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Randomized Routing on Fat-Trees

Ronald I. Greenberg
Charles E. Leiserson

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

April 28, 1986

Abstract
Fat-trees are a class of routing networks for hardware-efficient parallel computa-

tion. This paper presents a randomized algorithm for routing messages on a fat-tree.
The quality of the algorithm is measured in terms of the load factor of a set of mes-
sages to be routed, which is a lower bound on the time required to deliver the
messages. We-ltw that if a set of messages has load factor A on a fat-tree with
n processors, the number of delivery cycles (routing attempts) that the algorithm
requires is O(A + Ig n IS IS n) with probability I - O(I/n). The best previous bound
was O(A Ig n) for the off-line problem where switch settings can be determined in ad-
vance. In a VLSI-like model where hardware cost is equated with physical volume,
the routing algorithm demonstrates that fat-trees are universal routing networks
in the sense that any routing network can be efficiently simulated by a fat-tree of
comparable hardware cost.

1 Introduction

Fat-trees constitute a class of routing networks for general-purpose parallel computation.
This paper presents a randomized algorithm for routing a set of messages on a fat-
tree. The routing algorithm and its analysis generalize an earlier universality result by
showing, in a three-dimensional VLSI maodel, that for a given volume of hardware, a
fat-tree is; nearly the best routing network that can be built. This universality result had
been proved only for off-line simulations [10], where switch settings can be determined
in advance; this paper extends it to the more interesting on-line case, where messages
are spontaneously generated by processors.

As is illustrated in Figure 1, a fat-tree is a routing network based on Leighton's tree-
of-meshe3 graph [8]. A set of n processors are located at the leaves of a complete binary

This rmsearch was supported in part by the Defense Advanced Research Projects Agency under Con-
tract N00C14-80-C-0622. Ron Greenberg is supported in part by a Fannie and John Herts Foundation
Fellowship Charles Leiserson is supported in part by an NSF Presidential Young Investigator Award.
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Figure 1: The organzation of a fat-tree. Processors are located at the leaves, and the internal nodes
contain concentrator switches. The capacities of channels increase as we go up the tree.

tree. Each edge of the underlying tree corresponds to two channels of the fat-tree: one
from parent to child, the other from child to parent. Unlike a normal tr-- interconnection
which is "skinny all over," each channel of a fat-tree consists of a bundle of wires. The
number of wires in a channel c is called its capacity, denoted by cap(c). Each internal
node of the fat-tree contains circuitry that switches messages from incoming to outgoing
channels. The capacities of the channels in a fat-tree determine how much hardware is
required to build it, where we measure hardware in terms of three-dimensional volume.
The greater the capacities of the channels, the greater the communication potential,
and also, the greater the physical volume of an implementation of the network. The
randomized routing algorithm that will be presented in this paper can be used to show
that a fat-tree with properly chosen channel capacities is a universal network for a given
volume of circuitry.

The problem that a routing algorithm for a volume-universal network must face is
"pin-boundedness"-the bandwidth limitation imposed by surfaces of three-dimensional
regions-a constraint that makes some communication patterns among a set of processors
harder than others. To illustrate this point, consider a three-dimensional region of volume
v containing an n-processor routing network, and consider a plane that cuts through the
region perpendicular to the longest dimension and which divides the set of processors
in half. Suppose each processor sends a message to a processor on the other side of
the cut. Since the cross-sectional area of the cut has area O(v 2 /3 ), the time required
by the network to deliver all the messages is 11(n/v /3 ). If the processors fill the region
with substantial density (i.e., v = O(n3/2-,)), where e > 0), the time required to deliver
the messages is polynomial in n. In contrast, the communication pattern in which each
processor communicates with its nearest neighbor in the region, as in a three-dimensional
systolic array, can be accomplished in constant time.

A volume-universal network should be able to simulate the communication of any
(bounded-degree) network of a given volume with at most polylogarithmic degradation
in time, much as traditional universal networks can simulate the communication of any
network of a given number of processors with at most polylogarithmic degradation. The
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routing algorithm that we will give to show that fat-trees are volume-universal networks
cannot use traditional randomization techniques such as the one proposed by Valiant in
his seminral paper [15], however. Using Valiant's technique for routing permutations on a
hypercule, each message is sent to a random intermediate destination, and from there, to
its true destination. Using the analysis above, the expected time for every permutation,
including simple nearest-neighber communication, is fl(n/vl/3 ) because we expect n/2
messages to cross the cut when they are sent to their intermediate destinations. Thus, if
Valia.nt's technique is used, the simulation of routing networks whose processors densely
fill a give n volume causes polynomial degradation in time.

This ?aper presents and analyzes a randomized algorithm for routing on faL-trees
which sh.)ws that fat-trees can efficiently simulate any routing network of a comparable
voulae. We present a measure of congestion for a set of messages, called the load factor,
which is a lower bound on the time to route the messages on a fat-tree. We show
that if a set of messages has load factor A, our routing algorithm can route them in
O(A + Ig nlglgn) delivery cycles (routing Attempts) with high probability. The best
previous bound for a problem of this nature was an O(A ig n) bound for the off-line
situation where the set of messages is known in advance [10].

The .nalysis in terms of load factor is not restricted to permutation routing or situ-
ations w'iere each processor can only send or receive a constant number of messages, as
is common in the literature. We consider the general situation where each processor can
send ane receive polynomially many messages. Furthermore, we make no assumptions
about th-! statistical distribution of mess ges, except insofar as they affect the load factor.
Our rout ing algorithm also differs from others in the literature in the way randomization
is used. Unlike the algorithms of Valiant [15], Valiant and Brebner 116], Alliunas 121,
Upfal l, I and Pippenger [121, for example, it does not randomize with respect to paths
taken by messages. Instead, for each delivery cycle, each undelivered message randomly
choosc , vhether to be sent.

