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Preface

This report examines circular error probable (CEP)

approximation methcdologies. The approximations and

methodologies explored in this report use statistical

distributions and mathematical methods that may be

unfamiliar to some people. It is assumed that the reader

has a general understanding of statistical distributions,

and their associated parameters as well as how to manipulate

these distributions.

This thesis was suggested by persons from the 4220th

Weapon System Evaluation Squadron, Strategic Air Command and

should be useful to all offices interested in calculating

CEPs for missiles, rockets, bombs, bullets, etc.

Before I begin this report, I would like to acknowledge

some people without whom this thesis would never have been

accomplished. Thanks go to Captains Paul Auclair and Dave

Berg for sponsoring this effort and furnishing me with much

of the information that was necessary to start and complete

this study - I hope they find it useful. Also I would like

to thank Major Bill Rowell, my faculty advisor, for

believing in this topic and for his patience, criticism,

help, and support. I thank my parents for always having

believed in me and given me the foundation on which all else

is built. Finally I would like to thank my fiancee, Gileen

Gleason, for her unwavering support especially during the

last month.

Richard L. Elder
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Abstract

Several approximation techniques are currently used to

estimate CEP. These techniques are statistical in nature,

based on the bivariate normal distribution of the crossrange

and downrange miss distances of sample impacts of weapon

systems. This thesis examines four of the most widely used

approximation techniques (Grubbs-Patnaik/chi-square, Gruhbs-

Patnaik/Wilson-Hilferty, modified RAND-234, and correlated

bivariate normal), compares their results with the results

and computational effort required by established numerical

integration techniques, determines the relative accuracy of

each technique in various regimes of the bias/ellipticity

parameter space. Included in this report is a tutorial on

the subject of CEP meant to serve as a general introduction

to how to calculate CEPs with some of the popular

approximation techniques.

In general it was found that each of the approximation

techniques is best in some regime of the parameter space

with the Grubbs-Patnaik/chi-square technique being the most

reliable estimator. For fast calculations of CEP, the

correlated bivariate normal and the exact" method may not

be feasible because both are computationally rigorous and

require from 2 minutes to several hours of computer time (on

a personal computer) to give an estimate of CEP.
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EXAMINATION OF CIRCULAR ERROR PROBABLE

APPROXIMATION TECHNIQUES

I. Introduction

Background

Circular error probable (CEP) is defined as "... the

radius of a circle centered at the target or mean point of

impact within which the probability of impact is 0.5"

(16:1). That is:

J /F(x,y) dx dy - 0.5 (1.1)

CCEP

where

CCEP - a circle centered at the target with radius CEP

F(x,y) is the bivariate normal density function

x is the crossrange miss distance

y is the downrange miss distance.

Given this definition, circular error probable (CEP) is used

to measure a weapon system's impact accuracy. The CEP is

determined by taking test impact data and approximating the

actual CEP of the missile system. Of course, the more data

points - or weapon system tests - collected, the better the

approximation of CEP.

There are several ways to approximate CEP. One group

of techniques is non-parametric approximation methods.

These approximation techniques make no assumptions about the

1-1 "
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underlying distributions of the impacts. One non-parametric

method simply uses the sample median as an estimate of CEP.

Non-parametric estimations are only useful in cases where

one has available a large number ( greater than 30 ) of

sample impacts. When flight testing missiles it is not

practical to expect to have a large number of data points

(usually no more than 15 are available) (2), so non-

parametric tests are of limited use and are not presented in

this study.

The most common parametric methods for estimating CEP

are based on the assumption that the impacts are normally

distributed: closed form integration of the bivariate

normal function, numerical integration of the bivariate

normal, or algebraic approximations of the bivariate normal

function (16:2-4). Closed form integration of the bivariate

normal distribution is of limited use because it can only be

accomplished for the case of non-correlated samples with

means of zero and equal standard deviations (16:2-3).

On the other hand, numerical integration techniques are

useful in estimating correlated samples with non-zero means

and unequal variances. Numerical integration techniques

yield a probability of impact given a circle of known

radius. However in approximating CEP it is of interest to

derive a radius given a known probability (i.e. 0.5).

Therefore )ne must come up with an initial estimate of CEP

and then iterate the numerical integration until a

1-2



probability of 0.5 is achieved (3).

It is impcrtant to note that numerical integration

techniques for estimating CEP are in fact estimates of CEP.

They are the most accurate estimates available under the

assumption of normality. Because of the fact that they are

most accurate they are often referred to as "exact"

solutions. Although the use of an "exact" method provides

the most accurate results, there are advantages and

disadvantages to its use.

While numerical integration methods provide good
estimates of CEP, and can be used to evaluate the
accuracy of the other CEP approximation methods, they
require considerable computer time, and are usually
impractical in flight test analysis (16:3).

The key point is that numerical integration can be used as a

standard to evaluate the accuracy of other CEP approximation

methods.

The preferred method of approximating CEP using

numerical integration of the bivariate normal density

function is infinite series expansion. When calculating

CEP, one is solving for the radius within which the

probability of hit is 0.50.

x1 [ 2 (Y 7)2

P(R) exp - + dxdy (1.2)
SxSy 2 S2 S y2

where,

(x, y) = downrange and crossrange miss distances;

( , 7) = downrange and crossrange sample means;

1-3
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(Sx, Sy) = downrange and crossrange sample standard
deviations.

';hen P(R) is equal to 0.50, then R is the estimate of the

CEP. Smith suggests an iterative approach to solve for CEP

(17:1-6). One approx iiates this integral (1.2) with an

infinite series and expands it until the inner terms

approach zero. This method of approximating CEP is referred

to as the "exact" method. The calculations required by the

exact" method can be extremely rigorous as will be

illustrated in Chapter III. The number of iterations for

the series to converge can use much computer time.

Another numerical integration technique in current use

is the correlated bivariate normal method (CBN). The CBN is

sometimes a faster approximation than the "exact" method,

however, it also requires considerable time to converge to

the CEP.

Since numerical integration techniques may be

impractical, it is essential to have fast approximation

techniques that are fully tested and validated. The

algebraic approximations give fast results and are accurate

over certain regimes of the parameter space (Three

parameters can be used to characterize the probability

distributions of impacts: bias, ellipticity, and

correlation. It will be shown that correlation can be

removed from sample data so that one is left with two

parameters). Many different algebraic approximations of CEP

1-4
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exist. Three of these algebraic approximation methods are

of particular interest to this study of CEP methodologies:

Grubbs-Patnaik/chi-squared
Modified RAND-234
Grubbs-Patnaik/Wilson-Hilferty

These three methods were suggested by the sponsors of this

study (4220th Weapon System Evaluation Squadron, Strategic

Air Command) as the most frequent methods used. No work has

been accomplished to fully compare these approximations with

each other and with the numerical integration methods.

Problem Statement

Given non-correlated sample impacts, how do common CEP

approximation techniques (Grubbs-Patnaik/chi-squared,

Modified RAND-234, Grubbs-Patnaik/Wilson-Hilferty, or CEN)

compare in accuracy and computational effort (measured by

computer time) to the "exact" method (numerical integration)

over the possible range of the parameters bias and

ellipticity.

Purpose of the Study

It has been suggested that the "exact" numerical

Integration method of approximating circular error probable

(CEP) is not practical for flight test analysis because of

the inordinate amount of computer time it takes for this

method to produce an approximation of CEP (16:3). This

study examines four methods of approximating CEP and

compares them to the "exact" method.

While examining these approximation methods this study

1-5
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determines which method gives the "best" estimate of CEP

when compared to the "exact" methodin various regimes of the

bias/ellipticity parameter space. Additionally, a tutorial

on CEP and the various approximation techniques for

calculating CEP is presented.

The general approach to this thesis is to:

-- Apply the three algebraic approximation techniques

and the CBN over a wide range of the bias/

ellipticity parameter space;

-- Compare accuracies and computational effort

(computer time) of each of the four approximation

techniques with the "exact" numerical integration

method;

-- Analyze results to determine:

- which technique is most accurate (compared to

the "exact" method) in a given regime of the

bias/ellipticity parameter space;

- where any of the techniques may fail to give an

accurate estimate of CEP.

-- Use regression analysis to estimate the error

generated by each approximation technique over the

bias/ellipticity parameter space and add a

correction factor to the calculations.

This study does not use actual test data for validating

the approximation techniques. Non-dimensional values of

bias and ellipticity are used. Therefore, correlation is

1-6
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assumed to be equal to zero. Given actual test data, the

correlation can be removed from the data by translating the

data to principal axes (See Appendix B for details on 1 ow to

remove correlation from sample data) (10:20-21). The units

(feet, meters, etc.) for CEP or any of the parameters do not

affect the calculation of CEP, as long as one is consistent

with the units used.

Seauence of Presentation

Chapter II presents a review of related literature in

this field. Chapter III describes the three algebraic

approximations, the CBN, and the "exact" method. Also

Chapter III explains the data collection process, computer

program and the regression analysis used to estimate the

errors between the algebraic approximations and the "exact"

solution.

Chapter IV discusses the results of this study in terms

of which approximations of CEP are "best," and in what

regimes of the bias/ellipticity parameter space each should

be used. The results of the regression analysis are also

discussed in Chapter IV. Chapter V summarizes the findings

of this study and makes recommendations for the

implementation of these results and for further research.

The appendices present the tutorial on circular error

probable, the derivation of some of the mathematical

formulae used in this study, computer program listings, and

some sample output. Appendix A contains the tutorial on

1-7



CEP. This tutorial is written so that it can stand alone

from the rest of this document. Appendix B is a discussion

of the method of removing the correlation in the samples of

impact data. Appendix C is a discussion of the secant

method that is used in the numerical integration techniques.

Appendix D contains sample results from the data collected

for this report. Finally, appendix E is a listing of the
'.

computer program written in Pascal.

1-8
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II. Literature Review

Past work in the area of approximating circular error

probable can be divided into two groups: theoretical work

and applied work.

Theoretical Work

The theoretical work in the area of estimating CEP is

concerned primarily with deriving the various approximation

techniques. Chapter III will give the details about the

derivations of each approximation method.

The theoretical groundwork for two of the approximation

techniques of interest to this study was set by Frank E.

Grubbs. He combined the work of Patnaik, Wilson, and

Hilferty to formulate two methods of approximating CEP.

These are referred to as the Grubbs-Patnaik/chi-square, and

the Grubbs-Patnaik/Wilson Hilferty (7). Grubbs defined the

problem of interest as:

that of finding the probability of hitting a
- circular target ... whether the delivery errors

are equal or unequal and also for point of aim or

center of impact of the rounds either coinciding
with the target centroid or offset from it. ... It

therefore appears desirable to record a straight-
forward, unique, and rather simple technique for
approximating probabilities of hitting for all of
the various cases referred to above (7:51).

Grubbs' methods are being used by several organizations to

calculate CEP: Strategic Air Command (missiles and bombers)

(4), the Army Missile Command (18), and USAF Foreign

Technology Division to name a few.

In addition to Grubbs' two approximation methods the

2-1
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Rand-234 method is presented. This method is .iot based on

Grubbs' work. The RAND-234 method of approximating CEP is

simply a mathematical expression derived to approximate

RAND-234 tables of probabilities (14). The RAND-234 tables

were contained in RAND Report R-234.

R-234 tables contain the probabilities of missing a
circular target of a given radius with a weapon system
of known accuracy aimed at some point offset from the

center of the target. R-234 assumes that the weapon
system accuracy can be described by a radially
symmetric Gaussian distribution (14:2).

A least squares regression was used to derive this formula.

The reason that this method was developed was that "... a

formula facilitates computer calculation of CEP and obviates

the need to look up CEPs in the R-234 tables" (14:2). This

regression resulted in a third order polynomial for

calculating CEP.

Two other CEP approximation techniques developed in the

literature are numerical integration techniques. One is

called the correlated bivariate normal (CBN), and the other

is referred to as the "exact" method because it is

considered the most accurate approximation (it is also the

most computationally rigorous of the approximations).

The CBN was developed "... to calculate CEP about the

target point given that the center of the distribution of

impacts is located at some distance (range-track) defined by

an impact bias vector" (15:1). rhe CBN solves for CEP by I
expressing the bivariate normal distribution in polar

coordinates and then integrating over r and summing over S.

2-2
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The resulting expression must then be solved iteratively for

the CEP value (r) that results in a probability of 0.5

(15:1-5). Typically 40 steps were used in this integration.

Jones, however, notes the accuracy of the CBN can be

improved by increasing the number of steps used in the

integration (11:1).

Another numerical integration technique fcr

approximating CEP is the "exact" method. The "exact" method

is described in detail by Smith. This method involves

Taylor series and infinite series expansions to estimate a

bivariate normal distribution with zero correlation. After

expansion, one must solve for the radius (r) within which

the probability of hit is 0.5. This is done by iterating on

r until the series expansion converges to 0.5. Whereas the

CBN only involved summation over one variable (e), the

"exact" method sums over both r and e (16).

Applied Work

Comparisons of some of these methods have been

accomplished, but never has there been a study to compare

all five of these approximation methods at the same time.

Smith compared the RAND-234, Grubbs-Patnaik/chi-square,

and the Grubbs-Patnaik/Wilson-Hilferty methods with the

infinite series, "exact" approximation (16). In this work

Smith showed that one can produce a very significant error

in calculating CEP by neglecting the rotation to principal

axes in the case of correlated samples. This error was as

02-3



much as 23% in one case. Also Smith varied eccentricity

while holding bias constant and vice versa. She did not,

however show the effect of varying both bias and

eccent-icity at the same time (16:9).

Other works have also compared approximation methods.

Jones compared the RAND-234, CBN (with 40 and 400

iterations), Grubbs-Patnaik/chi-square, and the "exact."

Table 2-1 shows the values of ellipticity and bias used in

the 16 cases examined by Jones.

Table 2-1

Cases (11:3)

Case Ellipticity Bias
1 0.25 0.5
2 0.30 0.6
3 0.35 0.7
4 0.40 0.8
5 0.45 0.9
6 0.50 1.0
7 0.55 1.1
8 0.60 1.2
9 0.65 1.3 

10 0.70 1.4
11 0.75 1.5 
12 0.80 1 .6
13 0.85 1.7 
14 0.90 1 .8
15 0.95 1 .9
16 1.00 2.0

(Note: the units in this analysis do not matter as long as

one is consistent with the units -- once in meters, always

in meters, etc.)

Table 2-2 shows the CEPs calculated for each of the

techniques (RAND-234, CBN with 40 steps, CBN with 400 steps,

2-4



Grubbs-Patnaik/chi-square, and "exact") for each of the 16

cases In table 2.1. Table 2.2 illustrates that the "best"

approximation varies depending on the values of ellipticity

and bias. However, this paper did not explicitly delineate

where one method becomes more inaccurate than another.

