with 400 steps.

As mentioned before, no study has been accomplished to
analyze the accuracy of each of the five methods here
presented over as wide a range of values as those in this

studyv.
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>, III. Methodology
This chapter presents the methodology used to analyze

S the CEP approximation techniques. The variables used in the

. methods (mean, standard deviation, and correlation) are
introduced, followed by a presentation of the mathematics of
each of the approximation methods. ©Next the framework of
the attempted regression analysis is discussed, followed by

< a description of the process by which data was generated for

- this study. Finally, the interactive computer program

Q‘

. included in appendix E is described.

r

hY

" The Variables

% Circular error probable can be expressed as a function

y of the standard deviation, mean, and correlation of the

| downrange and crossrange miss distances of a set of sample h

. impacts. Correlation can be removed from sample data by

. performing a simple rotation of axes Into a non-correlated

. coordinate system (see Appendix B for the this rotation

: technique and the formula for calculating correlation)

&

. (10:21). This study assumes one Is using the standard
deviations and means from uncorrelated samples.

\ The unblased estimators of standard deviation and mean
are used here, Equations 3.1 and 3.2 show the formulae used

A in calculating the down range and cross range sample means:

N 1

N n

N X =7 x4/n (3.1)

i=1
‘
' 3-1 {

.
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Vi/a (3.2)
1

¥y =
i

nWt—123

where x refers to cross range miss distance, y refers to
down range miss distance, and n is the total number of
sample impacts. Equations 3.3 and 3.4 are the formulae for

calculating the sample standard deviations:

)
Sy = ‘/1zl(x12 - a%x2)/(n - 1) (3.3)

n
y {iil(yiz - a§52)/(a - 1) (3.4)

From these variables the parameters of bias and ellipticity

w
]

are obtained.

bias = 'V %2 + §2 (3.5)

ellipticity = S,/Sy (3.6)

The relative errors between the approximation techniques and
the "exact"” approximation vary depending on the blas and

ellipticity of a given set of sample impacts.

Grubbs-Patnaik/Chi-Square

The Grubbs-Patnaik/chi-square approximation method is
based on the work of Frank E. Grutbs (7). This method uses
the fact that the bias I{s a sum of noncentral chi-squares
and solves for the radius that gives a probability of 0.5

(1.e. PI(x-%)2/5, 2 + (y-§)2/5,2 <= R%] = 0.5) (7:55).

T T e e e e T e L
JCIRL T TP T R ) L I )

~ L !

o & a ¢
0 _a_f

PR
s 4 e

% %




This 1s the approximation:

CEP = V kv/2m (3.7)

where

m = (Sx2+sy2 + %2 + §2) (3.8)
vo= 208t + 2025,25,% + s, ) 4

4(x25,2 + 2850s,5, + §25,2)  (3.9)
k = F~1(0.5) (3.10)
df = 2m2/v (3.11)

and F is the chi-square distribution function with df
degrees of freedom (1:5). 1In this formula p 1s the
correlation coefficient,. If the rotation described in
appendix B is performed then the terms with p in them can be
Ipaored (¢ = 0),

In the computer programs used in this study the inverse
chi-square function was estimated using table values found

in the CRC Standard Math Tables (5:547). This table gives

values of F~l for integer values of df, but Fl is a
continuous function. To obtain values of F~l for non~integer
values of df a simple linear interpolation was used (Note:
F~! 1s not a linear function, but for the sake of simplicity
the linear approximation was used for the interpolation.

Comparing the results obtained using this simple linear

interpolation and results of the Grubbs-Patnailk/chi-square




from other studies that used a more exact expression for F~! K

showed that the was little or no loss of accuracy.).

Grubbs-Patnaik/Wilson-Hilferty -

The Grubbs=~Patnaik/Wilson~Hilferty approximation .
technique was developed as a modification of the Grubbs- ;
Patnaik/chi-square method. The Grubbs-Patnaik/Wilson-

Hilferty method transforms the chi-square to approximate

normal variables. This method does not use the chi-square

function described in the previous section. The expression R
for CEP used Iin the Grubbs-Patnaik/Wilson-Hilferty method

is: 5

CEP = ym{l ~ [v/(9m?)]3) (3.12) 3

where m and v are as defined in the Grubbs=-Patnaik/chi-

square method (equations 3.8 and 3.9) (1:6).

Modified RAND-234 E
The Modified RAND-234 method is a fit of a cubic :
polynomial to a table of CEP values. Pesapane and Irvine ?
used regression analysis to "...derive a mathematical §
expression for circular error probable (CEP) which t
approximates probablility tables contained in RAND Report R- ;
234" (14:2). This is the Modified RAND-234 method: i
.

CEP = CEPyp1('.0039 - 0.0528v + 0.4786v2 - 0.0793v3) (3.13) N
where CEPypg 1s the CEP centered on the mean point of impact S‘
|

(this CEP must be translated to a CEP centered on the

..
. .
o 0 8 7
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target), Sg is the smaller of the two standard deviations,

St is the larger, and:

CEPMPI = 0.61488 + 0.563SL (3.14)

.2 + 5.2 - (5.2 - $,2)2 4 4525 25 %
X y x y x °y

Sg (3.15)
2

2 2 2 242 2g 25 2
/sx + Sy° 4+ ‘/(sx = Syf)° + 4p°5, Sy

Sp = (3.16)
2

v = b/CEPMPI (3.17)

b = bias = g2 + §2 (3.18)

The Modified RAND-234 was developed under the boundary
condition that Sg/S; is greater than 0.25 and that v is less
than or equal to 2.2 (1:2-3, 14:2-5). These boundary
conditions exclude highly elliptical sample impact data sets
(sg < SL/A) and those whose mean point of impact is over 2.2

times as far away from the target centroid as the CEP around

the mean point of impact (CEPypp):

Correlated Bivariate Normal

The Correlated Bivariate Normal (CBN) method of
approximating CEP {s a method that estimates the bivariate
normal function (in polar coordinates) by integrating with
respect to r and summing over 6. Here 1is the development of

the CBN approximation technique (equation 3.19 is another

expression for the distribution function of the bivariate
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27 r*
i
P(r*) = / /exp[-(ar2+2br+c)] rdrd® (3.19)
2nsxsy\/1—02
0 4]

where ¥ (p(r?¥) = P(CEP) = 0.5) is the radius for which one
is solving, a and b are functions of the change in ©
(equations 3.20 and 3.21), and ¢ is a constant (equation
3.22). Finally, equations 3.23 and 3.24 give the formulae
for the CBN approximation techunique. In these equations N
1s the number of intervals the Iintegral 1is divided into to
give this approximation, A0 = 2x/N, 2y and by are as given
in equations 3.20 and 3.21 for the current value of ©
(271/N), and ¢ is as given in equation 3.22. The more

intervals, the more accurate the approximation (15:1-5),.

1 sinZo 2psinpcosn cosze
2(A) = > — - + > (3.20)
2(1=p“) \ Sy SxSy Sy
-1 XsinC PRXcos® + 0ysinl vcosO
b(8) = > > - + > (3.21)
2(1-p2) \ s, SxSy Sy
1 %2 20%§ 72
¢ = - + > (3.22)
2(1-02) \ 5,2 5,5, Sy
z
2 2
erf(z) = J=r exp[~x¢]dx (3.23)
™
0
3~6
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P(r") = - z —_— XD ————
é\/v sty\ll-oﬁ i=1 aj aj
by by by

*

expl-a;(r*)2 - 2b4r* = — ) - exp -|— (3.24)
™ ai ai

To cbtain a CEP using the correlated bivariate anormal
method cne must first make a guess at what the CEP actually
is, solve equation 3.23 and compare the value to O0.5. 1f
the value obtained is "close enough™ to 0.5, one has a CEP.
However if the probability given by the CBN is not "close
enough” to 0.5 then one must iterate to a value that {s
closer to 0.5. To decide how close 1Is "close enough"” one
must decide how accurate your estimate of CEP {s to te. The
secant method (described in Appendix C) is used to iterate

for the value of the CEP in the CBN.

"Exact” Method

Like the correlated bivariate normal technique, the
“exact"” method estimates the bivariate normal function. In
order to use this method the two coordinates of miss must be
uncorrelated. This method uses Taylor series and infinite
series expansion to estimate CEP. The "exact” method takes

the bivariate normal function in polar form:
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R 2=

2
2 Sy Sy?

1{(rcose - )2 (rsine - ?)2
P(R) = Aexp =-— + rdrd8 (3.25)
0 0

where

2mSxSy

After series expansion this is the equation for the

approximation technique:

rR2 e (k+1)1(5+1)!
P(R) = 0.5 = — D I xyyy
2 k=0 3=0 (k+j+1)!
where
1 g2 ;,2
D = #m— exp] - +
SySy 25,2 25,7

(2k)! -R2\ kK x k! ~2x2\ 1
) e ()
(k+1)1(k!)2 \8s,?2 1=0 (k-1)t(21)t \s,?

(25)! -2\ J it ~25 1
(3+1)1(31)2 \8s,2 1=0 (j-1)!1(21)! \s,?

As with the CBN to solve this one must first make a
guess at the CEP, and then iterate to arrive at an answer

that Is accurate enough for one”s purpose. The secant

method was used in this case also (17:1-5).

(3.26)

"exact"”

(2.27)

(3.29)

(3.30)
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This study also developed a correction factor using
regression analysis for the approximation techniques to make
the methods better estimators of CEP. A least squares
rultiple linear regression model was constructed with two
independent variables. The regression analysis uses tias
(b) and ellipticity (e) the independent variables and the
relative error (RE) as the dependent variable. The

regression model is of the form:

RE = BO + Blb + Bze (3.31)

where the B “s are the regression coefficients for which one
must solve.
In order to solve for the 8:°s define the following

vectors and matrices:

RE, 1 by e
RE = . X = . . .
RE, 1 by eq
Bo
B = 81
32
The least squares estimator of 8 {is:
B = (X°X)"1x-RrE (3.32)

(9:392-395)

After solving for the estimated relative error (RE) one




simplv divides the estimated CEP by cne plus the relative

error. Recalling equation 2.1:

CEPapprox - CEPexact - RE (2.1)
CEPexact
therefore,
CEPapprox
CEPewgcet = (3.34)

(1 + RE)

The results of this least squares multiple linear regression

are discussed in chapter IV,

The Computer Program

The computer program included in this study is written
in the Pascal programming languvage and it is compatible with
personal computers running Turbo Pascal by Rorland
International (with some minor changes it will runm on other
versions of Pascal). The program operates interactively.
It will compute CEPs for each approximation technique, only
those requested by the user, or {t will decide which
technique is the most accurate (other than the "exact"”
method) for the piven parameters and return a CEP for that
technique only. The program decides which method 1is the
"test” using a decisicn criteria based on the results of
this study.

The computer runs to collect the data for this study

were performed on the VAX computer at the Air Force
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Institute of Technology, and on the SANYC MBC-550 personal :
{ computer (operating svstem: MS-DOS) owned bv the author. S
This program is intended to run on a personal computer in
the offices of persons concerned with calculating CEPs. The
programs were also run on a Zenith Z-150 at the Air Force
Institute of Technology. There were no differences in how

the program ran on the SANYO and the Zenith. The timing

P ol s s g gx o as e e 4
.

WIRTIIOTLII .

analysis was based on time to run on the SANYO.
The program can easily be adapted for use with any
version of the Pascal language. The listing of the computer ‘

program is included in appendix L. 3

Data Collection r

To ccllect data for this study CEPs for all five of (
the approximation methods were calculated over a wide range
of values of ellipticity and bias. Since the blas is the
radial distance of the mean point of impact from the target
centroid, bias was stepped out on the diagonal where X = ¥,
whereas ellipticity was calculated by keepling Sy constant
and varying Sx' The range of ellipticities considered was
from 0.05 to 1.0, and the range of bias was from 50 to 1555.
Overall, 440 data polnts were examined in this study. These .
440 data points examined ellipticities from 1.0 to 0.05 in
decrements of 0.05 and bias from 1555 to 70 (X and ¥ from -
1100 to 50 in decrements of 50), and a CEP was calculated
for each of the five approximation methods for all

combinations of ellipticity and bias,

L S
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Appendix D contains sample output from the data

.

collected. The sample in Appendix D shows CEPs for

ellipticity from 1.0 to J.1 (in 0.1 decrements) and blas

| g

from 1555 to 141 (X and § from 1100 to 100 in decrements of
100). .

Once all the data rumns were completed, the analysis of

"o

the approximation methods could begin.
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IV. Aralysis and Discussion of Results

This chapter discusses the results of the analysis
described in chapter III. Each of the approximation
techniques is presented with a discussion of how accurate
(compared to the "exact” method and the other
approximations) the method is over the range of the
bias/ellipticity parameter space. Also considered in the
analysis of each approximation technique is the computer
time each technique takes to gilve an answer for the CEP.
Finally this chapter discusses the regression analysis

developed to attempt to correct the approximations.

