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3t
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ig% of the Earth. Each model is investigated for transfers in which the

148,

launch point is in the same plane as the target orbit (coplanar) and
in which the launch point is not in the target orbit plane (noncoplanar).
Parameters varied during the analysis include transfer time, target

radius, initial position of the target in relation to the launch point,

P
},_ the latitude of the launch point, and the direction of the transfer
R

O, trajectory, i.e. posigrade or retrograde. Cost comparisons are made
!.9’,‘

. between the various cases, and generalizations indicated.
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- a semi major axis length

ﬁf . c effective exhaust velocity (eqn 2-2)
)
ol chord length
A
B

: Co planet/moon surface
j cf target orbit
g
3' e eccentricity vector

K
‘f E eccentric anomaly

\
= g gravitational acceleration vector
y ¢

o

4] G(x) gravity gradient matrix

)

[y .

h angular momentum vector

Hamiltonian function

o]

! 1 identity matrix
J cost functional
N characteristic velocity
a
3 M,N,S,T partitions of the state transition matrix
i
’
m spacecraft mass

contact force/unit mass of planet surface on launch vehicle

nodal vector

TNy
=]

{ P primer vector

§ P primer vector magnitude

i period of an orbit

; r position vector !
1& R radius of target to be intercepted
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s semi perimeter of space triangle

S planet surface constraint

t time \
i tf specified transfer time of flight
%? tm minimum energy flight time
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%& U unit thrust vector
iR
(2 v velocity vector
f& AV change in velocity due to thrust
;g V rot velocity of planet/moon due to rotation
2’ X instantaneous state vector $
;f Gy B auxiliary angles in Lambert's problem ﬂ
iz ) initial lead angle of target | \
X
- Fk trajectory k
qg r thrust acceleration magnitude
L ) first variation of variable
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£ small quantity
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a Mo gravitational constant
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i. state transition matrix
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Lagrange multiplier function vector for planet

A surface constraint
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primer vector for planet surface constraint

A0 3 L " i, y
e ted 4 5’3‘."';!\'. !’."l

1

. st MSOOH V5.0
! A RO O
. "" Je¥ ¥ '.’ ."l—?“t"'h:t"’q.',b RO AT

PAVIRTE IS )

A Ae - o ' ‘W) L Cr, K "y EIE DU Mo Mt R
Rt A 2 A DO gD LALAIN S S



TRy iy

-

e A

= ._;;i P

* . Dn g
-4

R—
i, | Pl NP

PR XXX
)

ES
- e

superscripts
T transpose of vector or matrix
+ instant after an impulse
- instant before an impulse
-1 inverse of a matrix
subscripts
o an initial state
f a final state
m an intermediate state
a minimum energy value in the Lambert Problem
1,2 reference to number of thrust impulse
k general numerical subscript
P periapse
H Hohmann condition
other
. first derivative
. second time derivative
|| magnitude of-vector
] partial derivative
d noncontemporaneous variation

ix

B A A s N OO
LM AT OO L 47 ) m



8
‘539

3 Af

R CHAPTER 1
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X

AN

INTRODUCTION

R

P

r_‘ The increased use of the Space Transportation System (STS) or
j*; space shuttle, has increased attention on the area of optimal space

4, trajectories. Of special concern are minimum fuel trajectories. If
[3n)

'bi- less propellant (fuel plus oxidizer) can be carried, then more payload

-
~ 2

weight can be thrust into orbit, fuel can be saved, a smaller spacecraft

e
1

S

can be used, or any combination of these.

Yy Il
L] .-“

l-i 1)

The impulsive thrust approximation is wvalid if the thrust is

4 AL

large enough that the thrust duration is negligible compared to the

v

transfer time. Thus the problem is to enter or intercept a desired

-~

P’ ",’

'¢t, planetary orbit using impulsive thrusts which minimize propellant

>

R X . .

- (hereafter called minimum "fuel"). This problem is typically called
k'. Lawden's Problem due to his extensive work in minimum fuel trajectories
A

\ j in an inverse square gravitational field using a variable thrust engine
L) -.’

el

Al having constant exhaust velocity and unbounded thrust magnitude (30).

A

?:: The impulsive solution for an entire trajectory is composed of coasting
f.‘ (no engine burn) arcs separated by a finite number of impulses. Optimal
!

ey . . -

P impulsive solutions can also be useful as starting conditiomns to

::{ determine optimal finite thrust solutions.

>,

ftj Most research has concentrated on orbital transfer trajectories
A

; using an unspecified transfer time, i.e. time-open. However, time-open
:l‘ < . R . N P

5-: optimal solutions can require excessively long or even infinite transfer
AL

[

51’ times. Recent studies have explored orbital rendezvous for a specified
:

L

DY

‘nﬁ‘-.’
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3h
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)
27 |
R transfer time, i.e. time-fixed (10, 18, 29, 37). The time-fixed case is E
h: more interesting since most manned space systems have time constraints
\
'és due to life support systems. Time-fixed transfers would also be appro-
L~
DN priate for space rescue missions.
. !
5;3 Scarce attention has been granted the area of minimum fuel orbital %
o
:E: interception. Rather than rendezvous with another orbiting body, i.e.
;‘-.
e match position and velocity, interception requires that the space vehicle
fﬁ match only position. One application would be a fly-by for visual
W
:'3 inspection. Another would involve a typical two-payload space shuttle
;‘ mission. Using a technique similar to a paperboy riding down a sidewalk
:E on his bicycle and throwing newspapers onto porches without entering
fis every driveway or walk, the shuttle would intercept a point in the first
| desired orbit and launch the first payload without actually expending
'g fuel and entering the orbit. The shuttle would then intercept a point
:j in the second orbit, launch the payload, and return to Earth. If it
1J entered every orbit, the shuttle would require a minimum of five velocity i
;: changes (launch, in and out of first orbit, in and out of second orbit).
52 By intercepting the desired orbit insertion point and allowing each
g ' payload to use its own propulsion system to enter the desired orbit, the
iz& shuttle could save fuel. Less fuel would be expended by the shuttle,
SN
i;; which would require a minimum of two velocity changes (launch and return
:T to Earth). Each payload would require a velocity change, but less fuel
JSE would be expended because the mass of each payload would be significantly
3% less than that of the shuttle. Thus the two shuttle velocity changes
T: plus the two payload velocity changes would be less than the five required
 § if the shuttle entered each orbit. This poses a potential significant
lﬁs fuel savings and the possibility of increased payload.
%
5

v B R P AL AL oL oV AN
. -}\-.’:‘.: 4\ J,'\'f\".
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This thesis analyzes the problem of multiple-impulse, minimum-
fuel, direct ascent, time-fixed orbital interception. Following are the
objectives of this study:

a) Design and construct a computer program to obtain time-fixed,
minimum fuel, impulsive, direct ascent intercept trajectories.

b) Apply the method to the time-fixed, direct ascent intercept
from a specified initial position on a planet or moon's surface to a
specified target.

c) Show the effects of different target orbit radii and initial
phase angles.

d) Show the effects of inclination of the target orbit with
respect to the launch point.

e) Show the effects of planet/moon rotation on the intercept.

To obtain minimum fuel optimum intercept trajectories, the
following assumptions were made:

a) The planet/moon is spherical and has negligible atmospheric
effects.

b) The spacecraft has a zero velocity relative to the planet
immediately before the first impulse is applied.

c) A planet-centered, inertial, Cartesian coordinate system is
used.

d) Launch is from an arbitrary point on the planet/moon surface.

e) The target is in a circular, equatorial orbit.

f) The intercept must be made in a finite, fixed time.

g) The engine burn times are very short compared to the transfer

time. This allows the impulsive thrust approximation to be made.

[ 0N 3
ACIASASSASN0
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N h) The body from which the launch is made is the sole gravita-
o tional source.

&

jg i) Only one target is to be intercepted, i.e. no multiple

"

K interceptions are to be made.

A Two planetary models are investigated: a nonrotating planet and
E. v

’

>§ a planet having a rotation period which is approximately 17 times the

.

Kis . .

Al circular orbit period at the surface (comparable to Earth). The non-

43

:& rotating model approximates celestial bodies which have a very low

Q'g

? rotation rate and virtually no atmosphere, such as the Moon (for which
W

)

;‘ the rotation period is approximately 400 times the circular orbit period
-

‘$ at the surface). The model which includes planet rotation is intended
:} to be a first approximation to optimal Earth intercepts. It is included

to illustrate the effects of planet rotation.
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b CHAPTER 2
0
S
* NECESSARY CONDITIONS FOR AN OPTIMAL, IMPULSIVE TRAJECTORY
TS
&é 2.1. Introduction
‘
ﬁ‘ General optimization theory provides conditions for which a cost
W functional is minimized subject to a set of constraints. The optimization
i
N
v
53 problem presented herein is basically to minimize propellant (fuel)
(
Y
gg expended in an inverse square gravitational field using the impulsive
F4
:f thrust approximation for a fixed transfer time. Minimizing propellant
d
tx used is the same as maximizing the final spacecraft mass, i.e. the change
2y
'ﬂ in mass is assumed to be entirely due to the consumed propellant. The
i necessary constraints are the differential equations of motion of the
1)
o spacecraft, the terminal position of the target to be intercepted, and
o the initial position and velocity of the spacecraft.
’.‘l‘
:' 2.2. Cost Functional
53 A general form of the cost functional to be minimized in an
\f
A'c
optimal control problem over a time interval to < t < ty is as follows:
4
4 ‘.
W
;:! J =9 [X(tp),t ] + f L(X,U,t)dt 2-1
M "
'JZ (o)

where X (t) is the instantaneous state vector of the system and U (t) is
9] the control vector.
Yy The impulsive thrust approximation requires the thrust durations
- to be short compared to the time of flight. This is the case for high

b thrust rocket engines where the thrust acceleration greatly exceeds

‘ N N0 M MO
7(‘%"2‘\‘-}“"i"":!"”u"’ﬁ?\‘g,‘ ,l"’l‘gel'.g, Fq:t‘g, |:I r‘!‘.‘i 5 Q’¢ i'. c'. 2y, l‘|‘l‘|‘l ht‘.,!‘ I'a t\ O ."‘\ ¢ ' t‘ "‘l» "‘
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the gravitational acceleration. Ignoring the gravitational acceleration,

the vector change in velocity due to the thrust impulse is

AV = ¢ 1In (mo/mf) U 2=2

where m and m. are the initial and final masses, ¢ is the effective
exhaust velocity of the engine, and U is the unit thrust vector, i.e.
AX is in the direction of the thrust. For a single impulse, maximizing
me is equivalent to minimizing lA!l. Thus, for N impulses, maximizing
me corresponds to minimizing the sum of magnitudes of AV, i.e.

|avi| 2-3
1

[
[]
[ e I8~

i
where

lavi| = (avi . avi)t/? 2-4

and J is termed the characteristic velocity.

Therefore, minimizing the fuel expended, maximizing the final mass,

m(tf), and minimizing the sum of the magnitudes of the velocity changes,

are equivalent optimization criteria for the impulsive thrust problem.

