AD-A169 739 REMOTE EVALUATIONCU) MASSACHUSETTS INST OF TECH
CAMBRIDGE LAB FOR COMPUTER SCIENCE J N STAMOS JAN 96
MIT/LCS/TR-354 NOS@14-83-K-0125

UNCLASSIFIED F/6 9/2

<L ““

PV s e &

oy

ST

A

1.0 &N
lle= & = g
. ‘E'-: m

i
= =
= IS

I
-l

MICROCOPY RESOLUTION TEST CHART
NATIONAL BURE AU OF STANDARDS -1963 ~ A

B

N
o
o

= 1

Al
I

AD-A169 739

COMPUTER SCIENCE TECHNOLOGY

MIT/LCS/TR-354

Remote Evaluation

James W. Stamos

January, 1986

This research was supported in part by the Defense Advanced
Research Projects Agency of the Department of Defense and was
monitored by the Office of Naval Research under contract number
N0O0014-83-K-0125.

J WMWY) - 2Rl Sef Ay P8 NS REINT N K4 - vy Sl 3 AN Pty 0 . T RAAASAL A M A Nal ol

Unclassified %
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

i
REPORT DOCUMENTATION PAGE BEF%%%%‘SS;EE’%‘&“;OM
1. REPORT NUMBER > GOVT ACCESSION NOJ] 3. RECIPIENT'S CATALOG NUMBER |
! MIT/LCS/TR-354
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
| Ph.D. Dissertation
Remote Evaluation May 1982-January 1986
6. PERFORMING ORG. REPORT NUMBER
MIT/LCS/TR-354
7. AUTHOR(a) 8. CONTRACT OR GRANY NUMBER(s)
DARPA/DOD
James W. Stamos N00014-83-K-0125 :;
&
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::gﬁR.Agothessrftul:&oggn?ASK X ::
MIT Laboratory for Computer Science N
545 Technology Square A
Cambridge, MA 02139 :
1t. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
DARPA/DOD January 1986
1400 Wilson Boulevard 3. NUMBER OF PAGES
Arlington, VA 22209 136

T4, MONITORING AGENCY NAME & ADDRESS(/f different from Controlling Office) 15. SECURITY CLASS. (of this report)

ONR/Department of the Navy Unclassified

Information Systems Program T8a. DECL ASSIFICATION/ DOWNGRADING
Arlington, VA 22217 SCHEDULE

e ———————————— s—
16. DISTRIBUTION STATEMENT (of thia Report)

Approved for Public Release; distribution is unlimited

"II'
v T
Pl s

.'
o0,

i)
£

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

T A)
r‘l” /‘:"" Yk
i’ o
Ay By 5y
AR g
TA A

Unlimited

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identity by block number)

atomic transactions, call by sharing, call by value-overwrite,
computer networks, distributed computing, evaluation, global names,
message passing, procedure call, programming languages, remote
evaluation, remote procedure call, remote types

20. ABSTRACT (Continue on reverse side If necessary and identify by block number) I)

r\ .

A new technique for computer to computer communication is presented fi}:ff

that can increase the generality and performance of distributed systems. L}L}ﬁ;

This technique, called Remote Evaluation, lets one computer send another 4 RN
request in the form of a program. A computer that receives such a reques '

executes the program in the request and returns tho results to the sending A

£
(]

.
[4

computer.

Remote evaluation proyvides 2 new degree of flexibility in the

b)) ':2:“73 1473 =oiTion OF 1 NOV 6813 OBSOLETE . :
S$/N 0102-014- 6601 | Unclassified G

2
.

S
.l

-

SECURITY CLASSIFICATION OF THIS PAGE (ﬁm Deta Bntered)

LA

ras I o AR A A A A G St Gl e S AR = A ARG A A EA L IR ASACH LA L SLALN L QLA AL ALY ""v*-"'*z":;'?:‘r;x
; A
‘l
- Unclassified
'; W CURITY CLASSIFICATION OF THIS PAGE(When Data Entered) ‘ :
% _'f:',;‘
N design of distributed systems. In present distributed systems that '?Z
| use Remote Procedure Calls, server computers are designed to offer a {&q
K fixed set of services. In a system that uses remote evaluation, e,
) server computers are more properly viewed as programmable soft —
3 abstractions. One consequence of this flexibility is that remote R
3 evaluation can reduce the amount of communication that is required ;{k
" to accomplish a given task. n
b Our thesis is that it is possible to design a remote evaluation é&(
by system that permits the processing of a program to be distributed e
among remote computers without changing the program's semantics. In -
4 support of this thesis our proposal for remote evaluation uses the 8N
y same argument passing semantics for local and remote procedure Q{g
& invocations (call by sharing); it provides atomic transactions to NS
» mask computer and communication failures; and it provides a static o
A checking framework that identifies procedures that can not be N
. relocated from computer to computer. L
¥ We discuss both the semantics of remote evaluation and our NN
: experience with a prototype implementation. The idea of a remote }iﬂ
data type is introduced to let one computer name objects at a ;{:
- remote computer. A detailed discussion of the compile-time and BN
3 run-time support necessary for remote evaluation is provided, o
along with a detailed sample application. -
: e
o
- :.“:
:_ Nl
QL '\
3 N
7)
. :{
¥ s
; S
: o
- ol
. "
A P
-_ ‘-_:.:
- '\::‘,
s R
. '.-
! -
; G
',l
. N
: N
. N
4 e
/)
o Unclassified "

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

. LI PN

.- N o T L
- - - . .“ . -.‘ . et '-‘ e A 5.' “ -‘- ..‘ .“ . *
N N N X, L SNy S A

| LS CRURLR LGP CAL SO ARSANINTLE LS R TR LAY

Remote Evaluation

by

James William Stamos

Submitted to the
Department of Electrical Engineering and Computer Science
on January 10, 1986 in partial fuifillment of the requirements
for the Degree of Doctor of Philosophy

Abstract

" A new technique for computer to computer communication is presented that can increase the .
generality and performance of distributed systems. This technique, called Remote Evaluation, lets
one computer send another computer a request in the form of a program. A computer that receives
such a request executes the program in the request and returns the resuits to the sending computer.

Remote evaluation provides a new degree of flexibility in the design of distributed systems. In present
distributed systems that use Remote Procedure Calls, server computers are designed to offer a fixed
set of services. In a system that uses remote evaluation, server computers are more properly viewed
as programmable soft abstractions. One consequence of this flexibility is that remote evaluation can
reduce the amount of communication that is required to accomplish a given task.

Our thesis is that it is possible to design a remote evaluation system that permits the processing of a
program to be distributed among remote computers without changing the program's semantics. In
support of this thesis eur proposal for remote evaluation uses the same argument passing semantics
for local and remote procedure invocations (call by sharing); it provides atomic transactions to mask
computer and communication failures; and it provides a static checkmg framework that identifies
procedures that can not be relocated from computer to computer. e C

We discuss both the semantics of remote evaluation and our experience with a prototype

= implementation. The idea of a remote data type is introduced to let one computer name objects at a
L‘." remote computer. A detailed discussion of the compile-time and run-time support necessary for
= ’ remote evaluation is provided, along with a detailed sample application.
S
2

- Thesis Supervisor: David K. Gifford
_':.: Title: Assistant Professor of Electrical Engineering and Cormputer Science

T»
‘, Key Words and Phrases: atomic transactions, call by sharing, call by value-overwrite, computer
";.- networks. distributed computing. evaluation, global names. message passing. procedure cull,

programming languages, remote evaluation, remote procedure cail, remote types

e
.
.~
RS
3 "
.
AN
.
o
.
i
oAl
.'.
..'.
-
et ., - -.'_.".,- - »_ .. 4_‘ R T S A T e e - -‘-‘.-.~ e R . e e
p_f..}'.:“_-‘.:‘.\z-('. N -P"‘J'\.e" S SN \ . \. - .'.‘-,~_ B IR) ~_‘_-‘_.-_‘\>.-..'-_._~‘___-_ AR
- el \-‘..’ -J“.A . - - - -_._-_'. ‘.‘-__-. -_‘._.~,._...‘.-
o P A R)"’ -\...‘ .".\ N A R I N

8
3]

§ .4

N Acknowledgments
;

| would like to thank my advisor, David Gifford, for his support, guidance, and friendship throughout
Ly this endeavor. My readers, Barbara Liskov and David Reed, made many invaluable suggestions that
improved the structure and clarity of the thesis.

companionship. Special thanks go to John Lucassen, Gary Leavens, Brian Coan, and Jim Restivo.

Members of the research, technical, and support staffs made my stay an enjoyable one. Steve Berlin

always had an answer to my questions. Joe Ricchio, Shawn Routhier, and Tyrone Sealy deserve
5 credit for keeping the Dover up and running, while Rebecca Bisbee provided a lot of help and
information.

‘0
: I must also thank my fellow graduate students for their technical expertise, editorial assistance, and
L]

5 To the regulars at the Muddy Charles Pub, Newhall's, and the weight room: thanks for being there.
Finally, | thank my family for never doubting that | would finish.

<
L T

'.
-
e

A,

N v T
.',./‘-'{’1

v]

Sl
[ACACAS
RS

-t
~
e
)

=

Table of Contents nd

i oA
-

L~
..

! Chapter One: Preliminaries

X

1.1 Distributed System Design

1.2 Remote Evaluation 1"

_ : 1.3 Related Work 13 “.'
. 1.3.1 Remote Procedure Call , 13 s§\
4 1.3.2 Nonlocal Evaluation 15 il
¢ 1.3.3 Query Processing in Remote and Distributed Databases 17 f B

1.3.4 Abstract Value Transmission 19 .

1.4 REV Advantages 21 —
2 1.5 Thesis Overview 23 ;-, ‘
A3 3
e Chapter Two: Semantics and Linguistic Support 26 f.’
y . 2.1 Programming Language Support for REV 26 :,
’ 2.1.1CLU 26 :
_p 2.1.2 Atomic Transactions 28
- 2.1.3 Services 29 R
> 2.2 REV Requests 34 e
‘ : 2.3 The Code Portion for an REV Request 38 :'
2.4 Location Independence 41

2.5 Discussion 43 .

; 2.6 An Example 4 NS
- 2.7 Summary 46 f'-‘;."'-
= ~ Chapter Three: Implementing REV 48 s
v

3.1 Overview 48 Py

A 3.2 Call by Sharing in a Distributed System 50

: 3.2.1 Faithful Data Transmission 53 -

: 3.2.2 Argument Moditication 54 e

: 3.2.3 Argument-Result Sharing 57 ~
~ 3.2.4 Time of Updates 58 e/

3.2.5 Disjoint Address Spaces 58
K- 3.2.6 Discussion 62 o
B 3.2.7 Summary 63 r:::

A 3.3 Compile-time Tasks 64 e

. 3.3.1 Static Checking of REV Requests 64 N
& 3.3.2 Stub Generation 65 aR

" 3.4 Run-time Tasks 72 !

- 3.4.1 Call by Value-Overwrite 72 N
. 3.4.1.1 Implementing Call by Value 72 =
. 3.4.1.2 Implementing Call by Value-Overwrite 74 o
"1 3.4.1.3 Optimizations 81 ‘-',:‘\v
3.4.2 Code Transmission 82
-, 3.4.3 Request Interpretation 84 ::.:_
’-.-: 3.4.4 Service Binding 84 .{.:
.., v
2 2
VT

............... KR

L

e e e s R e e ST PR LI I B et
'y e . IR .. ._‘.‘._

TRKRR

'l \ a, ',‘ LA

.

PG
.
- .\ .' " Ky

XMWV,

poac ey b4

L]

¢
b2

3.4.5 Reliable Communication
3.4.6 Failure Recovery
3.5 Discussion

Chapter Four: REV with Implicit Procedures

4.1 Implicit REV Requests
4.2 An Example
4.3 Implementation
4.3.1 Control Flow Preservation
4.3.2 Argument/Result Determination
4.4 Discussion
4.5 Summary

Chapter Five: Remote Data Types

5.1 Global Names

5.2 Remote Types

5.3 System-Defined Remote Types
5.4 Implementation

5.5 Summary

Chapter Six: An Extended Example

6.1 Declarations
6.2 Sample Programs
6.3 Discussion

Chapter Seven: Experience and Evaluation

7.1 A Prototype Implementation
7.2 Hints for the Service Programmer
7.3 Hints for the Application Programmer
7.4 REV Drawbacks
7.5 REV Advantages
7.5.1 Increased Performance
7.5.2 New Capabilities
7.5.3 Effect on Distributed Programming
7.6 Key Ideas
7.7 Areas for Further Research
7.8 An Evaluation

gt

1o T,

4

-
L)

"t

L

X

=

-4,
'~ -_‘
a4

< P

;_1“.(f$,

ERRRE
AN

"

et
.

-

[P RN N)

‘.llll‘.

A, A

{

Figure 1-1:
Figure 1-2:
Figure 1-3:
Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 2-7:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:
Figure 3-8:
Figure 3-9:

Table of Figures

A simple view of remote evaluation (REV).

Fraction of a hypothetical program executed at remote nodes.
Nelson's requirements for an RPC mechanism.

An interface defining the abstract data type point.

An interface for a mail system.

Using REV to enhance a remote array processor.

A nested REV request.

An REV request that relocates the execution of pracedure P.
A simple distributed system.

Using REV to customize a form letter.

An RPC received by a service.

An REV request received by a service.

Call by value-overwrite.

An example illustrating argument modification.

Using colors in service routines to keep separate address spaces disjoint.
A stub-based implementation of REV.

The abstract data type REVcontext.

A simple REV request.

The client code for Figure 3-8.

Figure 3-10: The implementation of REVcontext$apply.
Figure 3-11: The service stub for Figure 3-8.

Figure 3-12: An implementation for call by value.

Figure 3-13: An implementation for call by value-overwrite.
Figure 3-14: An example that illustrates putMutableArgs.

Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 5-1:
Figure 5-2:
Figure 5-3:

An example of an impiicit REV request.

An implicit REV request whose closure raises several exceptions.

The implicit request in Figure 4-2 after folding.

An implicit REV request with signal and return statements.

The implicit request in Figure 4-4 after folding.

An implicit REV request.

The implicit request in Figure 4-6 after folding.

The mailbox interface.

A portion of a simple mail reader.

A scenario that could occur with unrestricted concrete representations for

remote types.

Figure 5-4:
Figure 6-1:
Figure 6-2:
Figure 6-3:
Figure 6-4:
Figure 6-5:
Figure 6-6:
Figure 6-7:
Figure 6-8:

N -'-'h.‘ n'-"o"-’q"l
ST S

Up and down for a remote type T.

The article interface.

The articleDB interface.

The timed&date interface.

The sct intertace.

A program to determine movie reviews by Vincent Canby.
An REV request that fetches a full article body.

A program to determine authors ol high priority articles.
Integrating three cifferent news services.

S ..,\.',..,:.'..._;.):.__:._;.‘,'.. SNy

LIy

12
21
24
31
31

37

M

SB838B88& 4

7
71
73
76
78
89
91
91
92
92

100
100
102

106
110
111
111
12
113
113
114
116

~

f [N ':.‘r‘r .

v

4 & &

-

1
<,
-
-

.t
»

] “'\ :l :'_,.' ;l

LA

BAA
M)

NS

PRI

L] I\". .5

H 'l".'...

-

Figure 6-9: Comparing AP and UP} subjects.

Figure 7-1: A procedure with three RPC's.

Figure 7-2: A single REV request instead of the three RPC's.
Figure 7-3: An estimated comparison between REV and RPC's.

>

Chapter One

Preliminaries

Distributed computing systems have become commonplace: communication networks routinely link
personal computers, professional workstations, and powerful mainframes. A distributed computing
system lets a system designer distribute functionality to improve performance, to increase availability,
or to provide for incremental growth. Other systems are inherently distributed in that their
components are geographically dispersed. Remote procedure calls may be used to construct a
program that runs on several computers, but as we shall see this idea has several drawbacks. This
thesis proposes an alternative to remote procedure calls that remedies some of their drawbacks.

The alternative construct for building distributed systems is remote evaluation (REV), which is the
ability to evaluate an expression at a remote computer. A computer supporting remote evaluation
evaluates each expression it receives and returns the results to the sender. This technique, which
can simplify the design and implementation of distributed systems, can also improve performance.
We have found a number of scenarios in which the ability to send an algorithm to the data is almost
indispensable. Because the generality provided by REV does not have inordinate costs, we feel that
some form of REV should be routinely provided in distributed computing environments. REV
generalizes the idea of a remote procedure call and has a novel argument passing semantics. The
thesis covers the meaning, compile-time checkability, run-time requirements, and utility of REV
requests.

This chapter begins by introducing our mode! of a distributed system and then discusses how
application programmers can buiid programs that use several computers. After introducing remote
evaluation, we compare it to existing methods for building distributed systems. We concentrate on
the semantics and cost of these methods and describe how they affect the generality and
performance of distributed systems. We also discuss systems that transfer executable code between
protection domains on the same or different computers. Finally, we outline the contents of the thesis.

1.1 Distributed System Design

We view a distributed system us a collection of computers linked by a communication system. For the
purpose of this thesis, we will define a node to be a virtual processor with memory. A node resides on
a single computer and consists of an address space of processes and objects. An object is an
instance of an abstract data type. Aithough a single computer can simultaneously support several

e s T e s e R R R L W

nodes, nodes do not share memory and communicate only by sending messages. Thus we are
concerned with loosely-coupled distributed systems. We assume programmers use an imperative

programming language with abstract data types and strong type checking. In this thesis, code will

mean a sequence of instructions. For the most part, we will not be concerned with the representation

of code.

The conventional, abstraction-based methodology for building large, centralized software systems
[26] has been used in distributed systems, but as explained below performance considerations can
restrict its applicability. We will argue that REV makes it easier to apply this methodology to
distributed systems. In this methodology, a program is developed by decomposing the problem at

hand, envisioning subsidiary abstractions that solve the subproblems, and then using the

abstractions to solve the original problem. The same approach is applied to each subproblem, and

the process continues until all the abstractions have been implemented or exist in the programming

language. The methodology relies on the following software engineering principles, which control

the complexity of a system:

1. Information Hiding: Distinguish the specification (i.e., what something does} from its
implementation (i.e., how it is accomplished). Release the specification, but keep the
implementation private.

2. Generality: When implementing an operation, make it as independent of the intended
application as possible.

These principles promote the reuse of code and therefore can enhance programmer productivity.
They are captured by the notion of an abstract data type.

Designers of distributed systems regularly use information hiding, because it reduces complexity
without significantly affecting performance. Because internode communication is costly compared to

the overhead of a local procedure call, designers of distributed systems try to minimize the number of

times one node communicates with another node. Thus performance considerations usually limit the

generality in distributed systems. REV will decouple generality from performance considerations and

let designers of distributed systems use conventional software engineering methodology.

In a distributed system built with this methodology, each node exports (i.e.. makes available to other

nodes) a fixed set of general operations. When writing code that calls these operations, an

application programmer uses their specification but not their implementation. Exporting general

operabions lets nodes accommodate unanticipated applications and styles of use. which is important

when there is a large user community with diverse nceds and expectations. Some remote nodes,

such as array processors. displays. printers, and sencors. may be viewed as programmable devices.

Other remote nodes. such as databases and lile systems. are information repositones. Both kinds of

nodes are hkely to be used diflerently by ditferent applications. which means that application

programmers want nodes to export general operations.

«11-

" Qur goal is to simplify the construction of distributed applications that need both generality and good
performance. Given the above model of a distributed system, we must answer several questions:
1. In a single request, how many operations can one node invoke at another node?

2. What does it mean to send arguments and results between nodes?
3. What happens when nodes crash and communication links fail?

These questions have been answered differently by programming language designers, systems
programmers, and database designers. Section 1.3 reviews their choices and the reasons why the
choices were made. Before we discuss these alternatives, we introduce remote evaluation.

1.2 Remote Evaluation

Our goal is to give the application programmer fine-grained control over the location of processing in
a distributed application. We meet this goal with REV, which is the ability to evaluate an expression at
aremote node.

In an REV request, the application programmer specifies a program fragment and a remote node that
will execute the program fragment. The identity of the remote node may not be known until run time.
As explained in this thesis, the compiler enforces strong type checking and ensures that every

operation executed by the REV request at the remote node either exists at the node or accompanies

the request.

We illustrate how REV works with an example. Consider an REV request that relocates the execution
of a procedure. Assume that this procedure has no free variables and that every procedure called by
this procedure is exported by the remote node. Figure 1-1 outlines the processing behind this simple
kind of REV request but ignores time-outs, retransmissions, and the suppression of duplicate
requests. The client, which is the node that invokes the REV request, evaluates the expression that
designates the service, which is the node that will execute the REV request. After determining the
service, the client evaluates the procedure's arguments and creates a message containing the
procedure and its arguments. Then the client sends this request message to the service. When the
service receives the message, it extracts the procedure and arguments from the message. The
service then uses an interpreter to evaluate the procedure with the arguments. The results of the
evaluation, if any, are placed in a message and sent to the client. When the client receives the reply
message, it extracts the results, which are the value of the REV request. In short, the REV request
causes the service to execute a procedure that the client would execute it there were no REV request.

REV requests can nest; i.e., one REV request can contain another REV request. The ability to nest
REV requests supports modularity, because a programmer can relocute the execution ot a procedure
without worrying whether the procedure itself contains REV requests.

Nested REV requests e uscful when an application program deals with ceveral remote nodes.

C R e ; =y 3 * Bah fak Bl R), Sar Bk 8.0 0a% (gt ot ° 4 WA ! ‘ ¢ (I *atg’ k" G d-tb ia ¥ v,

.12.

CLIENT SERVICE

insert procedure into message .

insert arguments into message .

send the request message .

wait for a reply message .
’ . receive a request message
. . extract procedure from message
1 . extract arguments from message
. . evaluate procedure with arguments
. . insert results into message

. send the reply message

receive the reply message .

extract results from message .

return the results .

Figure 1-1: A simple view of remote evaluation (REV).

Consider a distributed mail system that contains registry nodes and maildrop nodes. A maildrop
- contains mailboxes for a subset of the mail system users, while a registry maintains the mapping from
: users to maildrops. Individual mailboxes are not replicated on different maildrops. Assume a
i programmer wants to perform some function on the mailbox of many other users, say to send each a
customized version of a form letter. The programmer could use REV to have a registry iterate over the
recipient list. The REV request would determine the maildrop for each recipient's mailbox and use a
nested REV request to customize the form letter at the appropriate maildrop. A more complicated
program might have better performance, especially if the form letter is short and the recipient list is
large. The complicated program would use an REV request at the registry to partition recipients
according to their maildrop. For each maildrop, the program would use a nested REV request to
customize the form letter for the subset of recipients whose mailbox exists at the maildrop.

We suggest the following 'programming methodology, which uses REV in different ways at difterent
times. When first writing a program, the programmer concentrates on making the program correct
without being too concerned about performance. The programmer uses REV to relocate the
execution of those program fragments that the client can not or should not execute. For example, if
the client does not implement the procedures called by a program fragment, it can not execute the

fragment. If the net result of executing a program fragment depends on the node that executes the AT
fragment. the specifications for the program may require that the program fragment be executed by }3{
some node other than the client. The REV requests that relocate the execution of these program ' L X
fragments will in general change the semantics of the program. The semantics of a program is its v}.

visible behavior, including any results computed by the program and any visible side effects it causes. I
We do not include resource consumption, such as processor time, memory requirements, and N

network tradhic, in the definition of program semuantics.

Once the program is debugged, the programmer may use REV in an attempt to improve performance
or reduce communication. If REV requests introduced at this time do not affect program semantics,
they will not introduce any bugs. In the thesis we explain how the compiler uses a conservative
algorithm to decide whether relocating processing with each REV request changes program
semantics. The programmer is free to heed or ignore the compiler’s findings.

We can summarize REV by answering the three questions posed in the preceding section:

1.In a single request, how many operations can one node invoke at another node? We
achieve generality without degrading performance by letting a single request invoke
several operations.

2. What does it mean to send arguments and results between nodes? We achieve
uniformity by defining the argument passing semantics for REV requests to be the
argument passing semantics for local procedure calls. Because we will use the
programming language CLU [24], the semantics will be call by sharing, which we
describe in the next chapter.

3. What happens when nodes crash and communication links fail? We mask such failures
from the application programmer by using atomic transactions.

The next section, which discusses related work, will show how our first two answers significantly
depart from current remote procedure call mechanisms. Our treatment of failures, however, is similar
to that found in Argus [25], which we also discuss.

1.3 Related Work

Ideas from both single-site and distributed systems are relevant to answering the three questions
posed above. We explain below how remote procedure calls provide several advantages but suffer
from a tradeoff between generality and good performance. We then discuss a technique from an
early operating system that lets an application transmit a procedure to the operating system kernel,
which then carefully executes the procedure. Because this technique of passing a procedure
between protection domains is applicable to distributed systems, we survey work in this area. In
particular, researchers involved with multiprocessors, functional programming languages, and
distributed systems have started to consider sending executable procedures between nodes. Finally,
we briefly examine remote and distributed databases, since efficient query processing in such
databases requires the ability to invoke multiple operations in a single request to a remote node.

1.3.1 Remote Procedure Cali

The idea of a remote procedure call (RPC) has simplified the design and implementation of distributed
systems. A remote procedure call occurs when one node (the client) uses a different node (the
service) to execute a procedure stored at that node. This proredural interface facilitates high-level

o 3‘5 £ <

P

-
~.
-~

:‘-,1
PrE

o
AL
5 &Yy

o
’

% Y

ot a s e dl

communication between heterogeneous nodes: RPC's let different nodes running different operating
systems and supporting different programming languages communicate easily. A good RPC
mechanism hides communication details, provides powerful but clean semantics, entorces strong
type checking, and runs with acceptable performance. Neither the programmer implementing a
remote procedure nor the application programmer that invokes the remote procedure must worry
about these details.

Remote procedure calls are fairly well-understood and are being used to construct real systems. The
idea of using a remote procedure call for communication across a network has existed for many
years. Early references to RPC were related to resource sharing in the Arpanet([46,47]. More
recently, several RPC mechanisms have been built[4, 48] or are under development [25, 36].
Nelson's thesis [34] discusses RPC at some length and contains performance measurements as well
as an annotated bibliography. In the absence of node and communication failures, there is
agreement on RPC semantics: exactly-once. Under exactly-once semantics, the service executes the
call once, and the client receives the results from the service. Although exactly-once semantics are
desirable, node and communication failures force us to choose an alternative semantics. In the
presence of such failures, there is no firm consensus on RPC semantics. Nelson advocates /ast-one
semantics; Liskov [25] advocates at-most-once semantics.
e Under last-one semantics, the client receives the results from the very last call that

executes. Side effects from each earlier call may exist, even if the earlier call did not
complete. Results from earlier calls, however, are discarded.

e Under at-most-once semantics, either the call executes exactly once and the client
receives the results, or the service (effectively) never receives the request and the client
is so informed. Partial and multiple executions of an RPC can not occur.

The proper semantics depends on the needs of the distributed applications and, to a lesser extent, on
performance considerations. Because we want to give REV a simple semantics in the presence of
failures, we will prohibit partial and multiple executions of an REV request. Our REV semantics,
however, is not at-most-once semantics. The following chapter describes their differences.

There is a consensus on argument passing semantics for RPC's [25, 34]: arguments and results are
passed by value. Call by value has an efficient implementation, and it keeps separate address spaces

disjoint. Besides simplifying garbage collection in a distributed system, disjoint address spaces are
important because of performance, autonomy, and availability considerations. A novel idea in this
thesis will be how to keep separate address spaces disjoint without using call by value for REV
requests.

With synchronous RPC's, a client process invoking an RPC waits until the RPC returns before
continuing. A client process may invoke only one remote procedure in each request sent to a service,
which means that a programmer using RPC’'s can not realize the advantages of REV. Our REV
mechanism generalizes the idca of an RPC by allowing the transmission of code. This lets one node

iNvoke severdd operaticns i a single request sent to another node.

o

S

Y
AT

v

~
[
i

v P
(XA

r

>y
LS

""'- A %)

A 1“"f‘l'

e b
P

o .

h"l .

-
.

: o’ A

Kt A

T e,

i O 3 S

.18 -

RPC's simplify the task of implementing distributed systems but have several drawbacks. We address
the following three drawbacks in this thesis. First, although high-performance RPC mechanisms exist
[4], their performance is limited by the overhead of internode communication. Birrell and Nelson
[4) measured the time to execute remote and local versions of trivial procedures that simply return
their arguments. For procedures with fewer than five 16-bit arguments/results, a remote procedure
was roughly 100 times as slow as a local procedure. We assume throughout the thesis that the
overhead for invoking a remote procedure is much greater than the overhead for invoking a local
procedure. As we shall see, this assumption is a key reason for using remote evaluation instead of
RPC's.

A second RPC drawback is the tradeoff between generality and performance. When RPC's are used,
the latency of the communications mechanism demands a careful system design that minimizes the
expected number (and size) of messages sent between nodes. Because service designers often
choose performance over generality, the procedures exported by services are usually designed for a
specific application. Thus the exported procedures may not be useful to a programmer implementing
a different application.

The final RPC drawback we consider is a restriction on remote procedures. In the standard RPC
model, code is stationary, and the arguments must always be sent tc the code. The inability to
transmit code means that a remote procedure can not have a procedure as an argument. Algorithms
that summarize or filter information can not be sent to a remote data repository using RPC's.
Algorithms that search or plan based on the contents of the repository also can not be sent to the
repository. Clients must use the techniques built-in by the repository programmers and perform the
remaining processing locally.

1.3.2 Nonlocal Evaluation

The ability to pass a procedure as an argument to another procedure is a simple but powerful method
that lets a programmer customize existing software. When a procedure is transmitted between
protection domains, the recipient must execute the procedure with care. This section discusses such
procedure transmission in the context of a single-site operating system, a distributed computing
system, and a multiprocessor system that supports a functional programming language.

Gaines [13] describes an operating system that lets an application process instruct the kernel to
perform a complicated action that is not built into the kernel. The kernel supports a small set of
primitive operations dealing with files, integers, scheduling. interprocess communication, and so on.
The application programmer combines these primilive operations into a supervisory computer
program that the kernel executes without interruption. The kernel interprets such a program and
checks the arguments carefully. By prohibiting backward jumps and giving the program only one

opportunity to handle an error, the kernel avoids nonternuinating programs.