Table 2-2

Results (11:4)

Case RAND -BN(40) CBN(400) Grubbs Exact
1 801 .18 805.98 818.81 824 .41 820 .27

2 830.73 833.54 845.20 847.12 846.56
3 865.21 866.81 877.67 876.89 878.97

4 904.28 905.23 915.57 913.48 916.82 I
5 947.60 947.08 957.09 954.52 958.34

6 994.80 992.51 1002.37 999.71 1003.61
7 1045.55 1041.44 1051.28 1048.37 1052.55
8 1099.48 1093.69 1103.67 1100.02 1104.97

9 1156.25 1149.01 1159.28 1154.41 1160.62
10 1215.5.1 1207.01 1217.72 1211.11 1219.12
11 1276.90 1267.24 1278.54 1269.88 1280.01

12 1340.08 1329.22 1341.24 1330.47 1342.80
13 1404.69 1392.53 1405.40 1392.65 1407.04

14 1470.39 1458.07 1471.90 1473.64 1457.47

15 1536.82 1521.86 1536.68 1521.02 1538.52 I
16 1603.64 1587.43 1603.32 1586.85 1605.27

By calculating the error of each approximation relative to

the "exact" method, one can determine which approximation is

"best" for each case. Equation 2.1 is used to determine the

relative error (RE) (16:9).

CEPapprox - CEPexact
RE 2 2.1I

C EP "
exact

."

For example, table 2-3 contains relative errors for five of

the example cases.

2-5
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Table 2-3

Relative Errors

Case RAND CBN(40) 1 CBN(400) Grubbs
1 -0.023 -0.017 -0.002 0.005
5 -0.011 -0.012 -0.001 -0.004

10 -0.003 -0.010 -0.001 -0.007
13 -0.002 -0.010 -0.001 -0.010
16 -0.001 -0.011 -0.001 -0.012

For all cases the CBN with 400 steps is the "best." However

as stated before this method is computationally rigorous

much like the "exact" method. So if one needs a "quick"

estimate for case 1 the Grubbs-Patnaik/chi-square is the

"best." However, by case 10 the RAND-234 gives the "best"

estimate of the fast methods, and by case 16 the RAND-234 is

as accurate as the CBN with 400 steps.

As mentioned before, no study has been accomplished to

analyze the accuracy of each of the five methods here

presented over as wide a range of values as those in this

study.

2-6
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III. Methodology

This chapter presents the methodology used to analyze

the CEP approximation techniques. The variables used in the

methods (mean, standard deviation, and correlation) are

introduced, followed by a presentation of the mathematics of

each of the approximation methods. Next the framework of

the attempted regression analysis is discussed, followed by

a description of the process by which data was generated for

this study. Finally, the interactive computer program

included in appendix E is described.

The Variables

Circular error probable can be expressed as a function

of the standard deviation, mean, and correlation of the

downrange and crossrange miss distances of a set of sample

impacts. Correlation can be removed from sample data by

performing a simple rotation of axes into a non-correlated

coordinate system (see Appendix B for the this rotation

technique and the formula for calculating correlation)

(10:21). This study assumes one is using the standard

deviations and means from uncorrelated samples.

The unbiased estimators of standard deviation and mean

are used here. Equations 3.1 and 3.2 show the formulae used

in calculating the down range and cross range sample means:

n

= xi/n (3.1)

i=1

'- 3-1
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where x refers to cross range miss distance, y refers to

down range miss distance, and n is the total number of

sample impacts. Equations 3.3 and 3.4 are the formulae for

calculating the sample standard deviations:

x  = (xi2 - nR 2 )/(n - 1) (3.3)

(3.4)

S = (yi2 - n 2)/(n - )(3.4)

From these variables the parameters of bias and ellipticity

are obtained.

bias = + (35)

ellipticity Sx/Sy (3.6)

The relative errors between the approximation techniques and

the "exact" approximation vary depending on the bias and

ellipticity of a given set of sample impacts.

Grubbs-Patnaik/Chi-Square

The Grubbs-Patnaik/chi-square approximation method is

based on the work of Frank E. Grubbs (7). This method uses

the fact that the bias is a sum of noncentral chi-squares

and solves for the radius that gives a probability of 0.5

(i.e. PL(x-2Z) 2 /Sx 2  + (y-) 2 /Sy 2 < R 2 1 = 0.5) (7:55).

3-2
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This is the approximation:

CEP = v 2m (3.7)

where

m = (S 2 + Sy2 + R2 + 2) (3.8)

v = 2(Sx 4  + 2p 2 Sx 2 S y 2  + Sy 4 ) +

4(,Z2S 2 + 25 pgS y + y 2 Sy 2 ) (3.9)

k F-1 (0.5) (3.10)

df = 2m 2 /v (3.11)

and F is the chi-square distribution function with df

degrees of freedom (1:5). In this formula p is the

correlation coefficient. If the rotation described in

appendix B is performed then the terms with p in them can be

Ignored (p = 0).

In the computer programs used in this study the inverse

chi-square function was estimated using table values found

in the CRC Standard Math Tables (5:547). This table gives

values of F - 1 for integer values of df, but F -1  is a

continuous function. To obtain values of F -1  for non-integer

values of df a simple linear interpolation was used (Note:

F - 1 is not a linear function, but for the sake of simplicity

the linear approximation was used for the interpolation.

Comparing the results obtained using this simple linear

interpolation and results of the Grubbs-Patnaik/chi-square

3-3
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from other studies that used a more exact expression for F - 1

showed that the was little or no loss of accuracy.).

Grubbs-Patnaik/Wilson-Hilferty

The Grubbs-Patnaik/W ilson-Hilferty approximation

technique was developed as a modification of the Grubbs-

Patnaik/chi-square method. The Grubbs-Patnaik/Wilson-

Hilferty method transforms the chi-square to approximate

normal variables. This method does not use the chi-square

function described in the previous section. The expression

for CEP used in the Grubbs-Patnaik/Wilson-Hilferty method

i s:

CEP qm{l - [v/(9m2 )] 3 }  (3.12)

where m and v are as defined in the Grubbs-Patnaik/chi-

square method (equations 3.8 and 3.9) (1:6).

Modified RAND-234

The Modified RAND-234 method is a fit of a cubic

polynomial to a table of CEP values. Pesapane and Irvine

used regression analysis to "...derive a mathematical

expression for circular error probable (CEP) which

approximates probability tables contained in RAND Report R-

234" (14:2). This is the Modified RAND-234 method:

CEP = CEPMPT('.0039 - 0.0528v + 0.4786v 2  - 0.0793v 3 ) (3.13)

where CEPMPI is the CEP centered on the mean point of impact

(this CEP must be translated to a CEP centered on the
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target), S S  is the smaller of the two standard deviations,

SL is the larger, and:

5, CEPMpI 0. 6 14 SS + 0. 5 6 3 SL (3.14)

S-Sx 2 + S -2 S 2  S 2 ) 2 + 4p 2Sx.2S (

/Sx2+ Sy 2  (S - S 2)2 + 4 2S 2

SL (3. 16)
2

v = b/CEPMpI (3.17)

b = bias 4 V x2 + 2 3.18)

The Modified RAND-234 was developed under the boundary

condition that SS/SL is greater than 0.25 and that v is less

than or equal to 2.2 (1:2-3, 14:2-5). These boundary

conditions exclude highly elliptical sample impact data sets

(SS  < SL/4) and those whose mean point of impact is over 2.2

times as far away from the target centroid as the CEP around

the mean point of impact (CEPMPI).

Correlated Bivariate Normal

The Correlated Bivariate Normal (CBN) method of

approximating CEP is a method that estimates the bivariate

normal function (in polar coordinates) by integrating with

respect to r and summing over e. Here is the development of

the CBN approximation technique (equation 3.19 is another

expression for the distribution function of the bivariate

3-5

aA.. A 
° 

t 

°



normal):

?(r*) - exp[-(ar2+2br+c)] rdrdE (3.19)

0 0

where r* (P(r*) P(CEP) = 0.5) is the radius for which one

is solving, a and b are functions of the change in e

(equations 3.20 and 3.21), and c is a constant (equation

3.22). Finally, equations 3.23 and 3.24 give the formulae

for the CBN approximation technique. In these equations N

is the number of intervals the integral is divided into to

give this approximation, AO = 21/N, ai and bi are as given

in equations 3.20 and 3.21 for the current value of e

(2ni/N), and c is as given in equation 3.22. The more

intervals, the more accurate the approximation (15:1-5).

1 sin20 2psinocosO Cos 2 \
= __.(_) =-+ (3.20)

2( -2) Sx 2  SxS y S y 2 /

-1 RsinO PcosO + PsinO _ _cos
b(s) = -+ (3.21)

2(1-p 2 ) S x
22 SxSIy Sy 2

S+ (3 .22)

2( 1-p
2 )  S 2 SxS y Sy 2

Z

2f
erf(z) -= exp[-x 2 ldx (3.23)

0
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1 /0 ai

I 1

(r*) = exp4 V7 S ,S Y 1- 7g' ,.1 - a i  a i

- r* -erf r- r + er i+

exp (ai(r*)2 - 2bir* - - exp - (2 (3.24)
4"a, ( a 1

To obtain a CEP using the correlated bivariate normal

method one must first make a guess at what the CEP actually

is, solve equation 3.23 and compare the value to 0.5. If

the value obtained is "close enough" to 0.5, one has a CEP.

However if the probability given by the CBN is not "close

enough" to 0.5 then one must iterate to a value that is

closer to 0.5. To decide how close is "close enough" one

must decide how accurate your estimate of CEP is to be. The

secant method (described in Appendix C) is used to iterate

for the value of the CEP in the CBN.

"Exact" Method

Like the correlated bivariate normal technique, the

"exact" method estimates the bivariate normal function. In

order to use this method the two coordinates of miss must be

uncorrelated. This method uses Taylor series and infinite

series expansion to estimate CEP. The "exact" method takes

the bivariate normal function in polar form:

3-7
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R 2r
ff ose 3Z~)2 (rsin@

P(R) =I Aexp -- + rdrdE (3.25)
002 S x2 S y 2

J .J

P where

A (3.26)

2ISxSy

After series expansion this is the equation for the "exact"

approximation technique:

R 2  00 0 (k+l)!(J+1)!

P(R) = 0.5 --- D I I xkY j  (3.27)
2 k=0 J=O (k+j+l)!

where

* 1 [ 2 72 1
D e ex p[ + - 3.28)

SxSy " 2Sx 2  2Sy 2

(2k)! -R2 k k k! -2 2 1(

(k+l)!(k!)2  (8Sx 1=0 (*k-1)!(21)! \Sx 2  /

(2j)! ( -R2\ j j. 3-23 )
Yj= - (3.30)

(j+l)!(j!) 2  18Sv2/ i=0 (j-i)!(2i)! ISy 2  /

As with the CPN to solve this one must first make a

cuess at the CEP, and then iterate to arrive at an answer

* that Is accurate enough for one's purpose. The secant

method was used in this case also (17:1-5).
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Regression Analysis

This study also developed a correction factor usinp

regression analysis for the approximation techniques to make

the methods better estimators of CEP. A least squares

multiple linear regression model was constructed with two

independent variables. The regression analysis uses bias

(b) and ellipticity (e) the independent variables and the

relative error (RE) as the dependent variable. The

regression model is of the form:

RE = + a 1 b + 8 2 e (3.31)

where the ais are the regression coefficients for which one

must solve.

In order to solve for the ai's define the following

vectors and matrices:

RE11] [ , eli
RE2 1 b 2  e 2

RE= X = . .

L REn J1 b n en ]

B [ i]
The least squares estimator of 0 is:

B = (X(X)-'RE 3.32)

(9:392-395)

After solving for the estimated relative error (RE) one
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simply divides the estimated CEP by one plus the relative

error. Recalling equation 2.1:

CEPapprox - CEPexact
R RE (2. 1

CEPexact

therefore,

CEP approx
CEPexact (1 + RE)

The results of this least squares multiple linear regression

are discussed in chapter IV.

The Computer Program

The computer program included in this study is written

In the Pascal programming language and it is compatible with

personal computers running Turbo Pascal by Borland

International (with some minor changes it will run on other

versions of Pascal). The program operates interactively.

It will compute CEPs for each approximation technique, only

those requested by the user, or it will decide which

technique is the most accurate (other than the "exact"

method) for the viven parameters and return a CEP for that

technique only. The program decides which method is the

"test" using a decision criteria based on the results of

this study.

The computer runs to collect the data for this study

were performed on the VAX computer at the Air Force
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Institute of Technology, and on the SANYO MBC-550 personal

computer (operating system: MS-DOS) owned by the author.

This program is intended to run on a personal computer in

the offices of persons concerned with calculating CEPs. The

programs were also run on a Zenith 2-150 at the Air Force

Institute of Technology. There were no differences in how

the program ran on the SANYO and the Zenith. The timing

analysis was based on time to run on the SANYO.

The program can easily be adapted for use with any

version of the Pascal language. The listing of the computer

program is included in appendix E.

Data Collection

To collect data for this study CEPs for all five of

the approximation methods were calculated over a wide range

of values of ellipticity and bias. Since the bias is the

radial distance of the mean point of impact from the target

centroid, bias was stepped out on the diagonal where R = y,

whereas ellipticity was calculated by keeping S y constant

and varying Sx. The range of ellipticities considered was

from 0.05 to 1.0, and the range of bias was from 50 to 1555.

Overall, 440 data points were examined in this study. These

440 data points examined ellipticities from 1.0 to 0.05 in

decrements of 0.05 and bias from 1555 to 70 (R and 7 from

1100 to 50 in decrements of 50), and a CEP was calculated

for each of the five approximation methods for all

combinations of ellipticity and bias.
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Appendix D contains sample output from the data

collected. The sample in Appendix D shows CEPs for

ellipticity from 1.0 to 3.1 (in 0.1 decrements) and bias

from 1555 to 141 (R and 7 from 1100 to 100 in decrements of

100).

Once all the data runs were comoleted, the analysis of

the approximation methods could begin.

'S

,p
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IV. Analysis and Discussion of Results

This chapter discusses the results of the analysis

described in chapter III. Each of the approximation

techniques is presented with a discussion of how accurate

(compared to the "exact" method and the other

approximations) the method is over the range of the

bias/ellipticity parameter space. Also considered in the

analysis of each approximation technique is the computer

time each technique takes to give an answer for the CEP.

Finally this chapter discusses the regression analysis

developed to attempt to correct the approximations.

Grubbs-Patnaik/Chi-Square

The Grubbs-Patnaik/chi-square method gives relative

errors (RE) that range from -0.0076 to 0.0684 (in several

cases the absolute relative error was less than 0.0001).