2.3. Equations of Motion

The equations of motion of a spacecraft, thrusting in a central

force field, can be written in terms of the orbital radius vector, r, as

Ine
[[]

v

v =

g (x) +TU 2-5
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where g (r) is the gravitational acceleration vector, I' is the thrust
acceleration magnitude (0 < I < T max), J is the characteristic velocity
to be minimized, and U is a unit vector in the direction of thrust. 1In
the impulsive case, J is the sum of the magnitudes of the instantaneous
velocity changes, as discussed in the previous section. Define a state

vector as

14
"
< In
N
)
o

(4"

Rewrite the equations of motion (2-5) in first order form as
. v
X=f & LU t)y=|g(x)+TU 2-7
T
where the control variables are T and U.

For a high thrust engine, one can make the impulsive thrust
approximation by assuming unbounded thrust magnitude (I'max + «), Then
the engine is eithevr off (I' = 0) or provides an impulsive thrust of
infinitesimal time duration.

To determine a minimum fuel solution, one must solve the optimal
control problem over a fixed-time interval t, <t f_tf. This solution

must minimize the final value of J and satisfy the equations of motion

and the orbital boundary conditions of the intercept problem.

2.4, Necessary Conditions

The necessary conditions for the optimal trajectory are expressed

in terms of the Hamiltonian function (8, 30):
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l@:'l"
"f.'." T
H=A" () £ (X, T, U, t) 2-8
Y
.
,/ where A (t) is a vector of Lagrange multiplier functions, also called
iy
FYe
at’g':‘ adjoint variables. Partitioning the adjoint vector into components
W
;‘:';‘ similar to the state vector we get
K
::*:‘t
o
’.“.. A
i -
PRl Y
A=A 2-9

z.f‘!i
'
iy .
:.::'. The Hamiltonian (2-8) now becomes
g -
‘g' H=A' V+AY [g) +TUl +A,T 2-10
b :f - - v = = J
25
p Three of the necessary adjoint equations for the problem are given by
,; Lawden (30), Bryson and Ho (8), and Prussing and Chiu (40) as

_l
: T .. = -\T -
R A 9H/3r = -A", G (x) 2-11
RIG0
" T oo = T -
g::g.: l\v = BH/BY_ = A r 2-12
1)
¥
1.:!,' .
i AJ = -0H/3J = 0 2-13
e
ﬁ:‘; where G (r) is the symmetric gravity gradient matrix dg (r)/dr. The
50'.; .
:::é: boundary conditions on Ar and _}\_V depend on the terminal state constraints,
Wy
&
:" r (tf) and V (tf), but, because the characteristic velocity is uncon-
:::0 strained, the constant value of its adjoint variable is

o
%
::!'.. XJ(t) =1 2-14
N
:} An additional necessary condition is the Pontryagin Minimum
'\§ Principle which states that the control variables must be chosen to
LA
s

~
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minimize the instantaneous value of the Hamiltonian (8). Thus, to

C o . c e T . .
minimize H, we minimize the dot product Av U, i.e. align the thrust
vector in the opposite direction of the adjoint velocity vector. Lawden

termed this the primer vector,

P (t) ==-A, (v) 2-15
Noting that the optimal thrust direction is aligned with the primer
U=7pP/P 2-16

where P is the magnitude of the primer vector, and that the adjoint to

the position vector, Ar’ equals the primer vector time derivative,

P,

A, =P 2-17

one notes that equations (2-11) and (2-12) can be combined to obtain
P=G(r)P 2-18
The Hamiltonian becomes

g =pT

V-Plg-(P-1)T 2-19

The primer vector satisfies the same differential equation (2-18)
as the first-order variation in the position vector §r about a reference
no-thrust orbit. For an inverse square gravitational field, convenient
forms of the solution to this equation are given by Glandorf (15) and by

Gravier, Marchal, and Culp (17).
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R From the Hamiltonian (2-19) one identifies the switching function
:jf for the thrust magnitude as (P-1). In the continuous thrust case, the
NS

o

:?; Hamiltonian is minimized by choosing ' = 0 when P<1 and T = I max when
Ll :

ot

A P>1. For the impulsive case, ' = 0 when P<1, with the impulses occurring
-
fd@ at those instants where P(t) is tangent to P = 1 from below (30). An
iy

0
;;: arc along which I' = 0 is called a null-thrust (NT) arc. The only pos-
LA

[

! sibility for an intermediate~thrust (IT) arc for O<I<I max is if P =1
RO
dg: over a finite time interval. This is called a singular arc because T
[ A ]

w
]
'bﬁ cannot be determined from the Hamiltonian (2-19).

|,\:v

1t

The necessary conditions for an optimal impulsive trajectory,

25
o, first derived by Lawden, can be written entirely in terms of the primer
>
2N
-i; vector as follows:
" 1. The primer vector satisfies (2-18) and must be continuous

[T\

" »

gy with continuous first derivative.

),

0%
E:, 2. The primer magnitude P<1 during transfer with impulses -
l“' ,

. occurring at those instants for which P = 1.
R.: 3. At an impulse time the primer vector is a unit vector in
N
n
{;, the optimal thrust direction.
Wy .

: 4. As a consequence of condition 2, P =.gT_g = 0 at all

N

2& . interior impulses (not at an initial or final time).

i
E& 2.5. Primer Vector Calculation

}:\ Using the primer vector, equations (2-11) and (2-12) can be

2

AN written as

g

Lt

¢ i
144 .
3
3
}v.
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:5 .
- FE (v) 0 1 P (t)
bz =

::\ = 2“20
3
K P () G (r) o0 P (t)
\‘
0 The solution to equation (2-20) can be expressed as
0¥
s‘ r
P (t) P (to)

=90 (c, t) 2-21
»” . .
! P () B (t,)
W+
4
)
§

where 0 (t, to) is the state transition matrix for the system (2-~20).
. A convenient form of this state transition matrix has been derived by
L)
Glandorf (15). Gravier developed a vector form of the solution for

.'Q
X
3: the primer vector and the time derivative of the primer vector (17).
¥
5 This research uses Glandorf's formulation, which is valid for generally
x
] oriented inertial Cartesian systems, and for circular, elliptic, para-
S
5 bolic, and hyperbolic transfers, but not for rectilinear flight.

By partitioning the transition matrix into four submatrices

M(e, £ N(E, )

o o

o (t, to) = 2-22

-

s(t, to) T(t, to)

the primer equations can more easily be written as

v

(£) =MP (£ ) + NP () 2-23

1o

(¢) =SB (t) +TPE (t) 2-24

)

DO N 100 Yty e (o] ORI PLIR AP, M W P VE ety S oy » OGO HOMDBONRN
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Forcing the primer at the initial impulse time to be a unit vector in
the thrust direction, one obtains
P (to) = A XQ/A Vo 2-25

However, for an intercept, no velocity change is required at the final

time, yielding
P (tf) =0 2-26

Applying (2-26) to (2-23) and (2-24) yields

. S |
P (to) = Nf Mf P (to) 2-27

P (t) M - N Nf'l M) P () 2-28

Thus, knowing the primer vector at the initial and final times allows
calculation of the primer time derivative at the initial time, and

calculation of P and P at any time.

2.6. Constants of Motion on an Optimal Trajectory

If the gravity field is time-invariant, the Hamiltomian (2-19) is
not an explicit function of time. This fact along with the other neces-
sary conditions of optimal control theory implies that H is comstant
over an entire NT trajectory (8). Furthermore, H is continuous across
interior impulses as shown by applying Lawden's necessary conditions.

For an impulsive trajectory the Hamiltonian is

H=P v-plg 2-29

since ' = 0. Since g,.é, and g are continuous across optimal impulses,

the change in H across the impulse is

K"‘l’;‘!t‘T
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Lt AH =P AV 2-30
o
.'i Because the velocity change A V is aligned with the primer
. g
:’ﬁ vector P, and BT P =0, 8H = 0 across an optimal interior impulse. This
| 1]
W continuity of H across interior impulses demonstrates that H is constant
s
e
:,33" along the entire multiple impulse optimal trajectory.
O
?& Another constant of motion applies to an NT arc between any two
iy impulses along a reference trajectory. Premultiply (2-18) by QT and
XN
\ note that G is symmetric to obtain
%
{‘-" T - T ¢
f P"dér -6r P =0 2-31
¥
ye
" .
X 2 Add and subtract P° § V to obtain
105
Pt T «T
d/dt (" § V- P dr) =0 2-32
i
o0
::.‘ Integrating yields
o
N .
ET SV - _?_T 8r = constant 2-33
s\
o
‘:: This is a useful equation in determining optimal trajectories.
L) L .
';. Prussing (39) and Pines (33) have shown the existence of other
:-\‘ constants of motion. However, equation 2-33 and the Hamiltonian,
+
%y
H} equation 2-29, were used extensively in analysis and development of
A
"'(
Sl computer algorithms for numerical results.
s
o
b
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\ CHAPTER 3

THE MINIMIZATION PROCESS

i 3.1. 1Introduction
R
e Based on the necessary conditions of Chapter 2, Lion and

Handelsman (31) developed a procedure for obtaining optimal time-fixed

4
gfﬂ solutions, which is used as a background for the optimal interception
Wl
’*ﬁ problem of this thesis. This procedure has been used by many others,
Lheth
|
P including Jezewski and Rozendaal (26), Gross and Prussing (19), and
25
S
§;j Prussing and Chiu (40). Briefly, the primer vector is first evaluated
D
.fié : along the solution which satisfies the orbital boundary conditions,
,_‘ enforcing the necessary conditions that the primer vector at an impulse
’é: time is a unit vector in the thrust direction and that the primer vector
k,. at the final time is zero (eqns 2-25 and 2-26).

y
”;h The required velocity changes were obtained by solving Lambert's
L) l, .

M
é:ﬂ Problem (Appendix B, 2, 3, 4, 13, 27) for the given orbital boundary
A 2 .
&éa conditions (initial and final radii) and the specified transfer time.
1:- The following theory discusses conditions for the one and two impulse
St
gds case. For more details see references 19, 26, 31, and 40.
r’:'g
l‘a.
) 3.2. Primer on Nonoptimal Trajectory

<Y
3;% Lion and Handelsman (31) expanded the primer definition for any
0
Lo two impulse segment of a nonoptimal trajectory. At each impulse on an
%., optimal trajectory, the primer is a unit vector aligned with the vector
h- L]
ot change in velocity:
Q".
0\

N (..f "o"p"-"n'~. N , ; " . T e A AR
R A - N NN NN
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P (tk) =AV (tk) / AV (tk) 3-1

If the velocity changes on any two impulse segment of a trajectory or the
segment between an impulse time and the final time are known, so is the
primer at each end of the segment. Using the partitioning of the transi-
tion matrix developed in 2-22, the time rate of change of the primer at
either end of the segment is also known, and thus the primer vector,

P (t), and its derivative,.i (t), are uniquely determined over the NT
arc, assuming the N submatrix is nonsingular, i.e. invertible.