',' he emainder of this paper is organized as follows. Section 2 further describes the
fat-tree network, defines the load factor, and discusses universality. Section 3 presents
t ,h r.)idornized algorithm for efficiently ro ting messages on the fat-tree network, and
Se~tI. •contains the full analysl.3 c, e algorithm. Section 5 gives an existential lower
D )old ft r the naive greedy app -oach to routing messages which shows that the greedy
*s' r"A,'y ik inferior to the randomized algorithm for worst case inputs. Section 6 contains
a v,-rietN of results that follow from ! le randomized routing algorithm. It shows how
,2m univ~rsality result of [10] can Le xtended to on-line simulations, and it includes a
, .i Jba~icn of the routing algoritbm which achieves better bounds when each channel
has cap?-city fl(lg n). Finally, Sectio n - contains some concluding remarks.

2 V ;-trees

This sxc ion describes an implementat. Jon of a fat-tree routing network, and it shows how
to choos i the channel capacities for volume-universal and area-universal fat-trees. We
precisely define the load factor of a set of messages on a general network, which is a lower
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bound on the time required to deliver the messages. We give a proof that fat-trees satisfy
a simple universality property, and we indicate why a good message-routing algorithm
based on load factor can strengthen this result.

The implementation of fat-trees described here follows that of 1101. We consider com-
munication through the fat-tree network to be synchronous, bit serial, and batched. By
synchronous, we mean that the system is globally clocked. By bit serial, we mean that
the messages can be thought of as bit streams. Each message snakes its way through
the wires and switches of the fat-tree, with leading bits of the message setting switches
and establishing a path for the remainder to follow. By batched, we mean the messages
are grouped into delivery cycles. During a delivery cycle, the processors send messages
through the network. Each message attempts to establish a path from its source to
its destination. Since some messages may be unable to establish connections during a
delivery cycle, each successfully delivered message is acknowledged through its commu-
nication path at the end of the cycle. Rather than buffering undelivered messages, we
simply allow them to try again in a subsequent delivery cycle. The routing algorithm is

responsible for grouping the messages into delivery cycles so that all the messages are
delivered in as few cycles as possible.

The mechanics of routing manages in a fat-tree are similar to routing in an ordinary
tree. For each message, there is a unique path from its source processor to its destination
processor in the underlying complete binary tree, which can be specified by a relative
address consisting of at most 2 Ig n bits telling whether the message turns left or right
at each internal node.

Within each node of the fat-tree, the messages destined for a given output channel
are concentrated onto the available wires of that channel. This concentration may result
in "lost" messages if the number of messages destined for the output channel exceeds the
capacity of the channel. We assume, however, that the concentrators within the node
are ideal in the sense that no messages are lost if the number of messages destined for

*a channel is less than or equal to the capacity of the channel. Such a concentrator can
be built, for example, with a logarithmic-depth sorting network [1]. A somewhat more
practical logarithmic-depth circuit can be built by combining a parallel prefix circuit [7]
with a butterfly (i.e., FFT, Omega) network. With switches of logarithmic depth, the
time to run each delivery cycle is O(lg 2 n) bit times. (Section 6 contains another fat-tree
design where the time to run a delivery cycle is O(Ig n) bit times.)

The performance of any routing algorithm for a fat-tree depends on the locality
of communication inherent in a set of messages. The locality of communication for a
message set M can be summarized by a measure A(M) called the load factor, which we
define in a more general network setting.

Definition: Let R be a routing network. A set S of wires in R is a (di, ected)
cut if it partitions the network into two sets of processors A and B such that
every path from a processor in A to a processor in B contains a wire in S.
The capacity cap(S) is the number of wires in the cut. For a set of messages
M, define the load load(M, S) of M on a cut S to be the number of messages

4
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in M that must cross S. The load factor of M on S is

load(M, S)
)(M,S) = cap(S)

and the load factor of M on the entire network R is

A(M) = max ,(M, S).

The load factor of a set of messages on a given network provides a simple lower bound
on the time required to deliver all messages in the set. For fat-trees, the load factor of
a set of messages is determined by the cuts on the channels alone.

Lemma 1 The load factor of a set M of messages on a fat-tree is

A(M) = maxA(M,c) ,

where c ranges over all channels of the fat-tree. I

The raindomized routing algorithm for fat-trees presented in Section 3 can deliver a set
M of messages in O(A(M) + Ig n Ig Ig n) delivery c, cles with high probability. In fact,
the running time is asymptotically even less for message sets with small load factors.

We are particularly interested in the application of the routing results to universal
fat-trees. In order for a fat-tree to be universal for area, the channel capacities must
be picked properly. One way is to give each leaf channel a constant capacity, and then

grow the channel capacities by v'2 at each level as we go up the tree, rounding off to
integer capacities where needed. Another scheme that avoids rounding is to double the
channel capacities every two levels, as is shown in Figure 1. Either of these methods
yields a E(n 1g2 n)-area layout for n processors, and a root capacity of e(vfi). Volume-

universal fat-trees can be constructed in a similar fashion by picking a growth rate of
ri, or equivalently, by quadrupling the :apacity every three levels. The volume of an

n-processor fat-tree constructed by theme methods is e(n lg3/ 2 n), and the root capacity
is 0(n2/-).

Even without a good routing algorithm for fat-trees, it is possible to prove a simple
u niversaiity property.

Lemma 2 Let R be an interconnection network of area n such that all con-

nections are point-to-point between processors with no intervening switches.
Then an area-universal fat-tree of area O(nlg n) can simulate every step of
network R with at most O(1g 2 n) switching delay.

Proof. We assume without loss of generality, that network R lies in a square with
side length Vn-. The layout of the fat-tree has Vn processors on a side, and thus each
processor of R can be mapped to the corresponding processor of the fat-tree in the
natural geometric fashion. This mapping satisfies the property that the capacity of any

5
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channel of the fat-tree is proportional to the perimeter of the corresponding region of
the layout of network R. Therefore, any communication step performed by R induces
at most a load factor of I on the fat-tree and thus can be routed in one delivery cycle,
which takes O(1g 2 n) time. I

This universality result can be strengthened if a good routing algorithm for fat-trees
is known. For example, it seems natural to consider networks with intermediate switches
that might buffer messages for several time steps. Given a set of messages that are
delivered over time on such a network, the load factor induced on channels of the fat-tree
is typically greater than 1. We could model switches as processors, but we would like to
prove a stronger universality theorem without disrupting the abstraction of processors
connected to a routing network. Thus, we must have a routing algorithm that can
directly route messages sets with large load factors. Section 3 presents a general routing
algorithm for fat-trees that routes messages quickly with high probability. Section 6 uses
this routing algorithm to show that a fat-tree of a given volume with n processors can
simulate any other n-processor network of the same volume with only polylogarithmic
degradation in time.