Recall equation 2.1:

CEPapprox - CEPexact
RE =p r x x c (2.1)

CEPexact

The Grubbs-Patnaik/chi-square approximation technique

underestimates the CEP 28% of the time. Figure 4-1 shows

the portion of the parameter space where the Grubbs-

Patnaik/chi-square method is the best.

This approximation is the most accurate of the

approximation methods. It is the most accurate method for

46% of the data points. Additionally the Grubbs-

4-1
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Patnaik/chi-square method gives an answer in an average of 2

seconds.

Ellipticity

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1550 * **7
1500 * ***-1500

1400 * * * * * * * * * * 1400
•* * * * * * * *-

1300 * * * * * * * * * * 1300

B 1200 * 1200 B
i ** * *i

a 100** * a
S * * * **S

1000 * *1000
O**

****** 900

900 80
800 7**** **** * 800

• **** *w*** *
700 __-- - -* * * * * * * 700

*1*600 _ _- -. 600

500 500
600 * ** * ** * * * * 600

400 * **400

: 50*** * * * * * * * * 0

•* ** * * * * * * * * * * * 30

300 *00

200 2* * * * * * * * * * * * * * * 00
100 * 00• * * * *- * * * * *

- * * * * * * * * 100
• * i **** **

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Elliptlcity

Figure 4-2
Grubbs-Patnaik/Chi-Square "Best"

Grubbs-Patnaik/Wilson-Hilferty

The Grubbs-Patnaik/Wilson-Hilferty method yields

relative errors ranging from -0.054 to 0.0726 (the smallest
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absolute relative error for this method was 0.0002). The

percentage of underestimated CEPs given by this method is

10%. Figure 4-2 shows where this method is the most

accurate method. The Grubbs-Patnaik/Wilson-Hilferty

Ellipticity

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1550 '
1500 1500

1400 1400
1300 1300

B 1200 . 1200 B

a 1100 . . .1i 00 a

s s
000- - 000

900- 900

800 800

700 700

600 600

500 l500

400 400

300 300

200 200

100 100

0 0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Ellipticity

,: Figure 4-2

• Grubbs-Pa tnaik/Wilson-Hilfer tY "Best"

I approximation is the most accurate method for 5% of the data
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points. Like the previous technique this method gives an

answer in an average of 2 seconds. .

Modified RAND-234

Values of -0.0125 to 0.0765 (0.0002 is the smallest

Ellipticity

0.0 0. 1 0.2 0. 3 0 .4 0.5 0.6 0.7 0.8 0.9 1.01550 I .
1500-/ 7 7 I / 1500

1400 1 11 11400

1300 1 0/ / / / / 130

B 1200 / / / / / 1200 B
i III IITi
a 1100 -- / / / / / 1100 a

s I I I I I / / s
1000 _ / 7T 1 / I 1000

900 / 490

800 /__ / / 800

700 700 / 7-- / 77 70
6OO7/7/ / / / ---- / 7 / 6O

600 _ 77T -T7 600

5OO / / 77 / 5O
500 - T --T7TI - ------- 500

4O00 / 7 -/-400

300 / / 300
/ /

200 T----------- 200
2OO / / 2O0

0 II II77 I III 0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Ellipticity

Figure 4-3

Modified RAND-234 "Best"
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absolute relative error for this method) are t~e range of

the relative errors given by the modified RAND-234

technique. It should also be noted that the modified RAND-

234 method underestimates the CEP 60% of the time. Figure

4-3 shows where the modified RAND-234 method is most

accurate in the bias/ellipticity parameter space. For 29%

of the data points, the modified RAND-234 approximation gave

the most accurate estimate of CEP when compared to the the

other approximation methods. This approximation technique

also returns estimates of CEP in an average of 2 seconds.

Astbury notes that the modified RAND-234 method was

developed under the boundary condition that ellipticity,

SS/SL, is greater than 0.25. However, the data for this

study showed that the modified RAND-234 is also reliable for

some values of ellipticity less than 0.25.

Correlated Bivariate Normal

The Correlated Bivariate Normal (CBN) approximation

technique can be the most accurate estimate of CEP over the

entire range of the parameter space if one has the time to

wait for a result. This method takes anywhere from 10

minutes to several hours to produce a CEP that is accurate

to within 0.001 absolute relative error. The CBN can return

as accurate a value as desired. The more intervals the

integral is broken into, the more accurate the

approximation. At times the CBN takes longer than the

"exact" method to give a CEP. However, the CBN always
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converges to an estimate of CEP. a

Here is an analysis of the time it takes the CBN to

converge for three different numbers of intervals the

integral is broken into:

40 intervals - 10 minutes

100 intervals - 1 hour

400 intervals -16 hours

As one can see, the amount of time it takes for the CBN to

converge increases exponentially. Moreover, to achieve

accuracies to within 1% it is often necessary to increase

the number of intervals in the CBN.

Exac t"

The "exact" method is the benchmark against which all

the other approximation techniques were measured. This

method takes anywhere from 2 minutes to 2 hours to give an

answer for CEP when it converges. The "exact" method does

not always converge to a CEP. For some highly elliptical

distributions with large biases where the target centroid is

not within 2 standard deviations of the mean point of

impact, the "exact" method diverges. Figure 4-4 shows the

regimes of the bias/elliptlcltv parameter space where the .2

exact" method does not converge.

In the other regimes of the parameter space, the
- %-

exact" will converge if one has the time necessary for it .a

to do so. If quick results are not necessary, then the
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"exact" method is the preferred method to calculate CEP.

Ellipticity

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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Figure 4-4

"Exact" Does Not Converge
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Ellipticity

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1550 X x x x X/ / / * ** - / l l / / / 7 o

Xxx x X X* * -I X X
1400 X X X X X T 7 // * * * * 7 * * * 7 1400

SX X X X // /***** -
1300 X X X 7 X / / / 7* * * * * * 1300

X X X X X - - - *- -
B 1200 X X X X X * * * 7 7 7 - - / - 1200 B
i x x x × X / / 1 -X. . . 1 1

a 1100 X X X  X X / / / / * - * / / * 1100 a
s x xx I I I lX * ll s

1000 X X X X x / -- /* * * 000
X X X X X** 7 7 * -//* *

9 0 0 X * **X* * * * * * * * * * 9 0 0
x X XX ///* * * * *

300 X X X X XI/ //****//****/* 800
X X X X X / / / ** * *J/ / * */ *

700 X X X X X///**//**** /// 700

600 7 x x lx * * * * 7 l * * * * * 17-4 600
X X X / / * / * **** *** /

500 X X / I * *1*1 7 * * -***/T 500700 xxx** *** ****** 700
40X X ** / / ** * *** * *4
600 ***7****7/******T7*7*60

300 X X X I3I * * * * * * * * * * * * * * * 400

200 X 7 X 7 7 * * * * * * * * * * * * * * * 200X/ 77 / * * / * l *** * ** * *

100 1X / / * * * * / * * * * * * * * * / 200
100 / 7/1 '1 / / l / * *** ll* **

7x/** / / / /***
0 x T-7 TT 7 7 7 1 T1* 0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Ellipticity

Figure 4-5

"Best" Method Across the Bias/Ellipticity Parameter Space

/ = RAND-234
• = Grubbs-Patnaik/chl-square

- = Grubbs-Patnaik/Wilson-Hilferty

X = Area where the "exact" does not converge
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For some values of ellipticity and bias, the "exact" method
C.

converges so quickly that it may be unnecessary to use a

less accurate approximation. The folowing is a list of how

long it takes the "exact" method to give a result for

various values of the parameter space:
C.

5 - 15 minutes

for Sx > and S >

20 - 30 minutes

for 0.8 < Sx Sy < 1.0 and Sx < and S y <

30 - 90 minutes

for 0.5 < Sx/S < 0.8 and Sx < and Sy <

> 90 minutes

for all other values of ellipticity and bias.

The notable exceptions to the above analysis comes when Sx

equals R or Sy equals y. For these values the "exact"

approximation method gives an answer for CEP in less than 2

minutes. Clearly there are times when it is feasible to use

the "exact" method for calculating CEP. Again, use of the

"exact" method would depend on the amount of computational

effort one is willing to expend to achieve an answer.

Figure 4-5 maps the entire bias/ellipticity parameter

space examined in this study and where each of the methods

give the most accurate estimates of CEP. It should be noted

that in those regimes where the "exact" method will not

converge, one can use the CBN to achieve a highly accurate

estimate of CEP (if the time is available).
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Regression Analysis

As part of this study a multiple linear regression was

performed on three of the approximation techniques (Grubbs-

Patnaik/chi-square, Grubbs-Patnaik/Wilson-Hilferty, and the

modified RAND-234). This regression analysis was performed

in the hope of providing a correction factor for the

approximations so they would more closely estimate CEP.

This regression analysis was based on the relative errors.

Here are the three regression equationsdeveloped using

the regression procedure described in Chapter III (RE stands

for relative error):

Grubbs-Patnaik/chi-square

RE = -0.000256 + 0.000392(Ellip) + 0.00000172(bias) (4.1)

Grubbs-Patnaik/Wilson-Hilferty

RE = -0.000472 + 0.000693(Ellip) + 0.00000395(bias) (4.2)

Modified RAND-234

RE = -0.000403 + 0.000498(Ellip) + 0.00000316(bias) (4.3)

Once an estimate of RE is determined, recall equation 3.30:

CEP approx
CEPexact (3.30)

(1 + RE)

is used to come up with a better approximation to the

"exact".

These regression equations give good results for CEP
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estimates that are greater than the "exact" CEP. In other

words, they do improve the estimate of the CEP. However

they do not capture the pattern that causes the

approximation methods to underestimate the CEP. Using the

Grubbs-Patnaik/chi-square method here is an example of the

results of the regression:

ellipticity = 0.5 bias - 232.84

CEP(approx.) = 907.75 CEP("exact") = 906.50

RE(actual) = 0.0014 RE(regression) = 0.0004

Using the regression technique described one would end up

with a CEP of 907.36, which has a relative error of 0.0009.

That is some improvement from the original. However, when

the method underestimates the CEP this is a typical result:

ellipticity = 0.7 bias - 848.53

CEP(approx.) = 1252.7 CEP("exact") = 1254.65

RE(actual) = -0.0016 RE(regression) = 0.0015

After using the described regression technique the CEP is

1250.8. This is a number further from the "exact" CEP than

the original approximation.

Similar results were obtained for each of the

approximation techniques when a suitable correction factor

was desired and the approximation had underestimated the

CEP. On the average, the regression equation for the

Grubbs-Patnaik/chi-square method improves the relative error

between the approximation and the "exact" by 0.0005. The
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-. regression for the Crubbs-Patnaik/Wilson-Hilferty results in

an improvement of 0.0008 on the average. The modified RAND-

234 regression gives an average improvement in relative

error of 0.0003. The fact remains that the regressions do

not reliably predict the times that the approximations

underestimate the CEP. It seems as if the relative errors

of the approximation techniques are not well behaved enough

to be captured in a simple equation. Appendix D table D-3

contains a listing of the relative errors obtained for some

example values of ellipticity and bias.

The author also tried several variations for the

regression independent variables. Squaring the ellipticity

and bias was attempted as well as taking the logarithms of

the variables. All attempts at providing a reliable

correction factor for the algebraic approximation methods

9. were unsuccessful.

The scope of this study was by no means completely

exhaustive. However, the author is able to make some

conclusions and recommendations based on the analysis of the

results of this study.
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-V. Conclusions and Recommendations

-S

-%

Conclusions

Circular error probable (CEP) is an important measure

of a weapon system's accuracy. As such it is essential to

be able to closely approximate this number. This study has

examined five different methods of estimating CEP and from

4this examination the author has reached several conclusions

regarding CEP calculations.

First and foremost among the author's conclusions is

that among the approximation methods studied, CEP is not

"well behaved." What is meant by that, is that there is no

easily recognizable pattern among the approximations as to

which is most accurate over a given range of the parameter

space. This is evidenced by the failure of the regression

analysis that was attempted in this study. Had the

differences between the algebraic approximations and the

"exact" method been somewhat "well behaved" the regression

would have provided a much more reliable correction factor.

However, this was not the case.

Another observation is that the algebraic

.approximations examined (Grubbs-Patnaik/chi-square, Grubbs-

Patnaik/Wilson-Hilferty, and modified RAND-234) are

approximately 99% accurate for most values of ellipticity

and bias when compared to the "exact" method. Notable

exceptions to this are where R equals S or equals S

The resulting values of ellipticity and bias cause the
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accuracies of the algebraic approximations to fall to

between 90% and 98%. However, for these values the "exact"

method produces an answer in seconds. Highly elliptical

distributions cause the greatest errors in all methods (if

ellipticity is less than 0.3, accuracies drop to between 95%

and 99%).

The correlated bivariate normal (CBN) method is the

most consistent method of all. However, for this

approximation method to deliver accuracies better than 99%,

the CBN often requires hours to produce an estimate of the

CEP. The only time that the CBN would be the preferred

method is when extremely accurate results (better than 99%)

are needed for highly elliptical cases where the "exact"

method fails to converge. For these results to be accurate

to better than 0.1%, one must increase the number of

intervals for the integral approximation to over 100, and

this required several hours on the author's SANYO MBC-550

personal computer.

The "exact" method, in some regimes, is very practical

to use. If Sx is greater than or equal to R and Sy is

greater than or equal to the "exact" method converges to

the CEP very fast (less than 8 minutes). The "exact" method

has one major drawback and that is that it requires a

computer to run the iterations (this is also true of the

CBN). The algebraic approximation techniques involve only a

few equations that are solved once. These could conceivably

be programmed into a hand-held programmable calculator. The

5-2
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"exact" method requires series expansion until inner terms

approach zero and then an iterative scheme to achieve a

desired accuracy in the calculation. In the areas where the

"exact" method does not converge, one must rely on the other

approximations for estimates of CEP.

Recommendations

Based on the difficulties this author found in

programming these approximations, Pascal is probably not the

best language for these calculations. Pascal has some

limitations on the size of the real numbers it will accept.

Turbo Pascal assigns real numbers to a 6 byte word size with

no provision for double precision reals. This limits the

range of real numbers to IE-38 to 1E+38. Many of the

calculations required in the approximation techniques

produce numbers out of the range of those acceptable in

Pascal. The author was reduced to using logarithms and

other manipulations to bypass these temporary large numbers.

This resulted in some inefficiencies in the programs which

could lead to longer processing time. The author also found

this same problem with the version of Pascal that is

available on the VAX computer at the Air Force Institute of

Technology. The author is aware of the existence of other

versions of Pascal that can handle double precision real

numbers. This version of Pascal was not available for use

in this study.

