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Recent research in multivariate nonparametric classes in reliability
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1. Introduction. This paper is a sequel to the survey paper of Hollander "
and Proschan (1984) who examine univariate nonparametric classes and methods -
F
in reliability. In this paper we will examine multivariate nonparametric ) :
classes and methods in reliability. :
Hollander and Proschan (1984) describe the various univariate nonpara- A
metric classes in reliability. The classes of adverse aging described include x
the IFR, IFRA, NBU, NBUE and DMRL classes., The dual classes of beneficial aging - ;
are also covered. Several new univariate classes have been introduced since 4
that time. One that we will briefly mention is the HNBUE class, since we are :
"

aware of several multivariate generalizations of this class.

The univariate classes in reliability are important in applications con-

cerning systems where the components can be assumed to be independent. In

% TR

‘this case the components are often assumed to experience wearout or beneficial

i

aging of a similar type. For example, it is often reasonable to assume that ;’
components have inecreasing failure rate (IFR). In making this IFR assumption N §
it is implicit that each component separately experiences wear and no inter- ;
actions among components can occur. However in many realistic situations, adverse ‘ﬁ
wear on one component will promulgate adverse wear on other components. From :E
another point of view a common environment will cause components to behave sim- ‘f
ilarly. 1In either situation, it is clear that an assumption of independence
on the components would not be valid. Consequently multivariate concepts of E
adverse or beneficial aging are required. Y
Multivariate nonparametric classes have been proposed as early as 1970. o
For background and references as well as some discussion of univariate classes R
with multivariate generalizations in ming”?ee Block and Savits (1981). 1In ;:
the present paper weé shall-enly describeﬂ@ few fundamental developments prior to 1981 X
X
“




e ey S B P L L T L LA LW OO TR OO

g : 4
. 3
b e i
and focus on developments since then. The coverage will not be exhaustive but e
will emphasize the topics whichf;; f;elvare most important. fﬁ
Section 2 deals with multivariate nonparametric classes. In section 2.1 Eg
multivariate 1FRA is discussed with emphasis on the Block and Savits (1980) A
class. Multivariate NBU is covered in Section 2.2 and multivariate NBUE ;
classes are mentioned in Section 2.3. New develé;ments in multivariate IFR are if
considered in Section 2.4 and in Section 2.5 the topics of multivariate DMRL o
and HNBUE are touched on. - !
Familiarity with the uﬁivariate classes is assumed. The basic reference Ez
for the IFR, IFRA, NBU and NBUE classes is Barlow and Proschan (198l1). See {;
also Block and Savits (1981). For information on the DMRL class see Hollander *f
and Proschan (1984). The HNBUE class is relatively recent and the best ref- t
erences are the original articles. See for exaﬁple, Klejsj8 (1982) and the SE
references contained there. ;Ei
2, Multivariate Nonparametric Classes. Many multivariate versions of the i
univariate classes were proposed using generalizations of various failure rate ;j
functions. These multivariate classes were extensively discussed in Block and g;
Savits (1981). Other classes were proposed by attempting to imitate univariate ':

r’Z

definitions in a multivariate setting. (See also Block and Savits (1981).) One

)

of the most important of these extensions was due to Block and Savits (1980)

——
T
&

who generalized the IFRA class. Thismultivariate class was proposed to parallel the
developments of the univaritate case where the IFRA class possessed many important closure
properties. As in the univariate ca;e the following multivariate class of IFRA,
designated the MIFRA class, satisfies important closure properties. First, as in

the univariate case, monotone systems with MIFRA lifetimes have MIFRA lifetimes

and independent sums of MIFRA lifetimes are MIFRA. From the multivariate point Qﬁ

of view, subfamilies of MIFRA are MIFRA, conjunctions of independent MIFRA are A




MIFRA, scaled MIFRA lifetimes are MIFRA, and various other properties are satisfied.

We discuss this extension first since several other classes have been defined using

similar techniques.
2.1 Multivariate IFRA, Using a characterization of the univariate IFRA class

in Block and Savits (1976) the following definition can be made.

