
AD-Ai7i 859 SOFTWARE DEVELOPMENT PRODUCTIVITY WITH MODEL - SHIP /
STORE PILOT PROJECT(U) COMPUTER COMMAND AND CONTROL CO
PHILADELPHIA PA 1985 NOSS14-84-C-0282

IN CLASSIFIEDF/Gi / lNL

jgg W.I~2 112

0 II--.
111= 1111_L18

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

lpu.

CC C'COMPUTER COMMAND AND CONTROL COMPANY

> 2401 WALNUT STREET, SUITE 402 9 PHILADELPHIA, PA 19103 9 (215) 854-0555

SOFTWARE DEVELOPMENT PRODUCTMVTY-
WITH MO1DEL

It) -SHIP STORE PILOT PROJECT
0

Prepared for Workshop
0 November 6, 1q85

Held at George Washington University
W~ashington, D.C.

With Sponsorship of
The Office of Naval Research

LUJ Contract N000214-84-C-0282 D I

86 8 5 049

SOFT WARE DEVELOPMENT PRODUCITIVITY
WIH MODEL

-SHIP STORE PILOT PROJECT

Prepared for Workshop
November 6, 1985

Held at George Washington University
Washington, D.C.

With Sponsorship of
7be Office of Naval Research

Table of Contents
1. OBJECTIVES AND SUMMARY 1

1.1. Objectives 1
1.2. Summary 1

2. THE SHIP STORE SYSTEM 2
2.1. Functions Of The Ship Store System 4
2.2. Background Of The Ship Store System 4
2.3. Enhancements Of The System $

3. MODEL SOFTWARE DEVELOPMENT METHODOLOGY 5
3.1. Multi-Level, Top-Down Or Bottom Up Approach To Development S
3.2. Multi-Level Structure Of The Ship Store System 6
3.3. Program Module Development 7

4. TRAINING OF FAADCPAC STAFF 7
S. SOFTWARE DEVELOPMENT PRODUCTIVITY 10
6. ERROR DETECTION AND CORRECTION AND CHANGES TO IMPROVE 13

PROGRAMS
6.1. Static Checking 17
6.2. Dynamic Checking 17
63. Highlights Of Error Analysis 18

7. CONCLUSIONS 18

GJ

Dt

I.-

• ,, [i',r

.t~ t ,: -

1. OBJECTIVES AND SUMMARY

11. ObJectim
The objective of the project repomd ben has been to provide a bridge woes a wide gap that typically exists

between reseach and the application of its results. In this cae, the researh concerns the MODEL system and the
ara of software developmem. Of special interest are the software development of applications ch crized as
complex, tmcvitical, medium to large scale, that utilize modem computer technology. The research on the
MODEL system has been conducted at the University of Penmylvania for almost a decade under partial sponsorship
of the Office of Naval Rsearch. The pilot project objectives are to verify, measure and evaluate the impact of the
innovations in MODEL in real life nvironment.

The innovative features of MODEL will be discussed in detail in this report They can be summarized by the
following three main points.

1. Auomatc support for the entre software development process. The MODEL system components
perform documentation, checking and code generation, spanning the development of requirements,
modularization, module specification, coding, static and dynamic debugging and performance
evaluation.

2. Use of Equational Language. The user of MODEL defines the inherent concepts and rules of the
problem through equations. The automatic system (a) aids in debugging through in-depth
completeness and consistency checks and (b) transforms the statement of the problem into highly
efficient programs.

3. Applicaton of on-line, concurrent/parallel procesing technology and evaluation of performance to
guide frther tuning of effciency. The application is enhanced through use of operator/terminal
interactions, on-line databases and interactions between concurrent processes. Performance evaluation
is conducted automatically, reporting to the user program computation times.

The pilot project is the result of cooperation among three Navy agencies: The Office of Naval Research (ONR) -

sponsor of the research, the Navy Comptroller (NAVCOMPT) - which has responsibility for Navy financial
systems, and the Fleet Accounting and Disbursing Center, Pacific (FAADCPAC) - which hosted the project

/ The Ship Store system has been selected a a highly suitable real-life environment to investigate the effectiveness
of the MODEL system. The Ship Store system is used for financial and inventory management of large number of
stores aboard Navy ships. It derives its complexity and size from the large number of diverse inputs, wide reporting
responsibilities, and particularly the need for a man-machine interface to balance, reconcile and adjust many isolated
but cormected actions. The latter require complex man-machine interfaces, on-line databases and real-time
communications among programs. Ther u 14 different inputs and 36 reports, in addition to large on-linme
databases. The project development produced automatically 38 programs with a total of almost 50,000 lines of PL/I
code.