Grubbs-Patnaik/Chi-Square

The Grubbs-Patnaik/chi-square method gives relative
errors (RE) that range from -0.0076 to 0.0684 (in several
cases the absolute relative error was less than 0.0001).
Recall equation 2.1:

CEPapprox - CEPgyact

RE = (2.1)
CEPexact

The Grubbs-Patnaik/chi-square approximation technique
underestimates the CEP 287% of the time. Figure 4-1 shows
the portion of the parameter space where the Grubbs-
Patnaik/chi-square method is the best.

This approximation is the most accurate of the
approximation methods. It is the most accurate method for

467 of the data polnts, Additionally the Grubbs-
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A
I, Patnaik/chi-square method gives an answer in an average of 2
L
Z’ seconds.
'“I
Ellipticity
o
: 0.0 0.1 0,2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
< 1550 *[x[x[*
:5 1500 AEE KL 1500
: * | % | % | %
1400 x|k % | x| *x |k |*k|*|*x|*x] 1400
3 X |k | * | * | * | *|*|*|*|*
) 1300 * |k [*|*x|* |*x|*|*|*x]|*] 1300
.S * | * % *
o B 1200 * [ 1200 B
= i * | % * * i
a 1100 * | % * *| 1100 a
v S * | * * * s
) 1000 A *[*[*[*] 1000
e x| % | % * | % x[* %%
o 900 *[*[* * % F|*[* % [* ] * 900
S * [ % [*|* *[*[* %[ [ *
} 800 * | k| * | * * % [* | * * 800
[ * | *[* [ * * *x[* 1% *
o 700 * [ * I EIEIEAE 700
2 * AR AEAERES
- 600  YERERE  AEIEAE K 600
" * | % | % X x| * | *|*|*|*|*|*
500 * | % | % * [k |k %[k |* %] *|* 500
A * | % * |k | k| x| *|*|*| %[ *|[*|*|*
- 400 * | % F [ K| K| h | *|*|*|*|*|*]|* 400
. * | * X % | k| K|k |k *|%|%]|%*|*]|*
3 300 X[ * | * | K| x| k| *|*|* | x| *|*|*]|*|* 300
< . * k[ * | * | % | *|*|[*|* | %[ *|*]|*]|%]|*
- 200 X [k [k | % | %% |*|* | X% |*|*|*]|%]|* 200
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; * [ % x| % | k| * * | % | *
3 o1 * | * *|* | *|* *|* | * 0
e 0.0 0.10.20.30.40.50.60.70.80.91.0
- Ellipticity
j: Figure 4-2
SN Grubbs~-Patnaik/Chi-Square "Best"”
-~ Grubbs-Patnaik/Wilson-Hilferty
>
N The Grubbs-Patnaik/Wilson-Hilferty method yields
-‘."
relative errors ranging from -0.054 to 0.0726 (the smallest
[
o
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absolute relative error for this method was 0.0002). The
percentage of underestimated CEPs given by this method is
10%. Figure 4-2 shows where this method is the most

accurate mathod. The Grubbs-Patnaik/Wilson-Hilferty

Ellipticity
- 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1550 =
1500 - 1500
1400 1400
1300 1300
B 1200 ~{=1{=1=-1-]- -1 1200 B
i -1-1-1- 1
a 1100 -1=-1-}- 1100 a
s ~{={=-{= s
1000 -1- 1000
900 -~ 900
800 800
700 700
600 600
500 500
400 400
300 300
200 200
100 100
0 T 0

0.0 0.1 0.2 0.3 0.40.50.60.70.820.9 1.0
Ellipticity
Figure 4-2
Grubbs-Patnaik/Wilson-Hilferty "Best”

approximation is the most accurate method for 5% of the data
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Modified RAND-234
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absolute relative error for this method) are tre range of

the relative errors given by the modified RAND-234
technique. It should also be noted that the modif.ed RAND-
234 method underestimates the CEP 60% of the time. Figure
4-3 shows where the modified RAND-234 method Is most
accurate in the bias/ellipticity parameter space. For 29%
of the data points, the modified RAND-234 approximation gave
the most accurate estimate of CEP when compared to the the
other approximation methods. This approximation technique
also returns estimates of CEP in an average of 2 seconds.
Astbury notes that the modified RAND-234 method was
developed under the boundary condition that ellipticity,
Sg/SL> is greater than 0.25. However, the data for this
study showed that the modified RAND-234 is also reliable for

some values of ellipticity less than 0.25.

Correlated Bivariate Normal

The Correlated Bivariate Normal (CBN) approximation
technique can be the most accurate estimate of CEP over the
entire range of the parameter space 1{f one has the time to
wait for a result., This method takes anywhere ffom 10
minutes to several hours to produce a CEP that is accurate
to within 0.001 absolute relative error. The CBN can return
as accurate a value as desired. The more intervals the
integral is broken into, the more accurate the
approximation. At times the CBN takes longer than the

"exact” method to give a CEP. However, the CBN always

4-5
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cenverges to an estimate of CEP. E
Here is an analysis of the time it takes the CBN to ;
coanverge for three different numbers cf intervals the :‘
integral 1s broken into: ¥
::

i 40 intervals - 10 minutes 1;
100 intervals - 1 hour

400 intervals = 16 hours

As one can see, the amount of time 1t takes for the CBN to f;
converge increases exponentially, Moreover, to achieve E
accuracies to within 1% it is often necessary to increase f‘
the number of intervals in the CBN. i
"Exact” ;
The "exact" method is the benchmark against which all b,

.

the other approximation techniques were measured. This g'
method takes anywhere from 2 minutes to 2 hours to give an E}
answer for CEP when 1t converges. The "exact” method does \,
not always converge to a CEP. For some highly elliptical ?i
distributions with large biases where the target centroid {s iﬂ
not within 2 standard deviations of the mean point of ::
impact, the "exact” method diverges. Figure 4-4 shows the ';
regimes of the bias/ellipticity parameter space where the ;x
"exact"” method does not converge. s
In the other regimes of the parameter space, the E

~

"exact” will converge 1if one has the time necessary for it g;
N

to do so. If quick results are not necessary, then the o
4-6
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"exact"” method is the preferred method to calculate CEP.
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For some values of ellipticity and bias, the "exact" method E

converges so quickly that it may be unnecessary to use a E

less accurate approximation. The folowing is a list of how :

long it takes the "exact” method to give a result for :

~

various values of the parameter space: E

. 5 - 15 minutes n

for Sy > X and Sy > § \.

20 - 30 minutes N

| for 0.8 < Sx/sy < 1.0 and S, < x and Sy <y S
E 30 - 90 minutes

for 0.5 < 5,/S, < 0.8 and S, < X and S, < §

> 90 minutes N

for all other values of ellipticity and bias. S

The notable exceptions to the above analysis comes when S, :

} equals X or Sy equals y. For these values the "exact" £

; approximation method gives an answer for CEP in less than 2 E

minutes. Clearly there are times when it is feasible to use i

: the "exact” method for calculating CEP. Again, use of the 3

"exact"” method would depend on the amount of computational E

effort one is willing to expend to achieve an answer. ?

: Figure 4-5 maps the entire bias/ellipticity parameter F

space examined in this study and where each of the methods S

give the most accurate estimates of CEP. It should be noted

that in those regimes where the "exact” method will not

converge, one can use the CBN to achieve a highly accurate

estimate of CEP (i1f the time 1s available).

4-9 o




Regression Analysis

As part of this study a multiple linear regression was
performed on three of the approximation techniques (Grubbs-
Patnaik/chi-square, Grubbs-Patnaik/Wilson-Hilferty, and the
modified RAND-234). This regression analysis was performed
in the hope of providing a correction factor for the
approximations so they would more closely estimate CEP.

This regression aralysis was based on the relative errors.
dere are the three regression equations developed using
the regression procedure described in Chapter IIl1 (RE stands

for relative error):

Grubbs-Patnaik/chi-square

RE = -0.000256 + 0.000392(Ellip) + 0.00000172(bias) (4&.1)

Grubbs-Patnaik/Wilson-Hilferty

RE = -0.000472 + 0.000693(E11l1ip) + 0.00000395(bias) (4.2)

Modified RAND-234

RE = -0.000403 + 0.000498(E11ip) + 0.00000316(bias) (4.3)

Once an estimate of RE is determined, recall equation 3.30:

CEPapprox

CEP

exact = (3.30)

(1 + RE)

is used to come up with a better approximation to the
"exact"

These regression equations give good results for CEP
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estimates that are greater than the "exact” CEP. In other
words, they do improve the estimate of the CEP, However
they do not capture the pattern that causes the
approximation methods to underestimate the CEP. Using the
Grubbs-Patnaik/chi-square method here is an example of the

results of the regression:

ellipticity = 0.5 bias = 282.84
CEP(approx.) = 907.75 CEP("exact”) = 906.50
RE(actual) = 0.0014 RE(regression) = 0.0004

Using the regression technique described one would end up
with a CEP of 907.36, which has a relative error of 0.0009.
That is some improvement from the original. However, when

the method underestimates the CEP this is a typical result:

ellipticity = 0.7 bias = 848.53
CEP(approx.) = 1252.7 CEP("exact") = 1254.65
RE(actual) = -0.0016 RE(regression) = 0.0015

After using the described regression technique the CEP {is
1250.8. This is a number further from the "exact”™ CEP than
the original approximation.

Similar results were obtained for each of the
approximation techniques when a suitable correction factor
was desired and the approximation had underestimated the
CEP. On the average, the regression equation for the
Grubbs-Patnaik/chi-square method improves the relative error

between the approximation and the "exact”™ by 0.0005. The

4-11
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regression for the Grubbs~Patnaik/Wilson-Hilferty results in
an improvement of 0.0008 on the average. The modified RAND-
234 regression gives an average improvement in relative
error of 0.0003. The fact remains that the regressions do
not reliably predict the times that the approximations
underestimate the CEP. It seems as if the relative errors

of

the approximation techniques are not well behaved enough
to be captured in a simple equation. Appendix D table D-3
contains a listing of the relative errors obtained for scme
example values of ellibticity and bias.

The author also tried several variations for the
regression independent variables. Squaring the ellipticity
and bias was attempted as well as taking the logarithms of
the variables. All attempts at providing a reliable
correction factor for the algebralic approximation methods
were unsuccessful.
fhe scope of this study was by no means completely

exhaustive. However, the author is able to make some

conclusions and recommendations based on the analysis of the

results of this study.
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V. Conclusions and Recommendations

Conclusions

Circular error probable (CEP) is an important measure

of a weapon system”™s accuracy. As such fit is essential to

be able to closely approximate this number. This study has
examined five different methods of estimating CEP and from
this examination the author has reached several conclusions
regarding CEP calculatiouns.

First and foremost among the author®s conclusions is
that among the approximation methods studied, CEP 1is not
"well behaved.” What is meant by that, {s that there is no
easily recognizable pattern among the approximations as to
which is most accurate over a given range of the parameter
space. This 1is evidenced by the failure of the regression
analysis that was attempted in this study. Had the
differences between the algebraic approximations aad the
"exact"” method been somewhat "well behaved"” the regression
would have provided a much more reliable correction factor.
However, this was not the case.

Another observation is that the algebraic
approximations examined (Grubbs-Patnaik/chi-square, Grubbs-
Patnaik/Wilson-Hilferty, and modified RAND-234) are
approximately 997 accurate for most values of ellipticity
and bias when compared to the "exact” method. ©Notable 1
exceptions to this are where X equals Sy or y equals Sy.
The resulting values of ellipticity and bias cause the h




accuracies of the algebraic approximations to fall to

between 90% and 987%. However, for these values the "exact”

- method produces an answer 1in seconds. Highly elliptical

:j distributions cause the greatest errors in all methods ({if
% ' ellipticity is less than 0.3, accuracies drop to between 957%
yd

’ and 997).
~£ The correlated bivariate normal (CBN) method 1is the

'E most consistent method of all. However, for this

-~
i approximation method to deliver accuracies better tham 99%,
ﬁ the CBN often requires hours to produce an estimate of the
.? CEP. The only time that the CBN would be the preferred

; method 1s when extremely accurate results (better than 99%)
'g are needed for highly elliptical cases where the "exact”

E method fails to converge. For these results to be accurate

to better than 0.1%, one must increase the number of
&Z intervals for the integral approximation to over 100, and
Eg this required several hours on the author”s SANYO MBC-550
personal computer.

?1 The "exact” method, in some regimes, is very practical
gi to use, If Sy is greater than or equal to X and Sy is
.!j greater than or equal to § the "exact” method converges to
Es the CEP very fast (less than 8 minutes). The "exact” method
é& has one major drawback and that is that it requires a

.; computer to run the iterations (this {s also true of the
Eé CBN). The algebraic approximation techniques involve only a
E& few equations that are solved once. These could conceivably
. be programmed into a hand-held programmable calculator. The
: >
f?
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" "exact"” method requires series expansion until inner terms
approach zero and then an iterative scheme to achleve a
desired accuracy in the calculation. In the areas where the

"exact" method does not converge, one must rely on the other

-

approximations for estimates of CEP,

2

) Recommendations

35 Based on the difficulties this author found in
programming these approximatioms, Pascal is probably not the

, best language for these calculations. Pascal has some

: limitations on the size of the real numbers it will accept.

i Turbo Pascal assigns real numbers to a 6 byte word size with

? no provision for double precision reals. This limits the

. range of real numbers to 1E-38 to 1E+38. Many of the
calculations required in the approximation techniques

< produce numbers out of the range of those acceptable in
Pascal. The author was reduced to using logarithms and

., other manipulations to bypass these temporary large numbers.