3

-

Y
’

-

TR N

.....
. o d
L T I A A

% X

e sa’

o,

-16 -

A supervisory computer program is more powerful than the corresponding sequence of calls on the
operating system because it executes without interruption. Thus the application programmer does
not need the ability to inhibit interrupts. By granting this ability in a controlled fashion, Gaines
simplifies application programming and prevents an application from monopolizing a shared
computer.

This approach of using a supervisory computer program has two other advantages, both of which are
related to the idea of generality. First, this approach needs only a small, stable, easily-debugged
kernel. Supervisory computer programs let application programmers construct facilities normally
found in a complete time-sharing system. Second, a supervisory computer program can be
customized to the requirements of the application.

Gaines’ idea of transmitting an executable procedure between protection domains is applicable to
distributed systems and multiprocessor systems. In such systems, one node sends executable code
to another node. This ability, which lets a programmer compose several remote operations into a
single request, is more powerlul than the notion of an RPC. We review work related to this idea
below.

Gitford [14] introduced remote form evaluation as the method by which one processor evaluates a
function at a second processor. A detailed algorithm is presented that uses connections, achieves
exactly-once semantics in the absence of failures, and detects processor restarts. Gifford, however,
did not address type-checking, argument passing, protection, and implementation considerations.

Burton [6] uses annotations to give the programmer control over parallelism in a distributed
computing environment. The annotations declare which work may be transferred to another
processor and in what form the work may be transferred. Burton remarks that transferring work to
another processor is advantageous only if the computation requires more work than the transfer.
Combinators are used to ensure that each transferred subexpression is self-contained. Only the
required part of the environment is actually transferred.

There are three differences between Burton's efforts and ours. First, Burton considers a simple,

functional language, the lambda calculus. We consider an actual programming language, which

supports mutable objects and persistent state at a processor. Our language contains several
interesting features, such as exceptions, iterators, and abstract types. Second, Burton is interested in
capitaiizing on parallelism, whereas we are primarily interested in reducing the communication
overhead in an application that uses the data or peripherals at several nodes. Finally, Buiton's
annotations do not give the programmer control over which processor executes a relocated
subexpression. There is no notion of a remote interface, and there is no way to bind to a particular
processor. All processors are apparently equivalent, and some form of load balancing algorithm is
assumed. In our model, the operations a processor exports, as well as its persistent state, physical

location. and pernpherals. chstinguish one processor from another.

‘-
8
*

Ay]

i

;'.‘—‘)".h‘ Dad -0 P B JALRE, 40 3 GG AR RLALN EA S S TF T T TR TITETR CETE SR

.17 -

1.3.3 Query Processing in Remote and Distributed Databases

Efficient query processing in remote and distributed databases requires the ability to invoke multiple
operations in a single request to a remote node. For concreteness, we discuss two real systems: the
Datacomputer [9, 12, 29], a remote database accessible through the Arpanet; and R"[23], a
distributed relational database system developed at the IBM Almaden Research Laboratory (formerty, "
the IBM San Jose Research Laboratory).

The Datacomputer, which was developed by the Computer Corporation of America, was a network
utility that provided shared use of a trillion-bit store. The intended user of the Datacomputer was a
remote program. The Datacomputer supported a high-level language that contains lists, structures, t“
strings, integers, and bytes. Communication with the Datacomputer was through self-contained

requests. Upon receipt of a request, the Datacomputer compiled the request, executed the compiled

request, and then returned the results. The language supported by the Datacomputer was designed :
to let a programmer elficiently retrieve a subset of the data stored on the Datacomputer. This
language was high-level for performance and security reasons. Bandwidth limitations required a

language with a good deal of expressive power. This improved performance by reducing the size of

requests. The ability to compose multiple operations into a single request, which meant that

intermediate data need not be sent between nodes, also improved performance. A high-level '_ -

language provided security because the compiler ensured that no hostile user programs were j-i,_{:'
s

executed.

The Datacomputer supported a limited form of REV, because a request could contain multiple
operations. It also addressed the security problem by having the compiler check each request. ;-:.'
However, it did not deal with abstract data types, own variables, and other constructs found in a real .
programming language. Since there was only a single service, there was no need to support nested
requests, services that exported different operations, or a remote binding mechanism.

R [23], a distributed database manager, supports a limited form of remote evaluation by evaluating
ao hoc queries submitted by users. It uses virtual circuits to support request-response interactions
between autonomous nodes. The planning, compiling, binding, and execution of queries that span
more than a single node are done in a distributed fashion [7). R" also supports preplanned
transactions, which are again processed at compile time in a distributed fashion. Each remote
fragment of a preplanned transaction is permanently stored at the relevant node as an access
modute. An access module is a low-level program whose representation is similar to the P-codes
used in some Pascal implementations. Each node contains an interpreter that evaluates the access
modules when a distributed query is invoked. This early binding of distributed queries improves : N
performance. By associating dependencies with compiled transactions, R" detects relevant
configuration changes and dynamically recompiles invalidated transactions.

As we shall see. there are two similarities between R™ and REV. First. both support distributed

e L gnie e i te e 8 AR,V) ARA B RX Bk ol 4o abs . e w P W W e NANAV IS TN

.18-

computation by transmitting program (query) fragments. Upon receipt of a program fragment, a node
dynamically binds the code to its own code and data. Second, both assume a collection of
autonomous, cooperating nodes governed by a shared transaction mechanism.

The differences between R” and REV fall into two categories. The first major difference is the
language level. R” deals with a constrained, high-level query language. Except for the ability to
define new relations, the set of types is small and fixed. An application programmer or an end user
declares what needs to be done and lets the query compiler decide how to accomplish the task. The
language level gives the query compiler a moderate amount of freedom when it translates a query into
executable code. Remote evaluation, on the contrary, deals with a Qeneral-purpose programming
language that includes variables, environments, mutable abstract objects, and numerous flow control
constructs. Since programs are implementations rather than specifications, an REV mechanism has
little freedom to change a program without altering its semantics.

The second major difference between R” and REV concerns binding. R™ assumes the existence of a
catalog that describes data to be accessed, including its current location and access paths. In
contrast, an REV programmer makes no assumptions about data location at compile-time and uses
primitive binding mechanisms at run time.

The differences between R™ and REV let R” realize several benefits. The query compiler uses the
catalog to estimate the processing, communication, and 1/0 costs for the plans it generates.
Selecting the plan with the lowest expected cost achieves automatic program partitioning.
Furthermore, a node does not need to act defensively when executing a program fragment, because it
created the fragment from an acceptable, high-level request. An REV programmer, on the other
hand, must partition a program for distributed execution manually. The programmer knows much
less about the relative and absolute locations of various pieces of data. A node executing an REV
request must expect the worst and execute requests in a restricted protection domain.! R’
permanently stores code fragments at the appropriate nodes for preplanned transactions. Unless
services cache REV requests, an REV mechanism always sends the code with each request.

In conclusion, the language level and environmental assumptions let R’ perform a specific task
extremely well. Compile-time checking and optimization improve performance and place fewer
requirements on the run-time execution environment at each node. The implementors and
maintainers of R~ provide a pleasant distributed-computing environment to application programmers
and end users. REV makes fewer assumptions and is applicable in more situations. REV
programiners, however, must partition their own programs.

1 . .
L ater in the thesas we discuss how a stitong type syetem, digital signatures, and a trusted comple time 1equest checker can
elomnale this reguirement

XA

'
‘l ..' ..' 'l

’u :: l::l".

e
. B

v 4
MNSS

Ty Ty :l]
»

£

.N'

(L

ot B, A4 4 S

Ty SN

-19.

1.3.4 Abstract Value Transmission

Because a service and its clients have disjoint address spaces, the arguments and results of an RPC
(or an REV request) must be sent between nodes. Values from both built-in and user-defined data
types may be sent between nodes. Transmission involves the determination of the structure of an
object in the original environment, the transfer of the information, and the creation of a new structure
in the receiving environment. When both environments are the same and there is only a single
concrete representation for each data type, transmission is a generalization of garbage collection,
compaction, and reorganization {35].

An early reference to the transmission of data is due to Morris [33]. An abstract data type is
transferable if its operations are powerful enough to translate between the type and a new encoding
based on different types. Although Morris was concerned chiefly with the completeness and
expressive power of a type’s operations, this capability is useful for storing, retrieving, printing, and
displaying instances.

Wallis [42] describes an external representation for user-defined types that permits instances to be
stored on an external medium and to appear as program literals. The string-based representation
does not accommaodate pointers in the data structure,

An earlier but more comprehensive machine-independent and language-independent transmission
scheme is due to Atkinson [2]. A two-phase traversa! handles arbitrary data structures and supports
inter-machine communication and the external storage of data structures. Character strings are
again the external representation.

Intermetrics’ Linear Graph package [30] converts arbitrary networks of interconnected data
structures to sequential text files and reconstructs networks from the resulting files. A standard text
editor can create or modify the external representation, which is verbose and human readable. This
verbosity, however, has contributed significantly to the inefficiency of translation between networks of
data structures and text files. The Linear Graph package, which is used during the design and
implementation of compilers, arose from a similar system [22] developed as part of CMU's PQCC
project.

The aforementioned techniques do not distinguish between abstract objects and concrete
representations. Herlihy [18, 19] addresses this issue and describes a template scheme in which the
implementor of an abstract data type makes the type transmissible by writing only two procedures:
encode and decode. These procedures translate the concrete representation of an instance to and
from a common, external representation. Herlihy's algorithms preserve sharing. accommocdiate cyclic
structures. and allow different concrete representations in different environments. Nevertheless.
Herlihy and other researchers have not paid much attention to the performance and possible

optimizations of his template scheme.

o A

r
s
y t by g Ay S

v

’
.

3]

AR
» P
\":":’\ RS

5

AN A
XA

-
e

v

L)
2 ¥
7

“..

f’i"fff‘

O
A

» l.. l.. '.- '.-"' A '

. LA
i

e
EARSR

%o vI 'F 4

rSl S

l.""’
R
.

-y
‘o
*y

LYY X
X

”
oy
',‘f/.'

/7
s ‘v

van)

Wy

.
-
.
Y
-

Mamrak et al. [27] solve the problem of converting between different types on different machines
using different languages by adding a new layer to existing operating systems. However, details
regarding the conversion method and the possibility of handling user-defined types are not given.
The network is largely transparent to users and application programmers, but performance remains a
problem [28].

Efficient transmission of abstract values requires a suitable space of message representations.
Human-readable text strings are neither compact nor efficient. A better representation is one similar
to that used in the implementation of the programming language. Herlihy's thesis [18] contains an
appropriate low-level representation. Nelson [34] details one possibility that is suitable for remote
procedure calls.

Researchers have paid little attention to the problems of transmitting code, environments, and
closures, but an extension to Simula [5] is relevant to this discussion. Minsky [31] modified Simula to
let programs run in a persistent environment that included type definitions. Instances of user-defined
types could be stored in protected files. Each file held instances of a single type along with relevant
type and representation information. These files also contained code to encipher and decipher
instances, check the validity of a file access, and translate instances to and from the file
representation. In addition, procedures implementing the type's operations could be present in the
file. Storing code with external data allowed any authorized user to access and manipulate
information even if the type had not been implemented in the programming environment.

The address spaces of different nodes in a distributed system are typically disjoint for reasons of
performance, availability, and autonomy. Hence a natural way to communicate information between
nodes is by value. The preceding techniques for transmitting abstract values all implement call by
value. Stroustrup [38, 39], in contrast, suggests the alternative approach of using a shared address
space. If arguments to local procedures are passed by reference, using call by reference instead of
call by value for RPC's unifies the semantics of argument passing and supports reconfiguration.
Depending on the type specification for a remote procedure, the mechanism for passing an argument
is either call by reference or call by value. Call by reference is accomplished by using a capability that
is resolved in the global address space. We will also use global capabilities to let one node refer to an
object kept at another node. This thesis extends Stroustrup’'s approach by integrating this ability into
the type system via remote data types.

Our REV mechanism achieves Stroustrup’s uniformity by using the argument passing semantics for
local procedures (call by sharing) as the argument passing semantics for REV requests. Although
call by sharing is similar to call by refvrence, we do not implement call by sharing with global
capabilities or a similar mechanism. Qur implementation for call by sharing in a distributed system,
which transmits abstract values between nodes. is novel and efficient. Our implementation does not

use remote data types, but it can coexist with them.

TR
4 :.'."..."“"'.'...'.'

":_'rrlv'r_- 3
Tatae e

"o
Py

Ly

AL e

" a e e]

)
e
o
-
-

.21-

1.4 REV Advantages

We designed REV to improve the performance of certain distributed applications that would otherwise
be built with RPC's. The key idea is that REV is a more general mechanism than RPC's. As we
explain in the thesis, this can simplify the design of distributed systems that require both generality
and good performance.

When there is a sequence of operations executed by the same remote node, a programmer using REV
can execute all the operations with a single request, while a programmer using RPC's must execute
each operation in a separate request. The REV approach amortizes the communications overhead
over all the operations executed by the remote node. When the results of one operation are used only
as inputs to another operation in the message, the REV approach reduces the communication
between the ciient and the service. We illustrate these advantages with an example that uses REV.

WFS [40] is a remote file service that provides page-level access to files. WFS exports procedures to
deallocate individual pages from a file and to delete a file with no pages, but it does not export a
procedure that deallocates a nonempty file. Using RPC's, deleting a file with N pages requires N + 1
requests. In contrast, a single REV request can delete the same file.

A programmer using REV can partition a program into components for local and remote execution in
a variety of ways, but a programmer using only RPC's does not have this ability. In the RPC model, a
program has a unique decomposition into fragments for local and remote execution. The client
executes local procedures; remote procedures are executed by the appropriate service. Service
programmers, who attempt to accommodate all expected uses of a service, implicitly force a unique
partition on each application program without seeing the program. REV supports a better division of
labor in the construction of distributed systems: service programmers decide the semantics of the
operations they implement, and application programmers partition their programs according to
performance considerations, subject only to the procedures exported by the services. Figure 1-2,
which shows a spectrum of possibilities for partitioning a hypothetical program, illustrates the point
that REV allows many partitionings, one of which is the RPC partitioning.

REV | XXXXXXXXXXKXXXXXXXXXXXXXXKXXXXXXX
RP(| b3
| -rm oo l
0% 100%
(A11 Local) (A11 Remote)

Figure 1-2: Fraction of a hypothetical program executed at remote nodes.

An REV cervice will evport the operations built into the languag2 and many other opcerations that

:ft.‘

x

A
Py

1)
LY
)
.‘)
.

iy}

£

" 2,

OO

2

v (s

=Sl Sl

ANS

-‘. A-' “'

s
v

>
“
4,
"
.
-
‘
L

.22.

would never be remote procedures. For example, operations that perform arithmetic, manipulate
strings, or access a record or an array, are performed so quickly by a processor that converting any of
these operations into a painfully stow remote procedure is unthinkable. In contrast to the RPC model,
REV lets services export such inexpensive operations without a drastic degradation in performance.
The more operations a service exports, the more flexibility a programmer using REV has when
partitioning a program. A programmer using REV can execute many service operations in a single
REV request, but a programmer using RPC's can execute only one service operation in a remote
invocation to the service.

We believe REV is a general mechanism with many advantages. First, an REV mechanism is more
powerful than an RPC mechanism. An RPC is a simple REV request in which the code to be relocated
is the invocation of a single remote procedure. The performance of an RPC implemented by REV
should be comparable with traditional RPC performance. Thus we shall assume that our system
provides REV but not RPC's.

Second, REV lets remote procedures have procedures and closures as arguments. A client using
REV can easily customize a service routine that deals with a large amount of data. For example, a
parameterized routine that searches, sorts, filters, summarizes, or plans can be tailored to a specific
application.

Third, a service programmer could let a client using REV extend the set of remote procedures
exported by a service.” When a client binds to a service, it could send the "new" remote procedures
to the service and request that the service install them. The syntax and semantics for invoking new
and old remote procedures would be identical. The service extension would be private; other clients
could not access the extension.

Fourth, REV simplifies the partitioning of a program into components for local and remote execution.
The programming methodology we suggested has two stages. During the first stage, the programmer
uses REV to write a correct pragram. During the second stage, the application programmer, or
perhaps someday an automatic optimizer with a cost model of distributed computation, can use REV
to improve performance without changing program semantics. For example, if the programmer

_notices four REV requests in a row that are sent to the same service, the programmer can nest them

inside a larger request that is sent to the service. Because the programmer does not want to
introduce bugs while improving performance. REV requests inserted during the second stage should
not change program semantics. A focation independent REV request relocates code whose meaning
does not depend on the state of the node that executes it. We will define REV semantics so that
relocating processing with a location-independent request does not change program semantics.
Thus the programmer wants to insert only location-independent requests while improving

)
“Thear 1 paralel botween ucen detined setace interf wens and we e denved oot aces for applicabon programs Some

feeat b e oo ath use cntecdbac e de sign o achvocate ad g sty the oy dometo e ot manboad ob vice v [1!\}

.
b

CA A
2 %ty i

W
'
-

1

a4 T,

s a4 BV

-23-

performance. The thesis explains how the compiler uses a conservative algorithm to decide whether
an REV request is location-independent.

Finally, REV is applicable to loosely-coupled muitiprocessor systems. As long as shared, mutable
data is not communicated between processors, a busy processor could use REV to offload
processing. When there are no processor or communication failures, our characterization of
location-independent REV requests would guarantee that program semantics were unchanged.

1.5 Thesis Ove rvi'ew

REV gives an application programmer fine-grained control over the location of processing in a
distributed application. We provide simple rules that let the programmer or compiler decide when the
relocation of processing might change program semantics. To test the ideas described in the thesis,
we built a working prototype. Because the generality provided by REV does not have inordinate
costs, we feel that some form of REV should be routinely provided in distributed computing
environments.

The thesis does not address three important considerations. First, we do not consider the automatic
partitioning of a program into fragments for local and remote execution [11]. The general problem

has been shown to be NP-complete, but for sufficiently restricted programs a polynomial-time -

algorithm exists {10]. Second, we do not discuss how to build an REV mechanism with high
performance. The interestec¢ reader should consult[4,34] for performance lessons that are
applicable to both RPC and REV implementations. Finally, although our REV mechanism is language
independent, we do not consider the problems caused by multiple programming languages.

Many constraints influenced our REV design. Since an REV mechanism is more general than an RPC
mechanism, we immediately adonted Nelson's [34] five essential properties and six pleasant
properties tor a remote procedure. snechanism (see Figure 1-3). Sound remote interface design takes
on an added meaning when REV is available, but the remaining pleasant properties are immediately
applicable. There were four other constraints on our REV design:

e Powertul Semantics: We impose minimal constraints on REV requests to make them easy
to use. All the constraints may be checked before run time.

e implementation Elficiency: The REV requests inserted after a program has been
debugged are meant to be optimizations.

e Lase of Use: REV should be simple to use and understand. Being an optimization,
location-independent REV requests should yield predictable results but require little
programmer effort.

o anquaae Independence With minor changes. our design should be applicable to
exiuting and future programming envitonments.

.24

Essential Properties Pleasant Properties
uniform call semantics good performance of remote calls
powerful binding and configuration sound remote interface design
strong typc checking atomic transactions
excellent parameter functionality respect for autonomy
standard concurrency control and type translation

exception handling .
remote debugging

Figure 1-3: Nelson's requirements for an RPC mechanism.

The thesis contributes in several areas: semantics of remote invocations and their eftect on program
semantics; procedure and closure transmission; remote data types; and an efficient implementation
for the advanced semantics we advocate. Because the bulk of an REV mechanism is an RPC
mechanism, our implementation discussion must be viewed as a supplement to descriptions of high
performance RPC mechanisms, such as [4, 34].

Chapter 2 detines the semantics for REV requests that relocate the invocation of a procedure. Qur
goal is to ensure that relocating processing with a tocation-independent REV request does not
change program semantics. even in the presence of concurrency, node failures, and communication
link failures. We use atomic transactions and an unusual argument passing semantics (call by
sharing) to achieve our goal. Besides defining REV semantics, Chapter 2 incorporates REV into the
programming language CLU [24]. We provide linguistic support. extend the CLU type system to
accommodate REV. and characterize location-independent REV requests.

Chapter 3. wk zh describes how to implement REV, compares an REV mechanism with an RPC
mechamism by tighlighting their compile hme and run-time differences. This chapter describes our
novel mplementation for call by sharing in a distnibuted system and explains how we transmitted code

between nodes.

The next two chapters evtend owr simple model of REV. Chapter 4 extends REV so that an

Qpphcation programmer can sond a clocuare to a cemote node inctead ot a4 procedure. The

R
D N T} .
LR]

1

1
*,

i]
[AE AR N A

L e e R T e e T L T N (T T IS O ¥ AW MUt AAC

.2§.

implementation of such requests is also described. Chapter 5§ describes remote data types, which let
a program running on one node refer to an object kept on another node. This chapter presents a
syntax and semantics for remote data types, sketches an implementation, and evaluates their utility.

Chapter 6 presents an extended example using REV and remote data types. Chapter 7 describes our
prototype REV implementation, summarizes our findings, and presents areas for future work.

c .
B
v

L3
[2

'fd'
r’/"'
[}

..
Sage,

[%
P

;:‘-.

s
el
RO
o -8
‘5 *p

.“.‘
0’
TR

R

[

o
NP

Chapter Two

Semantics and Linguistic Support

The purpose of this chapter is to incorporate REV into CLU [24], a programming language with strong
type checking. Our goalis to let the application programmer relocate processing with REV. In many
cases this relocation of processing will not change program semantics. When the relocation does
change program semantics, the compiler will inform the application programmer. We explain how: (1)
transactions; (2) a nontraditional argument-passing semantics for REV (a restricted form of call by
sharing); and (3) a labeling of routines exported by services let the compiler decide whether an REV
request changes program semantics. To support modularity, we let REV requests nest.

In this chapter we define what an REV request means (its semantics) and how one is written (its
syntax). We defer implementation issues until a later chapter.

2.1 Programming Language Support for REV

Although the idea of remote evaluation is language independent, for pedagogical reasons our
discussions and examples are based on the programming language CLU [24]. The thesis assumes
familiarity with CLU. Because a complete introduction to CLU is not relevant to our mission, we refer
the interested reader to the CLU manual [24]. Section 2.1.1 mentions those aspects of CLU that will
be relevant to REV and our examples. Our REV semantics will require a transaction mechanism, as
we want to avoid partially executed requests. Therefore, Section 2.1.2 incorporates into CLU a simple
model of nested transactions. Finally, Section 2.1.3 incorporates services into CLU.

2.1.1CLU

CLU is a real programming language that supports program development according to the
methodology of problem decomposition and the use of abstract data types. The type system in CLU
lets a programmer define abstract data types and enforces strong type checking. A cluster is a
module that implements an abstract data type, which is a set of objects and a set of routines to create
and manipulate those objects. A programmer implementing an abstract data type chooses a concrete
representation for the type that may use both built-in and user-defined types. A CLU compilation
environment, which contains compiled specifications for abstract data types, permits separate
compilation while retaining strong type checking across module boundaries.

Each cluster operation, such as stach$push, is an operation for some abstract data type. A dollar

NNANSS Y

LR

.'I"v

Ve
SRS

L]
o

ATa 84 a & &

- 27 -

sign ($) separates the type name from the operation name. Equates may be used to abbreviate
constants with a lengthy textual representation. For instance, programmers would balk at writing
"stack[set[int]]" every time this type appeared in a program. Including in a program the equate

SISets = stack[set[int]] X stack of integer sets
lets the programmer write "SiSets" instead.

A CLU program consists of a collection of clusters and routines, where each routine is either a
procedure or an iterator. An iterator can be thought of as a procedure with two arguments: a
collection of objects and a closure. A closure consists of code and an environment in which to
evaluate the code. An iterator computes a sequence of objects from the collection and applies the
closure to each object in the sequence.

A CLU program manipulates objects in heap storage. An object can refer to other objects, including
itself. Objects have names, and one object refers to another object by containing its name. Variables
in CLU refer to objects. Variables and objects, however, do not refer to variables. An object is
mutable if its state can change; otherwise, it is immutable. An object exists as long as it is accessible;
inaccessible objects are automatically reclaimed.

CLU uses call by sharing to pass arguments to procedures. 'n call by sharing, the caller and called
routine share the argument objects, i.e., both refer to the object. Mutations of arguments performed
by the called routine are visible to the caller. The called routine, however, is unable to modify any of
the caller's variables. Call by sharing, which is different from call by value and call by reference, is
similar to argument passing in LISP. ‘

Parameterization lets procedures, iterators, and clusters define a class of related abstractions. CLU
distinguishes arguments from parameters. An argument is an object passed to an iterator or
procedure at run time. A parameter is a value that is computable at compile time. A programmer
instantiates a parameterized module by supplying parameters of the appropriate type. For example,
array[t:type) is a parameterized cluster. Until parameter t is supplied, the operations in the cluster
can not be invoked. Using int for type t yields array[int], an ordinary cluster that defines a set of
objects (integer arrays) and a set of primitive routines to create and manipulate integer arrays. In this
example, int is the parameter; its value is known at compile time.

CLU uses the termination model of exceptions. Raising an exception terminates the current
activation, which can not be resumed. Each routine lists the exceptions it raises in its signals clause.
Exceptions do not propagate automatically across procedure boundaries. Unhandled exceptions
become failure exceptions. The failure exception, which has a single argument of type string, is a
special exception. Since every procedure can raise a failure exception, failure never appears in the
signals clause of a procedure declaration. When a procedure does not handle failure, failure
propagates unchanged to the caller.

l"l,l'.l
Z

-~ " 0
XA
‘f‘:

LNy

"
Py

43.‘&
e A
“

4 a

~ar)

2.1.2 Atomic Transactions

\ Since our REV semantics will require atomic transactions, we define transactions and atomic data
and then incorporate them into CLU. A transaction [17] is an activity that is both recoverable and
serializable. Recoverable means that the net effect of an activity is all-or-nothing: either all the
changes the activity makes to data happen, or none of the changes happen. Transactions are
serializable in that the net effect of executing several concurrent transactions is equivalent to
executing them in some sequential order. A transaction either completes successfully (commits) or
has no effect (aborts).

" "l Yl

Transactions have been useful in conjunction with databases. By masking concurrency, crashes, and
communication failures, transactions simplify the construction of programs that access on-line data

s AL SS

that must remain consistent despite concurrent access and failures. A programmer need not
: consider partially executed requests or interference from other programs. A program that works
- correctly in isolation will work correctly in the presence of concurrency and failures.

We assume every abstract data type is atomic. An atomic data type [43, 44] provides synchronization
and recovery mechanisms for all objects of that type. In order to read or write an atomic object, a

process must run as part of a transaction. Conceptually, atomic data types mask concurrency in the
distributed system by serializing access to atomic objects. Atomic data types also coordinate updates
; to atomic objects, as all changes made to atomic objects during a transaction take effect when the e
transaction commits. Aborting a transaction undoes the changes made to atomic objects during that
transaction. Immutable types are automatically atomic, since they provide the appropriate
synchronization and recovery.

Nested transactions, which let a programmer introduce concurrency within a transaction, also let a
programmer limit the scope of failures. A subtransaction is a transaction that runs as part of some
other transaction. Aborting a subtransaction undoes all the changes it made to atomic data.
Committing a subtransaction is actually conditional upon the committing of all (sub)transactions that
contain the subtransaction. Therefore, if a parent (sub)transaction aborts, the effects of all its)
descendants are automatically undone. We call two subtransactions siblings if they are part of the
same top-level transaction but neither is part of the other. Two siblings can commit or abort
" independently of each other.

R it bt het .

We assume an atomic transaction mechanism spans the entire distributed system. Real transaction
systems such as Argus [25] provide many useful features, such as concurrency mechanisms and _
nested top-level transactions. We illustrate the flavor of such systems without becoming deeply -
involved in the details by incorporating a simple model of nested transactions into CLU. We use two “
new reserved words: TRANSACTION and ABORT. A programmer constructs a transaction by annotating
a BEGIN-END block:

begin |[transaction| body end

e T N T e i N e A L AP PR I S I LA .'"’-'A-"":'_"A".'..'.~"' ‘...‘A.....-"n_._-.--_.._‘4-_-‘.-._..

R R A Sl M R R R T PO L PR BRI SIS B N I U AP A SN R SR

T A Y A e e T e e S e e e e e e . N T R S S N S T A
] .) R ,

LA A TN A Y A S i et g e A -
ORI A A O, L T T S T N T T Sy I TN T A I I Y Ty TV O TR

.29.

The square brackets surrounding TRANSACTION mean that it is optional. The TRANSACTION qualifier
causes body to execute as a subtransaction or a top-level transaction, depending on whether or not
the process is already running as a transaction. Control How statements that exit body, such as
return or signal, implicitly commit the transaction unless they are qualified with ABORT. If a top-level
transaction can not commit, the begin-end block raises the exception failure("commit failed”). The
failure exception aborts every transaction that it exits. The same applies to unhandled exceptions.
Note that this extension to CLU lets the programmer use nested transactions.

Programmers must use transactions with care, because the transaction mechanism does not apply to
all aspects of the distributed computer system. For instance, variabi2s fall outside the transaction
mechanism. When a transaction aborts, the system does not automatically undo every assignment
made by the transaction. In addition, the system does not synchronize access to variables shared by
several transactions. Hence a transaction should not use variables to communicate with another
transaction.

Until a transaction commits, it should not perform external actions. An external action is an action
whose visible effects fall outside the transaction mechanism. For example, firing a missile and
dispensing cash from an automated teller machine are external actions. Since an external action can
not be undone by aborting the transaction in which it occurred, we assume that external actions
requested during a transaction are performed (shortly) after the transaction commits. Without this
assumption, transactions would not be recoverable.

Since we assume that every data type is atomic, if programmers follow the above rules concerning
communication via variables and the timing of external actions, all transactions are serializable and
recoverable. This will simplify the semantics of REV, which makes it easier for the compiler to
determine which REV requests change program semantics.

2.1.3 Services

Before incorporating REV into CLU, we add the notion of a service to CLU. A service is a node that
exports some of the routines it implements. Other nodes can use REV requests to invoke the routines
exported by the service. We explain below how a service programmer declares which routines a
service exports. A later section in this chapter explains how the compiler uses this information to
decide if an REV request can be executed by the service.