In general, the solution of 2-21 for different arcs can be joined
together so that the primer is continuous over the entire trajectory,
since P at an impulse time is a unit vector in the thrust direction.

The primer rate,_é, will be generally discontinuous across each impulse.
In attempting to satisfy Lawden's necessary conditions, Lion and
Handelsman not only extended the primer vector application as demon-
strated above, but also showed how to improve the cost functional by
using information available on the nonoptimal trajectory.

Based on numerical results, Lion and Handelsman's work, and the
fact that for an intercept the final primer vector magnitude must be
zero, certain types of primer vector time histories are possible, as
shown in Figure 3-1. The existence of other types has not been dis-
proved. Only the time history shown in Figure 3-1(a) satisfies Lawden's
optimality conditions. Figure 3-1(b) indicates that an additional
intermediate impulse will improve the cost, while Figure 3-1(c) indicates

that an initial coast will improve cost.
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2 (¢) Initial Cost Indicated

. Figure 3-1. Typical Interception Primer Time Histories.
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3.3. Additional Impulse

Assume there is a reference trajectory Fl that connects the
initial position r (to) on the body of the planet, Co’ to a final
position r (tf) on the target orbit, Cf. Fl may be a one impulse inter-
cept trajectory or a multi-impulse trajectory. Let Fz be a neighboring
trajectory, If Fl and FZ are sufficiently close, and Fl does not contain
any singularities, a linear variational analysis approach may be used,
with higher order terms omitted. Thus the costs on Fl and Fz from

Figure 3-2 are

- + -
onTye Jp=1| Yo -v, |
and -2
. _ + - + -
onTyi Jp = | Mpg = Voo | +1 Yy = ¥y |

where the superscripts (+) and (-) refer to the instants immediately
before and after the impulses. The subscripts (1) and (2) represent
Fl and FZ’ while (o) and (m) denote the initial and midcourse impulse.

For an intercept, there is no final velocity change. From the vectors

at the initial time, note

vi-vtesvt
—0

—20 —lo 3-3

Lion and Handelsman (31), Chiu (10), and Prussing and Chiu (40)
have shown these results lead to the first order change in cost obtained

by adding an impulse as

83 =J3,-3 =&V, (1-PB"U) 3-4

p "n\'p-‘w‘. e ™ ‘n)'
l.ih ‘I-.. * ..! ‘,i

7,472,820 A7y 47



Figure 3-2. Additional Impulse Intercept Trajectories.
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ﬁ
g This change in cost can be made negative if the primer magnitude exceeds
‘.5 Iy . 3 » '3 3
unity at any time along the two-impulse trajectory. This agrees with
N Lawden's condition that P <1 on an optimal trajectory. The greatest
"
s decrease in cost occurs when tm is such that the primer magnitude is a
?‘ maximum and the impulse direction Hm is chosen to be aligned with Bm'
(3
A
Qﬁ Lion and Handelsman show that the differential cost between
14'
o neighboring trajectories is
. ] * . - -+ -
kY 83 = T *-pT yar + @h- ) de 3-5
Q" — m — m —1 m
(3
W
(’ 3.4. 1Initial Coast
2,8
ﬁ Figure 3-3 shows two neighboring trajectories: Tl is a non~
M
R optimal trajectory with an impulse applied at ty and r (to); PZ is a
" A
’L i
nonoptimal trajectory remaining on the surface of the planet or moon,
>
‘} with an initial coast until time tl = to + dto and the impulse applied
Ve
o at r (t;). Both trajectories intercept r (tg) on orbit C..
l
Since there are differences in position, velocity, and time at
1)
» the initial impulse (if the planet is rotating), a noncontemporaneous
e e .
] variation is used, i.e.
A
i = - t -
L dr () =r, (¢) -, (£) 3-6
ﬂ*‘
&
Cal
j where I, (tl) is the position vector on Fz at time t» andlgl (t)

3 X3

the position vector on Fl at time t. Using dt - t, - t and Or (t) =

1

I, (¢) - b2 (t), 3-6 becomes to first order,

AN

d r (t) = ér (t) +il (t) dt 3-7

N

‘i The costs on [, and ', are
i 1 2

3

L -
) () '»
Otary X MO DA L
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Figure 3-3. 1Initial Coast Intercept Trajectories.
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— + =
on e gy =} Vv, 0-v |
and 3-8
on FZ: =I!20 —YZO[
For a nonrotating planet, Xl; = 22; = 0, but they are nonzero for a
rotating planet. Thus the costs become
— + = —
Jl‘ly_lo‘zlol‘lA!]_l
and v 3-9
— + = —
Jz'l!zo‘yzol‘IA.‘lzl
But
(t ) = V (t )y +d V (to) 3~-10
The difference in cost is
di =J, R AN IR AR A 3-11
Using the fact that
+ + +
X20 - !lo +d¥
and V. =v. +dV_ 3-12
—20 —lo —0
One can rewrite equation 3-11 as
_ + - + - _ + -
ANV CRAE AN R SR AN 13

o AR S AR T AR
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22
or dJ = | AV, + 084y [ - | AV, 1 3~14
Expanding the first term yields
= T A 1/2
]Aglo +Adv | = [(AV), + AdV )" (AV;  + AdV )]
= T T
[(Aglo) Azlo + 2(A--Ylo) Ad!o
+ aav T adv 1Y/2 3-15
-0 —o
Ignoring higher order terms, e.g. AdyoT Adyo, 3-15 becomes
\ _ T 2.1/2 -
lav,  +adv_ | = AV, [+ 2 (v, )" Adv_/Av, % 3-16
) _ _ T 1/2
where AV, = IAglol = v, )" av, 1770
Use the binomial series expansion
1/2 .
(1 +¢) =1+ 1/2 € + higher order terms 3-17
and drop the higher order terms to obtain
> T 2
|V, +8dv | = av (1 + (&v, )" Adv /av, 7] 3-18
Substituting 3-18 into 3-14 yields
dl = AV, (L + AV, T A4V /av. 2] - av
lo —lo -0 lo lo
- T AdV
or dJ = A!lo Ad_Yo/AVlo 3-19
Using the primer definition the difference in cost, to first order,
between two neighboring intercepts, one with an initial coast, may be
written as
. T
N = -
;: dJ P, Ad !o 3-20

" A
; .Ub:t'\l

L) WY A RE
iy \“tn .
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23
v _ o T + -
or dJ = 20 (d Xo d !o ) 3-21
+ + ., 0+
where d yo = d!o + !o dt0 3-22
and, because § V. = 0
Y5 A
4V =V dr 3-23
-0 -0 o
From Section 2.6, it was found that
ET ' -.ET § r = constant 3-33
Applying this at the initial and final times yields
T T T = T
B, OV, - B, Or, = By Vg - BT Org 3-24
But for an intercept, Ef = 0 and §£f = 0, simplifying 3-24 to
PpTev =2 7Tor 3-25
0 -0 -0 -0

In the case of launching from the surface of a planet, Vo is
not continuous due to the contact force per unit mass, N of the
planet on the vehicle before the first impulse. Rewrite equation 3-21

using equations 3-22 and 3-23.

+ .

T + @t - v e 3-26
0 -0 o]

dJl =P [sv
-0 o

Because gravitational acceleration is a function of position only and is

therefore continuous, this becomes

T +
as = 2T (6v. " - Nt ) 3-27

Using equation 3-25 the cost difference becomes

R Eal
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24
= .T - T -
dJ = P o Sr Eo N dto 3-28
Using the fact that on the transfer orbit
§r =dr -V + dt
- —0 -0 —o o
and dr =V~ dt
-0 -0 o
one obtains
F +_ -
SR VAR AR
= -Ago dto
Substituting into 3-28 yields
dJ = -[Av_PT P+ PT N] dt 3-29
o—-—0-0 =—o0— )

The first term is the usual term which indicates an initial coast on an

T

initial orbit if go P > 0. The second term is due to the fact that the

vehicle is initially not in orbit, but at rest on the surface of a planet.
Thus the cost can be decreased by an initial coast if the term in the

bracket in equation 3-29 is positive.

3.5. Condition for Optimal Initial Coast

To evaluate various trajectories for optimality, the cost
functional must be represented using known quantities. It can then be

determined how to minimize the cost to obtain local optimality condi-

tions. From Chapter 2, the Hamiltonian (2-29) can be written for an

inverse square gravitational field as

H=Plva+p/cdplr 3-30
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25
Write the cost functional as
e
Jo=9 [X (tg), el + f {L&,U,0) + AT(£(X,U,£)-X] e 3-31
t
o
Bryson and Ho (8) show that
te .
dJ = j o9H/3U 6U dt + [A” dX - H dt]t=t 3-32
' o
[o]
One necessary condition is that 3H/3U = 0, yielding
aJ = AL dr_ + AL av - H_ dt 3-33
~ro ~=vo —o o o
In primer vector notation this becomes
dJ =PT dr_ - P TaVv_ - H_ dt 3-34
=~ o 0o o o o

where H = constant = Ho can be obtained from 3-30. Thus the difference
in cost can be obtained using the initial primer, primer derivative,
radius, and velocity.

Noting that for a rotating planet with a V rot = wxr  rotational

velocity vector, one obtains

dr =V ¢ 4t 3-35
and dv = -V 2/r 2 r dt 3-36
—o rot ' o =0 o

Rewrite 3-32 using 3-35 and 3-36 to obtain

T 2 2, T
+ /lr = P r, - Ho] dto 3-37

d3 = [B)" ¥V o * Veor /%0 B

For arbitrary dto, dJ is minimized when the bracketed term in 3-37 is

zero, i.e.

"o .r,u-v" «

o Cu BN o e e Ca¥ Ta O
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—EoT Voot ¥ Vrotz/roz EoT I, =0 3-38
This is an alternate form of equation 3-29 and is more con-
venient for numerical analysis and to allow evaluation of local
'S¥ optimization. Note that for a non-rotating planet, H = 0 is the con-
: ? dition for minimizing cost. For a rotating planet, 3-38 must be met.
2
‘ 3.6. Numerical Scheme and Constraints
i
3:1 Besides the two planetary models of the nonrotating planet and
24} one rotating with the Earth's angular velocity, the relative position of
g: launch point and target was also investigated. Thus a coplanar condition
;‘: is one in which the target orbit and the launch point are in the same
;;; plane. An inclined condition is one for which the launch point is not
; : in the target orbit plane. The inclined case investigated in this study
j§4 was a launch latitude of 28 degrees, with the intercept in an equatorial
Y
g& target plane. Four additional parameters were varied: the time of
s’ flight (TF), posigrade versus retrograde orbit direction, lead angle
§? of the target (beta), and radius of the target orbit (R).
%ﬁ For each data set, the first reference set of calculations for
R the given parameters was from the launch point at the initial time to
-
%ﬁ' the final position. The desired output was the optimal trajectory
?;ﬂ obtained (dJ = 0) when an initial coast was allowed. 1In all data cases,
.vi; only one impulse was required, with an initial coast used to optimize
} % cost.
:
s Due to singularities and large slopes (dJ versus TF) near singu-
;: larities, and due to lack of a ppiori slope information, the first order
35 bisection iteration method proved most robust and useful. In
52
%
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approximately 15 iterations, this method would converge on the solution
to equation 3-38, i.e. where dJ = 0. This provided local optimal condi-
tions for the given parameters. By varying TF for constant beta, R,

and flight direction, the global optimum could be found. Some non-
unique solutions were encountered, in which case a direct comparison of
cost values was used to determine the minimum.