3 This resulted in some inefficiencies in the programs which

. could lead to longer processing time. The author also found

. this same problem with the version of Pascal that {is

P, . available on the VAX computer at the Air Force Institute of
Technology. The author 1s aware of the existence of other
versions of Pascal that can handle double precision real
numbers. This version of Pascal was not available for use
in this study.

There are other computer languages that would perhaps

5-3
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lend themselves more readily to the great number of
calculations required in calculating CEP. It may be of use
to those who calculate CEPs to have the programs furnished
with this study translated into one of these other
languages.

In addition to trying other computer languages this
author is not convinced that there is no way to capture the
essence of the errors in the algebralic approximations in
order to produce a correction factor for these methods.
This portion of this study warrants further efforts.

The approximation techniques examined ia this study
were all based on the assumption that the distribution of
impacts follows the bivariate normal distribution. It would
be useful to have robust techniques developed that could
provide good estimates of CEP (given small samples) that are
independent of the distribution of the impacts. This would
obviate the need to make any assumptions about the
distribution of the Impacts.

Finally, this author recommends that if one needs
highly accurate estimates of CEP and sufficient time is
available, the "exact” method should be used for all values
where the "exact"” converges to a CEP. In those cases where
the "exact” does not converge, the CBN with at least 100
intervals should be used.

Otherwise one will be forced to use one of the

algebraic approximations. If one is to chose a single
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approximation technique to use, the Grubbs-Patnaik/chi-
square 1Is the most accurate for the greatest range of values
of ellipticity and bias. The analysils presented in this
study will aid the user in determining which approximation

is the "best"” for one”s purposes.
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Arpendix A

Circular Error Probable Tutorial

Introduction

Whether one is dealing with guided bombs, unguided
bombs, bullets, missiles, rockets, lasers, etc., for a
weapons systems planner to effectively plan the employment
of a weapon there must be some measure of that weaponrn’s
accuracy. Circular error probable (CEP) is one measure of
accuracy that is frequently used. CEP is defined as:

.+« the radius, centered on the target, within
which the probability of impact is 0.5.

To determine a weapon”s CEP one must test the weapon to
get a collection of sample 1mpact§. This collection of
sample impacts may be large (greater than 30) or it may be
quite small (take the case of a multi-million dollar missile
- one wouldn“t launch 30 or more of them just to test thelir
accuracy). In the case of a large sample size, non-
parametric techniques (i.e. those that make no assumptions
about the underlying statistical distribution) are adequate
for estimating the CEP. But non-parametric techniques are
subject to large errors when dealing with small sample
sizes. In the case of small sample sizes, one must resort
to parametric methods for approximating CEP. These
parametric techniques assume a particular statistical

distribution and estimate the various parameters of that

- T toa . s e et COA S T R P S T S S
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distribution (i.e. mean, standard deviation, correlation,

YA ST

etc.).

This tutorial gives a brief introduction to these

various techniques for estimating CEP starting with non- -
parametric techniques followed by a discussion of parametric &
techniques. Finally, results of CEP calculations for 10

sample impacts of a hypothetical ICBM warhead using each of

the approximation techniques is presented. XD

9

Non-Parametric Approximation

A good non-parametric approximation for CEP 1is the

p R CUE LN
Ny Y 3

sample median. To determine the sample median, one must

b
rank order the sample miss distances (that is the straight E}
line distance from the actual impact point to the target). N
The sample median (X) is the middle statistic (or if there i
are an even number of sample points, the median is the g
average of the two middle order statistics c¢f the sample :
points). .

X X((n+1)/2) if n is cdd, (A.1) ;3

X = {X(n72) + X((n+1)72)17/2 if n is even. (A.2) =
The sample median is a good statistic to use (if one has a ﬁ
large sample) because it requires no assumptions about the :
underlyving distribution of the impacts. C
Parametric Approximations

Parametric approximations assume that there is an 3
underlying distribution to the impacts. This report -

A-2 -




nresents parametric approximation techniques that assume the
distribution of impacts is bivariate normal about some mean
point cf impact. There are several parametric
approximations available for estimating CEP. Most of them
are based on the means and standard deviations of the
downrange and crossrange miss distances of the sample
impacts. Figure A-1 is an example of how to determine the

downrange and crossrange miss distances.

le il (Xlty1)

!(0,0) 1

itarget X

Figure A-1 Sample Impact i,

Set up a coordinate system with the target as the origin,
Define x| as the crossrange miss distance and vy as the
downrange miss distance for sampl~ impact #1 (ij). Then
take the total number of sample impacts (n) and calculate
the crossrange and downrange miss distances for each of

them.

]
1y
14 (0,0)
target
Ly
is
1n

Flgure A-2 n - Sample Impacts

A-3
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s
" Next calculate the mean and standard deviation for the
- sample crossrange and downrange miss di.tances.
v n n
g ) Toxyg To(xy - %2
R = i=1 (a.3) Sx =4/i=l (A.4)
. n (n - 1)
n n 2
_ Loy T vy - 9
y = i=1] (A.5) S, =4/i=1 (A.6)
— y
: n (n - 1)
a The means will give you a mean point of impact (MPI) )
: I
o ‘ I (MPI)
[(0,0)
i target
Figure A-3 Mean Point of Impact
If the MPI and the target coincide, then the CEP is
5 relatively easy to calculate., However, this is nct always
: the case. For cases where the MPI and the target do not
coincide then the CEPyp; must be translated to a CEP
X centered on the target.
f Calculating CEP. The probability distribution function
B of the crossrange miss distance 1is:
N
N 2
3 exp[-O.S(x/Sx) ]
. f(x) = -0 ¢ x < o . (A.7)
L JZH S«
A-4
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and the probability distribution function cf the downrange

miss distances 1is:

exp[—O.S(y/Sv)Z]
f(y) = . —o (g K (A.8)

If it is assumed that § = S, = g

yo and that the crossrange

and downrange miss distances are independent, then the joint
distribution of the miss distances is:
exp{-0.5[(x2 + y2)/s2]}

f(x,y) = > (A.9)
27 S

Changing to polar coordinates, the joint distribution {is:

r exp(=0.5(r/S)2] 0 <r < o
f(r,8) = (A.10)
27 §2 0 < 0 < 2n

To solve for a particular radius r* such that The
probability that r is less than r* equals 0.5 (r* = CEP) one
must integrate equation A.10 -with respect to © (0 to 2m) and
with respect to r (0 to r¥).

This leaves

P(r < r¥) 0.5 =1 - exp[-O.S(r*/s)Z] (A.11)

and
r® = 1.1774 S = CEP (A.12)
In the case of X = § = 0 and S, # Sy the formula for
the joint distribution 1is:

1 1 r cos®\ 2 r sine \ 2
f(r,0) = =—————exp { == (—-—) + ( ) (A.13)
ZNSXSy 2 Sy Sy
A-5
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If 0.25 < S4/Sy < 1 this expression (after f{ntegration)

reduces to:

r¥ = 0.6145, + 0.563S, = CEP (A.14)

(5:5). For other values of Sy, Sy and for samples not

centered on the target, one is left to use other
approximations to determine the CEP,

Popular Approximation Methods. There are several

approximation methods available for estimating CEP in
elliptic, biased samples (i.e. S, # Sy and x #y # 0).
Presented here are four of the approximation methods
avallatle.

Grubbs-Patnaik/Chi-Square. This approximation method
is based on the work of Frank E, Grubbs (2). This method
uses the fact that the bias is a sum of noncentral chi-
squares and solves for the radius that gives a probability
of €.5 (t.e. P[(x-%)2/5,2 + (y-§)2/5,2 <= R?] = 0.5) (2:55).

This is the approximation:

CEP = ‘/ kv/2m (A.15)

ﬁ where

e

- vo= 205, % + 2025, 25,2 + 5,4 +

A

* - R -

E; 4(x28x2 + 2xyprSy + y2$y2) (A.17)

¢

N k = F-1(0.5) (A.18)

. n = 2m2/v (A.19)
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and F is the chi-square distribution function with n degrees
of freedom (1:5). 1In this formula p is the correlation
coefficient. If the correlation coefficient is non-zero,
one can perform a rotation of axes into a coordinate system
where the two coordinates of miss distance are uncorrelated
(3:20-21). Attachment 1 to this tutorial describes how to
find the correlation coefficient and how to perform this
rotation to eliminate the correlation (this makes p = 0).
Grubbs-Patnaik/Wilson-Hilferty. This approximation
technique was developed as a modification of the Grubbs-
Patnaik/chi-square method. The Wilson-Hilferty method
transforms the chi-square to approximate normal variables.
This method does not use the chi-square function described
in the previous section. Here is the Grubbs-Patnaik/Wilson-

Hilferty method:

CEP = ‘/m{l - [v/(9m2)]3} (A.20)

where m and v are as defined in the Grubbs-Patnaik/chi-~
square method (equations A.16 and A.17) (D:6).

Modified RAND-234. This method is a fit of a cubic
polynomial to a table of CEP values. Pesapane and Irvine

used regression analysis to "...derive a mathematical
expression for circular error probable (CEP) which
approximates probability tables contained in RAND Report R-

234" (N:2). This is the Modified RAND-234 method:

CEP = CEPypp(1.0039 - 0.0528v + 0.4786vZ - 0.0793v3) (a.21)

A-7
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CEPypy = 0.614Sg + 0.5635Sy (A.22)

2 2 2 2y 2 Tg 235 2
Sx© + Sy° - '/(sx - Sy) 4 4pTSytsy
Sg = (4.23)
2
2 2 2 242 2g 2g 2
S + Sy° + ‘I(Sx = Syf)C ¥ 4pTSycSy
S, = (A.24)
2
v = b/CEPypt (A.25)
b = x2 + 2 (A.26)

The Modified RAND-234 was developed under the boundary
condition that Sg/S; is greater than 0.25 and that v is less
than or equal to 2.2 (1:2-3, 4:2-5). If one has a
correlated sample as described in the section on the Grubbs-
Patnaik/chi-square method, the same rotation can be used to
remove the correlation.

"Exact" Method. The "exact"” method, despite its name,
1s also an approximation technique. It is recognized as the
most accuraée approximation method available. This method
1s a numerical integration technique used to estimate the
integral of the bivarlate normal distribution. This method
uses Taylor series and infinite series expansion to estimate
CEP. The "exact"” method Is computationally rigorous and

requires a computer for its calculations. Since it is so

computationally rigorous it is often not feasible to use the
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exact” method and that is why one must resort to using less
accurate approximations. However, the "exact” method is
useful for determining which approximation technique is the
most accurate.

The "exact"” method takes the bivariate normal function

in polar form:

R 2w

r 1 f{rcose - %)2 (rsin® - §)2
P(R) =j Aexp|-— + rdrd® (A.27)

2 5,2 5y

0 ¢

where
1
A T e——— (A.28)
21erSy

After series expansion this is the equation for the "exact”

approximation technique:

w (k+1)1(j+1)!

P(R) = 0.5 == D [ [ xuyjy (A.29)
2 k=0 j=0 (k+j+1)!
where
1 z 2 7 2
L = exp - 2 + > ( A.30 )
SxSy 25,4 28y
(2k)! -R2 |k g k! -2%2( 1
Xg = B (A.31)
(k+1)!(k!)2 |8s 2 1=0 (k-1)t(21)! | s, 2
(23)! -r2 |3 j! C[-252 |
A ) (A.32)
(§J+1)1(31)2 8Sy2 1=0 (j-1)t1(21):! sy2
(6:1-5)
A-9
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To compute this approximation, one must first make a
guess at the CEP (it is recommended to use one of the fast
algebraic approximation methods tc arrive at your guess),
and then {terate to arrive at an answer that is accurate
enough for one”s purpose. This method sometimes requires a
great deal of computer time to arrive at an answer. But it

is the most accurate estimator of CEP.

Sample Calculations

Now that one has the approximation methods, the next
step is to actually calculate CEPs. The following is an
example of how one would do this for each of the presented
approximation techniques.