There are other computer languages that would perhaps

5-3
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lend themselves more readily to the great number of

calculations required in calculating CEP. It may be of use

to those who calculate CEPs to have the programs furnished

with this study translated into one of these other

languages.

In addition to trying other computer languages this

author is not convinced that there is no way to capture the

essence of the errors in the algebraic approximations in

order to produce a correction factor for these methods.

This portion of this study warrants further efforts.

The approximation techniques examined in this study

were all based on the assumption that the distribution of

impacts follows the bivariate normal distribution. It would

be useful to have robust techniques developed that could

provide good estimates of CEP (given small samples) that are

independent of the distribution of the impacts. This would

obviate the need to make any assumptions about the

distribution of the impacts.

Finally, this author recommends that if one needs

highly accurate estimates of CEP and sufficient time is

available, the "exact" method should be used for all values

where the "exact" converges to a CEP. In those cases where

the "exact" does not converge, the CBN with at least 100

intervals should be used.

Otherwise one will be forced to use one of the

algebraic approximations. If one is to chose a single
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approximation technique to use, the Grubbs-Patn3ik/chi-

square is the most accurate for the greatest range of values

of ellipticity and bias. The analysis presented in this

study will aid the user in determining which approximation

is the "best" for one's purposes.
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A Fendix A

Circular Error Probable Tutorial

Introduction

Whether one is dealing with guided bombs, unguided

bombs, bullets, missiles, rockets, lasers, etc., for a

weapons systems planner to effectively plan the employment

of a weapon there must be some measure of that weapon's

accuracy. Circular error probable (CEP) is one measure of

accuracy that is frequently used. CEP is defined as:

... the radius, centered on the target, within
which the probability of impact is 0.5.

To determine a weapon's CEP one must test the weapon to

get a collection of sample impacts. This collection of

sample impacts may be large (greater than 30) or it may be

quite small (take the case of a multi-million dollar missile

- one wouldn't launch 30 or more of them just to test their

accuracy). In the case of a large sample size, non-

parametric techniques (i.e. those that make no assumptions

about the underlying statistical distribution) are adequate

for estimating the CEP. But non-parametric techniques are

subject to large errors when dealing with small sample

sizes. In the case of small sample sizes, one must resort

to parametric methods for approximating CEP. These
.1

parametric techniques assume a particular statistical

distribution and estimate the various parameters of that
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distribution (i.e. mean, standard deviation, correlation,

etc.).

This tutorial gives a brief introduction to these

various techniques for estimating CEP starting with non-

parametric techniques followed by a discussion of parametric

techniques. Finally, results of CEP calculations for 10

sample impacts of a hypothetical ICBM warhead using each of

the approximation techniques is presented.

Non-Parametric Approximation

A good non-parametric approximation for CEP is the

sample median. To determine the sample median, one must

rank order the sample miss distances (that is the straight 9

line distance from the actual impact point to the target).

The sample median (X) is the middle statistic (or if there

are an even number of sample points, the median is the

average of the two middle order statistics of the sample

points).

X = X((n+l)/2) if n is odd, (A.1)

X {X(n/2) + X((n+l)/2)}/2 if n is even. (A.2)

The sample median is a good statistic to use (if one has a

large sample) because it requires no assumptions about the

underlyving distribution of the impacts.

Parametric Approximations

Parametric approximations assume that there Is an

underlying distribution to the impacts. This report
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)resents parametric approximation techniques that assume the

distribution of impacts is bivariate normal about some mean

point cf impact. There are several parametric

approximations available for estimating CEP. Most of them

are based on the means and standard deviations of the

downrange and crossrange miss distances of the sample

impacts. Figure A-1 is an example of how to determine the

downrange and crossrange miss distances.

SYlt il (xl,yl)

1 (0,0) 1

Itarqet x 1

Figure A-I Sample Impact i

Set up a coordinate system with the target as the origin.

Define x I as the crossrange miss distance and Yi as the

downrange miss distance for sampl-,  impact #1 (11). Then

take the total number of sample impacts (n) and calculate

the crossrange and downrange miss distances for each of

them.

i1
i 2

13 (0,0)
"target

4. 14
.%i 5

in

Figure A-2 n - Sample Impacts
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Next calculate the mean and standard deviation for the

sample crossrange and downrange miss di-tances.

n n

yl (xl - )

= = (A.5) S = = (A.6)
n (n - 1)

The means will give you a mean point of impact (MPI)

I (MPI)

(0,0)
target

Figure A-3 Mean Point of Impact

If the MPI and the target coincide, then the CEP is

relatively easy to calculate. However, this is not always

the case. For cases where the MPI and the target do not

coincide then the CEPMpI must be translated to a CEP

centered on the target.

Calculating CEP. The probability distribution function

of the crossrange miss distance is:

exp[-0.5(x/SX) 2]

f(x) C - < x < 00 (A.7)
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and the probability distribution function of the downrange

miss distances is:

exp[-0.5(y/Sy)2 ]

f(y) = --O < y < (A.8)

.Nr "

If it is assumed that S = Sx = Sy, and that the crossrange

and downrange miss distances are independent, then the joint

4. distribution of the miss distances is:

exp{-0.5[(x
2 + y 2 )/S 2]1

f(x,y) 2 (A.9)
- 2IT S2

Changing to polar coordinates, the joint distribution is:

r exp[-0.5(r/S) 21 0 ( r <
f(r,@) = (A.10)

2 T S2 0 < 0 < 2

ro solve for a particular radius r* such that The
probability that r is less than r* equals 0.5 (r* = CEP) one

must integrate equation A.10 with respect to 0 (0 to 2T) and

with respect to r (0 to r*).

This leaves

P(r 4 r*) 0.5 1 exp[-0.5(r*/s) 2 1 (A.11)

and

r = 1.1774 S = CEP (A.12)

In the case of == 0 and S x  Sy the formula for

the joint distribution is:

1 ~r cose ) 2 ,r sin@
f(r,e) = exp -- + (A.13)

2 SxS y 2 S ir S Y
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If 0.25 < Sx/Sy < 1 this expression (after integration)

reduces to:

r* = 0.614S x  + 0.563S y = CEP (A.14)

(5:5). For other values of Sx, SY and for samples not

centered on the target, one is left to use other

approximations to determine the CEP.

Popular Approximation Methods. There are several

approximation methods available for estimating CEP in

elliptic, biased samples (i.e. S x  # S and R # 0).

Presented here are four of the approximation methods

available.

Grubbs-Patnaik/Chi-Square. This approximation method

is based on the work of Frank E. Grubbs (2). This method

uses the fact that the bias is a sum of noncentral chi-

squares and solves for the radius that gives a probability
+ (y-)2 /S2 <= R2 ] = 0.5) (2:55).

of 0.5 (i.e. P[(x- ) 2 /Sx2 + (y- ) /Sy . .

This is the approximation:

CEP = ;72m (A. 15)

where

m =(2 + s 2 + R2 + 2) (A .16)
v = 2(Sx 4 + 2p 2Sx 2 S 2 + Sy 4 ) +

2ypS S + 2S ) (A.17)

x x y y

k = F- (0.5) (A.18)

n 2m 2 /v (A. 19)
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and F is the chi-square distribution function with n degrees

of freedom (1:5). In this formula p is the correlation

coefficient. If the correlation coefficient is non-zero,

one can perform a rotation of axes into a coordinate system

where the two coordinates of miss distance are uncorrelated

(3:20-21). Attachment 1 to this tutorial describes how to

find the correlation coefficient and how to perform this

rotation to eliminate the correlation (this makes p = 0).

S ribbs-Patnaik/W ilson-Hilferty. This approximation

technique was developed as a modification of the Grubbs-

Patnaik/chi-square method. The Wilson-Hilferty method

transforms the chi-square to approximate normal variables.

This method does not use the chi-square function described

in the previous section. Here is the Grubbs-Patnaik/Wilson-

Hilferty method:

CEP = m{l - [v/(9m 2 )]3 I  (A.20)

where m and v are as defined in the Grubbs-Patnaik/chi-

square method (equations A.16 and A.17) (D:6).

Modified RAND-234. This method is a fit of a cubic

*polynomial to a table of CEP values. Pesapane and Irvine

used regression analysis to "...derive a mathematical

expression for circular error probable (CEP) which

approximates probability tables contained in RAND Report R-

234" (N:2). This is the Modified RAND-234 method:

CEP = CEPMpI(I.O0 39  
- 0.0528v + 0.4786v 2  

- 0.0793v 3 ) (A.21)
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where

CEPMpI = 0. 6 1 4 SS + 0 .5 6 3 SL (A.22)

S 2 2 (SX2 2 ) 2 + 4p 2 S 2 -Sy
SS  2 (A.23)

' + S y 2 ) 2 + 4p 2 S 2

SSx 2  + S y 2  + (Sx 2  - Sy 2) pSx 2Sy ( .4
"VU -x- (A.24)

)L

v = b/CEPMpI (A.25)

b b= x '2+ (A.26)

The Modified RAND-234 was developed under the boundary

condition that SS/SL is greater than 0.25 and that v is less

than or equal to 2.2 (1:2-3, 4:2-5). If one has a

correlated sample as described in the section on the Grubbs-

Patnaik/chi-square method, the same rotation can be used to

remove the correlation.

"Exact" Method. The "exact" method, despite its name,

is also an approximation technique. It is recognized as the

most accurate approximation method available. This method

is a numerical integration technique used to estimate the

integral of the bivariate normal distribution. This method

uses Taylor series and infinite series expansion to estimate

CEP. The "exact" method is computationally rigorous and

requires a computer for its calculations. Since it is so

computationally rigorous it is often not feasible to use the

A-8
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"exact" method and that is why one must resort to using less

accurate approximations. However, the "exact" method is

useful for determining which approximation technique is the

most accurate.

The "exact" method takes the bivariate normal function

in polar form:

R 27T

P(R f exp --- + 2rdrd9 (A.27)(R) 2 S 2

00 
r

where

1

A (A.28)

21SxSy

After series expansion this is the equation for the "exact"

approximation technique:

R2  cc 0 (k+l)!(J+1)!

P(R) = 0.5 =- D r XkY j  (A.29)
2 k=O J=0 (k+j+l)!

where

D - exp - -+ (A.30)

SxSy 2S
2  2Sy 2

(2k) r R21k k k! 122

XkI (A•31)
*, (k+2)!(k!)2  1=0 (k-l)!(21)! 2

( 2j R 2! j j! [ 2j IS z ( A. 3 2

.(j+ )!(j!) 2  i 0 (j-i)!(2i)! Sy2 J

(6:1-5)
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To compute this approximation, one must first make a

guess at the CEP (it is recommended to use one of the fast

algebraic approximation methods to arrive at your guess),

and then iterate to arrive at an answer that is accurate

enough for one's purpose. This method sometimes requires a

great deal of computer time to arrive at an answer. But it

is the most accurate estimator of CEP.

Sample Calculations

Now that one has the approximation methods, the next

step is to actually calculate CFPs. The following is an

example of how one would do this for each of the presented

approximation techniques.

Table A-i contains sample crossrange and downrange miss

distances for 10 sample impacts of a theoretical new warhead

(Note: this table uses feet as an illustration, the

methods, however, are insensitive to units as long as one is

consistent with the units used). To calculate the CEP using

Table A-i

Sample Impacts for a Theoretical ICBM Warhead

Impact Crossrange Miss Down-ange Miss Radial Miss

Distance (x) Distance (x) Distane
1 400 ft 569 ft 695.5 ft

2 324 429 545.6

3 -116 125 170.5

4 50 -214 219.8
5 -63 -126 143.2

6 257 302 396.6

7 76 -156 173.5

8 96 158 184.9

9 -30 53 60.9

10 155 204 256.2

A- 10



the non-oarametric technicue described (the sample median)

one must first rank order the sample radial miss distances

as in table A-2. The radial miss distance (also called the

bias) is defined as the square root of the sum of the

squares of the crossrange and downrange miss distances. The

numbers in parentheses in table A-2 indicate that these are

order statistics.

Table A-2

Sample Order Statistics for Radial Miss Distance

(Ordered Impact) Radial Miss Distancel
(1) 60.9
(2) 143.2
(3) 170.5
(4) 173.5
(5) 184.9
(6) 219.8 
(7) 256.2
(8) 396.6
(9) 545.6

(10) 695.5

Using ecuation A.2 one calculates the sample median, 202.35,

and this serves as a non-parametric estimate of the CEP.

Next, the parametric estimates of CEP are calculated.

To do this one must calculate the sample crossrange and

downrange means and standard deviations and the correlation

coefficient. Here are those values:

Crossrange Mean: = 120.4

Crossrange Standard Deviation: Sx  = 165.5

Downrange Mean: = 134.4

Downrange Standard Deviation: Sx = 255.9

Correlation Coefficient: p = 0.78

A-11
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Since the correlation coefficient is non-zero, one must

perform the rotation discussed in attachment 1. After this

is performed, these are the values to be substituted for R,

S , and Sy

R" = 37.1

= 281.8

= 91.1

S' = 290.7

P =0

Using the above values the results of the approximations

are:

Grubbs-Patnaik/chi-square: CEP = 324.34

Grubbs-Patnaik/Wilson-Hilferty: CEP = 325.18

Modified RAND-234: CEP = 343.76

"Exact": CEP = 315.75

Compare these values to the non-parametric estimate, 202.35,

and one can see how inaccurate the non-parametric estimate

is, given a small sample size. The calculations required

for the "exact" method can often require a great deal of

computer time (anywhere from 2 minutes to 2 hours, and

sometimes it does not converge to an answer at all), so it

is useful to know which other approximation methods are most

accurate. In the above case the Grubbs-Patnaik/chi-square

approximation technique is the best (closest to the "exact")

A- 12



and, on the average, the Grubbs-Patnaik/chi-square is the

most accurate approximation method.