Chapters 4, 5, 6, and 7 will concentrate on each of the four
major cases: coplanar launch point and target orbit with a non-
rotating body, noncoplanar non-rotating body, coplanar rotating Earth,
and noncoplanar rotating Earth. Appropriate comparisons and sample

trajectories will be included in each chapter.
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CHAPTER 4

OPTIMAL, COPLANAR, NON~ROTATING, TIME-FIXED INTERCEPTS

7

4.1. Introduction

An intercept between a launch point on a body's surface and a
point in space (i.e. target) can always be accomplished with a single
impulse. The problem is to find optimal, time-fixed, planet surface to
circular target orbit intercepts using primer vector techniques
developed in Chapters 2 and 3. Fixed transfer times allow exclusion of
excessive transfer times and would be useful in object identification,
enemy spacecraft interception, or realistic mission times due to life
support systems constraints.

The intercept geometry is shown in Figure 4-1. The launch point
is in the XZ plane, while the target orbit is in the XY plane. This is
a convenient, although totally general, choice of coordinates. From the
givén geometry, optimal trajectories can be obtained by varying the
following parametefs: the radius of the target's orbit, R; the latitude

of the launch point, ¢o; the target's initial angular position, beta;

the specified transfer time, tf; and the direction of the trajectory in
relation to the target orbit, i.e. posigrade (in the same sense as the
target orbit) or retrograde (in the opposite sense from the target

orbit).

The units for length and time were chosen to make the gravitational

constant, i, have a unit magnitude. The reference position is the
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circular target orbit

J
Y

target, t, v —

Ieat
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Figure 4-1. Intercept Geometry
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planet's surface, normalized to a radius of unity or one distance unit
(DU). Thus all orbits around a planet would have radii greater than
one. The reference time unit (TU) is defined for a circular orbit at
the planet's surface with a period of 2 # TU. As a result, the ref-
erence velocity is the speed of a vehicle in this circular planet orbit,
i.e. 1 DU/TU. For the Earth, a DU is the Earth radius of 3963 miles

(6378 kilometers), while the TU is 13.4469 minutes.

4.2. Posigrade versus Retrograde

This study investigated the effect of the direction of the
trajectory. Figure 4-2 shows the typical case for 8 = 270°, R = 1.1,
with target and launch point in the same plane. If the primer history
indicated that an additional impulse was needed, the point is marked
with an A. Those points that violated the planet surface constraint
are marked with a C. All other points met the constraints and are
local optimums.

For times less than a certain reference value, to be discussed
later, retrograde orbits yield minimum AV, some having an initial coast,
some without an initial coast. For time greater than this reference

time, posigrade orbits with an initial coast yield optimum results.

This trend followed for target radii of 1.1, 2.0, 4.1721 (approximately
a 12 hour period Earth orbit), and 6.6228 (approximately a 24 hour
period Earth orbit). The target lead angles investigated were 0°, 90°,

180°, and 270°.
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4.3. Coast versus No Coast

In most cases, an initial coast improved the cost, i.e. used
less fuel. Again, Figure 4-2 shows a typical case. For the non-
rotating body, if Tf > Tm (the transfer time on the minimum energy
ellipse-—-see Appendix B on Lambert's problem), the initial coast was
possible. Thus actual flight time would equal Tm’ and any excess
between that tf and the specified transfer time would become an initial
coast.

In general, an initial coast also allowed the given condition to
yield a local optimum primer time history. If there was no coast and
Tf > Tm’ an initial coast was indicated by the primer time history, and
the no coast trajectory went inside the planet radius. 1In all cases,
the initial coast trajectory was a local optimum, stayed outside the

planet’'s surface, and met the cost functional requirement dJ/dt_ =
q o}

Hamiltonian = O.

4.4, Cost Comparisons

For the non-rotating case investigated in this chapter, the global
optimum was analytically determined and verified using primer vector
theory. The absolute minimum AV occurs with an initial coast such that
the trajectory is rectilinear with a zero velocity at intercept. Thus
the spacecraft is launched on a rectilinear orbit and just ''grazes" the
target at intercept. The sum of any coast time and this flight time on
the rectilinear orbit is the reference time previously discussed.

Figure 4-3 shows the geometry for B = 270°. At to’ the spacecraft is on

the launch pad and the target is in a coplanar orbit at 270°. At tc, the
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Figure 4-2. Sample Data Case.
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target, interceptor at tf

/

/target at t

‘/1aunch point, to’tc

target at tO

Figure 4-3, Optimal Geometry.
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initial coast is complete and the spacecraft fires its impulse. At tf,
the intercept occurs '"overhead" of the launch point.

Note that for B = 0°, the target must travel through one period
to achieve the optimum intercept. For B = 90°, it must travel 3/4 of a
period; B = 180° requires 1/2 of a period; and B = 270° requires 1/4 of
a period target flight time. This reference time equals [(360°-8)/360°] x

Target orbit period, e.g. te = 1.8122 TU for B = 270° and R = 1.1.

Figure 4-2 shows the costs for posigrade and retrograde orbits,
both with and without an initial coast. The optimum AV curve is the
bottom one, consisting of local optimum points which do not go through

the planet surface. Theoretically, for a given t any point with a AV

£
greater than the minimum is possible. By plotting all local minima for
a range of flight times, the global minimum was found. It agreed with
the previously obtained theoretical value. Thus for 8 = 270°, R = 1.1,
the global minimum occurs at ty = 1.8122 TU, with a flight time of .4844
TU, a coast time of 1.3278 TU, and a AV of .4264 DU/TU.
Figure 4-4 shows the minimum fuel optimum curves for R = 1.1,

i.e. the bottom curves on plots similar to Figure 4-2. The various beta
curves are plotted separately, but all global minimum AV = ,4264 DU/TU

at the reference time previously discussed. Figures 4-5, 4-6, and 4-7

show similar results for final target radii of R = 2, 4.1721, and 6.6228,

respectively. The data points are labeled P for posigrade and R for
retrograde orbits. The superscript + indicates an initial coast was
optimal. Thus a P+ would indicate that the local optimum for that point
was a posigrade orbit with an initial coast. A point marked with a C

indicates the planet surface constraint could not be met with a single-
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impulse trajectory. To avoid clutter, only the point for the lowest
transfer time is marked. The next point marked on the curve, viewing as
transfer time increases, is where the optimum condition changes, e.g.
from R+ to P+. Thus a region on a curve with no markings has the same
type optimal trajectory as indicated by the last marked point to the
left (lower transfer time).

Several general trends are noticeable. Retrograde, with or
without a coast (depending on Tm) is optimum for times less than the
minimum AV time, and posigrade with an initial coast is optimum for
times greater than this. Only in very short flight time cases will
this not be true, e.g. the time is so short that for a given geometry
the launch vehicle goes through the planet on a posigrade orbit. For a
given target radius, the global AV is the same regardless of beta.
Also, as the target radius increases, the curves flatten, i.e. there is
less variance in AV from the global minimum. Looking at Figure 4-7 for
R = 6.6228, the absolute minimum AV is 1.3031 DU/TU. For 20 < te < 150,
the local minimum AV never exceeds 1.3290, only a 2% variation.
Apparently, the greater the target R, the less variation there is in
AV.

For the B and transfer times considered, only one impulse
optimal solutions were found. All cases of added impulses or planet
constraint violation did not have a short enough transfer time to yield
multiple intercepts (see Appendix D).

Figure 4-8 shows a sample coplanar trajectory. Note that both

posigrade and retrograde orbits with no coast greatly exceed the target

radius of 4.1721 (5.84 and 6.23 radii respectively) and that both
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Rue, 1721 BETAR=90 PHI=0 TFa30 NO ROTATION
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X-==X RETROGRADE. INITIRL CORST

Figure 4-8. Sample Trajectories.
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posigrade trajectories go inside the planet's surface. The optimal
trajectory for this case was the retrograde with an initial coast.

Figure 4-9 shows sample primer time histories for the posigrade

and retrograde cases with no coast associated with Figure 4-8.
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CHAPTER 5

OPTIMAL, NONCOPLANAR, NON-ROTATING TIME-FIXED INTERCEPTS

5.1. Introduction

Gobetz and Doll (16) show how most research has concentrated on
time-open problems. Fixed time interception between noncoplanar body
and circular target orbit has received little attention due to the
increased difficulty involved with out-of-plane motion. This chapter
analyzes this area in an attempt to expand current knowledge on the
effect of inclination on orbits. Results will be compared to those in

Chapter 4.

5.2. Posigrade versus Retrograde

Results generally agreed with those previously found for the
coplanar case. The reference time is identical to that in the previous
chapter, although the trajectory is no longer rectilinear. Thus for
transfer times less than the reference time, retrograde with or without
initial coast is generally the local optimum. For times greater than the
reference time, posigrade with an initial coast is optimal. This trend
followed for all R and beta. For extremely short transfer times, with
B = 0° or 90°, a posigrade orbit with no initial coast was optimum, as

was the case for the non-inclined orbits.

5.3. Coast versus No Coast

Similar to the coplanar case, a coast often improved the cost.

Again, the actual time of flight equalled the Tm with the difference
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between the designated transfer time and the time of flight yielding the
coast time. As previously discovered, the case with an initial coast
stayed outside the planet's surface, was the local optimum, and yielded

dJ/dt = H = 0.
o

5.4. Cost Comparison

For the non-rotating, inclined target orbit cases investigated
in this chapter, the results directly paralleled those of the coplanar
cases in Chapter 4. The reference time was identical, as were the times
to achieve the global minimum. However, since the target orbit is no
longer coplanar with the launch point, the trajectory for this global
optimum is no longer rectilinear, but rather a high eccentricity ellipse
in the XZ plane. The larger the target radius, the higher the eccen-
tricity.