Table A-1 contains sample crossrange and downrange miss
distances for 10 sample impacts of a theoretical new warhead
(Note: this table uses feet as an illustration, the
methods, however, are insensitive to units as long as one 1is
consistent with the units used). To calculate the CEP using

Table A-1
Sample Impacts for a Theoretical ICBM Warhead

Impact Crossrange Miss Down-ange Miss | Radial Miss
Distance (x) Distance (x) Distance
1 400 ft 569 ft 695.5 ft
2 324 429 545.6
3 ~116 125 170.5
4 50 -214 219.8
5 -63 -126 143.2
6 257 302 396.6
7 76 -156 173.5
8 96 158 184.9
9 -30 53 60.9
10 155 204 256.2
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the non-parametric technicue described (the sample median)

one must first rank order the sample radial miss distances

&

as Iin table A-2. The radial miss distance (alsc called the

bias) is defined as the square root of the sum of the

PR AR i

squares of the crossrange and downrange miss distances. The
numbers in parentheses in table A-2 indicate that these are
order statistics.

Table A~-2
Sample Order Statistics for Radial Miss Distance

(Ordered Impact) Radial Miss Distance
(1) 60.9
(2) 143.2
(3) 170.5
(4) 173.5
(5) 184.9
(6) 219.8
(7) 256.2
(8) 396.6
(9) 545.6

(10) 695.5

Using eauation A.2 one calculates the sample median, 202.35,
and this serves as a non-parametric estimate of the CEP.
Next, the parametric estimates of CEP are calculated.
To do this one must calculate the sample crossrange and
downrange means and standard deviations and the correlation

coefficient. Here are those values:

Crossrange Mean: x = 120.4
Crossrange Standard Deviation: Sx = 165.5
Dpwnrange Mean: ¥ = 134.4
Downrange Standard Deviation: Sy = 255.9

Correlation Coefficient: p = 0.78




Since the correlation coefficient is non-zero, one must
perform the rotation discussed in attachment 1. After this
J is performed, these are the values to be suvbstituted for X,

X S¢, ¥, and Sy

¥° = 37.1

§- = 281.8

Sg = 91.1

s; = 290.7 v
p =0

Using the above values the results of the approximations

are:

: E
Grubbs-Patnaik/chi-square: CEP = 324,34

) Grubbs-Patnaik/Wilson-Hilferty: CEP = 325.18

. Modified RAND-234: CEP = 343.76
"Exact": CEP = 315.75

Compare these values to the non-parametric estimate, 202.35,
and one can see how {inaccurate the non-parametric estimate ‘
{s, given a small sample size. The calculations required
for the "exact”™ method can often require a great deal of
computer time (anywhere from 2 minutes to 2 hours, and
sometimes it does not converge to an answer at all), so it
1s useful to know which other approximation methods are most by
accurate. In the above case the Grubbs-Patnaik/chi-square

approximation technique is the best (closest to the "exact")
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However, there are times when the cother approximation
methods are more accurate than the Srubbs-Patnaik/chi-
square. Which approximation technique is best varies with
the bias and ellipticity of the sample impacts (bias is the
square root of the sum of the squares of the means of the
crossrange and downrange miss distances, ellipticity is the
ratio of the crossrange standard deviationm to the downrange
standard deviation). Figure A-4 shows a large portion of
the bias/ellipticity parameter space and which approximation
techniques are “best” over the space. The technique one

will ultimately use will depend on how accurately one needs

to estimate the CEP of a weapcn system.
It should be noted that in the regimes where the
"exact" method does not converge there are other techniques

that use numerical integraticn techniques to estimate CEP

correlated bivariate normal. This technique is not as
efficient as the "exact"” but it will converge for thos

highly elliptical cases where the "exact” does not.

thkat will converge. One such method is called the
i
} Conclusion

| Circular error probable is not the only method of
representing a weapon system’s accuracy, however it is a
| - very important measure that is widely used. Likewise the
’ approximation methods shown here are not the only methods

available for estimating CEP. This report introduces CEP

\ .
f and describes how it Is estimated.

A-14
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Attachment 1 to CEP Tutorial
Correlation

For correlated downrange and crossrange miss distances
the correlaticn coefficient must be taken into
consideration. This is the formula used to calculate the

correlation coefficient:

n
I *iyy - nXy

o = (a.1.1)
(n - l)(SxSy)

If the correlation coefficient is other thanm zero, one can

perform a rotation of axes Iinto a-coordinate system where
the two coordinates of miss distance are uncorrelated., This

is the procedure:

o = 0.5{tan"1[2p8,5 /(5,2 - 5,2)]) (A.1.2)
(5302 = 0.5[(5,2 + 5,2) + (5,2 - s;%)/cos(208)] (A.1.3)

-2 2 2 2 2
(8)% = 0.50(S5,° + 5,°) = (5,7 - sy%)/cos(28)] (A.1.4)

X Xcos® + ysin® (A.1.5)

y- -Xsin® + ycos® (A.1.6)

]

Then S, ST, X7, ¥7 are substituted for S,, S

- X, Vv in the

y!
formulae and the CEP is calculated as if there were no
correlation (1.e. p = 0) (3:20-21).

Astbury showed that the formulae involving a

correlation coefficient are Invariant to this rotation. In
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other words, they give the same answer whether one uses tbhe
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correlated numbers, or the uncorrelated numbers obtained

from the rotation (1:3-6).

DT A A

MU PP L

L

s a5 s

AN

AL

.

s ®
s St e

DN

t.AA'Al aA

A N




LA

z

': Attachment 2 to CEP Tutorial

P

=

~‘

i Bibliograpthy

R

Y

..'\

cu 1 Astbury, K. A., Ph. D, Accuracy Analysis Section.

. Inter-office correspondence, 85.H235.KAA-001.

- Subject: Computing CEP According to the Popular

- Approximation Formulas. TRW Defense Svstems Group,

;:j Redondo Beach CA, 29 January 1985.

~ 2. Grubbs, Frank E. "Approximate Circular and Noncircular
N Offset Probabilities of Hitting," Operations Research,

12 (1): 51-62 (January-February 1964).

ﬁj 3. Hodges, Jere and L, G. Allred. Air Force letter.

- Subject: Miputeman II CEP Methodology. MMEWM, Ogden
S AFB, Utah (no date available).

o

- 4, Pesapane, Capt John and Maj Robert B. Irvine Jr.,

- "Derivation of CEP Formula to Approximate Rand-234

ﬁt Tables."” Ballistic Missile Evaluation, HQ SAC, Offutt
o AFB, NE, February 1977.

~ 5. Smith, C. C. Project Engineer, Minuteman 0. C. Data
' Base. Interoffice correspondence, 82.F651.24-~008.

. Subject: Methods of CEP Calculation. TRW Defense and
- Space Systems Group, Redondo Beach CA, 26 July 1982.
-

-, 6. Smith, C. C., Project Engineer, Minuteman C. C. Data
- Base. Interoffice correspondence, 84.H235.36-~004.

Subject: CEP Calculation Using Infinite Series. TRW

ﬁ: DPefense Systems Group, Redondo Beach, CA, 31 March

. 1984,

"

:I;I

\..

-".
N

“

"

4‘.'

v,
s A.2-1

L)

P T S T T T TR T N Y A S S N TP e
NI A AR A A - R .‘.r__. T T A A A N




Appendix B

Correlation

For correlated downrange and crossrange miss distances
the correlation coefficient must be taken into

consideration. This is the formula used to calculate the

¢

N

correlation:

AL

5o
o

CORRR |

OO

ne-193

F1ye = Xy
p = (B.1)
(n - 1)(sty)

K
'S

’

. .

If the correlation coefficient is other tham zero, one can
perform a rotation of axes into a coordinate system where
the two coordinates of miss distance are uncorrelated. This

is the procedure:

¢ = 0.5{tan"![2p5,5,/(s5,% - 5,%)]) (B.2)
(5302 = 0.50(5,2 + 5,2) + (542 - s,%)/cos(28)] (B.3)
(552 = 0.50(Sx% + 5,2) = (5,2 - 5,2)/cos(20)] (B.4)
X~ = Xcos® + §sin® (B.5)
§° = -Xsin® + ycos® (B.6)

=r

Then Sg, S§,><, y° are substituted for Sy, S X, ¥ in the

y)
formulae and the CEP is calculated as {f there is no

correlation (1.e. p = 0) (3:20-21).
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Astbury showed that the formulae involving a
correlation coefficient are invariant to this rotation. In
other words, they give the same answer whether one uses the

correlated numbers, or the uncorrelated numbers obtained

from the rotation. (1:3-6).
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Appendix C
Secant Method
The Secant method is used to approximate the root of a
function., In this case the root is the CEP (R), and the
function is the probability (P(R)). The secant method takes
Ry and Rj-] (approximations of the CEP) and takes the next
approximation (R, ,, P(Rj4+1)) as the intersection of the
chord joining (Rjy_j, P(Rjy_j)) and (Ry, E(Ry)) with the line
y = 0.5 (x = R). This is the formula used:
Ry+1 = Ry + (Ry_p - Ry)I(Pygy = Py)/(Pyoy -Py) (c.1)
where P(Ry,;) = 0.5 (I:9). Figure C-1 is a graphical

representation of the secant method.

P(R)

Pio1 ]

] |
Ri-1 Ry \ >
Ri+1

Figure C-1. The Secant Method

This method 1Is used to iterate both the correlated
bivariate normal and the "exact"” approximation techniques in

this study.
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Appendix D

Sample Data

This appendix contains a sample of the data collected
for this study. Tabtle D-1 contains the sample cases listing
the ellipticity, bias, sample standard deviations and sample
means. Table D-2 is a listing of sample CEPs calculated for
each of the approximation techniques for each case listed in
table D-1. Finally table D-3 is the sample relative errors

for the algebraic approximations and the CBN relative to the

"exact" method.
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CASE ELLIP SIG. X SIG. Y BIAS X BAR Y BAR
1 1.00 19200.00 1000.00 1555.63 1100.00 1100.00
2 1.00 1000.00 1000.00 1414.21 1000.00 1000.00
3 1.00 1000.00 1000.00 1272.79 900.00 900.00
4 1.00 1000.00 1000.00 1131.37 8€C0.00 800.00
5 1.00 1000.00 1000.00 989.95 700.00 700.00
) 1.00 1000.00 1000.00 848.53 600.00 600.00
7 1.00 1000.00 1000.00 707.11 500.00 500.00
8 1.00 1000.00 1000.00 565.69 400.0C0 400.00
9 1.00 1000.00 1000.00 424.26 300.00 300.00

10 1.00 1000.00 1000.00 282.8%4 200.00 200.00
11 1.00 1000.00 1000.00 141.42 100.00 100.00
12 1.00 1000.00 1000.00 1.41 1.00 1.00
13 0.90 900.00 1000.00 1555.63 1100.00 1100.00
14 0.90 900.00 1000.00 1414.21 1000.00 1000.00
15 0.90 900.00 1000.00 1272.79 900.00 900.00
16 0.90 900.00 1000.00 1131.37 800.00 800.00
17 0.90 900.00 1000.00 989.95 700.00 700.00
18 0.90 900.00 1000.00 848.53 600.00 600.00
19 0.90 900.00 1000.00 707.11 500.00 500.00
20 0.90 900.00 1000.00 565.69 400.00 400.00
21 0.90 900.00 1000.00 424,26 300.00 300.00
22 0.90 900.00 1000.00 282.84 200.00 200.00
23 0.90 900.00 1000.00 141.42 100.00 100.00
24 0.90 900.00 1000.00 1.41 1.00 1.00
25 0.80 800.00 1000.00 1555.63 1100.00 1100.00
26 0.80 800.00 1000.00 1414.21 1000.00 1000.00
27 0.80 800.00 1000.00 1272.79 900.00 900.00
28 0.890 800.00 1000.00 1131.37 800.00 800.00
29 0.80 800.00 1000.00 989.95 700.00 700.00
30 0.80 800.00 1000.00 848.53 600.00 600.00
31 0.80 800.00 1000.00 707.11 500.00 500.00
32 0.80 800.00 1000.00 565.69 400.00 400.00
33 0.80 800.00 1000.00 424,26 300.00 300.00
34 0.80 800.00 1000.00 282 .84 200.00 200.00
35 0.80 800.00 1000.00 141.42 100.00 100.00
36 0.80 800.00 1000.00 1.41 1.00 1.00
37 0.70 700.00 1000.00 1555.63 1100.00 1100.00
38 0.70 700.00 1000.00 1414.21 1000.00 1000.00
39 0.70 700.00 1000.00 1272.79 900.00 200.00
40 0.70 700.00 1000.00 1131.37 800.00 800.00
41 0.70 700.00 1000.00 989.95 700.00 700.00
42 0.70 700.00 1000.00 848.53 600.00 600.00
43 0.70 700.00 1000.00 707.11 500.00 500.00
44 0.70 700.00 1000.00 565.69 400.00 400.00
45 0.70 700.00 1000.00 424,26 300.00 300.00
46 0.70 700.00 1000.00 282 .84 200.00 200.00
47 0.70 700.00 1000.00 141.42 100.00 100.00
48 0.70 700.00 1000.00 1.41 1.00 1.00
Table D-1

Sample Cases (part 1)

