
AD-ft?l 391 CONTROL AND MNNAENENT OF THE SOFTWARE MAI NTENANCE
CHANGES PROCESS(U) NAVAL POSTGRADUATE SCHOOL MONTEREY
CA N A AL-SUBAJEI JUN 86

UNCLSSIFIED F/0 9/2 ML

EEEEEmhmhEEEEE
mEEmhmhEEmhhEI

Lj&M

LL

111 1125 il i 4 1.6

MICROCOPY RESOLUTION4 TEST CHART
NATIONAL BUREAU OF STANDAROS-1963-A

_ NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTI

SEP 05 W88

D

THESIS
CONTROL AND MANAGEMENT OF THE SOFTWARE :~ Z

MAINTENANCE CHANGES PROCESS

by

Nasser A. Al-Subaiei

3 June 1986

LAwJ

Thesis Advisor: Gordon H. Bradley

Approved for public release; distribution is unlimited

SECURITY CLASSIFICATION OF THISPAGE h/-A 1 /7 / 39
REPORT DOCUMENTATION PAGE

la REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2a SECURITY CLASSIFICATION AUTHORITY I DISTRIBUTION/ AVAILABILITY OF REPORT

Approved for public release;
Zb DECLASSIFICATION/DOWNGRADING SCHEDULE distribution is unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

Naval Postgraduate Schoo 52 Naval Postgraduate School

6c. ADDRESS (City, Stare, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

8a NAME OF FUNDING ISPONSORING 6B. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If a4plicable)

dc ADDRESS (City, State. and ZIPCode) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

* TITLE (Include Securw/'Ciawfication) i

CONTROL AND MANAGEMENT OF THE SOFTWARE MAINTENANCE CHANGES PROCESS

2. PER SONAL AUTHOR(S) Al-Subaiei, Nasser A.
* 3a tyPE OF REPORT 13 b TIME COVERED 14 OAT E OF REPORT (Yea, Month, Day) 15 PAGE COJNT
Master's Thesis FROM TO 1986 June 101

6 SUPPLEMENTARY NOTATION

COSATI CODES 18 SUBJECT TERMS (Continue on reverie if necessary and id(entify by block number)

',ELO GROUP SUB-GROUP Software Maintenance, Control of Maintenance
Change, Change Control Tools, Software
Confiuration Management

"A ABSTRACT (Continue on reverie of neceunay and ienrtify by block number)

The cost of software maintenance is very high and projected to
climb higher in the future. Failure to adopt and utilize improved
technical and management methods and tools contributes to the high
cost and burden of maintenance. Software configuration management
as an effective technique of controlling software development/maintenance
is examined. Two change control models are identified and evaluated
as to their effectiveness and completeness toward achieving efficient
control and easing maintenance effort. A proposed change control
model which addresses more aspects and promises better results through
a set of guidelines for an "ideal" software maintenance change
control is presented. Software maintenance change control tools are
discussed by identifying two of the existing tools. With proper

(continued)
,o '3.57n'UTION/AVAILABILTY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

ft:NCLASSIFIEDWJNLIMITED 03 SAME AS RPT ODTIC USERS UNCLASSIFIED
i, a %AME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include AreaCode) 22c OFFICE SYMBOL

Professor Gordon H. Bradley (408) 646-2359 Code 52BZ
DD FORM 1473,84 MAR B3 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions arte obsolete

1,

SECURITY CLASSIFICATION OF TmIS PAGE (M~m D-o &w-

19. (Continued)

implementation of the proposed change control model and
the use of an effective change control tool, better control
of the maintenance process can be achieved, and the
maintenance effort reduced.

2SECURITY CL.AWICA~TON OF YwgS 01AGS(Mkon *at@ Emesse..

Approved for public release; distribution is unlimited

Control and Management of the Software
Maintenance Changes Process

by

Nasser A. Al-Subaiei
Captain, Royal Saudi Arabia Aire Defense Forces

B.S.E.E., Arizona State University, 1978

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1986

Author:

Approved by:

C _
e J .c

o n d R e a d e r

V- Y;/uCatrman, Department of

'nele T. Marshall, Dq omto n

PolIicy S~e
77fom

';;<L % e % %' '' % , , . ; .',,vv, '...- ..',,;,' ';; .; . ,. .?., . ,, ,..:-/,,;.;-. -..-L.i

ABSTRACT

The cost of software maintenance is very high and

projected to climb higher in the future. Failure to adopt

and utilize improved technical and management methods and

tools contributes to the high cost and burden of

maintenance. Software configuration management as an

effective technique of controlling software development/

maintenance is examined. Two change control models are

identified and evaluated as to their effectiveness and

completeness toward achieving efficient control and easing

maintenance effort. A proposed change control model which

addresses more aspects and promises better results through a

set of guidelines for ane Pealsoftware maintenance change

control is presented. Software maintenance change control

tools are discussed by identifying two of the existing

tools. With proper implementation of the proposed change

control model and the use of an effective change control

tool, better control of the maintenance process can be

achieved, and the maintenance effort reduced.

4

TABLE OF CONTENTS

I. INTRODUCTION 10

A. THE PROBLEM 10

B. PURPOSE AND APPROACH OF THESIS 10

II SOFTWARE MAINTENANCE 14

A. INTRODUCTION. 14

B. SOFTWARE ENGINEERING AND ITS FUNCTIONS . .. 14

C. SOFTWARE LIFE CYCLE 16

D. WHAT IS MAINTENANCE 19

E. MAINTENANCE CYCLE 19

F. TYPES OF MAINTENANCE 22

1. Perfective Maintenance 22

2. Adaptive Maintenance 22

3. Corrective Maintenance 22

G. SOFTWARE MAINTENANCE PROBLEMS 23

1. Software Quality 24

2. Poor Software Design 24

2. Poorly Coded Software 25

4. Software Design for Outdated Hardware . . . 25

5. More than One Programming Language Used . . 26

6. Increasing Inventory 26

7. Lack of Common Data Definitions 27 01

8. Documentation 27

m-aJ:abilitY Codes5 o1ric

copy iz. t Avai, : djior
INSECEDt spclCaI

9. Chain Reaction (Ripple Effect) 28

10. User Knowledge 29

11. Personnel 30

12. Understandability 31

13. No Systematic Problem Solving Technique . 34

III. CONTROL TYPES AND MEANS _6

A. INTRODUCTION 26

B. DEFINITION AND OBJECTIVES 36

C. CONTROL INFLUENCES BEHAVIORS 37

D. GOOD CONTROL AND ITS CHARACTERISTICS 28

E. TIGHT CONTROL 39

FP. NEED TO CONTROL SOFTWARE MAINTENANCE 29

IV. CONTROLLING SOFTWARE THROUGH CONFIGURATION
MANAGEMENT . 43

A. SOFTWARE CONFIGURATION MANAGEMENT 44

B. SCM PURPOSE AND BENEFITS 45

1. Software Configuration Identification . . . 46

2. Software Configuration Control 50

3. Software Configuration Status Accounting
(SCSA) 51

4. Software Configuration Auditing (SCA) . . . 52

V. THE NEED FOR MAINTENANCE CHANGE CONTROL 55

A. INTRODUCTION 55

B. TYPES AND CLASSES OF SOFTWARE CHANGES 55

C. WHY IT IS IMPORTANT TO CONTROL CHANGES 56

D. SOLUTION 58

6

E. CONFIGURATION CONTROL BOARD (CCB) 60

F. METHODOLOGY FOR CONTROLLING THE SOFTWARE
CHANGE . 61

G. ANOTHER CHANGE CONTROL MODEL 63

VI. SYNTHESIS OF A NEW CHANGE CONTROL MODEL 73

A. INTRODUCTION 74

B. COMPARISON AND EVALUATION 73

C. NEW CHANGE CONTROL MODEL 74

D. SUMMARY 81

VII. CHANGE CONTROL TOOLS 82

A. INTRODUCTION 82

B. SOURCE CODE CONTROL SYSTEM 83

1. Identification 86

2. Protection 86

3. Documentation 86

C. REVISION CONTROL SYSTEM 87

1. The Revision Tree 88

2. RCS Auxiliary Commands 89

D. OTHER USEFUL MAINTENANCE TOOLS 90

VIII. CONCLUSIONS AND RECOMMENDATIONS 92

LIST OF REFERENCES 95

INITIAL DISTRIBUTION LIST 99

7

LIST OF FIGURES

2.1 The Hidden Cost of Maintenance 15

2.2 The Functions of Software Engineering 16

2.3 The Waterfall Model of the Software Life Cycle . . . 18

4.1 Hierarchical Levels of a System 47

5.1 Glass' Change Control Model 64

5.2 Perry's Change Control Model 67

6.1 Improved Change Control Model 76

7.1 Release 1 with Four Levels 84

7.2 Release 2 with Two Levels 84

7.3 A Revision Tree with Forward and Reverse
Deltas . 89

8

-

ACKNOWLEDGEMENT

The author would like to express his appreciation and

gratitude to the Royal Saudi Air Defense Forces Command for

giving him a scholarship and allowing him this opportunity

to come to the United States to gain more knowledge.

The author owes very special thanks to his thesis

advisor, Professor Gordon H. Bradley, for his continued

inspiration, guidance, and warm friendship.

Thanks are also extended to my second reader, Professor

Bruce J. MacLennan, for his valuable suggestions and reading

of the final draft. Lastly, but certainly not the least,

the author is grateful to his parents for their early

support and especially grateful to his wife, Nuwair, and his

children, Monerah, Ream, Abdullah and Hifa, for their

understanding, encouragement, support, and patience

throughout his studies.

9

a ~ ~.~ * a

I. INTRODUCTION

A. THE PROBLEM

Software maintenance is the most expensive phase of the

life cycle of software systems. It has been indicated that

in some systems up to eighty percent of the cost of software

systems is consumed in the maintenance phase of the software-

life cycle (Ref. 1]. In order to properly maintain the

software it has to be properly controlled. Control is

considered by Swanson (Ref. 2] as a major problem in

software maintenance. Software maintenance control requires

understanding of the software system involved, the user of

this system, and how the system interacts with the user's

environment. Assuring that only complete, accurate, and

authorized data is changed requires the implementation of

methods and techniques which lead to achieving an effective

control ovw. the maintenance change process.

B. PURPOSE AND APPROACH OF THESIS

There is a lack of a cohesive discussion in the current

literature concerning proper control for effective software

maintenance. Because of the length of time of the

maintenance phase (15 years in some military systems) and

the tremendous cost, an attempt to ease the maintenance

effort needs to be made through the use of effective

10

J ,

control. Software configuration management and change

control provide a maintenance environment with high

management visibility and control.

The purpose of this thesis is to address control as a

method of managing the maintenance change process. Various

types of change control models are discussed and evaluated

as to their effectiveness in easing the maintenance effort.

An attempt is made to determine the proper type of change

control needed to effectively maintain software projects.

The concept of a change control model is put forth as a

method for organizing and controlling the maintenance

process. The idea is to give the maintainer effective

policies and procedures to follow when a request for a

maintenance change is received. Not having these policies

and procedures will result in an uncontrolled process which

will affect the integrity and quality of the system.

Chapter I gives the overview of the control problem as

it relates to software maintenance. A description of the

* approach taken by the thesis is given along with some

general definitions of terms used in the software

maintenance environment. Also, the idea of a controlled

change process is introduced in this chapter.

Chapter II discusses software engineering with a look at

the software life cycle. This chapter discusses software

maintenance in detail, its life cycle, types and problems.

11I

Chapter III introduces the idea of control, its

objectives, and how it might influence people's behavior.

Also the need to control software maintenance is discussed.

Chapter IV introduces the concept of configuration

management and how it can be tailored to software. Also,

the four elements of software configuration management are

discussed in this chapter.

Chapter V discusses and evaluates two change control

models in a software maintenance environment. Each model is

considered for its effectiveness and completeness.