1.2. Summary
Through implementation of the Ship Store System, the project verified the feasibility of using MODEL for large

scale software development. More important ue the measurements made and the evaluation of the effectiveness of
the MODEL methodology and automatic systems. Three types of claims a made for MODEL

1) Tripling of Software Development Productivity: Verifying improvements in productivity required
measurement of manpower and costs of the development, from the initial conception of an application, including
development of requirements, coding and testing, to the point where the developed system passed a strict acceptance
test. This can be compared with similar measurements of conventional software development productivity reported

2

in tchnical publications. Widely reported statistics and models of conventional software development have been-
collected by Bany W. Boehm in Software Engineering Economics", Preantice Hall, 1981. There are many factors
that effect productivity. The evaluation focused on the number of statermts and lines of code in a high level
language (Pil) produced per hour. Boehm reports insimilarapplicatons a range of 1-3 lines per man hour. This
depends greatly on the complexity of the application and proficiency of the programmers. The project reported here
is considered complex, particularly due to the interactive on-line aspects and the mn-machine interfaces that aid the
clerks in balancing, reconcili and adjusting msactions. The staff employed in the development had no prior data
processing experience. Still an average of moire than 10 lines of Pil1 code were produced per man hour.

2) Use of MODEL by non-progra mirs: A specification of a program in MODEL does not consist of a computer
solution to a problem, but rather of a mathematical definition of the problem itself. It is the task of the MODEL
compiler to automatically translate the specification of a problem into highly efficient computer programs that solve
the specified problem. Therefore the user of MODEL is not directly concerned with the computer solution and need
not have computer proficiency. In this project, FAADCPAC assigned to the Ship Store system development three
persons who have not had prior exposure to, or experience in, developing computerized business data processing
systems. Only one of these had learned previously a high level conventional computer programming language used
on a personal computer (BASIC).

3) Detecting high percentage of errors in static debugging: The MODEL compiler has a much greater capability
of detecting errors than conventional compilers. Detecting enus through the compiler and their correction is called
static debugging. This is contrasted with dynamic debugging which consists of detecting errors or necessary
changes by executing the program with real-life data and making appropriate changes. The latter is several fold
more costly per error than the former. Conventional compilers typically detect less than 40% of the logical errors in
a program. The MODEL compiler performs many additional checks and the collected statistics show that
approximately 80% of the logical errors are detected by the compiler and corrected ini static debugging.

The report is organized as follows. Section 2 gives a functional overview of the Ship Store system. The overall
MODEL methodology, used in the implementation, is described in Section 3. Sections 4-6 deal with measurements
and presentation of implementation statistics. The areas of special interet are: training of users - Section 4,
software development productivity - Section 5, and error and change detection and correction - Section 6. Section 7
concludes the report.

2. THE SHIP STORE SYSTEM
The Ship Store system performs typical general ledger and inventory accounting functions. It perform these

functions centrally, at FAADCPAC, for over 200 stores aboard Navy ships in the Pacific. Its complexity is derived
from the great multiplicity of sources and destination of data and the need to balance and reconcile numerous actions
by the community which it serves. Especially complex is the analysis and man-machine interface to help clerks find
and resolve conflicts. As stated, the system is therefore also fairly line in scope.

The Ship Store system is described in this report on multiple levels of details. This section focuses on the top
level, where the system is regarded as one box and it is defined functionally, through its inputs and outputs. Figure
2-1 illustrates also the overall environment surrounding the Ship Store system. The Ship Store system is represented
as a central box in the figure, showing its inputs and outputs, their sources and destinations.