D-2
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CASE ELLIP SIG. X SIG. Y BIAS X PRAR Y BAR .
49 0.60 600.00 1000.00 1555.63 1100.00 1100.CO .
50 0.60 600.09 1000.00 1414.21 1000.00 1000.00 ’
51 0.60 600.00 1000.00 1272.79 900.00 900.00
52 0.60 600.00 1000.00 1131.37 800.00 800.090 .
53 0.60 600.00 1000.00 989.95 700.CC 700.00 .
54 0.60 600.00 1000.00 848.53 6C0.00 600.00 -
55 0.60 600.00 1000.00 707.11 500.00 500.00 .
56 0.60 600.00 1000.00 565.69 400.00 400.00 .
57 0.60 600.00 1000.00 424,26 300.0C0 300.00
] 58 0.60 600.00 1000.00 282 .84 200.00 200.00 B
3 59 0.60 600.00 1000.00 141.42 100.00 100.00 s
4 60 0.60 600.00 1000.00 1.41 1.00 1.00 -
61 0.50 500.00 1000.00 1555.63 1100.00 11Q00.00
62 0.50 500.00 1000.00 1414.21 1000.00 1000.00
63 0.50 506.00 1000.00 1272.79 900.00 90G.00
64 0.50 500.00 1000.00 1131.37 800.00 800.00 ¢
65 0.50 500.00 1000.00 989.95 700.00 700.00 s
66 0.50 500.00 1000.00 848.53 600.00C 600.00 "
67 0.50 500.00 1000.00 707.11 500.00 500.00 -
68 0.50 500.00 1000.00 565.69 400.00 400.00 Yy
69 0.5¢C 500.00 1000.00 424.26 300.00 300.00
70 0.50 500.00 1000.00 282.84 200.00 200.00 o
71 0.50 500.00 1000.00 141.42 100.00 100.00 t
72 0.50 500.00 1000.00 1.41 1.00 1.C0 g
73 0.40 400.00 1000.C0 1555.63 1100.00 1100.00 Ny
74 0.40 400.00 1000.00 1414.21 1000.00 1000.00 =
75 0.40 400.00 1000.00 1272.79 900.00 900.00 ;
76 0.40 400.00 100C.00 1131.37 800.00 800.00 :
77 0.40 400.00 1000.00 989.95 700.00 700.00 ’
78 0.40 400.00 1000.0¢C 848.52 600.00 600.00 :
79 0.40 400.00 1000.00 707.11 500.00 500.00
80 0.40 400.00 1000.00 565.69 400.00 400.00
81 0.40 400.00 1000.00 424 .25 300.00 300.00 i
82 0.40 400.00 1000.00 282.84 200.00 200.00 .
83 0.40 400.00 1000.00 141.42 100.00 100.00 -
84 0.40 400.00 1000.00 1.41 1.00 1.00 X
85 0.30 300.00 1000.00 1555.63 1100.00 1100.00 b
86 0.30 300.00 1000.00 1414.21 1000.00 1000.00 i
87 0.30 300.00 1G600.00 1272.79 900.00 900.00
88 0.30 300.00 1000.00 1131.37 800.00 800.00 -
89 0.30 300.00 1000.00 989.65 700.00 700.00 .
90 0.30 300.00 1000.00 848.53 600.00 600.00 2
91 0.30 300.00 1000.00 707.11 500.00 500.00 v
92 0.30 300.00 1000.00 565.69 400.00 400.00
93 0.30 300.00 1000.00 424,26 300.00 300.00
94 0.30 300.00 1000.00 282 .84 200.00 200.00
1 95 0.30 300.00 1000.00 141.42 100.00 100.00
¥ 96 0.30 300.00 1000.00 1.41 1.00 1.00
Table D-1

Sample Cases (pari 2)
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CASE ELLIP SIG. X SIG. ¥ BIAS ¥ BAR Y EAR

97 0.20 200.00 1000.00 1555.63 1100.00 1100.00

98 0.20 200.00 1000.00 1414.21 1000.00 1000.00

99 0.20 200.00 1000.00 1272.79 900.00 900.00

) 100 0.20 200.00 1000.00 1131.27 800.00 800.00

101 0.20 200.00 1000.00 989.95 700.00 700.00

: 102 0.20 200.00 1000.00 848.53 600.00 600.00

) 103 0.20 200.00 1000.00 707.11 500.00 500.00

Y 104 0.20 200.00 1000.00 565.69 400.00 400.00
- 105 0.20 200.00 1000.00 424,26 300.00 300.00 i
106 0.20 200.00 1000.00 282 .84 200.00 200.00 <
; 107 0.20 200.00 1000.00 141 .42 100.00 100.00 K
- 108 0.20 200.00 1000.00 1.41 1.00 1.00 K
. 109 0.10 100.00 1000.00 1555.63 1100.00 1100.00 "
= 110 0.10 100.00 1000.00 1414.21 1000.00 12060.00 '

111 0.10 100.00 1C00.00 1272.79 900.00 900.00

112 0.10 100.00 1000.00 1131.37 800.00 800.00

113 0.10 100.00 1000.00 989.95 700.00 700.00

114 0.10 100.00 1000.00 848.53 600.00 600.00

115 0.10 100.00 1000.00 707.11 500.00 500.00

116 0.10 100.00 1000.00 565.69 400.00 400.00

117 0.10 100.00 1000.00 424,26 300.00 300.00

118 0.10 100.00 1000.00 282 .84 200.00 200.00

119 0.10 100.00 1000.00 141.42 100.00 100.00

. 120 0.10 100.00 1000.00 1.41 1.00 1.00

5 121 0.01 10.00 1000.00 1555.63 1100.00 1100.00
122 0.01 10.00 1000.00 1414.21 1000.00 1000.00 y

123 0.01 10.00 1000.00 1272.79 300.00 900.00

124 0.01 10.00 1000.00 1131.37 800.00 800.00
125 0.01 10.00 1000.00 989.95 700.00 700.00 .
: 126 0.01 10.00 1000.00 848,53 600.00 600.00 k
A 127 0.01 10.00 1000.00 707.11 500.00 500.00 :
128 0.01 10.00 1000.00 565.69 400.00 400.00 ;

d 129 0.01 10.00 1000.00 424 .26 300.00 300.00

: 130 0.01 10.00 1000.00 282.84 200.00 200.00

131 0.01 10.00 1000.00 141.42 100.00 100.00

132 0.01 10.00 1000.00 1.41 1.00 1.00

Table D-1
Sample Cases (part 3) ‘
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CASE Srubbs/CS Grubbs/WH RAND CEN Exact

L S

T Fv T

1 1857.29 1861.86 1867.99 1850.30 1869.75
2 1750.71 1755,28 1758.27 1740.653 1652.25
3 1650.01 1654.,75 1655.09 1637.23 1654.24 R
" 4 1556.27 1561.32 1559.44 1541.35 1557.31 :
. 5 1470.70 1476 .14 1472.28 1454 .52 1469.56 h
) 6 1394.53 1400.35 1394.59 1378.04 1392.28 )
7 1328.91 1335.03 1327.33 1312.84 1326.38 by
8 1274.75 1281.04 1271.48 1259.46 1272.47 ﬁ
9 1232.61 1238.95 1228.01 1218.10 1230.69 .
" 10 1202.70 1208.99 1197.89 1188.72 1201.00 !
. 11 1184.89 1191.12 1182.09 1171.18 1183.28 .
t 12 1178.98 1185.19 1.81.52 1165.35 1177.38 "
, 13 1825.38 1829.81 1836.14 1820.39 1839.29 .
; 14 1715.94 1720.28 1723.07 1707.95 1669.30 -
I 15 1612.11 1616.56 1616.36 1601.20 1555.53
: 16 1515.04 1519.76 1517.07 1501.66 1517.38
! 17 1426 .00 1431.10 1426.29 1410.96 1425.86
t 18 1346.36 1351.88 1345.11 1330.64 1344.82 .
19 1277 .44 1283.31 1274.59 1261.90 1275.46 X
20 1220. 34 1226.45 1215.83 1205.50 1218.55 N
21 1175.84 1182.01 1169.91 1161.75 1174.39
22 1144.46 1150.34 1137.90 1130.67 1143.C0 “
23 1125.69 1131.43 1120.88 1112.11 1124.27 :
24 1119.45 1125.16 1119.388 1105.94 1118.04 .
25 1795.71 1799 .82 1806.21 1791.28 1809.55 s
26 1683.10 1687.27 1689.80 1676.48 1643.36 :
27 1576.01 1580.23 1579.45 1566.84 1583.02
28 1475.35 1479 .84 1476.35 . 1463.87 1416.66
29 1382.49 1387.41 1381.73 1369.27 1383.93
30 1298.90 1304.33 1296.79 1234.81 1298.86
31 1226.11 1232.01 1222.74 1212.02 1225.53 .
32 1165.71 1171.72 1160.80 1151.97 1165.03 p
33 1118.96 1124.38 1112.18 1165.25 1117.93
34 1085.45 1090.52 1078.08 1071.99 1084.38
\ 35 1065.37 1070.28 1059.72 1052.12 1064.34 R
h 36 1058.79 1063.55 1058.24 1045.51 1057.67 .
p 37 1768.41 1772.17 1778.26 1762.20 1779.77 N
38 1652.56 1656.61 1658.58 1645.52 1618.01 -
39 1542.11 1546.17 1544 .53 1533.56 1549.18 b
40 1437.69 1442.04 1437.48 1427 .66 1442.56 o
41 1340.69 1345.55 1338.78 1329.46 1280.21 .
42 1252.70 1258.23 1249.81 1240.81 1254 .65 '
43 1175.51 1181.65 1171.93 1163.56 1176.99 E
44 1112.22 1117.32 1106.50 1099.23 1112.28 -
45 1062.04 1066.47 1054.90 1048.80 1061.52 s
46 1025.85 1029.88 1018.48 1012.74 1025.20 )
47 1004.08 1007.90 998.62 991.14 1003.44 by
48 996.82 1000.59 996.60 983.95 996.19 N
Table D-2
Sample CEPs (part 1) .
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CASE Grubts/CS Grubbs/Wi RAND CEBXN Exact

' 49 1743.70 1747.20 1752.28 1732.18 1749.07
50 1624.73 1628.68 1629.51 1614.08 1592.31
51 1510.93 1514.88 1511.73 1500.40 1515.30
52 1402.66 1406.94 1400.65 1392.25 1406.60
53 1301.30 1306.23 1297.65 1291.09 1304.93
54 1208.51 1214.36 1204.36 1198.64 1146.17 :
55 1127.88 1133.08 1122.30 1116.87 1130.13 5
56 1060.05 1064.15 1052.05 1047.72 1060.74 a
57 1005.74 1009.14 998.14 992.79 1005.58
58 966.23 969.22 959.14 953,13 965.71 |
59 942.30 945.00 937.58 929.22 941.67 :
60 934 .30 937.03 934.96 921.25 933.64
61 1721.93 1725.24 1728.11 1700.22 1716.59
62 1600.06 1603.94 1602.62 1531.01 1565.18
63 1483.04 1486.91 1431.35 1466.07 1480.50
64 1370.97 1375.24 1366.08 1356.35 1370.16
65 1265.19 1270.30 1258.59 1253.05 1266.45
66 1167.81 1173.76 1160.67 1157.63 1170.78
67 1083.23 1087.50 1074.07 1071.87 1013.89
68 1010.35 1013.54 1000.60 997.88 1010.84
69 951.25 953.85 942.01 937.85 950.74
70 907.75 910.08 900.10 893.70 906.50
71 881.15 883.40 876.63 866.75 879.48
72 872.21 874.44 873.32 857.70 870.40
73 1703.48 1706.65 1705.39 1665.27 1706.65
74 1579.03 1582.85 1577 .81 1545.09 1525.14
75 1459.04 1462.86 1453.33 1429.19 1443 .34
76 1343.41 1347.72 1333.99 1318.40 1331.93
77 1233.38 1238.78 1221.87 1213.71 1226.77
78 1132.56 1137.69 1119.01 1116.30 1129.1¢%
79 1042.99 1046.46 1027.48 1027.55 1040.45
80 964.77 967.35 949.33 949.67 881.86
81 900.40 902.73 886.63 884.74 897.83
82 852.33 854.79 841.43 835.62 848 .82
83 822.60 825.29 815.78 804.92 818.21
84 812.54 815.34 811.68 794 .47 807.79
85 1688 .69 1691.76 1683.33 1626.27 1665.70
86 1562.08 1565.87 1554.75 1505.00 1544.35
87 1439.57 14643.36 1427.69 1388.25 1437.18
88 1320.83 1325.22 1304.56 1388.25 1307.55
‘ 89 1207.01 1212.01 1187.76 1172.30 1205.28
90 1103.13 1107.56 1079.71 1075.52 1085.98
91 1008.86 1011.76 982.82 973.40 994.33
92 925.43 927.81 899.50 388.73 915.50
93 855.73 858.44 832.16 821.45 745.28
94 802.87 806.41 783.21 774.59 794.54
95 769.73 774.10 755.06 740.13 760.92
96 758.43 763.14 750.04 738.92 749.96
Table D=2