3 The routing algorithm

This section gives a randomized algorithm for routing a set M of messages. The algorithm
RANDOM, which is based on routing random subsets of the messages in M, is shown
in Figure 2. It uses the subroutine TRY-GUESS shown in Figure 3. Section 4 provides
a proof that on an n-processor fat-tree, the probability is at least 1 - 0(1/n) that
RANDOM delivers all messages in M within 0(A(M)+ Ig n ig lg n) delivery cylces, if the
two constants k, and k2 appearing in the algorithm are properly chosen.

The basic idea of RANDOM is to pick a random subset of messages to send in each
delivery cycle by independently choosing each message with some probability p. This
idea is sufficiently important to merit a formal definition.

Definition: A p-aubeet of M is a subset of M formed by independently
choosing each message of M with probability p.

We will show in Section 4 that if p is sufficiently small, a substantial portion of the
messages in a p-subset are delivered because they encounter no congestion during routing.
On the other hand, if p is too small, few messages are sent. RANDOM varies the
probability p from cycle to cycle, seeking random subsets of M that contain a substantial
portion of the messages in M, but that do not cause congestion.

The algorithm RANDOM varies the probability p because the load factor A(M) is
not known. The overall structure of RANDOM is to guess the load factor and call the
subroutine TRY-GUESS for each one. The subroutine TRY-GUESS determines the
probability p based on RANDOMs guess X,.. and a parameter r, called the congeation
parameter of the fat-tree, which is independent of the message set and which will be
defined in Section 4. If w.. is an upper bound on the true load factor A(M), each
iteration of the while loop in TRY-GUESS halves the load factor A(U) of the set U of

6
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1 send M

2 U,,- M - (messages delivered}

3 Ag9 ,, +- 2

4 while kA ,.ao < k2 lg n and U # 0 do

5 TRY-GUESS(A,.,)

6 A \,

7 endwhile

8 Arm" -'k 2 /kl)lgnlglgn

9 while U # 0 do

10 TRY-GUESS(A...)
11 A °o +- 2Ag"#

12 endwhile

Figure ': The randomized algorithm RANDOM for delivering a message set M on a fat-tree with n
processors. This algorithm achieves the running times in Figure 4 with high probability if the constants
k, and kg are appropriately chosen. Since the load factor A(M) is not known in advance, RANDOM
makes gueises, each one being tried out by the subroutine TRY-GUESS.

procedure TRY-G UESS(A ,.)

1 A -- Am"

2 while A>ldo

3 for i +- 1 to max {kA, k2 Ig n} do
4 independently send each message of U with probability 1/rA
5 U -- U - {messages delivered}

6 endfor

7 A +- A/2

8 endwhile

9 serd U

10 U--- U - {messages delivered}

Figure 3: The subroutine TRY-GUESS used by the algorithm RANDOM which tries to deliver the set
U of currently undelivered messages. When A93 ,98 > A(U), this attempt will be successful with high
probability, if the constants k, and k2 afe appropriately chosen. (The value r is the congestion parameter
of the fat--tree defined in Section 4, which is typically a small constant.) In that case, A is always an upper
bound on A(U), which is at least halved in each iteration of the while loop. When the loop is Cnished,
A(U) _< 1, so all the remaining messages can be sent.

7



load factor delivery cycles
0 < _A(M)
1 <- \(M) _5 2 0 (lgn)

2 _< A(M) _< lgnlglgn O(lgnlg(A(M)))
Ig nlglg n < A (M) :5 n° l)  0(1\(M))

Figure 4: The number of delivery cycles required to deliver a message set M on a fat-tree with n
processors. All bounds are achieved with probability 1 - 0(1/n).

undelivered messages with high probability, as will be shown in Section 4. When the
loop is finished, we have A(U) __ 1, and all the remaining messages can be delivered in
one cycle. The number of delivery cycles performed by TRY-GUESS is O(Ig Ag,, Ig n) if
2 < Ag... < e(Ig n), and the number of cycles is O(A,.... + Ig n Ig Ig n) if A... = fl(Ig n).

RANDOM must make judicious guesses for the load factor because TRY-GUESS
may not be effective if the guess is smaller than the true load factor. Conversely, if the
guess is too large, too many delivery cycles will be performed. Since the amount of work
done by TRY-GUESS grows as Ig A,.. for A,.. small, and as A,. for As,.. large, there
are two main phases to RANDOMs guessing. (These phases follow the handling of very
small load factors, i.e., A(M) < 2.)

In the first phase, the guesses are squared from one trial to the next. Once A,.
is sufficiently large, we move into the second phase, and the guesses are doubled from
one trial to the next. In each phase, the number of delivery cycles run by TRY-GUESS
from one call to the next forms a geometric series. Thus, the work done in any call to
TRY-GUESS is only a constant factor times all the work done prior to the call. With
this guessing strategy, we can deliver a message set using only a constant factor more
delivery cycles than would be required if we knew the load factor in advance.

4 Analysis of the routing algorithm RANDOM

This section contains the analysis of RANDOM, the routing algorithm for fat-trees pre-
sented in Section 3. We shall show that the probability is 1 - 0(1/n) that RANDOM
delivers a set M of messages on a universal fat-tree with n processors in the number of
delivery cycles given by Figure 4. This may be summarized as O(A(M) + Ig n Ig Ig n)
delivery cycles for all message sets.

We begin by stating two technical lemmas concerning basic probability. One is a
combinatorial bound on the tail of the binomial distribution of the kind attributed to
Chernoff [41, and the other is a more general, but weaker, bound on the probability that
a randem variable takes on values smaller than the expectation.