Because a service can export many routines, we use a two-level description to structure service
definitions. A service definition consists ol a set of interfaces, and an interface defines a set of
routines. We present the syntax and give examples of both interfaces and services by beginning with
the syntax for interfaces:

interface ::- idn = [location {independent| interface [parms] [where] 1s
roulincypec, . . . end idn

« - [A J g b 8\ R AN St SIS

‘T . st e Ta e DR

-
. -30-
3
:: routineSpec ::= procSpec | iterSpec
A\ procSpec ::= idn = proc [parms] args [returns] [signals] [where]
" iterSpec ::= idn = iter [parms] args ([yfelds] [signals] [where]
oy The nonterminals parms, returns, yields, signals, where, and args are defined as in the CLU manual.
" To avoid name conflicts, we assume interface names are globally unique.
~ An interface is a collection of type specifications for routines. Whether an interface defines a type or
N simply gathers together a collection of related routines without defining a type is irrelevant to this
‘~ discussion. A routine is either a procedure or an iterator. No two interface routines may have the
" same name. A CLU cluster, which implements an interface, exports each routine listed in the
- interface. Interfaces let the programmer separate specifications of routines from their
implementations.
&
LOCATION_INDEPENDENT is a new reserved word. We say a routine P is location-independent if it does
_?. not depend on which node executes P. For example, logica! operations on booleans, such as and
‘~‘ and or, are location-independent. Functional routines, array operations, and record operations are
b also location-independent. Other routines, such as GetMyNetworkAddress, GetNearestPrinter,
Lt and LocalFile$Open are location-dependent: the semantics of each such routine depends on the
:f state of the node that executes it.
) If LOCATION_INDEPENDENT is present in an intertace, all routines defined by the interface are location-
> independent. Otherwise, the routines in the interface are assumed to be location-dependent.
. Although LOCATION_INDEPENDENT couid annotate individual routines, we assume it annotates only
. interfaces and clusters. Section 2.4 explains how the compiler uses LOCATION_INDEPENDENT
' annotations.
N We illustrate interfaces and location independence with two examples. Figure 2.1 defines the
N abstract data type point, which has location-independent routines. The point routines do not
N depend on the internal state or the physical location of the node that executes them. Figure 2-2
. defines an interface for a mail system without defining a new abstract data type. Because the
> postOffice routines can be affected by the internal state of the node implementing the routines, the
- " reserved word LOCATION_INDEPENDENT is not present. For instance, it makes a difterence whether an
administrator removes Jones from the Dallas registry or the Chicago registry.
d
i Having discussed interfaces, we turn to service definitions, which are sets of interfaces. A
) programmer defines a service by a list of identifiers:
; service ::= idn = service {is idn, . . . end
‘ Each identitier names an interface or another service, and SERVICE is a new reserved word. The
3 meaning of a service detinition is the set of routines contributed by the identitiers. An interface NN
. identfier contributes the routines it defines. while a service identifier contributes the routines it {::-__
3 erports. ..:;:‘
. Qo
, S

-
r l’ "
’i’ft".‘f] .

-1

A A A

PP PN

“a

Ay T T N

‘ Pl i)
RN

s

sfat

*atala s s

point = location_independent interface 1is
create = proc (x, y: int) returns (point)

x = proc (p: point) returns (int)

y = proc (p: point) returns (int)

r = proc (p: point) returns (real)
theta = proc (p: point) returns (real)
distance = proc (p. q: point) returns (real)

end point

Figure 2-1: An interface defining the abstract data type point.

postOffice = interface 1is

addUser = proc (requester, user: userID) signals (userAlreadyExists)
X requester must be a system maintainer

removeUser = proc (requester: userID, user: string) signals (noSuchUser)
% requester must be the user or a system maintainer

readMail = proc (user: useriD) returns (array[string]) signals (noSuchUser,unreadable)
anyMail = proc (user: useriD) returns (bool)
sendMail = proc (user: userID, msg: string) signals (undeliverable)

end postOffice

Figure 2-2: An interface for a mail system.

The ability to define a service by extending another service provides programming convenience. A
service definition is meaningless, however, if it is directly or indirectly recursive. For example, a
programmer can not define service S1 in terms of service S2 if service S2 is defined in terms of
service S1. The compiler "flattens" a service definition that depends on another service. Two
service definitions are equivalent if their compilation results in the same set of routines.

The following three service definitions are well-defined because they are not recursive:
built-ins = service {s int, boo!, char, real, string, array, record end
mathematics = service 1s int, real, complex, matrix, polynomial, trig, algebra end
graphics = service is bitmap, point, line, polygon, font, built-ins end

Built-ins is a collection of useful types that mo:t or all services should support. Besides being a
bona hide sorvice. built-ins can be part of another ervice defintion, such as graphics. A node

Ses o

[

o
-

-
[

1 ¢

<
X
L}
«
4

Y .Y .
ata

8
Sl

g

. d ry
DR A

.32-

supporting built-ins exports the seven interfaces in the definition of built-ins. A node supporting
graphics exports the twelve interfaces in the definition of graphics. Five interfaces are mentioned
explicitly, while the other seven are inherited from built-ins. A node supporting only mathematics
supports only straight-line code, because it does not export bool. To avoid this problem, we shall
assume that every service runs CLU and therefore automatically exports built-ins.

A service that exports interface T must implement interface T, all the types mentioned in interface T,
all the types mentioned in the interfaces for these types, and so on. An easy way of extending a
service without increasing the number of interfaces that its instances must implement is to take the
type closure of a service. Chapter 7 presents the details.

When a service definition contains a parameterized interface, such as array[t:type], for simplicity
we restrict type parameters to those types exported by the service. For instance, a graphics service
supports operations on objects with type array[array[line]]] since it exports both array and line.
A graphics service, however, does not support objects with type array[matrix], since it does not
export matrix. This restriction on type parameters does not reflect any fundamental limitation on the
transmission of code in a network, since it is possible to transmit a cluster implementing matrix to a
graphics service. We made this decision to avoid problems that arise when clusters with own data
are sent between nodes. Specifically, a service that implements but does not export a type with own
data might otherwise find itself with several sets of own data for the same type.

We distinguish between the specification (i.e., definition) of a service and its instances. A service
instance is a node that exports the interfaces in the service specification. Such a node can have
internal state by using own variables. A node can be an instance of many services simultaneously.
For example, a node exporting graphics to one client can export built-ins to another (or the same)
client. A service is a view of a node: it guarantees that the node exports a certain set of interfaces, but
does not prevent the node from exporting additional interfaces.

The separation between specification and implementation imposes a partial order on the compilation
of interfaces, service definitions, and programs. The compiler rejects any service definition that
names an interface or service whose definition is not in the compilation environment. This rejection
prohibits recursive service definitions. Similarly, the compiler rejects any program that names an
interface or service whose definition is not in the compilation environment. This rejection, which lets
the compiler perform strong type checking across module boundaries, will let the compiler determine
whether a service can execute an REV request. Section 2.3 presents the details.

Before an application program can send an REV request to an instance of service S. it must bind to
the instance. Two important issues in distributed binding are naming and location [4]. A client
specifies what constitutes an acceptable service, and a network facility such as Grapevine [3] uses
the description to locate an appropnale instance of the service at run time. Wea focus on naming
1ssues, under the behef that the corresponding focatron mechamisms may be budt,

4

7.737'.‘
PN

Il ’l

r P I A, |
AnINEN
AR '

Y frer vy
'. e ‘s 'v 'u ‘Q
o'-’v"ffl

<%

4| v

.l."’.,l'
Y55 4

o 8 0 e a0«
]
v

-
-
LA

.33-

Our remote binding model consists of two procedures which we discuss in turn. A programmer
needing any instance of a service uses the following procedure to bind to a node exporting the
service:

Service[s:serviceName]SAny = proc () returns (s) signals (NoneAvailable)

This procedure, which is part of the run-time system, consults a network facility to locate some
instance of the specified service. Service[s]$Any returns a node that exports at least service s.
Because the programmer has no control over which instance is selected, the service s should be a
location-independent service. A service is location-independent if all its instances are
indistinguishable except for performance. For example, consider a room containing ten identical
nodes, and assume no node contains a local file system. If each node compiles Fortran programs,
they are indistinguishable to a user. The appropriate node is the least busy. If Fortran is a location-
independent service that compiles Fortran programs, the following statement finds an instance of this
service:

compiler: Fortran := Service[fFortran]$Any()

No particular Fortran compilation service is requested, since they are all equivalent.

A programmer needing some instance of a service uses the following procedure to bind to an
appropriate node exporting the service:

Service[s:serviceName]$Lookup = proc (string) returns (s) signals (NotAvailable)
Service[s]$Lookup returns a node that exports at least service s and corresponds in some way to
the string argument. As explained below, the interpretation of the string argument depends on the
service s.

Service[s]$Lookup gives the programmer some control over which instance is found, which is
useful when the programmer wants to use a location-dependent service. A service is location-
dependent if its instances are distinguishable because of their data or physical locations. For
example, a user may prefer the instance of the print service down the hall instead of the instance
across town. Similarly, many services may contain street maps and export relevant operations, but a
user may want one containing a map of Boston.

Suppose Map is the name of a location-dependent service that contains street maps and provides

operations on the maps. The following statement finds a service containing a map of Boston:
BeanTown: Map := Service[Map1Stookup(“"Boston™)

Since all Map services do not contain a Boston map, the programmer must specify which instances

are acceptable. As we mentioned above, the interpretation of the string argument ("Boston")

depends on the scrvice (Map). A single string inav correspond to zero. one, or several instances of

the service.

Each of the two binding routines presented above normally returns a capability for a service instance.

Lol o¥ PE g% 2N
» "
‘v": ..’.'fl':'l

-

Xl

37
*

(AU

8yt
IR A

.
Ty

e -
s
oL
.

p o NS

-

[

.' l.. ", '.‘ Y _'; _'i

PAO00

.34 -

A capability for service instance S lets a node execute REV requests at S. Service capabilities are
first-class objects. They may be assigned to variables, stored in data structures, passed as
arguments, or returned as results. Service capabilities may also be sent between nodes; Chapter 5
presents the details.

Although a client that has finished interacting with a service is expected to notify the service, for
simplicity we do not include a Service[s]$tinished routine in the discussion or any examples in the
thesis. Such a routine would invalidate the service capability, break the binding between the client
and the service, and let the service reclaim any resources it devoted to the binding. An REV request
whose destination is an invalid service capability does not run. Instead, it raises the exception
failure("“invalid service capability”).

A service can unilaterally invalidate any service capability it issued. For example, if a service crashes
and then recovers, it can declare that all its outstanding service capabilities are invalid. Similarly, a
service unable to communicate with a client can declare that the capability issued to the client is
invalid. When either the client or the service invalidates the service capability for a binding, the
service reclaims the resources it devoted to the binding.

2.2 REV Requests

Having extended CLU with services and a simple model of nested transactions, we now incorporate
REV into CLU by defining what an REV request means (its semantics) and how one is written (its
syntax). This chapter assumes an REV request relocates the execution of a procedure. Consider a
procedure P that is not exported by a service S, and assume an REV request relocates the execution
of P to S. For simplicity, assume the body of P invokes only procedures exported by service S. The
run-time system for a client executing the REV request places the body of P and the arguments into a
request message; sends the request message to the service; and waits for a reply message. When the
service receives the request message. it extracts the procedure body and arguments from the
message; evaluates the procedure with the arguments; and then places the procedure's results into a
reply message. The service sends the reply message to the client, which extracts the results and
continues execution. We formalize the semantics of such an REV request after presenting the syntax.

An application programmer writing an REV request specifies the procedure, the arguments, and the
service that executes the REV request. We use the extended BNF defined in the CLU manual [24] to
present REV syntax:

rev_expression -:- a8t expression eval invocation

AT and EVAL are two new reserved words. and expression must have a service type. A relocated
invocation has the same syntax as an ordinary procedure invocation:

invocation Coprawary{|expres.ion, . .])

»
CW

o T
L XA
-~

R
‘s N Y

"l
4!

-
»

[Ml B)
o

»
LA

-
- K

PR P PR
t s o TH

S B b T Ty Uel)
PR R R
RN U]

Y

V e’ g

.35 -

The nonterminal primary, which is one kind of CLU expression, produces literals, identifiers, and
o invocations. We extend primary to produce REV requests, which are relocated invocations:

primary ::= . . . (as in CLU manval) . . . | rev_expression
A client executing an REV request evaluates the expression following the reserved word AT to
determine a service. After evaluating the relocated invocation's primary and arguments, the client
sends the request to the service, which performs the invocation and returns the results to the client.
We present restrictions on REV requests and define their semantics below.

An REV request that is executed by service S is valid if the procedure and arguments may be
transmitted to S and the results may be transmitted to the client. If T is any type other than code, an
. object of type T may be transmitted between two nodes if T is a transmissible type and both nodes
implement type T. The transmissibility of code is more involved. As explained in Section 2.3, the
request message contains enough code for the service to execute the invocation. This code, which
the compiler must be able to determine at link time, is self-contained in that it never refers to nonlocal
variables. Moreover, every routine invoked by the code at the service is either in the request message
or exported by the service.

DN
s

. An REV request lets an application programmer relocate the execution of a procedure. If the
. procedure is location-dependent, relocating execution with REV may change program semantics.
The meaning or semantics of a program is its viéible behavior, including any results computed by the
program and any visible side effects it causes. We do not include resource consumption, such as
processor time, memory requirements, and network traffic, in the definition of program semantics.

Using REV to relocate the invocation of a location-dependent procedure may change program f:j:I:j
semantics. On the other hand, if the procedure is location-independent, we would like the REV T
4 request not to change program semantics. Section 2.4 argues that the following argument passing
) semantics and crash semantics for REV requests achieve this goal. .-.‘_w_
X Both REV requests and ordinary procedure calls have the same argument passing semantics: call by ‘f-':.:
A sharing. Conceptually, the client places the names of the arguments in the request message sent to
the service. Because such an implementation would be hopelessly inefficient, we discuss a novel N
implementation for call by sharing in a distributed system in Chapter 3. ::jf.":
(A
x;:.:,
X Having specified the argument passing semantics for REV requests, we must define their crash ';-:\\:

semantics: how do node and communication failures affect the meaning of an REV request? We

simplify the construction of distributed applications by masking node and communication failures
with atomic transactions. Each REV request must run as part of a transaction that aborts if the REV
request does not complete.3 Invoking an REV request outside the scope of all transactions raises the

3 . . .
Fransaction may mean top lesel angaction or subtiansaction i thas discussion. T

NN)

.
PR

0
s B,

o T T s Ca e
PR

-36-

exception failure("No current transaction”). In this case, the REV request is not executed. The
normal completion of an REV request does not affect the status of the current transaction. In
contrast, unilateral termination of an REV request by the client's run-time system aborts the current
transaction. For instance, if the client's REV mechanism can not periodically elicit a low-level
response from the service, it might conclude that further attempts at communication are worthless
and abort the transaction. When the transaction is aborted, the nearest enclosing transaction block
raises the exception failure(reason: string). Being part of a transaction that modifies only atomic
objects, each REV request has the following semantics: either the service executes the REV request
and returns the results to the client, or the REV request has no effect on both the service and the
client. In the absence of failures, REV requests have exactly-once semantics since each request is
executed once.

Figure 2-3 contains an example of REV. Suppose a remote array processor supports addition,
subtraction, and multiplication of matrices. A programmer who wants to exponentiate a square matrix
can use REV to implement an exponentiate procedure that executes at the array processor. For
simplicity. we assume that the matrix is square and the power is a nonnegative integer. The algorithm
calculates the result by successive squaring.

APS = ArrayProcessorService X an equate

exponentiate = proc (m: matrix, power: int) returns (matrix)
signals (una.ailable(string})

begin transaction
ap: APS := Service[APS]SLookup()
except when NotAvailable: abort signal unavailable("No ap’'s”)end
answer: matrix := at ap eval exp(m, power)
return (answer)
end except when failure (reason: string):
X REV or commit problem
signal unavailable(reason) end
end exponentiate

exp = proc (m: matrix, p: int) returns (matrix)
X calculate mtp by successive squaring

square: matrix := m
ans: matrix := matrix$identity(matrix$length(m))
while p>0 do

i1f intSmod(p. 2)=1 X is p odd?

then ans := matrix$multiply(ans, square) end
square := matrixSmultiply(square, square)
p := p/2
end
return (ans)
end exp

Figure 2-3: Using REV to enhance a remote array processor.

.
2, o

v

AR

/1..'
SN

.
»

1

L PO

et Pho st o ate . gMIE SN AL g e N il gl g an i it i i e MRS S AR PR A

.ar-

Since procedure exp in Figure 2-3 does not depend on the state of the node that executes it, exp is a
location-independent procedure. We argue in Section 2.4 that using REV to relocate the execution of
a location-independent procedure does not change program semantics. In other words, removing
the phrase "at ap eval" in exponentiate does not change program semantics. Whether the client
executes exp (as an ordinary procedure invocation) or the service executes exp (as an REV requ ast)
does not change the results calculated by exp. Because exp causes no side effects, we do not need
transactions to ensure this particular REV request does not change program semantics. Other
examples in the thesis, however, show that transactions are often necessary.

A programmer can nest REV requests, as shown in Figure 2-4. Procedure R uses REV to relocate the
execution of procedure P, which in turn uses REV to relocate the execution of procedure Q. As
explained in Section 2.3, the compiler determines the code the client sends to s7 and the code s1
sends to s2. The code sent to s2, which probably includes the body of Q, is first sent to service s1
which treats the code as a black box. The code sent to s2 depends on Q and s2 but noton s7.

R = proc (**args*®) returns (®*®resultse®®)

ai s1 eval P(*®*args®®)

end R
P = proc (**args®®) returns (*®*resultse®®)

li s2 eval Q(®**args®*®)

end P

Figure 2-4: A nested REV request.

REV requests can nest to an arbitrary depth. For instance, if procedure Q invoked procedure P, they
would be mutually recursive. In general, their dynamic nesting depth could not be predicted at
compile time.

The transmissibility of service capabilities facilitates nested REV requests. If s2 is (contained in) an
argument to procedure P, the service denoted by s2 accompanies P to service s?. I service
capabilities were not transmissible, the programmer would have to establish a binding in procedure P
to relocate the execution of procedure Q.

.38

2.3 The Code Portion for an REV Request

PTeANSS Y S

The code portion for an REV request consists of all routine implementations and routine names the
5 client sends to the service, excluding the code portions for all nested REV requests. The code portion
represents the smallest amount of code that the client must send to the service for the service to
execute the REV request. When determining the code portion for an REV request, we treat nested
requests as self-contained, black boxes, because a nested REV request may be executed by another
service and therefore may be unintelligible to the intermediate service.

P,

At this point, we explain in detail the three restrictions we impose on REV requests. The first
restriction, which we impose for semantic reasons, applies to the routines invoked by an REV request
at the service that executes the request. We say the code portion for an REV request imports a
routine if: '

N 1. the REV request uses the routine at the service executing the request; and

2. the request message sent to the service does not contain an implementation for the
routine.

Given this definition, our first restriction is that every routine imported by an REV request is exported
by the service executing the request. Otherwise, a service could receive a request that asks the
service to execute a routine the service does not implement.

A I AL

The second restriction, which is also imposed for semantic reasons, prohibits the code portion from N
having free variables and own variables. Unlike LISP, we use type information to distinguish free Lre
variables from free procedure names. Since CLU does not let a programmer define a routine in the '-:'ﬁf
", body of another routine, the only free variables a routine can have are own variables. Hence this '
restriction is equivalent to one that prohibits own variables in the code portion of an REV request. :f:‘:
This restriction on own variables does not reflect any fundamental limitation on the transmission of
. code in a network, since it is possible to transmit the objects bound to the own variables appearing in k
the code portion of a request. If we allow own variables in the code portion, implementing REV so :::::
that location-independent requests preserve program semantics is difficult because of our ’EZ:‘

FYE DR N RN
t

assumption that variables fall outside the scope of the transaction mechanism. This restriction and >
the preceding restriction ensure the code portion is self-contained as long as it is executed by an
instance of the appropriate service.

Qur third and final restriction on REV requests. which is imposed for pragmatic reasons, requires that

the compiler be able to determine the code portion at link time. This restriction supports early error
detection. since the compiier can check the above two restrictions. This restriction also lets the
compier encode each code portion. Encoding an object results in a sequence of bits that represents
the abstract value of the object in a node-independent way. Such a bit sequence may be sent

NESNCALALRLA

between nodes in messages. Having the compiler encode the code portion of each REV request can

impirove run-time performance.

JE T T e U e L . R N AT
R B T S S AT AT S TSP TP SR T T L T T G Y P G e

-

‘
.39-
\
= . , . ,
Q) The code portion for an REV request depends on the service executing the request. Consider the
: REV request in Figure 2-5, which relocates the execution of procedure P to a instance of service S.

Assume no procedures are used as arguments to A, B, C, or P. If service S exports P, the code
. portion consists of the name P. This case is comparable to a remote procedure call, which shows
that remote evaluation includes remote procedure call as a special case. If service S exports A, B,
and C but not P, the code portion consists of the body of P. If service S exports only A and B, the
E code portion consists of the bodies of P and C. If S does not supply enough routines, the code
portion may not exist. For example, assume S exports only B and C, and assume that A is a system
routine that is not implemented in CLU. If only CLU routines may be transmitted between nodes, A is

w
L

- not transmissible and no self-contained code portion exists.
P = proc (**args®®) returns (*®results®*®)
. A(..)
:. B(oo)
- return C(*°*)
- end P
3 C = proc (**args®**) returns (**results*e®)
1f B(**)
X then return P(**)
- else return A(**)
-, ond
- end C
. somewhere: S := Service[S]$Any()
. at somewhere eval P(*®*args*®)
- Figure 2-5: An REV request that relocates the execution of procedure P.
-
:: We call the procedure whose execution is relocated by an REV request the relocated procedure for
. that request. In the preceding example, P is the relocated procedure. The relocated procedure is
independent of the service that executes the request. In particular, it does not matter whether the
service exports the relocated procedure or whether the body of the relocated procedure
3 ' accompanies the request message sent to the service. We call any other routine whose body
. accompanies the REV request to the service a client-supplied routine. As we saw in the previous
3 example, the client-supplied routines depend on the service executing the request. For example, if
K the service exports only A and B, then C is a client-supplied routine.
We describe how the compiler determines the code portion for an REV request by first assuming that
routines are not first-class objects. Under this assumption, a programmer can write routines and
) invoke routines, but can do nothing else with routines. While linking the program, the compiler
. determines the code portion for each REV request by generating part of the program call graph,
RNy .\ e T RPry ..J‘ P T PR N PG ORIy e e AT e e

. |'I .

Sy vt

'
[}

lond

s
e “o .
A

o

. s %

bl.,.
D

RPN

.l

.“ s Y Te YY W,
T
.‘ " .‘q'.1v.'$‘.‘v »
4 \J -

: :
-~
'l ,‘.

E 40- o
2.)N-
;- which represents the "who-calls-who" relation for routines. Because routines are not first-class P
:: objects, the program call graph can be readily constructed at link time. For each REV request, the ,ﬁ

compiler begins with the relocated procedure and decides whether the client must send the ot

:- procedure’s name or body to the service. In the latter case, the compiler must also decide whether t*
A the client must send the name or body of each routine invoked by the relocated procedure, and so on. ‘@ ‘
N In the worst case, the compiler must determine all routines reachable from the relocated procedure. X

It the compiler comes across a nested REV request, it recursively calls itself on the nested REV
request and then continues processing the current REV request. If no code portion exists or if the "
code portion contains an own variable, the compiler informs the programmer via a fatal diagnostic
and continues checking for other link-time errors, but the compiler does not produce an executable : .
program. On the other hand, if the compiler finds the smallest self-contained code portion, it encodes -
the code portion and continues linking the program.

¢ AL

e et

)

< Using routines as first-class objects complicates the task of determining the code portion for an REV
request, since arguments and results may be routines. The compiler rejects an REV request with
routines as arguments if any of the routine arguments are unknown at link time. Similarly, the
compiler rejects an REV request whose relocated procedure is unknown at link time. The compiler <
also rejects any argument to the REV request that contains code, such as an array of procedures, by
-:: prohibiting any external representation that contains code. Without an acceptable external
representation, an abstract data type is not transmissible, which means that the REV request is not :'.'-'-
valid. These restrictions ensure the code portion of an REV request is apparent at link time. ')

In a distributed system with REV, routine names are bound to their implementations at different times. ,
We will use Figure 2-6 to show the different times at which binding occurs. A, B, C, and D are ;
clusters. Service S1 exports C and D, and service S2 exports C. Consider a program running at the !
client that contains REV requests. Assume modules A and B are compiled once, linked together, and Cagy
then loaded at the client. o

. Consider an invocation of a routine that is not in the code portion of any REV request. Such an "j'.j'
' ordinary invocation is bound early and only once. If the routine is invoked in the same cluster as it is .
defined, binding occurs at compile time. . For instance, a routine in cluster A could invoke another
routine in A. Otherwise, if the routine is invoked in one cluster and implemented in another cluster,

;i the invocation is bound to an implementation when the modules comprising the client program are -
linked. For example, a routine in A could invoke a routine in B. .

A routine that is invoked in an REV request hut is not imported by the REV request must accompany
. the REV request. Such invocations are bound early and only once. Suppose an REV request sent to
- service S1 invokes the routine BSop. Since S71 does not export B, Bop must accompany the
request. The binding occurs when the modules comprising the client program are linked. s

'- ‘.
N

A routine that s wnported by an REV request 1 bound at run time. Consider an REV request that)

-
-

-
.
-
.
-
o
e

.41-

CLIENT SERVICE S1

Ll

SERVICE S2

»

Figure 2-6: A simple distributed system.

imports the routine C$op and is sent to a service that exports C such as S2. The invocation of C$op
is bound to an implementation for C$op every time the REV request is executed by S2. The binding
can occur many times at the same service or many times at many services. For instance, the REV
request could also be executed several times by S71.

a8 ¢ & & A

2.4 Location Independence

A location-independent REV request is a valid REV request that imports only location-independent
routines. The code portion for such an REV request is a composition of location-independent
routines, which means that it is also location-independent. Qur goal is to let the programmer relocate
execution with location-independent REV requests without affecting program semantics. In other
words, every execution sequence of a program containing a location-independent REV request must
be equivalent to some execution sequence of the corresponding program without the REV request
and vice versa. This section argues that relocating execution with a location-independent REV
request has no effect on program semantics. It also discusses how location independence affects

A
s:-.‘: 4

A
i
X

» 8
T,
K

< 7
¢

application programmers and service programmers.

.

5
X
. Q.l'.'

.
. 0 s

IO
YN
A

M AT N
3

." F40aPEL N ke M P W W R gl SN R a I R L S Sl AaChe i MRSl BN s A et e
S

.42-

We being by arguing that relocating execution with a location-independent REV request has no effect
et on program semantics, provided that the expression that specifies the service is side-effect free. Let
R be an REV request of the form:

i; at somewhere eval P(**args*®)
\ where somewhere is an expression with no side effects and P is a location-independent procedure.
: All of P's observable side effects must be modifications to its arguments, because otherwise P would
be location-dependent. Assume R is always evaluated during a transaction. The following shows that
replacing expression R with expression P(* *args * *) has no effect on program semantics:

e The argument passing semantics for R and P are identical. Both use call by sharing.
. Since P is location-independent, the arguments are modified in the same way whether
the client or the service executes P.

- e The results computed by R and P are identical. Since P is location-independent, the -_“.-j
: objects returned by P(**args**) do not depend on the node that executes it. X -_}
" Therefore, it does not matter whether the client or the service executes P. foa
: . ‘.-.\-.l‘
(} b
s e The crash semantics for R and P are identical. In both cases either P(**args**) is =
- completely evaluated or it appears that P(**args®*) was never evaluated. The =y
:: transaction mechanism masks ail node and communication failures that might affect the ?f::'
: evaluation of P(* *args* *) or R. Ty
L . S
N Hence we may conclude that location-independent REV requests preserve program semantics. Each :;zf s
b execution sequence of a program containing location-independent REV requests is equivalent to -
- some execution sequence of the corresponding program without these REV requests and vice versa.
- Our suggested programming methodology is based on the ideas of location dependence and location o
‘: independence. The application programmer first writes and debugs an application using REV only as :::-_-
a way of fixing the execution site of location-dependent procedures that are not executed by the
- client. We recommend that the service expression in such an REV request be location-independent, ._;:Z
- so that the entire REV request will a location-independent program fragment. For example, let M be : "
- N
an REV request of the form: ~is
. A

at someService eval Q{**args®**)

where someService is a location-independent expression and Q is a location-dependent procedure.

:_; -No matter which node begins to execute M, the specified service ultimately executes Q. Thus the "
f location dependence of the relocated procedure Q does not affect the location independence of the r
' entire REV request M. This kind of request is a prime candidate for becoming a nested request, as .
explained below. v
v t‘,-;‘
:: l.ocation-independent requests will normally be used during the second stage of our suggested Z‘;:::j:
) programming methodology. Once the application has been debugged, the application programmer :'.'_'_.-'.‘
inserts location-independent REV requests to improve performance. For example. consider a i
2 procedure with five REV requests to the same service. The programmer can try to use REV to ;‘
5 ae
e e locate the execution of the entire procedure to that service, which will mate the five REV requests j_j:}.
\ <.
?

»
. LI Ny LN

LA RE VL RN

‘e

A e e s

-43 -

in the procedure nested requests. The programmer need not worry about introducing new bugs at
this stage, as location-independent requests preserve program semantics, and the compiler can
check whether each new REV request is location-independent. This programming methodology
facilitates the automatic insertion of location-independent requests to improve performance, a topic
that is beyond the scope of this thesis.

Our notion of location independence involves the service programmer, who must declare whether
each interface exported by a service contains location-independent routines or location-dependent
routines. The compiler uses this information when checking the location independence of an REV
request. The following approach can statically check the location independence of service routines.
System programmers label the built-in routines as to their location independence, while ser.ice
programmers label the routines they implement. The compiler ensures that every routine invoked or
named by a location-independent routine is location-independent. This approach, however, may be
too conservative, since a routine can invoke location-dependent routines yet remain location-
independent.

Application programmers need not decide whether their routines are location-independent, since the
compiler infers their location independence when checking the location independence of an REV
request. This division of labor between application programmers, service programmers, and the
compiier reflects an important theme in the thesis. Whenever possible, we place the burden on the

compiler and service programmer rather than on the application programmer in an attempt to simplify -

the construction of distributed applications. A handful of expert language designers and compiler
writers can support a small number good service programmers, who in turn can make life easier for
the hordes of application programmers. This division of labor increases the leverage of language
designers, compiler writers, and service programmers.

2.5 Discussion

To facilitate (automatic) program optimization, we defined REV semantics so that location-
independent requests would not change program semantics. Since an REV request relocates the
execution of a procedure, we had to ensure that procedures and REV requests had identical
semantics. We also wanted to minimize the changes to CLU, since we were concerned with
programming style and the efficiency of CLU procedures. Because our goals were different than
those of RPC researchers, our REV semantics is unlike any RPC semantics.