Chapter VI synthesizes a new change control model which

is based on combining the good aspects of the two previous

models plus some additional modifications to develop a

better, more effective change control model which can be

used for large software projects. A subset of this change

control model can be used by smaller organizations who are

dealing with small software projects.

Chapter VII introduces software change control tools

which, when used, provide better management and control over

the maintenance process which leads to a savings in time and

money. Also some other useful software maintenance tools

are presented. These tools, when utilized during the

maintenance phase, will result in better control, improve

productivity and lead to savings in time and money.

Chapter VIII consists of conclusions of the thesis and

recommendations.

12

Definitions of the critical concepts of software

maintenance and software life cycle are readily available in
the literature. Martin and McClure (Ref. 31 contains a good

definition of software maintenance, its problems and
solutions. The software life cycle model was developed from

Boehm [Ref. 4]. Bersoff and Buckel provides excellent
guidance and definitions for software configuration

management [Ref. 5], (Ref. 61. The definitions of software

change control tools were found in articles by Rochkind and

Tichy (Ref. 71, (Ref. 8].

For the purposes of this thesis, software will be

considered to be the programs and related documentations.

Controlling the process of software maintenance is keeping

things on track and heading toward an objective through

several means including policy, procedures, and tools.

13

II. SOFTWARE MAINTENANCE

A. INTRODUCTION

The problem with software maintenance is that few people

seem to understand it or how to deal with it. Software

maintenance has received far less study or concern than

other software engineering topics, such as development or

design. Even college curricula contain little about

maintenance or its techniques. It has been estimated that

more resources are required to maintain existing systems

than to develop new ones; the estimate is that 60% to 80% of

the total application software resources are spent on

software maintenance (Ref. 91. Maintenance dominates the

software life cycle in terms of effort and cost (Fig. 2.1)

[Ref. 3].

B. SOFTWARE ENGINEERING AND ITS FUNCTIONS

Software engineering simply defined is a collection of

methodologies, both technical and managerial, for

development and maintenance of software. The field of

software engineering includes technical as well as

managerial functions for the equally important functions of

software development and software maintenace [Ref. 10 as

shown in Figure 2.2.

14

A& MA . -- "'

SOFTWARE COSTS

LIFE CYCLE
ANALYZE,

DESIGN,
CODE,
TEST I EVELOPMENT,!

MAINTAIN

MAINTNANCE

*Figure 2.1 T~he Hidden Cost of Vaintenance

15

~~So ftware
-" Eng ineer ingi

Technical Managerial
Function Function]

Development "aintenance

Figure 2.2 The Functions of Software Engineering

C. SOFTWARE LIFE CYCLE

The development of a software project goes through

several phases. We define the software life cycle as a

multiple process beginning with problem definition and

continuing to software obsolescence.

Typically the life cycle is defined as:

1) Requirements analysis

2) Specification

3) Design

4) Code

5) Testing

6) Operation and Maintenance [Ref. 11].

The major problem with this model is the implication

concerning the flow of the software life cycle. One is left

with the idea that as one phase abruptly halts, the next

16

phase begins. In practice, the phase boundaries are

somewhat obscure. Quite often work on one part of a phase

begins before all work in a previous phase is cumpleted.

Also one gets the impression that there are no inter-

dependencies between the phases. In reality, decisions made

in one phase often directly affect the work of the

subsequent phases. This makes each phase somewhat dependent

upon decisions made in a previous phase. Also there are

times when a decision made in one phase is determined to be

unrealistic by restrictions or actions taken in a following

phase. Therefore, a feedback mechanism is needed to carry

back information in order to keep the software project

development moving. Each phase should be verified as being

a correct implementation of its requirements.

Studies indicate that the later an error is caught, the

higher the cost to correct. The cost of detecting and

correcting an error more than doubles for each phase through

which it passes undetected. This rate of cost increase

holds true for each subsequent phase through which the

problem passes without detection [Ref. 4], (Ref. 12].

A better software life cycle model is the one seen by

Boehm [Ref. 4] in Figure 1.3. This model represents the

development of standard large scale application software

system. It is based on an assumption which resolves the

problem with the previous model.

17

V

IsI Sys-tem aldtnon
Peestbie

Software 0--a Itdat tonI

Oetatled ertflcatton

PrOQuCt VertflcattonI

Inclmen
Sytm e

Figure 2.3 The Waterfall Model of the Software Life Cycle

Prior to moving from one phase to the next a

verification phase will attempt to eliminate errors in the

output of that phase.

D. WHAT IS MAINTENANCE

Maintenance is the function of keeping software in an

operational mode. It refers to changes that have to be made

to computer programs after they have been delivered to the

customer or user. The maintenance function involves

correcting error and design defects, improving the design,

converting the programs to work in new environments and

accommodating user requests for improvements.

Software maintenance is different from hardware

maintenance. Hardware maintenance consists of replacing

deteriorated components, putting in engineering changes that

correct defects and making design enhancements; all these do

not affect how the hardware is supposed to behave so the

user sees no change. Software maintenance not only corrects

defects and makes design enhancements, it also makes

enhancements that change how the program behaves. Most

maintenance work is caused by changing requirements rather

than by reliability problems (Ref. 13].

E. MAINTENANCE CYCLE

Although maintenance does not follow the development

life cycle, it nevertheless has phases of its own. A

19

..

significant difference is that a maintenance cycle if

truncated prematurely because resources are exhausted,

nevertheless results in a working change; an aborted

development cycle has no useful result beyond sad

experience.

The maintenance cycle can be described as consisting of

the successive phases:

Understanding requirement

Specify the change

Developing the code

Regression testing

Documentation update.

Each is rather different than similarly named parts of

development. Each requirement change is narrow and

incremental. When a change must be made, no thought is

given to its place in the entire system (and in fact it may

so conflict with that system's intent or design that it is

unwise to make it). Thus, requirement analysis consists of

investigating the interaction of small parts with the whole.

(This incremental character is also characteristic of

succeeding phases.) If the maintenance cycle is terminated

with requirement analysis, it is nevertheless a success; the

change is shown to be unacceptable and rejected for cause.

However, existing system deficiencies that generated the

request for change still exist and another suggestion is

20

likely to be forthcoming. In this way, the cycle may loop

back on itself, but for an entirely different reason than

does the development cycle.

The coding phase is central to the maintenance cycle and

it may include a distorted kind of design. What must be

designed is a minimum-impact alteration of old code, not new

code. Because of resource constraints it will probably be

impossible to gain an understanding of the existing design;

rather, syntactic features must be exploited to gain

understanding. For example, to alter a module whose purpose

cannot be grasped, it may be sufficient to note the contexts

in which it- is used, and see that the change is innocuous

there. Of course, such a plan is very dangerous since

updating this module for new future usage will not ensure

correctness when such a dangerous change has been made. An

entirely new kind of maintenance documentation must handle

the problem.

If the maintenance cycle ends with coding, there is a

useful product, the new code, which can be immediately tried

by the user who requested the change and seen to be an

improvement or not. But the cycle has been aborted before

test and updating documentation, and if the last change

introduced new problems, the cycle will begin again with new

requirements to fix the new problems by redoing the code.

The total cost now is higher for the original requirement

21

since the cycle started over to correct the newly introduced

problem.

F. TYPES OF MAINTENANCE

Functionally, software maintenance activities can be

divided into three categories which were originally proposed

by Swanson [Ref. 141.

1. Perfective Maintenance

Perfective maintenance refers to enhancements made

to improve software function by responding to customer and

programmer-defined requests for changes. Perfective

maintenance is required as a result of both the failure and

successes of the original system. If the system works well,

the user will want additional features and capabilities. If

the system works poorly, it must be improved. Perfective

maintenance is the method usually employed to keep the

system "up-to-date", responsive and germane to the mission

of the organization. Perfective enhancement is the biggest

maintenance consumer. According to [Ref. 13], 60% of the

software maintainer's time is spent on these "make better"

changes.

2. Adaptive Maintenance

Adaptive maintenance is the act of changing software

to adapt to environmental changes. These changes consist

primarily of the following:

22

- rules, laws and regulations that affect the system

- hardware configuration, e.g., new terminal, local
printers

- data formats, file structure

- system software, e.g., operating system compilers,
utilities

The software must be adapted to those changes. According to

[Ref. 13], 18% of software maintenance is adaptive.

3. Corrective Maintenance

Corrective maintenance is the pure correction of

software error required to keep the system operational.

Corrective maintenance is usually a reactive process where

an error must be fixed immediately.

There are three main causes for corrective

maintenance:

1) Design errors

2) Logical errors

3) Coding errors

Corrective maintenance consumes only 17% of the maintainer's

time, according to [Ref. 13]. (The remaining 5% is

allocated to "other".)

G. SOFTWARE MAINTENANCE PROBLEMS

Software maintenance problems can generally be

S categorized as technical and maniagerial. Most of these

problems, however, can be traced to inadequate management

control of the software maintenance process. We will

23

Ni

present the technical aspects of maintenance problems here;

they were taken mostly from Guidance in Software Maintenance

[Ref. 15]. We will address the management control issues in

later chapters.

1. Software Quality

Modern programming practices which utilize a well-

defined well-structured methodology in the design and

implementation of software systems address at least one

major software maintenance problem--poor program quality. A

lack of attention to software quality during the design and

development phase generally leads to excessive software

maintenance costs. The maintainability of the system is

directly affected by the quality of the software produced

during the design and development phases.

2. Poor Software Design

The design specifications of a software system are

vital to its correct development and implementation. Poor

software design can be attributed to a lack of understanding

by the designer of what the user requested.

- Poor interpretation of the design specification by the
developers

- The use of complex logic to meet the requirement

- Disjointed segments which do not fit together into a
nicely integrated whole

- A lack of discipline in design which results in
inconsistent logic

- Large, unmodular systems which are bulky and very
difficult to understand

24

M fl. I~i' . k -TWI I~ T_ TV 1 4- Va V I V- W, r F 71 F, NY

3. Poorly Coded Software

Most of existing software contains poorly written

code. As computer programming evolved, much of the code

development was performed in an undisciplined, unstructured

manner. Poor programming practices exhibited by this lack

of discipline include:

- unmeaningful variable and procedure names

- few or no comments

- no formatting of the source code

- overuse of logical transfers to other parts of the
program

- use of non-standard language features of the compiler

- very large, poorly structured programs.

The maintenance problem is worse when the program has been

modified several times by different individuals with

different programming styles. Often, such code does not do

what it was intended to do, and it is sometimes harder to

use than anticipated. Attempting to change such code

without the aid of up-to-date specifications or other

documentation is often a time-consuming effort.

4. Software Design for Outdated Hardware

Problems are associated with maintaining software

which was designed to run on previous generation, outdated

hardware. Often, the investment in software is such that it

cannot be discarded or rewritten and must be kept func-

tioning as efficiently as possible. The first difficulty is

25

in finding maintainers who are ready, able and willing to

maintain these systems. Few programmers are willing to work

on hardware which is unique and for which the acquired

skills are not relevant to other potential work. The career

advancement opportunities from working on such a system are

minimal to non-existent. Additionally, most systems of this

type are very difficult to maintain.

5. More Than One Programming Language Used

The use of more than one programming language in an

application system is often the cause of many software

maintenance problems. If the maintainer is not proficient

in the use of each of the specific languages, the quality

and consistency of the maintenance can be affected. Changes

to any of the languages or corresponding compilers may also

necessitate changes to the application system.

6. Increasing Inventory

The impact of rapidly changing technology has

resulted in a substantial growth in the number of new

application systems. In addition, the average life

expectancy of software systems has increased from about

three years a decade ago, to ten-to-fifteen years for

military programs today. Also, new programs are placed in

service faster than old ones are retired leading to an

increase in the amount of available code for evolution

(Ref. 1].

26

*1I

7. Lack of Common Data Definitions

An application system should have common data

definitions (variable names, data types, data structures,

etc.) for all segments of the system. In addition, the

structure of any data array or record should be defined and

used for all programs in the system. Problems invariably

arise when two or more programmers independently create data

names and structures which conflict or do not relate

logically with one another.