The first lemma is the Chernoff bound. Consider t independent Bernoulli trials, each
with probability p of success. It is well known [5] that the probability that there are at
least s successes out of the t trials is

8



The lemma bounds the probability that the number of successes is larger than the ex-
pectation pt.

Lemma 3B

The second technical lemma bounds the probability that a bounded random variable

takes on values smaller than the expectation.

Lemma 4 Let X < b be a random variable with expectation ft. Then for any

w < t, we have

Pr{X<w}<1- b-w- - -w

We now analyze the routing of a p-subset M' of a set M of messages. If the number
load(M', c) of messages in M' that must pass through c is no more than the capacity
cap(c), then no messages are lost by concentrating the messages into c. We shall say that
c is congested by M' if load(M', c) > cap(c). The next lemma shows that the likelihood
of channel congestion decreases exponentially with channel capacity if the probability of
choosing a given message in M is sufficiently small.

Lemma 5 Let M be a act of messages on a fat-tree, let A(M) be the load
factor on the fat-tree due to M, let M' be a p-subset of messages from M,
and let c be a channel through which a given message m E M' must pass.
Then the probability is at most (epA(M))c-P(O) that channel c is congested by
MI.

Proof. Channel c is congested by M' if load(M', c) > cap(c). There is already one
message from the set M' going through channel c, so we must determine a bound on
the probability that at least cap(c) other messages go through c. Using Lemma 3 with
s = cap(c) and t = load(M, c), the probability that the number of messages sent through
channel c is greater than the capacity cap(c) is less than

B(cap(c), load (M, c).p) <_ (epload(M,c)) cap(c)

:< (epA(M))CP(c' I

The next lemma analyzes the probability that a given message of a p-subset of M gets
delivered. In order to do the analysis, however, we must select p small enough so that it
is likely that the message passes exclusively through uncongested channels. The choice
of p depends on the capacities of channels in the fat-tree. For convenience, we define one
parameter of the capacities which will enable us choose a suitable upper bound for p.

9
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Definition: The congestion parameter r of fat-tree is the smallest positive
value such that for each simple path cl, c2 , ... , cl of channels in the fat-tree,
we have

For a fat-tree based on a complete binary tree, the longest simple path is at most
2 ig n, where n is the number of processors, and thus r :_ 4e ig n. For universal fat-
trees, the congestion parameter is a constant because the capacities of channels grow
exponentially as we go up the tree. (All we really need is arithmetic growth in the
channel capacities.) The congestion parameter is also constant for any fat-tree based
on a complete binary tree if all the channels have capacity fl(lglgn). The remaining
analysis treats the congestion parameter r as a constant, but the analysis does not
change substantially for other cases.

S. We now present the lemma that analyzes the probability that a given message gets
delivered.

Lemma 6 Let M be a set of messages on a fat-tree which ha .ongeation
parameter r, let (M) be the load factor on the fat-tree due to M, and let
m be an arbitrary message in M. Suppose M i a p-subset of M, where
p _ I/rX(M). Then if M is sent, the probability that m gets delivered is at

* least 12p.

Proof. The probability that m E M is delivered is at least the probability that m E M'
times the probability that m passes exclusively through uncongested channels. The prob-
ability that m E M' is p, and thus we need only show that, given m E M', the probability

'-' is at least 1 that every channel through which m must pass is uncongested. Let cl, c2,
c.., , be the channels in the fat-tree through which m must pass. The probability that

channel ck is congested is less than (e/r)SP(I&) by Lemma 5. The probability that at least
one of the channels is congested is, therefore, much less than

-<-

k=1

* by definition of the congestion parameter. Thus, the probability that none of the channels
are congested is at least 1. I

We now focus our attention on RANDOM itself. The next lemma analyzes the
innermost loop (lines 3-6) of RANDOM's subroutine TRY-GUESS. At this point in the
algorithm, there is a set U of undelivered messages and a value for X. The lemma shows
that if X is indeed an upper bound on the load factor X(U) of the undelivered messages
when the loop begins, then )/2 is an upper bound after the loop terminates. This lemma
is the crucial step in showing that RANDOM works.

Lemma 7 Let U be a set of messages on an n-processor fat-tree with conges-
tion parameter r, and assume X(U) :_ X. Then after lines S-6 of RANDOM's
subroutine TRY-GUESS, the probability is at most 0(1/n3) that A(U)> A.

10
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Proof. The idea of the proof is to show that the load factor of an arbitrary channel c
remains larger than 1A with probability O(1/ns). Since the channel c is chosen arbitrarily
out of the 4n - 2 channels in the fat-tree, the probability is at most 0(1/n2 ) that any of
the channels is left with load factor larger than !A.

For convenience, let C be the subset of messages that must pass through channel c
and are undelivered at the beginning of the innermost loop in RANDOM. Let Co = C,
and for i > 1, let Ci C Ci_, denote the set of undelivered messages at the end of the
ith iteration of the loop. Notice that we have A(Ci,c) = JC( I/cap(c), since we have
ICiJ = load(Ci,c) by definition.

We ncw show there exist values for the constants k, and k2 in line 3 of TRY-GUESS
such that for z = max {klA, k2 lg n}, the probability is 0(1/n s ) that A(C., c) > 1A, or
equivalently, that 1

Ic,1 > -Acap(c) . (1)
22It suf ices to prove that the probability is 0(1/n s) that fewer than 101 messages

from C a-e delivered during the z cycles under the assumption that ICI > Acap(c) for
i = 0, 1,., z-1. The intuition behind the assumption Il CI> 1 Acap(c) is that otherwise,
the load factor on channel c is already at most !A at this step of the iteration. The reason
we need only bound the probability that fewer than 1 ICI messages are delivered during
the z cycies is that inequality (1) implies that the number of messages delivered is fewer
than Ic - !,cap(c) C1 Il - IX(C,c)cap(c) _< I I1C.