OTHER GOODSGOD
swni oYFncns s Su imo CU*%ERCAL

VZ3MOR

'C' REG. $Go
RiCE!?? 14 SS153 RECEIPTetc.*

S'S

Requests R.equ~ests
to SHPSOESSMRPRSto

Reconcile CSReconcile

1162/466 06 33 36 05/45

FLEET ACCOUNTING AM DISMUSING CmWTE
PACITIC FEE

(PAADCPAC)

*2074/2051. 27, 47. Profits, Contributions
UaReorts ae used by WAADCPAC Clerk, Ship Store and other agencties

Figure 2-1: Functional Description Of The Ship Store Svstem

4

2.1. Functions Of The Ship Store System
The Ship Str System suports FAADCPAC fincial mmnagers and daks in financial management and in

reporting to the Naval Research Systems Office (NAVRESSO). FAADCPAC performs the following functions in
conjunction with ship stores.

a. Acut
b. Maintain files, effect reconciliation of

documents for invoices and receipts
and balance accounts for financial state nts

a. If feat reconciliation of cash reported in returns
d. f ffect payment of dealez' bills
e. Consolidate financial statements

The Ship Store system performs automatically items bc, and e and supports the other items.

As shown in Figure 2-1, input to dhe Ship Store System comes from two classes of sources:

Financial Reporting System (FRS)
- including purchase invoices (Registers 05 and 45), transfer invoices (Register 1162 and 46),
and adjustment, (Registers 33, 36 and 06).

Ship Stores - including purchase receipts ('G'), transfer receipts ('C'), deposit ticket (Register 14), and
SS153 financial summaries.

These input data are available to the system on tapes in the form of card images. The input programs check the
validity of the data before storing them in the database. Clerks use the system to resolve the more difficult errors in
the input data.

Monthly reconciliations of receipts of merchandise and invoices are performed. Reports based on reconciliation
of transactions show the mathing status of every invoice or receipt in the system and the summaries of different
categories. These reports provide also easy-to-reference information for the Ship Store clerks in researching and
resolving the more complex discrepencies.

Tri-annually, financial statements are consolidated to produce balance sheet, profit and loss statemmts, and
consolidated NAVCOMPT Forms 145 and 146.

2.2. Background Of The Ship Store System
FAADCPAC has had responsibility for financial management of approximately 200 ship stores since the 1960s.

The original Ship Store System has been batch oriented for the IBM 360 computer, with a heavy emphasis on tape
and card files. During 1980, the system was convered to the UNIVAC 1100 cornputer system for use in the
NARDAC network.

Recently, the system, has been audited and referred to as "ineffective" and "incomplete". Unsubstantiated or
duplicate payments to vendors have been a significant problem. This imposed the requirement on the new system to
reconcile automatically invoices with receipts, and provide an effective interface to clerks conducting the necessary
investigations. The input data had many inconsistencies which required incoporating in the new system automatic
balancing of accounts and correcting of erroneous data.

$

2.1 Enhancements Of The System
Enhuncmneu in the new system implemented by usn MODEL address Ure pumns outlined in Ure preiu

section. They include the folowing:

a. nteractive operation by clerks engaged in correcting
inputs and balancing or reconciling conflicting data.

b. Terminal display - update - retrieve capability

c. Creation of database files that can be updated and
perpetuated on a current basis (rather than on
periodical basis).

d. Concurrent interactions with Ship Store clerks, processing
massive input and updating of data

The benefits resulting from thee enhancements ae:

a. Capability to edit and correct inputs and balance
and reconcile conflicts, resulting in timely
handling of unsubstantiated or duplicate invoices.

b. Reduced clerical labor

c. Timely updating of databases (independently
on reporting cycle)

d. Timely reporting

e. Ease of maintenance.

3. MODEL SOFTrWARE DEVELOPMENT METHODOLOGY

3.1. Multi-Level, Top-Down Or Bottom Up Approach To Development
The MODEL system can support both the top-down and bottom-up approaches to application development. It

also supports additions, changes and deletions. This capability is possible because of the nonprocedural and
concurrent nature of MODEL. All changes we made in the MODEL language specification and their translation
into program design and computer operations is performed automatically. The translation is invisible to the users
and the user need not understand, or even know of, the complex computer techmology that is involved.

Because of this flexibility it is not necessary to provide complete detailed requirements for the application prior to
beginning individual program development. It is possible for instance so concentrate first on the more complex
program modules, rapidly obtaining prototypes, and use the results to define the rest of the application. Thus, only a
broad statement of objectives was available prior to initiating development of the Ship Store System, and detailed
requirements evolved later.