Our argument passing semantics for REV requests, call by sharing, is unusual in a distributed system.
Most RPC systems use call by value. but CLU uses call by sharing. Unitying the semantics of local
procedures and REV requests torced us to choose call by sharing for REV requests. Although call by
sharing and call by value are equivalent for immutable types. we did not want to use call by value for
BUV requests and imit their arguments and recults to immutable typos because we thought that it

would constrain the appicabion programimcr (and optimizer) too much,

rrrre
0 te te
FARAE
o'

[

T
)

b e Jas Juratias dus o hett en Tt At Jeb o Shi A SR Ad I R

.44 .-

Chapter 3 describes our novel implementation for call by sharing in a distributed system. In terms of
performance, our implementation is shown to be comparable to an implementation for call by value.
Chapter 3 also discusses how we keep separate address spaces disjoint, even though REV requests
use call by sharing.

We masked node and communication failures with atomic transactions so that location-independent
REV requests would not change program semantics. Our crash semantics, however, is slightly
different than the semantics found in transaction-based RPC systems like Argus[25], which
automatically enclose each RPC in a transaction. If we used the same approach and automatically
enclosed each REV request in a transaction, at least part of the transaction structure of a program
would depend on how the program is partitioned into components for local and remote execution.
This in turn means that program semantics depend on how the program is partitioned. Relocating
execution with a (location-independent) REV request would alter the transaction structure and in
general change program semantics.

Besides helping us ensure that location-independent REV request preserve program semantics,
transactions simplify the construction of distributed applications by masking node and
communication failures. When failures are visible to the application programmer, building a
distributed system, especially one that must maintain the consistency of distributed data, is a difficult
task. Independent failure modes complicate the behavior of the system, because a client with an
outstanding REV request may not be able to communicate with the service purportedly executing the
request. In such cases, the client is unable to determine whether the service received and (partially)
executed the request.

2.6 An Example

We highlight the important points in the chapter with an example that uses a location-independent
REV request to improve performance without affecting program semantics. Consider the problem of
sending a form letter to several people. Current mail systems let a user send the same message to
several recipients. A user who wants to customize each copy of the letter, however, must send
separate messages. Assume the customization can be automated. For example, the user may want
to insert "Dear John,” in the message to John, "Dear Sue,” in the message to Sue, and so on.
Furthermore. assume all recipients of the message are in the same mail registry.

Let mail be a service that exports the registry, maildrop. set. and string interfaces. Customize,
the procedure in Fiqure 2-7. uses REV to customize the message at the mail service and returns those
recipients without a malbox. Without REV. the uscr would be forced to customize the message at the
client and send each copy to the mail service. If there are many recipients or if the message is long,

REV should unprove performance substantially.

e a e A A dbaaehinn i S v AR b iuih A A A S A2 A A

o 7t
., !

JAFPLILE

.
s 4

L)

*

.1
O A

P!

e e & € B

TN s s & a]

U

e s B B

-
-

-45% .

ss = sot[string] X an equate

customize = proc (user, passWord, msg, registry: string, friends: ss)
returns (ss) signals (NotAvailable)

begin transaction
postOffice: mail := Service[mail]$Lookup({registry) sbort resignal NotAvailable
badNames: ss := at postOffice eval

customizeMsg(postOffice, friends, user, passWord, msg)

return (badNames)

end except when failure (reason: string):
X REV or commit problem
signal NotAvailable end

end customize

customizeMsg = proc (po: mail, friends: ss, user, pwd, msg: string) returns (ss)

badNames: ss := ss$new()
newMsg, firstName: string

for friend: string in ssSelements(friends) do
firstName := at po eval registry$firstName(friend)
except when noSuchUser:
ss$insert(badNames, friend)
continue X start the next iteration

end
newMsg := "Dear "||firstName||msg X string concatenation
at po eval maildrop$send(user, pwd, friend, newMsg)
end

return (badNames)
end customizeMsg

Figure 2-7: Using REV to customize a form letter.

The REV request that relocates customizeMsg is location-independent, since its code portion
imports only set and string operations, which are location-independent. Although customizeMsg
invokes location-dependent registry and maildrop routines, it does not import them. This is
because the code portion for an REV request by definition does not include the code portion for any
nested requests. Following our suggested methodology, the application programmer writes and
debugs customizeMsg using REV to fix the execution sites of location-dependent registry and
maildrop procedures. Later, the programmer can easily convert any invocation of customizeMsg
to an REV request without changing program semantics. Both procedures and REV requests use call
by sharing, and the application programmer does not have to worry about keeping separate address
spaces disjoint.

Making location-independent REV requests be an optimization simplifies application programming.
For example. the application programmer can relocate the execution of customizeMsg without
changing program semantics. To improve performance, the programmer could relocate
customizeMsg from the client to the mail service that contains the racipient’'s mallboxes. as shown

5
Yoo
. 46 - .
&
\
N
in Figure 2-7. Even if the programmer accidentally relocates customizeMsg to the wrong mail tj.'.
service, performance may degrade but the net effect of the REV request will be unchanged because \}'"
the nested REV requests are executed by the correct service. Which node executes a location-
independent REV request can affect program performance but not program semantics. 'a,.:
(% t
b >",«
This example also shows how transactions make location-independent REV requests be an i‘ff.‘,ﬁ
optimization. Whether customizeMsg is part of an REV request or simply an ordinary procedure has Wb
no effect on program semantics. When REV is used to relocate the execution of customizeMsg, the
client sends only a single REV request to the service. The service sends the REV requests inside e
customizeMsg to itself. Removing the phrase "at postOffice eval” in customize replaces the REV N 5
request with an ordinary invocation of customizeMsg. The number of REV requests the client now 2'_;_j'.-':

sends to the service depends on the number of recipients and the number of recipients with
mailboxes. The failure of any REV request causes the transaction to abort and customize to raise
the exception NotAvailable. Either all the friends with mailboxes receive customized messages or
none of them do. These two ocutcomes are also the only possible outcomes when REV is used to
relocate the execution of customizeMsg. Hence the possible outcomes are independent of whether
the client or the service executes customizeMsg.

Y

{ One final point to note about this example is how REV can extend the set of routines "exported” by a
service. Whether the code portion contains the name or the body of customizeMsg is transparent to
the application programmer in terms of syntax, semantics, and performance. The only difference is
whether the procedure exists at the service or accompanies the REV request.

2.7 Summary

REV is the ability to relocate the execution of a procedure. REV requests, which give the application
programmer fine-grained control over the location of processing in a distributed application, use call
by sharing. Instead of automatically enclosing each REV request in a transaction, we require that
every REV request run as part of some transaction. If the client's REV mechanism unilaterally
terminates an REV request, it aborts the associated transaction and then raises the exception failure.
Transactions, which mask concurrency, node crashes, and communication link failures, manipulate

only atomic objects.

We restrict REV requests so the compiler can verity the validity of each REV request and encode its
code portion. An REV request is valid if its arguments and results are transmissible between the client

and the service and the code portion is self-contained and apparent at link time. In particular, the e

a

code portion must not contain any own variables; every procedure argument must be known at link

'.
P
77

.._
-.n ..i.
r

time; and every routine imported by the code portion must be exported by service executing the

]

request. Vahd requests may be encoded by the compiler.

AN
)
«

n’:'-"-
’, 'f"'."" i

o

g,

-
n
e

« 1 e
&
[

A location-independent REV request is a valid REV request that imports only location-independent
routines. A routine is location-independent if its semantics does not depend on the node that
executes the routine. Location-independent REV requests do not change program semantics.

To determine the validity and location independence of an REV request, the compiler consults the
appropriate service definition, which is a set of interfaces. An interface specifies a collection of
routines. A service programmer defining an interface must specify whether the interface defines

location-independent routines.

An instance of a service, which is a node exporting one or more interfaces, advertises its existence by
registering with some network facility. A program that uses REV binds to one or more services. This
binding typically occurs at run time. An invocation of a routiqe imported by an REV request is usually
bound late and often. Other invocations of routines are bound early and only once.

AR RAL

Y
Y

55555 %%
-z{i".a{'.";

NN

EASLSAY LY

iy «,",

YR

:._.l

N PN A | L
Se e,

s h
A

.

[f
[JRLIRUN

AR

]
350"

..

Yt

t %
a e

g2

.48 .
Chapter Three

Implementing REV

The preceding chapter presented an integrated set of new ideas including REV, services, and call by
sharing in a distributed system. This chapter, which explains how to implement these ideas, is based
on a prototype REV mechanism we constructed. Because of the similarity between RPC and REV
mechanisms, we focus on the major innovations in our implementation.

3.1 Overview

We begin by surveying the compile-time and run-time tasks of an REV mechanism. An REV
mechanism has two tasks at compile time. First, it verifies the validity of REV requests and determines
their location independence. Recall that a valid request is one the compiler can encode and the
service can execute, while a location-independent request is a valid request that does not change
program semantics. Compared to run-time checking, this static checking can improve performance
and detect errors earfier.

The second compile-time task of an REV mechanism is to generate stubs. A stub is a procedure that
encodes or decodes arguments and results at run time. Stubs interface the application program with
the communication system and free the application programmer from worrying about communication
details. Generating stubs at compile time rather than at run time improves run-time performance.

At run time, an REV mechanism has six tasks:

1. Service Binding: A program with REV requests must locate the services that will execute
the requests and bind to these services.

2. Reliable Communication: Two nodes must reliably exchange messages of arbitrary length
over an unreliable network that may be based on packets.

3. Failure Recovery: Each REV request must run as part of some transaction that aborts if
the request does not complete. Thus node and communication failures are hidden by
atomic transactions.

4. Call by Sharing: Our argument passing semantics for REV requests is call by sharing. An
efficient implementation for call by sharing in a distributed system is the major innovation
in this chapter.

5. Code Transmission: A client must transmit routine implementations and routine names to

ON 7; "-.’ -"'.-.' -.") ‘."'.‘".- A .-_'.-_'-'
e e e e e S e T e e e

wx

4

A

" F P LT
LY Ny

.’ l- Pl
L) [) & .
XN

. -
)
i

AL
.

'.'n‘ 'r‘
'I ’ .., l" {

DA
7
.t
.

" <
AL
PR PO P

PREREY

*
u
R
'...

'--
o
)
Ten e
‘-.
s

3
¥

.49 -

a service. We will evaluate several alternatives for the external representation for code
and discuss scenarios in which each alternative is appropriate.

6. Request Interpretation: If the external representation for code is something other than
compiled code, each service needs an interpreter to evaluate REV requests.

The difference between an REV mechanism and an RPC mechanism is small. In a remote procedure
call, data and results are transmitted between the client and service. The RPC request message
names one procedure that resides at the service (Figure 3-1). A client using REV, in contrast,
transmits the "remote” procedure along with its arguments (Figure 3-2). The procedure sent from the
client can name several procedures residing at the service.

proc name > proc 1
argument 1
proc 2
argument 2
proc3
®
[]
. proc 4
argument n proc S
The RPC request message The Service

Figure 3-1: An RPC received by a service.

The remainder of the chapter is structured as follows. Section 3.2 explains our technique for
implementing call by sharing for REV requests. Section 3.3 discusses the compile-time activities of
an REV mechanism in some detail, while Section 3.4 does the same for the run-time activities.
Because of the similarity between an REV mechanism and an RPC mechanism, these two sections
focus on the REV tasks that are not found in an RPC mechanism: verilying the validity of REV
requests and detcrmining their location independence; implementing call by sharing in a distributed
system; and transmitting code between nodes. The REV tasks that are also found in an RPC
mechanism are discussed briefly.

A NERL N
DN

..J

g

F Y W W

'3

SLALRY

e
sy

13

MRRRERRY

S
o
o
.
o

.
DL
’
B

-50-

a procedure

proc 1
argument 1

proc 2
argument 2

proc 3

[]

proc 4

argument n > proc S
The REV request message The Service

Figure 3-2: An REV request received by a service.

3.2 Call by Sharing in a Distributed System

A straightforward implementation of call by sharing for REV requests uses object names that are
resolved in a global address space shared by all nodes. This approach has two drawbacks. First,
call-backs will cause poor performance. A call-back is a nested REV request sent from the recipient
of the outer REV request to the sender of the outer request. The following example shows how global

"names in an REV request can cause call-backs. Let A be an argument to an REV request sent to the

service. It A is represented by a global name that refers to an object kept at the client, accessing A
during the REV request requires a call-back. If a single REV request requires dozens of call-backs,
most of the performance advantages of REV will disappear.

Second, a straightforward implementation of call by sharing wilt not keep node address spaces
disjoint. A service that holds onto the arguments of an REV request will refer to client objects. If the
results of the REV request are service objects. the client will refer to service objects. Call by sharing
semantics dictates that an accessible reference be valid for aff time. This requirement complicates

/.r'l...

L]
ARAADIA

o

‘.' '.‘ l'."v
P A R A

1]

o

(A AN

Al hARRENA SRE Rl W o odf

-85 -

garbage collection in a distributed system without disjoint address spaces. Other arguments for
keeping node address spaces disjoint are based on availability, autonomy, and performance
considerations.

We avoid these two drawbacks by implementing call by sharing for REV requests with call by
value-overwrite, a new argument passing technique that has an efficient implementation in a
distributed system. Before presenting the details of call by value-overwrite, we illustrate the basic
idea with an example and then list the problems we must solve to have a complete and correct
implementation of call by sharing.

Consider an REV request with one argument, an array of integers, and no results. Suppose the
request appends a 3 to the high end of the array. Part (a) of Figure 3-3 represents the state of the
client and the service before the REV request. The circle represents the array argument to the REV
request. Under call by value-overwrite, the client sends a copy of the array to the service. Both the
client and the service have a copy of the array, as shown in part (b). The service executes the request
and modifies its copy of the array without affecting the client's copy, as shown in part (¢). During the
REV request, the client must not access its copy of the array, since it may be out of date. At the end
of the REV request, the service uses the reply message to send its copy of the array to the client. The
client then overwrites its copy with the value sent from the service, as shown in part (d). Once the

request completes, if the service does not retain a pointer to its copy of the array, it appears as if call

by sharing was used.

The following list presents all of the problems we must solve so that call by value-overwrite
implements call by sharing:

1. Faithful Data Transmission: The abstract value of an object. rather than its name, is
transmitted between nodes. This transmission must not have any visible side effects
once the REV request completes. Furthermore, it must preserve sharing within an
argument and between arguments.

2. Argument Modification: Call by sharing lets a procedure communicate to its caller by
moditying its arguments. Call by value-overwrite must also provide this capability.

3. Argument-Result Sharing: Call by sharing lets a procedure return some of its arguments
as results. Call by value-overwrite must also provide this capability.

4. Time of Updates: Updates happen to objects in real time with call by sharing, but updates
to arguments are delayed until the end of the request with call by value-overwrite. We
must hide this timing difference in the presence of concurrency, node failures, and
communication failures.

5. Disjoint Address Spaces: Call by value-overwrite keeps separate address spaces disjoint,
since one node can not refer to an object at another node. Therefore, we must prohibit
programs that would not kz2ep separate address spaces disjoint if cail by sharing were
fully implemented.

oy

S

’

.52.

CLIENT SERVICE

E o O

request

A]

(b)

< L} .
%N s O

»
«

reply

(d)

O
3 © O @
),

v Figure 3-3: Call by value-overwrite. .

We will discuss each of the above problems in turn and describe how to solve it. For some problems L
we augment our algorithm for call by value-overwrite, and for other problems we impose compiler-
enforced restrictions on service programmers. Section 3.4.1 presents the details of our call by value-
overwrite implementation.

.

- An important consequence of solving these problems is the flexibility we give to the REV mechanism.

For each REV request. the REV mechanism can choose whether to use call by value overwrite or a N
more traditional implementation of call by sharing. [f the chent and service are two different nodes, "t.-

) the REV mechanism will use call by value-overwrite. However. if the chent and service are the same ,\-:‘
N node. the REV mechanism can short-circuit the request: 1e.. the client can execute the request as a :f_.:-
local procedure and use a traditional, efficient implementation of call by sharing. -
- . ¥
Althcu jhat seoms unlikely that many reguests can be short circuite . our programnung methodology ::-_:‘_.:
5 f::"
. KR

. . S e
- S PRI
,-\J’!'-I

o . A,

R YL . W B

M A et Dbt I M i i Sudegiate i it efUTt AR A S A A N A e i i N C R A S S A e et e N et ot 0y Rl S Sacine A a0 S - BB -2 3 iy

-53.

A
0]

. ':-

2 will make such requests common. In the first stage of our programming methodology, the
programmer uses REV to fix the execution site of location-dependent procedures. After the program
is debugged, the optimizer uses REV to improve performance during the second stage. The optimizer
may be the programmer, but someday we hope it will be part of the compiler. The REV requests
inserted during second stage will make some of the REV requests inserted during the first stage
nested requests. As explained below, these nested requests are candidates for short-circuiting.

v AN
o

VS e
>+l

e b

[A AN

o)

Assume a procedure P contains several REV requests and sends them all to the same service. If the

Py

[l
.
N

service is one of P's arguments, the optimizer can use REV to relocate every invocation of P to the
appropriate service. If an REV request that relocates P is location-independent, the new requests are
acceptable to the optimizer because they do not change program semantics. In this case the
requests inside P become nested requests, and each service that executes P will send these nested
requests to itself. Either the compiler or the service's run-time system can short-circuit these
requests. The compiler short-circuits a request by removing the "AT . .. evAL" part of the request,
assuming the service expression is side-effect free. The run-time system short-circuits a request by

A R
.

e

e
L h Y

[
~
‘.
o~
-

I A R

i

avoiding the communication aspects of the request.

3.2.1 Faithful Data Transmission

Call by value-overwrite requires that arguments and results be sent between the client and the
service. Our approach to sending abstract values between nodes is based on Herlihy's template
scheme for call by value in a distributed system [18, 19). Because Section 3.4.1 extends an
:f implementation for call by value into one for call by value-overwrite, at this point we simply review
Herlihy's scheme.

A type is transmissible if every abstract value of the type may be sent in a message between nodes.

The built-in scalar types, such as integer, real, and boolean, are transmissible. The transmissibility :_.‘_.
of a parameterized type, such as array[T], depends on the transmissibility of the component type T. ,
User-defined types, such lists, sets, and queues, can also be transmissible. ,(

F

- For any transmissible type T, T$put converts the abstract value of an instance of T into a
transmissible format and appends this information onto a message. In general, T$put linearizes an

arbitrary graph structure. T$get removes information from a message and produces an instance of

et A
vt e S e
LA -

T. In general, T$get converts linear information into an arbitrary graph structure. As the client and

service may implement an abstract data type differently, a canonical format is needed to

communicate values of a transmissible type. This standard, which is called the external

'
[N
o 7ot Pl

representation for the type, must be transmissible.

L4

%y
‘e

N

1"'

¢

A programmer implementing a transmissible type plays a small role in making the type transmissible,

I

‘k, -

whereas the system gencrates much of the code automatically. Let XT be the external representation

S
j for type T. A programmer implementing T mahkes it transmissible by implementing tv o routines that :::r
9) T
2 convert botween T and XT: RS,
Lt e
: Sl

"'iﬁlv-l‘ E R B

T$encode = proc (T) returns (XT)

T$decode = proc (XT) returns (T)
T$encode maps the concrete representation into the external representation, while T$decode does
the opposite. Imagine T is an integer set, and XT is an array of integers. |f a programmer implements
the set as a binary tree, T$encode creates an array with the same elements as its one argument, a
binary tree. Given an array of integers, T$decode creates a binary tree with the same elements.
Herlihy's scheme automatically extends T$encode and T$decode into T$put and T$get,
respectively.

In Herlihy's scheme decoding a cyclic object from its external representation may require lazy
evaluation. Lazy evaluation is not essential, since it simply enlarges the set of transmissible abstract
values. Moreover, suitably restricting decode procedures for types with cyclic values avoids this
problem [19]. For these reasons we ignore the difficulties caused by lazy evaluation. This concludes
our review of Herlihy's scheme.

When one node transmits the abstract value of an object O to another node, the abstract value of
every object accessible from O may also have to be transmitted. We formalize this key fact with the
following definition. Let P be a procedure whose execution is relocated by an REV request. The
argument objects for an invocation of P are all objects forming the arguments to P just before P is
invoked. The argument objects include the objects passed to P (i.e., the top-level arguments) as well
as all objects accessible from these objects.

We are now ready to tackle the first problem: faithful data transmission. Because we have not
introduced the other problems, the worst case we must handle is an REV request executing in the
absence of concurrency and failures. The procedure relocated by the request can not modify any of
its arguments, and the arguments and resuits do not overlap. Furthermore, the service can not hold
onto any of the arguments or results. Because call by value provides the right semantics under these
conditions, we can use Herlihy's scheme. Programmers implementing encode and decode for
transmissible types must ensure these routines have the following properties:

1. they are side-effect free; and

2. they preserve sharing, both within an argument and between arguments.
it these properties hold, the put and get routines generated by the system will not produce any side
effects that are visible once the REV request completes. Furthermore, these system-generated
routines will preserve sharing. both within an argument and between arguments. Cyclic structures
will also be handled correctly. In other words, these properties provide faithful data transmission.

3.2.2 Argument Moditication

The second problem we solve is how to support an REV request that modifies its arguments. Because
Saction 3.4.1 presents the implementation details. this section describes our solution at a high level

2, ':']{ff
':.} Yk s 2o

""
"-’ 7’

—-—
~w——-
-
e

A ARy
NN

IO RARR 3
A AN)
RANNR M

T
’
»

and then illustrates it with an example. In this section only, we assume the request does not return an
argument object as a result.

Under call by sharing, a procedure can arbitrarily modify any of its argument objects as long as it
adheres to the type system. We support such arbitrary modification by having the service send the
following information to the client. At the end of the REV request, the service's run-time system sends
the final abstract value of every argument object, and the client uses this information to bring the
argument objects at the client up to date. In particular, the client modifies (i.e., overwrites) each
argument object with the final abstract value it had at the service. We call this moditication a delayed
update. Because an immutable object can not change its immediate state, only mutable argument
objects need a delayed update. Before we discuss how the client knows which abstract value
corresponds to which argument object, we pause for an example.

Suppose we use REV to relocate the execution of procedure P, which is shown at the top of Figure
3-4. Assume the argument to P is array A, which is shown in the middle of the figure. Procedure P
puts a 4 in IntBox B, creates a new IntBox containing a 5, and then overwrites A[1] with the new
IntBox. This detaches IntBox B from array A, as shown at the bottom of the figure. Our objective is to
transform the current state of the client, which is shown in the middle of the figure, into the state
shown at the bottom of the figure. We will accomplish this by having the service send the client the
final abstract value of every mutable argument object.

When a service receives an REV request, its run-time system remembers all the argument objects. In
this example, the argument objects are the array A, the intBox B, and the integer 3. The first two are
mutable objects, while the third one is immutable. At the end of the REV request, the service sends
the explicit results and every mutable argument object back to the client. This example has no
explicit results, but it has two mutable argument objects, A and B. Thus the service sends A to the
client, which means that B’ and 5 are sent. The service also sends B to the client, which means that 4
is sent. Since 3 is immutable and no mutable argument object refers to it directly, the service does
not send 3 to the client. The service uses a reply message to send the client the explicit results and

the mutable argumént objects.

After extracting the explicit results from the reply message, the client’'s run-time system extracts
abstract values from the message and performs delayed updates until the message is empty. In our
example, the client extracts the final value of array A and overwrites A with this value. As a
consequence, the client creates a new integer, 5. and a new IntBox that refers to the integer. Array A
now refers to the new IntBox. Next, the client extracts the final value of IntBox B and performs the
delayed update on B. This causes the client to create a new integer, 4. In summary, when the REV
request returns, the client overwrites every mutable argument object with the final value it had at the
service. This may entail the creation of new objects at the client.

We tag objects so that the client knows which object to overwrite with which value. The client’s

I SN

O/
ratete Al

.

i

s 4

Wl

.

b

'\‘ .l ." " “' .‘

e .
l.l

1

[
Lty
Fa T)

A
»

T e ¥ .
]
L

g
A

!

" ‘._ l.' l" -'. -

-

Rk

SRR

L 2 2 N 4

LR

.58.

% two equates

IntBox = record{value: int]
ab = array[IntBox]

P = proc (a: ab)

af1].value := 4

a[1] := IntBox${value: 6}
end P

(a) The procedure relocated by an REV request.

array A IntBox B int

(b) The arguments before P is called.

(c) The argumcnts after P is called.

Figure 3-4: An example illustrating argument modification.

run-time system attaches a unique tag to each argument object it sends to the service, but the service
removes the tags before executing the request. During the REV request. both the client and the
service remember which tag refers to which object. At the end of the request, the service attaches

" X

l. L)
A

o

27e"1" "

.3f

-

1 ".
s U

T [X 4
”'"'

)

of

'

Y
% ‘l
P A

a

’” Zc&:?
At

" the proper tag to every argument object it sends to the client. If the service sends an object that is not
an argument object, such as B’ in the preceding example, the service attaches a special tag that
indicates the object does not exist at the client. When the client extracts such an object from the
reply message, the client creates a new object and initializes it to the abstract value sent by the
service.

Because we have faithful data transmission between the client and the service, we preserve sharing
between objects. This means that neither the client nor the service in the preceding example has
more than one copy of an object. The following examples should clarify the point. Consider an REV
request in which two argument objects (C and D) refer to another argument object (E) before the
request is sent to the service. After receiving the request message, the service creates only one copy
of E, and the service copies of C and D both refer to this copy. If the copies of C and D at the service
refer to E at the end of the request, the client objects C and D will refer to the same object E after all
delayed updates have been performed. If at the end of the request the service copies of C and D refer
to object F which is not an argument object, only one copy of F is created at the client, and the client
objects C and D will refer to this copy after all the delayed updates have been performed. The client
creates only one copy of F, even if the relocated procedure returns F as a result.

3.2.3 Argument-Result Sharing

Our current algorithm for call by value-overwrite already solves our third problem, since it supports an

argument object returned as a result. Before arguing this point, we define the result objects for an
REV request.

An REV request has two kinds of results: the results computed by the procedure it relocates, and the
supplementary information the client uses to perform delayed updates. Because accessibility is
important when objects are transmitted between nodes, we define the results of an REV request in
terms of accessibility. Let P be a procedure whose execution is relocated by an REV request. The
result objects for the REV request, which are defined just before P returns, have two sources:
1. Explicit results: the results P returns to the caller, including all objects accessible from
these results.

2. Extra results: all mutable argument objects, including all objects currently accessible
from these objects.

An REV request can have either, neither, or both kinds of results. For instance, the REV request in
the previous section had extra results but not explicit results. The explicit results and extra results
can overlap, since an explicit result object and an extra result object can reter to the same object.
Until now we have assumed that no argument object was also an explicit result object.

Our current call by value-overwrite algorithm consists of delayed updates, tags for transmitted
objects. and faithful data transmission. The delayed updates reflect modifications to the arguiment
objocts done at the service, and the tags are used by the client to match extra results with argument

YA

[

s 1

.
(3

p -

g
E A4

FEEES DORFUCRRAS Syt

)
.'.

. {‘:‘."L‘_..‘-l.._..
. - b b (]

!

.58 .

objects. Faithful data transmission preserves sharing between argument objects. It also preserves
sharing between all result objects.

Suppose we introduce the third problem by letting an argument object be an explicit result object.
This does not affect faithful data transmission, since it aiready preserves sharing between all result
objects. The client’s run-time system must expect tags on explicit result objects in addition to tags on
extra result objects. Once this minor change is made, an argument object returned as an explicit
result object is identified with the original client object; i.e., we preserve sharing between arguments
and results.

3.2.4 Time of Updates

With call by sharing, changes to an argument object happen in real time, but with call by value-
overwrite, changes to an argument object (i.e., delayed updates) happen only when the procedure
returns. An observer at the client able to view argument objects during the execution of a procedure
could distinguish these two argument passing techniques. For instance, a node or communication
failure could expose an intermediate state in a computation that would show the difference between
call by value-overwrite and caill by sharing. Similarly, another client process examining argument

- objects during an REV request might notice the difference between call by value-overwrite and call by

sharing.

Our transaction mechanism prevents these activities by masking concurrency and by masking node
and communication failures. Each REV request must run as part of some (sub)transaction, and we
assume there is no concurrency within a (sub)transaction. Since we assume every object is atomic, it
does not matter whether changes to an argument object happen in real time or at the end of the REV
request. The changes are visible to other processes only if the (sub)transaction commits, which can
happen only after the REV request successfully completes. '

3.2.5 Disjoint Address Spaces

Call by value-overwrite keeps separate address spaces disjoint, but call by sharing does not.
Because we want separate address spaces to be disjoint for the reasons mentioned earlier, we leave
our call by value-overwrite algorithm alone and restrict service programmers. This section provides
linguistic support that lets the compiler ensure service programmers obey the restrictions we impose.
The restrictions, which are invisible to the application programmer, solve our fifth and final problem:
how to keep separate address spaces disjoint while still providing call by sharing semantics. Because
the restrictions will force service proygrammers to copy certain objects, we begin by discussing how
much copying call by value-overwrite does.

Call by value-overwrite copies objects while a straightforward implementation of call by sharing does
not. For example. call by value-overwrite maintiaing two copics of an argument object during an REV

AN
' 10 e 0 *

-, ,- Ic .

v—e
‘n"

a0t

v
)

~
%

)

e ¢ @
LN

'

E request: the original stays at the client, while a copy is sent to the service. Call by value-overwrite also

: creates two copies of a result object that is not an argument object. The original stays at the service,

v while a copy is sent to the client. A straightforward implementation of call by sharing, in contrast,

‘ does not copy argument objects or result objects. :*:

: o
Since we want to implement call by sharing with call by value-overwrite, we must hide the fact that call ::':-
by value-overwrite makes extra copies of objects. We do this by ensuring that the copies at the 1
service are inaccessible to the service after the REV request completes. Our scheme is based on g

) colored objects. We will use colors to motivate our restrictions on service programmers and to argue EE: '

that our restrictions work. :‘:fv-t \

: . 43
In our scheme, client objects are red, and service objects are blue. We explain below how the =
compiler ensures that the result objects of an REV request are red. This means the client has only red
objects at the end of the request. The compiler also ensures that all accessible objects at the service
are blue at the end of the REV request. Since objects have only one color, the compiler-enforced
coloring prevents the service from referring to a mutable argument or resuit object once the REV .
request completes. Thus the client and service address spaces are disjoint at the end of the REV '

- request, even if a straightforward implementation of call by sharing is used. This section supplies :::’_.f:
linguistic support that lets the service programmer use colors. Application programmers, in contrast, "
never deal with colors. J

>

A color is a static attribute of a mutable type. Each mutable object has only one color for its entire s

. existence. Because procedures and iterators can refer to own variables, we consider them mutable -

: and give them colors. Since a program can not tell the difference between an immutable object and a

) copy of the object, the service can refer to immutable argument and result objects without showing
the ditterence between call by sharing and call by value-overwrite. For this reason, immutable types
have no color and are irrelevant to this discussion.

n Our syntax for colors was designed to be unobtrusive. As mentioned above, client objects are red

- and service objects are blue. Client variables are red; service variables are either red or blue. For any
mutable type T, T! represents the same type with the color blue. T represents the type with some
color. This color may also be blue, but for strong type checking we assume it is red. For example, the
following code fragment creates a red integer array and a blue integer array:

redArray: array[int] := array[int])Snew()
blueArray: array| int]! := arrayl int]!'Snew()

Strong type checking prevents the service programmer from assigning redArray to blueArray and vice
versa.