8. Documentation

The programmer who receives the assignment to

perform maintenance on the system must first understand what

the program is doing, how it is doing it, and why. This job

is greatly simplified if the original requester, the

designer, the developer, and the previous maintainers have

communicated all the pertinent information about the system.

This communication should include design specifications,

code comments, programmer notebooks, and other

documentation.

Too often the maintainer receives little,

conflicting or incorrect communication from those who have

previously handled the system. There is often inadequate

documentation, no detail records of the original requests

and subsequent updates; no explanation of existing code and

changes which have been made to code; and no explanation

27

.- ?.-

concerning why complex logic and coding structures were

selected over a more simple implementation. There may be

months or years between the original development of the

system and each subsequent maintenance activity. When a

problem occurs none of the individuals involved with the

original design, implementation, and previous maintenance

may be available. The only source of information available

may be the documentation and code. Thus, good documentation

is the only means for good communication. The more

complete, clear, and concise this communication is, the

greater the chance that maintenance can be performed in a

timely, efficient, and accurate manner.

9. Chain Reaction (Ripple Effect)

A chain reaction occurs when changes to one part of

a program unexpectedly affect other parts (Ref. 16]. This

happens because of interdependence that can exist between

program modules. Modules that share common functions or

data are interdependent. Several modules may call a common

module or may reference a global variable. Any change made

to a common module may alter the internal processing of any

module that accesses it. The more interdependent the

program modules are, the more complicated it becomes to

determine the ripple effect from even a simple program

change. A major cause of software quality deterioratIion

during the maintenance phase is not being able to determine

completely the ripple effect arising from the program

changes.
28

The possible ripple effect arising from program

changes must be carefully examined. Usually this involves a

manual search through the code beginning with the module(s)

in which the change is made and continuing on to all modules

sharing global variables or common routines with this

module(s). Depending on how many modules and variables must

be examined, the search can become very tedious and time

consuming.

Module coupling is one measure of module inter-

dependence [Ref. 17]. When modules are very interdependent

(e.g., one module makes an unconditioned transfer of control

to a label within the boundaries of another module), they

are called tightly coupled. Great care should be taken when

changing the code in such a module since the change is

likely to affect the internal processing of any other

modules that are tightly coupled with the changed module.

Cross-reference maps, storage maps, and traces

provided by many compilers, automatic flow charters, and

execution flow tracers can help identify the ripple effect

from a change.

10. User Knowledge

The users are often unable to concisely specify what

they want from an application system. The developer in

order to develop the right system which accurately performs

all of the functions the user wants needs a correct,

29

.rblrA

detailed specification based on clear concise requirements.

The user usually doesn't provide this. The maintainer must

enhance the system that was developed with inadequate

specifications and the new, often incomplete and vague

change request from the user.

On the other hand, if the user is knowledgeable and

the system is successful, additional features will be

requested, while if the system does not work, there will be

a constant demand for corrective action to make it function

properly. Therefore, it is essential that some sort of

controls be established and enforced to ensure that the

change requests are both justified and do not interfere with

the maintenance workload.

11. Personnel

It is thought that software maintenance is often

considered by maintenance personnel to be unimportant,

unchallenging, unrewarding, uncreative work which is not

appreciated by the user or by the rest of the ADP

organization. Usually management does not reward personnel

who performed software maintenance as generously as those

who performed software development. New programmers usually

start by working in maintenance and the more experienced

professional are assigned to be analysts, designers, and

developers. The importance of software maintenance to the

successful, smooth operation of an organization is

30

~A

increasing, which leads to selecting to do maintenance well-

qualified dedicated professionals who can readily understand

the system. The programmer who does maintenance must be a

highly skilled, competent programmer and analyst not only to

make the actual changes but to make sure of the impact of

those changes on the rest of the system and its environment.

A rotation of personnel between development and maintenance

will give each group a different experience and help to

reduce the morale problems of the maintenance personnel.

12. Understandability

Understandability is considered the most fundamental

requirement for a maintenance program. To maintain a

program you have to understand it first and if it is not

understandable it is almost impossible to maintain. This is

a major factor in the high cost of maintenance and the

distaste for performing maintenance tasks.

Understandability is defined as the ease with which

we can understand, by reading the program source code and

its associated documentation, the function of a program and

how it achieves this function. If the program is

understandable, the reader can easily determine the

programmer objective, assumptions, constraints, inputs,

outputs, components, relationship to other programs and

status. Programmer familiarity influences how easy or

difficult it is to understand a program; the less familiar

31

* 1. .

the maintainer is the more difficult the program is to

understand. Martin and McClure state that understandable

programs generally have several common characteristics:

structure, consistency, completeness, conciseness,

documentation. Each of these characteristics will be

discussed in more detail.

a. .Structure

The effective structuring of a program increases

understanding by standardizing the program form. The

standardization will set restrictions on program control

constructs, modularization, and documentation. Although

helpful, good structure does not completely ensure all

aspects of program understandability. Boehm suggests that

in addition to being well-structured, an understandable

program must also be concise, consistent, and complete

(Ref. 181.

b. Consistency

The program is considered consistent if it

follows a consistent design approach and is written in a

consistent coding style. It is difficult to understand a

program in which the style of writing does not follow a

common method of construction. This is sometimes difficult

to accomplish when several members work together as a team

unless there is a standard coding style that each one should

comply with. Consistency with design approach is what

32

."' ,J, -, '.' %' ', .'* ;- , * ,., Po v-,., , I.,.. . *.';',-,- , . ,'',.'i.<. ,' V"..,,-'.&%/ ,' (+..d * ,

Brooks called conceptual integrity [Ref. 19]. Conceptual

integrity is preserved when one basic design approach is

carried out through the entire program, simplifying the task

of understanding the rational behind the program logic.

Selecting consistent variable names throughout the program,

and using inline comments to clarify the coding statements

will ease the understandability of the program. The

practice should be co'nsistent throughout the program.

c. Completeness

A complete program has all of its components

available for use and reuse by the maintainer. To

accomplish understandability the maintainer should be able

to access all parts of the program that are related to the

maintenance function. Any variables or modules should be

included in a cross-reference scheme so that the maintainer

can trace a program component through the system. Error

messages should be made understandable and every unusual

feature in the program should be clearly explained.

d. Conciseness

A concise program is one that uses only the

coding necessary to achieve the design requirements with no

extra (perhaps unused) pieces of code. Every piece of code

must be reachable by some action of the program. Comments

should not be excessively verbose or cryptic in meaning.

When complexity increases, understandability decreases. The

program should be as simple as possible.

33

e. Documentation

The program must be well-documented in a

consistent way. Comments should be arranged near each

module to describe the module in some detail. The module

comments should include the purpose of the module, the

variables used or modified in the module and a description

of the output-of the module. The module description should

also include which other modules invoke this module and

which ones are invoked by this module. Information that is

recorded as to how a module of the program is reached and

how each module is related in the overall system scheme aids

understandability. Proper documentation should also be

concise with only the necessary information being provided

to the maintainer so as to enhance understandability without

confusion.

13. No Systematic Problem Solving Technique

Problem solving is a major part of programming, in

fact, programmers normally are involved in two types of

situations that could be considered problem solving, namely

the design and writing of the program and its debugging and

testing. To write a program, one must first understand the

situation, devise a strategy to solve it, and convert that

into lower level steps to implement it [Ref. 20]. This is a

problem-solving sequence, although most programmers would

not recognize it as such. (Note the similarity here between

34
i'

designing and implementing a new program and doing the same

for an existing operational one.) The study of problem

solving can yield techniques and ideas that maintenance

programmers can profitably use. Kepner and Tregoe state

that "problem solving is a process that follows a logical

sequence." Although their method as presented is geared to

managers, their principles and examples also extend to

solving technical problems. Their three steps are: finding

the problem, analyzing its cause, and deciding on a course

of action in solving technical problems such as those of a

maintenance [Ref. 21]. The course of action is quite clear

once the cause of the problem is found. The hard part is

finding the bugs/which can be time consuming, frustrating

and often times an undesirable task.

35

AL. JA

III. CONTROL TYPES AND MEANS

A. INTRODUCTION

The maintenance function is out of control in many

organizations. According to Reutter "maintenance often has

the outward appearance of being a helter-skelter,

uncoordinated activity rather than a planned, methodical,

controlled, necessary business function of any organization

committed to computerized data processing" [Ref. 221. Some

of the problems in managing software maintenance are

classical problems of control. These classes of problems

exist in any organization. This chapter will cover some

aspects of control. Some background is given for control in

general, including some discussion about the objectives of

control in data processing organizations. The charac-

teristics of good control and how control influences

behaviors is also discussed. The following chapter will

discuss how general principles of control can be applied to

software maintenance.

B. DEFINITION AND OBJECTIVES

Controls are the means by which we head toward an

objective. In data processing organizations the main

objectives are:

- to ensure that only cbmplete, accurate and authorized
data is processed.

36

° I W ' ' , , , : , " '.- ' . , 4 <" ' " -,.-'.-.''., ,',- -. . , - ,';''I

- to prevent or detect accidental errors or fraudulent
manipulation of data.

- to ensure the adequacy of management.

- to provide security against destruction of records and
to ensure continuous .operations [Ref. 23].

The objectives can be achieved through better control, which

keeps us from veering off in undesirable directions and

prevents unwanted things from happening. Essentially control

means "keeping things on track" [Ref. 24].- Knowledge of the

objectives of the organization is a necessary prerequisite for

conscious control efforts, as without it, activity can only be

described as aimless [Ref. 25]. Objectives do not necessarily

have to be defined in specific, measurable terms, but it is

critical to have a general understanding of what the organi-

zation is trying to accomplish.

C. CONTROL INFLUENCES BEHAVIORS

Control involves influencing human behavior, because it

is people who make things happen in an organization.

Control involves managers taking steps to help ensure that

human beings do what is best for the organization. Control

is necessary to assure that the people do what they should

and prevents them from doing what the organization does not

want them to do. The point is that if all personnel could

always be relied upon to do what is best for the organiza-

tion, there would be no need for a control system. But

individuals sometimes either do not know the organization's

37

objectives or are unwilling to act in the organization's

best interest; so management must take steps to guard

against the occurrence, and in particular the persistence,

of undesirable behaviors and to encourage desirable

behaviors.

D. GOOD CONTROL AND ITS CHARACTERISTICS

Good control means that no major, unpleasant surprises

will occur. The label "out of control" is used to describe

a situation where there is a high probability of forthcoming

poor performance, despite a reasonable operating strategy.

Some.Important characteristics of good control are:

(1) Control is future oriented; the goal is to have no
unpleasant surprises in the future. The past is not
relevant except as a guide to the future.

(2) Control is multidimensional, and good control is not
established over an -activity or entity with multiple
objectives unless performance on all significant
dimensions has been considered.

(3) The assessment of whether good control has been
achieved is difficult and subjective, not only because
of human limitations and biases but also because
adequacy must be measured against a future that can be
very difficult to predict.

(4) Better control--meaning higher assurance of success--
is not always economically desirable [Ref. 26]. Like
any other economic goods, control tools are costly and
should be implemented only if expected benefits exceed
the cost. Some economists [Ref. 27] define the term
control loss to be the cost of not having a perfect
control system; that is, it is the difference between
the performance that is theoretically possible, given
the strategy selected, and the performance that can be
reasonably expected with the control system that is in
place. More or better controls should be implemented
only if the amount by which they would reduce the

38

control loss is greater than their cost. Therefore,
good control can also be said to have been achieved if
the control losses are expected to be smaller than the
cost of implementing more controls.