The MODEL approach distinguishes between global and local aspects of the implemented system There are
separate components of MODEL for these two purposes. A Co*gvroar component accepts as input a data-flow
like digramn of the system, perform consistency checking and generates command language code for setting up
communications between concurrently operating program modules and initiating respective progrmns. The
Configurator can be used on each level of the top-down breakdown of the application. The Compiler accepts

equationd specifcations, perfrm the checking and generates a highly efficient progran in PiLI. This is illusaed
in the following for a top4own qWoal A third component of MODEL, the imer, which evaluates the
pocsin times between inputs or ouiput is oriented to real-time applications and has not been used in this prject

3.2. Multi-Level Structure Of The Ship Store System
The top-level view of the system was shown in Figure 2-1. The Ship Store system is shown as a single box at the

center of dhe diagram. indicating its inputs and outputs.

The software development for the Ship Store System was then divided on the second level into two subsystems,
for Requisition processing and Financial processing. The subsystems are similar to one another. Both of them have
to validate input, perform reconciliation, generate reports, and allow the operator to modify the contents of their
databases.

Based on the type of processing required, each of the two subsystems is further divided on a third level into three
areas:

1. Front Office: provide interfaces for Ship Store clerks to perform editing and modification of
transactions stored in the databases. Clerks requests are sent to the back office to be carried out via
intermodule messages

2. Back Office: Respond to requests from the front office, access databases, and return the results to the
front office.

3. Batch Process: All the non-interactive processing including input handling, balancing, reconciliation
and report generation.

The implementation of the Ship Store System is thus decomposed in a top- down fashion as shown in Figure 3-1.

Ship Store System
/\

/\
Requisition Financial Statemnt
Subsystem Subsystem
/ I \ / I/ I I I

/ I \/ I\
Front Back Batch Front Back Batch
Office Office Office Office Office Office

module Programs

Figure 3-1 Multi-Level Breakdown Of The Shipstore System

The whole Ship Store System is decomposed on the fourth level to consist of 38 MODEL modules. The
complicated module-to-module and module-to-file interfaces, especially for the front and the back offices, were
established by using the MODEL Configurator.

7

3.3. Program Module Development
Most of the development time involved the use of the MODEL compiler for checking the detailed specification of

each module and for generating the respective programs. This activity was carried out by the FAADCPAC staff,
working independently, but consulting with the on-site CCCC staff, as they progressed.

Essentially, one person developed the front and back offices modules for both the Requisition and Financial
subsystem. This part, considered the most complex and difficult, was developed in two steps. First providing a
pr- ttype and later finalizing the modules. The other two persons developed the Batch subsystems for the
Requisition and Financial subsystems respectively. Each person typically worked on one module at a time,
composing a detailed equational specification, debugging it statically, and then testing it with live data dynamically.
Program modules were synthesized and tested as they were completed, to create progressively larger subsystems.
This was done by use of the Configurator.

The Configuration of the batch and front and the back offices is shown for the Requisition and Financial
Subsystems in Figure 3-2 and 3-3 respectively. It shows the commiuications between modules via files. It was
specified in the MODEL Configuration Specification Language (CSL). The Configurator translated the statements
in CSL into a series of command procedures and a set of communication mailboxes, which provided the
participating modules communication facilities and ensured the synchronization of the intermodule message
transfer. The Configurator took away communication interface concerns from the individual module developers,
allowing them to treat communication messages as regular files.

4. TRAINING OF FAADCPAC STAFF
The three persons assigned by FAADCPAC to the Ship Store project received training in use of MODEL over the

three months of September through November 1984. Previously to that they were trained by FAADCPAC in use of
a terminal and in use of the EMACS editor to create and maintain files. They did not have prior experience in either
Sprogramming or business data processing design. One person learned previously the use of the Basic programming
language. The lack of previous training or experience by the assigned FAADCPAC staff proved beneficial to the
objective of the pilot project as it required focusing on and analysis of the needs of training in MODEL.

Formal classes in the syntax and semantics of MODEL, including a refresher on arrays and equations, were
conducted for one month (September 1984). This was followed by two months of more informal training on
business data processing concepts, how to express these concepts in MODEL, how to debug specifications and how
to test them with live data. The two months period also included learning the operation and design of the original
Ship Store system. During this period the staff also identified the input data from the original Ship Store system that
will be needed later for testing the new system.

Several of the more difficult training topics were identified in the training as follows:

a) Subscripting: variables in MODEL are typically envisaged as vectors, matrices, or generally multi-dimensional
arrays. The elements of arrays must be referenced by providing with each variable a subscript expression.

b) Debugging: Inconsistencies are discovered by the MODEL compiler in dimensionality, ranges and data types
of referenced arrays and by circular definitions.

c) Control variables: The parameters of data structures, especially the ranges of dimensions of variables can be
defined dynamically, to depend as the input data.

d) Use of on-line data: This requires the user to reference data structures in index-sequential files.