Figures 5-1, 5-2, 5-3, and 5-4 show the minimum fuel results for
R=1.1, 2.0, 4.1721, and 6.6228 respectively. As with the coplanar
results, the global minimum AV is identical for a given R, regardless of
beta. Posigrade and retrograde orbits follow the same trends previously
noted. The curves flatten as R increases, reducing the variation in AV
from the gl-bal minimum. Comparing the figures to the comparable ones
in Chapter 4, one notes that the global minimum AV is higher for inclined
orbits, e.g. for R = 1.1, AV = .6868 DU/TU versus .4844 for coplanar.
This trend follows for the other target radii investigated. For R = 2,
inclined versus coplanar yields 1.0248 to 1.00; R = 4,1721 yields 1.2366

versus 1.2331; and R = 6.6228 yields 1.3043 versus 1.3031l.
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The primer time histories are very similar to those in Chapter

s;j‘
{f 4, No added impulse was optimum. Only extremely short transfer times
%)

)

2&" (e.g. 1 TU for R = 1.1) caused the optimal trajectory to go through the
i

. planet surface and require multiple impulses (see Appendix D).

h

"25 Figure 5-5 shows a sample trajectory for the same R, beta, and
;'Q‘

ﬁs tf as in Chapter 4. Now the problem is three dimensional, but generally
t}
similar in appearance. Again, the trajectories for posigrade and

g% retrograde without a coast exceed the target orbit radius (5.82 and 6.22
ag respectively). Both posigrade orbits go inside the planet's surface.
DM

L The optimum trajectory is retrograde with an initial coast.
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i ) R=4,1721 BETA=90 PHI=28 TF=30 NO ROTATION

By +--—+ Posigrade, No Coast

Yy *~——%* Pogigrade, Initial Coast

Y o-=-0 Retrograde, No Coast

x=-=-—x Retrograde, Initial Coast

RN I

R = 4.1721

! Figure 5-5. Sample Trajectories.
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CHAPTER 6

OPTIMAL, COPLANAR, ROTATING, TIME-FIXED INTERCEPTS

6.1. Introduction

The conditions used to obtain the data in this chapter are
identical to those in Chapter 4 with one exception. The body from which
the interceptor is launched is now rotating. The rotation rate used
approximates that of the Earth. Intercept geometry is unchanged if
there is no wait time prior to a launch, and can be seen in Figure 4-1,
If primer theory dictates that an initial coast is optimum, the launch
point also moves as the Earth rotates. However, the Earth rotation
rate is different from that of the target for final target radii (R)
of 1.1, 2.0, and 4.1721 (12 hour period target orbit). For the 6.6228
(geosynchronous, or 24 hour period target orbit) target radius, the
planet and target rotate at the same rate.

The same parameters were varied for this chapter as in previous
chapters., It is assumed that the planet rotation is in the same
direction as the target motion. The planet rotational angular velocity
is assumed to be along the Z axis.

As previously noted in Chapters 2 and 3, results are only a first
approximation, neglecting atmospheric effects. Thus the results of this
and the succeeding chapter are included to yield approximate optimal
Earth intercepts. As previously found in Chapters 4 and 5, all optimal

intercepts could be accomplished with a single impulse.
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6.2. Posigrade versus Retrograde

Figure 6-1 shows a typical data case for R = 1.1, beta = 0° with
the transfer trajectory in the same plane as the target. Similar to
non-rotating results, regrograde trajectories with or without an initial
coast were optimum for transfer times less than a reference time, and a
posigrade trajectory with a coast was optimum for transfer times greater
than this reference time. However, this can be generally seen only for
R =1.1 and 2.0.

Note that due to Earth rotation in the same direction as a
posigrade transfer, posigrade orbits had lower_AV than comparable
retrograde results. Thus posigrade with no coast has a lower AV than
retrograde with no coast. However, this ignores the planet surface
constraint. Enforcing this constraint yields the results in Figures

6-2 through 6-~5.

6.3. Coast versus No Coast

As for the non-rotating body cases, data analysis shows that an
initial coast generally will lower the cost. One exception is for very
short transfer times, where posigrade or retrograde without coast are
usually optimum. The other exception is for R = 6.6228, beta = 180°
and 270°, where posigrade and retrograde without coast were optimal over
a wide range of transfer times. Noting that all R = 6.6228 curves are
flat for transfer times past a given time (the time of flight to com-
plete the intercept for tle fixed geometry between the points), it
would seem that the beta = 180° and 270° curves also show that no
initial coast is required prior to this time.

In all cases, the trajectory after an initial coast yielded a

local optimum primer time history, if the planet surface constraint was

S A R |




¥ w “w N N TN oY TN WU VWU Y oW re T W W DU TW TSt

-
- -

.

o)

53

-

. -t

g

|
Rel.1 B=0 PMI=0 2 AXIS ROTATION 'I
1

-

+-——+ PROSIGRADE, NO CORST |
e———e PQOSIGRADE. INITIAL CORST
Q---Q RETROGRADE. NO COAST

X-—=X RETROGRADE. INITIAL CIARST

- - - Jp——

- .
-

BCu/TW

o~

.l

DELTA VELOCITY MAGNI TUDE
0y
1

» -t | ] L
o o) 2 4 6 8
- TRANSFER TIME (TUS

gy
it

12

\ Figure 6-1. Sample Data Case.

- - o W 1-»»,--.;-{ ’.
A

X ?.x\-?'q'i?ﬂ'l,g Wiy

3




PP PO W T WIWEY UNFT R R Y YU AW T

ﬂ

(BU/TW

DELTAR VELOCITY MAGNITUDE

L aoa aa a3 Ao s Al Al AR A ko dh ol

54

R=l. 1 PHI=0 T AXIS ROTATION

—--e B8ETA
0—0 BETA
X——=X BETR

180
270

*
P L g

Figure 6-2.

2.5 S. 0 7.5 10. 0 12. 5
TRANSFER TIME (TW

Optimal Cost as a Function of Transfer Time.

wFW ER EWN




DuU/TW
N
0

DELTR VELOCITY MARGNITUDE

. 95

R=2. 0 PHI=0 Z AXIS ROTATION

+———s PETA = 0

o——wn BETA = 90
Q--~0 BETA = 180
X===X BETR = 270

1 Figure 6-3.

10 15 20 25 30
TRANSFER TIME (TW

Optimal Cost as a Function of Transfer Time.

55




WETORrOR I TR TR ST T TR R e o RS R T RE TR R RN TR AR AT RTETEY

56

Rme, 1721 PHI=Q  AXIS ROTRTION

+——=+ BETA = O

#———u BETA = 80
0--=~0 BETA = 180
X-==X BETA = 270

1. 375 r

Ou/TW
w
0
O

—
w
N
A

1. 300

1. 275

1. 250

1. 225

DELTA VELOCITY MAGNITUDE

J

0 25 SO 75 100 125 150
TRANSFER TIME (TW

1. 200

Figure 6-4. Optimal Cost as a Function of Transfer Time.



1994 57

» R=6. 6228 PHI=0Q 2 AXIS ROTATION

+——=+ BETA
e~~~ BETR
by 0---0 BETAR
> X===X BETR

XN 1. 425 —~

g

180
270

1. 400 xR

o
DU/ TU)

1. 375

1. 350 -

. IO -

"

1. 325 -

iy
.

e

L
-:

1. 300 + e

g »
A

2.

1. 275 - —

&
3

=
DELTA VELOCITY MAGNITUDE

, -
G

- 5 .

1. 250 ' L L .
0 SO 100 150 200

TRANSFER TIME (TU)

o w0 g
LR

re .
AR

AR

Figure 6-5. Optimal Cost as a Function of Transfer Time.

> ‘.~ £
A

o,

A

\.&iﬁ,‘m'r_.m.m.x.\‘.si\‘hﬁ

. .'u q\\-- V\
.:..a,k_f‘.r_z_ .r-r.c e-.r f*t"i}ﬁ:\ﬁ! e




P A

9% h%”

2

PR N

-,

L A .',-

ﬁ‘l 'll .“

ot ’

P

.

LY
DA

[
A

7

I3 v Y
{
RO |

BP VAN " ¥

2’ ] gy "
avet C’L"\L\ C‘ A AL

I3
L N
-
*.

v
o !

58

not violated. The required cost functional, equation 3-38, dJ/dto = 0,

was also met.

6.4, Cost Comparisons

The global optimum was obtained using primer vector theory.
Similar to the non-rotating case, the absolute minimum AV occurs with an
initial coast such that the trajectory is a high eccentricity ellipse
(e.g. .997 for R = 1.1 and .988 for R = 2.0) with a zero intercept
velocity as shown in Figure 4-3. However, since the Earth is now
rotating, the optimal trajectory is no longer along the X axis, but at
some point past this in the XY plane. Figures 6-2 and 6-3 for R = 1.1
and 2.0 show similar results to the non-rotating case. The time giving
the absolute minimum AV for each beta depends on the synodic period
between a point on the Earth's surface and the target body. The general
trends noted for the non-rotating body in Section 4.4 are the same for
these radii.

However, Figure 6-5 for R = 6.6228 does not show
the same type curves. These curves asymptotically approach a limit as
transfer time increases. Perhaps this is most easily demonstrated for
R = 6.6228, beta = 0°. The target is always "overhead" the launch point.
The interceptor must be launched downstream, or posigrade, to intercept
the target with minimum AV, The same geometry between target and launch
point, and hence the same transfer trajectory, exists for all transfer
times greater than that required to accomplish the intercept. For
transfer times smaller than this, a higher AV must be expended.

Thus, one notes that for R = 6.6228, beta = 0° and 90°, and for

R = 4.1721, beta = 0°, posigrade, with or without an initial coast, is

"1" R (Qr J\.P_' n’*
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always optimum, with a constant AV for sufficiently long transfer times.
The other curves show a mixture of posigrade and retrograde type orbits.
For R = 6.6228, each beta curve has its own minimum AV which is
dependent on the initial geometry to obtain the minimum AV.

As with the non-rotating data, the minimal AV does increase as R
increases. However, the small variation in AV as R increased in the
non-rotating cases, generally does not apply in the rotating cases.

Only in the case of the flat curves (R = 4.1721, beta = 0°, and R =
6.6228, beta = 0° and 90°) does the AV not vary.

Figure 6-1 shows the costs for posigrade and retrograde orbits,
with and without an initial coast, for R = 1.1 and beta = 0°. Unlike
the non-rotating cases, the optimal AV curve is not the bottom one. It
is the local optimum condition closest to the bottom which does not
violate the planet surface constraint. TFigure 6~2 shows R = 1.1 optimal
curves for the four betas tested. Note the minimum AV is the same for
each beta, AV = .4256 DU/TU. This value is less than the .4264 DU/TU
for the non-rotating case.

Figure 6-6 shows a sample coplanar, rotating Earth trajectory
for R = 4.1721. Both posigrade and retrograde orbits with no coast do
not violate the planet surface constraint, but do greatly exceed the
target radius (R = 5.63 and 5.80 respectively). The retrograde orbit
with a coast goes through the planet. The optimal trajectory for this
case is the posigrade with an initial coast. Note that the launch
points for the coasting trajectories have rotated with the Earth's
surface. Since the wait times for posigrade and retrograde orbits vary

slightly, the launch points are also slightly different.