Sample CEPs (part 2)
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CASE Srubbs/CS Grubbs/WH RAND CBN Exact

e v

97 1677.88 1630.89 1660.44 1585.93 *
98 1549.65 1553.40 1532.65 1462.39 *
99 1425.18 1428.96 1404.17 1344.02 *
100 1304.02 1308.49 1277 .84 1231.65 *

y 101 1187.17 1193.22 1156.54 1125.89 *

VT 102 1080.84 1084.78 1043.13 1027.02 *
103 982.67 985.27 940.46 936.56 *
104 894.78 897.30 851.40 856.12 870.61
105 820.35 823.93 778.81 788.00 802.83
106 763.08 768.39 725.56 735.30 607.95
107 726.72 733.65 694.49 701.57 717.34
108 714.23 721.81 688,40 689.91 705.77
109 1671.29 1674.26 1623.90 1560.22 1653.24
110 1542.04 1545.78 1509.86 1433.68 *

s 111 1410.35 1420.12 1381.96 1312.60 *

, 112 1293.63 1298.17 1253.66 1198.16 *

A 113 1175.02 1181.12 1128.40 1091.35 *

4 114 1066.91 1070.56 1009.65 992.36 *

) 115 966.13 968.61 900.84 902.83 *
116 875.20 877.98 805.43 8§24.15 *
117 797 .44 801.93 726.87 758.36 *
118 736.99 744.01 668.62 708.13 %*

. 119 698.26 707.60 634.12 676.38 411.30

p 120 684 .88 695.16 626.76 665.49 615.00

i 121 1669.09 1672.06 1602.61 1667.58 *

z 122 1539.51 1543.24 1486.09 1572.47 *
123 1413.39 1417.17 1361.66 1402.40 *
124 1290.15 1294.72 1233.47 1319.39 *
125 1171.07 1177.05 1105.68 1192.82 *
125 1062.22 1065.77 982.45 1066.58 *
127 960.53 962.98 367.93 977.34 *
128 868.51 871.43 766.27 863.73 *
129 789.57 794.43 681.63 751.08 *
130 727.97 735.68 618.16 817.96 *
131 688.36 698.68 580.02 774.81 *
132 674.64 686.03 571.29 570.98 *

Table D-2

Sample CEPs (part 3)

Note: *%* = "exact" does not converge
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’ CASE Grutbs/CS Grubbs/WH RAND Ceu "REST™
1 -0.0057 -0.0042 -0.0009 -0.0104 2
2 ¢.0596 0.0624 0.0642 0.0535 1
3 -0.0026 0.0003 0.0005 -0.0103 2
4 -0.0007 0.0026 0.0014 -0.0102 1
s 0.0008 0.0045 0.0019 -0.0102 1
) 0.0016 0.0058 0.0017 -0.0102 1
7 0.0019 0.0065 0.0007 -0.0102 3
8 0.0018 0.0067 -0.0008 -0.0102 3
9 0.0016 0.0067 -0.0022 -0.0102 1

10 0.0014 0.0067 -0.002¢6 -0.0102 1
11 0.0014 0.0G666 -0.0010 -0.0102 3
12 0.0014 0.0066 0.0035 -0.0102 1
13 -0.0076 -0.0052 -0.0017 -0.0103 3
14 0.0279 0.0305 0.0322 0.0232 1
15 0.0364 0.0392 0.0391 0.0294 1
15 -0.0015 0.0016 -0.0002 -0.0104 3
17 0.0001 0.0037 0.0002 ~-0.0104 1
18 0.0011 0.0053 0.0002 -0.0105 3
19 0.0015 0.0062 -0.0007 -0.0106 3
20 0.0015 0.0065 -0.0022 -0.0107 1
21 0.0012 0.0065 -0.0038 -0.0108 1
22 0.0013 0.0064 -0.0045 -0.0108 1
23 0.0013 0.0064 -0.0030 -0.0108 1
24 0.0013 0.0064 0.0016 -0.0108 1
25 -0.0076 -0.0054 -0.0018 -0.0101 3
26 0.0242 0.0267 0.0283 0.0202 1
27 -0.0044 -0.0018 -0.0023 -0.0102 2
28 0.0414 0.0446 0.0421 0.0333 1
29 -0.0010 0.0025 -0.0016 -0.0106 1
30 0.0000 0.0042 -0.0016 -0.0108 1
31 0.0005 0.0053 -0.0023 -0.0110 1
32 0.0006 0.0057 -0.0036 -0.0112 1
33 0.0009 0.0058 -0.0051 -0.0113 1
34 0.0010 0.0057 -0.0058 -0.0114 1
35 0.0010 0.0056 -0.0043 -0.0115 1
36 0.0010 0.0056 0.0005 -0.0115 3
37 -0.0064 -0.0043 -0.0008 -0.0099 3
38 0.0214 0.0239 0.0251 0.0170 1
39 -0.0046 -0.0019 -0.0030 -0.0101 2
40 -0.0034 -0.0004 -0.0035 -0.0103 2
41 0.0472 0.0510 0.0457 0.0385 3
42 -0.0016 0.0028 -0.0039 -0.0110 1
43 -0.0013 0.0040 -0.0043 -0.0114 1
44 -0.0000 0.0045 -0.0052 -0.0117 1
45 0.0005 0.0047 -0.0062 -0.0120 1
46 0.0006 0.0046 -0.0066 -0.0122 1
47 0.0006 0.0044 -0.0048 -0.0123 1
48 0.0006 0.0044 0.0004 -0.0123 3

Table D-3
Sample Relative Errors (part 1)
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b §
b CASE  Grubbs/CS  Grubbs/WH RAND CBN “BEST" N
k)
[ 49 -0.0031 -0.0C11 0.0018 -0.C097 2 N
50 0.0204 0.0229 0.0234 0.0137 1
51 - =0.0029 -0.0003 -0.0024 -0.0099 2 [
' 52 -0.0028 0.0002 -0.0043 -0.0102 2 Ny
53 -0.0028 0.0010 -0.0056 -0.0106 2
54 0.0544 0.0595 0.0508 0.0458 3 N
55 -0.0020 0.0026 -0.0069 -0.0117 1
56 -0.0006 0.0032 -0.0072 -0.0123 1
57 0.0002 0.0036 -0.0073 -0.0126 1
58 0.0006 0.0037 -0.0068 -0.0130 1
b 59 0.0007 0.0036 -0.0043 -0.0132 1 _
A 60 0.0007 0.0036 0.0014 -0.0133 1 :
" 61 0.0031 0.0050 0.0067 -0.0095 1 5
62 0.0223 0.0248 0.0239 0.0101 1
d 63 0.0017 0.0043 0.0006 -0.0097 3
h 64 0.0006 0.0037 -0.0030 -0.0101 1
F 65 -0.0010 0.0030 -0.0062 -0.0106 1
( 66 -0.0025 0.0025 -0.0086 -0.0112 1 .
- 67 0.0684 0.0726 0.0594 0.0572 3 -
68 ~0.0005 0.0027 -0.0101 -0.0128 1 .
4 69 0.0005 0.0033 -0.0092 -0.0136 1 ,
’ 70 0.0014 0.0040 -0.0071 -0.0141 1 N
- 71 0.0019 0.0045 -0.0032 -0.0145 1 :
; 72 0.0021 0.0046 0.0034 -0.0146 1 -]
} 73 -0.0019 0.0000 -0.0007 -0.0262 2 ‘
l 74 0.0286 0.0311 0.0278 0.0065 3
75 0.0109 0.0135 0.0069 -0.0098 3
g 76 0.0086 0.0119 0.0016 -0.0102 3
- 77 0.0054 0.0098 -0.0040 -0.0106 3 ;
) 78 0.0030 0.0076 -0.0090 -0.0114 1 ,
P 79 0.0024 0.0058 -0.0125 -0.0123 1 "y
i 80 0.0940 0.0969 0.0765 0.0769 3
. 81 0.0029 0.0055 -0.0125 -0.0146 1 ;
) 8 0.0041 0.0070 -0.0087 -0.0156 1 K
; 83 0.0054 0.0087 -0.0030 -0.0162 3 -
5 84 0.0059 0.0093 0.0048 -0.0165 3 ¢
: 85 0.0138 0.0156 0.0106 -0.0237 3 -
86 0.0115 0.0139 0.0067 -0.0255 3
. 87 0.0017 0.0043 -0.0066 -0.0340 1 :
r 88 0.0102 0.0135 -0.0023 -1.0000 3 .
. 89 0.0014 0.0056 -0.0145 -0.0027 1 -
90 0.0158 0.0199 -0.0058 -0.0096 2 .
91 0.0146 0.0175 -0.0116 -0.0210 3 .
92 0.0108 0.0134 -0.0175 -0.0292 1
93 0.1482 0.1518 0.1166 0.1022 3
. 94 0.0105 0.0149 -0.0143 -0.0251 1
. 95 0.0116 0.0173 -0.0077 -0.0273 3
- 96 0.0107 0.0176 0.0001 -0.0147 3
Table D-3 ’

Sample Relative Errors (part 2)
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CASE Gruhbs/CS Grubtbs/WH RAND CEN "RPEST"™ ::
Ry
97 .
| 3
103
104 0.0278 0.0307 -0.0221 -0.0166 3 h
105 0.0218 0.0263 ~-0.0058 -0.0096 3 y
106 0.2552 0.2639 0.1934 0.2095 3 :
107 0.0131 0.0227 -0.0319 -0.0220 1 -
108 0.0120 0.0227 -0.0245% -0.0225 1
109 0.0079 0.0097 ~0.0147 -0.0591 1 .
110
l
118 i
119 0.6983 0.7202 0.5426 0.6448 3 -
120 0.1136 0.1303 0.0191: 0.0821 3 =
121
| -
132 L
Table D-3 -
Sample Relative Errors (part 3) D
Note: no relative errors where "exact"” does not converge ;
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Appandix E

This appendix contains the source code for the computer program developed
by this study. The program is written in Turbo Pascal (Turbo Pascal is a
precduct of Borland Internaticnal), a version of the Pascal computer programming
language for personal computers. The program was written and run on a SANYO
MBC-550 personal computer (operating system: MS-DOS) owned by the author. This
program was also run on a Zenith Z-150 personal computer at the Air Force
Institute of Technology. With some minor alterations this program can be run on
any computer with any version of the Pascal programming language.

This program runs interactively with the user inputs to calculate circular
error probable (CEP) using five different approximation technicues. The program
will calculate CEP for all five metheds, only the methods the user selects, or
it will select a "best” method from among the three algegraic methods which give

results in seconds. The user decides which method(s) the program will compute.
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4, 1,

{THIS PROGRAM WAS DEVELCPEL EY CAPT RICHARD L. ELDER AS A PART OF A

MASTER”S THESIS AT THE AI? FORCE INSTITUTE OF TECHNOLOGY.

] TITLE OF THE THESIS IS "AN EXAMINATION OF CIRCULAR ERROR PROBAELE
: APPROXIMATION TECHNIQUES."}
)
[
N
2 program CEPAPPROXIMATIONANALYSIS ;
N
N var sigx, sigy, mux, muy, rho, ellip, bias: real;
- cbnprob, randc, gpcs, gpwh, prob, cep, cbn: real:
o pick, ints: integer;
. edededdedodedodek
o function atotheb(a,b: real): real;
- {This function takes an input variable a and raises it
‘ to the b power}
begin
- if a = 0 then atotheb:= 0
: . else if (b*1n(a)) < -70 then atotheb:= 0
. else atotheb:= exp(b*1ln(a))
. end {atotheb};
D Kk dekFdcddkk
y function interpolate(a, aup, alow, kup, klow: real): real;
{This function is a function to perform linear
. internolation., 1t is used in procedure GPCSCEP
: to interpolate between values found in a table
2 of the chi-square function.)
.
’. var percent: real;
3 begin
< percent:= (a - alow)/(aup - alow);
! interpolate:= klow + (percent*(kup - klow))
b end {interpolate}; !
: Fdedededosedereded
.
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procedure GPCSCEP(var sigx, sigy, mux, muv, rho: real);

{This procedure calculates CEPs according to the
Crubbs-Patnaik/chi-square approximation technique!

var m, X, vy, v, n, k: real:

begin
m:= sqr(sigx)+sqr(sigy)+sqr(mux)+sqr(muy);
atotheb(sigx, 4);
atotheb(sigy, 4);
2% (x+(2*sqr(rho*sigx*sigy))+y);
v+(4*(sqr{mux*sigx)+(2*mux*muy*rho*sigx*sigy)+sqr(muy*sigy))):
2%sqr(m)/v;
if n >= 11 then k:= (n-0.7);
case trunc(n) of
0: k:= interpolate(n,1,0,0.455,0);

D<<*<'><
[}

l: k:= interpolate(n,2,1,1.39, O 455)
2: k:= interpolate(n,3,2,2.37,1.39);
3: k:= interpolate(n,4,3,3.36,2.37);
4: k:= interpolate(n,5,4,4.35,3.36);
5: k:= interpolate(n,6,5,5.35,4.35);
6: k:= interpolate(n,7,6,6.35,5.35);
7: k:= interpolate(n,8,7,7.34,6.35);
8: k:= interpolate(n,9,8,8.34,7.34);
9: k:= interpolate(n,10,9,9.34,8.34);