Service routines must copy certain arguments and results to keep the client and service address
spaces disjoint between REV requests. We assume any mutable type T with a copy procedure
. (T$copy) automatically provides the following two procedures:

TFFT

Tl -

A

miataT e v

(ST RN .

TSred_to_blue = proc (T) returns (T!)
X returns a blue copy of a red object

T$blue_to_red = proc (T!) returns (T)
X returns a red copy of a blue object

The implementation for each of these procedures is T$copy.

Figure 3-5 contains part of an implementation for a remote bulletin board. Note that the arguments
and results of post and retrieve are either immutable or assumed to be red. The color annotation
"1" distributes over parameterized types. For example, if foo and x are types,
array[foo[x]]!

is equivalent to

array[foo[x!]J1]!.
Paost copies a notice before installing it in the bulletin board. Similarly, retrieve copies all relevant
notices before returning them to the client. Note that erasing the color annotations yields CLU code
that does not violate the type system.

notice = record[sender: string, X an equate
time: time,
expiration: time,
categories: set{string],
message: string]

notices: set[notice]! := set[notice]!Screate() X a blue own variable

post = proc (info: notice)

serviceCopy: notice! := noticeSred_to_blue(info)
set[notice]!$insert(notices, serviceCopy)
end post

retrieve = proc (keyword: string) returns (set[notice])
answer: set[notice] := set[notice]$create()
for n: notice! 1n set{notice]!Selements(notices) do
if set[string]!$isin(n.categories, keyword)

then
clientCopy: notice := noticeSblue_to_red(n)
set[notice]Sinsert(answer, clientCopy)
ond .
end
return{answer)

end retrieve

Figure 3-5: Using colors in service routines to keep separaie address spaces disjoint.

We say the specification for a routine is uniform it it has no color annotations. For example, the
routines post and retrieve in Figure 3-5 have uniform specifications. We say an implementation for
a routine is uniform if it has no color annotations. The implementations for post and retrieve are not

uniform be-cause they contam blue annotations.

-
-~
-
»
-

\\ .
h -
O .
S
'_I “4
~U
s
e N
-

¢ 3
LY P

Y
v

d

N Y Y%
et

P Ay

~

w3

[}
XK

r'vg\. Ca 7’ ?' -, - __J'__.“ PN ——y LA N i AN A ol i i o adE - L N s N o o aAd il ohdh A Jaions add aths Sad o Sb S e

.61.-

A routine with a uniform specification may be applied to either blue arguments or red arguments: the
presence or absence of "!" in an invocation lets the compiler perform strong type checking. Assume
T$P is a service routine with a uniform specification. T!$P, which may be applied only to blue
arguments, has blue results. T$P, which may be applied only to red arguments, has red resuits. For
instance, assume post is defined in the bboard interface. Then bboard$post can be applied to a
client notice, while bboard!$post can be applied to a service notice. In both cases a copy of the
notice is posted on the bulletin board.

Using call by value-overwrite to implement call by sharing forces us to ensure the service does not
refer to a mutable argument or result object once the REV request completes. We argue below that
the following rules ensure the client and service address spaces are disjoint between REV requests:‘

1. Each type constructor (e.g., record and array) has a uniform specification. T

0 v
LY Yo

2. Each abstraction primitive (e.g., up and down in CLU) has a uniform specification.

AN MR

™y
.
'I

3. Each routine exported by a service has a uniform specification.
4, All own variables at the service are blue.

5. Service processes communicate with each other by using blue objects.
The compiler checks the preceding rules and performs strong type checking. Each mutable type is
now an ordered pair consisting of a conventional type and a color.

To simplify our argument that these rules ensure the client and service address spaces are disjoint at
the end of an REV request, we use the following invariant:
¢ All objects are monochromatic. An object is monochromatic if every object it directly or
indirectly refers to has its color. Hence a red object may refer to only red objects. A blue
object may refer to only blue objects. This invariant implies that the colors of the

concrete representation and abstract value of an object are the same. A red object can
not masquerade as a blue object and vice versa.

This monochromatic invariant follows from strong type checking, uniform type constructors (rule
1), and uniform abstraction primitives (rule # 2).

We claim strong type checking, the monochromatic invariant, and the last three compiler-enforced
rules together imply the client receives no blue objects from the service and the service has no client
objects at the end of an REV request. Assume the client contains only red objects and the service
contains only blue objects before an REV request occurs. An REV request has two categories of
result objects. and we show that each category contains only red objects:

1. Explicit results: Each REV request is uniform. It deals exclusively with red types, since

4
When closures are fiust class obiperets, anather rate s neednd Lo guarantee the disjomtness of clien! and service address
spaces. Any serace closure vhose ibetime canexte nd poot the completion of an bV request mast 3cess only blue vanables

o e e e e T
N "\1&‘# e {‘(.J’JL;'L-{

4
s
a
]

the compiler chooses the "red"” version for each routine imported by the REV request.
The red version exists because every routine exported by the service has a uniform
specification (rule #3). The monochromatic invariant and strong type checking imply
the explicit results of an REV request consist of only red objects.

2. Extra results: These results consist of mutable argument objects and all objects
accessible from them. Mutable argument objects come from the client, which by
assumption contains only red objects. The monochromatic invariant implies that all
objects accessible from mutable argument objects are also red. Hence the extra results
are red objects.

The client begins an REV request with only red objects and receives only red objects from the service.
Therefore, the client ends an REV request with only red objects. Qur requirements that all own
variables and interprocess communication paths at a service be blue (rules #4 & # 5), coupled with
the monochromatic invariant and strong type checking, prevent the service from keeping any red
argument or result objects past the completion of the REV request. The remaining objects at the
service are blue. Therefore, at the end of an REV request, the service and client address spaces are
disjoint.

Implementing call by sharing with call by value-overwrite requires the cooperation of service
programmers, who must copy mutable objects logically sent between address spaces. This section
outlined rules based on colors that indicate when service programmers must copy objects. The
linguistic support we provided lets the compiler enforce these rules. The application programmer, in
contrast, does not worry about colors.®

This division of labor is similar {0 the way we split the responsibility for ensuring a valid REV request is
location-independent. In both cases, service programmers follow certain rules, and their efforts are
checked by the compiler. Unlike service programmers, application programmers do not use colors or
LOCATION_INDEPENDENT attributes. ‘ '

3.2.6 Discussion

We can avoid the complexity of call by value-overwrite and still retain identical argument-passing
semantics for local procedures and REV requests if we require that all arguments and results of an

- REV request be immutable. Then we can implement call by sharing for REV requests with call by

value, the traditional semantics for RPC's. We rejected this alternative because we felt it would overly
constrain a programmer or (automatic) optimizer using REV to relocate processing.

The relationship between call by value-overwrite and call by sharing is similar to the relationship
between call by value-result [16] and call by reference. In the absence ot aliasing in the programming

5" we let an application programmer send a nested REV request to the chient, client routines would have to obey the coloting

rules, since the chent s acting as a service. However, the client cannot teceive a nested tequest becanse the application

PrOgE e Can nol name the Chent et alone comd an B8 Vaacgue ot We st retunm to this pomt in Chapter 5

language and concurrency at the processor, call by value-result and call by reference have identical
semantics for local procedure calls [8]. A stronger statement applies to call by value-overwrite, since
it implements call by sharing for local procedure calls even in the presence of aliasing.

We used colors and programming rules to make service copies of client objects inaccessible at the
end of an REV request. This technique, which let us implement uniform argument-passing semantics
for local procedures and REV requests, also keeps separate address spaces disjoint. NIL [37], a
language for distributed programming designed and implemented at the IBM T. J. Watson Research
Center, also provides uniformity and disjointness, but it does so in a different way. NIL completely
avoids aliasing by disallowing the notions of pointers and shafed data. An object assigned from one
variable to another variable can not be accessed from the first variable, which becomes uninitialized.
Similarly, an object transferred from one process to another prccess can not be accessed by the first
process. The compiler enforces this viewpoint by doing typestate checking. This keeps the address
spaces of different nodes disjoint and provides uniform interprocess communication.

Since NIL processes can not share data, information may be communicated between processes by
reference or by value-result. Thus the NIL implementation can choose one technique when the
processes share the same address space and another technique when the processes exist on
different nodes. A similar option is available to an REV mechanism. If the client and service are
different nodes, the mechanism uses call by value-overwrite. If the client and service are the same
node, the REV mechanism can short-circuit the request and use a conventional implementation for
call by sharing.

3.2.7 Summary

We implement call by sharing for REV requests with call by value-overwrite. At the end of a request,
the service sends the client all mutable argument objects. Thé client then overwrites existing objects
with their new values. We assume that programmers correctly implement encode and decode for
each transmissible type; i.e., we assume faithful data transmission. Given this assumption, call by
value-overwrite implements call by sharing for REV requests if each REV request meets the following

requirements:

1. every argument is atomic;

2. every argument type and result type is transmissible;

3. the client and service address spaces are disjoint between REV requests;

4. the REV request runs as (part of) an atomic transaction that aborts if the REV request

does not complete.

The first requirement is automatically met, as every type is assumed to be atomic. The compiler
checks the second and third requirements. and the run-time system checks the final requirement. We
provided linguistic support that lets the compiler ensure service routines keep separate address
spaces disjoint. This linguistic support affects service programmers but not application

programmers.

RS .~ e

S LG L SIS

- Eadiat - Pl g e 5 Ll . 4 8 I~ - A SO i e SR N S atih aME sidh Suil o id arvdh ree S SRS g T

ll‘l"
PR R

9 -84 -
<

.

2 3.3 Compile-time Tasks

< Having explained how we use call by value-overwrite to implement call by sharing in a distributed
O system, we now explain how to implement REV. This section considers the compile-time tasks of an
:: REV mechanism: static checking of REV requests and stub generation. The next section discusses
:i the run-time tasks. In both sections, we highlight the differences between an REV mechanism and an
2t RPC mechanism.

S

T 3.3.1 Static Checking of REV Requests

Compared to run-time checking, compile-time checking can detect errors earlier and improve run-
= time performance. Besides having the compiler perform strong type checking, we want the compiler
to verify the validity of REV requests. Recall that a valid REV request is one the service can execute
\ and the compiler can encode. If a service is unable 1o execute an REV request, we want to notify the
.‘,: application programmer of this problem at compile-time. Encoding an REV request once at compile

:;: time, rather than encoding it each time it is executed, can improve performance. We also want the
compiler to determine the location independence of REV requests. This information lets an optimizer
;'_f‘, know whether an REV request changes program semantics. Service definitions give the compiler
:::' enough information to determine the validity and location independence of REV requests. We first
= consider service definitions and then consider the static checking of REV requests.

c A compiler supporting RPC's processes interface definitions, while a compiler supporting REV
::: processes both interface and service definitions. Compiling a service definition, which indirectly lists
:;f: a set of interfaces, is not a difficult task. MESA [32], a systems programming language developed at
::: Xerox PARC, enforces strong type checking and supports configurations. A configuration is a
- collection of interfaces, only some of which are exported. Configurations and services are
v analogous: a configuration is defined in terms of interfaces and other configurations, whereas a
.-'-'._' service is defined in terms of interfaces and other services. Techniques for compiling a configuration
', definition are applicable to compiling a service definition.

. The compiler uses a service definition to determine the code portion, validity, and location
:: independence of an REV request. The previous chapter outlined how the compiler generates part of
j:f ‘the program call graph to determine the code portion of an REV request. The compiler checks the
_ validity of the request by ensuring that every imported routine is exported by the service. Recall that a

. routine in the REV request that is executed at the service but not exported by the service can be sent
~, with the request. Checking the validity of a request is straightforward when the request has no
,:'.:, parameterized types. Since type parameters must be types exported by the service, the compiled
". service definition may further constrain the type parameters appearing in a parameterized request. In

any event, the request is invalid it the code portion contains an own variable or if a procedure

arqument ta the request is unknown at link time. The latter restriction mininuzes the changes to the

run time support tor the programming language. since we never need to check the validity of an REV

n

4,4

o
Lt ey

.85 -

request or encode its code portion at run time. Checking whether a valid request is location-
independent is straightforward: every imported routine must be declared location-independent.

If separate compilation is used, supporting client-supplied routines and code arguments means that
the static checking of REV requests might have to be deferred until link time. The code portion of an
REV request, and hence its validity and location independence, can depend on the implementation of
the client-supplied routines and code arguments. Under separate compilation, the implementations
may not be known until link time. While the type specifications for these routines are known at
compile time, type specifications may not provide enough information to determine the code portion
of the REV request.

Although client-supplied routines and code arguments complicate static checking and encoding of
REV requests, they have two advantages. First, they increase the number of ways in which a program
may be partitioned into components for local and remote execution. The net effect on performance
depends on the tradeoff between fewer but larger REV requests. Second, a powerful feature of many
programming languages is the use of routines as arguments to other routines. It may be desirable for
some service routines and REV requests to take client-supplied routines as arguments.

3.3.2 Stub Generation

Besides performing static checking, a compiler supporting REV generates stubs. A stub is a -

procedure that interfaces an REV request with the communication primitives. Our approach, which is
based on Nelson's RPC mechanism {34], hides the communication details of REV requests from both
the application programmer and the service programmer. For each REV request, the compiler
generates two simple procedures called stubs, as shown in Figure 3-6. One stub, which is located at
the client, lies between the application program and the client communication package. The compiler
replaces the REV request with a call to this stub. The other stub, which is sent to the service with the
REV request, lies between the service communication package and the procedure whose execution is
relocated by the REV request.

Consider an REV request that relocates the execution of a procedure (P) that is not exported by the
service. Furthermore, assume the.re are no client-supplied routines in the request. Hence, the code
portion consists of the body of P. The calling sequence for such an REV request is as follows. The
application program calls the client stub, which is an ordinary procedure. Besides P's arguments, the
client stub has an argument that denotes the node that will execute the REV request. The client stub
creates a message containing the service stub. the procedure P, and the arguments to the request.
The client stub calls the client communication package, which reliably sends the request message to
the service as a sequence of network packets. The communication package is responsible for
routing, retransmissions, and acknowledgements. The service communication package reconstructs
the request message from the packets it receives and then extracts the service stub and P trom the

request message. The service commumication pack agae calls the service stub with a single argument:

.
e H e Ty

Ve
b

L ¥, O . \-»- g e ') OO \ .s. K - T, ... 3 R ‘-%».\.f”..-ﬂ..-”..-“----aa.viu-:.----.n--n-...)]
‘\.mle\lv xb*kp.\..-.}\n‘ .f.-n-\u--.\ﬂ St EO Letela i Tae LI IR AL A
-

4

>
w
o
Ll
o
c
> S
p -
? -
L

80 &% @
§ = g o £

| #] [%) =
Sy 'y < 4
2 € o ¢ = ¢ & ¢ 2 [3T e
: g 2 g c E; g E
o Q. I3 < o [o ko)
© = — — ‘= o o bt
. =] c < < 1] %]
= @ 2 L m 2 o
] - c c = fe
9 < 3 QL] -
2 > >z E
g E £] 2
- < o] S — [77]
. S 2 S <
' e .
g @
2)
Q
-
=
. o
. w

- w
fn O

. — =

a — (a4

; >)

g [76]

a o\- .‘- - / - P PP .“‘- .\t P \u'\ . ‘._ .\ld--l.--.-. ..- ..-. -1. .v ._-... .\.-“ -...- . \an-n..\. .. .-.4.-....-. ..A-..... .-4-.-..-.. .-.......-.. J B _.au - ...~.ﬂ.. -- -1. .n.] r.-i- .cﬂ.v- -. f- f- (- . ™ .4

. B AR ISR g - Al A . it Ry
A e N R I A S L UL R st fiannt tat il atot

E‘-"‘.‘-'-"~‘“-'wv.-a_n*.--1‘:* Qi e VISR :

-

.87 -

the remainder of the request message. The service stub extracts the arguments from the request
message and then calls P with the arguments. When P returns, the service stub creates a new
message and inserts P’s results in the message. The service stub returns the reply message to the
service communication package, which reliably sends the message to the client communication
package as a sequence of packets. The client communication package reconstructs the message
from the packets it receives and returns the entire reply message to the client stub. The client stub
extracts the results from the reply message and returns them to the application program. Although
the client stub appears to be a local procedure to the application program, in reality it represents an
REV request.

There are three differences between RPC stubs and REV stubs. First, an RPC stub transmits a
procedure name while an REV stub can transmit one or more procedures. Second, an RPC service
stub exists at the service while an REV service stub is sent in the request message. Finally, an RPC
stub typically implements call by value while an REV stub implements call by value-overwrite.

Before showing an example of REV stubs, we present an abstract data type called REVcontext
(Figure 3-7). An REV context, which may contain a request message or a reply message, hides the
details of encoding and decoding data. The reader shouid use this figure as a reference during the
rest of this section. Recall that for any transmissible type T, T$put converts the abstract value of an
instance of T into a transmissible format and appends this information onto a message. T$get does
the opposite. It removes intormation from a message and produces an instance of T.

We use a simple example to show how REV works as well as the relationship between the stubs and
the original REV request. Although in this example we neglect exceptions raised by the relocated
procedure, REV stubs can accommodate exceptions in the same way that RPC stubs accommodate
exceptions. The procedure at the top of Figure 3-8 contains an REV request, and the relocated
procedure is shown at the bottom of the figure. The client executes the code in Figure 3-9, which
contains SomeProc and the client stub (G1991). The name of the client stub is irrelevant as long as
it is unique in the current environment. Note that the REV request in SomeProc has been
transformed into an ordinary procedure call that invokes the client stub. As mentioned earlier,
compared to procedure P the client stub has one additional argument, the node that executes the
REV request. The client stub has three tasks: prepare the request message; perform the REV request;
and finally extract the results from the reply message. We discuss each of these tasks in turn.

The first part of the client stub prepares the request message. After creating and initializing an REV
context, the first part of the client stub inserts the service stub (G1992) and the arguments (a, b, and
¢) into the request message. As shown below. the service stub invokes the relocated procedure P.
Hence inserting the service stub into the request message also inserts P into the request message.
Section 3.4.2 discusses how procedures are inserted into messages. While an REV client stub inserts
the service stuty and the relocated procedure into the request message. an RPC client stub inserts

oty the name of the remote proccdure into the request message.

et
r s
.
PR
oy

'
N
e }

AT "t
'4",'4""'.
A

v o
e

s 2+ 0 Q0
n".l{:,i .

',

N

4

TN MAFAFME A/ ara gl ot L el

e A) _“." :5’1“- .' . "‘s'.‘—‘_-

REVcontext = interface 1s

X CLIENT ROUTINES

new[s:service] = proc (destination: s) returns (REVcontext)
X create an REVcontext with an empty request message and two empty mappings

send = proc (r: REVcontext) .

X send the request message to the service, discard the old
% mapping not neaded for reply phase, and create new mapping
getMutableArgs = proc (r: REVcontext)

X extract the remaining mutable argument objects from the

% reply message and perform the delayed updates

X SERVICE ROUTINES

process = proc (m: message) returns (REVcontext)
X return a new REV context with the supplied request message and two empty mappings

apply = proc (r: REVcontext)
X extract the service stub from the request message and invoke it on the REV context

prepareforReply = proc (r: REVcontext)
X discard the request message and the old mapping not needed for the
X reply phase, create a8 new mapping, and create an empty reply message

putMutableArgs = proc (r: REVcontext)
X encode all mutable arguments not already in the reply message

reply = proc (r: REVcontext)
% send the reply message to the client

abort = proc (r: REVcontext)

X terminate an REV request

X ROUTINES FOR BOTH THE CLIENT AND SERVICE
X Routines that support get and put

end REVcontext

Figure 3-7: Thé abstract data type REVcontext.

The second part of the client stub performs the REV request by calling the client communication
package, which sends the request message to the appropriate service, periodically retransmits the
request message, and waits for a reply message. An REV request normally completes when the client
receives a reply message, in which case the client communication package places the reply message
in the REV context and the client executes the third part of the client stub. On the other hand, if the
client communication package does not receive a reply message and can not communicate with the

e T T e T

AT R TR TA&T & -
SRS R L RO R R S ANy

SN
‘\'\d

ey

TN
B
.

2

v

~

o
ﬂ

‘*. Tat

: ai = array[int] X an equate

SomeProc = proc (a: ai, b: int, ¢: ai) returns (int)
begin transaction
aService: built-ins := Service[built-ins]SAny()
N d: int := at aService eval P(a, b, <)
? return(d*d)
k end
end SomeProc

; P = proc (a: ai, b: int, c: ai) returns (int)
) a[b]) := c[b]

a := ai$new()

b := b+l

return{b)
ond P

r Figure 3-8: A simple REV request.

service communication package, the client communication package may unilaterally terminate the
REV request by aborting the current transaction and then raising the exception failure.

If the REV request completes normally, the client executes the third and final part of the client stub.
This part of the client stub extracts the explicit results from the reply message, extracts the extra
results, and then returns the explicit results. The client stub calls the appropriate get routine for each
explicit result. GetMutableArgs calls the appropriate get routine for each extra result, as explained
in Section 3.4.1. When any get routine extracts an argument object from the reply message, the get
routine performs the delayed update on the object. Section 3.4.1 again provides the details. In this
example, the explicit result is an integer assigned to d. The extra results are the two arrays originatly
bound to a and ¢. An RPC client stub implementing call by value, in contrast, deals with only explicit
results and does not perform delayed updates.

« 4 T e

If the relocated procedure is not exported by the service, we want to emphasize that we send at least
two procedures with an REV request: the relocated procedure (P in this example) and the service

stub (G1992 in this example). We found that sending two procedures was a natural way to
- implement REV. :'.:_:f.z
\]
) When a service communication package receives a request message, it creates a new REV context :’,.;‘S
with REVcontext$process and calls REVcontext$apply. REVcontext$apply, which is shown in s
: Figure 3-10. extracts the service stub and hence the relocated procedure from the request message. -;.
: We discuss how procedures are extracted from messages in Section 3.4.2. REVcontext$apply then - :.;’::]
X applies the service stub to the REV context. As explained below, the service stub extracts the :-":'_
. arguments from the request message, invokes the relocated procedure P, and inserts the results into o't

a new reply message. Once the service stub has completed. REVcontext$apply returns. The

service communication pachage then sends the reply message to the client. If an encode/decode

‘e 'q' 'I. .l‘ 'I. *s

‘I.‘(/fv'f

-.70 -

af = array(int] X an equate

SomeProc = proc (a: ail, b: int, c: ai) returns (int)
begin transaction
aService: built-ins := Service[built-ins]$Any()
d: int := G1991(aService, a, b, ¢)
return(ded)
end
end SomeProc

G1991 = proc (aService: built-ins, a: ai, b: int, c: ai) returns (1nt)
% the client stud
begin

X part 1: prepare the request message

REVcode = proctype (REVcontext) X an equate

rev: REVcontext := REVcontext$new[built-ins](aService)
code[REVcode]$put(rev, 61992)

aifput(rev, a)

intSput(rev, b)

aisput(rev, ¢)

X part 2: perform the REV request
REVcontext$send(rev) abort resignal failure

X part 3: extract the results

d: int := intSget(rev) X axplicit result

REVcontext$getMutableArgs(rev) X extra results
X delayed updates for & and ¢

return(d)

end except when others (s: string):
abort signal failure(s) end

end G1991

Figure 3-9: The client code for Figure 3-8.

exception occurs, REVcontext$abort resets the REV context and places a distinguished error value
in a new reply message, which causes REVcontext$send at the client to raise the exception
failure("encode/decode problem”). The client stub aborts the current transaction and then
resignals the exception. No result objects are sent to the client when an encode/decode exception
occurs at the service. Note that REVcontext$abort must not raise an exception, as there is no
handler in REVcontext$apply that could catch the exception.

Our implementation of REVcontext$apply requires that service stubs have the following type
specilication:

proc (rev: RfVcontext) returns ().
Each service stub extracts arguments from an REV context and inserts resuits into the same REV
context. This lets REVcontext$apply have a simple implementation that does not violate the type
system.

o
»_ A
"

i

-

P aad
A

Al I..' ”
NN

l

R

oo ar
AT

KRR

. .

»
y % % e aoa,t,

L
]

X

) .'.'.f.'

N s

-

I A A
’
1
1

T

W
&
$ apply = proc (rev: REVcontext) returns () tit
z begin .
REVcode = proctype (REVcontext) X an equate i
. serviceStub: REVcode := code[REVcode]$get(rev) oy
‘: serviceStub(rev) s
. end except when others: REVcontextSabort(rev) end ~
“ end apply v
. %::
Figure 3-10: The implementation of REVcontext$apply. —
) .-“
.:. .*'-
- . .\
Zf{
Figure 3-11 contains the service stub, which has three functions. It extracts the arguments from the !

request message, invokes the relocated procedure, and then inserts the results into a reply message.
An RPC service stub ditfers from an REV service stub in that an RPC stub returns explicit results but
not exira results to the client. Section 3.4.1, which explains how to implement call by value-overwrite,
explains how to implement REVcontext$putMutableArgs and REVcontext$getMutableArgs.

ai = array[int]

61992 = proc (rev: REVcontext) returns ()

o X part 1: extract the arguments
: a: ai := aiSget(rev) . e d
b: int := intSget(rev)
- c: ai := aiSget(rev) [
~ X part 2: invoke the relocated procedure P, which
.. X is encoded, transmitted, and decoded with G1992
X b := P(a, b, c)
X part 3: insert the results L
REVcontext$PrepareforReply(rev)
. intSput(rev, b) % explicit result RS
REVcontext$putMutableArgs(rev) X extra results .;i <"
- % encodes the current state of the RS
N X original arguments a and c Y
' end 61992 }: g
X Figure 3-11: The service stub for Figure 3-8. o
- * et
° z.:"'..
For pedagogical purposes, no optimization was performed on the stubs in this section. For high e
- performance, the abstract data type REVcontext should be replaced by its implementation, and -".»‘_:'
. simple put and get procedures should be expanded in-line. :::-;::
:'."_\'
F.‘.')
: e
; NS

. N
-72- i
": Ea
f? 3.4 Run-time Tasks RRs
0 hott
! Having discussed the compile-time tasks of an REV mechanism, we turn our attention to the run-time -
! tasks. A client REV mechanism must support call by value-overwrite, transmit procedures between 5:3:
. nodes, bind to remote services, provide reliable communication, and recover from failures. A service SE
: REV mechanism, in addition, must evaluate the REV requests it receives. While discussing these ;‘:\.
' tasks, we emphasize those aspects of our implementation that are novel. » }
: "
3.4.1 Call by Value-Overwrite . :'::\’
-:‘ Our implementation of call by value-overwrite is an extension of Herlihy's template scheme for call by C';:
N value in a distributed system[18, 19], which we discussed in Section 3.2.1. We present an =
o implementation of Herlihy's scheme, extend it to implement call by value-overwrite, and then offer
: some possible optimizations. \
£ 3.4.1.1 Implementing Cail by Value e
-‘ Under call by value, the client inserts each argument into a message using the appropriate put ;:
- _ routine. Then the client sends the request message to the service. The service extracts each ::‘;f
, argument from the request message using the appropriate get routine. When the remote invocation t':—:jf
N completes, the service inserts each result into a new message using the appropriate put routine and iy
sends the reply message to the client. The client extracts each resuit from the reply message using
‘ the appropriate get routine. Since the types of the arguments and results of the remote procedure :::'_:f
are known to both the client and the service, both know which put and get routines to use. As we :'.'-:I.
saw earlier, put and get routines play an important role in client and service stubs. e
N Get and put routines coordinate their activity to preserve sharing within an object, between e
-:.: arguments, and between results. Figure 3-12 shows some of the data structures in Herlihy's scheme ;'\"-:
._: for call by value. Each data structure in the figure, which we call a mapping, relates objects to E:j'-f
. message positions or vice versa. The mappings and the figure are explained in the following o
. discussion, which assumes that T is a transmissible abstract data type and XT is its external —
g representation type. For instance, T could be a set of integers implemented by a binary tree, and XT ;t:;:.
y could be an array of integers. ,,
2 An implementation for call by value often keeps a mapping from objects to positions in a message k‘.a
p during an encode phase. Mappings A and D in Figure 3-12 are examples of this kind of inapping, ,;‘_::
: which is used to detect and preserve sharing and cycles. Although the rest of this paragraph refers \
- only to the client and its mapping (A). the discussion applies equally well to the service and its :.‘-_
: mapping (D). Before the client encodes any objects, mapping A is empty. T$put uses A to decide ;;'
whether an object has been inserted into the message. as an object appears in A if and only if it has .
been (or is being) inserted into the message. When T$put encounters an object that has not been .:_': g
N

s
’
[7

Lol i o o

I o v a o s

[2 e T e N

IS R

[P

.73-
CLIENT SERVICE
encode phase equest decode phase
requ
‘ Mapping A message message Mapping B .
object |(sharing & cycles)| position position | (back references) | - object
—> —» —»
process request
decode phase reply encode phase
message | Mapping C ‘ . Mapping D message
position | (back references) object object |(sharing & cycles)| position
— < —
CLIENT SERVICE

Figure 3-12: An implementation for call by value.

r
%

B

S %y %y

e

FAENTNA
#y

e
L 0

)
]

T
£

U
¢

AT

.74 -

inserted into a message, it inserts the object's name and the current message position into A. After
converting the object to its external representation (XT) with T$encode, T$put calls XT$put.
XT$put inserts the object's abstract value into the message in its canonical format. When T$put
encounters an object that has already been inserted into the message, it does not change mapping A.
T$put inserts a back reference into the message instead of calling T$encode and XT$put. The
back reference contains the message position of the abject, which is determined from A. The client
constructs A during its encode phase and then discards A.