We shall establish the 0(1/n3 ) bound on the probability that at most } I01 messages
are delivered in two steps. For convenience, we shall call a cycle good if at least cap(c)/8r
messages are delivered, and bad otherwise. In the first step, we bound the probability that
a given cycle is bad. Using Lemma 6 with p = 1/rA < 1/r\(U) _< 1/rA(C) in conjunction
with the assumption that ICI > !Acap(c), we can conclude that the expected number of
messages delivered in any given cycle is greater than !, Acap(c) > cap(c)/4r. Then by
Lemma 4, the probability that a given cycle is bad is at most 1 - 1/(8r - 1) < 1 - 1/8r.
(Aithough this bound is sufficiently strong to prove our theoretical results, it is weak
becai-se the probability that a message is delivered in a given cycle is not independent
fror the probabilities for other messages, and thus we must rely on the bound given by

eCm~a .. In practice, one would aniticipate that the dependencies are weak, and that
the algorithm would be effective with much smaller values for the constants k, and k2

than we rove here.)
The second step bounds the probabiiity that a substantial fraction of the z delivery

cycles are bad. Specifically, we shw that the probability is 1 - 0(1/n s ) that at least
some sml1 constant fraction q ot the z cycles are good. By picking k, = 4r/q, which
implies z > 4rA/q, at least qzcap(c)/Sr > 110C1 messages will be delivered. We bound the
probability that at least (1 - q)z of the z cycles are bad by using a counting argument.
There ar ((,-,).) ways of picking the bad cycles, and the probability that a cycle is bad
is at most 1 - 1/8r. Thus, the probability that at most 101 messages are delivered is

Pr {< 1ICI messages delivered}-((1 q ( - -

11



:5 ((1 q-)'1-9)- -

if we choose q 1/e4r lnr, as the reader may verify. Since z -max {klA, k2 Ig n}, if we
choose k2 = 36r, the probability that fewer than 1 ICI messages are delivered is at most
1/n.I

Now we can analyze RANDOM as a whole.

Theorem 8 For any message set M on an n-processor fat-tree, the proba-
bility is at least 1 - O(1/n) that RANDOM will deliver all the messages of
M within the number of delivery cycles specified by Figure 4.

Proof. First, we will show that if X0.., > (M), the probability is at most O(1/n)
that the loop in lines 2 through 8 of TRY-GUESS fails to yield X(U) _5 1. Initially,
A > (U), and we know from Lemma 7 that the probability is at most O(1/n 2 ) that any
given iteration of the loop fails to restore this condition as X is halved. Since there are
lg A,.. iterations of the loop, we need only make the reasonable assumption that X,,
is polynomial in n to obtain a probability of at most 0(1/n) that A(U) remains greater
than 1 after all the iterations of the loop.

Now we just need to count the number of delivery cycles that have been completed
by the time we call TRY-GUESS with a A,, such that X(M) _ ,.. Let us denote by
.X,. the first A,,. that satisfies this condition, and then break the analysis down into
cases according to the value of A(M).

For A(M) 5 1, we do not actually even call TRY-GUESS. We need only count the
one delivery cycle executed in line I of RANDOM.

For 1 < A(M) 5 2, we need add only the k2 Ig n cycles executed when we call
TRY-GUESS(2).

For 2 < A(M) < (k/k) lgft, the number of delivery cycles involved in each execution
of TRY-GUESS is 0(lg .. ,k2 lgn), since we perform O(lg ,..) iterations of the loop in
lines 2-8 of TRY-GUESS, each containing k2 lg n iterations of the loop in lines 3-6. The
value of \.., is at most (A(M))2 , so the number of delivery cycles is 0(lg n lg(X(M)) 2 )

for the last guess, 0(lg n Ig A(M)) for the second-to-last guess, 0(lg n Ig / K(M) for the
third-to-last guess, and so on. The total number of delivery cycles is, therefore,

O(lgnlg(A(M))2 - ') = 0(2i- lgnlg(A(M)))
o<:5 5+1g I , (,,) o_<,:<l+16 IsX(M!

= O(lgnlg,\(M)),

since the series is geometric.
For A(M) > (k2/k) Ig n, the number of delivery cycles executed by the time we reach

line 8 of RANDOM is O(lg n Ig lg n) according to the preceding analysis, and then we
must continue in the quest to reach X,.. If X (M) :_ (k2/ k)lg nlg lg n, then we need
only add the O(lg n Ig lg n) = O(lg n lgA(M)) delivery cycles involved in the single call
TRY- G UESS((I2 l/ ) lg n Ig Ig n).

12.',.. .
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If X,(M) > (k2 /k1 ) Ig n Ig Ig n, the number of delivery cycles executed before reaching
line 8 is 0(Ignlglgn) as before, which is O(\(M)). We must then add O(,.0) cycles for
each call of TRY-GUESS in line 10. Since ..A is at most 2A(M), the total additional
number of delivery cycles is

E 0(2 1 ',\(M)) = (\M p~0!5i<t

where t = 1 + 1g(k 1 X(M)/k 2 Ig n lg Ig n). The total number of delivery cycles is thus
0(0(M)).I

The 1 - 0(1/n) bound on the probability that RANDOM delivers all the messages
can be improved to 1 - 0(1/nl) for any constant k by choosing k2 = 12(k + 2)r, or by
simply running the algorithm through more choices of X,..

We can also use RANDOM to obtain a routing algorithm which guarantees to deliver
all the messages in finite time with expected number of delivery cycles given in Figure 4.
We simply interleave RANDOM with any routing strategy that guarantees to deliver
at least one message in each delivery cycle. If the number of messages is bounded by
some polynomial nk, then we choose k2 such that RANDOM works with probability
1 - 0(1/nh;).

5 Greedy strategies

It is natural to wonder whether a simple greedy strategy of sending all undelivered
messages on each delivery cycle, and letting them battle their ways through the switches,
might be as effective as RANDOM, which we have shown to work well on every message
set. As a practical matter, a greedy strategy may be a good choice, but it seems difficult
to obtain tight bounds on the running time of greedy strategies, and in fact, we can show
that no naive greedy strategy works as well as RANDOM in terms of asymptotic running
times. For simplicity, we restrict our proof to deterministic strategies and comment later
on the extension to the probabilistic case. Specifically, we show that for a wide class of
deterministic greedy strategies, there exiht r.-processor fat-trees and message sets with
load factor A such that fl(X lg n) dellv , y cycles are required. This lower-bound result is
based on an idea originally due to M. Maley [111.