10: k:= interpolate(n,11,10,10.3,9.34)
end;
gpes:= sqrt((k*v)/(2%m))
end {GPCSCEP};

*dckkikkkik

procedure GPWHCEP(var sigx, sigy, mux, muy: real);

{This procedure calculates CEPs according to the
Grubbs-Patnaik/Wilson-Hilfertvy approximaticn
technique.)

var aa, m, v, vv, vvv: real;

begin
m:= sqr(sigx) + sqr{sigy) + sqr(mux) + sqr(muy);
vve= sqr(sqr(sigx)) + 2% rho * sqr(sigx) * sqr(sigy) + sqr(sar(sigy));
vevi= sqrmux)*sqr(sigx) + 2*mux*muy*rho*sipx*sigy + sqr(muy)*sqr(sigy);
v:i= 2%vv + 4d*vyyv;
aa:= 1 - (v/(9%sqr(m)));
gpwh:= sqrt{m*(atotheh(aa, 3)));
end {GPWHCEP};
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procedure RANDCEP (var sigx, sigy, mux, muy: real);

{This procedure calculates CEPs according to the
modified RAND-234 approximation techniquel

var radical, sigxy, sigS, sigl, b, v, cepmu: real;

begin

sigxy:= sqr(sigx) + sqr(sigy);

radical:= sqrt(sqgr(sqr(sigx) - sqr(sigy)) + 4*sar(rho*sigx*sigy));

sigS:= sqrt((sigxy - radical)/2);

sigl:= sqrt((sigxy + radical)/2);

cepmu:= 0.614*sigS + 0.563%sigL;

b:= sqrt(sqr{mux) + sqr(muy));

v:= b/cepmu;

randc:= cepmu*(1.0039-0.0528%v+0.4786%sqr(v)=-0.0793%atotheb(v,3))
end; {RANDCEP}

khhkdhkhdkk

{The following procedure is called ty the CBNORM
procedure which calculates the CEPs for the
correlated bivariate normal (CBN) approximation
technique. This procedure calculates the probability
given a known radius (an estimate of CEP). 1t is
called until the probability is within 0.0001 of
0.5. The accuracy of this method can be improved
by increasing the number of intervals used to
approximate the integral. This number of intervals
1s a user input that is asked for whenever the CBN
method 1s used.
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procedure CRNORMPROR(var sigx, sigv, mux, muy, rho, btias: real;
ints: integer);

label 1;

var y, hh, 1, x, ¢, t, a: real;
ji, 3, h: 1integer;

begin
c:= 2%3.1415927*sigy*sigx*sqrt(l-sqr(rho));
c:= 1l/cy
i:= bias;
t:= 0;
for j := 0 to ints
do begin
x:= -1 + (§*(i/(ints/2)));
y:= sqrt(abs(sqr(i) - sqr(x)));
if y = 0 then goto 1;
for h := 0 to ints
do begin
hh:= -y + (h*(y/(ints/2)));
a:= sqr((x-mux)/sigx)-(2*rho*((x-mux)/sigx)*((hh-muy)/sigy)) +
sqr((hh-muy)/sigy);
a:= a/(l-sqr(rho));
if a > 140 then a:= 0
else a:= exp(-0.5%a);
a:= a*c;
t:=t + (a*(i/(ints/2))*2*(y/ints))
end;
l: jji=3]
end;
cbnprob:= t;
end;

Jekkkdkdkdk

{The following procedure is the secant method applied
to the correlated bivariate normal approximaticn
technique. The stopping criterion for this method
is when the probability given by the CBNORMPROB
procedure is within 0.0001 of 0.5}
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procedure CENORM (var sigx, sigy, mux, muy, rho, cep: real;

ints);

var cepipl, cepl, cepiml, probipl, probi, probiml: real;

begin
cepiml:= cep;
CBNORMPROR(sigx, sigy, mux, muy, rbo, cepiml, ints);
probiml:= cbnprob;
if cbnprob < 0.5 then cepi:= 1.05%cep
else cepi:= 0.95%cep;
CBNORMPROB(sigx, sigy, mux, muy, rho, cepi, ints);
probi:= chnprob;
protipl:= 0.5;
while abs(cbnprob - 0.5) > 0.0001 do
begin
cepipl:= cepi+((cepiml-cepi)*(probipl-probi)/(probiml-probi));
CBNORMPROB(sigx, sigy, mux, muy, rho, cepipl, ints);
cepiml:= cepi;
probiml:= probi;
cepi:= cepipl;
probi:= cbnprob;
end;
cbn:= cepipl
end;

Kkkhkkkkkk

[The following procedure is called by EXACT which
calculates CEPs for the "exact™ method. EXACTPROB
calculates probabilities given an estimate of the
CEP. It is called until the probability is within
0.0001 of 0.5.}

procedure EXACTPROB (var sigx, sigy, mux, muy, cep: real);

type logarray = array[1..100] of real;

var kcheck, jcheck, Lsum, kf, kmLf, L2f, hold, La, Lterm: realj;
k2f, kplf, xka, xk, isum, jf, jmif, 12f, 1a, iterm: real;
j2f, jplf, vyja, vj, kpjplf, jterm, jsum, ksum, d: real;
r, ja, yjb, xkb, Lb, ib, Lc, Ic: real;
log: logarray;
i, 3, k, L, 11, 12, 3j1, 32, 33, j4, k1, k2, k3, L1, L2: integer
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begin {EXACTPROB}

r:= cep;
kcheck:= 1;
k:= 03
ksum:= 0;
while kcheck > 0.0001 do
begin
= 0
if k > 0 then for kl:= 1 to k do kf:= kf + loglkl];
k2f:= 0;
if k > 0 then for k2:= 1 to (2%¥k) do k2f:= k2f + log[k2];
kplf:= 0;
for k3:= 1 to (k+l1) do kplf:= kplf + log[k3];
jcheck:= 1;
ji= 0;
jsums:= 03
while jcheck > 0.0001 do
begin
writeln(k, =~ “~, kckeck, j, = ~, jcheck);
jf:=
if j§ > 0 then for jl:= 1 to j do jf:= jf + loglill;
jplf:= 0;
for j2:= 1 to (j+1) do jplf:= jplf + loglj2];
j2£:= 0
if 3 > 0 then for j3:= 1 to (2*j) do j2f:= j2f + lo-[3j3];
kpjplf:= 0
for j4:= 1 to (k+j+1) do kpjplf:= kpjplf + log[j4];
Lsum:= 0;
for L:= O to k do
begin

kmLf:= 0;

if (k=L) > O then for Ll:= 1 to (k-L) do kmLf:= kmLf+log[Ll];

2f:= 0;

{f L > 0 then for L2:= 1 te (2*%L) do L2f:= L2f + log[L2];

hold:= (2%sqr(mux))/(sqr(sigx));

La:= atotheb(hold, (L/2));

Lc:= Laj

1f odd(L) then La:= ~La;

1f (kf-kmLf-L2f) < =70 then Lb:= 0
else Lb:= exp(kf - kmLf - L2f);

if (abs(La) < 1.0e-16) or (abs(Lb) < 1.0e-16) then Lterm:= 0
else Lterm:= La*Lb*Lc;

Lsum:= Lsum + Lterm

end;




{ EXACTPROB continued}

hold:= sar(r)/(8*%(sqr(sigx)));
xka:= atotheb(hold, k);
if odd(k) then xka:= =-xka;
1f (k2f-kplf-(2*kf)) < =70 then xkb:= 0
else xkb:= exp(k2f - kplf =~ (2*%kf));
xk:= xka*xkb*Lsum;
isum:= 03
for 1:= 0 to j do
begin
jmif:= 03
if (3j=1i) > O then for il:= 1 to (j-i) do imif:= jmif+log[il];
i2f:= 0;
if 1 > 0 then for 12:= 1 to (2*i) do i2f:= 12f + logli2];
hold:= (2*(sqr(muy)))/(sqr(sigy));
ia:= atotheb(hold, (i/2));
ic:= ia;
if odd(i) then ia:= -iaj;
1f (jf-imif-i2f) < =70 then ib:= 0
else 1ib:= exp(jf - jmif - 12f);
if (abs(ia) < 1.0e-16) or (abs(ib) < 1.0e-16) then iterm:= 0
else iterm:= ia*ib*ic;
isum:= isum + iterm

end;
hold:= (sqr(r))/(8*%(sqr(sigy)));
yja:= atotheb(hold, j); .
if odd(i) then yja:= -yja;
if (j2f-jplf-(2%jf)) < =70 then yjb:= 0
else yjb:= exp(j2f~ jplf - (2%jf));
yj:= yja*yjb*isum;
if (kplf+jplf-kpjplf) < =70 then ja:= 0
else ja:= exp(kplf + jplf - kpjplf);
jterm:= xk*yj*ja;
jsum:= jsum + jterm;
jcheck:= abs(jterm);
ji= 3+ 1
end; {while jcheck ... }
ksum:= ksum + jsum;
kcheck:= abs(jsum);
k:e=k + 1
end {while kcheck ... };
= (exp(~(sqr(mux)/(2*sqr(sigx)))-(sqr(muy)/(2*sar(sigy)))))/(sigx*sigy);
prob'- (sqr(r)/2)*d*ksum
end; {EXACTPROB}

Fk kK devekrek

{The following procedure is the secant method applied
to the "exact” approximation technique. It calls
the procedure EXACTPROB until the prcbability is
within 0.0001 of 0.5.}
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procedure EXACT (var sigx, sigy, mux, muv, cep: real);

var cepipl, cepi, cepiml, probipl, probi, probiml: real;

begin
for ii:= 1 to 100 do log[ii]:= 1n(ii);
cepiml:= cep; >

EXACTPROB(sigx, sigy, mux, muy, cepiml); '
probiml:= prob;
if prob < 0.5 then cepil:= 1.05%cep
else cepi:= 0.95%cep;
EXACTPROB(sigx, sigy, mux, muy, cepi);
probi:= prob;
probipl:= 0.5;
while abs(prob - 0.5) > 0.0001 do
begin
cepipl:= cepi+((cepiml-cepi)*(probipl-probi)/{(probiml-probti)};
EXACTPROB(sigx, sigy, mux, muy, cepipl); 4
cepiml:= cepi; .
probiml:= probi;
cepl:= cepipl; .
probi:= prob;
end;
cep:= cepipl
end;

w

kfkddkdkkkk

M I N

{The following procedure is the decision maker for which
of the algebraic approximations is the "best" for the .
given regime of the ellipticity/bias parameter space.}

r
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]
: procedure BESTALGEBRAIC(var ints: integer;
4 sigx, sigy, mux, muy, rho, bias, ellip: real):
Y
begin
o if ellip < 0.05 then writeln(”SORRY, YOU MUST CHOOSE A METHOD.”);
if (ellip < 0.15) and (ellip >= 0.05)
o~ then begin
if bias <= 200
4 then begin
N RANDCEP(sigx, sigy, mux, muy);
i write(”THE MODIFIED RAND-234 IS BEST HERE: 7);
- writeln(randc:10:3)
- end;
. if bias > 200 then writeln(”SORRY, YOU MUST CHOOSE A METHOD.”)
[ end;
tf (ellip < 0.25) and (ellip >= 0.15) h
3\ then beg.n
. if (bias < 200) or ((bias >= 350) and (bias < 500))
ﬁ: then begin
2 GPCSCEP(sigx, sigy, mux, muy, rho);
) write(”THE GRUBBS-PATNAIK/CHI-SQUARE IS BEST HERE: 7);
v writeln(gpes:10:3)
; end;
o if ((bias >= 200) and (bias < 350)) or
- ((bias >= 500) and (bias <= 650))
W then begin
‘ RANDCEP(sigx, sigy, mux, muy);
write("THE MODIFIED RAND-234 IS BREST HERE: ~);
5 writeln(randc:10:3)
. end;
i if bias > 650 then writeln(”SORRY, YOU MUST CHOOSE A METHOD.”)
L~ end;
W if (ellip < 0.5) and (ellip >= 0.25) and (bias < 200)
then begin
- RANDCEP(sigx, sigy, mux, muy);
'j writeln(“THE MODIFIED RAND-234 IS BEST HERE: ~, randc:10:3)
w, end;
Y
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{BESTALGEERAIC continued}

if (ellip < 0.4) and (ellip >= 0.25)
then begin
if ((bias >= 200) and (bias < 350)) or
((bias >= 500) and (bias < 650)) or
((bias >= 900) and (bias < 1000)) or
((bias >= 1200) and (bias < 130C))
then begin
GPCSCEP(sigx, sigy, mux, muy, rho);
write(”THE GRUBRRS-PATNAIK/CHI-SQUARE IS BEST HERE: “);
writeln(gpes:10:3)
end;
((bias >= 350) and (bias < 500)) or
((bias >= 650) and (blas < 900)) or
((bias >= 1000) and (bias < 1200)) or
((bias >= 1300) and (bias <= 1550))
then begin
RANDCEP(sigx, sigy, mux, muy);
write(“THE MODIFIED RAND-234 IS BEST HERE: 7);
writeln(randc:10:3)
end
end;
if (ellip >= 0.4) and (ellip < 0.5)
then begin
1f ((bias >= 200) and (bias < 500)) or
((bias >= 600) and (bias < 900)) or
((bias >= 1450) and (bias <= 1550))
then begin
GPCSCEP(sigx, sigy, mux, muy, rho);
write(“THE GRUBBS-PATNAIX/CHI~-SQUARE IS BEST HERE: s
writeln(gpes:10:3)
end;
((bias >= 500) and (bias < 600)) or
((bias >= 900) and (bias < 1450))
then begin
RANDCEP(sigx, sigy, mux, muy);
write(“THE MODIFIED RAND-234 IS BEST HERE: 7);
writeln(randc:10:3)
end
end;
if (ellip >= 0.5) and (ellip < 0.7) and
((bias < 600) or ((bias >= 1300) and (bias < 1450)))
then begin
GPCSCEP(sigx, sigy, mux, muy, rho);
write(“THE GRUBBS-PATNAIK/CHI-SOUARE IS BEST HERE: ~);
writeln(gpes:10:3)
end;