I \ I Ly R L Ry e R S T h, LA CRR R COR "-‘“',-\'}\'-
I OO M U WAL O ANA) & O AT et LAt Al Ny 4, PRV,

W




aran pad adlath aahali ard ashabd okl oMbl ath 208 ¥ 1 ol oAbl uN gRiCal 'H'“.r.'VT

WY N RT YT WU I wUR T I CIws v

60

Rue, 1721 BETA=0 PHI=0 TF=30 2 AXIS ROTATION

+~==s POSIGRADE. NO CORST
ow-=w POSIGRADE. INITIAL CORST
0---0 RETROGRADE. NO CORST
X=-=X RETROGRADE. INITIAL COAST

4 ~

A -
-8 L

R=4.1721

Figure 6-6, Sample Trajectories.

LT

WO e P SR L 0 S R W Sy TSy iy g F STy i WY e TR T WL VLS R LN RP g A ST L (' O
MM%MMM’ A ) S O SRS AN ARG S AT NS




61

CHAPTER 7

OPTIMAL, NONCOPLANAR, ROTATING TIME-FIXED INTERCEPTS

7.1. Introduction

This chapter analyzes conditions identical to Chapter 6 with one
exception. The launch point is now a different latitude than zero, so
the intercept trajectory is not in the same plane as the target orbit.
Results and conditions can be compared to Chapter 5 for a non-rotating
body. The conditions applied in this chapter present the most general

case analyzed in this research.

7.2. Posigrade versus Retrograde

Results generally agree with those found in Chapter 6 for a
coplanar, rotating Earth. The reference time for each beta still
depends on the synodic period, although the trajectory is not recti-
linear (e.g. e = .78 for R = 1.1 and e = .88 for R = 2.0). For R= 1.1
and 2.0, retrograde, with or without an initial coast, is optimum short
of the reference time, while posigrade with coast is optimum for trans-
fer times greater than the reference time. These results can be seen
in Figures 7-1 and 7-2. For short transfer times, the beta = 0° or 90°,
a posigrade orbit with no initial coast is optimum.

Figures 7-3 and 7-4 show results for R = 4,1721 and 6.6228. The

comparisons are not as predictable as with the lower radii results.

Curves incorporate a mix of posigrade and retrograde orbits ranging from

a flat, all posigrade curve (R = 6.6228, beta = 0°) to one resembling the

results for the lower radii (R = 4.1721, beta 180°).
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AN
N 7.3. Coast versus No Coast
aH As previously found, an initial coast often improved the cost.
o Short transfer times lead to posigrade or retrograde orbits without
coasts for the optimal solution. However, numerous curves have large
. sets of optimal solutions without an initial coast. These were for R =
1.1, beta = 90°, where there is a large set of optimal, retrograde
orbits with no coast; and R = 6.6228, beta = 90°, 180°, and 270°, where
4
)
"g there are large sets of optimal posigrade and retrograde orbits with no
M
: coast. In all optimal cases involving an initial coast, and outside the
} planet radius, the cost gradient, dJ/dto, was zero.
¥
]
; 7.4. Cost Comparison
k The rotating, inclined target orbit cases of this chapter gen-
x erally agree with the coplanar cases in Chapter 6. The reference time
:: for the global minimum is identical, but the transfer trajectory is a
A
s high eccentricity ellipse in the XZ plane, but rotated due to Earth
? rotation. For R = 1.1 and 2.0, the results are also similar to the
o
non-rotating case. R = 4.1721 and 6.6228 do not show exactly the same
R trends. Geometry is more critical and the minimum AV does not always
. occur at the reference time. For R = 6$.6228, the curves approach an
Cal
»
g asymptotic limit as transfer time increases.
o
5_ As seen in Chapter 6, the minimum AV does increase as R increases,
. and the curves do not flatten as R increases, The global AV is higher
. than those for the coplanar case and optimum posigrade AVs are lower
I
} than comparable retrograde orbits.
[~
h- Figure 7-5 shows a sample trajectory for the same R, beta, and
: tf as in Chapter 6. The curves are similar to Figure 6-6, but three
'
‘
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dimensional. Posigrade and retrograde without an initial coast exceed
the target radius (R = 5.61 and 5.86 respectively). The retrograde with:
an initial coast goes through the planet and violates the planet surface
constraint. The optimum trajectory is the posigrade with a coast. As
noted in Section 6.4, the launch points rotate as the Earth does, with

a slightly different launch position for posigrade and retrograde with a

coast.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

8.1. Costs

The main conclusion of this research is that optimal, direct
ascent, time-fixed, orbital interceptions can usually be accomplished
using one impulse. This result depends on certain conditions and assump-
tions. The major conditions are that the intercept trajectory must
remain outside the planet surface and that the transfer time must
not be too small (see Appendix D).

The major assumptions qualifying the above conclusion are that
there is only one central gravity field, and that single intercepts are
made. Changing any of these assumptions or conditions could lead to
multiple impulse trajectories.

One of the major factors to be considered which led to exceptions
to this result was the planet surface constraint. Lower costs could
often be achieved if the interceptor flew through the planet.
Obviously, this condition is not permissible. Any time the surface
constraint was violated, a minimum of two velocity changes would be
necessary. The first would maintain the orbit at or above the planet
surface (AV = 1.0 DU/TU), while an additional impulse would be required
to achieve the desired intercept. If the transfer time was greater
than that obtained in Appendix D, i.e. greater than the minimum time
required for one impulse, only one impulse would be required for an

optimal trajectory. If the transfer time is less than this value, the
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planet constraint would be violated, and multiple impulses would result.
A theoretical approach incorporating the planet surface constraint is
developed and presented in Appendix A.

Several factors contributed to the result that optimal inter-
cepts could usually be performed with a single impulse. The flight
direction could be varied between posigrade and retrograde trajectories,
allowing flexibility unavailable with rendezvous problems. A retrograde
trajectory for a rendezvous problem would produce unacceptably high AVs.
Another contribution is that the launch point/target geometry changed
such that an initial coast, combined with the flexibility to choose
posigrade or retrograde orbits, was apparently more favorable than an
added impulse. This occurred for all nonrotating cases, and for all
rotating cases except near or at the geosynchronous orbit (R = 6.6228).
There the body and target rotated at the same rate and the geometry was
fixed. A contributing factor to the geometry change was that the body
rotation rate involved was either 0, for a non-rotating body, or .0588
rad/TU for a body approximating an Earth rotation. These small rates
allow relatively rapid geometry changes except for the cases previously
noted.

Thus, the major contributing factors which usually allowed a
single impulse to yield optimal intercept trajectories were as follows:

1. The flexibility to choose the optimal flight direction

2. The changing launch point/target relative geometry due to the
low rotation rates used for the central body

3. The limiting assumptions used

4. The planet surface constraint could be satisfied for all

intercepts unless the transfer time was too small (Appendix D).
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This study found that to minimize the cost, an initial coast was
often required, both for a rotating and non-rotating body. The AV cost
can also be lowered by launching from a point in the same plane as the
target orbit, i.e. coplanar. As the latitude between launch plane and
target plane increases, the cost increases. Cost also increases with
increasing target orbit radius, R.

For both rotating and non-rotating cases, the global minimum AV
occurs at a given reference time. For a launch from a rotating body,
the reference time is related to the synodic period between the rotating
body and the target. For a non-rotating body, the reference time is
that for interception of the target at the same longitude as the launch
point. 1If a coplanar condition exists, the transfer trajectory for the
global minimum AV is rectilinear with zero velocity at intercept. The
sum of any coast time and the flight time for this rectilinear trajectory
is the reference time. The intercept trajectory is in the XY plane, and
along the X axis for the non-rotating body. For the non-coplanar case,
the intercept is a high eccentricity ellipse in the XZ plane for a non-
rotating body, and in a rotated XZ plane for a rotated body.

The use of primer vector theory, as developed by Lawden and
others, was extremely helpful in obtaining the results in this research.
In all those cases for which the planet surface constraint was satisfied,
the primer vector provided the information that a neighboring trajectory
containing an additional impulse would not decrease the cost. The primer
vector also provided an expression for the gradient of the cost with
respect to the initial time. This was useful in determining whether an

initial coast was optimal and in determining the optimal value of the

initial coast.
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8.2. Geometry

The relationship between the launcn point on the Earth's surface
and the target position was also analyzed. For non-rotating bodies, and
rotating bodies with target radii of 1.1 and 2.0, the results were
similar. Basically, the same AV could be obtained regardless of the
initial position (beta) of the target. Of course, this AV could be
reached with a shorter transfer time as beta increased. Thus the trans-
fer time for a globally optimum AV for beta = 270° was less than that
for beta = 0°, 90°, or 180°. This relationship held for coplanar and
non-coplanar trajectories.

However, the geometry relationship did not yield as universal
a result for R = 4.1721 and 6.6228 for the rotating Earth case. Here,
results for all betas seemed to asymptotically approach a minimum AV as
transfer time increased. For R = 4.1721, all betas seem to converge to
the same global minimum AV. For R = 6.6228, each beta seemed to have
its own minimum AV differing from the other betas. Thus, for a given
transfer time, each beta can give a different AV, with widely varying
results. Especially noteworthy is the geometry involved in the geo-
synchronous orbit (R = 6.6228), The AV value is basically constant
since the geometric relationship between launch point and target is
invariant. Only for very short transfer times was a higher AV necessary
to effect the intercept.

The direction of the intercept flight, posigrade or retrograde,
was also critical. In general, for transfer times less than the reference
time discussed in Section 8.1, retrograde with or without an initial

coast was locally optimum. For transfer times greater than this
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reference time the geometry changed such that posigrade with an initial
coast yielded the optimum trajectory. For very short transfer times,
posigrade with no coast was usually optimum. For the rotating Earth
cases with R = 4.1721 and 6.6228, results were not so easily generalized.
Large areas of transfer times involved posigrade or retrograde orbits

with no coast at all.

8.3. Recommendations for Future Study

Several areas for further investigation would prove useful and
informative, First, analysis of the rotating body for a non-Earth
rotation rate could yield interesting results. The Earth rotation rate
is approximately .0588 radians/TU, or a rotation period of about 17 times
that of a circular orbit at the Earth's surface. Higher rotation rates
should be investigated.

Second, incorporate a better model of the central body from which
launch is made. Starting with the Earth, the most likely first addition
would be an atmospheric model. This would introduce large effects as
the launch vehicle must travel from the Earth's surface through the
atmosphere to reach orbit. Drag, wind shear, and pressure and tempera-
ture gradients should all be incorporated in this model of the atmosphere.
The Earth's oblateness would also be an interesting addition to the
realistic model.

Third, the case of a rotating planet for which the target is not
in the equatorial plane should be investigated. However, the results

obtained for the nonrotating case are completely general.
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. Fourth, intercept between launch on a body's surface and more

W general target orbits, i.e. ellipses rather than circles, should be
P 4

] . . A . .

% investigated. This is exceedingly more complex than surface to circular

orbit transfers, but would be more general and useful in some cases.

e

V0 Fifth, the inclusion of multiple intercepts should be evaluated.
;

4 After making an intercept as demonstrated in this research, other inter-
(]

cept points could be attained in a given order. This would probably

o)

1ﬁ yield multiple impulse trajectories with interesting results.
N

L

q Sixth, this research could be expanded to multiple gravitational
o .