Figure 5 shows the greedy algorithm. The code for GREEDY does not completely
specify the behavior of message routing cn a fat-tree because the switches have a choice
as to which messages to drop when there is congestion. (The processors also have this
choice, but we shall think of them as being switches as well.) In the analysis of RANDOM,
we could presume that all messages in a channel were lost if the channel was congested.
To completely specify the behavior of GREEDY, we must define the behavior of switches
when channels are congested.

The lower bound for GREEDY covers a wide range of switch behaviors. Specifically,
we assume the switches have the two properties below.

1. Each switch is greedy in that it only drops messages if a channel is congested, and
then only the minimum number necessary.

13



1 while M $ O do

2 send M
3 M -- M - {messages delivered}

4 endwhile

Figure 5: The algorithm GREEDY for delivering a message mt M. This algorithm repeatedly sends all
undelivered messages. The performance is highly dependent on the behavior of the switches.

2. Each switch is oblivious in that decisions on which messages to drop are not based
on any knowledge of the menage set other than the presence or absence of messageson the switch's input lines.

We define the switches of a fat-tree to be admissible if they have these two properties.
The conditions are satisfied, for example, by switches that drop excess messages at
random, or by switches that favor one input channel over another. An admissible switch
can even base its decisions on previous decisions, but it cannot predict the future or
make decisions based on knowing what (or how many) messages it or other switches
have dropped. (The definition of oblivious in property 2 can be weakened to include an
even wider range of switch behaviors without substantially affecting our results.)

It is also important to realls that the lower bound proof for the greedy strategy
which we will present does not apply to every possible choice of channel capacities in
the fat-tree. Our result is strong in the sense that It provides a lower bound on the time
required just to route massages from the leaves out the root, but it does not apply to
certain types of fat-trees. For example, on a fat-tree in which channel capacities double
at every level, there is never any congestion in routing from the leaves to the root, so a
greedy strategy is guaranteed to finish in A delivery cycles. Similarly, a fat-tree in which
all channel capacities are the same will also require only X delivery cycles. The lower
bound does apply to a wide variety of fat-trees which exhibit a substantial degree of
uniform and nonextreme growth. For the sake of simplicity, we shall consider fat-trees
like the one in Figure 1 in which the channel capacities double at every other level. As
discussed earlier, these fat-trees are universal. We also assume that the number of levels
(lg n) is even and that the capacities of the channels nearest the processors are 1. We
refer to such a fat-tree as a standard fat-tree.

We are now ready to state the lower-bound theorem for GREEDY. At this point, we
restrict attention to deterministic strategies.

Theorem 9 Consider an n-proceaor standard fat-tree with deterministic ad-
miuible switches. Then there exist mesage set, with load factor A on which
GREEDY requires fl(A Ig n) delivery cycles.

Proof. The proof is by induction on the height (Ig n) of the fat-tree. In order to make
the induction go through, we first strengthen the statement of the theorem as follows:

Claim: Let FT be an n-processor standard fat-tree, possibly embedded

within a larger fat-tree, with deterministic admissible switches. Then if
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GREEDY is applied to routing messages out the root of FT, there exists, for
any X > 12, a "bad" message set M, on FT which has the following three
properties:

1. The message set M,, has load factor at most A.

2. If at most *Ai/'f messages of M. are removed from FT, then the root
channel is full for each of the delivery cycles during which the messages
are removed.

3. At least an additional -LX Ig n delivery cycles are required to deliver all
the remaining messages in M,.

For the base case we consider a tree with 1 processor, that is, one leaf connected
to a root channel of capacity 1. Then if we assign A messages to be sent from the
single processor, the root channel will remain congested throughout the removal of AA
messages, which will certainly leave us with additional messages requiring additional
delivery cycles. (Without loss of generality, we assume henceforth that XX is integral,
since we could otherwise use [*I 2J with only a constant factor change.)

Now we show that the claim is true for a standard fat-tree FT with n processors
assuming that it is true for standard fat-trees with n/4 processors. We will construct
a message set Mr for FT which satisfies properties 1, 2, and 3 by using an adversary
argument. We will first partially specify the pattern of inputs seen by the root switch
of FT. Then the root switch must indicate what its behavior is under these conditions.
Finally, we will use this information to determine a message set Mr which is consistent
with the specified input pattern and which satisfies properties 1, 2, and 3.

We begin by specifying that the input channels of the root switch of FT are full for t
delivery cycles, where t is -LX plus the number of delivery cycles required to remove the
first AAVVn/ messages from FT. Since the input channels are full for t cycles, the behavior
of the oblivious switch during these cycles is determined. Since the root capacity is N/R,
the total number of messages removed from FT during the first t delivery cycles is

The behavior of the root switch determines how many of the m messages removed
from FT by delivery cycle t come from each of the four subtrees shown in Figure 6. At
least one of these subtrees provides no more than m/4 of the messages. We choose one
such subtree and refer to it as the unfavored subtree.

Having determined the unfavored subtree given the conditions specified so far, we
can complete the construction of M,. The unfavored subtree will contain a copy of the
bad message set M./ 4 for that subtree. Each of the other three subtrees will contain

\/ messages evenly divided among the processors in the subtree. Now we must show
that M, meets all of our requirements.

First, we show that M. is consistent with the input pattern specified for the root
switch, and then we show that it satisfies properties 1, 2, and 3. As a preliminary step,
observe that the number of messages provided by the unfavored subtree by delivery cycle

15



capacity ,/"

capacity V

unfavored 
capacity /'n/2

subtree

messages messages messages messages

Figure 0: Construction of M, for the proof of Theorem 9. The subtree from which the fewest number of
mesages have been delivered by a ceWUm time is loaded with the largest number of messages.

t is at most m/4 = ,iAV'7/, which we shall use to invoke the induction hypothesis on
the subtree.