The reverse mapping, which maps message positions to objects, is constructed during a decode
phase and then discarded. Mappings B and C in Figure 3-12 are examples of this kind of mapping,
which is used to resolve back references. Although the rest of this paragraph refers only to the
service and its mapping (B), the discussion applies equally well to the client and its mapping (C).
When T$get encounters a back reference, it consults mapping B and returns the appropriate object
without doing any decoding. When T$get encounters an encoded object, it inserts the future name
of the object and the current message position into B. T$get then calls XT$get, which returns the
abstract value in its canonical format. T$get uses T$decode to convert the canonical format into
the node's format for an object of type T.

MNote the symmetry between the mappings for a request message (A and B) and the mappings for the
reply message (D and C) in Figure 3-12. The encode phase, whether it is at the client or at the
service, requires a mapping from objects to message positions. This mapping is used to detect and
preserve sharing and cycles. The decode phase, whether it is at the client or at the service, requires
the reverse mapping, which is used to resolve back references. Under call by value, the client and
service together use four mappings for each REV request.

3.4.1.2 Implementing Call by Value-Overwrite

Herlihy's template scheme can be extended to support call by value-overwrite for user-defined,
abstract data types. Since we want call by value-overwrite to implement call by sharing, for each
transmissible type T we assume that T$encode and T$decode have no side effects. Furthermore,
we assume they preserve sharing within an argument and between arguments. A programmer
implementing T$encode and T$decode does not need to know whether call by value or call by
value-overwrite will be supported. T$put and T$get, which are automatically generated, determine
the argument passing semantics. We explain below how our versions of T$put and T$get ditfer from
Herlihy's versions.

We tag transmitted objects so that the client knows which abstract value sent from the service
corresponds to which argument object at the client. The external nzame for an argument object is its
position in the request message. Result objects that are not argument objects have the same external
name: -1, an invahd message position. External names oy pear explicitly in a reply message. as each

objectin a reply message 1s proceded by its exteioal name. External names do not appear exphicitly

o

3
\
.
1)

LM AL
N

‘n;lv'-c
Y 3
AN

£y

Y

.
x
s

.,
AR
L
.

lr'lr'
E A
- =

a

-75-

in a request message, since the service determines the message position and hence the external
name for each argument object.

Figure 3-13 contains some of the data structures in our implementation for call by value-overwrite.
Since mappings A through D play exactly the same role as they did in Herlihy's implementation for
call by value, we concentrate on the two new mappings, E and F. Both the client (E) and the service
(F) maintain a mapping involving external names and objects. These two mappings, which are
created and written during the request phase and read during the reply phase, exist for the duration
of an REV request. Once the request has completed, the mappings are discarded. Mapping E maps
external names to pairs of the form <object, T$get>, wheré an object with type T is paired with
T$get. We explain below how the get routines are placed in E and why they are needed. Mapping F
maps objects to pairs of the form <external name, T$put>. The routine for an object with type T is
T$put. As external names are message positions, mappings A and E are inverses if the get routines

ata & AI N

7ot ’a €&

are ignored. Likewise, mappings B and F are inverses. Under call by value-overwrite, the client and
service together use six mappings for each REV request, which is two more than the number of
mappings needed for call by value.

Under call by value-overwrite, the client creates two mappings (A and E) and inserts the arguments
into a request message. A is discarded once the message is sent, while E is kept for the reply phase.
E prevents the client’s garbage collector from reclaiming the storage occupied by an argument object
before the end of the REV request. The client sends the request message to the service, which
extracts the arguments from the message. The service creates two mappings (B and F), but saves
. only one of them (F) for the reply phase. F prevents the service's garbage collector from reclaiming
the service copy of an argument object before the end of the REV request.

[bt W N S

[ALR

When an REV request finishes executing, the service uses the appropriate put routine to insert each
explicit result into a reply message as under call by value. The service also returns the extra results to
the client, which lets the client’s run-time system perform delayed updates. The client must perform
delayed updates on all modified argument objects that will be accessible after the REV request
completes and the client releases its mappings. We make the following conservative assumptions:

- 1. every argument object will be accessible to the client at the end of the request; and

2. every mutable argument object has been modified at the service.

Theretore, the service must send the client all mutable argument objects and all objects currently

accessible from them. To put these objects in the reply message, the service calls putMutableArgs,

which processes each argument object in mapping F. The action taken by putMutableArgs

depends on the argument object O:

¢ O is immutable. Since an immutable object can not be updated, there is no need for a
delayed update, and PutMutableArgs does nothing. The objects immediately
accesuible from O must be argument objects, because O was created before the REV
request and has not changed. Each of these objects will be (or already has been)
considered by putMutableArgs.

4
»
.
.
[
.
[]

L A

A

Ty

[MNP A R

..........

Figure 3-13: An implementation for call by value-overwrite.

CLIENT 78 SERVICE
encode phase decode phase
Mapping A request Mapping B
. (cycles & sharing)| Message message | (back references) i
object _— position position — > object
____’
ext Mapping E Obie“ N Mapping F | ext r‘;Lamc
(delayed updates) object | (delayed updates)
name > TSget > TSput
process request
L]
decode phase encode phase
Mapping C reply Mapping D
message | (back references) . . (cycles & sharing)| Mmessage
position S object object —_p position
i ————
ext Mapping E object Mapping F | ext name
, arac & bicct X &
(delayed updates) ob} (dclayed updatcs)
namc P TSget Téput
CLIENT SERVICE

-77 -

[Ny W

e O is mutable and has already been inserted in the message. Since the delayed update
will be done when the client extracts O from the message, putMutableArgs does
nothing. PutMutableArgs uses mapping D to decide whether an object has already
been inserted in the message.

e O is mutable and has not been inserted in the message. PutMutableArgs consults
mapping F to find the appropriate put routine and then uses it to insert O in the message.
As a consequence, every object accessible from O is inserted in the message if it is not
already in the message. No object is inserted in the message more than once, since the
service uses mapping D and back references to preserve sharing.

N Because putMutableArgs is somewhat complicated, we pause for a concrete example.

PRI B <

Figure 3-14 contains a procedure P, which we assume is relocated by an REV request. Array A,
shown in the middle of the figure, is the argument to P. The argument objects are the array A, the
IntBox B, and the integer 3. The first two argument objects are mutable, while the third is immutable.
Procedure P puts a 4 in IntBox B, creates a new IntBox containing a 5, and appends this IntBox onto
the high end of array A twice. The procedure ab$addh appends its second argument (an IntBox)
onto the high end of its first argument (an array of IntBoxes), thereby modifying its first argument. The
final state of the argument objects is shown at the bottom of the figure.

Since there are no explicit results in this example, only putMutableArgs inserts objects into the
result message. We use two different orderings on the argument objects to show that the net result is
order independent.

PR R YRR R

e Assume putMutableArgs considers A first, then B, and finally 3. Since A is mutable
and has not been inserted in the reply message, putMutableArgs applies ab$put to A.
This inserts A, B, 4, B’, 5, and a back reference to B’ into the reply message. Next,
putMutableArgs considers B and does nothing since B is already in the message.

» Finally, putMutableArgs considers 3 and again does nothing because 3 is immutable.

K Note that only one copy of B’ is inserted in the message.

9 .
a8t e

e Assume putMutableArgs considers the argument objects in the reverse order: 3 first,
then B, and finally A. Since 3 is immutable, putMutableArgs does nothing. Since B is
mutable and has not been inserted in the reply message, putMutableArgs applies
IntBox$put to B. This inserts B and 4 into the message. Finally, putMutableArgs
considers A and applies ab$put to it becau. e A is not in the reply message. This inserts
A, a back reference (to B), B’, 5, and another back reference (this one to B') in the reply
message. Note that only one copy of B is inserted in the reply message. The same holds

‘ for B’.

If any of the argument objects was also an explicit result, only one copy of the object would be

Ay

inserted in the reply message. For instance, if P explicitly returned IntBox B, IntBox$put would
insert B in the message before putMutableArgs was called. When putMutableArgs inserted A in
the message, a back reference to B would be inserted. PutMutableArgs would do nothing with B
during its processing of the argument objects, since B would already be in the message.

CN S

A Although the compiler can tell which types can appear in the reply message. it does not know the

............

T T W e W L T W T R A AR S Y LN N
P
NG
ONG
r‘?‘
i%
N
IntBox = record[value: int] ','-'."
' ab = array[IntBox] P
o
P = proc (a: ab)
a[1].value := 4 Ly
newBox: IntBox := IntBoxS${value: 6) X
X ab$addh(a, newBox) Nk
: ab$addh(a, newBox) o'
: end P ¢
i ' (3
A
(a) The procedure relocated by an REV request. e,
e
P
I>._“.-’
array A IntBox B . int .
i
o™
by
*
2
:
. (b) The arguments before P is called.
S AL
: :\':\
».':h\
array A IntBox B int S
".-_\. q
" AN
: S
y o
-,.-“
.:\."
.__*.:_
:.-',:-
._'.\
K -‘:
Ta
(c) The arguments after P is called. B

. Figure 3-14: An example that illustrates putMutableArgs.

number of objects of each type and their order in the reply message. The value of the arguments and
the actions of the relocated procedure alfect the contents of the reply message. Furthermore, the
iteration order of puthMutableArgs affects the order of the objects in the reply message. Because of e

this, we keep put routines in mapping F. The role of the get routines in mapping E is explained
below.

After calling putMutableArgs, the service sends the reply message to the client. As under call by
value, the client extracts each explicit result using the appropriate get routine. Then the client calls
getMutableArgs, which extracts argument objects until the message is empty. As we mentioned
earlier, every result object is preceded by its external name in the reply message. Before
getMutableArgs extracts an object, it examines the external name that precedes the object in the
message and uses mapping E to select the appropriate get routine.

The delayed update for an argument object is done by the first get routine that extracts the object
from the reply message. Suppose result object O with type T is the next object to be extracted from
the reply message. What T$get does depends on the external name preceding the object in the
message:

e O js preceded by a -1. This means O was not an argument object. T$get inserts the

future name of the object in mapping C, calls XT$get, and then returns the object
returned by T$decode as under call by value. There is no delayed update for Q.

e O js preceded by a valid message position. This means O was an argument object.
T$get uses mapping E to locate the original object and then updates mapping C
appropriately. To perform the delayed update, T$get overwrites the argument object
with the concrete state of the new object obtained from T$decode. After performing the
delayed update, T$get returns the argument object. The object returned by T$decode
is discarded.

If an object is extracted from a reply message several times, all occurrences but the first are back
references. When a get routine extracts a back reference from the reply message, it uses mapping C
to locate the proper object. No delayed update is done. If the object was a mutable argument object,
its delayed update was done the first time it was extracted from the reply message.

We will illustrate getMutableArgs by describing how it handles the REV request in Figure 3-14.
Assume putMutableArgs considers 3 first, then intBox B, and finally array A. Thus the reply
message contains B, 4, A, a back reference to B, B’, 5, and a back reflerence to B’.
GetMutableArgs examines the external name preceding the first object in the reply message (B)
and uses mapping E to find IntBox$get. IntBox$get extracts the external name and the IntBox.
Extracting the IntBox B also extracts the 4. Since B's external name is not -1, B was an argument
object and intBox$get performs the delayed update. Next, getMutableArgs examines the external
name preceding the next object (array A) and uses mapping E to find array[intBox]$get. This
routine extracts the external name and the array. Since the array has three elements,
array[intBox]$get calls IntBox$get three times. The first call on IntBox$get uses mapping C to
handle the back reference to B. The second call extracts B’ and hence 5. Since B’ was preceded by
a -1, it was not an argument object, and no delayed update is done. The third call on IntBox$get

uses mapping C to handle the back reference to 8. Once array A is extracted. array[IntBox]Sget

I A At et AR AU Dl A0\ ORI AN T A WA e S e AR A T XY St - Ake i Shchinii i Sie e 2 DA: S Sie ‘B e e Bhe S B e gt 5

.80 -

L

performs the delayed update on A and returns to getMutableArgs. GetMutableArgs notices the
reply message is empty and also returns. The final state at the client is shown at the bottom of Figure
3-14. The reader may find it useful to step through the get routines called by getMutableArgs if

v,
L

A
(N]
£ 2

A putMutableArgs had used the other ordering on mutable arguments. Of course the net result will N
b be the same. e
. 4 “u.

’

The foliowing example shows how call by value-overwrite preserves sharing between arguments and
resuits. Suppose procedure P in Figure 3-14 returns the IntBox in A[1]. In our example this is the

R LA

argument object B. The explicit results are B and 4, and these two objects are placed in the reply
message before the extra results. Subsequent references to B in the reply message are back

references. For instance, when A is placed in the message as an extra result, it contains a back
reference to B. At the client, the original IntBox B is the value of the REV request. After B's delayed
update it refers to a 4, and after A's delayed update A[1] still refers to B. Note that the client has a

]
»,

Cetetel
."- »

L]
a1

single copy of B, just as if P were executed as a local procedure.

Because the reply message contains a sequence of objects whose structure is unknown at compile

- ve e s e

A R L
PR

a ey ¥ LI

time, we keep get and put routines in mappings E and F. Each put routine at the client installs the

*

corresponding get routine when inserting an entry into mapping E during the client's encode phase.

vy r. v

Similarly, each get routine at the service installs the corresponding put routine when inserting an

-

Sl el e

entry into manping F during the service's decode phase.

o

,
]

Attempts to improve our technique for sending mutable argument objects to the client must avoid a :
subtle bug we encountered. Originally, the service encoded all objects accessible from the final value -
of the arguments. In other words, the service encoded the values bound to the formal arguments
after the relocated procedure was executed. We introduced new variables to save the original
arguments when formal arguments were assigned in the procedure. We did not worry about the
objects originally accessible from the arguments passed to the procedure. The correct method,
however, ensures that each mutable argument object is encoded. An earlier example (see Figure 3-4)
shows the difference between the two approaches. In this example, the REV request modifies IntBox

B and then removes it from array A. If B is still accessible to the program at the client, the changes to
B must be reflected at the client. The correct scheme reflects the changes at the client. Our original
design did not, since B is not accessible from the final value of A.

Although call by value-overwrite provides more advanced semantics than call by value, the
implementation costs are not excessive. In most cases the space and time requirements for call by
value-overwrite are at most twice those tor call by vilue. Under call by value, the arguments and
explicit results are transmilted once. Under call by value overwrite, the arguments, explicit results,
and extra results are transmitted once. We believe the size of the extra results will usually be

comparable to the size of the mutable arguments. Call by value oserwrite uses six mappings for each

g EANEARAS KR

REV request, whtle call by value uses four. The Lookeeopng e call by value overwrite is thus at

..
L Al
s

-
[R

monst tice: that for call by value

.
.

Bl HhhA

T e e e T e e . TR L B PN . AT S S S . S L VL Se
. " A T R A . " s . RN . . e - . e NS TN e

» s e -t . - . - » LR R S P B N T T S] '.'.".-." L et s L, T P -".' - S et e e
Salatla s aiaiiaia aletalataiatalatealetatat et ol b Cadat et o ahad i ad i ad el odade e d gl o at s ot s g e

et L R A A LA G P AL TR Yy

.81-

3.4.1.3 Optimizations

The preceding section described a straightforward implementation of call by value-overwrite. We
now discuss three optimizations for call by value-overwrite. First, immutable result objects that were
also argument objects need not be sent in their entirety to the client. Since the appropriate abstract
value already exists at the client, the service may send only the object’s external name. On the other
hand, immutable result objects that were not argument objects must be encoded normally. At the
service, the put routine for each immutable type checks mapping F in Figure 3-13 to decide whether
to send the abstract value or just the external name. Although it is unlikely that an immutable
argument object O will be part of the explicit results, O might be part of the extra results. This
happens whenever a mutable argument object refers to O at the end of the request.

Second, a mutable argument object that is not modified at the service does not have to be sent in its
entirety to the client. Its external name is a suitable encoding. The value of this optimization depends
on the overhead of detecting and remembering all service modifications to argument objects in
comparison to the reduction in communications. This optimization could be limited to certain types
exported by the service. A related optimization is to send only the incremental changes for modified
argument objects.

Third, with the appropriate linguistic support and changes to the type system, the compiler could
enforce an application programmer's declaration that an argument to an REV request was read-only.
The access-control mechanism presented in [20] can provide this capability. Read-only argument
objects, like immutable argument objects, do not need delayed updates.

The preceding optimizations attempt to reduce the amount of information the service sends to the
client under call by value-overwrite. The remaining two optimizations apply to both call by value and
call by value-overwrite. The next optimization concerns message positions and therefore external
names. As every result object is preceded by its external name in a reply message for call by
value-overwrite, we want to make external names small. Three of the six mappings in Figure 3-13
(and two of the four mappings in Figure 3-12) map message positions or external names to something
else. We want to implement these mappings with small arrays rather than with hash tables, balanced
trees, or large, sparse arrays. The approach described below accomplishes these objectives.

A message contains a sequence of objects. Each object may be identitied by its position in the
sequence or by its starting byte position. We favor the former, sequence-oriented approach over the
latter, byte-oriented approach. Assume n objects are encoded and the resulting message is m bytes
long. Tynically mis much larger than n. With a sequence-oriented approach, valid message positions
are the integers fium 1 to n. Small arrays can implement the mappings described above. With a
byte-oriented approach, valid message positions are sparse in the large interval from t to m.
Depending on the sparsity, either a large array. a small hash table, or a balanced tree would
implement each ot the three mappings doscribed above. The sequence-oriented approach can be

A
BN

NS

NS

LI
RS

1

LR U

» D,
l‘.'

[AV AN

.82-),
N »
.. *
? faster than a byte-oriented approach, since array accessing is typically faster than hashing or tree ,_.'& :
™ searching. The sequence-oriented approach uses less memory for a mapping than the alternative &7 A
data structures. Finally, the sequence-oriented approach reduces message size by reducing the o
-‘; length of back references and external names. We do not have enough experience, however, to 4.:-
: predict the significance of these advantages. E‘,:)
VJ !
e Finally, we favor relative back references in a message instead of absolute back references. We o'
illustrate the difference with an example. Suppose a back reference inserted at message position 55 ,--.
- refers to the object at message position 17. With absolute back references, the back reference is 17, f:Ef::
: but with relative back references, the back reference is 55-17 = 38. If back references are absolute, a ‘.::'.‘,f
l process encoding some objects must know the absolute message position of the first object it ::'li,-
encodes. If back references are relative, a process encoding some objects does not need to know —
b, where its output will be positioned within the message. f::'_:'
: This optimization may be important for immutable objects, such as routines without own variables, :'-ZE’_ -
» that are encoded at compile time. Relative back references let disjoint groups of objects be encoded : \,'
- at different times without retaining information from earlier encodings. This lets an REV mechanism
encode the code portion of an REV request at compile time and the arguments at run time without
having to retain compile-time information. Furthermore, relative back references let encodings be o
:f'_ combined by concatenation. Consider a procedure that is an argument to several REV requests and lj'.:. :
- assume it is not referred to by any other routine in the code portions of the requests. Being
1{ transmissible, the procedure can be encoded at compile time. At run time, its encoding ¢an be blindly
2’5 copied into the request message no matter if it is the first argument, the last argument, or one of the ‘-_::\
.':: other arguments. .‘
“ 3.4.2 Code Transmission
:"; Besides implementing call by value-overwrite, an REV mechanism must transmit routines without own E'.:i_
J variables from the client to the service. Herlihy's scheme for transmitting abstract values between St
- nodes solves only part of the problem of transmitting code between nodes, as it handles only those i
details that do not depend on the type being transmitted. For example, references from a relocated ;
:'.- .procedure to client-supplied routines as well as references from a routine to itself (recursion) are :Z:-:
.:‘ handled automatically. In this section we focus on the remaining tasks: determining the _\\
.\4 representation for routines imported by an REV request; and determining the external representation a;i:.
for code.
5 o
o Since every nontrivial REV request imports at least one service routine, we need an external o
::' representation for imported routines. One possibility is a pair of the form <InterfaceName, "'
) RoutineName>. The service could bind imported routines to their implementations when it extracts s
"2 the code portion from the request maessage (static linking) or as it executes the request (dynamic -
.‘J linking). This representation for imported routines 1s simple but verborne. 1 the chent and the service ‘
‘ o

"‘
-
’

\ et it

AP Y

e

Pal il s

P

“oi T NCNCNENL AN

-83 -

agree on the ordering of interfaces, a more compact representation for imported routines is possible.
In this case, each imported routine may be represented by a pair of the form <InterfaceOffset,
RoutineOffset>® The ordering on interfaces could be the one in the publically available, compiled
version of the service definition. Alternatively, the client could send the ordering when establishing
the binding.

Besides determining the external representation for imported routines, we must determine the
external representation for code. As explained below, the choice of an external representation for
code is a complicated trade-off involving execution efficiency, request message size, and security
considerations. We first consider machine-dependent exterhal representations for code and then
consider machine-independent external representations.

A machine-dependent external representation for code invol\)es compiled code or something close to
it. Transmitting compiled REV requests is a viable option in homogeneous computing environments.
Compiled code realizes a fairly compact encoding and achieves high performance. Nevertheless,
transmitting compiled code raises security considerations, as a compiled REV request may have
immediate access to peripherals, registers, and all (virtual) memory locations. If security
considerations are important and compiled code is transmitted, a trusted compilation service could
examine, compile, and attach a digital signature to REV requests at compile time. This would prevent
a client from sending hostile requests to a service. Alternatively, each service could use conventional
time-sharing protection mechanisms and provide a separate address space for each service
capability it grants.

Transmitting compiled REV requests may not be the best solution in a heterogeneous computing
environment, as a compiled REV request can not be executed by all processors. Machine-
independent external representations for code, in contrast, let each REV request be independent of
the processor that executes the request. Machine-independent external representations include
character strings, parse trees, and bytecodes. Since dynamic compilation is probably too expensive,
these code representations require an interpreter. An important advantage of bytecodes is that they
realize compact ehcodings compared to source code and compiled code.

A hybrid approach may be useful in a heterogeneous computing environment, especially when a few
machine architectures account for most of the processors. Under this approach, each REV request is
compiled for the two or three leading processor types. The client sends compiled code whenever
possible and uses the machine-independent representation for the remaining processor types.

We avoid problems caused by own variables by refusing to transmit code that refers to own vanables

6!1 an REV request is located in a module parameterized by a service definition, the REV request may be sent 1o instances, of
ditferent services The compuler can encode the RECV request once for each service definiion that mstantinte, the e dute
ase the appropnate encodmn at tun ime Altecnatively, the compiler can encode the tequeet onty once by taog Hee oot

tepress ntatron desenbed above

Every variable in a procedure transmitted between nodes is either an argument or an ordinary local
variable. Such variables are not shared between processes, since each process executing an entire
procedure has a private activation record.

3.4.3 Request Interpretation

When machine-ind :pendent code is transmitted between nodes, each service needs an interpreter to
evaluate REV requests. One problem with this approach is maintaining identical semantics between
interpreted code and compiled code. Many LISP implementations, however, offer a compiler as well
as an interpreter and can evaluate an expression regardless of which routines are compiled and
which are interpreted. Mixing direct execution with interpretation is not new.

3.4.4 Service Binding

Service binding involves locating an appropriate instance of a service and giving a service capability
to the client. The only difference between RPC binding and REV binding is whether a client specifies
a single interface (RPC) or a set of interfaces (REV).

Birrell and Nelson [4] describe how Grapevine {3] supports remote binding for RPC’s. A node wishing
to export an interface communicates its intent to a Grapevine server. If the node is authorized to
export the interface, Grapevine updates its database of nodes and the interfaces each node exports.
A client wishing to import a remote interface queries a Grapevine server, which normally returns a
capability for an appropriate instance of the interface. The client then can use this capability to
communicate with the remote node. This technique of using an intermediary to facilitate remote
binding could be extended to do service binding for REV.

REV binding can be slightly harder than RPC binding, in that a client's needs may not exactly match
any public service definition. In this case, the binding facility must consider all public service
definitions that exceed the client's needs. We call this extension to remote binding subset binding.

Subset binding does not affect REV requests that are encoded with verbose pairs of the form
<InterfaceName, RoutineName> for imported routines. Subset binding, however, does affect REV
"requests that are encoded with compact pairs of the form <InterfaceOffset, RoutineOffset) for
imported routines. In this case the client and service must agree on the interface ordering, i.e., which
interface corresponds to which InterfaceOffset. We let the client dictate the ordering and send it to
the service when the binding is established. There are two reasons for this decision. First, subset
binding lets the client execute the same REV request at nodes that export different services, as long
as each service exceeds the particular service requested by the client. It is unlikely that these nodes
will agree on the ordering of interfaces imported by the REV request. Second, the client already
knows the ordering. which is chosen by the compiler when it encodes the code portion of the REV

request.

.‘-
R SR
.""‘l'l'

WA

b 2 2]
.

‘4‘

A Y Y T

.

A8 s A A

o
-
-

.

Fall Sl

- g s q . " b
o T TR L Nm E e - e 'A% Tt RN 10 e S L0) " e Pl A 4 Sl dhe v O SalCiinY

3.4.5 Reliable Communication

A client and service communicate by using request-reply message pairs. An RPC communication
mechanism converts an unreliable (packet-based) network into a reliable communication link that lets
the client and service exchange messages of arbitrary length. Such a communication link may be
implemented on top of a datagram service [41]. An REV communication mechanism must do the
same. Furthermore, the RPC communication mechanism might use encryption to guarantee the
security and integrity of data sent between nodes. Again, encryption-based techniques are directly
applicable to REV communication.

3.4.6 Failure Recovery

RPC systems like Argus [25] use atomic transactions to tolerate node and communication failures
while providing at-most-once semantics for RPC’s. In these systems, a single transaction can span
several nodes and last for an arbitrarily long time. An REV mechanism can use the same approach.
Nested transactions can be included as an option.

A node failure can create orphans. An orphan process is a remote invocation (indirectly) initiated by
a node that has since crashed [21]. Orphans may exist anywhere when REV is used, since nested
REV requests can establish arbitrary communication patns between services. The orphan problem

must be solved by any transaction-based system that supports RPC’'s. Remote evaluation does not

appear to complicate the detection or extermination (i.e., killing) of orphans.

3.5 Discussion

This chapter compared an implementation for REV with a hypothetical RPC implementation. The
main differences between an REV mechanism and an RPC mechanism are:

1. supporting call by sharing instead of call by value;
2. supporting code transmission, which might require an interpreter; and
3. verifying the validity of REV requests and determining their location independence.

As the bulk of an REV mechanism is an RPC mechanism, most of the techniques for tuning the
performance of an RPC mechanism apply directly to an REV mechanism.

At this point we evaluate REV according to the constraints discussed at the end of Chapter 1:

e Powerful Semantics: We defined REV semantics so that relocating processing with a
location-independent REV request has no eftect on program semantics. In order to
accomplish this goal, we imposed mimimal constraints on an REV request. Each request
must be a procedure without own variables. The body of the procedure must be known at
compile time. Procedure variables are permitted in the request as long as the set of
values for each procedure variable is known at compile time. A programmer can
otherwise use the full powr of the language. such as conditionals, loops, exceptions,
and REV requests. to express an BFV request. A request naming a routing that is not
exportad by the sarvice can supply its ovin implement.dion.

P
!

.

-
0

s,

RS

L
%

e

-
.

N
.
.
.

. 5
)

sqlk-ls D‘] M
" »

L
w4

iy

e e v 0"
e

v
AP

- . . LR
» ‘e a2 "

| [N oy __'c.s _‘i_'%ﬁ:'_ S

L5

' AN

e

WA

.86 -

e Implementation Efficiency: REV requests should be efficient. The code portion of an
REV request can be checked for validity and encoded at compile time. In most cases, the
space and time requirements for call by value-overwrite will be at most twice those for call
by value.

e Ease of Use: REV is easy to use. A programmer can change a local invocation into an
REV request by enclosing the service in two reserved words (AT and evaL) and placing
the expression before the invocation. This textual change has no effect on program
semantics for location-independent REV requests.

e Language Independence: REV is lunguage independent. Although we tailored the
argument passing semantics to that for local invocations in CLU, similar mechanisms
exist for other languages.

One area we can improve is ease of use. We currently require thg programmer to write each REV
request as a procedure. Repeated insertion and removal of REV requests can alter the way a
program is decomposed into procedures. An easier way to introduce REV lets the programmer
specify an REV request as a sequence of statements. The following chapter describes this extension.

PRI
]
R I

T -2 % ¥ y v

. C A D
LR

a_ b b " ‘

y 3 b 'y o

-
-

.
o

el

&

l‘l "

Chapter Four

REV with Implicit Procedures

REV meets most of the requirements listed in Chapter 1. REV gives the programmer fine-grained
control over the location of processing in a distributed application. Furthermore, location-
independent REV requests relocate processing without affecting program semantics. An REV
request, however, must relocate the execution of a single, complete procedure. Many REV requests
will not represent a coherent idea but merely reflect the locations of particular objects. This could
cause a proliferation of unnatural procedures, which in turn might make reading and maintaining
programs more difficulit.

We remedy this shortcoming by allowing implicit REV requests. Such requests relocate the execution
of a sequence of statements instead of a procedure. We call the REV requests shown in earlier
chapters explicit requests because the relocated procedure is explicit. While simplifying the insertion
of REV requests into a program, implicit REV requests do not increase the power of a programming
language with explicit requests. This chapter provides linguistic support for implicit REV requests,
defines their semantics, and shows how to implement them.

4.1 Implicit REV Requests

An implicit REV request lets an application programmer relocate the evaluation of a closure. A
closure consists of code and an environment in which to evaluate the code. Closures, which are not
first-class objects in CLU, appear only as the body of iterators. The code for each closure in CLU is
apparent at compile time. A programmer writes an implicit REV request by specifying a closure and
the service that executes the request. Implicit requests are accommodated by changing the syntax
for REV requests:

rev_expression ::= at expression eval body [expression] end
The optional expression following body lets an implicit REV request return a value. The reserved
words EVAL and END delimit the closure. For clarity, we will assume the programmer writes implicit
REV requests but not explicit requests. Later in the chapter we show how to convert an implicit
request into an explicit request.