Ellipticity

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1550 Xlx x I x 777 * ** I*-I 7/771/
1500 xx xix / / * * **1-l /I / /1/1 1500X X x I I T 7 7 77
1400 XI X II / /* ****** *** 1400

X X X x/I *** * ** 

1300 X X X XX/ *** * ** 1300

B 1200 X X X IX *1** III / 1200

a 110x x x x x 77 T7 / * *- - * / /~ 1100a I0 X X X X I / . .. * IIXI 0

s XX Xx7x / / // ** ..... *7/ *
1000 X x x x x T 7 / / / * * T 7 / * * * 1000

9007 xxx 11** 7~00X X X X X * * * / * 7 7 / / * . 7 .
900 X X X X * 8 100X V X X X///****//****/*

~~~~~~~~~- 7T T800 X X X X X ///****//****/* 800
X X X X x W /T I **7 /* **/

700 -7 X X X X II /* */ 700

600 xxx/l* **ll** ll 600
50x x x/ /*** / /*** **** 50

500 **/ * * * * 7 * * * 500X X X* ///* * * * **

400 W x X * * / 7 T * * *1* * * * * * * * * 400
X X X**777 / *********

300 XXX/1/************ 300

200 X X / /************** 200

x / / /*********0
i00 7 7 7 1 * 00

0 x/ 1 ] T 7/ T7*1. *
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.E 0.9 1.0

Ellipticity

Figure A-4.

"Best" Method Across the Bias/Ellipticity Parameter Space
/ = RAND-234
* = Grubbs-Patnaik/chi-square

- = Grubbs-Patnaik/Wilson-Hilferty
X Areas where the "exact" does not converge
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However, there are times when the other approximation

methods are more accurate than the 3rubbs-Patnaik/chi-

square. Which approximation technique is best varies with

the bias and ellipticity of the sample impacts (bias is the

square root of the sum of the squares of the means of the

crossrange and downrange miss distances, ellipticity is the

ratio of the crossrange standard deviation to the downrange

standard deviation). Figure A-4 shows a large portion of

the bias/ellipticity parameter space and which approximation

techniques are "best" over the space. The techniaue one

will ultimately use will depend on how accurately one needs

to estimate the CEP of a weapon system.

It should be noted that in the regimes where the

"exact" method does not converge there are other techniques

that use numerical integration techniques to estimate CEP

that will converge. One such method is called the

correlated bivariate normal. This technique is not as

efficient as the "exact" but it will converge for thos

highly elliptical cases where the "exact" does not.

Conclusion

Circular error probable is not the only method of

representing a weapon system's accuracy, however it is a

very important measure that is widely used. Likewise the

approximation methods shown here are not the only methods

available for estimating CEP. This report introduces CEP

and describes how it is estimated.
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Attachment I to CEP Tutorial

Correlation

- For correlated downrange and crossrange miss distances

the correlation coefficient must be taken Into

consideration. This is the formula used to calculate the

correlation coefficient:

n

4 xiy i - nxy

P (A. I.1)
(n - l)(SxSy)

If the correlation coefficient is other than zero, one can

perform a rotation of axes into a-coordinate system where

the two coordinates of miss distance are uncorrelated. This

is the procedure:

8 = 0.5{tan'l[2pSxSy/(S x
2  

- S 2 )]l (A.1.2)

= 0.5[(Sx 2  + S 2) + (S 2 -
2 )/cos(2e)] (A.1.3)

y x y

2 0.5[((52 + S 2) _ (Sx 2  S 2)/cos(29)] (A.1.4)

R' = Rcosa + slne (A.1.5)

=  -Rsine + cose (A.1.6)

Then S;, S , i', j" are substituted for Sx, Sy, R, in the

formulae and the CEP is calculated as if there were no

correlation (i.e. p = 0) (3:20-21).

Asthury showed that the formulae involving a

correlation coefficient are invariant to this rotation. In

A.I-
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other words, they give the same answer whether one uses the

correlated numbers, or the uncorrelated numbers obtained

from the rotation (1:3-6).
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Attachment 2 to CEP Tutorial
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Appendix B

Correlation

For correlated downrange and crossrange miss distances

the correlation coefficient must be taken into

consideration. This is the formula used to calculate the

correlation:

n
xi yi -

i=l "

S(B. 1
(n - I)(SxSy)

If the correlation coefficient is other than zero, one can

perform a rotation of axes into a coordinate system where

the two coordinates of miss distance are uncorrelated. This

is the procedure:

o 0.5{tan-1[2pSxSy/(S x  
2 )I} (B.2)Y x Y

(S )2 = 0.5[(Sx 2  + S 2) + (Sx 2  S 2)/cos(2e)] (B3)

y (B.3

S 0.5tfS 2  + S 2 ) - (S 2 - S 2 )/cos(2e)] (B.4)( y2 = •5 ( x y y -

R' = Rcose + sinE (B.5)

= -Rsine + cose (B.6)

Then S , S , ', j" are substituted for Sx, Sy, F, in the

formulae and the CEP is calculated as if there is no

correlation (i.e. p = 0) (3:20-21).
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Astbury showed that the formulae involving a

correlation coefficient are invariant to this rotation. In

other words, they give the same answer whether one uses the

correlated numbers, or the uncorrelated numbers obtained

from the rotation. (1:3-6).
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Appendix C

Secant Method

The Secant method is used to approximate the root of a

function. In this case the root is the CEP (R), and the

function is the probability (P(R)). The secant method takes

R i  and Ri I (approximations of the CEP) and takes the next

approximation (Ri+l, P(Ri+l)) as the intersection of the

chord Joining (Ri-l, P(Ri-I)) and (Ri, P(Ri)) with the line

y = 0.5 (x = R). This is the formula used:

Ri+I = P i  + (RiI - Ri)(Pi+I - pi)/(pi-I -Pi) (C.1)

where P(Ri+I) = 0.5 (1:9). Figure C-i is a graphical

representation of the secant method.

P(R)

Pi-1

Pi

R _P(R)=0. 5
R -1 i Ri+I

Figure C-i. The Secant Method

This method is used to iterate both the correlated

bivariate normal and the "exact" approximation techniques in

this study.
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Appendix D

Sample Data

This appendix contains a sample of the data collected

for this study. Table D-1 contains the sample cases listinp

the ellipticity, bias, sample standard deviations and sample

means. Table D-2 is a listing of sample CEPs calculated for

each of the approximation techniques for each case listed in

table D-1. Finally table D-3 is the sample relative errors

for the algebraic approximations and the CBN relative to the

exact" method.
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CASE ELLIP SIG. X SIG. Y BIAS X BAR Y BAR

1 1.00 1000.00 1000.00 1555.63 1100.00 1100.00

2 1.00 1000.00 1000.00 1414.21 1000.00 1000.00

3 1.00 1000.00 1000.00 1272.79 900,00 900.00
4 1.00 1000.00 1000.00 1131.37 8C0.00 800.00

5 1.00 1000.00 1000.00 989.95 700.00 700.00

6 1.00 1000.00 1000.00 848.53 600.00 600.00
7 1.00 1000.00 1000.00 707.11 500.00 500.00

8 1.00 1000.00 1000.00 565.69 400.00 400.00

9 1.00 1000.00 1000.00 424.26 300.00 300.00
10 1.00 1000.00 1000.00 282.84 200.00 200.00

11 1.00 1000.00 1000.00 141.42 100.00 100.00
12 1.00 1000.00 1000.00 1.41 1.00 1.00
13 0.90 900.00 1000.00 1555.63 1100.00 1100.00

14 0.90 900.00 1000.00 1414.21 1000.00 1000.00

15 0.90 900.00 1000.00 1272.79 900.00 900.00
16 0.90 900.00 1000.00 1131.37 800.00 800.00

17 0.90 900.00 1000.00 989.95 700.00 700.00

13 0.90 900.00 1000.00 848.53 600.00 600.00
19 0.90 900.00 1000.00 707.11 500.00 500.00
20 0.90 900.00 1000.00 565.69 400.00 400.00

21 0.90 900.00 1000.00 424.26 300.00 300.00
22 0.90 900.00 1000.00 282.84 200.00 200.00
23 0.90 900.00 1000.00 141.42 100.00 100.00
24 0.90 900.00 1000.00 1.41 1.00 1.00
25 0.80 800.00 1000.00 1555.63 1100.00 1100.00

26 0.80 800.00 1000.00 1414.21 1000.00 1000.00
27 0.80 800.00 1000.00 1272.79 900.00 900.00
28 0.80 800.00 1000.00 1131.37 800.00 800.00
29 0.80 800.00 1000.00 989.95 700.00 700.00

30 0.80 800.00 1000.00 848.53 600.00 600.00
31 0.80 800.00 1000.00 707.11 500.00 500.00

32 0.80 800.00 1000.00 565.69 400.00 400.00

33 0.80 800.00 1000.00 424.26 300.00 300.00
34 0.80 800.00 1000.00 282.84 200.00 200.00
35 0.80 800.00 1000.00 141.42 100.00 100.00

36 0.80 800.00 1000.00 1.41 1.00 1.00
37 0.70 700.00 1000.00 1555.63 1100.00 1100.00

38 0.70 700.00 1000.00 1414.21 1000.00 1000.00

39 0.70 700.00 1000.00 1272.79 900.00 900.00
40 0.70 700.00 1000.00 1131.37 800.00 800.00
41 0.70 700.00 1000.00 989.95 700.00 700.00
42 0.70 700.00 1000.00 848.53 600.00 600.00
43 0.70 700.00 1000.00 707.11 500.00 500.00

44 0.70 700.00 1000.00 565.69 400.00 400.00
45 0.70 700.00 1000.00 424.26 300.00 300.00

46 0.70 700.00 1000.00 282.84 200.00 200.00
47 0.70 700.00 1000.00 141.42 100.00 100.00
48 0.70 700.00 1000.00 1.41 1.00 1.00

Table D-1
Sample Cases (part 1)

D-2



CASE ELLIP SIC. X SIG. Y FIAS X PAR Y BAR

49 0.60 600.00 1000.00 1555.63 1100.00 1100.00
50 0.60 600.00 1000.00 1414.21 1000.00 1000.00
51 0.60 600.00 1000.00 1272.79 900.00 900.00
52 0.60 600.00 1000.00 1131.37 800.00 800.00
53 0.60 600.00 1000.00 989.95 700.00 700.00
54 0.60 600.00 1000.00 848.53 6C0.00 600.00
55 0.60 600.00 1000.00 707.11 500.00 500.00
56 0.60 600.00 1000.00 565.69 400.00 400.00
57 0.60 600.00 1000.00 424.26 300.00 300.00
58 0.60 600.00 1000.00 282.84 200.00 200.00
59 0.60 600.00 1000.00 141.42 100.00 100.00
60 0.60 600.00 1000.00 1.41 1.00 1.00
61 0.50 500.00 1000.00 1555.63 1100.00 1100.00
62 0.50 500.00 1000.00 1414.21 1000.00 1000.00
63 0.50 500.00 1000.00 1272.79 900.00 900.00
64 0.50 500.00 1000.00 1131 .37 800.00 800.00
65 0.50 500.00 1000.00 989.95 700.00 700.00
66 0.50 500.00 1000.00 848.53 600.00 600.00
67 0.50 500.00 1000.00 707.11 500.00 500.00

68 0.50 500.00 1000.00 565.69 400.00 400.00
69 0.50 500.00 1000.00 424.26 300.00 300.00
70 0.50 500.00 1000.00 282.84 200.00 200.00
71 0.50 500.00 1000.00 141.42 100.00 100.00
72 0.50 500.00 1000.00 1.41 1.00 1.00
73 0.40 400.00 1000.00 1555.63 1100.00 1100.00

74 0.40 400.00 1000.00 1414.21 1000.00 1000.00
75 0.40 400.00 1000.00 1272.79 900.00 900.00
76 0.40 400.00 1000.00 1131.37 800.00 800.00
77 0.40 400.00 1000.00 989.95 700.00 700.00

78 0.40 400.00 1000.00 848.53 600.00 600.00
79 0.40 400.00 1000.00 707.11 500.00 500.00
80 0.40 400.00 1000.00 565.69 400.00 400.00
81 0.40 400.00 1000.00 424.26 300.00 300.00
82 0.40 400.00 1000.00 282.84 200.00 200.00
83 0.40 400.00 1000.00 141.42 100.00 100.00
84 0.40 400.00 1000.00 1.41 1.00 1.00
85 0.30 300.00 1000.00 1555.63 1100.00 1100.00
86 0.30 300.00 1000.00 1414.21 1000.00 1000.00
87 0.30 300.00 1000.00 1272.79 900.00 900.00
88 0.30 300.00 1000.00 1131.37 800.00 800.00
89 0.30 300.00 1000.00 989.95 700.00 700.00
90 0.30 300.00 1000.00 848.53 600.00 600.00
91 0.30 300.00 1000.00 707.11 500.00 500.00
92 0.30 300.00 1000.00 565.69 400.00 400.00
93 0.30 300.00 1000.00 424.26 300.00 300.00
94 0.30 300.00 1000.00 282.84 200.00 200.00