F‘ fields. An example would be a launch from Earth intercepting a target in
Q orbit around the moon.

B,
B~

D Finally, investigation of algorithms to find multiple solutions
)

* to a given function would be useful. Non-unique optimal solutions are
by

:4 present for many data sets analyzed in this research. Determination of
-

("

4 the absolute minimal optimal solution was done semi-manually by operator
; manipulation of input data to the computer., A better algorithm to

p automatically find a global minimum of a function, regardless of how

o

'l N .

Y many other local optimums there are, and regardless of the function or

&,

& starting point for iteration, would be extremely useful.
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APPENDIX A

PLANET SURFACE CONSTRAINT

This appendix is included as a reference and for general back-
ground information. It was not directly used in the numerical
algorithms to obtain data. However, its formulation lends insight to
the problem of launching from a constraint surface rather than from one
orbit to another.

A consideration in launches from a planet's surface is that the
interceptor vehicle may not penetrate the surface. 1In order to determine
the effect this has on the trajectory and the primer vector, use the
notation of Bryson and Ho (8) to develop the following. Normalize the
planet surface to one distance unit (DU), i.e. Rb = 1 DU. The new

constraint can be represented as

rlr>R2 A-1
- ==

Rewrite this as
_ 2 T
S (X,t) = 1/2 (R0 -r r)<o A-2

Differentiate until a control variable appears, i.e. I, the thrust
acceleration magnitude, or U, the thrust vector in the equations of

state
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Thus

and

=

.S. - _Y_T y- _ rT

- e 3>
- -

V=-v -ET[5(£)+I"Q] A-5

o

Now the constraint can be written as

2or

VY
A
wn.

<0 A-6

-

-~

e

Expanding A-5 for an inverse square gravitational field and using the

vis-viva equation

PRl v
s o,

»

<3
N

=u (2/r - 1/a) A-7

-
&
¥}

yields

e e fL A,

+

Ly
»
|

S=-vZ4+u/r-TrlU<O A-8
e

*

& One notes that A-8 is zero if both

M

a A" =U/r

O and A9

9 rT.Q =0

32 Thus, r = a, a circular orbit of radius Rb (from vis~viva), and r is
e perpendicular to U. Augment the Hamiltonian function with this addi-

N tional constraint, using a new adjoint variable, Ac. Thus from (2-10)

v T . .o
Lo H=A" V+A (g+T U -Al+A. s A-10

‘Ct N‘c;'g‘g'g :-. " ), N -.'h ‘:;'EI
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‘_ For an active constraint
Y

A, >0 if S =0 A-11
: -

For an inactive constraint
3, A\, =0 if $<0 A-12
B
by
) Substitute A~5 into A-10 to obtain
Y
_ T T T T
| H = (Ar AC vVi)Yyv+ (Av AC.E Y(g +T 1) AJF A-13
i
: Define new Lagrange Multipliers as
_.'
W A=A =AY
EN
) and A-14
L _/_\,=_V—)\c_£
. -
Now write A-13 in simplified form as

i

H=ATvV+AT (g+TU - AT A-15

S LTS 8 = J

This is the same form as the Hamiltonian in Chapter 2 (2-10) except the

-~ e g e

Lagrange multiplier functions now include the surface constraint adjoint
variable for the constraint A-6.

As was done in Chapter 2, to minimize H, align - Av with U, i.e.,

¥ X OIS

reintroduce the primer vector. From Chapter 2

= -P 2-15

A
‘ Ly =
A_=P 2-17
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However, now introduce a surface constrained primer vector, [I, by

defining

and

A =1

Introducing this nomenclature into A-~14 yields
I=2-2 Y

and

I=P+A r

A-16

A-17

A-18

From Figure A-1, one can see that the surface constraint is violated in

the nonrotating case if

on the boundary. Solving for AC yields
T 2
e = -G -!o)/ro

This term is positive if the surface constraint

A-19

A-20

A-21

A-22

is not met. Equation

A-18 can now be solved for the new, constrained primer vector given_fo,

‘yo, AC, and

AU X Yopp, Y&/ ¥ TN, y A CRE AT ERCRERES SCARCPE LA DY, O P SR s
WMA&&“&%“A#&%AQL&E\%‘uﬂ&'u.J WP ?{ '..!’Jn g~|\*. AT

; q'.. Art ',-‘ LNEY ATAN4Y
" - o . ¥ i
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. Figure A-1. Planet Surface Constraint Geometry.
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'\“
P = AV_/ |Av |.
".' —0 —0 -0
.k Thus one solves the Lambert problem and obtains an initial
W)
Al . primer and primer rate. If constraint A-19 is true, the primer must be
\]
;: modified by the component Xc r to obtain the new primer, il. This primer
)
g will circularize the trajectory on the planet surface (lg! = Ro and
4
Y IA‘YO§ = 1 DU/TU). At some appropriate time, a second A V would be
% applied to allow interception of the required position. The theory
3!
$ developed in Chapters 2 and 3 would still apply with the substitution
i)
3
i of II for P.
i —_ —_
.
;
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] APPENDIX B
i
Vi
Y, LAMBERT'S PROBLEM SOLUTION
)
&
K
s B.1l. Introduction
o
As with rendezvous problems, the known quantities in an inter-
R
W cept problem are initial position, final position, and the transfer
% time between the two. Lambert demonstrated that the flight time depends
w
g only on the semimajor axis of the transfer conic, the sum of the magni-
4
vj tudes of the terminal radii, and the chord joining these radii. Using
K,
; Lambert's theorem, Battin (4) developed a convenient algorithm used in
‘ this research. This algorithm determines the trajectory and the terminal
U
i velocity vectors in terms of universal variables applicable to all types
1%
A
1: of conic orbits. The algorithm as programmed by D'Souza (13) was used
f 5
in this study. Once these velocity vectors are known, the orbital ele-
)
;. ments of the transfer conic can be calculated using techniques presented
3 in numerous references (2, 10, 18, 27).
{, B.2. Minimum Energy
: Figure B-1 shows the geometry involved in solving Lambert's
»
by problem. Given r and Iy and a transfer time, there exists an orbit,
3 having a certain value of semi-major axis, that connects P1 and P2 in
s
M
3 the specified time. Writing the basic property for an ellipse, one
J
. gets
;
% = * =
PlF + PlF PZF + PZF 2a B-1

A
[\
;
R ( A’ Y 1 oAl X, AEY L) Sl - - - - Rt . -t
i B R e e i N Rt e T R tk_‘mzbﬁ
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Figure B-1. Lambert Problem Geometry.
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F*, the vacant focus, is the intersection of two circles with radii

* -
PlF 2a rl
and B-2

* = -
PZF 2a r2

By varying a, the locus of vacant focus is achieved.
There is a minimum value of a, called a» for which the two
circles described above just touch. In this case, F* in on the chord,

c. 1f a is too small, the circles do not touch and a transfer from P

1
to P2 is impossible, i.e. the energy available is too low for an elliptic
orbit to reach both Pl and P2. Thus a corresponds to the lowest possible

energy path reaching both Pl and P2. Am is obtained by noting that

(2am - rz) + (2am - rl) = ¢
or B-3
a = (rl +r, + c)/4
Define the semi-perimeter, s, as
s = (rl +r, + c)/2 B-4
Thus
a_ =s8/2 B-5
m
From the vis-viva equation
v, 2= u/r, - 1/a)) B-6
lm 1 m

that will get the vehicle

where Vlm is the smallest possible speed at P

1
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to P2. This is the condition that is critical in finding optimal inter-

cepts for the non-rotating body cases described in Chapters 4 and 5.

B.3. Lambert Solution

Previous work has described this solution in much detail (2, 4,
10, 18, 27). This study modified the Battin algorithm (4) to calculate
the terminal velocities for rectilinear orbits. The universality of the
algorithm was useful, although it was found that hyperbolic orbits were
optimal (and expensive) only for extremely short transfer times.

In terms of classical Lambert variables for an elliptical orbit,

the time of flight for a given set of conditions (51’-52’ tf, a) is
tf = a3/u [sgn(tm-tf)(a—sina—ﬂ)—sgn(sine)(B—sinB)] B-7
where 6 is the transfer angle,
sina/2 = vV s/2a
and B-8
sinB/2 = vV (s-c)/2a
For a minimum energy ellipse
sin “m/2 = 1 =% =1
and B-9
sin®m/2 = ¥ (s-c)/s
Thus
th = //53/8u [ﬂ-sgn(sine)(Bm—sian)] B-10

fg lh
h"

o

(.-".‘f.!'
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The required velocities, Vl and V2, and the orbital elements can also be

calculated using the aforementioned references.

o f,.l:q""' g .
A R R Y
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L%
:::;: APPENDIX C
e
:.; OPTIMAL, ZERO GRAVITY, TIME-FIXED INTERCEPTION
<tE: C.1. 1Introduction
P, -
5
. This problem is an interesting theoretical aside, related to the
“3 thesis topic. Gravity is assumed to equal zero. These results were not ‘
o
o
iﬁ directly used in this research, but lend to an understanding of the basic ‘
o |
Thet problem.
T C.2. Necessary Conditions for an Optimum Trajectory f
o From Chapter 2, the following equation of motion was introduced.
(o V=1 =g (@ +TU c-1 |
= |
j"j For a no thrust, optimal coasting arc, ' = 0. Assume that g = 0. Then
-
W the solution to C-1 becomes
N
i -'\-
T
I r=at+b c-2
%
1ﬁ£ Thus the radius vector in a zero gravity field, varies linearly with
Jt& time, and the velocity vector is a constant, a. Similarly. the
N
.’ Hamiltonian, equation 2-10, can be written as
-
- T
b H = Ar V = constant c-3
1 _u_"
v
o
;ﬁz From the Euler-Lagrange conditions (8 and equations 2-11, 2-12, and
1.
.. 2-13), one obtains
>

K

=5k

8
¢
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) A =0
T -
* i
e ¥ _AV = -“A‘r C'-4
' .
R =0
:e\ Thus,
0
5‘
i = constant = ¢
Al —Y —_
o Ay =-ct+d C-5
l;
¢ =
* AJ 1
\
h
h
- From Lawden (30), the primer vector is defined as
! P (t) = -A, (v) Cc-6
;
u
) Using the results in C-5
=¥,
?
2 P(t) =ct-d c-7
B
)
Thus
N
:« P = ¢ = constant = A Cc-8
K - = —-r
A
n's
C.3. Boundary Conditions
& - To solve for the constants in equations C-2 and C-7, one general
assumption is made. The target (point to be intercepted) is the origin
Yy
3 of the coordinate system used, as shown in Figure C-1.
:n At t =t =0, r=r, and V=V _ on the initial orbit. Simi-
P o - o - -0
" larly at t = tf,_g = 0 since the intercept must occur at the origin, and
- V= Vf which is arbitrary. Thus the intercept vehicle moves from one
3 y=Xx
)
: linear trajectory to another by application of a velocity change. Using
3 these boundary conditions in equation C-2, one finds
\