E. TIGHT CONTROL

The amount of control achieved or the degree of

certainty provided by a control system can be described in

terms of how tight or loose the system is. Assuming away

the problems of costs and possibilities of harmful side

effects that are often considered with tight control (e.g.,

negative attitude), tight control is good because it

pro-vides a high degree of certainty that people will act as

the organization wishes. Tight control is only feasible

where management has detailed and reasonably certain

knowledge about how one or more of the control objects--

results, actions, or personnel--are related to the overall

organizational objectives. In other words, "our ability to

control is a function of our knowledge" [Ref. 25].

F. NEED TO CONTROL SOFTWARE MAINTENANCE

Computer programs are designed to satisfy the needs of

people. These programs are the tangible output of thought

processes, the conversion of thought processes into

products which should match the real needs of the people who

will use the software product. This goal is product

integrity, which is defined to be the intrinsic set of

attributes that characterize a product:

39

- that fulfills user functional needs;

- that can be traced easily and completely throught its
life cycle;

- that meets specified performance criteria;

- whose cost expectations are met;

- whose delivery expectations are met [Ref. 5].

Our view of software should not be restricted by improperly

equating "software" and "computer program". Software is

much more. A definition which can be used to focus the

discussion in this chapter is that software is information

that is

- s4tructured with logical and functional properties;

- created and maintained in various forms and
representations during the life cycle;

- tailored for machine processing in its fully developed

state.

So software is not uimply a set of computer programs but

also includes the documentation required to define, develop,

and maintain those programs.

Many development and maintenance failures or problems

are the result of poorly defined requirements which are

changed without control [Ref. 28].

The majority of the system and programming efforts in

many organizations is spent on maintenance, but in most

organizations the management of software maintenance has

little information on what activities comprise the

maintenance function. As mentioned before, most of the

40

-- ~~~
Sd=Pi Pa ",

maintenance effort is spent on perfective maintenance which

is performed to improve and enhance the software to

accommodate the user's new requests. Without adequate

information, it is difficult for management to evaluate the

legitimacy of this type of maintenance with respect to the

software life cycle goals and overall organization goals,

or to evaluate the necessity of devoting the majority of

its software staff to maintenance. This is a serious

problem: if management controls are not applied, the

maintenance function may absorb all system and programming

resources, leaving nothing for development of new software

systems.

The problem of controlling the maintenance function

arises because of the following:

(1) Most user requests are not based upon well-thought-
out, legitimate requirements or are based upon
personal preferences.

(2) Software changes could be performed more efficiently
if user requests were better controlled and
maintenance personnel better trained.

(3) Can we identify which portion of the maintenance
problem can be attributed to poorly defined user
requirements, poorly defined functional specifi-
cations, or poorly implemented and tested code?

Understanding what is being done and why, is the first step

in controlling the maintenance function. We need to apply

to software maintenance activities the formal controls used

in software development projects. We need to:

- Categorize and record maintenance tasks.

41

- Organize the maintenance staff to better identify
individual responsibilities.

- Control user requests with formalized change control
procedures and an open communication channel between the
maintenance group and user groups.

42

IV. CONTROLLING SOFTWARE THROUGH CONFIGURATION MANAGEMENT

Computer programs and applications continue to expand.

This requires some sort of control for these programs and

related documentation. If software is allowed to change in

an uncontrolled manner, our ability to manage the

applications will be lost and the cost will be very high.

There is a need for assuring that the requirement definition

is complete as well as controlling changes to requirements

and design, and tracking the resulting impact on cost and

schedule. One control technique which promises to be

effective is Configuration Management (CM). CM is the

discipline of identifying the configuration of the system at

discrete points in time for the purpose of systematically

controlling changes to the configuration and maintaining the

integrity of and traceability of the configuration through

the system life cycle (Ref. 29]. While CM was originally

designed to control hardware production, its principles can

be tailored and refined to relate to the development and

maintenance of software. Careful control of changes

improves product reliability and reduces the possibility of

introducing faults into software products through the

maintenance process. CM answers questions such as: when

your next production item is delivered, or updated through

43

maintenance, will you know what the exact configuration is

supposed to be? Will the new technical manuals support the

developed system? Can you be sure that the contractor has

met all performance requirements?

Excellent definitions and practices of configuration

management for systems, equipment, munitions, and computer

programs, can be found in MIL-STD-483A (USAF) dated 4 June

1985.

Review of the literature provides some basis for control

and recommendations to follow through the use of software

configuration management which contributes to the solution

of some of the maintenance problems. Next, software

configuration management and its four components will be

discussed in some detail.

A. SOFTWARE CONFIGURATION MANAGEMENT

Software configuration management (SCM) is simply

configuration management tailored to systems, or portions of

systems, that are comprised predominantly of software.

Thus, SCM does not differ substantially from the CM of

hardware-oriented systems, which is generally well

understood and effectively practiced. Of course, hardware

engineering is different from software engineering, but

broad similarities do exist and a term applied to one

segment of engineering can easily be applied to another,

even if specific meanings of those terms differ

significantly in detail.

44

The primary objective of SCM is the effective management

of the software system's life cycle and its evolving

configuration. A concept fundamental to this management

process is that of a "baseline". A baseline is a reference

point or plateau in the development of the system; a

baseline is formally defined at the end of each stage in

system life cycle [Ref. 30].

A baseline has three connected functions:

- as a measurable progress point

- as a basis for subsequent development and control

- as a measurement point for assessing quality and fitness
for purpose, before the final system goes intomaintenance [Ref. 6].

The final stage of the system life cycle, the operational

stage, is the most significant stage since the system life

cycle terminates when the operational stage terminates, also

this stage consumes the most time and costs the most when

compared to other stages.

B. SCM PURPOSE AND BENEFITS

SCM then is a methodology and includes concepts,

policies, and procedures. Its purpose is to aid in managing

the functional and physical characteristics of an item and

accompanying documentation. SCM is the vehicle controlling
the development, maintenance, and documentation of the

system. It provides several benefits, including:
a) A precise identification of the current configuration

item, including traceability back to previous
configurations.

45

' W , .. . , ,

b) The ability to reproduce defined environments
(baselines) to permit diagnosis and correction of
problems.

c) A formal structure for assessing impacts of proposed
changes.

d) The procedures for notifying official baseline
document holders of approved/released configuration
and changes. [Ref. 28]

SCM works with configuration items (CI) which have

specifically been designated in a given acquisition as being

subject to configuration management. The "configurations"

of the item or system refers to the totality of its

functional and physical properties, which are defined and

documented in the form of specifications. The configuration

manager works with these specifications, not with the

individual programs. Another key concept is a computer

program configuration item (CPCI) which is a set of coded

instructions on machine-readable media. CPCIs are

algorithms, programs, groups of programs or an entire system

which have been designated for configuration management

[Ref. 31]. A hierarchical level of a system is shown in

Fig. 4.1. The four components of SCM are identification,

control, status accounting, and auditing.

1. Software Configuration Identification

Software configuration identification is the process

documenting performance requirements, qualifications, and

acceptance criteria. This identification is done in

baselined documents which describe the functional and

physical characteristics of a CPCI or system.

46

CPCI _

NIT NITCPC UNIT

PCC CP

U N I T P CL E G E N D

CI Configuration Item
CPCI Computer Program Configura-

tion Item
CPC Computer Program Component
UNIT Non-Divisable Program

Function

Figure 4.1 Hierarchical Levels of a System

47

Changes to baseline components need to be defined

since these changes, together with the baselines, specify

the system evolution. A system baseline is like a snapshot

of the aggregate of the system components as they exist at a
given point in time. The role of software configuration

identification in the SCM process is to provide labels for

the contents of these snapshots.

A baseline can be characterized by two labels. One

label identifies the baseline itself. The second label

identifies an update to a particular baseline. An update to

a baseline represents a baseline plus a set of changes that

have been incorporated into it (Ref. 30].

- Configuration Identification Elements

The following elements are necessary to establish

configuration identification:

a) Mission Analysis. The initial element is the process
of requirements analysis which is necessary totrans form requirements into a Functional Description.

b) Functional Description (FD). This document isproduced during the conceptual phase. It is based on
studies and analysis done during the conceptual phase
and is the first system life cycle document. The FD
states the mission and functional requirements for asystem and defines required external interfaces. The
FD is baselined at the end of the conceptual phase.

c) System Specification (SS). This is a product of the
definition phase and is baselined at the end of thephase. The SS is the result of allocating the
requirements from the FD into components of the
system. If the components are actually subsyst-ems,
then the design of the subsystem will be reviewed atthe preliminary design review. The SS is the first ofthe CPCI configuration identification documents. This

48

* ~ ... %.. C * *~. d* .~ - * . . ~ * * . *- ..- .-.

document contains the information necessary to design

a CPCI and test it against its performance criteria.

d) Program Specification. These are initially the "build
to" specifications. They are reviewed prior to actual
coding but are not baselined until the end of the
development phase.

e) Other Types of Specifications. The additional
documents that may be part of CPCI's configuration
identification include the data requirement document
(RD) and the data base specification (DS). Other
documents, which may be required but are not a part of
configuration identification, include the test plans
and procedures, the computer operation manual (OM),
and the program maintenance manual (MM). These
documents are influenced by, but do not identify or
control, a CPCI's configuration identification.

f) Configuration Identification Numbers and Markings.
The configuration identification number (specification
number) is an essential element of the identification
and is used to reference a document during its life
[Ref. 28]. CPCI selection is based on consideration

of the following factors:

(1) Design Decisions. Processes with strong
interactions should be the same CPCI.

(2) Separate Computer. Programs to be operated on
different types or models of computers should be
separate CPCIs.

(3) Separate Schedules. Programs scheduled for
development, testing, or delivery on different
schedules should be separate CPCIs.

(4) Different Operation Control. Programs which are
largely identical during development may be

identified as separate CPCIs; if they are to be
run on different computer systems or to be evolved
and controlled separately during the operational
phase, they should be in separate CPCIs. Programs
on the same computer model but at different
locations and requiring adaptation data at each
installation may be maintained as separate CPCIs
or as a version with a single CPCI (Ref. 32].
Breaking a system down into a series of CPCI
provides maintenance management with increased
visibility and control into the maintenance

49

•

process. However, this is done at An increase in
cost for documentation, reviews and audits,
general paperwork, and manpower. Each CPCI
requires its own specification, reviews and
audits, acceptance and validation testing,
configuration control logs, and configuration
status accounting reports. Baseline management
activities are normally more intensive and
important during the development phase, since the
designing, coding, and development testing will
identify system errors which require modification
and result in baseline change requests.

2. Software Configuration Control

The evaluation of a software system is, in the

language of SCM, the development of baselines and the

incorporation of changes into the baselines. That is,

software configuration control is management of change.

Software configuration control focuses on managing changes

to SCIs in all of their representations. It involves three

basic ingredients:

(1) Documentation (such as administrative forms and
supporting technical and administrative material) for
formally precipitating and defining a proposed change
to software system.

(2) An organizational body for formally evaluating and
approving or disapproving a proposed change to a
software system.

(3) Procedures for controlling changes to software

systems.

The objective of software configuration control is to

properly identify and consider proposed changes within the

scope of total project and program. The final product, the

CPCI, must agree with the product specifications and must

jointly agree with the requirements stated in the SS and FD.

50

The group that administers software change control

is the Configuration Control Board (CCB). The purpose of

CCB is to control the baseline. Ideally, membership

includes senior managers of the impacted functional areas

and of the interfacing/using commands. Developers should be

present as consultants.

A Baseline Change Request (BCR), sometimes called

Engineering Change Proposal (ECP), identifies the need for

change to an approved configuration (specification). This

change request document contains information such as:

- description of the problem and proposed change

- justification of the change

- the identification of the originator

- the objective of the change

- the benefits of the change

- identification of the affected baseline

- the impact on other programs

The next chapter will discuss what events cause a

change, the classes of change, and the change process and

how an ideal change process model can be used to control and

solve the problem of maintenance change being out of

control.