Ph f-h

00

W.

rS

V to
0 = "

03 0 .0=

C.1

I-
go .

6U9

'I

frW.

CC

0 En w

tpt

CCI

I In
v CA

o 0 0-

0 r

10

The above concepts must be taught very carelly,

5. SOFTWARE DEVELOPMENT PRODUCTIVITY
As described in the previous section. ".e software development of the overall system was partitioned into

Requisition and Financial Subsystems, t Ai further divided into three areas: (a) batch, (b) front office for clerk
interactions and (c) back offices for maiAitaining and updating on-line data. These areas were assigned to the three

FAADCPAC memb&r of the project for independent development.

The development started early in December 1984 after the above high level breakdown was established.
Development area (a) progressed substantially from the beginning, while areas (b) and (c) required approximately
three months for building a prototype interactive system before the final one was started. The input programs in
area (a) were emphasized in the beginning as they processed input of data that was necessary to test the rest of the
system. By the end of February 1985, all the modules for input of data were completed and a database containing
actual Ship Store data was established.

A number of problems were discovered in the MODEL system as the development progressed. The problems
were corrected on a continuous basis by the CCCC personnel in Philadelphia. The facilities of the MODEL system
were enhanced throughout the project based on comments from the FAADCPAC staff.

The need for some changes to the initially conceived database structures became apparent during the
development, requiring modifications to the previously completed modules. The nonprocedural aspects of the
MODEL language had made this otherwise complicated job easier.

By the end of July 1985 all modules were coded and mostly tested with actual data. During the months of August
and September, the February through May tri-annual data received by the original Ship Store system was loaded to
form the databases for a thorough test of the new Ship Store system. Some problems due to the huge volume of data
were discovered and corrected. Changes were also made for more flexibility and readability of the reports.

The development was concluded as of September 30, 1985. A total of 38 programs comprise the new Ship Store
System. Figure 5-1 shows the numbers of statements and lines of each of the individual programs and their totals.
Figure 5-2 shows the monthly production of programs over the ten month period. (Dec. 1984 through Sept. 1985)

From December 1984 through September 1985, a total of 4874 hours have been spent on the development.
Consisting of 3816 hours by the three members of the staff of FAADCPAC assigned to the project and 1058 hours
by CCCC staff on-site at FAADCPAC who consulted on the development. (Additional 526 hours were spent by the
CCCC staff on site at FAADCPAC on maintenance of the MODEL system). Overall productivity in terms of
MODEL and PL11 statements or lines per man-hour are as follows:

MODEL statements per hour - 4635/4874 - 0.95
MODEL lines per hour - 21217/4874 - 4.35
PL/i statements per hour - 30237/4874 - 6.20
PL/1 lines per hour - 48907/4874 - 10.03

As discussed in Section 1, this has been compared with productivity models and statistics for conventional
methodology (as reported by Boehm). This supports the claim of tripling the productivity by use of MODEL over
conventional high level programming languages.

11

PROGAK MODEL PL/ MODEL PLi Eours Productivity

RAW tat Stat Lines Lines t of PL/. Linea/
% of Total per hour
total

k. ReWaistion
Xnput

3R605 174 1110 888 1825
33G06 147 1079 666 1705
33G1162 149 1074 687 1710
33G33 171 1090 864 1796
RG36 167 1086 840 1781
R3G45 138 1027 711 1655
RZG47 134 1019 696 1640
REZ.NC 136 870 719 1418

TOTAL 1216 8355 6071 13530

a. Requisition Balancing

GCBAL 67 416 341 607
R3GSORT 25 242 214 389
REGBALP 90 694 481 976
3GBALT 83 656 427 917

TOTAL 265 2408 1463 2889

C. Requisition Reconciliation

ZXCTITC4 93 556 584 1142
PR* P33074 52 339 229 549
JDAT3074 28 570 215 932
R13330V4 28 570 214 932
P 3IRC 24 183 73 251
33Q33CON 513 3289 1622 4618

TOTAL 738 5507 2937 8424

TOTAL Batch/Rquisition Subsystem

2219 16270 10471 24843 1272 19.5
50.6% 26%

Figure 5-1 (a) Program Development Statistics For Batch/
Requisition Subsystem.