(2.1.1) Definition.l.etl-('rl.....'rn) be a nonnegative random lifetime. The

random vector T is said to be MIFRA if

E*(h(T) ] <E[h%(T/a) ]

for all continuous nonnegative nondecreasing functions h and all 0 <a<1.
This definition as mentioned above implies all of the properties one would desire
for a multivariate analog of the univariate IFRA class, Part of the reason for
this is that the definition is equivalent to many other properties which are
both theoretically and intuitively abpeal:lng. The statement and proofs of
these results are given below; the form in which these are presented is influ-
enced by the paper of Marshall and Shaked (1982) who defined a similar MNBU

class,

Notes. 1) Obviously in (2.1.1) we need only consider h defined on IR:- {515_19}.
Hence all of the functions and sets mentioned below are assumed to be Borel

measurable in ]R:.

y n
2) We say a function g is homogeneous (subhomoieneous) on ]R+ if

ag(t) = (2) g(ag)  for all 0<ax<l, Oc<t.

3) A is an upper set if xc A and x <y implies y e A.
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(2.1.2) Theorem The following conditions are all equivalent to T being MIFRA. :’5‘
- %
a
1) P"{TeA} <P{T € aA} for all open upper sets in ]R:, all 0<a<l, E:;
- i
)
!
i1) p“{IeA} <P{T € aA} for all upper sets in m:‘_, all O<a<l, "
= o
of é&‘
a )
(1.e. E (¢(D])) < E(¢a(3/a.)) for all nonnegative, binary, nondecreasing = -
oo
n o
¢ on m+2. :.‘.~
a )
iii) E (h(T)) <E(h(T/a)) for all nonnegative, nondecreasing h on IR:, ;-';
all 0<ax<l, —
-.-.
Yy
iv) For all nonnegative, nondecreasing, subhomogeneous h on ]R?_, .:::
o"‘f
h(T) is IFRA. &
v) For all nonnegative, nondecreasing, homogeneous h on ]R:, h(I) is :‘::
IFRA. ; .’,;
<
Wi
A
Proof: 1i)=>ii): By Theorem 3.3 of Esary, Proschan and Walkup (1967) for an L
upper set A and any ¢ >0 there is an open upper set Ae such that Ac As and ' t;:
P{TcaA } <P{TcaA}+e. Thus ;
..—
P {Tea) <P*(TeA }<P{Teaa }<P{Tcaal+e. o
. :f.'j'-'
-'.-
i11) => 1ii): Let hk’ k=1,2,... be an increasing sequence of increasing step Rad
AN
s

functions such that lim h. =h, Specifically take

koo K
ol e ol hw <L, 1=1,2,...,k2%,
hk(g) = 2 2 2

kK 1f h() >k, &
' 2
k2k 1 :;y
i.e. hk(g._) = 7 T Ia (t) where I, is the indicator function of the upper set .',-':
i=s1 2 i,k ik :
A1 k- {t|h(L) 3_-%; }. Thus we need only prove the result for functions of the '§:
’ 2 o)
form 0




u ,
n(e) = JaI, (£), a, 20, r
=1 144 1

where Al,..., A, are upper sets, since the remainder follows by the monotone \

convergence theorem. We have '

N pY
n n a 5 a
' . I, (D)= a, P{Tea,}] _<_[$'a1> {TeaA }] \
. : (1-yilai Ai(—)) [121 =1 g1 1 i :
1 {

= [lf {ra"I“(t/a)dF(t)};]u< r§ J'a 1,(t/a)dF(t) :
' 1-1J1A" =0T Tga VAT
‘ Y et o

- £((] a,I, (/9%

1e1 T84

2 where the last inequality is due to Minkowski.

Def, => i). From Esary, Proschan and Walkup (1967) for any open upper set A

there exist nonnegative, nondecreasing, continuous functions hk such that hk 4 I'A.

Then apply the monotone convergence theorem.

4 1i1) => iv). Let h be nonnegative, nondecreasing and subhomogeneous. Then

(¢ ] (2 3
PUR(D > e} = BN, L (WD) SEA, ) (B(T/a)))

SE@ oG D= PIRD >0 t)

(t,

vhere the first inequality follows from iii) and the second by the subhomogeniety.

iv) => v): Obvious.

v) => {). Let A be an open upper set and define

sup{6 >0:
h(t) =

0 otherwise

teAl if {8>0: T teAl ¢ ¢

@ |-
@)=

, Then h is nonnegative, nondecreasing and homogeneous. Thus

......
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P%(T e A} = P°(h(D) > 1} <P{h(T) >a} =P{T c0A}.