3. Software Configuration Status Accounting (SCSA)

SCSA is a management information system providing

traceability of baselines and changes. A decision to make a

51

1_o

proposed change is generally followed by time delay before

the change is actually made, and changes to baselines

generally occur over some period of time before they are

incorporated into baselines as updates. A mechanism is

therefore needed for maintaining a record of how the system

evolved and where the system is at any time relative to what

appears in published baseline documentation and written

agreements. SCSA provides this mechanism. SCSA involves

the maintenance of records to support software configuration

auditing. SCSA is thus the means by which the activity

associated with the other three SCM functions is recorded;

it therefore provides the means by which the history of the

software system life cycle can be traced. The SCSA

complexity increases as the product moves to the operational

baseline because of the multiple software representations.

This complexity generally results in large amounts of data

to be recorded and reported and is generally supported in

part by automated means.

4. Software Configuration Auditing (SCA)

Software configuration auditing provides the

mechanism for determining the degree to which the current

state of the software system reflects the software system

pictured in the baseline and requirement documentation. It

also provides the mechanism for formally establishing a

baseline update. SCA serves two purposes, configuration

52

JI

verification and configuration validation. Verification

ensures that what is intended for each software configura-

tion item as specified on one baseline or update is actually

achieved in the succeeding baseline or update; validation

ensures that the SCI configuration solves the right problem.

SCA is applied to each baseline and corresponding update.

Determination that an SCI structure exists and that its

contents are based on all available information is an

auditing process common to all baselines.

SCA is intended to increase software visibility and

to establish traceability throughout the life cycle of the

software product. This costs time and money, but it is

justified by the avoidance of costly retrofits resulting

from problems such as sudden appearance of new requirements

and discovery of major design flaws. SCA makes visible to

management the current status of the software in the life

cycle product being audited. It also shows whether the

project requirements are being satisfied and assures that no

change other than those authorized have been made. Every

requirement is traced successively from baseline to baseline

as life cycle products are audited and baselines are

established or updated. An excellent overview of the

software audit process from which some of the above

discussion has been extracted appears in (Ref. 33).

DoD Directive 5000.29 Management of Computer

Resources in Major Defense Systems, states:

53

d1 4

Defense system computer resources, including both computer
hardware and computer software will be specified and
treated as configuration items.

The primary objective of software configuration

management is the effective management of a software

system's life cycle and its evolving configuration.

Configuration is a form of management in that it gives one

the ability to manage change during both the development and

maintenance processes.

54

" 9C '."' " . ;
-..

.
... . ;V ; -.. ; 4 ' ;

V. THE NEED FOR MAINTENANCE CHANGE CONTROL

A. INTRODUCTION

Software maintenance change control is an important

management problem. Once software is implemented and the

maintenance phase started, its life cycle will extend from

10-15 years (sometimes even longer for military systems).

During this period the software will experience significant

changes and redevelopment to meet the user's changing needs.

Even though the user prefers to have new system capabilities

or better performance, when asking for a software change it

is not desirable to implement the change without proper

evaluation and control.

B. TYPES AND CLASSES OF SOFTWARE CHANGES

The request for a software change usually comes from the

user, but the system analyst and the management could also

request a change to the software. The requests for changes

can be made in response to a variety of events.

1) Software deficiencies. The existing software baseline
may be found to be inadequate or incorrect because of
errors in the requirements, specification, design,
implementation, or for other reasons.

2) Hardware changes. Problems with hardware components
and the interfaces among hardware subsystems may yield
to solution only through software change.

3) New operational requirement. The ground rules for the
system's operation may be modified (i.e., the required
performance may be increased or decreased).

55

4) Economic reason. Means for effecting cost savings may
be determined, or lower development or operating costmay be decreed that requires software modifications
[Ref. 30].

There are two classes of changes impacting software

products and documentation. Each requires different

processing and review procedures.

a) Class 1. These are changes that effect schedule,
cost, or technical parameters of an established
baseline. A class 1 change requires submission of achange request for CCB review and project manager
approval prior to any work being done on it.

b) Class 2. These are basically changes to correct
errors in documents or to add clarifying information.
It does not require prior approval by the project
manager or CCB, but when implemented would come under
normal CM procedures (Ref. 341.

C. WHY IT IS IMPORTANT TO CONTROL CHANGES

From Chapter Two we have seen that about 80 percent of

maintenance work is responding to user change requests.

Technical, managerial, and economical factors have to be

considered when dealing with a new change. To make a

decision about a change one must address the following

questions:

Why is the change needed?

What is the impact of this change on the rest of the
system?

What is the cost involved to do the change?

What is the benefit of the change?

How important or complicated is this change?

56

There is always the risk of introducing new errors

into the program every time a change is made. Also some

user requests for change are not justifiable for cost,

technical, or other reasons. One author (Ref. 35] stated

that some users exaggerate their needs for particular

enhancements, and once they are implemented they are seldom

used.

One of the big problems in making changes is that

changes are not independent. Performing one change may make

others easier, harder, or sometimes even impossible. Some

changes will cost less if implemented in a certain order

making the decisions of assigning priorities a hard one.

Some changes would be rejected mainly because when

implemented these changes would either make others

impossible or more expensive. When evaluating the change

requests, besides considering the impact, the importance of

the change, and the cost, one has to consider the useful

life of the software when the change is requested. By this

we mean programs have a certain life and it is not wise to

implement a big change into a system which will be replaced

by a new one in the near future.

It is obvious that approving and assigning priorities to

change requests is not an easy task due to the nature of

software. To assure that only the necessary, justifiable,

and within budget changes are implemented with the proper

57

priorities (not necessarily in accordance with the user

requested priorities), there is a need for controlling the

software change process to avoid the high cost and to

minimize the impact of a change on the rest of the system

and on other changes as well.

Controlling software changes requires controlling the

software programs and the associated documentation. It is

useful to give some definitions:

- Program Control: a method of controlling the basicprogram system, user back-up copies and variants so
their content is always known and only authorized
change is implemented.

- Documentation Control: a method of approving,
processing, assessing, and updating all relateddocumentation in step with each other and corresponding
programs.

D. SOLUTION

Controlling changes requires the estabishment of some

kind of policies and procedures. These controls govern such

things as the forms and procedures that people use and the

methods for documenting and maintaining the software. There

are two types of control: tight and loose; some

organizations rigidly control change through CCB while

others leave it to the programmer/analyst to make the

decisions.

According to (Ref. 36] "Experience has shown that having

good standards provide programmers with good practices and

allow them to be creative in those areas where creativity

58

really improves productivity." Management has to enforce

the policies and procedures once they have been established,

otherwise complications will arise and control will be lost.

The establishment of a good policy for change control is not

straightforward; it depends on the type of organization and

the size and type of the software involved. A policy might

be considered good and effective for one organization, but

is very costly or not effective for others.

Even though there is some discussion in the literature

about the need for controlling the software changes, there

is no detailed step-by-step procedure that covers all the

actions that have to be taken if good and effective control

is to be accomplished. Most of the existing policies agree

in principle with the following steps:

- A request for a change has to be made by the user or
other authorized personnel.

- The change has to be evaluated and if appropriate,
approved.

- Once approved, the change request is sent to the
responsible software organization for implementation.

- Related documentation has to be updated.

These principles only give a general idea about change

control, but they don't specify the criteria for evaluating

the request or who is responsible for making the decisions

to approve or disaprove the change. These principles did

not mention how to control multi versions of multi copy

software.

59

In most organizations the authority to make a decision

to change is given to the Configuration Control Board.

E. CONFIGURATION CONTROL BOARD (CCB)

Program change requests come from the maintenance group,

user group, operational group, and the manageffent group.

Some of the change requests from different gr,-ups may be

similar and on the other hand, different requests may

suggest changes that are not compatible with each other. As

mentioned before, some changes are not really needed. The

CCB has the authority to review, approve or disapprove the

change requests. Not all change requests require processing

through the CCB. There are many instances when such a

formal process is not desirable (for example, on a very

small software project). The board is a permanent committee

which is the final authority within the project on proposed

major changes. The principle function of each board member

as suggested by [Ref. 291 is to verify the following:

1) The change is necessary.

2) The method of implementation is feasible.

3) The schedule and cost requirements can be met.

The CCB group will have members of all concerned groups

(i.e., users, engineers, management, programmers/analysts).

This is necessary to have a global picture of the change

request and its impact or importance to help the CCB make a

good decision.

60

Some change requests will be approved and will be given

some level of priority, others will be rejected or delayed

for several reasons including:

- The change is not needed. The CCB might decide that
this change is not really needed.

- Inter-system conflicts. There might be higher priority
changes on some other application that require delay for
this request even if it has been approved. This is true
at organizations with a limited number of programmers to
do the changes.

- Not a program change. Some errors or requests for
change arise from using the wrong procedure or document.
This type of problem can be solved with manual solutions
to the right document and doesn't involve computer
program change.

- Reordering the change'reuest. Userps request changes
and assign their own priority to the changes, but since
the CCB has more information about the system they might
see that some changes might cost less if installed with
other changes in a different order than the user
requested.

The problem of controlling the change and tracking it

requires a clear effective change control policy and

procedures.

F. METHODOLOGY FOR CONTROLLING THE SOFTWARE CHANGE

Two methodologies (models) for change control will be

discussed, compared and evaluated for their effectiveness

and completeness in providing a useful model to be used for

achieving the objectives of change control. Glass and

Noiseux in their book Software Maintenance Guidebook (Ref.

37], suggested a method for controlling software maintenance

error changes. They organized the maintenance into four

61

groups: error tracking people, configuration management

group, software development group, and test group. Glass

advised that the CCB should be placed very high in the

software organizational structure and it should have

representative membership from non-software parts of the

organization. The CCB has the authority to disapprove or

approve changes and assign priorities to each request. The

responsibilities of CCB should state what the decision

process is for those occasions where emergency change is

necessary. Keeping track of the changes provides a good

history of data to evaluate the system by knowing which

parts of the system have had the most errors and the types

of those errors. This could lead to a redesign of parts of

the software that have a significant error history. Another

useful reason for tracking and logging the errors is knowing

what changes have been evaluated, rejected, or completed.

Error tracking should start after the software product is in

the maintenance phase since tracking errors during

development is very difficult and not as useful. Following

Glass' method, whenever a software problem is discovered

after the tracking system is initiated, a software problem

report (SPR) is generated. The SPR contains useful

information such as:

- definition of the problem

- location of the problem

62

- priority

- proposed solution

The tracking group will give a number to each SPR and submit

it to the responsible software organization which will

examine the SPR to see its effects on other parts of the

program and suggest its priority. The nature of the

correction is submitted to the change boards which decide

whether to approve it; if approved the change is implemented

into the program and tested against the SPR to see if the

problem has been corrected. Regression testing is needed to

ensure that no problem has been created by the change.

The users and management need to know the status of

specific problems. The user likes to know when to expect

the completion of his request and which versions of a piece

of software contain which fixes. The correction process as

seen by Glass is shown in Fig. 5.1.

The SPR processing flow is mainly for correction

requests which arise for several reasons including:

software malfunction, documentation error, software

inefficiency, and test case/procedure error.

The general scheme of this SPR flow can be applied with

the same modification to a general change request flow,

which includes user enhancement.

G. ANOTHER CHANGE CONTROL MODEL

Perry in his book Managing System Maintenance (Ref. 36]

presented his model for change control which addressed most

63

CONFIGURATION SOFTWARE
ERROR TRACKING MANAGEMENT DEVELOPMENT TEST GROUPS h

GROUP GROUP GROUP 1

Lot sqw. 'Antiat

Rau SPR 9.

Ansiizo
problem

Change 5.1 Ilss Change Review:.:de

Yes cocu No I w~ao and

-Ts Fix

of the missing aspects of change control in the Glass model.

Perry defined four objectives for installing the change.

1) Install the Change as Specified. The needs have to be
specitled in such a way that they can be measured and

only the agreed upon changes should be implemented.

2) Document Changes. The changes made to the application

system have to be reflected into the system
documentation. The documentation has to be current,
reflecting the present system. The change is not
considered complete unless the documentation is

updated and complete. This documentation includes
system documentation, operations documentation, user
documentation and control documentation.