12

Program RUO3L iL/i NODZL iL/I Eours Productivity
Nam Staits -state Lines Li4ne a of iL/I lines

16 of Total per hour
Total

D. Financial Statment Xnput

388153 167 922 645 1718
ANSU47 116 817 409 1187
CPROJPROF 155 988 686 1537
APROJE10 120 813 401 1167
CASESAL3 89 572 286 821
hNCSALZS 110 630 345 914

TOTAL 757 4742 2772 7344

Z. Financial Statement Generation and Cash Reconcliation

8TNTGEN 249 949 1032 1749
CASHRMCN 64 506 263 725

TOTAL 313 1455 1295 2474

F. AuLiliary Modules

SANKRCYR 48 460 113 654
CLSEZQN 44 391 106 585
CLSKSTMT 101 850 320 1128
CLSZCASH 48 365 143 502

TOTAL 241 2066 682 2869

Total for fatch/Financial Subsystem and Auxiliary Program

1311 8263 4749 12687 1742 7.3
260 35%

Figure 5-1 (b) Program Development Statistics For Batch/
Financial and Auiliary Program

13

Pzogram UOEL PL/1 NO1TEL PiL/1 lours Productivity
Name Stats stats Lines Lines 0 of P1/1 lines

& of Total per hour

G. Rquisition EdLtLng and Modification

DISPA = 218 776 1158 1368
ZDTRZQ 181 1085 870 1875
MODUEQ 160 874 1411 1946
GOODNITZ 12 119 30 140

TOTAL 571 2854 3469 5329

R. Financial Statement EdLting and Modification

DXSPTCH 135 716 633 1199
ZTSTMT 195 1314 822 2393

NUDS'TM 192 1101 1043 2316
lDNITEZ 12 119 30 140

534 3250 2526 6048

Total for Front and Back Office subsystem

1105 6104 5997 11377 1860 6.1
23% 37%

GRAND TOTAL 4635 30237 21217 48907

Fgure 5-1 (a) Program Statistics For Front and Back Offices
and Produced P1/1 Programs

The area of Front ad Back Offices for both Requisition and Financial Subsystems was the most difficult one,

involving on-line data and interactive usage screens. The productivity in this area was therefore the lowest 6.1 PLI
lines per hour.

The area of Financial/batch subsystem was next in difficulty, as it included financial statement generations and

various calculations. The productivity in this area was 7.3 P11 lines per hour.

Finally the Requisition subsystem batch area, had a number of similar inputs, which accelerated progress. It also
however included the complex reconciliation of receipts and invoices. The productivity in this area was 19.5 PIA
lines per hour.

6. ERROR DETECTION AND CORRECTION AND CHANGES TO IMPROVE
PROGRAMS
Error detection and correction is probably the most intellectually demanding and costly activity in software

developmen.L Typically, it accounts for close to half of the total cost of development. Errors that we not detected

during the development can affect reliability and confidence in the application. As noted, the MODEL compiler
checks ast considerable depths the global consistency of all the statements and locates conflicts as precisely as
possible. One of the main advantages of the MODEL approach we the facilities for debugging. They make a major

[

3wv6ible

-- 50000 -

0

0

Overall

.0

.-.- 3000.- Requisition
. -- -Batch

RR

0

II.---- -Saemn

_____R _____Batch'

I ---- - Interactive-

F operations

12 4 2 3 4 5 6 7 _8 _9 10

* --- Figre- -5-2 - -AMonthly, ftgrevs -In -Progrem Dvmelopmnt -

A@ l6Slmter to the 'cflIlfmetrr

is

contmumio to the high productivity obtainable with MODEL.

One af tM objectives of the project was to categorize the eraor Into a number of classes and analyze the
rspecti difficulty and time: to correct each class of entis.

Errors wer monitred in several categories. The overall development of a module can be viewed as consisting of

3 pars - initial specification, static debugging and dynamic debugging. Note that subpau of each pan can be

caied out incementally, and the e can alternate f1om one part to another. Error breakdown is first by static
chcig and dynamic checking. Static checking is for those syntax and semantic errors detectable by the MODEL
Compila. Dynamic checking consists of detecting incorrect outcomes when the compiled programs are executed.
Static checking is by far less costly per error than dynamic checking. This section summarizes the occurrences of
errors in these major categories and their subcategories.