Our semantics for implicit REV requests will ensure that location-independent requests, which are
defined below, preserve program semantics. An implicit request must execute as part of some atomic
transaction that is aborted if a node or communication failure prevents the request from completing.

v}l'
4 %
L

A
s

-.,
,
TR

)
‘s

I

Implicit REV requests use call by sharing: as explained in Section 4.3, the arguments for an implicit
REV request are part of the context.

We extend the definitions of validity and location independence to encompass implicit REV requests.
As before, a valid REV request is one the compiler can encode and the service can execute, and a
location-independent REV request is a volid request that relocates processing without altering
program semantics.

An implicit request is valid if its code portion meets three conditions similar to those that define a valid
explicit request. First, all routines imported by the code portion are exported by the service that
executes the request. Second, all free variables in the closure are defined in the surrounding
environment, and the remainder of the code portion can not have own variables. These two
conditions ensure that the request is self-contained. Finally, the code portion of a valid request is
apparent at link time. This lets the compiler encode the code portion and check the validity of the
request.

An implicit REV request is location-independent if: the request is valid; every routine imported by the
request is location-independent; and every variable accessed by the request is local to the
transaction associated with the request.7 The last restriction is needed because our transaction
mechanism does not apply to variables. These restrictions and the semantics of implicit REV
requests ensure that location-independent requests do not change program semantics.

4.2 An Example

Figure 4-1 recasts an earlier mail example (Figure 2-7) into a program using an implicit REV request.
This program is equivalent to the earlier program that used an explicit REV request. There are two
important points to note. First, introducing/removing an implicit REV request corresponds to
inserting/deleting the two lines marked with asterisks. A programmer adding an explicit REV request,
in contrast, would have to convert the closure into a procedure. Second, since the implicit request
marked with asterisks is location-independent, it does not change program semantics. All the REV
bookkeeping concerning arguments, results, and flow of control is done automatically, as explained
in the next section. The programmer concentrates on producing a bug-free implementation instead
of worrying about these details. With well-structured code, an optimizer can easily relocate execution
when tuning program performance.

7 - . .
it 1t 1s possible to have concunrency within 3 trantaction, every vanable accessed by the request must be local to the
process executing the request.

£ 2 .j“".'-.. DA AR Yt YAt A e i

2
’

.
¢

e

ss = sotfstring] X an equate

customize = proc (user, passWd, msg, registry: string, friends: ss)
returns (ss) signals (NotAvailable)

begin transaction
postOffice: mail := Service[mail]$Lookup(registry) resignal NotAvailable

at postOffice eval X ¢eos
badNames: ss := ss$new()
newMsg, firstName: string :
for friend: string in ss$elements(friends) do
firstName := at postOffice eval registry$firstName(friend) end
except when noSuchUser:
ss$insert(badNames, friend)
continue X start the next iteration
end
newMsg := "Dear "||firstName)|msg X string concatenation
at postOffice eval maildrop$send(user, passWd, friend, newMsg) end
end X loop statement
return (badNames) X return from REV request
X and customize
end X REV request A

end except when failure (reason: string): signal NotAvailable end
end customize

Figure 4-1: An example of an implicit REV request.

4.3 Implementation

We implement an implicit REV request by converting it into an explicit request at compile time without
altering program semantics. This transformation, which converts a closure into a procedure, is the
opposite of in-line expansion. We call it procedure folding. Procedure folding has two tasks:

1. ensure the new procedure does not affect the flow of control; and
2. determine the arguments and resulits of the new procedure.

Eacn of these subtasks is described in turn.

4.3.1 Control Flow Preservation

Procedure folding must accommodate control constructs that terminate an implicit REV request. An
implicit REV request may terminate in four ways:

1. an invocation in the request raises an exception that is not handled by the request;
2. the last statement executed causes a nonlocal transfer of control (i.e., a return or signal
statement is executed):
. the last statement executed causes a local transfer of control (i.e., a continue, break, or
exil statcment is executed); or
. the last statement executed does not atfect the flow of control.

I R L SEIPIL UL LI P

ol t
L 9%y N

.‘».
I T S WO N N LA

mPa?

> -\,'-' -,..'.'. W T el
- e
2N t& P -

o

SRR VT

4

L e, m e

JORP SRR .,' P
O e A

Cala o

-90-

A nonlocal transter of control terminates the current activation, while a local transfer of control does
not. We define the above CLU constructs in the following discussion, which considers each
possibility in turn.

Procedure folding must not change which exceptions are handled. If an exception raised by an
invocation in a closure is handied, it is handled in the routine containing the closure. Otherwise, the
exception becomes a failure exception at the boundary of the routine containing the closure. The
compiler can determine which exceptions the routine catches by examining the handlers in the
routine. Those handlers whose scope contains the closure determine the exceptions that the
anonymous procedure created by folding must resignai.. We call these exceptions client-handled
because the client handles them after the REV request. Other exceptions are not caught and become
unhandled exceptions.

The example in Figure 4-2 shows the distinction between client-handled exceptions and unhandled
exceptions. Evaluating a[b] or afb + 1] might raise a bounds exception. This exception, which is
caught by the handler in SomePrac, is a client-handled exception. The division routine might raise a
zero_divide exception. Since there is no handler for this exception in SomeProc, it is an unhandled
exception.

Folding the implicit REV request in Figure 4-2 yields the explicit request in Figure 4-3. The following
section describes how we determine the arguments and results of the anonymous procedure
(G4250). This procedure resignals the client-handled exceptions and ignores the unhandled
exceptions. If the array access causes a bounds exception, the handler in SomeProc will catch it.
In the corresponding program without the REV request, the same handler catches the bounds
exception. If the division causes a zero_divide exception, the exception will not be handled. The
unhandled exception becomes a failure exception at the boundary of procedure G4250. In the
corresponding program without the REV request, the unhandled exception becomes a failure
exception at the boundary of SomeProc. Both unhandled exceptions and failure exceptions abort
all transactions they exit. Hence the REV request does not affect the meaning of an unhandled
exception like ze ro_divide.8

_Having discussed exceptions raised by invocations in an implicit REV request, we now focus on CLU

constructs that transfer control out of an implicit request and terminate the current activation: return
and signal. When such CLU constructs are present, the anonymous procedure created by folding
returns a oneof, which is a tagged, discriminated union. Each possibility for the oneof corresponds to
one way the implicit request may terminate. New code inserted after the REV request handles each
possibility in the appropriate manner.

We again use an example to illustrate procedure folding. Figure 4-4 contains an implicit REV request

8
When failure s a chent-handled exception. unhandled exceptions must be accommodated in a diffesent way.

D T

A SO _..

v m_ ¥, "
,'-‘r’.,,
« s 00
' Zs
LA

ol
.4,

X%
'{”"’

X
0,

Yl

N\
o
‘u
<+,

2 a"e a & o

RS A

L Y

"~ SomeProc = proc (a: array[int], b: int) returns (int)

.91-

begin transaction
ans: int
aService: built-ins := Service[built-ins]$Any()
at aService eval

ans := 3/a[b]

ans := ans/a[b+1]
ond
return(ans)

end except when bounds: return(0) end
end SomeProc

Figure 4-2: An implicit REV request whose closure raises several exceptions.

SomeProc = proc (a: array[int], b: int) returns (int)
begin transaction
ans: int
aService: built-ins := Service[built-ins]$Any()
ans := at aService eval G4250(a, b)
return(ans)
end except when bounds: return(0) end
end SomeProc

64250 = proc (a: array[int], b: int) returns (int) signals (bouads)
begin
ans: int := 3/a[b]
ans := ans/afb+1]
retura(ans)
end resignal bounds
end G4250

Figure 4-3: The implicit request in Figure 4-2 after folding.

that can execute a return or a signal statement. Folding the implicit request yields the explicit
request in Figure 4-5. Names unique in the current environment are automatically generated for the
oneof type (G1010), the anonymous procedure (G1011), and the oneof variable (G1012). At most
one arm of a tagcase statement is executed. The result returned by the REV request determines
which arm of the tagcase statement in Figure 4-5 is executed.

The remaining CLU constructs that affect the flow of control are break, continue, and exit. These
constructs cause a local transfer of control; i.e., they do not terminate the current activation. The
break statement terminates execution of the smallest loop statement in which it appears. The
continue statement terminates execution of the body of the smallest loop statement in which it
appears. An exit statement is similar to a signal statemént in that both raise an exception. Signal
terminates the current activation, but exit does not. Exit statements are legal only when there is an
enclosing handler of the appropriate type.

For these CLU constructs, deternuning the destination of the control flow is a straightforward

". v. ey
o -t Ry

"r A

LR
y

v M
.lJ

gt A

v

‘ztﬁ“’
l..,l', .
Z O

e B 4%
v

N

i
.92 -
N
by]
S
N SomeProc = pro¢ (a: array[int], b: int) returas (bool) signals (negativeArg(int))

A

begin transaction
ans: int
aService: built-ins := Service[built-ins]$Any()
at aService eval
if b<0 then signal negativeArg(b)
elseif b=0 then return(a[1]=0) end
ans := a[b]
end X REV request
return(ans=33)
end X transaction

end SomeProc

Figure 4-4: An implicit REV request with signal and return statements.

eV AT

o i)
a0

G1010 = oneof[normatl: int,
return: bool,
negativeArg: int]

SomeProc = proc (a: array[int], b: int) returns (bool) signals (negativeArg(int))

A
v

) ‘!“l.
'y

L

begin transaction
ans: int
aService: built-ins := Service[built-ins]$Any()
G1012: G1010 := at aService eval G10t1(a, b) -
tagcase G1012
tag normal (i: iat): ans := {
tag return (b: bool): return(b)
tag negativeArg (i: int): signal negativeArg(1)
end
~return(ans=33)
end X transaction

a
LA
» 8

v,
~

L C
2o
ICREAR Y

end SomeProc

G1011 = proc (a: array[int], b: int) returns (G1010)
i1f b<0 then return (G1010Smake_negativeArg(b))
elseif b=0 then return (G1010$make_return(a[1]=0)) end
ans: int := a[b]
roturn (G1010Smake_normal(ans))
end G1011

Figure 4-5: The implicit request in Figure 4-4 after folding.

compile-time task. Assume one of these constructs appears in an REV request. It its destination is in
the request. no problem occurs. If its destination is outside the request, the construct is handled in
the same manner as a return or signal statement. An arm of the tagcase statement, which directly
follows the original implicit request, transfers control appropriately. Since these constructs do not
terminate the activation. procedure folding must preserve the environment. The values returned for
these constructs, like the value returned for the "normal™ tag in Figure 4-5, are used to update the

P 200 4'a b R B Bl N Rt

environment. The next section describes which values are returned and explains why they are
returned.

4.3.2 Argument/Result Determination

Besides preserving the flow of control, procedure folding must determine the arguments and results
of the procedure it creates. We begin with an example of procedure folding by converting the implicit
REV request in Figure 4-6 into the explicit request in Figure 4-7. The arguments to the anonymous
procedure (G7345) are a and c, since the closure reads these variables before updating them.
Although the closure also uses the values bound to b and d, these values are computed by the
closure. The results of the anonymous procedure are ¢, d, and e, since the closure defines these
variables and SomeProc subsequently reads them. Although the closure also defines b, SomeProc¢
redefines b before using it.

The anonymous procedure created by folding has no free variables, as the free variables in the
closure are converted into arguments (a and c) or local variables (b, d, and e). The multiple
assignment in SomeProc restores the minimal portion of the environment needed to preserve
program semantics.

Although we use call by value-overwrite for objects, call by value-overwrite is not needed for
variables. We use call by value-result for variables and can still claim that location-independent
requests do not change program semantics. We need not worry abcut concurrency, because we
have prohibited concurrency within a transaction and required that all request variables be local to
the transaction. There is no aliasing that involves variables, because CLU objects and variables can
not refer to variables.?

Use-definition analysis [1], a technique often used in optimizing compilers, lets us defermine the
arguments, results, and locals of the procedure created by folding. We begin with some terminology.
A variable is defined by a program fragment if its value may be set by the program fragment. A
variable is used by a program fragment if its initial value may be read by the program fragment. To
simplify the discussion, we assume each variable is initialized when it is declared.

We determine the results of the anonymous procedure before the arguments, because the arguments
may depend on the results. The results are those variables that are defined by the request and used
by the code that dynamically follows the request. As shown in Figure 4-7, a return statement
containing the result variables is appended to the closure. [f the closure has several termination
points, there may be several return statements. The anonymous procedure will in general return a
oneof, as shown in Figure 4.5, The arguments to the anonymous procedure are those variables that

9)
For lanquages in which vanables and objects can cefer to vanables. the current environment imust be teeated as an atonmic
object Procoduee toldug can be eobendde d o hunedlle i case

-94.

SomeProc = proc (a: int) returns (int)
begin transaction
aService: built-ins := Service[built-ins]$Any()
b, ¢, d, e: int
c =3
at aService eval
b := a®a
d := c*c
c :=d
e :* b+d
end X REV request
b := e%e
return(b*d*c)
end X transaction
end SomeProc

Figure 4-6: An implicit REV request.

SomeProc = proc (a: int) returns (int)
begin transaction
aService: built-ins := Service[built-ins]$Any()
b, ¢, d, e: int
c :=3
c, d, e := at aService sval G7345(a, c¢)
b := e®e
return(b*d®c)
end X transaction
end SomeProc

G7345 = proc (a, c: int) returns (int, int, int)
b: int := a®a
d: int := c*c
c :=d
@: int := b+d
return(c, d, e)
end G7345

Figure 4-7: The implicit request in Figure 4-6 after folding.

are used by the program fragment consisting of the request and any return statements introduced by
procedure folding. Finally, the locals are those variables that appear in the request but are aot
arguments.

4.4 Discussion

Although we restricted our attention to CLU constructs when discussing procedure folding., we
believe that similar techniques exist for constructs found in other programming languages. For
pedaqgogical purposes, we discussed procedure folding without discussing stub generation To
achieve high performance stubs, a production-quality REV mechamism could combimne the two

activities and use standard compidar tochniquos to optimize the flow of cantrol.

2aY
EA0

3

AL LS Y

LR

o’

5 |

RS
ar

L '
R
FIRSL I TR g

S .
I]

..

{

4

-rev.
PR
- .""-‘-',L.Z’g

TR

oy
)

“ b

e e
TS

L

R |

P g
Y AN

v .

v

RD-A169 739 REMOTE EWILURTIDN(U) HRSSRCHUSETTS XNST OF TECH
CAMBRIDGE LAB FOR COIIPUTER SCIENCE J N STAMOS JAN 86
MIT/LCS/TR-334 NOBO14-83-K-9123

UNCLASSIFIED F/G 9/2

TR NS O B S St e e . L I e ~p s et om X RN SAPYE

’ /
;
.a
i3
L v
y
N
/] !
)
)
.
\ [
i §28 2.5
1.0 b= k2
L]
“—-m|32”22 -
‘ _—gm =
R T

rr
Fe
=
s
(@]

: I

) = 1.8
] .2
: — — —
i —— === =
‘ .

) Ky

4

\ MICROCOPY RESOLUTION TEST CHART
‘I NATIONAL BUREAU OF STANDARDS - 1963 - A
.‘

+
k *

¥)

.

)

A

-

RS 2B I P Dk LK
-
A
)

. A
- [RIS
A A4 -~ e OGN
- - \r'-'.'-‘:'-._\':\‘. y SRR LR T ‘.“;“ N
o
o

a0 . . -~
e SO)

N
- -

LI N PP

T O IS

L =
.I‘II]

wa,

AT NAYR £ 89 fb i 8, (8 gt : U U L% S, * », T S 5. RN 3 Bop Ly Y]

Implicit REV requests directly support remote iterators. For example, assume the interface mailbox
contains the following iterator, which lets a programmer process each message in a mailbox:

messages = 1ter (user: userID) yields (string) signals (noSuchUser, unreadable)
The application programmer can use an implicit REV request to execute the iterator entirely at the
service containing the mailbox:

at postOffice eval
for message: string 1n mailbox$messages(myUID) do

. X process the message

ond X iterator
end X REV request

The compiler automatically converts the implicit REV request into an explicit REV request without
altering program semantics. :

One drawback of an implicit REV request is that its arguments and results are not readily apparent to
a programmer reading, revising, or debugging a program containing the request. This information,
while irrelevant to someone understanding the program, is crucial to someone tuning program
performance. A useful compiler option would be the ability to list the arguments, results, and client-
supplied routines for each implicit REV request.

4.5 Summary

Requiring that an REV request relocate the execution of a complete procedure burdens the
programmer and may result in a proliferation of tiny procedures. This chapter extended the REV
model by considering implicit REV requests in which the programmer designates a closure instead of
a procedure for remote execution. This extension is for programmer convenience and program
readabiity.

An implicit request uses call by sharing and executes as part of an atomic transaction that aborts if
the request does not complete. A location-independent request has no effect on program semantics,
and implicit requests can be arbitrarily nested. The constraints on implicit REV requests are similar to
those defined for explicit REV requests, except that free variables defined in the surrounding
environment are allowed. Implicit REV requests represent a slight compile-time enhancement of REV.
They do not affect service definitions, type checking, remote binding, or run-time support.

& [
' -..f"_"f"

oy »

2,

. v

v v .

v

AN
OO

.'-

e
B
PRy

- w

<.
h
o
'
RO
.W .-
Js

s

—

L »%

7

LA

9 h 5N

oo

(SN

.
e s a

S

A

[PL ™

Chapter Five

Remote Data Types

In our extended version of CLU, there is no built-in naming mechanism that lets a program running on
one node refer to an object at another node. This naming mechanism is useful when we view a
remote node as a repository of shared objects. For example, a file service consists of directories and
files, and a programmer may want to manipulate the same file in several REV requests. We can
simplify the programmer’s task by letting the program refer to the remote file in between REV requests
to the file service.

Because we feel such a naming mechanism will be useful in many distributed applications, we will
incorporate it directly into the programming language. Although it is possible to construct such a
naming mechanism outside the programming language, we provide direct support for reasons of
convenience and expressive power. Our naming mechanism differs from conventional approaches
based on global capabilities (e.g., Stroustrup’s approach discussed in Section 1.3.4), because we
meet the following requirements:

1. Transience: Once a client-service binding is broken, the client must not refer to service
objects and vice versa. This relaxes our assumption concerning the disjointness of
separate address spaces, but retains most of the advantages of the original assumption.

2. Good Documentation: The possibility that an object might exist at a remote node must be
obvious to a person reading a program that involves the object. This is important
because of both performance and semantic considerations. The communication costs
incurred when manipulating an object at another node aftect performance, while the
above transience requirement affects program semantics.

3. Convenience: The naming mechanism must be easy to use and understand, which means
the run-time system should manage most of the details.

4. Safety: We implement call by sharing for REV requests with call by value-overwrite. The
naming mechanism must not invalidate the correctness of our implementation.

Our naming mechanism has two components: g/obal names and remote data types. In this chapter
we describe these components, show how they meet the above requirements, and sketch an

implementation.

ot
) -

YV XX
")

r

L4

%

ad

» -"- T
4.‘. N,‘r"‘l

il P ol S ']
e
X

ra
!

]

-97- p——

e

—‘.
>
S

: " 5.1 Global Names

F-Ed
X Eats

-

A node uses a local name to refer to an object it contains. A local name is meaningful only to the
node containing the object and therefore can not be passed between nodes. A global name also
refers to an object, but it can be transmitted between nodes. If an object has a globat name, any node
may use the global name to refer to the object.

- - e -
-.
224!
o e

s
53

A global name consists of a service capability fdr the node containing the object as well as a unique

%
¢ identifier interpreted by that node. Only the node containing the object can convert between the :S.p
) global name and the object's local name. Since each global name contains a service capability, one ::.'_
node can not accidentally interpret a global name issued by another node. This requires run-time -'._'-"
- checking, but all errors of this kind can be detected. We assume that a node which generates global
’ names for its objects has a mapping that converts between global and local names. In addition, we A
: assume the garbage collector never reclaims such a mapping.10 This mapping prevents the garbage ":-\.’
:: collector from reclaiming any object whose global name is in the mapping, since such an object might f:
3 be referenced by another node. Below we describe the conditions under which a node removes P

global names from its mapping.

Because we want to reclaim inaccessible objects without requiring a distributed garbage collector, _
we treat global and local names differently. A local name is always valid; i.e., if a program comes - -
across a local name, the corresponding object is guaranteed to exist. A global name, in contrast, is . il
not always valid. It becomes invalid when its service capability becomes invalid. This happens when

either the client or service breaks the binding between them (see Section 2.1.3). :l:j::
: RGN
When a service capability becomes invalid, the service removes the invalid entries in its mapping ::;:3.
i between global and local names. This can make some of the service objects inaccessible and thus ‘ -
subject to garbage collection. Service objects that remain accessible, either by local names or by -,-_
valid global names, will not be reclaimed. For example, files in a persistent directory will not be 3 f::_'.:-
g reclaimed, because they are accessible from the directory. A file removed from the directory and ,\
accessible only from an invalid global name can be reclaimed. Invalid global names do not cause L1
dangling reference problems, since the service can not convert an invalid global name into a local e
. name. Thus a program can not use an invalid global name to access an object reclaimed by the ::3‘-:.
garbage collector. '_::E:'
: o
A AR

Our lifetime definition for global names has three consequences. First, it meets our transience
requirement. Second, passing global names implements call by sharing for REV requests, but it does
so only while the service capabilities in the global names are valid. This is in contrast to call by
value-overwrite, which implements call by sharing indelinitely. Third, each node can have an

e e e 2 A D 8

b
“I .‘1 .
()
st
yal e

10 . . .))
If client service bindings (and hence .civice capabibties) survive node crashes, this mapping must also survive node y
crashes. Otherwise, the mapping can be keptin volatite slorage

.. Casayn t
f’il. .".""- /
o S YA

»,
L}
’

e T T T S L LT
(L Y o . . . N - - . e T .

e e e e N
LY TSR AT UK e o PR O o O P A Y

L

Cal S NN

.98 -

independent garbage collector that is not concerned with other nodes. As long as client-service
bindings are short, say on the order of minutes or hours, or if they deal with a small to moderate
number of global names, a distributed garbage collector is not needed. For long-lived bindings that
create and discard many large objects with global names, we recommend routines that release most
of the resources held by such objects. For example, assume a file object is a file descriptor that reters
to the disk pages associated with the file. Furthermore, assume file$delete deallocates the disk
pages associated with the file without deallocating the file descriptor, which acts as a tombstone. The
local name for a deleted file object refers to its descriptor and hence is not a dangling reference. The
garbage collector reclaims the file descriptor when it becomes inaccessible.

Global names give a programmer fine-grained control over the location of data, and this control may
be used to improve the performance of a distributed system. When objects are very large, encoding,
decoding, allocating memory, reclaiming memory, and transmitting data can be expensive in both
time and space. Transmitting the small global name of an object instead of its abstract value can be
more efficient. The net effect on performance, however, depends on the number of times the object is
accessed, as accessing the object must be done at the node containing the object.

An application programmer can use global names to protect client information manipulated by an
REV request. While a communication channel using encryption can, with high probabitity, prevent a
third party from viewing or modifying information sent Between the client and the service, encryption
does not help a client that sends sensitive information to an untrusted service that may violate the
data abstraction that protects the information. For example, transmitting a client object by value-
overwrite exposes its entire abstract state to the service, which could copy the abstract state or
manipuiate it in arbitrary ways. Sensitive information should therefore be kept at the client and
transmitted by global name. A client that processes only simple REV requests (i.e., RPC's) and does
the appropriate checking can prevent an untrusted service from .indiscriminately accessing this
information.

5.2 Remote Types

Our second requirement on the naming mechanism is good documentation. A person reading a
program shou!d be able to tell which objects are local and which objects may not be local. We meet
this requirement by dividing abstract data types into two disjoint sets:

e A Jocal (data) type is an abstract data type whose objects have local names but not global
names. Each instance of a local type exists at some node. and no other node can refer to
the instance. A local data type may be transmissible by value-overwnte; otherwise, it is
nontransmissible. The programmer defining a local type decides whether it is
transmissible.

e A remote (data) type is an abstract data type whose objects can have global names that

hOg i, ol b g b L g, g¥e B » - & » [[

L N
-99- -
! et
. are meaningful at all nodes. We call an instance of a remote type a remote object. The *’J’i
: operations a program can perform on a remote object are defined by the object’s type. A jf‘f:{?;
' remote type is automatically transmissible. A node transmits a remote object to another —
; node by sending the object's global name to the other node. Unlike local objects, a ;".:;?
" remote object is never transmitted by value-overwrite. ,:‘,:.::
B An abstract data type is either local or remote; it can not be both. Later in the chapter we explain why f"»?‘;

' we associate the idea of being remote with types instead of with individual objects or formal
arguments to REV requests. Except for service capabilities, the abstract data types discussed so far "‘
in the thesis have all been local types. Scalar types, such as booleans, characters, integers, and t N

Y,
v
reals, are local types. Records, arrays, strings, oneofs, procedures, and iterators are also local types. "; N
\ L
‘i.~ N
P Although there are no rules for a programmer deciding whether a transmissible type should be a local 00
type or a remote type, we offer the following guideline. Types whose instances tend to be large or —_—
v Y
. contain sensitive information should be remote types. Types whose instances are often shared by :.'_- <
’ many users should also be remote types. Examples include include database relations, disk files, and ".:- >
mailboxes. . P
» ‘.: ¥
To specify a remote type T, the programmer creates an interface called T that is annotated by the new A
reserved word REMOTE. For instance, Figure 5-1 contains an interface for the remote type mailbox. g«: $!
A A programmer implementing mailbox implements all the routines in Figure 5-1. As explained in P.:
Section 5.4, the compiler automatically generates get and put, which make mailbox be a Y »
transmissible type. The mailbox routines are location-dependent, since the semantics of each j
routine depends on the node executing the routine. Hence the application programmer must specify .::':::,'.
the node that executes each invocation of a mailbox routine."! tete
5
We shall assume it is the programmer's responsibility to manipulate a remote object only in an REV o
request executed by the node containing the object. This will make all the REV requests in our bogge
.‘- .-.
examples apparent to the reader. The program fragment in Figure 5-2 shows that the syntax for using -.:D.
LY
a remote data type, such as mailbox, is the same as the syntax for using a local data type. The anly ::,.
\ way to tell whether a type is local or remote is to check the interface that specifies the type. Since :‘_’
Figure 5-1 declares mailbox to be a remote type, the client variable mbx contains a global name and ‘
not a local name between the two REV requests in Figure 5-2. In an REV request sent to the node p-
containing the mailbox (i.e.. postOffice), mbx contains a local name that directly refers to the mailbox. R
3 The translation between global names and local names is done automatically, as explained in Section ::“'
)
5.4, n
) This example shows why we have a complete separation between local types and remote types. If we .}-'::'r \
.
, :x;r. ‘
A
u“:"‘
"A useful default is to exccute each routine at the home node of the tirst argument if this argument has a remote type. For -
nstance. the last s routines in Figure 5.1 could by relocated avtomatically to the home of thetr tnst argument. a mailbox. R
Since create and open have no arguments with remote types. the apphcation programmer would use REV to relocate their '.‘-f,,‘.
exccution .‘:J'
NN
"5\‘.
|._\‘.
N A

l"-“\’i'l"-'I("l'lrn"l‘-i‘.-'~---l'.l'tfo{-'--'.~'--
) ’I.’.’ o) -'.. -" -*‘....:', -.‘ .(-* v -“ - ..‘-'. R -'_ -'....‘ .
O e Y Y SR R Ao

S RS sak b A oD "‘;S'Q§
&3

a

_!'f'.'

g W04
- 100 -
J [~
h (2%
i &
»
mailbox = remote interface i3 o e
s A4
create = proc (user, maintainer: userlD) returns (maildbox) signals (userExists) —n
X create a mailbox for the user at the node executing this procedure \?\J
X userID = name & password QS*S
oy
open = proc (requester: userID, user: string) returns (mailbox) signals (noSuchUser) ‘\gﬁ
% open user's mailbox on the node axecuting this procedure oh&}
o X requester must be the mailbox owner, the system maintainer, or the mail system A
\ read = proc (mbx: mailbox) returns (array[string]) signals (unreadable) ; "
' X read the contents of the mailbox -- fails if mailbox is remote S
\ !
o
messages = fter (mbx: mailbox) yields (string) signals (unreadable) F}H:(
X iterate through the messages -- fails if mailbox is remote ;{:\!
Ry
addMessage = proc (mbx: mailbox, msg: string) returns ()
X append message msg to the ones in the mailbox -- fails i1f mailbox is remote oo
: X used only by the mail system, since senders invoke a higher-level routine :x}v
, S
delete = proc (mbx: mailbox, msgNos: array[int]) Vv
X remove the specified messages -- fails if mailbox 1s remote :\;5
H -
S
close = proc (mbx: mailbox) -* .
% prevent further manipulation of the real mailbox via this abstract object .
X fails if mailbox is remote
: destroy = proc (mbx: mailbox) returns () {'.‘
’ X remove mailbox from node -- fails if mailbox is remote
end mailbox) §4
. . R
. Figure 5-1: The mailbox interface. .j-a:,
s :'-::\:
RSN
NS
S

mb;: mailbox K
msgs: array[string] o
deleted: array[int] := array[int]Snew() e

R postOffice: mail := Service[mail]SLookup(registry) e
A at postOffice eval S
S mbx := mailbox$open(useriD) X userID e name & password :;l:
msgs := mailbox$read(mbx)
end

X between REV requests the user reads mail
X and decides which messages to delete

. at postOffice eval

mailbox$delete(mbx, deleted) X deleted contains message numbers
end

Figure 5-2: A portion of a simple mail reader.

did not have this separation, a transmissible type such as mailbox could have some instances

" s & a &

2l i Ja LA IR AR IO W Ll o AP IR L WA b By o ¥ oy~ pAon

- 101 -

transmitted by value-overwrite and other instances by global name. What mbx refers to in between
the REV requests would depend on how the mailbox is transmitted to the client.

o if the mailbox is transmitted by value, mbx refers to the client copy of the mailbox. The
service sends the copy to the client at the end of the first REV request, the client sends
the copy back to the service as an argument to the second request, and finally the service
returns the copy to the client for its delayed update at the end of the second request. The
program in Figure 5-2 is not correct because it does not modify the actual mailbox at the
service.

o If the mailbox is transmitted by global name, mbx refers to the actual mailbox at the
service. Any messages the user deletes are deleted from the actual mailbox. Once the
client-service binding is broken, mbx can not be used to access the mailbox.

Note that how the mailbox is transmitted affects both program semantics and the amount of
communication. We eliminate this form of ambiguity by havirig a single transmission strategy for each
type. Because all mailboxes are transmitted by global name, the program in Figure 5-2 is not
ambiguous.