3) Keep Old System Operational. The old system must be

maintained in an operational status during the time
that the change is being implemented. Some special

procedures might be required to ensure that the system
can run and/or thatnew requirements are incorporated
through manual or other means until the change is
implemented.

4) Installing Change on Time and within Budget. Users
requests have to be evaluated for time and cost, while
it is not always possible to achieve either, it should

be a high priority objective of the maintenance team
to achieve the time and budget requirements.

There are several concerns when dealing with maintenance

changes and there has to be adequate controls to reduce

these concerns. Knowing these concerns and addressing them

will significantly reduce their occurrence. Thus, the

effort and time required to develop the methods, procedures,

and controls will result in more effective, trouble free

maintenance. These concerns include:

- Will it be known if the change achieves the change

objective?

- Will the change be reflected in updated documentation?

65

R-T- KIN"" I. RV M- V A 9

- Will the system maintenance testing process be adequate?

- Will the change process be planned?

- Will serious problems occur before the change is
installed as the time extends between the request for
the change and implementing it?

To alleviate these concerns the methods and procedures for

making the changes have to address these concerns and deal

with them through using the necessary approval methods,

forms, and feedback about the process.

Perry's change phase includes several steps which cover

more aspects of the change control than what was mentioned

in Glass' SPR process flow. This phase starts after the

change has been specified and the priority for implementing

it has been established.

There are seven steps that are normally executed in

making a change:

Step 1 - Planning the change process

Step 2 - Operating the system until the change is made

Step 3 - Obtain needed access

Step 4 - Establish performance criteria

Step 5 - Implement the change

Step 6 - Test the change

Step 7 - Document the change

These seven steps are shown in Figure 5.2 and will be

discussed below.

66

STEP Z

OPERATING THE SYSTEM UNTIL THE CHANGE IS MADE

PLANNING ESTABLIS13

THE OBTAIN PERFORM- IMPLEMENT TEST DOCUMENT
CHANGE NEEDED-" ANCE THE THE l THE
PROCESS ACCESS CRITERIA CHANGE CHANG- CHANGE

STEP i STEP 3 STEP 4 STEP 5 STEP 6 STEP 7

DELETING THE UNNECESSARY CHANGES

Pigure 5.2 Perry's Change Control y.odel

G7

S -'.. . %. . .. - - -. -... ,".- .. . ' -.. . " ,... --.. .. '."..."..'..'o .. '. .. . -. •.. .o.-.-..j % . '".-"

Perry gives the system maintenance analyst the authority

to eliminate any change or adjust the priority. According

to Perry deleting the unnecessary changes extends from

Step 3 to Step 7. Glass gives the CCB the authority to

eliminate the change and this is done early in the change

phase so only the approved changes will proceed further down

the change process. A detailed discussion of Perry's seven

steps to control the change follows.

1. Step 1--Planning the Change Process

The planning effort is one of providing the needed

resources for a change to the responsible people who will do

the change. If people are given the start and due date,

they can normally do most of the detailed planning for their

effort within the allotted time, and can do it by

themselves. The change request should provide enough

detailed information and the recommended solution should

provide sufficient specifications so the change can be

implemented without further specification. Perry suggests

the use of a "planning the change" worksheet which provides

a planning document for gathering resources. It is used to

record the type of information, the resources needed, where

they can be obtained, and whether or not they have been

received.

2. Step 2--Operating During Change Period

The user would like to keep using the old system

until the change is implemented and tested. This may or may

68

not be a problem for the maintenance group depending on the

nature of the system and the type of change. In many cases,

the old system can run as is until the requested change is

installed. However, in some instances the system cannot run

as is. Perry mentioned some of the conditions that require

immediate action:

- Hang-ups. The system does not run at all in its current
status. Potential temporary fixes are to eliminatespecific types of data, to provide a temporary solution
using a patch, and to operate the system in a manual
mode.

- Installation deadline has passed. The change may be
delayed. Perry gives an example: new federal taxwithholding tables must be installed. Alternate
solutions include patching the system, running the
system in the current version to produce most of the
data, and then rerunning it at a later point in time toprovide the correct output. Another solution is to run
it in the old mode and then do special programming later
to make the necessary corrections.

- Detected error condition. If the system is operatingbut producing known errors, those errors should be
corrected in future runs until the requested change isimplemented. Some of the solutions include developing
special programs to search and correct an error, manualsearching and correcting the error, and inserting a
patch in the program.

An essential part of the maintenance change process

is to assure that the production version of the application

will produce the proper result during the period when the

change is being installed. The maintenance analyst must

determine whether the change impacts the currect production

status of the application.

69

*r * <*. **.-*

3. Step 3--Obtaining Needed Access

Even though the maintenance team is assigned to

maintain an application system, they are not authorized to

have free unrestricted access to the programs and data. To

control the maintenance process, access to programs should

not be automatic. The access can be controlled by data

management or a security officer. Each change or group of

changes should require a new version of the program. The

maintenance team should have no access to that program once

that version has been tested and installed in production,

until access is again authorized.

4. Step 4--Establish Performance Criteria

A criteria to measure the success of the change is

needed. "Performance" in the broad sense is used to

indicate that the system performs in accordance with user

requirements. The areas of performance that need to be

measured are:

- Functional: The system should perform those functions
specified by the user. This includes accuracy,
reliability, consistency, completeness, and protection

against wrong input data.

- Regression: The change should not negatively impact

unchanged portions of the system.

- Stress: The system can handle all the specified data
volumes without problems.

- Economy/efficiency/effectiveness: The operating.
characteristics of the system, such as response time or
turnaround time need to be measured before user needs
are met.

70

' ...;. -;' " ' " 5 , '.[+ i i[_ ;[' [,"! " - '"; '< .:'v .", - '-.-.; '> .,''" 0 " ' .

These performance criteria should be specified in

measurable terms. Determining measurable performance

criteria can be difficult for users and project personnel.

However, both the implementation of change and testing would

be easier once the criteria has been established. These

criteria should be established before implementing the

change. These criteria are useful in determining the type

of controls needed in the application system.

5. Step 5--Implementing the Change

Implementing the change includes designing detailed

systems, specifying programs and coding. The concerns

during this step are:

1) Installing the change in the proper part of the
application system.

2) Changing all parts of the system that are impacted by
the problem.

3) The continuous performance of the current corrected

functions.

Perry gives some tips and techniques to assist the

maintenance group in their function including:

- Identify affected data elements.

- Identify programs using those data elements.

- Identify the programs that either create, modify, or
delete the affected data elements.

- Identify the external controls over the data elements.

- Identify the programs that edit or audit the affected
data elements.

71

1.P

- Code the change in a single module if possible.

- Contain the entire change in one program if possible.

6. Step 6--Test the Change

After the change is made, a complete testing is

needed to assure that the entire system will function

properly. This is the only effective way to minimize the

maintenance change problems. An exhaustive set of test data

which is established at the time of development should be

used and adjusted whenever a change is made to reflect the

change and verify that the entire system still functions

correctly after the change has been implemented.

7. Step 7--Documenting the Change

Each change implemented into the system has to be

documented. The documentation will become outdated if this

step is not performed. A check list of all the

documentation that is affected by the change will help the

programmers to update the documentation to reflect the

change. It is preferred to update documentation after the

change has been tested, the reason is that testing may alter

the way in which the change is installed. Perry provided a

"System Maintenance Documentation Work Plan" form. Its

objectives are to identify all areas of the documentation

that need to be changed, as well as the individual

responsible for making the change.

72

VI. SYNTHESIS OF A NEW CHANGE CONTROL MODEL

A.. INTRODUCTION

In this chapter we will compare and evaluate the two

models presented in the previous chapter, then synthesize

a new change control model which will combine the beqt

aspects of the existing model with some new ideas.

B. COMPARISON AND EVALUATION

Perry in his change process dealt with most of the

actions that are usually heeded to control changes, but

looking at Figure 5.2, he did not show what the action is if

more information might be needed from the groups who request

the change. He ignored the fact that some changes might be

returned for further details before a decision can be made.

Perry did not mention the need for keeping records and

tracking the changes as Glass suggested by having a separate

error tracking group for this purpose. Another difference:

Glass made use of the configuration management group and

especially the CCB to evaluate the change request and make

decisions, while Perry leaves this entirely to the system

analyst. The use of CCB seems to give better evaluation and

control especially for large software systems. While Glass

limits the initiation of SPR to the test group which in turn

submits it to the tracking group for log and routing before

73

the change is analyzed and submitted for approval to CCB,

Perry assumes that approval was granted before the first

step (planning for change) is to start. But Perry did not

mention how approval is reached and under what criteria or

what to do in case of emergency changes which don't usually

follow the normal change steps. As mentioned before, Perry

included updating documentation as the last step in the

change process, while Glass ended his SPR with testing and

did not mention that several documents might be affected by

the change and needed to be updated to keep the documen-

tation reflecting the current system. Glass also has not

discussed what procedure to follow during the time the

change is implemented to assure that the old system is in an

operational status. He failed to specifically mention that

only changes that are within budget and time should be

approved, and he seems to assume that it is the responsi-

bility of the CCB to make that decision. Perry provided a

good number of forms, checklists, plans, and instructions to

help manage and control the change phase of maintenance.

C. NEW CHANGE CONTROL MODEL

It is clear from the previous discussion that neither

the Glass nor the Perry change control model is complete and

can be considered ideal. The author in an attempt to cover

the unaddressed aspects of change control in both models

would like to combine them in one model with some modifica-

tions which the author feels will help make the change

74

control process more clear and more effective when applied

to large software systems. While acknowledging that there

is no one ideal universal change control methodology which

will apply to all types of organizations and software

projects, the proposed model will include the essential

steps that most people agree have to be taken when dealing

with large software projects. Even though most of these

steps already have been talked about in the literature, the

author feels that the proposed model is more detailed and

comprehensive. One might argue that this model is too

expensive for small organizations who are dealing with small.

projects and have only a limited number of staff. For these

organizations a subset of the model can be used to fit the

organizational limitations, using the model as a general

guide.

The proposed change control process model describes the

procedures that can be used to control changes to software

which are crucial to software configuration management. All

documents and programs must be baselined and under the

control of the software library. Only when approval is

received by the librarian can programs or documents be

released for revision, and only authorized revised programs

and/or documents entered into the software library. The

modified model is shown in Figure 6.1 and the steps in this

procedure are as follows.

75

CAUSES FOR CHANGE

1. ENHANCEMENT 71. CMANGE 104*-N REQUIREMENTS 3. E RR-0 -R--N

I
CHANGE RIQU
INI T IATE0 SV:

A - USER
9 - MAINTENANCE GROUP

CHAN 0 MENT
r1mu AL

CIDENTIFY, TXL0 AND
TRAC PCX 2

iS FURTHER , YES
INFO. NEEDED

COST sCC6 TIME

ESTIMATE AND EVALUATE
EFFORT

DETAIL
MODIFY LYSIS IMPACT

MODIFY #40 scca
OR APPROVAL

W.ITHDRAW

ENO AW YES SOFTWARE 6

STAT
L I BRARY

ACCOUN ING 5

CHANGE PPOrRAM AND
IMPLEMENTATION 7 DOCUME14 A 1 14

IMPLEMENTATION
REVIEW a

IMPLEMENTATION
PROCESS1144

1:; 1 01D
DOCUMENT VERIFY AND TES

PROCESSING
T14E CHARGE T

DOCUM' NT VERSION
UPDATE P.EVIEW DES. DOC 11

DOCUMENT SYSTEM AND
RELEAS RELEASE 12

IZ TI ?
1)

AUT"ORI ETION-) ON
I AUTHORIZATION

DOCUMENT VOO A17 0 13LISTING R LEASE

Is

Fialure 6.1 I-inroved Change Control nodel

76

1. Step 1--Computer Program Change Request CPCR

The originator of the change request must submit a

CPCR which should include useful information such as

definition of the problem, the originator name and

organization, reason for the change, the programs or

documents affected, priority of this change, and proposed

solution if applicable.