TR O

A . A
NIt Gy Lttt

CUOCAN M T X, 417 -7, 1 1,8 ARGOCAGBGOAN ety
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Y
linear, zero g trajectory
target
X
<
~ Av
\ —_—
xo S
~ Vo
v+
Figure C-1. Intercept Geometry.
1.0
||
0.0
0 tf

transfer time

Figure C-2. Primer Time History.
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ol —
e
A
J::: and a=yV c-9
:i‘( -0
v
e Thus
h
By
& r=Vt+r C-10
:,‘f = o -0
';‘gf
on any trajectory in a zero gravity field.
.~:‘:’: '
::.:,' At any point, r, on a general zero gravity trajectory, a AV is
]
Y
‘ja:‘ applied to go to the origin such that
1%
A
" +_
{" v —!o + AV Cc-11
3
,I'. t h
G o go to the target, or
3
¢ rI=@Ht+r c-12
"
4..
Wy
Wy or rI=W_ +AVt+r c-13
. LS o W r
:.:‘ on a zero g trajectory intercepting the origin, where r I is the radius
o ¢
ERR
';f't on the path to the target, starting at r with constant velocity, X+.
b
Knowing that at t = 0, r I = ¥, a point on the general zero g trajectory,
;' and also that at t = tf, r I =0, yields the solution at the final time,
' .
f, J]
v e
A
L
;t:. rlI=0-= (\_lo + AV)tf +r Cc-14
' Al X
R
U
::0 Solving for the required AV yields
.".'u
e
¥ = - - -
‘.' aAv lt_/t:f \_Io C-15
'S
{Q

AT S X - .
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This is the AV required to go from any point r, with velocity Yo’ on a

)

O

ﬁ; ) general zero g trajectory, to the target (origin) in time tf. Substi-
Oy,
:§¢ tuting C-15 into C-13 yields

ni -

g!
;.é, rI=x(1-¢t/ty) c-16
W C.4. Primer Vector Calculation
- Use the definition of the primer vector

lﬁg
W P = -A = AV/|AV] c-17
\' v

D%
i < _ Trgy1/2
e where |AV| = AV = (AV'AV)™'“, and the known boundary conditions, to

e determine the constants in C-7. For an intercept trajectory P (tf) = Q.
o = =
fi Thus C-7 is rewritten as
& P (t) =c (t-ty) = d (t/t; - 1) c-18
K
R
" Note that t - t. < 0.
% From C-17 and C-18 one can see that P is in the direction of AV

Lo

and - ¢, while i is in the direction of -AV and c. P and.é are in
opposite directions.

: To solve for the primer vector, use the initial condition t = t,
e ‘
(]

\ = 0 to obtain
3, '
s ¢ = =P (0)/t, = -AV/t AV c-19
¢
d
b Substitute C-15, evaluated at t = to, into C-19 to obtain
I
!! = -
i c 1/thv (r /t¢ + V) c-20
.|
>
p
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’F Now that ¢ is in terms of known quantities, a general primer vector
i [\ -
RO
‘gf} equation can be obtained by substituting C-20 into C-18.
3
'g::t 2
e P=rx (t - t)/e AV + V(- t)/t AV c-21
,z';';‘;.o‘
Eaht
g';.: This linear relation holds at both boundary conditions. At t = tf, P =
R
»;:‘,A.: 0, and at t = 0, P = AV/AV, The primer time history in a zero gravity
‘ field is shown in Figure C-2. From Lawden (30), the primer history
¢
153
, shown is already optimum. No initial coast or intermediate impulse can
9% ,
,:'” improve AV.
L
S
o C.5. Examples
% ' Two pertinent cases arise as interesting applications of the
K/
?' '!
i theory just developed.
)
)
| té Case 1
X
W
;ﬁ\ Assume r T !o < Q. The minimum AV will occur where
T 2

* AV I, = o, C-22
N i.e. where AV is perpendicular to X, Substitute C-15 into C~22 to
e
U obtain

. 2 T

L ¥ - - = '
,.2 r, /tf r, go 0 C-23
%' Solving for te at this minimum AX condition yields
> 2
Py T* = t_.min = -r_"/r TV C-24 ,

f 0o -0 —o i

g Use C-24 and evaluate C-15 at t, to obtain the minimum AV. :

< ‘
:,o

; AVmin=rTV r/rz-—V C-25
;'p - -0 — -0 o -0

e
», Look at the Hamiltonian on the trajectory to the origin for this condition.
2

1
-,
£
§
4 u.
Y P,

', ,"..‘A.‘i O]
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H=plv=c"v c-26
o
t"‘
&t
N Substituting, one can obtain
[
o
H=-1/¢,2aV [r %/t +£ V] c-27
o8 f o' f —o —o
)
& .
;& Thus for r V < 0, one finds that H < 0 for t < T*, and H > 0 for t >
W, -0 -0
W,
ke T*. At T*, H= 0 (the time-open optimum). This is graphically shown in
}a Figure C-3.
R
!
,ﬁ I1f, for the time-fixed case, the transfer time, te is greater
:"o
;' than T*, the AV min still occurs at T*. If, however, the tf is less
S? than T*, the AV min will occur at the given te.
1V
"
N
e Case II
T
. >
'q Assume I !o 0. Since AV is never perpendicular to I the
%' time-open minimum AV is at t = ®. At this point equation C-15 shows
fel
”ﬁ that AV min = 120. Given a specified final time (time-fixed), tf, which +
3 cannot be exceeded, the minimum AV occurs with a time of flight equal to
%
0
3 the specified time, i.e. no coast. Using the analysis developed in
?. Case 1, one obtains the time-fixed minimum conditions.
3
N Tmin = tf
3
>
Y and AV min = -r /t_ -V c-28
< - o' f —o

T

The Hamiltonian is identical to C-27. However, if I -!o >0, H< O for

P TR )

all t. H + 0 (the time-open optimum) only as te >, Figure C-4

graphically shows this,
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S APPENDIX D
MINIMUM TIME FOR SINGLE IMPULSE TRAJECTORIES

D.1. Introduction

Results of this study show a single impulse to be optimal under

-

-

certain conditions, one of which was that the transfer time not be too

small for a given initial target position. In order to determine what

Lo

2~ this minimum time for a single impulse trajectory is, the planet con-
'l
Q strairt must be considered. Any time the planet constraint is violated,
'
i' two (or more) impulses are required: One will maintain the orbit at or
a
above the planet surface, and a second will accomplish the intercept.
i
g The condition for the launch vehicle trajectory to be tangent to the
1
)
!
: planet surface at launch is
N
. rTv =0 D-1
4 -0 -0
!-."
KN
i
;; 1f EOT !o < 0, the planet constraint is violated and more impulses would
W

be necessary. Thus equation D-1 represents the limiting case between one

and two impulse trajectories. It indicates that the launch point is at

‘, ,
T

-
o=

the periapse of the transfer conic, i.e., !0 =V.

R P

i Note that the value of !o in D-1 is not unique. Consider the
1' cases shown in Figure D-1. On trajectory T'H, a Hohmann transfer is

,; considered (with only one impulse for an intercept). The velocity (!H)
l and semi-major axis (aH) are known, yielding a minimum transfer time,

tH = Hohmann period/2, and the final target position is at a transfer

angle (true anomaly) of GH = 180° from launch. For the same final

»?e..\7q|q. 'R0 B O DR s 8g Ty And'y, (P A ’ y 87 4 N Wy *
i b ALY i v Y R WS M A . AR N aTie A ) OO U
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target position and transfer time, a velocity less than the Hohmann
velocity will penetrate the planet surface but will have insufficient
energy to reach the target orbit, i.e. a < ay- A velocity and semi-
major axis value greater than Hohmann will remain outside the planet
surface. Also, for the given final position, a time less than ty will
violate the planet surface constraint.

For a different final position, trajectory I'2 will have a
minimum transfer time, tm, satisfying D-1, and an associated a and_!z.
For this final target position and a time less than tm’ the trajectory
will go through the planet surface, while a time greater than tm will
remain outside the planet.

Thus, for a given target orbit, the limiting time for a single

impulse, i.e. equation D-1, can be determined. If a nonrotating body

is considered, !p = AV, while a rotating body would yield Xp = AV

+V .
—rot

D.2. Analysis

To determine the limiting case, calculate the Hohmann transfer
conditions., . Assume that r = 1, R = target orbit radius, y = 1, and

that the impulse is applied at periapse. Thus the semi-major axis is
aH=(R+l)/2 D-2

Using the Vis-Viva equation, the velocity at periapse can be found.

Vou " /(2 - 17ay) D-3

The eccentricity is calculated from r, = a(l - e cosEo) where Eo = 0.

1h, o0 e, e 4
AR




ey = 1 - l/aH D-4

The time of flight from periapse to the intercept point is
Aty = PH/2 =T a D-5
The final true anomaly is

eH = 180° D-6

Finally, the position of the target at t = to can be calculated

= - ° —
BH = GH 360 AtH/PR D-7

where PR is the period of the orbit with radius R.

Any value of the semi-major axis less than a_, will violate the

H

planet surface constraint. Choose successive values of a > a,. Since

H
the launch is at periapse, h=r XV =V k, or
- -0 o o —
h =V D-8
o
Solve the following equations for each a:
e=1-1/a : D-9
v, = v2-1/a=vVl + e D-10
-1 2
8 = cos ~ [1l/e (V,°/R - D] D-11
E = co:'~3-1 [1/e (1 - R/a)] D-12
At = (E - e sinE) a3/2 D-13
8 =6 - 360° At/PR D-14
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'f In the limit, a %, yielding a parabolic transfer, and e = 1.
¥
Qi Calculate the quantities in equations D-10, D-11, and D-14. Use
é% Barker's equation for a parabola in place of D-13, i.e.
1.8

At = [tan 8/2 + 1/3 tan® 8/2] p/2 D-15

&
,. where P = 2rP = 2 for a parabola.
jg‘ D.3. Results
ES By successively picking values of a from that for a Hohmann
;? transfer to that for a parabolic transfer, and performing the calcula-
_; tions indicated in Section D.2, a curve of transfer angle versus the

:S minimum time for one impulse can be obtained. Figure D-2 shows the

o results for the four target radii used in this study. It is a graph of
¥? the minimum time for one impulse versus transfer angle, or final true

‘ anomaly, for either a posigrade or retrograde trajectory, and is

) symmetric about 6 = 180°. Thus, for a given 06, i.e. final target
j% position, the intersection of a vertical line with the curve for a !
EE given R is the tm. If t > o i.e. "above" the curve for each R, one ;
{f impulse is possible. If t < € i.e. "below" the curve for each R,

3 the planet surface constraint is violated and two impulses are required.

)

% For example, on the R = 6.6228 curve in Figure D-2, choose a transfer

-

\f angle of 150.2°. If the given transfer time is greater than t = 12.77 TU,
F; a single impulse trajectory is optimal. If t < 12.77 TU, two or more
:; impulses would be required.
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e Figure D-2. One Impulse Minimum Time Versus True Anomaly.
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