{BESTALGEERAIC continued}

if (ellip >= 0.5) and (ellip < 0.56)
then begin
if ((bias >= 60Q0) and (bias < 750)) or
((bias >= 1200) and (bias < 1300))
then begin
RANDCEP(sigx, sigy, mux, muy);
- write(“"THE MODIFIEC RAND-234 IS BEST HERE: 7);
writeln(rande:10:3)
end;
i1f ((bias >= 750) and (bias < 1200)) or
((bias >= 1450) and (bias < 1550))
then begin
GPCSCEP(sigx, sigy, mux, muy, rho);

write(“THE GRUBBS-PATNAIK/CHI-SQUARE IS BEST HERE:

writeln(gpecs:10:3)

end
end;
if (ellip >= C.6) and (ellip < 0.7)
then begin
if (bias >= 750) and (bias < 990)
then begin
RANDCEP(sigx, sigy, mux, muy);
write(“THE MODIFIED RAND-234 IS BEST HERE: 7);
writeln(randc:10:3)
end;
if (bias >= 950) and (bias < 1300)
then begin
GPWHCEP(sigx, sigy, mux, muy);
write(“THE GRUBBS-PATNAIK/WILSON-HILFERTY IS BEST HERE: 7);
writeln(gpwh:10:3)
end
end;

1f (ellip >= 0.6) and (ellip < 0.65) and
(((bias >= 900) and (bias < 950)) or
((bilas >= 1450) and (bias < 1550)))
then begin
GPWHCEP(sigx, sigy, mux, muy);

write(”"THE GRUBBS-PATNAIK/WILSON-HILFERTY IS BEST HERE:

writeln(gpwh:10:3)
end;
if (ellip >= 0.65) and (ellip < 0.7) and
(((blas >= 900) and (bias < 950)) or
((bias >= 1450) and (bias < 1550)))
j then begin
‘ RANDCEP(sigx, sigy, mux, muy);
. write(”THE MODIFIED RAND-234 IS BEST HERE: ~);
. writeln(randc:10:3)
end;

)




{BESTALGEBRAIC continued} \

if (ellip >= 0.7) and (ellip < 0.8)
then begin
if (bias < 100) or
((bias >= 950) and (bias < 1050)) or
((bias >= 1450) and (bias < 1550))
then begin
RANDCEP(sigx, sigy, mux, muy);
write(“THE MODIFIED RAND-234 IS BEST HERE: 7);
writeln(randec:10:3)
end;
if ((bias >= 100) and (bias < 950)) or :
((bias >= 1300) and (bias < 1450))
then begin
GPCSCEP(sigx, sigy, mux, muy, rho);
write(“THE GRUBBS-PATNAIK/CHI-SQUARE IS BEST HERE: 7);
writeln(gpes:10:3)
end;
if (bias >= 1050) and (bias < 1300)
then begin
GPWHCEP(sigx, sigy, mux, muy);
write("THE GRUBBS-PATNAIK/WILSON-HILFERTY IS BEST HERE: 7);:
writeln(gpwh:10:3)
end
end;
if (ellip >= 0.8) and (ellip < 0.,9)
then begin
if ((bias >= 100) and (bias < 600)) or
((bias >= 750) and (bias < 1050)) or
((bias >= 1300) and (bias < 1450))
then begin
GPCSCEP(sigx, sigy, mux, muy, rho);
write(“THE GRUBBS-PATNAIK/CHI-SQUARE IS BEST HERE: “);
: writeln(gpecs:10:3)
" end;
if (bias >= 1200) and (bias < 1300)
then begin
GPWHCEP(sigx, sigy, mux, muy); )
write (" THE GRUBBS-PATNMAIK/WILSON-HILFERTY IS BEST HERE: 7); j
writeln(gpwh:10:3) b
end; 3
if (bias >= 1450) and (bias < 1550) ]
- then begin I
RANDCEP(sigx, sigy, mux, muy); :
write("THE MODIFIED RAND-234 IS BEST HERE: 7);
writeln(randc:10:3)
end;
end;
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{RESTALGEPRAIC continued}

if (ellip >= 0.8) and (ellip < 0.85)
then begin
if (bias < 100)
then begin
RANDCEP(sigx, sigy, mux, muy);
write(”THE MODIFIED RAND-234 IS BEST HERE: s
writeln(randc:10:3)
end;
if ((bias >= 600) and (bias < 950)) or
({bias >= 1050) and (bias < 1200))
then begin
GPCSCEP(sigx, sigy, mux, muy, rho);
write(“THE GRUBBS-PATNAIK/CHI-SQUARE IS BEST HERE:
writeln(gpecs:10:3)
end
end;
if (ellip >= 0.85) and (ellip < 0.9)
then begin
if (bias < 100)
then begin
GPCSCEP(sigx, sigy, mux, muy, rho);

write(”THE GRURBS-PATNAIK/CHI-SQUARE IS BEST HERE:
writeln(gpes:10:3)

end;
1f ((bias >= 600) and (bias < 750)) or
((bias >= 1050) and (bias < 1200))
then begin
RANDCEP(sigx, sigy, mux, muy);
write( THE MODIFIED RAND-234 IS BEST HERE: )3
writeln(randc:10:3)
end
end;
1f (ellip >= 0.9) and (ellip < 0.95)
then begin
if (bias < 600) or
((bias >= 900) and (bias < 1050)) or
((bias >= 1250) and (bias < 1450))
then begin
GPCSCEP(sigx, sigy, mux, muy, rko);
write( THE GRUBBS-PATNAIK/CHI-SQUARE 1S BEST HERE:
writeln(gpcs:10:3)
end;
if ((bias >= 600) and (bias < 900)) or
((bias >= 1050) and (bias < 1250)) or
((bias >= 1450) and (blas < 1550))
then begin
RANDCEP(sigx, sigy, mux, muy);
write(“THE MODIFIED RAND-234 IS BEST HERE: “);
writeln(randc:10:3)
end

end;
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{RESTALGEERRAIC continued)

if (ellip >= 0.95) and (ellip <= 1.0)
then begin
if (bias < 100) or
((bias >= 200) and (tias < 500)) or

a"avs" s & s Kl

:‘ ((bias >= 750) and (bias < 1200)) or
A ((bias >= 1300) and (bias < 1450))

& then begin

) GPCSCEP(sigx, sigy, mux, muy, rho);

write("THE GRUBBS-PATNAIK/CHI-SQUARE IS BEST HERE: 7);

writeln(gpes:10:3)
- end;
o) if ((bias >= 100) and (bias < 200)) or
. ({(bias >= 500) and (bias < 750)) or
[ ((bias >= 1450) and (bias < 1550))
' then begin

RANDCEP(sigx, sigy, mux, muy);
write(“THE MODIFIED RAND-234 IS BEST HERE: 7);
writeln(randc:10:3)

= end;

if (bias >= 1200) and (bias < 1300)

then begin
GPWHCEP(sigx, sigy, mux, muy);

N write(“"THE GRUBBS-PATNAIK/WILSON-HILFERTY IS BEST HERE: )

) writeln(gpwh:10:3)

N end

3 end

) end; {BESTALGEBRAIC}
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{The following procedure 1s used to execute the desired
operation that the user decided to accomplish!




L 7 oty

-

e a LA WA

procedure

beein

PICKMETHOD(var pick: integer;
sigx, sigy, mux, muy, rhc, bias, ellip: real);

case pick of

1:

w
..

7:
end
end;

begin
writeln(“HOW MANY INTERVALS DO YOU WANT THE FOR THE CBN?7);
writeln(”THE MCRE INTERVALS, THE MORE TIME, THE MORE ACCURATE");
readln(ints);
GPCSCEP(sigx, sigy, mux, muy, rho);
GPWHCEP(sigx, sigy, mux, muy);
RANDCEP(sigx, sigy, mux, muy);
cep:= gpcs;
CBNORM(sigx, sigy, mux, muy, rho, cep, ints);
EXACT(sigx, sigy, mux, muy, cep);
writeln(“CEPs FOR ALL METHODS ARE AS FOLLOWS:”);
writeln;
writeln(“GRURBS~PATNAIK/CHI-SQUARE: ~, gpcs:10:3);
writeln(“GRUBBS~PATNAIK/WILSON-HILFERTY: ~, gpwh:10:3):
writeln(“MODIFIED RAND-234: “, randc:10:3);
writeln(“CBN: ~, cbn:1G:3);
writeln(“"EXACT": “, cep:10:3)
end;
begin
GPCSCEP(sigx, sigy, mux, muy, rho);
write(“THE CEP GIVEN BY THE GRUBBS-PATNAIK/CHI-SQUARE IS: 7);
writeln(gpcs:10:3)
end;
begin
GPWHCEP(sigx, sigy, mux, muy);
write(“THE CEP GIVEN BY THE GRUBBS-PATNAIK/WILSON-HILFERTY IS: 7);
writeln(gpwh:10:3)
end;
begin
RANDCEP(sigx, sigy, mux, muy);
writeln(“THE CEP GIVEN BY THE MODIFIED RAND-234 IS: ~, randc:10:3);
end;
begin
writeln(“HOW MANY INTERVALS DO YOU WANT THE FOR THE CBN?7);
writeln(”THE MORE INTERVALS, THE MORE TIME, THE MORE ACCURATE”");
readln(ints);
CBNORM(sigx, sigy, mux, muy, rho, cep, ints);
writeln(”"THE CEP GIVEN BY THE CBN IS: “, cbn:10:3)
end;
begin
EXACT(sigx, sigy, mux, muy, cep);
writeln( " THE CEP GIVEN BY THE "EXACT" IS: ~, cep:10:3)
end;
BESTALGEBRAIC(ints, sigx, sigy, mux, muy, rho, blas, ellip)
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{The following is the Main program. It accepts the input
of the user for the variables and then which method
the user would like to calculate}

tegin {MAIN PROGRAM}
writeln(“PLEASE INPUT THE SAMPLE STANDARD DEVIATIONS AND MEANS”);
write(“CROSSRANGE MEAN {X BAR}: ~);
readln(mux);
write(“CROSSRANGE STANDARD DEVIATION {SIGMA X}: ~);
readln(sigx);
write(“DCWNRANGE MEAN {Y BAR}: 7);:
readln(muy);
write(“DOWNRANGE STANDARD DEVIATION {SIGMA Y}: ~);
readln(sigy);
write(”INPUT THE CORRELATION COEFFICIENT, IF ANY {RHO}: “);
readln(rho);
bias:= sqrt(sqr(mux) + sqr(muy));
ellip:= sigx/sigy;
writeln(“HOW WOULD YOU LIKE FOR THE PROGRAM TO RUN?7);:

writeln(” {ENTER APPROPRIATE NUMBER}");
writeln;
writeln(”1 CALCULATE ALL METHODS”);

writeln(”“2 = CALCULATE GRUBRS-PATNAIK/CHI-~SQUARE METHOD ONLY”):
writeln(”3 = CALCULATE GRUBBS-PATNAIK/WILSON-HILFERTY METHOD ONLY”);
writeln(”4 = CALCULATE MODIFIED RAND-234 METHOD ONLY");

writeln(”S = CALCULATE CBN METHOD ONLY");

writeln(“6 = CALCULATE "EXACT"™ METHOD ONLY");
writeln(”“7 = CALCULATE THE "BEST"” OF THE ALGEBRAIC METHODS”);
readln(pick);
writeln;
writeln (“Frdkdkidakikiidiooiioik dokkdokkkkkkkkkkkdrkkiikkkdiioikiokiookk” ) s
writeln;
PICKMETHOD(pick, sigx, sigy, mux, muy, rho, bias, ellip);
end.
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