Figure 6-1 summarizes the categories of errors found and changes made during the development, their frequencies
in the respective categories, the average time required to make a correction in each category and the percentage of
overall development manpower invested in correcting eors in each category. This information is important to
locating areas in MODEL where additional enhancements would contribute the most. Figure 6-1 also gives an
insight into the anatomy of software development with MODEL.

- ---------- ------------------.---------------------category IOcaurenoej Peroentage I TotalI Peoen- IoursI
atg tag to I
Iof *Croce I Joural of sours corrctl

II I
----------- --------- ----------- --------------- --------

rnitial C"osition I I I
of a Specification I E I ML 11103 22.6I NL I

-I---------- --------- --------- ----- I ----------------
Static- I I
syntax 1(a) syntazl 1668 1 43.5 1 350 1 7.2 1 0.21 1
errors I I I I I I I
---- I ---------- I----------- I----------- I------ --------- I-------I
Static I(b)Controll 36.3
logic I variables I0 I 36.3
errors I I I I I I

I(C)Data I I I I I I I
I type 450 I132.4

j(d) Sub- I I I I I I
Iscripting 1 215 113901 15.5 136.31 1833 1 37.6 1 1.32 1

I I I II IIII
Ie) Incom-1 I I I I I I I
I pletenessl 136 I I 9.8 1 1 1

I I I l!
1(f) othersl 84 I I 6.0 1 1 1 I

-------I ---------- I------I---------------------------------
I(a)...lI I I . .I ...
I Layoutl 350 I 1 45.1 1 1

Dynamic I(b) Data I
errors IconversionI 112 I 1 14.4

* changesI I I I I I
I(c)Calcu-I I I I I
I lations 1 98 I 7761 12.6 120.21 1588 1 32.5 I 2.05 1

(d) Znput
fomat 78 10.1

I()File I I I I I I
Iattributel 73 1 1 9.4 I 1 1

I(f) othersl 65 1 I 8.4 I 1
I ---------- I------ I . I------- I I ------ I --------- I-------I

TOTAL 1 3834 I 100 1 48741 100% 1 1
--

Static logic errors per MODEL stat. w 0.30, per 71/1 line - 0.028
Dynamic errors per NODEL stat. - 0.17, per P1/1 line - 0.016
Logic errors per MODEL stmt - 0.47, per PL/I line - 0.044

Figure 6-1 Error and Changes Statistics

17

6.1. Static Checking
The er ad warnung messages prduced by the MODEL processor for every compilation were saved on a disk

file and served a a basis for the statistics in Figure 6-1. Following we the explanations of the subcategories of static

clecking shown in Figure 6- 1.

Staic Checking - Syntax Errors

a) Syntax errors occur most frequently and they account for more than half of the total number of errors.
Fortunately this type of error is the most easy to correct. Usually they are simple omissions of semicolons or
imgl:Oprly nested IF-THEN-ELSE phrases. This, type of error will not be further considered in the evaluation of
MODEL's error detection capability. The other types of errors involve logical inconsistencies or changes required
for satisfactory operation.

Staic Checking -Logical Errors and Changes

b) The next type of error involves the use of control variables. Control variables are used in MODEL to specify
structural and organizational attributes of data. Improper use of control variables occurred more often at the earlier
stages of the pmject, before their usage has become familiar to the development staff.

c) The n . category are errors due to wrong specification of data types. Typically, this happened because
arithmetic operators were used on character strings. During the period of development, the MODEL compiler was
enhanced to better explain in error messages the causes of errors in this category. Therefore, in the future, the time
to correct these errors will decrease.

d) n he percenta-e of errors caused by missing subscripts or inconsistent uses of subscripts was about 15%, but
thes- -rrors took longer to correct.

e) Errors caused by ommission of variable definitions are trivial to correct because an error message pinpoints

exactly the undefined variable.