(2.1.3) Note. The following two alternate conditions could also have been

added to the above list of equivalent conditions (provided F(Ot)‘ =1). .'é
vi) P%{T €A} <P{TeaA} for each set A of the form A = i:IAi vhere o

n
A = {§_|35>_:51}, x, ¢R_ and for all 0<a<l.

vii) For each k=1,2,..., for each a,,, i=1,...,k, j=1,...,n, O<a, <

i] ij— " :;
and for each coherent life function t of order kn

ces IFRA. S Block and
T(allrl'alzrl""’alnrl’aZITZ’ ’aknTn) is IF (See

Savits (1980) for a definition of coherent life function and for .:;
some details of the proof). ;
In conjunction with the preceding result theA following lemma makes it easy x
to demonstrate that a host of different lifetimes are MIFRA. E
(2.1.4) Lemma. Let T be MIFRA and wl,...,wm be any continuous, subhomogeneous
functions of n variables., Then 1if Si-wi(I) for i=1,...,m, S= (Sl,...,Sm-) is :
Proof: This follows easily by considering a nonnegative, increasing, continuous .
function h of m variables and applying the MIFRA property of T and the monoto-
nicity of the “’1' '-:
(2.1.5) Corollary. Let Tys+e+sT  be coherent life functions and T be MIFRA. Then
(1;(D,...,75(T) 1s MIFRA. R
Proof: Since coherent life functions are homogeneous this follows easily. :?.
(2.1.6). Example. Let X,...,X be independent IFRA lifetimes and ¢ # s, <{1,2,...,n},
{i=1,...,m. Since it is not hard to show that independent IFRA lifetimes are e
MIFRA, it follows that Ti = l;l:.rslixj i=1,...,m are MIFRA. Since many different :'
types of multivariate IFRA can be generated in the above way, the example shows R
that any of these are MIFRA. Seé Esary and Marshall (1979) where various types ;
of multivariate IFRA of the type in this example are defined. See Block and E:'
~

Savits (1982) for relationships among these various definitions.




Multivariate shock models with multivariate IFRA properties have been

treated in Marshall and Shaked (1979) and in Savits and Shaked (1981).

- -

2.2 Multivariate NBU. As with all of the multivariate classes, the need for

each of them is evident becuase of the usefulness of the corresponding univariate

class. The only difference is that in the multivariate case, the independence of

L. s 2 » BX]

the components is lacking. In particular the concept of NBU is fundamental in
disucssing maintenance policies in a single component system. For a multicomponent

system, where components are dependent, marginally components satisfy the univariate

“Te & 8 &

NBU property under various maintenance protocols. However, a joint concept de-
scribing the interaction of all the components is necessary. Hence multivariate

A NBU concepts are required.

. Mose of the earliegt definition of multivariate NBU (see for example Buchanan
and Singpurwalla (1977)) consisted of various generalizations of the defining
property of the univariate NBU class. For a survey of these see definitions (1)-

(5) of Section 5 of Block and Savits (198l1). For shock models which satisfy these

8 0 2 2 v

definitions see Marshall and Shaked, (1979), Griffith (1982), Ebrahimi and Ghosh
(1981) and Klefsjo (1982), Other definitions involving generalizations of pro-
perties of univariate NBU distributions are given by (7)~(9) of the same reference.
These are similar to definitions used by Esary and Marshall (1979) to define multi-

variate IFRA distributions, Properties (7) and (8) of the Block and Savits (1981)

« s’ s a &

reference represent a certain type of definition and bear repeating here. The

vector T is said to be multivariate NBU if:

r(Tl....,Tn) is NBU for all t in a certain class

of life functions; (2.2.1)

There exist independent NBU xl,...,xk and life functions

e e

Ti’ {i=1,...,n0 in a certain class such that 1‘i

i=1,...,n. (2.2.2)

‘Ti(z)o

..................
.....




. >
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El-Neweihi, Proschan and Sethuraman (1983) have considered a special case of

(2.2.2) where the Ti are minimums and have related this case to some other

definitions including the special case of (2.2.1) where t is any minimum.

As shown in Theorem 2.1,definitions involving increasing functions can be
given equivalently in terms of upper (or open upper) sets. Two multivariate NBU
definitions which were given in terms of upper sets were those of El-Neweihi
(1981) and Marshall and Shaked (1982). These are respectively:

For every upper set Ac ]R: and for every O<a <l
* T”

: T° 1
P{TeAl < P(min(Z ,, 7 de A) (2.2.3)
where T,T',T" are independent and have the same distribution.

For every upper set Ac]R: and for every a>0, B>0

P{T ¢ (a+B)A} <P{T ¢ aA} P{T ¢ BA}. (2.2.4)
Relationships among these definitions are given in El-Neweihi (198l1). A more
restrictive definition than either of the above has been given in Berg and
Kesten (1984):

For every upper A,Bc X" N

P(T ¢ A+B) < P(T e A)P(T ¢ B) (2.2.5)
This definition was shown to be useful in percolation theory as well as relia-
bility theory.