95 0.30 300.00 1000.00 141.42 100.00 100.00

96 0.30 300.00 1000.00 1.41 1.00 1.00

Table D-1
Sample Cases (parL 2)

D-3
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CASE ELLIP SIG. X SIC. Y BIAS X BAR Y EAR

97 0.20 200.00 1000.00 1555.63 1100.00 1100.00
98 0.20 200.00 1000.00 1414.21 1000.00 1000.00

99 0.20 200.00 1000.00 1272.79 900.00 900.00
100 0.20 200.00 1000.00 1131.37 800.00 800.00

101 0.20 200.00 1000.00 989.95 700.00 700.00
102 0.20 200.00 1000.00 848.53 600.00 600.00

103 0.20 200.00 1000.00 707.11 500.00 500.00
104 0.20 200.00 1000.00 565.69 400.00 400.00

105 0.20 200.00 1000.00 424.26 300.00 300.00
106 0.20 200.00 1000.00 282.84 200.00 200.00
107 0.20 200.00 1000.00 141.42 100.00 100.00

108 0.20 200.00 1000.00 1.141 1.00 1.00

109 0.10 100.00 1000.00 1555.63 1100.00 1100.00

110 0.10 100.00 1000.00 1414.21 1000.00 1300.00

111 0.10 100.00 1000.00 1272.79 900.00 900.00
112 0.10 100.00 1000.00 1131.37 800.00 800.00

113 0.10 100.00 1000.00 989.95 700.00 700.00

114 0.10 100.00 1000.00 848.53 600.00 600.00

115 0.10 100.00 1000.00 707.11 500.00 500.00
116 0.10 100.00 1000.00 565.69 400.00 400.00

117 0.10 100.00 1000.00 424.26 300.00 300.00
118 0.10 100.00 1000.00 282.84 200.00 200.00

119 0.10 100.00 1000.00 141.42 100.00 100.00
120 0.10 100.00 1000.00 1.41 1.00 1.00
121 0.01 10.00 1000.00 1555.63 1100.00 1100.00

122 0.01 10.00 1000.00 1414.21 1000.00 1000.00

123 0.01 10.00 1000.00 1272.79 900.00 900.00
124 0.01 10.00 1000.00 1131.37 800.00 800.00

125 0.01 10.00 1000.00 989.95 700.00 700.00

126 0.01 10.00 1000.00 848.53 600.00 600.00
127 0.01 10.00 1000.00 707.11 500.00 500.00

128 0.01 10.00 1000.00 565.69 400.00 400.00
129 0.01 10.00 1000.00 424.26 300.00 300.00

130 0.01 10.00 1000.00 282.84 200.00 200.00

131 0.01 10.00 1000.00 141.42 100.00 100.00

132 0.01 10.00 1000.00 1.41 1.00 1.00

Table D-1
Sample Cases (part 3)
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II
CASE 'rubbs/CS Grubbs/WH RAND CBN Exact

1 1857.29 1861.86 1867.99 1850.30 1869.75

2 1750.71 1755.28 1758.27 1740.69 1652.25

3 1650.01 1654.75 1655.09 1637.23 1654.24

4 1556.27 1561.32 1559.44 1541.35 1557.31

5 1470.70 1476.14 1472.28 1454.52 1469.56

6 1394.53 1400.35 1394.59 1378.04 1392.28

7 1328.91 1335.03 1327.33 1312.84 1326.38

8 1274.75 1281.04 1271.48 1259.46 1272.47

9 1232.61 1238.95 1228.01 1218.10 1230.69

10 1202.70 1208.99 1197.89 1188.72 1201.00

11 1184.89 1191.12 1182.09 1171.18 1183.28

12 1178.98 1185.19 l181.52 1165.35 1177.38

13 1825.38 1829.81 1836.14 1820.39 1839.29

14 1715.94 1720.28 1723.07 1707.95 1669.30

15 1612.11 1616.56 1616.36 1601.20 1555.53

16 1515.04 1519.76 1517.07 1501.66 1517.38

17 1426.00 1431.10 1426.29 1410.96 1425.86

18 1346.36 1351.88 1345.11 1330.64 1344.82

19 1277.44 1283.31 1274.59 1261.90 1275.46

20 1220.34 1226.45 1215.83 1205.50 1218.55

21 1175.84 1182.01 1169.91 1161.75 1174.39

22 1144.46 1150.34 1137.90 1130.67 1143.00

23 1125.69 1131.43 1120.88 1112.11 1124.27

24 1119.45 1125.16 1119.88 1105.94 1118.04

25 1795.71 1799.82 1806.21 1791.28 1809.55

26 1683.10 1687.27 1689.80 1676.48 1643.36

27 1576.01 1580.23 1579.45 1566.84 1583.02

28 1475.35 1479.84 1476.35 1463.87 1416.66

29 1382.49 1387.41 1381.73 1369.27 1383.93

30 1298.90 1304.33 1296.79 1284.81 1298.86

31 1226.11 1232.01 1222.74 1212.02 1225.53

32 1165.71 1171.72 1160.80 1151.97 1165.03

33 1118.96 1124.38 1112.18 1105.25 1117.93

34 1085.45 1090.52 1078.08 1071.99 1084 .38

35 1065.37 1070.28 1059.72 1052.12 1064.34

36 1058.70 1063.55 1058.24 1045.51 1057.67

37 1768.41 1772.17 1778.26 1762.20 1779.77

38 1652.56 1656.61 1658.58 1645.52 1618.01

39 1542.11 1546.17 1544.53 1533.56 1549.18

40 1437.69 1442.04 1437.48 1427.66 1442.56

41 1340.69 1345.55 1338.78 1329.46 1280.21

42 1252.70 1258.23 1249.81 1240.81 1254.65

43 1175.51 1181.65 1171.93 1163.56 1176.99

44 1112.22 1117.32 1106.50 1099.23 1112.28

45 1062.04 1066.47 1054.90 1048.80 1061.52

46 1025.85 1029.88 1018.48 1012.74 1025.20

47 1004.08 1007.90 998.62 991.14 1003.44

48 996.82 1000.59 996.60 983.95 996.19

Table D-2

Sample CEPs (part 1)
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CASE Grubbs/CS Grubbs/WUl RAND CBN Exact

A9 1743.70 1747.20 1752.28 1732.18 1749.07

50 1624.73 1628.68 1629.51 1614.08 1592.31

51 1510.93 1514.88 1511.78 1500.40 1515.39

52 1402.66 1406.94 1400.65 1392.25 1406.60
53 1301.30 1306.23 1297.65 1291.09 1304.93

54 1208.51 1214.36 1204.36 1198.64 1146.17

55 1127.88 1133.08 1122.30 1116.87 1130.13
56 1060.05 1064.15 1053.05 1047.72 1060.74

57 1005.74 1009.14 998.14 992.79 1005.58
58 966.23 969.22 959.14 953.13 965.71

59 942.30 945.09 937.58 929.22 941.67
60 934.30 937.03 934.96 921 .25 933.64
61 1721.93 1725.24 1728.11 1700.22 1716.59

62 1600.06 1603.94 1602.62 1531.01 1565.18
63 1483.04 1486.91 1431.35 1466.07 1480.50

64 1370.97 1375.24 1366.08 1356.35 1370.16

65 1265.19 1270.30 1258.59 1253.05 1266.45
66 1167.81 1173.76 1160.67 1157.63 1170.78
67 1083.23 1087.50 1074.07 1071.87 1013.89

68 1010.35 1013.54 1000.60 997.88 1010.84

69 951.25 953.85 942.01 937.85 950.74

70 907.75 910.08 900.10 893.70 906.50
71 881.15 883.40 876.63 366.75 879.48
72 872.21 874.44 873.32 857.70 870.40
73 1703.48 1706.65 1705.39 1665 .27 1706.65

74 1579.03 1582.85 1577.81 1545.09 1535.14

75 1459.04 1462.86 1453.33 1429.19 1443.34
76 1343.41 1347.72 1333.99 1318.40 1331.93

77 1233.38 1238.78 1221.87 1213.71 1226.77
78 1132.56 1137.69 1119.01 1116.30 1129.14
79 1042.99 1046.46 1027.48 1027.65 1040.45
80 964.77 967.35 949.33 949.67 881.86

81 900.40 902.73 886.63 884.74 897.83
82 852.33 854.79 841.43 835.62 848.82

83 822 .60 825.29 815.78 804 .92 818.21

84 812.54 815.34 811.68 794.47 807.79
85 1688.69 1691.76 1683.33 1626.27 1665.70

86 1562.08 1565.87 1554.75 1505.00 1544.35
87 1439.57 1443.36 1427.69 1388.25 1437.18
88 1320.83 1325.22 1304.56 1388.25 1307.55

89 1207.01 1212.01 1187.76 1172.30 1205.28

90 1103.13 1107.56 1079.71 1075.52 1085.98

91 1008.86 1011.76 982.82 973.40 994.33
92 925.43 927.81 899.50 888.73 915.50
93 855.73 858.44 832.16 821.45 745.28

94 802.87 806.41 783.21 774.59 794.54
95 769.73 774.10 755.06 740.13 760.92
96 758.43 763.14 750.04 738.92 749.96

Table D-2
Sample CEPs (part 2)
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CASE Srubbs/CS Grubbs/WH RAND CBN Exact

97 1677.88 1680.89 1660.44 1585.93 *

99 1549.65 1553.40 1532.65 1462.39 *

99 1425.18 1428.96 1404.17 1344.02 *

100 1304.02 1308.49 1277.84 1231.65 *

101 1187.17 1193.22 1156.54 1125.89 *

102 1080.84 1084.78 1043.13 1027.02 *

103 982.67 985.27 940.46 936.56 *

104 894.78 897.30 851.40 856.12 870.61

105 820.35 823.93 778.81 788.00 802.83

106 763.08 768.39 725.56 735.30 607.95
107 726.72 733.65 694.49 701.57 717.34

108 714.23 721.81 688.40 689.91 705.77

109 1671.29 1674.26 1633.90 1560.22 1658.24

110 1542.04 1545.78 1509.86 1433.68 *

Iil 141o.35 1420.12 1381.96 1312.60 *

112 1293.63 1298.17 1253.66 1198.19

113 1175.02 1181.12 1128.40 1091.35 *

114 1066.91 1070.56 1009.65 992.36
115 966.13 968.61 900.84 902.83 *

116 875.20 877.98 805.43 824.15 *

117 797.44 801.93 726.87 758.36 *

118 736.99 744.01 668.62 708.13

119 698.26 707.60 634.12 676.38 411.30

120 684.88 695.16 626.76 665.49 615.00
121 1669.09 1672.06 1602.61 1667.58 *

122 1539.51 1543.24 1486.09 1572.47 *

123 1413.39 1417.17 1361.66 1402.40 *

124 1290.15 1294.72 1233.47 1319.39 *

125 1171.07 1177.05 1105.68 1192.82 *

126 1062.22 1065.77 982.45 1066.58 *

127 960.53 962.98 367.93 977.34 *

128 868.51 871.43 766.27 863.73 *

129 789.57 794.43 681.63 751.08 *

130 727.97 735.68 618.16 817.96 *

131 688.36 698.68 580.02 774.81 *

132 674.64 686.03 571.29 570.98 *

Table D-2

Sample CEPs (part 3)

Note: * = "exact" does not converge
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CASE Crutbs/CS Grubbs/WH RAND CI "PEST"

1 -0.0067 -0.0042 -0.0009 -0.0104 2
2 0.0596 0.0624 0.0642 0.0535 1
3 -0.0026 0.0003 0.0005 -0.0103 2
4 -0.0007 0.0026 0.0014 -0.0102 1
5 0.0008 0.0045 0.0019 -0.0102 1
6 0.0016 0.0058 0.0017 -0.0102 1
7 0.0019 0.0065 0.0007 -0.0102 3
8 0.0018 0.0067 -0.0008 -0.0102 3
9 0.0016 0.0067 -0.0022 -0.0102 1

10 0.0014 0.0067 -0.0026 -0.0102 1
11 0.0014 0.0066 -0.0010 -0.0102 3
12 0.0014 0.0066 0.0035 -0.0102 1
13 -0.0076 -0.0052 -0.0017 -0.0103 3
14 0.0279 0.0305 0.0322 0.0232 1
15 0.0364 0.0392 0.0391 0.0294 1
16 -0.0015 0.0016 -0.0002 -0.0104 3

17 0.0001 0.0037 0.0003 -0.0104 1
18 0.0011 0.0053 0.0002 -0.0105 3

19 0.0015 0.0062 -0.0007 -0.0106 3
20 0.0015 0.0065 -0.0022 -0.0107 1
21 0.0012 0.0065 -0.0038 -0.0108 1
22 0.0013 0.0064 -0.0045 -0.0108 1

23 0.0013 0.0064 -0.0030 -0.0108 1
24 0.0013 0.0064 0.0016 -0.0108 1
25 -0.0076 -0.0054 -0.0018 -0.0101 3
26 0.0242 0.0267 0.0283 0.0202 1
27 -0.0044 -0.0018 -0.0023 -0.0102 2
28 0.0414 0.0446 0.0421 0.0333 1
29 -0.0010 0.0025 -0.0016 -0.0106 1
30 0.0000 0.0042 -0.0016 -0.0108 1
31 0.0005 0.0053 -0.0023 -0.0110 1
32 0.0006 0.0057 -0.0036 -0.0112 1
33 0.0009 0.0058 -0.0051 -0.0113 1
34 0.0010 0.0057 -0.0058 -0.0114 1
35 0.0010 0.0056 -0.0043 -0.0115 1

36 0.0010 0.0056 0.0005 -0.0115 3

37 -0.0064 -0.0043 -0.0008 -0.0099 3
38 0.0214 0.0239 0.0251 0.0170 1
39 -0.0046 -0.0019 -0.0030 -0.0101 2
40 -0.0034 -0.0004 -0.0035 -0.0103 2
41 0.0472 0.0510 0.0457 0.0385 3
42 -0.0016 0.0028 -0.0039 -0.0110 1
43 -0.0013 0.0040 -0.0043 -0.0114 1
44 -0.0000 0.0045 -0.0052 -0.0117 1
45 0.0005 0.0047 -0.0062 -0.0120 1
46 0.0006 0.0046 -0.0066 -0.0122 1
47 0.0006 0.0044 -0.0048 -0.0123 1
48 0.0006 0.0044 0.0004 -0.0123 3

Table D-3
Sample Relative Errors (part 1)
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CASE Grubbs/CS Grubbs/WH RAND CBN "BEST"

49 -0.0031 -0.OC11 0.0018 -0.0097 2

50 0.0204 0.0229 0.0234 0.0137 1

51 -0.0029 -0.0003 -0.0024 -0.0099 2

52 -0.0028 0.0002 -0.0043 -0.0102 2
53 -0.0028 0.0010 -0.0056 -0.0106 2

54 0.0544 0.0595 0.0508 0.0458 3

55 -0.0020 0.0026 -0.0069 -0.0117 1

56 -0.0006 0.0032 -0.0072 -0.0123 1

57 0.0002 0.0036 -0.0073 -0.0126 1

58 0.0006 0.0037 -0.0068 -0.0130 1

59 0.0007 0.0036 -0.0043 -0.0132 1

60 0.0007 0.0036 0.0014 -0.0133 1

61 0.0031 0.0050 0.0067 -0.0095 1

62 0.0223 0.0248 0.0239 0.0101 1

63 0.0017 0.0043 0.0006 -0.0097 3

64 0.0006 0.0037 -0.0030 -0.0101 1

65 -0.0010 0.0030 -0.0062 -0.0106 1

66 -0.0025 0.0025 -0.0086 -0.0112 1

67 0.0684 0.0726 0.0594 0.0572 3

68 -0.0005 0.0027 -0.0101 -0.0128 1

69 0.0005 0.0033 -0.0092 -0.0136 1

70 0.0014 0.0040 -0.0071 -0.0141 1

71 0.0019 0.0045 -0.0032 -0.0145 1

72 0.0021 0.0046 0.0034 -0.0146 1

73 -0.0019 0.0000 -0.0007 -0.0262 2

74 0.0286 0.0311 0.0278 0.0065 3

75 0.0109 0.0135 0.0069 -0.0098 3

76 0.0086 0.0119 0.0016 -0.0102 3

77 0.0054 0.0098 -0.0040 -0.0106 3

78 0.0030 0.0076 -0.0090 -0.0114 1

79 0.0024 0.0058 -0.0125 -0.0123 1