To show that the input channels of the root switch of FT are full through the first
t delivery cycles, it suffices to show that the root channels of the four subtrees are full
through this time. The root channel of the unfavored subtree is full, by the induction
hypothesis (property 2), since we have shown that the number of messages removed
from this subtree by delivery cycle t is sufficiently small. The root channel of each other
subtree is also full since it is the source of at most m messages during the first t delivery
cycles, and the subtree's mesage set consists of m messages arranged in such a way as
to maintain a full root channel at least until m messages have been delivered.

We now show that the three properties hold for M.. The load factor is at most A in
each of the subtrees, so the total number of messages in 'M is at most

2 6

Thus, the load factor of M. on FT is at most A and property 1 holds. Property 2 is
satisfied for M. because the root switch is greedy. We have already shown that the
input channels of the root switch are full through delivery cycle t, so the root channel
is certainly full for the required amount of time. Finally, property 3 holds because after
running -A delivery cycles, we can still invoke the induction hypothesis to conclude that
an additional -LA lg(n/4) cycles are required to empty the unfavored subtree. Thus the
total number of cycles required to deliver all the messages in M. is at least -A Ig n. I

When probabilistic admisuable switches are permitted, the proof of Theorem 9 can
be extended to show that the expected number of delivery cycles is fl(A Ig n). The
idea is that at least one of the subtrees in Figure 6 must be unfavored with probability
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at least 1/4. We call one such subtree the often-unfavored subtree. The construction
of M, proceeds as before, with the often-unfavored subtrees playing the previous role
of the unfavored subtrees. In any particular run of GREEDY, we expect 1/4 of the
often-unfavored subtrees to be unfavored, so there is a '(1) probability that 1/8 of the
often-unfavored subtrees are unfavored (Lemma 4). Thus, the probability is 9(1) that
fl(A Ig n) delivery cycles are required, which means that the expected number of delivery
cycles is fl(A Ign).

Although we have shown an unfavorable comparison of GREEDY to RANDOM, it
should be noted that the lower bound we proved for routing messages nut the root is
achievable. That is, routing of messages out the root or, more generally, up the tree
only, can be accomplished by GREEDY in O(A lg n) delivery cycles. This can be seen
by observing that the highest congested channel (closest to the root) must drop at least
one level every A delivery cycles. If one could establish an upper bound of A times a
polylogar'thmic factor for the overall problem of greedy routing, it would show that
GREEDY still has merit despite its inferior performance in comparison to RANDOM.

6 Further results

This section contains additional results relevant to routing on fat-trees. We first present
an improved version of the universality theorem from [101. Then we give two results on
fat-tree routing in special cases.

Universality

The performance of the routing algorithm RANDOM allows us to generalize the uni-

versality theorem from [10], which states that a universal fat-tree of a given volume can
simulate any other routing network of equal volume with only a polylogarithmic factor
increase in the time required. The original proof assumed the simulation of the rout-
ing was off-line. Our results show that the simulation can be carried out in the more
interesting on-line context.

Theorem 10 Let FT be a uni,:-rsdl fat-tree of volume v, and let R be an
arbitrary routing network aloo of volume v on a set of n = O(v/ lg3/ 2 v)
processors. Then the processors of R can be mapped to processors of FT such
that any message set M that can br delivered in time t by R can be delivered
by FT in time O((t + lg lg n) 1$,_ n) with probability 1 - 0(1/n).

Sketch of proof. The proof parallels that of [101. The reader is referred to that paper
for detailh. The routing network R of volume v is mapped to FT in such a way that
any message set M that can be delivered in time t by R puts a load factor of at most
O(t lg(n/v 2/3 )) on FT. By Theorem 8, the message set M can be delivered by RANDOM
in O(t lg(n/v2 /2) + Ig n lg Ig n) delivery cycles with high probability. Since each delivery
cycle takes at most O(lg2 n) time, the result follows. I
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Off-line routing

Our analysis for RANDOM has repercussions for the off-line routing case. Since we have
shown that with high probability, the number of delivery cycles given by Figure 4 suffices
to deliver a message set with load factor X, there must exist off-line schedules using only
this many delivery cycles, which improves the bound of O(A lg n) given in [10]. The
previous off-line bound was proved by deterministically constructing a routing schedule
that achieves the bound. Our better bound does not yield a deterministic construction
of the routing schedule, but it does yield a probabilistic one.

Perhaps the bound on off-line routing can be further improved (e.g., to O(A + Ig n)).
The integer programming framework of Raghavan and Thompson [13] is one possible
approach which might give a probabilistic construction that achieves this bound. On the
other hand, it may be possible to apply more direct combinatorial techniques to yield
an improved deterministic bound.

Larger channel capacities

We can improve the results for on-line routing if each channel c in the fat-tree is suf-
ficiently large, that is if cap(c) = fl(lg n) Specifically, we can deliver a message set M
in O(A,(M)) delivery cycles with high probability, i.e., we can meet the lower bound to
within a constant factor. The better bound is achieved by the algorithm RANDOM'
shown in Figure 7.

Theorem 11 For any message at M on an n-proceaaor fat-tree with chan-
nels of capacity fl(lgn), the probability is at leas 1-0(1/n) that RANDOM'
will deliver all the measage of M in O(A(M)) delivery cycles, if X(M) is
polynomially bounded.

Proof. Let the lower bound on channel size be a lg n, and let nA be the polynomial bound
on the load factor X,(M). We consider only the pass of the algorithm when z first exceeds
e2(+)/G,\(M). We ignore previous cycles for the analysi, of message routing, except to
note that the number of delivery cycles they require is O(X(M)).

We first consider a single channel e within a single cycle i from among the x delivery
cycles in the pass. Since each message has probability 1/z of being sent in cycle i, we
can apply Lemma 5 with p = 1/z to conclude that the probability that channel c is
congested in cycle i is at most

(eA(M)) cap&o) <
< 2-+l,.