A general framework involving generalizations of the concept (2.2.1) called

taking the C-closure of F and of the concept (2.2.2) called C-generating from
F (where F is the class of univariate NBU lifetimes in (2.2.1) and (2.2.2))
has been given by Marshall and Shaked (1984). Many of the previous NBU defi-
nitions are organized within this framework. A similar remark applies when

the classes F are exponential, IFR, IFRA and NBUE. See Marshall and Shaked

(1984),
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Along with the multivariate NBU versions of Buchanan

2.3 Multivariate NBUE.

and Singpurwalla (1977) are integrated versions of these definitions. These

authors give three versions of multivariate NBUE. The relations among these

and closure properties are discussed in Ebrahimi and Ghosh (198l1), Furthermore

the . latter authors relate these multivariate NBUE definitions to four defi-

nitions of multivariate NBU (i.e. definitions (1)=(4) of Section 5 of Block and

Savits (1981)).

Some other multivariate NBUE classes are mentioned by Block and Savits

(1981) and Marshall and Shaked (1984). One extension of a univariate charac-

terization of the NBUE class mentioned in Block and Savits (1978) has been

proposed by Savits (1983b).

2.4 Multivariate IFR. Perhaps the most important univariate concept in reliability .

One reason for this is that in a very simple

is that of increasing fallure rate.

and compelling way this idea describes the wearout of a component. Many engineers,

The monotonicity of

biologists and actuaries find this description fundamental.

the failure rate function is simple and intuitive and occurs in many physical

situations., This also is crucial in the multicomponent case where the components }

are dependent,

Several authors have attempted to describe the action of the failure rates

XS

increasing for n components simultaneously. These cases were discussed in Block

and Savits (1981) and in the references contained therein.

A recent definition of multivariate IFR was given by Savits (1983a) and is

Y XA RANS

in the spirit of the classes defined by Block and Savits (1980) and Marshall and

Shaked (1982). For shock models involving multivariate IFR concepts see

Ghosh and Ebrahimi (1981).
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It is shown in Savits (1983a) that a univariate lifetime T is IFR if and
only if E[h(x,T)] is log concave in x for all functions h(x,t) which are log
concave in (x,t) and are nondecreasing in t for each fixed x > 0. This leads
to the following multivariate definitionm,

(2.4.1) Definition. ~Let T be a nonnegative random vector. Then T has an MIFR
distribution if E[h(x,T)] is log concave in x for all functions h(x,t) which

are log concave in (x,t) and nondecreasing in t >0 for each fixed x>0.

This class enjoys many closure properties. Among these are that all mar-
ginals are MIFR, conjunction of independent MIFR are MIFR, convolutions of MIFR
are MIFR, scaled MIFRare MIFR, nonnegative nondecreasing concave functions of
MIFR are MIFR, and weak convergence preserves MIFR. See Savits (1983a) for
details. From these results it follows that the multivariate exponential dis-
tribution of Marshall and Olkin (1967) is. MIFR, as are all distributions with

log concave densities. Since the multivariate folded normal has a log concave

density, it also is MIFR.

The technique used in Definition 2.4.1 for the MIFR class extends to other
multivariate classes. In particular, if we replace log concave with log
subhomogeneous, we get the same multivariate IFRA class as in Definition 2.1.1;
if we replace log concave with log subadditive, we get a new multivariate NBU
class which is between that of (2.2.3) and (2.2.4). For more details see

Savits (1983a, 1983b).

2.5 Multivariate DMRL and HNBUE. Few definitions of multivariate DMRL have been

discussed in the literature, although E. El-Neweihi has privately communicated

one to us. Since developments are premature with respect to this class we

will not go into details,

v . -
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Multivariate extensions of the HNBUE class have been proposed by Basu and
Ebrahimi (1981) and Klefsjo (1980). The extensions of the former authors are
similar in spirit to the multivariate NBUE classes of Ghosh and Ebrahimi (1981).
The latter author's definition extend the univariate definition by replacing

the univariate exponential distribution with the bivariate Marshall and Olkin

(1967) distribution and considering various multivariate versions of the defi-

nition.
Basu and Ebrahimi (1981) show relationships among their definitions and
Klefsjo's, give some closure properties and also point out relatioms with

multivariate NBUE classes.
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