80 0.0940 0.0969 0.0765 0.0769 3

81 0.0029 0.0055 -0.0125 -0.0146 1

81 0.0041 0.0070 -0.0087 -0.0156 1

83 0.0054 0.0087 -0.0030 -0.0162 3

84 0.0059 0.0093 0.0048 -0.0165 3

85 0.0138 0.0156 0.0106 -0.0237 3

86 0.0115 0.0139 0.0067 -0.0255 3

87 0.0017 0.0043 -0.0066 -0.0340 1

88 0.0102 0.0135 -0.0023 -1.0000 3

89 0.0014 0.0056 -0.0145 -0.0027 1

90 0.0158 0.0199 -0.0058 -0.0096 3

91 0.0146 0.0175 -0.0116 -0.0210 3

92 0.0108 0.0134 -0.0175 -0.0292 1

93 0.1482 0.1518 0.1166 0.1022 3

94 0.0105 0.0149 -0 .0143 -0 .0251 1

95 0.0116 0.0173 -0.0077 -0.0273 3

96 0.0107 0.0176 0.0001 -0.0147 3

Table D-3

Sample Relative Errors (part 2)
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CASE Gru.bs/CS Grubbs/WH RANDCE PS

97 -

103
104 0.0278 0.0307 -0.0221 -0.0166 3
105 0.0218 0.0263 -0.0058 -0.0096 3
106 0.2552 0.2639 0.1934 0.2095 3
107 0.0131 0.0227 -0.0319 -0.0220 1
108 0.0120 0.0227 -0.0246 -0.0225 1
109 0.0079 0.0097 -0.0147 -0.0591 1
110

1 18
119 0.6983 0.7202 0.5426 0.6448 3
120 0.1136 0.1303 0.0191 0.08213
12 1

132

Table D-3
Sample Relative Errors (part 3)

Note: no relative errors where "exact" does not converge
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Appendix E

This appendix contains the source code for the computer program developed

by this study. The program is written in Turbo Pascal (Turbo Pascal is a

product of Borland International), a version of the Pascal computer programming

language for personal computers. The program was written and run on a SANYO

'IBC-550 personal computer (operating system: MS-DOS) owned by the author. This

program was also run on a Zenith Z-150 personal computer at the Air Force

Institute of Technology. With some minor alterations this program can be run on

any computer with any version of the Pascal programming language.

This program runs interactively with the user inputs to calculate circular

error probable (CEP) using five different approximation techniques. The program

will calculate CEP for all five methods, only the methods the user selects, or

it will select a "best" method from among the three algebraic methods which give

results in seconds. The user decides which method(s) the program will compute.
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[ THIS PROGRM AS DEVELCPEC FEY CAPT RICHARD L. ELDER AS A PART OF A

* MASTER'S THESIS AT THE AI? FORCE INSTITUTE OF TECHNOLOGY.

TITLE OF THE THESIS IS "AN EXAM'INATION OF CIRCULAR ERROR PROBABLE

APPROXIMATION TECHNIQUES.")I

9program CEPAPPROXIMATIONANALYSIS

var sigx, sigy, mux, muy, rho, ellip, bias: real;
cbnprob, randc, gpcs, gpwh, prob, cep, cbr.: real:
pick, ints: integer;

function atotheb(a ,b: real): real;

(This function takes an input variable a and raises it
to the b power)

begin
if a = 0 then atotheb:= 0

else if (b*ln(a)) < -70 then atotheb:= 0
else atotbeb:= exp(b*ln(a))

end {atotheb);

* function interpolate(a, aup, alow, kup, klow: real): real;

fThis function is a function to perform linear
* interpolation. It is used in procedure GPCSCEP
* to interpolate between values found in a table
- - of the chi-square function.)

* var percent: real;

begin
percent:= (a - alow)/(aup - alow);
interpolate:= klow + (percent*(kup -klow))

end finterpolate);
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procedure C;PCSCEP(var sigx, sicy, mux, mruy, rho: real);

(This procedure calculates GEPs according to the
Grubbs-Patna ik/cbi-sq uare approximation techniouel

* var 1r, x, y, v, n, k: real:

begin
4m:= sqr(sigx)+sqr(sigy)+sqr(mux)+sqr(muy);

Y:= atotheb(sigx, 4);
y:= atotheb(sigy, 4);
v:= 2*(x+(2*sqr(rho*sigx*sigy))+y);
v:= v+(4*(sqr(mux*sigx)+(2*mux*muy*rho*sigx*sigy)+sqr(muy*sigy)));,
n:= 2*sqr(m)/v;
if n >= 11 then k:= (n-0.7);
case trunc(n) of

0: k:= interpolate(n, 1,0,0.455,0);
1: k:= interpolate(n,2,1,l.39,0.455);
2: k:= interpolate(n,3,2,2.37,1.39);
3: k:= interpolate(n,4,3,3.36,2.37);
4: k:= interpolate(n,5,4,4.35,3.36);
5: k:= interpolate(n,6,5,5.35,4.35);
6: k:= interpolate(n,7,6,6.35,5.35);
7: k:= interpolate(n ,8,7,7.34,6.35);
8: k:= interpolate(n,9,8,8.34,7.34);
9: k:= interpolate(n,10,9,9.34,8.34);
10: k:= interpolate(n, 11,10,10.3,9.34)

end;
gpcs:= sqrt((k*v)/(2*m))

end [GPCSCEPI;

* procedure GPWHGEP(var sigx, sigy, rnux, muy: real);

(This procedure calculates CEPs according to the
Grubbs-Patnaik/Wilson-Hilferty approximation
technique.)I

var aa, m', v, vv, vvv: real;

begin
m:= sqr(sigx) + sqr(sigy) + sqr(mux) + sqr(muy);
vv:= sqr(sqr(sigx)) + 2* rho * sqr(sigx) * sqr(sfgy) + sqr(sqr(sigy));
vvv:= sqr(rnux)*sqr(sigx) + 2*mux*muy*rho*sigx*slgv + sqr(muy)*sqr(sigy);
v:= 2*vv + 4*vvv;
aa:= 1 - (v/(9*sqr(m)));
gpwh:= sqrt(m*(atotheb(aa, 3)));

end {CPWHCEP);
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procedure RANDCEP (var sigx, sigy, mux, muy: real);

{This procedure calculates CEPs according to the
modified RAND-234 approximation technique)

var radical, sigxy, sigS, sigL, b, v, cepmu: real;

begin

sigxy:= sqr(sigx) + sqr(sigy);
radical:= sqrt(sqr(sqr(sigx) - sqr(sigy)) + 4*sar(rho*sigx*sigy));

sigS:= sqrt((sigxy - radical)/2);

sigL:= sqrt((sigxy + radical)/2);

cepmu:= 0.614*sigS + 0.563*sigL;

b:= sqrt(sqr(mux) + sqr(muy));
v:= b/cepmu;

randc:= cepmu*(l.0039-0.O528*v+0.4786*sqr(v)-0.0793*atotheb(v,3))

end; {RANDCEPI

{The following procedure is called by the CBNORM

procedure which calculates the CEPs for the

correlated bivariate normal (CN) approximation
technique. This procedure calculates the probability

given a known radius (an estimate of CEP). It is
called until the probability is within 0.0001 of

0.5. The accuracy of this method can be improved
by increasing the number of intervals used to

approximate the integral. This number of intervals
is a user input that is asked for whenever the CBN

method is used.
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procedure CBNORMPFOR(var sigx, sigv, mux, muv, rho, bias: real;
ints: integer);

label 1;

var y, hh, i, x, c, t, a: real;
jj, j, h: integer;

begin

c:= 2*3.1415927*sigy*sigx*sqrt(l-sqr(rho));
c:= I/c;
i:= bias;

t:=  0;
for j := 0 to ints

do begin

x:= -i + (j*(i/(ints/2)));
y:= sqrt(abs(sqr(i) - sqr(x)));

if y = 0 then goto 1;

for h := 0 to ints
do begin

hh:= -y + (h*(y/(ints/2)));

a:= sqr((x-mux)/sigx)-(2*rho*((x-mux)/sigx)*((hh-muy)/sigy)) +

sqr((hh-muy)/sigy);

a:= a/(1-sqr(rho));

if a > 140 then a:= 0
else a:= exp(-0.5*a);

a:= a*c;

t:= t + (a*(i/(ints/2))*2*(y/ints))

end;
1: jj:= j

end;
cbnprob:= t;

end;

{The following procedure is the secant method applied

to the correlated bivariate normal approximation

technique. The stopping criterion for this method

is when the probability given by the CBNORMPROB

procedure is within 0.0001 of 0.5)

E-5



procedure CEN0ORM (var sigx, sigy, mux, muy, rho, cep: real;
ints);

var cepipi, cepi, cepimi, probipi, probi, probiml: real;

begin
cepiml:= cep;
CBNORMPROB(sigx, sigy, mux, muy, rho, cepimi, ints);
probiml:= cbnprob;
if cbnprob < 0.5 then cepi:= 1.05*cep
else cepi:= 0.95*cep;

CENORtIPROB(sigx, sigy, mux, rnuy, rho, cepi, ints);
* probi:= choprob;

probipl:= 0.5;
while abs(cbnprob - 0.5) > 0.0001 do

begin
cepipl:= cepi+((cepiml-cepi)*(probipl-probi)/(probiml-probi));
CBNORMPROB(sigx, sigy, MUX, muy, rho, cepipi, ints);
cepiml:= cepi;
probiml:= probi;
cepi:= cepipi;
probi:= cbnprob;

end;
cbn:= cepipi

end;

[The following procedure is called by EXACT which
calculates CEPs for the "exact" method. EXACTPROB

* calculates probabilities given an estimate of the
CEP. It is called until the probability is within
0.0001 of 0.5.1

procedure EXACTPROB (var sigx, sigy, mux, muy, cep: real);

type logarray = array~l. .100] of real;

var kcheck, icheck, Lsum, kf, krrLf, L2f, hold, La, Lterm: real;
k2f, kplf, xka, xk, isum, Jf, jmif, 12f, la, iterm: real;
j2f, jpif, yja, yj, kpjplf, iterm, isum, ksum, d: real;
r, ja, yjb, xkb, Lb, ib, Lc, ic: real;
log: logarray;
i, J, k, L, ii, i2, J1, J2, J3, J4, ki, k2, k3, Li, L2: integer;
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begin [EXACTPROB)
r:= cep;
kcheck:= 1;
k:= 0;
ksum:= 0;
while kcheck > 0.0001 do

begin
kf:= 0;
if k > 0 then for kl:= 1 to k do kf:= kf + log~klJ;

* k2f:= 0;
* if k > 0 then for k2:= 1 to (2*k) do k2f:= k2f + log[k21;

kplf:= 0;
for k3:= 1 to (k+1) do kplf:= kplf + log[k3];

* jcheck:= 1;
j:= 0;

* jsum:= 0;
while jcheck > 0.0001 do

begin
writeln(k, - ,kcheck, J, - , check);
jf:= 0;
if j > 0 then for jl:= 1 to j do jf:= jf + log[jl];
jplf:= 0;
for J2:= 1 to (J+1) do jplf:= jpif + log[J21;
j2f:= 0;
if j > 0 then for J3:= i-to (2*j) do j2f:= 12f + 1oc-j3];
kpjplf:= 0;
for J4:= 1 to (k+j+1) do kpjplf:= kpjplf + log[J41;
Lsum:= 0;
for L:= 0 to k do

begin
kmLf:- 0;
'f (k-L) > 0 then for L1:= 1 to (k-L) do kniLf:= kmLf+log[L1I;
! 2f:= 0;
if L > 0 then for L2:= 1 to (2*L) do L2f:= L2f + log[L2J;
hold:= (2*sqr(niux))/(sqr(sigx));
La:= atotheb(hold, (L/2.));
Lc:= La;
if odd(L) then La:= -La;
if (kf-kniLf-L2f) < -70 then Lb:= 0
else Lb:= exp(kf - kmLf - L20);

if (abs(La) < 1.Oe-16) or (abs(Lb) < 1.Oe-16) then Lterm:= 0
else Lterm:= La*Lb*Lc;

Lsum:= Lsum + Lterm
* end;
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(EXACTPR0B continued)I

hold:= sar(r)/(8*(sqr(sigx)));
xka:= atotheb(hold, k);
if odd(k) then xka:= -xka;
if (k2f-kpif-(2*kf)) < -70 then ,ckb:= 0
else xklb:= exp(k2f - Irkplf - (2*k-f));

xk:= xka*xkb*Lsum;
isum:= 0;
for i:= 0 to j do

begin
jmif:= 0;
if (j-i) > 0 then for il:= 1 to (j-i) do imif:= jmif+log~ilI;

* 12f:= 0;
if i > 0 then for i2:= 1 to (2*i) do i2f:= i2f + logt12l;
hold:= (2*(sqr(muy)))/(sqr(sigy));
ia:= atotheb(hold, (i/2));
ic:= ia;
if odd(i) then ia:= -ia;
If (jf-imif-i2f) < -70 then ib:= 0

else ib:= exp(jf - jmif - 12f);

if (abe(ia) < 1.0e-16) or (abs(ib) < 1.0e-16) then iterm:= 0
else iterm:= ia*ib*ic;

isum:= isum + item
end;

hold:= (sqr(r))/(8*(sqr(sigy)));
yja:= atotheb(hold, J);
if odd(j) then yja:= -yja;
if (j2f-jplf-(2*jf)) < -70 then yjb:= 0
else yjb:= exp(j2f- jplf -(2*jf));

yj: yja*yjb*isum;
if (kplf+jplf-kpjplf) < -70 then ja:= 0
else ja:= exp(kplf + jplf -kpjplf);

jterm:= xk*yj*ja;
jsum:= jsum + jterm;
.check:= abs(Jterm);
J:= j + I

end; (while jcheck ...

-5 ksum:= ksum + jsum;
kcheck:= abs(jsum);
k:= k + 1

end Iwhile kcheck ... 1

I d:= (exp(-(sqr(mux)/(2*sqr(sfgx)))-(sqr(muy)/(2*sqr(sigy)))))/(sigx*sigy);
prob:= (sqr(r)/2)*d*ksum

end; fEXACTPP.OB}

fThe following procedure is the secant method applied
to the "exact" approximation technique. It calls
the procedure EXACTPROB until the prcbability is
within 0.0001 of 0.5.1
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procedure EXACT (var sigx, sigy, mux, rnuv, cep: real);

var cepipi, cepi, cepimi, probipi, probi, probiml': real;

begin
for ii:= 1 to 100 do log[ii]:= ln(ii);
cepiml:= cep;
EXACTPROB(sigx, sigy, mux, muy, cepimi);