2. Step 2--Screen and Track

The problem and proposed solutions are subject to an

initial screening to ascertain

a) Is the origin of the problem hardware, software, or
both?

b) Is the problem statement sufficiently specific or is
further information needed?

Identification of the problem/change together with status is

entered into the status/accounting records.

3. Step 3--Evaluate and Estimate the Effort

The SCCB evaluates the problem and/or changes

analysing the impact of the change on related software that

are governed by the SCCB. Time and cost will be.estimated

to help in the decision making process.

4. Step 4--Change Approval/Rejection

The SCCB will review the evaluation and assess the

criticality of the change consistent with its knowledge of

customer needs and priorities. Approval of SCCB constitutes

authority for implementing the change. Sometimes a change

77

request has to be modified in order to be approved. In this

case the requester of the change either modifies the

original change request and resubmits, or withdraws it.

5. Step 5--Status Accounting

The implementation status is recorded in the

accounting data base following the approval for

implementation. This action is taken by the SCCB through

the software control center (SCC).

6. Step 6--Software Library Releases Programs and
Documents

4The software library will only release the programs

and/or documents after the SCCB has authorized the change.

7. Step 7--Implement the Change

A Computer Program Change Order (CPCO) will be

assigned to the programmer(s) responsible for the computer

program modules affected by the change. The changed

packages are submitted to SCCB for review and approval, at

the completion of code, test and document change.

8. Step 8--Implementation Review

The SCCB examines the complete change package to

ensure that the change satisfies all requirements and that

all elements of the package are consistent with each other.

SCCB approval at this point constitutes authority for the

SCC to process the change for inclusion on the system

program version.

78

9. Step 9--Implementation Processing

During this step the SCC updates applicable

configuration controlled libraries and processes

specification/documentation changes. SCC also prepares the

preliminary Version Description Document (VDD) which

includes a complete inventory of all computer program

modules/elements that constitute the system tape together

with descriptive information of changes that have been

implemented in the to-be-released version of the system

program.

10. Step 10--Verify and Test the Change

As a quality measure a series of regression tests

are performed after the change to ensure that the system

satisfies the performance requirements. Satisfactory

completion of system verification is the basis for release

of the system version.

11. Step 11--Version Description Document (VDD)

The SCC completes the VDD by incorporating the CPCP

and/or CPCO corresponding to changes determined to be

necessary as a result of verification testing. Where the

preliminary VDD has been subjected to an audit, the results

of the audit are addressed by the SCC by correcting

discrepancies or obtaining clarification.

12. Step 12--System and VDD Release Authorization

Upon successful completion of the tests, the

completed VDD will be reviewed and when satisfied that the

79

result of the testing and content of VDD reflects changes

that had been authorized, the system and associated VDD will

be released.

13. Step 13--VDD and Listing Release

The SCC has the VDD reproduced for distribution. In

accordance with the established requirements, copies of

listings for computer program modules that have been changed

or are initial releases, are also obtained for distribution.

14. Step 14--Document Change Processing

Programmer prepared documentation that consists of

initial material or changes to existing documents/

specifications are processed by documentation support. In

order to release the documentation, a document change order

is required.

15. Step 15--Document Review

The completed document changes are reviewed to

ensure:

a) Transcription of programmer input is complete and
accurate.

b) Final wording is consistent with performance
requirements.

c) Audits for traceability to original statement of
problem and approved design implementation.

16. Step 16--Document Release Authorization

Documentation will be reviewed for adherence to user

agreements and management requirements. Only when the

result of the review is satisfactory, documentation is

authorized for release.

80

17. Step 17--Document Release

Final release processing includes the recording of

the document release into the release record, reproducing

the document, and distributing the copies to the

organizations.

18. Step 18--Software Library Accepts New Release

The software library will only accept authorized

releases of system, VDD and documents. New back-up copies

will be generated and kept in a safe place.

D. SUMMARY

C.hange control is an essential element in managing a

software system which involves many change requests. By

controlling the change process using the model/procedures

described above, the software maintenance process will be

easier to understand and the cost and time involved will be

reduced, thereby increasing software productivity.

81

VII. CHANGE CONTROL TOOLS

A. INTRODUCTION

Software is always changing. Many problems that arise

during the software maintenance phase are due to a lack of

adequate control and organization of program source code and

documentation. In the maintenance phase there are always

errors to fix, enhancements to add, and adaptation to new

environments throughout the entire software life. This

continual modification results in multiple versions of the

system. There is not only the current version to change,

but also last year's version (which is still supported) and

next year's version.

Maintaining and controlling these versions is a

difficult job unless a suitable technique and tool is

applied. The Source Code Control System (SCCS) is one of

the best known systems for dealing with this problem

[Ref. 38].

Next we will discuss SCCS and outline its benefits in

helping control changes to source code and tracking multi-

versions of the system. Also a new tool, Revision Control

System (RCS), which promises improvement over SCCS will be

presented. Finally, a summary of useful future maintenance

tools will be presented.

82

WIWI

B. SOURCE CODE CONTROL SYSTEM

The Source Code Control System (SCCS) is a software tool

designed to manage source code. It provides facilities for

storing, changing, and retrieving all versions of individual

modules. When a change is made, SCCS records what the

changes are, why they were made, who made them and when.

SCCS also keeps the old versions; this allows SCCS to

retrieve any version of the text. SCCS handles synchroni-

zation of multiple readers and writers, as well as

attempting to protect users against interruptions or

crashes. In projects with more than one person, SCCS will

ensure that no two persons can eait the same file at the

same time.

There are two implementations of SCCS: one for the IBM

370 under OS and one for PDP-11 under UNIX [Ref. 391. SCCS

uses the operating system protection mechanism to control

the creation and destruction of text.

SCCS treats each module as a set of related sequences of

source code, each member of which represents one version of

the module. Each set of changes to each module is stored as

a discrete delta. The deltas resulting from a series of

changes are strung together in a chain [Ref. 7]. Figure 7.1

shows a module which has been changed three times. The

source code of the module is accessible at each of the four

points at which deltas where added.

83

4I

ii1.2 1.31.

Figure 7.1 Release 1 with Four Levels

When coded, a new module is said to be at release 1.

Each delta represents a new level. Deltas are named by

their release and level numbers. In Figure 7.1, the first

delta represents release 1, level 1, the second represents

release 1, level 2, etc. When an enhancement is needed for

this module, the programmer makes a copy of the most recent

version of the module and then begins modifying that copy.

The programmer just adds more deltas to the end of the chain

when using SCCS, specifying that they belong to a new

release, for example, release 2. As Figure 7.2 shows two

1.1 1.2 1.3 1.4 2.1 2.2
Figure 7.2 Release 2 with Two Levels

84

new deltas have been added to release 2. Deltas may only be

added at the end of the release; the system will not permit

a delta to be inserted between deltas 1.3 and 1.4 for

example.

Two kinds of special deltas give flexibility in

controlling the effect of deltas. The first is optional

deltas.. Optional deltas in all respects are like normal

deltas, except that when added they are associated with an

arbitrary option letter. An optional letter would be

assigned to specific customers, and those optional deltas

would be used to install "temporary fixes" appropriate only

for one customer, with the idea that such fixes would be

incorporated into the standard product in the next release.

Optional deltas can be used for other similar purposes.

The second kind of special delta is one which, when

applied, explicitly forces other deltas to be applied or

not, by either including or excluding them. A list of

deltas to be included or excluded is specified when such a

delta is created. Most often the exclusion is used simply

to correct mistakes. For example, if after delta 2.3 is

added, it is found to be undesirable, the programmer might

add delta 2.4 which excludes it. From the view point of

control, this form of error correction is safer than

allowing the programmer to actually delete a delta, since no

potentially necessary information is lost.

85

A delta which includes and/or excludes other deltas may

be optional. Additionally, a delta which includes and/or

excludes other deltas may in turn be included or excluded by

some other delta. If one delta includes another delta, and

the other delta excludes that same delta, the chronologi-

cally newer of the two including/excluding deltas has

precedence [Ref. 71.

1. Identification

The SCCS identification permits the correct version

of source code to be determined from information such as

version number, date, time, etc. The source code that was

used -to make the load module may later be retrieved from

this information alone. On some systems where all code is

maintained with SCCS, a user can easily identify the version

of any program, without examining the source-code.

2. Protection.

Only authorized programmers can add deltas to

certain modules. While a programmer is working in one

release it is locked and no one can add a delta to a locked

release. The only access to a module is through SCCS.

3. Documentation

The SCCS automatically records what the change is, ..

who made it and when it was added (date and time to the

nearest second).

86
*,1 %'

I,

-- .. -. .~ ~.,,- v .-..-.. -- . -

C. REVISION CONTROL SYSTEM

Revision Control system (RCS) is a software tool that

helps like SCCS in managing multiple revisions of text. It

was developed by Walter Tichy at Purdue University and was

intended to improve the deficiencies of SCCS [Ref. 8].

The basic function of RCS is that it manages revisions of

text. RCS stores and retrieves multiple revisions-of text,

logs changes, identifies revisions, merges revisions, and

controls access to them. The space overhead of storing

multiple revisions is minimized by saving only the

differences between successive pairs. The SCCS is limited

in that it treats each system part in isolation and does not

consider configurations of parts. RCS avoids this

limitation, and corrects some other design flaws according

to Tichy. SCCS is implemented with forward and merge deltas

while RCS uses reverse and separate deltas which improves

its performance considerably. Another improvement is that

the user of RCS can specify the working file, or the

revision file, or both when manipulating files rather than

referring to the SCCS database file names. The commands

were also more mnemonic.

The access control in SCCS is sometimes too strict. If

a revision is locked, it is impossible to force the lock

unless one has extra privileges which will leave no trace of

the action. RCS has a more flexible approach for forcing

87

w , ,- * *% -. .. % ,%, - %- %- ,-, * .

the lock with a special command which will always send a

message to the mailbox of the user whose lock was broken.

Thus, RCS allows work to proceed while delaying the

resolution of the update conflict.

RCS identification is not complicated. Program versions

can be named instead of being restricted to numbers as in

SCCS. SCCS provides no symbolic revision names making it

awkward to specify which revisions constitute a specific

configuration if the revisions do not share the same

numbers.

1. The Revision Tree

In some situations where two programmers modify the

same revision and want their modifications to remain

separate, RCS is instructed to maintain two revisions with a

common ancestor. These two revisions may again be modified

several times giving rise to a tree with two branches [Ref.

8]. A igure 7.3 illustrates an example tree with four

branches not counting the trunk which is the main branch.

The revisions are numbered 1.1, 1.2, . . . , 2.1, 2.2, etc.

Every revision in the tree consists of the following

attributes: a revision number, a check-in date and time,

the author's identification, a log message, and the actual

text. All these items are determined at the time the

revision is checked in.

88

Reverse Deltas

2. RCS Auxiliary Commands

There are several auxiliary RCS commands. There is

a command which displays the log entries and other

information about revisions in a variety of formats. Also

there are commands which shrink and expand the access list,

change the symbolic tables, reset the state attributes of

revisions, and delete revisions. There are facilities to

lock and unlock revisions, as well as to "force" locks.

Forcing a lock is sometimes necessary if a programmer.

forgets to release his locks.

89

A special option permits the joining of revisions. The

resulting revision can be edited or checked back in as a new

revision.

D. OTHER USEFUL MAINTENANCE TOOLS

In a project conducted for the Rome Air Development

Center (RADC) by Advanced Information and Decision System

(AI&DS) the final technical report [Ref. 40] defined and

proposed some software maintenance tools that if

implemented, would help increase productivity, improve

reliability, and lower costs. The group surveyed the

"terzature and conducted extensive interviews with

maintenance programmers and managers at three Air Force C31

sites. Also a questionnaire, designed to assess maintenance

problems in more depth was sent by the group to selected

personnel at all the interview sites.