1

Sneteeare 0(n) channeis, the probability that there exists a congested channel in
cycle i is O(1/nk+1). Finally, since there are z < 2e2(h+)/A (M) - O(A(M)) = O(nb)
cycles, the probability is 0(1/n) that there exists a congested channel in any delivery
cycle of the pass. I
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1 Z4-

2 while M#O 0do

3 for each message m E M, chooge a random number i. E {1, 2,... ,Z}

4 for i4-l1to zdo

5 send all messages m such that i,. = i

6 endfor

7 z+- 2z

8 endwhile

Figure 7: The algorithm RANDOM for routing in a fat-tree with channels of capacity l(lg n). This
algorithm repeatedly doubles a guessed ntimler of delivery cycles, z. For each guess, each message is

randomly sent in one of the delivery cycles.

Figiure 8: Another fat-tree degn. TI-e swi~ries in. this structure have constant size.

* Another universal network

We havee~ecently discovered a fat-t-ep, design which uses simpler switches than the fat-tree

described in Section 1 and [10]. 1 igtv;'. 8 illustrates the structure of a two-dimensional

universal fat-tree of this new typ.s'. Each of the switches in this fat-tree can switch
messages among four child switches and two parent switches. The area of the fat-tree
is 0e(n 1g2 n).1 In three dimensions, we can use switches with eight children and four
parents to obtain a fat-tree with volume 0 (n Igs/ 2 n).

The new fat-tree design satisfies the universality property of Theorem 10, except that

the degradation in time is 0O(lg' n). The new fat-tree structure removes a factor of Ig n

from the time to perform a delivery cycle since the switches have constant depth. The

'Interestingly, a mesh-of-trees 181 can he directly embedded in this fat-tree. In fact, it can be shown

* using sortiag arguments that a mesh-of-treps ift area-univerlI 19].
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number of delivery cycles needed to route a set M of messages is O(A(M) Ig2 n), however,
which yields A(M) Is n total time, as compared with (A\(M) + Ig n Ig Ig n) 1g2 n for the
original fat-tree.

The mechanics of routing on the new fat-tree are somewhat different than on the
original. The underlying channel structure for the two fat-trees is the same, but the new
fat-tree does not rely on concentrators to make efficient use of the available output wires.
Instead, each message sent through the fat-tree randomly chooses which parent to go to
next (based on random bits embedded in its address field) until it reaches the apex of

• its path, and then it takes the unique path downward to its destination. This strategy
guarantees that for any given channel through which a message must pass, the message
has an equal likelihood of picking any wire in the channel.

The routing algorithm is a modification of the algorithm RANDOM'. We simply
surround lines 3-6 with a loop that executes these lines (k + 1) Ig n times, where IMI -

The proof that the algorithm works applies the analysis from Section 4 to individual
wires, treating them as channels of capacity 1. Consider a wire w traversed by a message
in a p-subset M' of M, and consider the channel c that contains the wire. For any
other message in M, the probability is p/cap(c) that the message is directed to wire w
when the message set M' is sent. Thus, the probability that w is congested is at most
B(1, load(Mc),p/cap(c)) epA(M), and an analogue to Lemma 5 holds because the
capacity of w is 1. Lemma 6, which says that the probability is lp that a given message
of M is delivered when a p-subset of M is sent, also holds if the congestion parameter r
is chosen to be e(Ig n).

We can now prove a bound of O(A(M) 1gs n) on the number of delivery cycles required
by the algorithm to deliver all the messages in M. It suffices to show that with high
probability, all the messages in M get routed when the variable z in the algorithm
reaches O(A(M) lgn). When z > r\(M) = O(A(M) Ign), any given message m is sent
once during a single pass through lines 3-6, and the probability that the message is not
delivered on that pass is at most 1. Thus, the probability that m is not delivered on
any of the (k + 1) Ign passes through lines 3-6 is at most 1/nh+l. Since the number of
messages in M is O(nh), the probability is 0(1/n) that a message exists which is not
routed by the time z reaches rX(M).

7 Concluding remarks

This paper has studied the problem of routing messages on fat-tree networks. We have
obtained good bounds for randomized routing based on the load factor of a set of mes-
sages. Our algorithms directly address the problem of message congestion and require no
intermediate buffering, unlike many algorithms in the literature. We have shown how to
use the routing algorithms to prove that fat-trees are volume-universal networks. This
section discusses some directions for future research.

The analysis of the algorithm RANDOM gives reasonably tight asymptotic bounds
on its performance, but the constant factors in the analysis are large. In practice, smaller
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constants probably suffice, but it is difficult to simulate the algorithm to determine what
constant. might be better. Unlike Valiant's algorithm for routing on the hypercube, our
algorithm does not have the same probabilistic behavior on all sets of messages, and
therefore, the simulation results may be highly correlated with the specific message sets
chosen. :he search for good constants is thus a multidimensional search in a large space,
where each data point represents an expensive simulation.

Although we have shown that GREEDY is asymptotically worse than RANDOM,
it may be that it is more practical to implement. The logarithmic-factor overhead that
we have :)een able to show is mitigated by a constant factor of -L. Simulations indicate
that a greedy algorithm might actually work quite well [6], but we have been unable to
provide a good upper bound on its performance. Despite the simplicity of control offered
by GRE3ED Y, it seems unwise to base the design of a large, parallel supercomputer
on unproven conjectures of performance. Thus, a comprehensive analysis of GREEDY
remains an important open problem.

The i lea of using load factors to analyze arbitrary networks is a natural one. We
have been successful in analyzing fat-trees using this measure of routing difficulty. It may
be possil le to analyze other networks in terms of load factor, but some improvement to
our techniques seems to be necessary if channel widths are small and the diameter of
the network is large. The problem is that a message that passes through many small
channels has a high likelihood of conflicting with other messages. One solution might
involve buffering messages in intermediate processors or switches.

The high probability results reported in this paper for routing on fat-trees are almost
deterministic in the sense that substantial deviation from the expected performance will
probably never occur in one's lifetime. On the other hand, from a theoretical point of
view, it would be nice to match the results of this paper with truly deterministic algo-
rithms. Most deterministic routing algorithms in the literature are based on sorting, and
thaus a 3i:ect application to fat-trees causes congestion problems, much as does Valiant's
routing t ichnique. A deterministic routing algorithm for fat-trees that circumvents these
prohlerns would yield even stronger universality p-operties than we have shown here.
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