* probiml:= prob;
if prob < 0.5 then cepi:= 1.05*cep
else cepi:-= 0.95*cep;

EXACTPROB(sigx, sigy, mux, muy, cepi);
probi:= prob;
probipl:= 0.5;
while abs(prob - 0.5) > 0.0001 do

begin
cepipl:= cepi+((cepiml-cepi)*(probipi-probi)/(probiml-probi));
EXACTPROB(sigx, sigy, mux, mruy, cepipi);
cepiml:= cepi;
probiml:= probi;
cepi:= cepipl;
probi:= prob;

end;
cep:= cepipi

end;

{The following procedure is the decision maker for which
of the algebraic approximations is the "best" for the
given regime of the ellipticity/bias parameter space.)
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procedure BESTALGEBRAIC(var ints: integerz
sigx, sipy, rnux, rnuy, rho, bias, ellip: real):

begin
if ellip < 0.05 then writeln('SORRY, YOU MUST CHOOSE A METHOD.);
if (ellip < 0.15) and (ellip >= 0.05)

* then begin
if bias <= 200

then begin
RANDCEP(sigx, sigy, mux, muy);
write('THE MODIFIED RAND-234 1S BEST HERE: )

writeln(randc: 10:3)
end;

if bias > 200 then writeln('SORRY, YOU MUST CHOOSE A METHOD.-)
end;

if (ellip < 0.25) and (ellip >= 0.15)
then beg~n
if (bias < 200) or ((bias >= 350) and (bias < 500))

then begin
GPCSCEP(sigx, sigy, mux, muy, rho);
write('THE GRUBBS-PATNAIK/CHI-SQUARE IS BEST HERE: )

writeln(pgpcs: 10:3)
end;

if ((ias >= 200) and (bias < 350)) or
d ((bias >= 500) and (bias <= 650))

then begin
RANDCEP(sigx, sigy, mux, muy);
write('THE MODIFIED RAND-234 IS BEST HERE: )

writeln(randc:1O:3)
end;

if bias > 650 then writeln('SORRY, YOU MUST CHOOSE A METHOD.')
end;

if (ellip < 0.5) and (ellip >= 0.25) and (bias < 200)
then begin
RANDCEP(sigx, sigy, niux, muy);

writeln('THE MODIFIED RAND-234 IS BEST HERE: -,randc:10:3)
end;
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(BESTALGEERAIC continued}

if (ellip < 0.4) and (ellip )= 0.25)

then begin
if ((bias >= 200) and (bias < 350)) or

((bias >= 500) and (bias < 650)) or

((bias >= 900) and (bias < 1000)) or

((bias >= 1200) and (bias < 1300))
then begin

GPCSCEP(sigx, sigy, mux, muy, rho);

write('THE GRUBBS-PATNAIK/CHI-SQUARE IS BEST HERE: );

writeln(gpcs:10:3)
end;

if ((bias >= 350) and (bias < 500)) or

((bias >= 650) and (bias < 900)) or

((bias >= 1000) and (bias < 1200)) or

((bias >= 1300) and (bias <= 1550))

then begin

RANDCEP(sigx, sigy, mux, muy);

write('THE MODIFIED RAND-234 IS BEST HERE: );

writeln(randc:10:3)

end
end;

if (ellip >= 0.4) and (ellip < 0.5)

then begin
if ((bias >= 200) and (bias < 500)) or

((bias >= 600) and (bias < 900)) or

((bias >= 1450) and (bias <= 1550))

then begin

GPCSCEP(sigx, sigy, mux, muy, rho);
write('THE GRUBBS-PATNAIK/CHI-SOUARE IS BEST HERE: 2;
writeln(gpcs:10:3)

end;

if ((bias >= 500) and (bias < 600)) or

((bias >= 900) and (bias < 1450))
then begin

RANDCEP(sigx, sigy, mux, muy);
write('THE MODIFIED RAND-234 IS BEST HERE: );

writeln(randc:10:3)

end
end;

if (ellip >= 0.5) and (ellip < 0.7) and
((bias < 600) or ((bias >= 1300) and (bias < 1450)))

then begin
GPCSCEP(sigx, sigy, mux, muy, rho);

write('THE GRUBBS-PATNAIK/CHI-SOUARE IS BEST HERE: );

writeln(gpcs:10:3)

end;
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{BESTALIGEERAIC continued I

if (ellip >= 0.5) and (ellip < 0.6)
then bespin

if ((ias >= 600) and (bias < 750)) or
((ias >= 1200) and (bias < 1300))
then begin
RANDCEP(sigx, sigy, mux, muy);
write(&THE MODIFIED RAND-234 IS BEST HERE: )

writeln(randc: 10:3)
end;

if ((ias >= 750) and (bias < 1200)) or

((ias >= 1450) and (bias < 1550))

then begin
GPCSCEP(sigx, sigy, mux, muy, rho);
write('THE GURUBBS-PATNAIK/CHI-SQUARE IS BEST HEFE:2;
writeln(gpcs: 10:3)

end
end;

if (ellip >= 0.6) and (ellip < 0.7)
then begin

If (bias >= 750) and (bias < 900)
then begin
RANDCEP(sigx, sigy, mux, muy);
write('THE MODIFIED RAND-234 IS BEST HERE: 2
writeln(randc: 10:3)

end;
if (bias >= 950) and (bias < 1300)

then begin
GPWHCEP(sigx, sigy, mux, muy);
write('THE GRUBBS-PATNAIK/WILSON-HILFERTY IS BEST HERE: 2
writeln(gpwh: 10:3)

end
end;

if (ellip >= 0.6) and (ellip < 0.65) and
((bias >= 900) and (bias < 950)) or
((ias >= 1450) and (bias < 1550))
then begin
GPWHGEP(sigx, sigy, mux, muy);
write('THE GRUBBS-PATNAIK/WILSON-I]ILFERTY IS BEST HERE: 2
writeln(gpwh: 10:3)

end;
if (ellip >= 0.65) and (ellip < 0.7) and

((bias >= 900) and (bias < 950)) or
((ias >= 1450) and (bias < 1550))

4 then begin
RANDCEP(sigx, sigy, mux, muy);
write('THE MODIFIED RAND-3 IS BEST HERE: 2

* writeln(randc: 10:3)
end;
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{BESTALGEBRAIC continued I

if (ellip >= 0.7) and (ellip < 0.8)
then begin

* if (bias < 100) or
((ias >= 950) and (bias < 1050)) or
((ias >= 1450) and (bias K 1550))
then begin

RANDCEP(sigx, sigy, mux, muy);
write('THE MODIFIED RAND-234 IS BEST HERE: 2

-' writeln(randc: 10:3)
end;

if ((ias >= 100) and (bias < 950)) or
((ias >= 1300) and (bias < 1450))
then begin
GPCSCEP(sigx, sigy, rnux, rnuy, rho);
write('THE GRUBBS-PATNAIK/CHI-SQUARE IS BEST HERE: 2
writeln(gpcs: 10:3)

end;
if (bias >= 1050) and (bias < 1300)

then begin
GPWHCEP(sigx, sigy, mux, muy);
write(VTHE GRUBBS-PATNAIK/WILSON-HILFERTY IS BEST HERE: 2
writeln(gpwb: 10:3)

end
end;

if (ellip >= 0.8) and (ellip < 0.9)
then begin
if ((ias >= 100) and (bias < 600)) or

((ias >= 750) and (bias < 1050)) or
((ias >= 1300) and (bias < 1450))
then begin
GPCSCEP(sigx, sigy, mux, nuy, rho);
write('THE GRUBBS-PATNAIK/CHI-SQJARE IS BEST HERE: 2
writeln(gpcs: 10:3)

end;
if (bias >= 1200) and (bias < 1300)

then begin
GPWHCEP(sigx, sigy, mux, muy);
write(TH-E GRUBBS-PATNAIK/WILSON-HILFERTY IS BEST HERE: 2
writeln(gapwh:10:3)

end;
if (bias >= 1450) and (bias < 1550)

then begin
RANDCEP(sigx, sigy, mux, muy);
write('THE MODIFIED RAND-234 IS BEST HERE: 2
writeln(randc: 10:3)

end;
end;
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{BESTALGEP*RAIC continuedl
if (ellip >= 0.8) and (ellip < 0.85)

then begin
if (bias < 100)

then begin
RANDCEP(sigx, sigy, mux, muy);

write('THE MODIFIED RAND-234 IS BEST HERE: 2
writeln(randc: 10:3)

end;
If ((bias >= 600) and (bias < 950)) or

((ias >= 1050) and (bias < 1200))
then begin
GPCSCEP(sigx, sigy, mux, muy, rho);

write('THE GRUBBS-PATNAIK/CHI-SQUARE IS BEST HERE: 2
writeln(gpcs: 10:3)

end

if (ellip >= 0.85) and (ellip < 0.9)

then beginA

then begin
GPCSGEP(sigx, sigy, inux, muy, rho);

write('THE GRtJBBS-PATNAIK/CIII-SOUARE IS BEST HERE: 2
writeln(gpcs: 10:3)

end;
if ((ias >= 600) and (bias < 750)) or

((bias >= 1050) and (bias < 1200))

then beginI
RANDCEP(sigx, sigy, mux, muy);
write('THE MODIFIED RAND-234 IS BEST HERE: 2
writeln(randc: 10:3)

end

end;I
if (ellip >= 0.9) and (ellip < 0.95)

then begin
if (bias K 600) or

((ias >= 900) and (bias < 1050)) or

((ias >= 1250) and (bias < 1450))
then begin
GPCSCEP(sigx, sigy, mux, muy, rh-o);

write('THE GRUBBS-PATNAIK/CHI-SQEJARE IS BEST HERE: 2
writeln(gpcs: 10:3)

If ((ias >= 600) and (bias < 900)) or

((ias >= 1050) and (bias < 1250)) or
((ias >= 1450) and (bias < 1550))
then begin

RANDCEP(sigx, sigy, mux, muy);

write('THE MODIFIED RAND-234 IS BEST HERE: %;
writeln(randc: 10:3)

end
end;
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[BESTALCEBRAIC continued)

if (ellip >= 0.95) and (ellip <= 1.0)
then begin
if (bias < 100) or

((ias >= 200) and (bias < 500)) or
((ias >= 750) and (bias < 1200)) or
((ias >= 1300) and (bias < 1450))
then begin

GUPCSCEP(sigx, sigy, mux, rnuy, rho);
write('THE GRUBBS-PATNAIK/CHI-SQU.ARE IS BEST HERE: 2
writeln(gpcs:10:3)

end;
if ((ias >= 100) and (bias < 200)) or

((ias >= 500) and (bias < 750)) or
((bias >= 1450) and (bias < 1550))

* then begin
RANDCEP(sigx, sigy, mux, muy);
write(-THE MODIFIED RAND-234 IS BEST HERE: 2
writeln(randc: 10:3)

end;
if (bias >= 1200) and (bias < 1300)

then begin
GPWHCEP(sigx, sigy, mux, muy);
write(-THE GREBBS-PATNAIK/WILSON-HILFERTY IS BEST HERE: 2
writeln(gpwh:10:3)

end
'a end

end; {BESTALGEBRAIC)

(The following procedure is used to execute the desired
operation that the user decided to accomplfsh
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sigx, sigy, mux, rnuy, rho, bias, ellip: real);

casedue pickMTDva pikontgr

writln(HOWMANY INTERVALS DO YOU IIANT THE FOR THE CBN?');
writln(THEMORE INTERVALS, THE MORE TIME, THE MORE ACCURATE');

GPCSEP~sgxsigy, mux, muv, rho);
GPWHEP~sgxsigy, rnux, muy);
RANDEP~sgxsigy, mux, muy);

CBNORM(sigx, sigy, mux, muy, rho, cep, ints);
EXACT(sigx, sigy, mux, rnuy, cep);
writeln('CEPs FOR ALL METHODS ARE AS FOLLOWS:');
writein;
writeln('GRUBES-PATNAIK/CHI-SQUARE: -,gpcs:l0:3);

writeln('GRUBBS-PATNAIK/WILSON-HILFERTY: ', gpwh:1O:3):
writeln('MODIFIED RAND-234: ', randc:lO:3);
writeln('CBN: -, cbn:1O:3);
writeln("'EXACT": -,cep:lO:3)

end;
2: begin

GPCSCEP(sigx, sigy, rnux, muy, rho);
write('THE CEP GIVEN BY THE GRUEBS-PATNAIK/CHI-SQUARE IS: 2
writeln(gpcs: 10:3)

end;
3: begin

GPWHCEP(sigx, sigy, miix, rnuy);
wrlte('THE CEP GIVEN BY THE GRUBBS-PATNAIK/WILSON-HILFEFTY IS: 2
writeln(gpwh: 10:3)

end;
4: begin

RANDCEP(sigx, sigy, mux, rnuy);
writeln('THE CEP GIVEN BY THE MODIFIED RAND-234 IS: -,randc:1O:3);

end;
5: begin

writeln('HOW MANY INTERVALS DO YOU WANT THE FOR THE CBN?');
writeln('THE MORE INTERVALS, THE MORE TIME, THE MORE ACCURATE');
readln( ints);
CBNORM(sigx, sigy, mux, muy, rho, cep, ints);
writeln('THE CEP GIVEN BY THE CBN IS: ', cbn:1O:3)

end;
6: begin

EXACT(sigx, sigy, mux, muy, cep);
writeln('THE CEP GIVEN BY THE "EXACT" IS: -,cep:10:3)

end;
7: BESTALGEBRAIC(ints, sigx, sigy, mnux, muy, rho, bias, ellip)

end
end;
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** * * **** ** *** * *

[The following is the Main program. It accepts the input
of the user for the variables and then which method
the user would like to calculate)

begin (MAIN PROGRAM)
writeln('PLEASE INPUT THE SAMPLE STANDARD DEVIATIONS AND MEANS');
write(VCROSSRANGE MEAN {X BAR): )

readln(mux);
write('CROSSRANGE STANDARD DEVIATION (SIGMA Xl: )
readln(sigx);

write('DOWNRANGE MEAN (Y BAR): 2
readln(muy);
write(VDOWNRANGE STANDARD DEVIATION [SIGMA Y): )
readln(sigy);
write('INPUT THE CORRELATION COEFFICIENT, IF ANY fRHOI: 2
readln(rho);
bias:= sqrt(sqr(mux) +- sqr(muy));
ellip:= sigx/sigy;
writeln('HOW WOULD YOU LIKE FOR THE PROGRAM TO RUN?');
writeln(' {ENTER APPROPRIATE NUMBER)-);
wri tein;

writeln('1 = CALCULATE ALL METHODS');
writeln('2 =CALCULATE GRUBBS-PATNAIK/CHI-SQUARE METHOD ONLY');
writeln(-3 = CALCULATE GRUBBS-PATNAIK/WILSON-HILFERTY METHOD ONLY');
writeln('4 = CALCULATE MODIFIED RAND-234 METHOD ONLY');
writeln('5 = CALCULATE CBN METHOD ONLY');
writeln('6 - CALCULATE "EXACT" METHOD ONLYo);
writeln('7 = CALCULATE THE "BEST" OF THE ALGEBRAIC METHODS');
readln(pick);
writeln;
writein (o***************************************)
writeln;
PICKMETHOD(pick, sigx, sigy, mux, muy, rho, bias, ellip);

end.
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