A summary of these tools is below:

- Programming Manager assists the programmer by
systematically applying administrative and technical
policies, as well as helping apply both general and
application-specific jrogramming techniques and methods.

- Intelligent Editor provides facilities for manipulating
programs at several conceptual levels (e.g., textual,
syntactic, semantic, and intentional), and provides an
intelligent interface to other tools.

- Documentation Assistant is a tightly woven collection of
tools for creating, structuring, maintaining, and
accessing all forms of documentation.

- Style Analyzer checks programs for adherence to
programming standards and style guidelines (which are
expressed with a specification method that is
independent of the analysis process itself).

90

] ~.fi

-* w A J a h

- Metrics Tool Set provides tools for measuring,
analyzing, and assessing various properties of software
systems over their lifetime.

- Annotation Language is a method for extending a
programming language by allowing annotations which
specify state properties and other aspects of programs
that cannot be conveniently expressed in the programming
language itself.

- Change Propagation Detector analyzes a program for
effects of program changes.

- Test Cast Analyzer allows the output produced by test
runs to be automatically checked for correctness, based
on a formal (or informal) specification of what the
output should look like.

- Intelligent Tutor uses a knowledge-based approach to
teach programmers about programming languages and
programming environments, using the tools themselves.

Several of the proposed tools are less comprehensive,

attempting to solve smaller problems. These tools provide

capabilities that may already be available, but they also.

employ advanced techniques which provide much greater depth

and sophistication than existing tools.

91

s!~ tit

VIII. CONCLUSIONS AND RECOMMENDATIONS

Since software maintenance dominates the software life

cycle in terms of effort and cost, it is vital to find

effective ways to reduce or make more efficient the software

maintenance effort. Otherwise, maintenance efforts may

absorb all programming resources, leaving nothing for the

development of new software.

Maintenance tasks are often more difficult than new

development tasks and thus. require very skillful programmers

and good management control. Changes have to be managed

carefully in order not to jeopardize the integrity of

the software or increase its complexity.

Since it is critical that software change control be

emphasized, accurately determining the precise type and

amount of control for software maintenance is vital.

Software configuration management techniques are the result

of that determination and should be incorporated into

software projects.

The management of software maintenance has to establish

certain policies and procedures to control the maintenance

process especially controlling the source change through the

use of software tools which promise effective results.

Changes should not be granted just because the users ask for

92

them. An evaluation of the effort, cost, impact on the rest

of the system and the risks of doing the change, has to take

place before implementing the change. Only those changes

that are cost-effective and needed should be approved.

By implementing the change control model proposed by the

author, maintenance can be managed with a high degree of

control and visibility. Configuration change control is an

essential element in managing projects which contain

numerous change requests.

By implementing software tools which control access and

changes to source code such as SCCS and RCS, control can be

made ::easier. Changes can be tracked and different versions

can be identified and retrieved. Also simultaneous

modification of the same file by more than one programmer is

prevented.

A framework has been proposed for program maintenance

change control. This framework should be implemented and

tested on various sizes and types of software systems

to discover its effectiveness in achieving the organiza-

tional goals and how much savings in time and money is

achieved.

One of the problems of maintenance is the lack of

knowledge about maintenance. Maintenance awareness and

knowledge must be transferred to students, programmers, and

managers. Computer science curricula should present the

93

awareness that software must eventually be maintained.

Computer science courses should be devoted to analyzing,

debugging, and solving problems in existing software. One

will appreciate good development methodologies after he has

worked with poorly designed and coded programs.

Software maintenance management must be developed more

fully to give the manager the techniques and knowledge

needed to ensure that the task is done correctly and

economically. Management principles can be applied to

software management, but the applications differ because of

time scales, urgent decisions, levels of effort, and the

changing nature of software.

Further research is needed in software maintenance

techniques and tools. There are few developed techniques

and guidelines for organizing, working, or managing a

maintenance effort. More data on software maintenance

activities is needed to allow the development of a

comprehensive process model of software maintenance. This

would help in understanding what maintenance is and how to

control it. Such an understanding would point the way to

administrative and methodological improvements, as well as

identify critical needs that could be addressed by

maintenance tools.

94

-. C

LIST OF REFERENCES

1. Boehm, B. W., "Software Engineering," IEEE
Transactions, Computers, pp. 1266-1271, December 1976.

2. Lintz and Swanson, Software Maintenance Management,
Addison-Wesley, Reading, MA, 1980.

3. Martin, James and McClure, Carma, Software Maintenance:
The Problem and Its Solutions, Prentice-Hall
Publishing, Inc. 1983.

4. Boehm, B. W., Software Engineering Economics, pp.
35-55 and pp. 641-690, Prentice-Hall Publishing, Inc.,
1981.

5. Bersoff, E. Henderson, V. and Siegel, S., Scftware
:-Configuration Management, Prentice-Hall Publishing,
Inc., Englewood Cliffs, NJ, 1980.

6. Buckel, J. K., Software Configuration Management, M.A.,
FBCS, 1982.

7. Rochkind, Mark, "The Source Code Control System," IEEE
Transactions on Software Engineering, Vol. SE-l, No. 4,
December 1975.

8. Tichy, Walter F., "Design, Implementation, and
Evaluation of Revision Control System,. IEEE, 6th
International Conference on Software Engineering, pp.
58-67, September 1982.

9. Comptroller General Report to Congress of the United
States, FGMSD-80-38, Wider Use of Better Computer
Software Technology Can Reduce Cost, 29 April 1980.

10. Parikh, Girish, "The World of Software Maintenance,"
IEEE Tutorial in Software Maintenance, p. 7, 1983.

11. Owitz, M. Zelk, Principle of Software Engineering and
Design, pp. 2-11, Prentice-Hall Publishing, Inc.,
Englewood Cliffs, NJ, 1979.

12. Fleckenstein, W. D., Challenges in Software
Development, Bell Laboratories Computer, pp. 60-64,
March 1983.

95

AD-RI71 391 CONTROL AND POMAEMENT OF THE SOFTNARE MAINTENACE
CHANGES PROCESS(U) NAVAL POSTGRADUATE SCHOOL MONTEREY
CA N A AL-SUBAXEI JUN 96

UNCLS SOMEONE F/G 9/2 NL

L3-6

11L1 11L 11.

MICROCOPY RESOLUTION TEST CHART

NATION~AL BUREAUJ OF STANDARDS-1963-A

13. Lientz, B. P., Swanson E. B., and Tompkins, G. E.,
"Characteristics of Application Software Maintenance,"
Communication of the ACM, Vol. 21, No. 6, pp. 466-471,
June 1978.

14. Swanson, E. B., "The Dimensions of Software
Maintenance," IEEE Computer Society Proceedings of the
2nd International Conference on Software Engineering,
pp. 492-497, October 1976.

15. National Bureau of Standards Report NBS-500-106,
Guidance on Software Maintenance, by Roger Martin and
William Osborne, 1983.

16. McClure, C., Managing Software Development and
Maintenance, Van Nostrand Reinhold Company, New York,
1978.

17. Myers, G., "Selection from Composite/Structure Design,"
Techniques of Program and System Maintenance, pp. 205-
206, Etnnotech, Lincoln, NE, 1980.

18. Boehm, B., Brown, J., Kaspar, H., Lipow, M., MacLeod,
J., and Menit, M., Characteristics of Software Quality,
pp. 3-1 to 3-26, TRW/North-Holland Publishing Company,
New York, 1978.

19. Brooks, F., The Mythical Man-Month, Addison-Wesley,
Reading, MA, 1975.

20. Sommerville, Ian, Software Engineering, Addison-Wesley,
London, 1982.

21. Kepner, Charles H., Tregoe, Be'njmin B., The Rational
Manager, McGraw-Hill Book Company, New York, 1965.

22. Reutter, J., "Maintenance is a Management Problem and
Programmer's Opportunity.," AFIPS Conference Proceedings
on 1981 National Computer Conference, Chicago, Vol. 50,
pp. 343-347, May 4-7, 1981.

23. Porter, W., and Perry, W., EDP Controls and Auditing,
p. 10, Wadsworth Publishing, 1981.

24. Mitchell, David, Controlling Without Bureaucracy,
McGraw-Hill Book Company, 1979.

25. Stout, Russell, Jr,, "Management or Control?", The
Organizational Challenge, p. 14, Indiana UniverITy
Press, Bloomington, 1980.

96

Mom- - ,a -g r-- . , , , - . ., ;W~y<. ,.'?-y V ,>,' -, - . l "%, %

26. Merchant, Kenneth A., Control in Business Organization,
Pitman Publishing, Inc., 1985.

27. Williamson, Oliver E., Corporate Control and Business
Behavior: An Inquiry into the Effects of Organlza-

=iona3 Form on Enterprise Behavior, Prentice-Hall
Publishing, Inc., Englewood Cliffs, NJ, 1970.

28. Pope, A. Berett, "Software Configuration Management: A
ouality Assurance Tool," IEEE Engineering ManagementConference, pp. 56-66, 1983.

29. Samaras, Thomas T. and Czerwinski, Frank L.,Fundamentals of Configuration Management., pp. 27-58,
Wiley-Interscience, 1971.

30. Bersoff, E. H., Henderson, V. D. and Siegel, S. G.,
"Software Configuration Management: A Tutorial,"Computer, pp. 6-14, January 1979.

31. Jensen, R. W. and Tonies, C. D., Software Engineering,
:P.p 39-40, Prentice-Hall Publishing, Inc., Englewood
Cliffs, NJ, 1979.

32. Searle, L. V., Air Force Guide to Configuration
Management, Systems Development Corp., Santa Monica, CA

33. Brayn, W., Siegel, S., and Whiteleather, G., "Auditing
Throughout the Software Life Cycle: A Primer,"Computer, Vol. 15, pp. 56-67, March 1982.

34. Department of the Air Force Military StandardMIL-STD-483A, Configuration Management, 4 June 1985.

35. Parnas, D., "Designing for Ease of Extension andContraction," IEEE Trans. on Software Engineering, Vol.SE-5, No. 2, pp. 129-137, March 1979.
36. Perry, William E., Managing Systems Maintenance,

Prentice-Hall Publishing, Inc., 1983.
37. Glass, Robert L. and Noiseux, Ronald A., Software

Maintenance Guidebook, Prentice-Hall Publishing, Inc.,1y81.

38. Glasser, A., "The Evolution of the Source Code Control
System," Software Engineering Notes, 3(5), pp. 122-125,
1978.

97

_ ~~~~~~~ ~ O . . , , ',; •, ., ,

39. Ritchie, B. M. and Thompson, K., "The Unix Time-Sharing
System," Commun. Ass. Comput. Mach., Vol. 17, pp. 365-
375, July 1974.

40. Dean, Jeffrey and McCune, Brian, Advanced Tools for
Software Maintenance, RADC-TR-82-313, Final Technical
Report, December 1982.

98

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314-6145

2. Library, Code 0142 2
Naval Postgraduate School

Monterey, California 93943-5000

3. Department Chairman, Code 52

Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

4. Dr. Gordon Bradley, Code 62BZ
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

5. Dr. Bruce MacLennan, Code 52ML 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

6. B. General Khaled Bin Sultan Bin 2
Abdulaziz
Commander, Royal Saudi Air Defense Forces
Ministry of Defense and Aviation
Riyadh, Kingdom of Saudi Arabia

7. Commander; Center of Maintenance and 2

Technical Support for Royal Saudi
Air Defense Forces
Post Office Box 5380
Jeddah, Saudi Arabia

8. Commander, Air Defense Forces Institute 1
Royal Saudi Air Defense Forces
Jeddah, Saudi Arabia

9. CAPT Nasser A. Al-Subaiei 2
Post Office Box 5380
Jeddah, Saudi Arabia

99

'p

10. Library 2
King Abdulaziz University
Jeddah, Saudi Arabia

11. Library 1
Kind Saud University
Riyadh, Saudi Arabia

10

100

I