6.2. Dynamic Checking
Dynamic checking detected not only logical erms but also deficiencies in the operation of the program to meet

the objectives of the application. Dynamic error were recorded daily manually and served as a basis for the
statistics in Figure 6-1. Every time a program (or a set of programs in debugging interactive operations) was
executed and improperly terminated, the error was analyzed and its type recorded. More than 50% of the errors
detected by dynamic checking occurred while debugging the interactive operations. Following is an explanation of
the subcategories of dynamic checking shown in Figure 6-1.

a) The most frequent and easy to correct were the errors or inadequacies in specifying the data formats and report
*layouts. About half of the dynamic errors (45.1%) were of this type.

b) Data conversion erms (14.4%) usually were the results of omitting conditional expressions in equations. This
4 resulted in undefined variables in some instances. These errors were relatively hard to trace.

c) Errors from inaccurately specified calculations resulted mostly from wrong initial or end conditions for
calculating totals or subtotals.

d) Erors in input formats were the easiest to detect and correct.

e)Errors i file attributes consisted of eroeermnization of film or ranges of dimensions, causing references
to elements outside the range.

f) Dynamic eo other than the ones mentioned above wae very much system-dependent. Since the VAX VMS
file system is quite fleible, logical file name assignments me sometimes necessary if files other than the defaulted
ones are to be used in testing. File-not-found or inconsistent attribute eors occurred when the logical name
assignments before program execution wer omitted.

6.3. Highlights Of Error Analysis
The statistics on rors and changes during the Ship Store application software development are shown in Figure

6-1, together with their summaries. The overall software development is divided into three parts-initial composition
of specification (22.6% of overall manpower), static checking (44.82% of overall manpower, divided into 7.2% for
syntax errors and 37.6% for logical errors) and dynamic checking (32.5%) that include not only individual module
testing but also acceptance testing of the entire system.

Figure 6-1 shows also a further breakdown of the static/logical and dynamic checking into error categories.
Subscripting ars in static checking are the most difficult to correct. The MODEL system has been enhanced by
an additional report and more precise pointing to the offending statement to reduce the difficulty in correcting this
type of error.

In dynamic checking, errors in calculation were the most severe to correct. A number of functions have been
added to the MODEL language to be used for summing, averaging and searching, over vector variables, from where "
many of the calculation errors originate.

The errors in the subcategories denoted as "others" are few in number but severe. In static checking they include
detection of circular logic. In dynamic checking they include errors in the configuration.

64% of the logical error and changes were detected by static checking and 36% by dynamic checking. The latter
includes as a large portion changes made to enhance the Ship Store application based on rapidly obtaining
prototypes of programs and testing them with data. These are therefore not errors in logic but improvements.

Finally the statistics show a very high error rate per MODEL statement (A5, namely one logical error or change
per 2 MODEL statements. This amounts to one errm or change per 23 PLII fines of produced code). This is
because of the many changes made as a user progressively increases the size of a module and simultaneously
determines the requirements of the module while composing a module specification. It also reflects the effect of a
learning curve-with the staff initially making more errors, which receded subsequently to a constant level after the
third months of the project.

7. CONCLUSIONS
The objectives of the pilot project were achieved as follows:

a) Feasibiliit Use of MODEL in a fairly large project involving both diverse data and complex computation was
demonstrated.

b) Training: We demonstrated that personnel without prior knowledge of data processing or computer
pxogramming can be effectively trained to use MODEL in software development of large applications.

c) Producdvit:. Tripling of software development productivity was demonstrated. This agrees with much of the

19

other experience i use of MODEL, prior to this preject, and concurrently with it, by users of MODEL elsewhere.

d) Error and Chmnge Anaysir Statistics were collected on categories of errors and changes, giving an insight
into the role of automatic checking of consistency and completeness by the MODEL compiler.

Much has been learned on where and how to enhance the MODEL system. Of greatest importance were the
lessons learned about needed throughness and completeness of training and additional automatic aids in debugging.
Enhancements were made to the MODEL system incorporating what was learned from this proect,

Another important lesson learned is the power of the concurrent/ parallel processing techniques built in MODEL.
The project demonstrated how business data processing can be greatly simplified. Use of concurrent programs that
communicate one with the others resulted in much smaller program modules than if stand alone programs that
communicate only through data files had to be developed. Also the concurrent processing, together with the
nonprocedurality of MODEL enabled much simplified modularity scheme and ease in making changes.

The development of the Ship Store system utilized the VAX family of Digital's computers under the VMS

operating system. Another version of MODEL operates on IBM main frames under VM/CMS or MVS operating
systems. The MODEL compiler operates on relatively small computers as well, on Digital's Microvax and IBM's
PC-AT 370. These computers can also operate in a distributed processing network This makes it feasible also to
operate the Ship Store system in such a network. For example a small computer can be placed in each Ship Store to
make corrections to the data at the source.

Dve