A consequence of the strict separation between local types and remotes types is that the reserved
word REMOTE can not be associated with formal arguments to an REV request. Each formal argument
has a type, and the specification for the type indicates whether it is a local type or a remote type. The
application programmer can not change this attribute of a type without redefining the type. If we let
the programmer associate REMOTE with formal arguments, we would have to handle situations in
which an object is simultaneously transmitted by value-overwrite and by global name. Completely
separating local types and remote types rules out these anomalous situations, prevents ambiguity in
programs, and meets our second requirement on the naming mechanism, good documentation.

Our third requirement on the naming mechanism is convenience. As we saw in the preceding
example, compile-time type checking handles global names without any assistance from the
programmer. The preceding example has also shown that remote types are easy to use and
understand. Under our scheme, objects with a local type are always local, even in REV requests.
Objects with a remote type, in contrast, are assumed to be remote. The programmer uses this
information when deciding where to insert REV requests. If a remote object happens to reside at the
node executing the program, the compiler or run-time system can improve performance without
changing program semantics by short-circuiting REV requests directed to that node.

Besides being easy to use and understand, remote types are easy to define and implement. A
programmer makes a type remote by including the reserved word REMOTE in the interface defining the
type. As explained in Section 5.4, the system generates and transmits global names and hides their
existence from the programmer. The only restriction on a programmer implementing a remote type is
discussed below.

Our fourth and final requirement on the naming mechanism is safety. Call by value-overwrite

PR '."':.;".::.

i
3

. "’ ‘

Y,
l,
eee

]
-

f,

,

LY
.

- -
".'-".'.1
LS

I e 4 o &

DA

RN .'v L _.-

5 e A fadlAalai Sl e TR An iy & 2400 Bt St Ay RARNE ig . fiven X A ity Phy iy gig A4

-102-

implements call by sharing for REV requests, and we do not want remote types to invalidate this fact.
The following example shows the problems we encounter if we do not restrict remote objects.
Although the example involves REV requests sent to the client, the same problems can arise in a
request sent to the service. We shall return to this point in the next section.

Suppose we let the client implement remote types. Then we must let the application programmer
send REV requests to the client, so the programmer can manipulate remote objects at the client
during a request sent to a service. We call the requests sent to the client call-backs. A call-back is a
nested REV request sent from the recipient of the outer REV request to the sender of the outer
request. These call-backs are expected, since they are written by the programmer. If we do not
restrict remote types, the run time system must support unexpected call-backs, as explained below.

Let R be a remote object kept at the client, and let L be a mutable client object transmissible by
value-overwrite. Suppose R refers to L, and both R and L are arguments to an REV request, as
shown in Figure 5-3. If the REV request performs an operation on R that accesses L, the request
requires two nested call-backs:

o one from the service to the client to access R;
e and another from the client to the service to access L.

The first call-back, which is an REV request written by the programmer, is expected by the
programmer. The programmer, however, does not expect the second call-back, which is caused by
the run-time system. The second call-back occurs because the client's copy of L may not be up to
date, and we want both remote types and call by value-overwrite to implement call by sharing. If L
refers to R, the two objects from a cycle, and unexpected call-backs may nest to an arbitrary depth.
Performance would probably be abysmal during such a ping-pong match in which the process
bounced back and forth between the two nodes.

CLIENT SERVICE
R Global Name
{—
" "0

Figure 5-3: A scenario that could occur with unrestricted concrete representations for remote types.

We shall restrict the set of objects accessible from remote objects and own variables to avoid the

inelficiency and complexity of unexpecled call backs.- An unexp.cted call-back can occur only when

&

P A

s

TR v ¥
. v .
‘ [4 I'o"’_".
IR

0
lﬁl

»
*

~ Ty
"
]

o
o:.:‘*. X

BRI
a"l,J' t

I3
.

¥
v,

1 A5 MOSA
5y bas

-~

[PPN

AR o Gy o

e niare & & W

o

-
-

R S A
UG I D S A

- 103 -

a mutable object transmitted by value-overwrite is accessible from a remote object or an own variable
manipulated by a nested REV request.12 Therefore, we prohibit remote objects and own variables
from referring to a mutable object transmitted by value-overwrite. In other words, every object
accessible from a remote object or an own variable must be immutable, nontransmissible, or a remote
object. The next section provides two remote types, RemoteRecord and RemoteArray, which are
useful to a programmer defining the concrete representation of a remote type. We also let
programmers annotate interfaces and clusters with the new reserved word IMMUTABLE. This lets the
compiler check the restriction on remote types and own variables at link time. If the client does not
implement remote types and does not execute nested REV requests, this restriction does not apply.

5.3 System-Defined Remote Types

Records are extremely useful to a programmer choosing the concrete representation of a local type,
since the representation often contains several components of ditferent types. Arrays are also useful,
especially when the number of components with some type can not be determined at compile time. A
programmer choosing the concrete representation of a remote type will need similar type
constructors, so we provide the following system-defined remote types: RemoteRecord and
RemoteArray. RemoteRecord is identical to the record type except for transmissibility. Records
are transmitted by value-overwrite; RemoteRecbrds are transmitted by global name. RemoteArrays
differ from arrays in the same way.

RemoteRecords and RemoteArrays give the application programmer fine-grained control over the
location of client data, which is an important consequence of global names. These types let the
programmer keep client objects at a service between REV requests and refer to the entire collection
of objects with a single global name. We illustrate this ability by using RemoteRecords, with the
understanding that RemoteArrays can be used in a similar fashion.

RemoteRecords, like records, are declared as a list of components and their types. Assume a
programmer wants to keep two real numbers and a string at a service. The following RemoteRecord
declaration provides this capability:

info = RemoteRecord[x: real, y: real, name: string]
remData: info

RembData is a variable whose type is a three-component RemoteRecord. A RemoteRecord (or a
record) is created by enclosing the initial values for all components in curly brackets. The following
REV request creates a RemoteRecord at a graphics service:

xCoordinate: real := . . . #% initialize xCoordinate

aNode: graphics := Service[graphics]Slookup(“room 212")

at aNode eval remData := info${x: xCoordinate*5.5, y: 2.2, name: "Jones"} end
12

Although a nested REV request ¢can not access an own variable ditectly, it can call a client routine that accesses an own
vatiuble.

Two gty
st

-

- 104 -

After the above REV request completes, the client variable remData contains the global name for the
RemoteRecord at the graphics service. A programmer uses "dot" notation to access and update
RemoteRecord components:

at aNode eval remData.x := remData.y + 2.0 end

Unless defaults are provided, a programmer can manipulate a RemoteRecord only in an REV request
executed by the node containing the RemoteRecord. Note that the RemoteRecord lets the
programmer group together all client objects at the service. If a single procedure deals with several
services, this structuring of client data can help the programmer remember which object is at which
service. This in turn can help eliminate errors that are difficuit to detect before run time.

Wt ST VTN e Ty VR F 58 BRI e

RemoteRecords let an REV programmer send infarmation from the client to the service once, but
access it many times. Consider a remote bitmap display that can show points, lines, and characters.
Let window be a remote type. Assume the programmer wants to display characters in an unusual
. font that the display does not directly support. Furthermore, assume fonts are immutable and
. transmissible by value-overwrite. Instead of sending the unusual font with each REV request that
\ displays characters, the programmer can send it once:

14

remoteInfo = RemoteRecord[value: font]

- display: window

N testFont: remotelnfo

. newFont: font := . . . X initialize newFont

displayService: superGraphics := Service[superGraphics]$tookup("room 212")

_ at displayService eval

. display := windowScreate()

- testfont := remoteInfo${value: newFont}

: ond

; The preceding REV request creates a window and a RemoteRecord at the service and returns only
their global names to the client. If the programmer does not modify the RemoteRecord, the unusual
font remains at the service until the client-service binding is broken. The next REV request uses this
font to display a character in the remote window:

” at displayService eval

window$showChar(display, charCode, x, y, testfont.value)

The client transmits only a global name (and not the entire font) when the variable testFont appears in
an REV request.

Besides reducing communication from the client to the service, RemoteRecords can reduce
. communication in the other direction. RemoteRecords let a programmer keep the results computed
by an REV request at the service and use these results during later REV requests. Without
RemoteRecords and global names. the results are returned to the client and sent to the service with
', each REV request that accesses the data.

o i e

22

-105 -

If RemoteRecords and RemoteArrays are not built into the programming language, programmers can
get fine-grained control over the location of client data by constructing similar mechanisms. Such
mechanisms are useful in constructing distributed systems, and we supported them directly to
enhance their convenience and expressive power.

We end this section with a reminder. To meet the safety requirement on our naming mechanism, we
restricted the objects accessible from a remote object. A remote object can not refer to a mutable
object that can be transmitted by value-overwrite. An application programmer using ReioteRecords
and RemoteArrays must be aware of this compiler-enforced restriction.

5.4 Implementation

In addition to the support provided for every abstract data type, the system has two extra tasks for
each remote type T

1. hide global names from the programmer implementing T; and

2. generate and manage global names for objects of type T.
This section describes each task in turn.

To simplify programming, we completely hide global names from someone implementing a remote
type. A programmer implementing a remote type T defines LocalRep, which is the representation for
local instances of T. LocalRep does not involve global names, but the compiler uses LocalRep to
generate the actual concrete representation that does involve global names:

rep = oneof[local: LocalRep,
remote: GlobalName[T]]

The actual concrete representation for a remote type is a oneof type, since the representation for a
remote object depends on whether the current node is its home. The system-defined type
GlobalName is parameterized by the type of object that corresponds to the global name.

Before discussing the conversions between concrete objects and abstract objects for remote types,
we review the conversions for local types. Let S be a local data type. Two routines, which are
automatically generated by the compiler, convert between the concrete viewpoint (rep) and the
abstract viewpoint (S):

SSup = proc (rep) returns (S)

S$down = proc (S) returns (rep)
These routines, which do not cause any run-time computation, are available only in a cluster
implementing type S. They inform the compiler that an object of type S is going to be viewed
abstractly or concretely. For example, a programmer that needs to manipulate an argument of type S
can use S$down to view the concrete object. The programmer can later use S$up to convert the
concrete object into an abstract object b2fora returning it as a result.

- 106 -

Up and down for remote types require run-time computation and have different type specifications
than the corresponding routines for local types. In a cluster implementing remote type T, a
programmer may use the following conversions:

TSup = proc (arg: LocalRep) returns (T)

T$down = proc (arg: T) returns (LocalRep) signals (Notlocal)
Figure 5-4 shows how to implement these routines. Although the implementations violate the type
system, the violations are acceptable because these routines are compiler-generated. T$up creates
and returns a oneof with a "local" tag that refers to its argument. T8down checks a oneof and
returns the component if the object is local. Otherwise, the oneof refers to a global name, and
T$down raises an exception. Neither TSup nor T$down involves REV.

up = proc {(arg: LocalRep) returns (T)
concrete: rep := repSinake_local(arg)
% the next statement does not type-check, since we should "up"” concrete first
% this routine is compiler-generated and therefore 0K
return (concrete)
end up

down = proc (arg: T) returns (LocalRep) signals (Notlocal)
% the next statement does not type-check, since we should "down" arg first
% this routine is compiler-generated and therefore 0K
tagcase arg
tag local (obj: LocalRep): return(obj)
tag remote signal Notlocal
end
end down

Figure 5-4: Up and down for a remote type T.

Besides detining the local representation (LocalRep), a programmer implementing remote type T
implements the routines defined by interface T. The programmer, who can use T$up and T$down in
these routines to convert between the abstract viewpoint (T) and the concrete viewpoint (LocalRep),
does not need to know that the actual concrete representation is a oneof.

Because down for a remote type can raise an exception whereas down for a local type never raises
an exception, implementing a remote type is slightly different than implementing a iocal type in CLU.
Assume a remote type contains a binary operation (T$op) that may involve two objects at different
nodes. Furthermore, assume T$op must be executed at the home of the first argument. Then the
programmer implementing T$op can not always apply T$down successfully to the second argument.
It the second argument is remote, the programmer must view it as an abstract object and use REV
requests to manipulate its abstract state. The programmer wouid use the foilowing system-defined
operation to determine the node containing the argument:

iShome - proc (arg: 1) returns (L277n),

where G2776 is a name thats unique in the current environment and bound to the following service

o funtion:

~ 2as fad gt gt #'a Oig Bty dle gig Bl gis2he gin pe. gl et St TR [RN gl g pth ot R A at 294 7

“agam

- 107 -

G2776 = service 18 T end

o Y\]

Such a service exports T and, by default, the built-in types.

Having discussed how the system hides global names from programmers, we now consider how
service capabilities and global names are transmitted between nodes. A service capability consists of
a node name and an identifier interpreted by the node:

e NodelD: a system-wide unique name
o CapabilitylD: an identifier unique to the above node for all time

" NodelD must contain enough information for the client to be able to send a message to the service.
For instance, a host name or an internet address is acceptable. CapabilitylD lets the client invoke

" REV requests at the service. If different service capabilities correspond to different address spaces,
CapabilitylD also selects the appropriate address space.
A global name, which is the external representation for each remote type, consists of a service

- capability and an identifier interpreted by the service:

3 e ServiceCapability: defined above

d e UniquelD: an identifier unique to the above service

¥ Recall that a global name lets one node refer to an object kept on another node.

2

2 A service implementing remote types maintains two mappings:

e one mapping converts remote objects to global names (mapping G); and
. e the other mapping converts global names to remote objects (mapping H).

Mappings G and H are inverses. When a service capability becomes invalid, all entries in G and H that
refer to the service capability are removed from the mappings. We explain below how the mappings
are used to encode and decode remote objects.

. rs
l.‘

kS
N

v
) ‘;
L}

i3
r

»
l"

The encode routine for a remote type, which is automatically generated, converts the concrete
,, representation for a remote object (a oneof) into the external representation for the object (a global
A name). If the oneol has a "remote"” tag, the oneof refers to a global name. In this case, encode
simply returns the global name. Otherwise, the oneof has a "local” tag and refers to an object. In this
case, encode uses G to determine if the remote object already has a global name under the current
service capability. If s0, encode returns the global name. Otherwise encode generates a new global
name, inserts the appropriate entries into G and H, and then returns the new global name.

The decode routine for a remote type, which is also automatically generated, converts the external
representation for a remote object (a global name) into the concrete representation for the object (a o
oneof). It the service capatnlity for the global name is not the current service capability, decode ?
. returns a oneof with a “remote” tag that refers to the giobal name. The validity of the global name is
' not determined. It the service capability for the global name is the current service capability, the "

global name 1s valid by defimtion. Decode uses H to map the global name into an object that exists at

the service and then returns a oncof with a "local” tag that refers to the object.

PR I s 4
LA

" 2O

The system, rather than the programmer, makes a remote type transmissible. The encode routines
for remote types differ only in the types of the remote objects and oneofs they deal with. Because the
encoding algorithm is always the same, the compiler can generate encode for each remote type. The
same applies to decode routines for remote types. Since the compiler also generates get and put
for all transmissible types, the compiler makes each remote type transmissible without any help from
the programmer implementing the remote type.

5.5 Summary

We developed a naming mechanism based on global names that lets one node refer to an object
residing at another node. We associated the ability to have a global name with types, rather than with
individual objects or formal arguments to REV requests, and achieved the following objectives:

1. Transience: Once a client-service binding is broken, neither node refers to objects at the
other node. This means, however, that remote data types implement call by sharing for
an REV request only while the relevant service capabilities are valid.

2. Good Documentation: Every object that may be remote is apparent to someone reading a
program.

3. Convenience: Remote types are easy to use and implement.

4. Safety: Call by value-overwrite still implements call by sharing for REV requests. A

compiler-enforced restriction on the types of objects accessible from a remote object
guarantees this objective.

A programmer makes a type remote by including the reserved word REMOTE in the interface that
defines the type and clusters that implement the type.

An important consequence of global names is that they give the application programmer fine-grained
control over the location of client data. RemoteRecord and RemoteArray are system-defined
remote types that can transform an immutable local type, such as integer, into a remote type at the
cost of an explicit indirection. These two remote types also let a programmer keep a collection of
objects at a service and refer to them with a single global name. A programmer using these types can
send information from the client to the service once, but access it during many different REV

requests. A programmer using these types can also keep the results of an REV request at a service
beyond the completion of the request.

S

~ o v, e,
’

WAL S

o‘-‘.'..- .

—~.
P
-

|

Y
v,

3
e

)
’
f.J‘- T S

T

y

e
L

“«

v
e a’s

I IR P |

o
C4
4
>
4
4
o

4

Chapter Six

An Extended Example

To familiarize the reader with REV requests and remote objects, we present an extended example of
their use. In this chapter we define a service called news by specifying the interfaces it exports.
Each news service contains a database of newspaper articles. An authorized user at another node
can query this database and examine the articles selected by the query. The program fragments in
the chapter show the usefulness of REV compared to RPC’s for applications that support queries to
such a remote database. The program fragments also show how RemoteRecords give the application
programmer fine-grained control over the location of client data, which is important because remote
types can reduce the amount of communication between nodes. We begin by describing the
interfaces exported by each news service.

6.1 Declarations .

Recall that a two-level description applies to services. A service definition is a set of interfaces, and
an interface specifies a collection of routines. The following statement declares the interfaces each
news service exports:

nows = service s article, articleDB, time&date, set, RemoteRecord, built-ins end

We discuss the more interesting interfaces in this service definition below.

Figure 6-1 contains the article interface. An article instance is an object with five components:
subject, author, priority, timestamp, and body. The priority of an article describes its overall
importance. We assume that a priority is a small positive integer. Because an article body might be
very long, we provide an additional routine (shortBody) that returns only the beginning of the article.

Figure 6-2 contains the articleDB interface, which defines a remote type. Thus a program running at
a client can refer to an instance of this type that resides at a service. An instance of type articleDB is
a repository of articles that efficiently performs certain searches. Some of the routines in the interface
generate a new articleDB from an existing articleDB and an attribute value (artByPriority through
artSince). Other routines return information about a particular articleDB (subjects through
articles). The reserved word IMMUTABLE at the top of the interface tells us that an articleDB can not
change its state. There are no routines that modity an articleDB, and the only way to create one is to
use accessDB.

YOl
r' s -"‘:"u "- "-

%
»

. -
l'!
I

i
% %

-110-

article = immutable location_independent interface 1s

create = proc (string, string, int, time&date, string) returns (article)
X args are subject, author, priority, timestamp, & body

X routines to access components of an article

subject = proc (article) returns (string)

author = proc (article) returns (string)

priority = proc (article) returns (int)

timestamp = proc (article) returns (timel&date)

fullBody = proc (article) returns (string) X return the entire body of the article
shortBody = proc (article) returns (string) X return only the first three lines

X value-overwrite transmission

encode = proc (article) returns (string)
decode = proc (string) returns (article)

end article

Figure 6-1: The article interface.

The remaining interfaces exported by a news service consist of common data types and system-
defined data types. The time&date and set interfaces, shown in Figures 6-3 and 6-4, are the usual
ones. The RemoteRecord type is a remote type that is identical to the record type except for
transmissibility. Built-ins is the set of types provided in every implementation of the programming
language. It includes integers, reals, booleans, characters, records, arrays, strings, and procedures.

6.2 Sample Programs

We present five examples that use a news service. These examples are largely independent, but
together they show how REV and remote types are useful to an application programmer dealing with
one or more news services.

Our first example, which concerns a user who is authorized to access a database of articles from the

. New York Times, shows the general template for interacting with such a database. Consider a
program that accepts a query from the user, transforms the query into an REV request, sends the
request to the news service, and finally presents the selected articles to the user. A straightforward
implementation of this task has several problems, especially when a query selects a large number of
long articles. The user must wait for all the selected articles to be sent to the client, and the client
must have enough (secondary) memory to store the selected articles. We can improve response time
and reduce the storage burden on the client by returning only part of the resuits to the client. The
client initially receives a collection of abbreviated articles, and the user can subsequently request the
full version of any article in the collection.

.
o~

-
.

RGO

‘l"l 1

| DL
RKRA

-111-
’
}
~ articleDB = remote immutable interface 1s
\ availableDBs = proc () returns (set[string])

accessDB = proc¢c (string, string, string) returns(articleDB) signals (accessDenied)
X arguments are DB name, user name, password

4
.
X X each of the following six routines returns a subset of its first argument
‘: X articles that “"match”™ the second argument form the result
X neither argument is modified

artByPriority = proc (articleDB, int) returns (articleDB)

artBySubject = proc (articleDB, string) returns (articleD8)

, artByAuthor = proc (articleDB, string) returns (articleDB)
artByKeyword = proc (articleDB, string) returns (articleDB)
artBefore = proc (articleDB, time&date) returns (articleD8)
artSince = proc (articleDB, time&date) returns (articleDB)

X the following routines determine what a DB contains; each returns
X the number of articles with each value of the attribute

] subjects = proc (articleDB) returns (set[record[subject: string, number: int]}])

authors = proc (articleDB) returns (set{record[author: string, number: int]])

- priorities = proc (articleDB) returns (set[record[priority: int, number: int]])
keywords = proc (articleDB) returns (set[record{keyword: string, number: int]])

X additional information about a DB
- timeRange = proc (articleDB) returns (time&date, time&date)
. noiseWords = proc (articleDB) returns (set[string])
: size = proc (articleDB) returns (int)
fetch = proc (articleDB, int) returns (article) signals (bounds)
articles = iter (articleDB) yields (article)

ond articleDB

Figure 6-2: The articleDB interface.

time&date = {mmutable interface 1s

now = proc () returns (time&date)
within = proc (time&date, time&date, time&date) returns (bool)
% determine whether the first pair of times differs by at most the third time
before = proc (time8date, timeldate) returns (bool)
toString = proc (time&date) returns (string)
fromString = proc (string) returns (time&date) signals (Badformat)

7

~
&

P

¥

%X value-overwrite transmission

N
.
»

o

encode = proc (timeldate) returns (int)
decode = proc (int) returns (timeldate)

o0
".-

.
a

ond timeldate

y %
2
rPX.|

’<

Figure 6-3: The time8date interface.

R

LA
%

E

We illustrate this enhancemant with the [ollowing program fragment. but for simplicity, we do not

(‘ " d .
Y
., "l.

;>

‘r

discuss the conversion from user querics to executable program fragments. Figure 6-5 shows the

&
.
L

PR
2

s
4

IR -

A

e*

PN doy,

‘l ‘l

.

o AL

Ky

.

"l‘l 'l e,
P

a e

Ay b

-112.

set = location_independent 1interface [t: type)
where t has equal: proctype (t, t) returns (bool)

is

create = proc () returns (set[t])

insert = proc (set[t], t)

delete = proc (set[t], t)

member = proc (set{t]. t) returns (bool)

elements = 1ter (set{t]) ylelds (t)

size = proc (set{t]) returns (int)

any = proc (set[t]) returns (t) signals (empty)

union = proc¢ (set[t], set[t]) returns (set[t])
intersection = proc (set[t], set[t]) returns (set[t])
difference = proc (set[t], set[t]) returns (set[t])

X value-overwrite transmission

encode = proc (set[t]) returns (array[t]) where t has
put = proctype (REVcontext, t)

decode = proc (array[t]) returns (set[t]) where t has
get = proctype (REVcontext) returns (t)

ond set

Figure 6-4: The set interface.

~ code corresponding to the query "What articles containing the word ‘movie’ were written by Vincent

Canby?" After locating a New York Times database, qu.e ryProc opens the database and can access
(via articles) all the articles in the database. Because the user does not want all the articles,
queryProc successively refines the set of articles that it returns to the user. First, queryProc
determines the articles written by Canby. From this set, it determines the articles that contain the
wofd "movie." Finally, queryProc creates a set of abbreviated articles by applying shortBody to
each selected article. The procedure as$addh appends its second argument (a string) onto the high
end of its first argument (an array of strings), thereby moditying its first argument. The client variable
shortText has a local type, an array of strings. After the REV request completes, this variable refers to
objects residing at the client. The client variable articles, in contrast, has a remote type. After the
REV request completes, articles contains a global name that refers to the results at the news service.
Thus the service sends the client an array of strings (i.e., an array of abbreviated articles) and only the
global name for the articleDB containing the full articles.

We assume an articleDB keeps the articles it contains in some fixed order, such as reverse
chronological order. Fetching the full version of the ith article requires only the short REV request in
Figure 6-6. The client sends a global name (articles) and an integer (i) to the news service, which
returns the body of the specified article in the variable full.

This example has shown the general template for interacting with a news service. The program opens
the database, selects articles according to a query. performs some computation, and finally returns
the results. In this example, the computation involved fetching the abbreviated version of each

l;;

PR Y
"*'l“' 'y

s

T4 a0t
»
o

2,

PR RN
"',"

A .

D AL

a
ool e

bR
«
)

LA A
ey N
NN,

P A
s

DB = articleDB X some equates
ss = set[string)
as = array[string}

Y
CAA

queryProc = proc (user, password: string) returns (DB, as) signals (NotAvailable)

7
o

ﬁfi‘

begin transaction
nyt: news := Service[news]SLookup("new york times”) abort resignal NotAvailable
articles: DB
shortText: as

7

L
o

5 %3
12

at nyt eval
articies := DBS$accessDB("new york times”, user, password)
except when accessDenied: abort signal NotAvailable end
articles := DBS$artByAuthor(articles, "Vincent Canby")
articles := DBSartByKeyword(articles, "movie")
shortText := as$create()
for art: article in DBSarticles(articles) do
as$addh(shortText, article$shortBody(art))
end
ond

.l' e
"‘."5~-‘ < &

LT

return (articles, shortText)
end except when failure (s: string): signal NotAvailable end

end queryProc

Figure 6-5: A program to determine movie reviews by Vincent Canby.

full: string

at nyt eval
desired: article := DBSfetch(articles, 1)
full := article$fullBody(desired)

end

s
L

WY

l‘s
Ay

X use variable full

A
v

7,

Figure 6-6: An REV request that fetches a full article body.

“€
s '
At

S,

’
3y epegrl ey

]
I'd

%,

selected article and collecting the abbreviated articles in an array. We used REV to compose several
articleDB operations into a single request, and we used a remote type (articleDB) to avoid returning
all the information to the client immediately.

AANY
.._J_’

v

Our second example shows how REV supports general queries much more efficiently that an RPC

»
-

N
<4
[}

approach. The procedure in Figure 6-7 answers the question "Who wrote the New York Times

articles with the highest priority?” Once the client-service binding is established. the REV approach

l'c L 4
o

"{‘](“lf‘ n'. s
ot
P AU LY 4

\"c 'A.
LY

- e -

- 114-

requires one remote invocation. An RPC implementation requires three remote invocations: the first
to open the database, the second to get the priorities, and the third to fetch all articles with the
highest priority.13 The RPC implementation returns all articles with the highest priority, while the REV
implementation returns only the authors of these articles. Unless the articleDB interface or the
news service is extended, RPC programs can not have the service project the results of a query onto
one or more article components. An REV programmer, in contrast, can combine primitive operations
in an arbitrary way to have the service do the projection. This reduces communication and increases
performance.

queryProc = proc (user, password: string) returns (set[string]) signals (NotAvailable)

DB = articleDB X some equates
ii record[priority: int, number: int]
sii = sot[i1]

ss = sot[string]

begin transaction
authors: ss
nyt: news := Service[news]$Lookup(“new york times") abort resignal NotAvailable

at nyt eval

articles: DB := DBSaccessDB("new york times", user, password)
except when accessDenied: abort signal NotAvailable end

priorities: sii := DB$priorities(articles)

if siiSsize(priorities)=0 then abort signal NotAvailable end

info: i1 := siiSany(priorities)

max: int := info.priority

for info: i1 in siiSelements(priorities) do
i1f info.priority>max then max := info.priority end

ond
articles := DB$artByPriority(articles, max) X oo
authors := ss$create()

for art: article in DBSarticles(articles) do
ss$insert(authors, articleSauthor(art))
end
end X REV request
return (authors)
end except when failure (s: string): signal NotAvailabie end

ond queryProc

Figure 6-7: A program to determine authors of high priority articles.

The following approach, which an RPC programmer may use, sends less data than the preceding
RPC approach but requires an additional remote invocation. The extra invocation occurs just after
the assignment statement marked with three asterisks in Figure 6-7. This invocation uses

13 s
In addition 1o the procedures in the article DB teiface we let an RPC pregrammer have a sangle remote procedure that

returns gl articles matching a given pnonty subject, author, keyword. and linestamp combmnation

AR A s §

. 8 4 & 0 ¢

e s a8 a b

-118.

articleDB$authors to return to the client the authors and the number of high priority articles each
wrote. The REV approach, however, will outperform this RPC approach because it does the same
processing but requires fewer remote invocations and transmits less data to the client.

This example has shown how REV can outperform an RPC approach when the "right" remote
procedure is not exported by the service. An REV programmer can construct such a procedure and
have it execute at the service. An RPC programmer, in contrast, must use the routines exported by
the service and do the remaining processing at the client. The RPC approach often requires several
remote invocations, while the REV approach often requires only one. Because an REV request can
often eliminate unneeded information at the service, an REV approach usually needs less
communication than an RPC approach.

Our next example is the first one to use a RemoteRecord, and it does so to keep client data at the
news service between REV requests. Suppose the user always wants to disregard certain articles.
For instance, the user may want to avoid all news summaries, front page layouts, photo captions, and
articles containing certain keywords. One method of implementing this capability is to have the client
augment each query with these standard restrictions before using REV to execute the query. The
disadvantage of this approach is that the client sends the same restrictions to the service with each
request. A more efficient method is to install the standard restrictions at the service once and access
them when necessary. -

Assume the standard restrictions consist of a procedure with the following type specification:
standardQuery = proc (articleDB) returns (articleDB).

The following REV request installs standardQuery at the service:

filter = proctype (articleDB) returns (articleDB)
rfilter = RemoteRecord[proc: filter] X remote filter
sq: rfilter

articles: DB

at nyt eval sq := rFilter${proc: standardQuery} end

The next REV request restricts a query by invoking the procedure in the RemoteRecord on the
articles that match the query:

at nyt eval
articles := . . . X initialize articles from user query
articles := sq.proc(articles) % apply standardQuery

Once installed at the service. the copy of the procedure standardQuery remains there until the
client or service breaks the binding between them. The client transmits only a global name (and not
the entire procedure) when the variable sq appears in an REV request.

This example has shown how RemoteRecords let the application programmer keep client data at a

A

oy |
]

ek

|

d

»
s

F A
5 &
<77,

)

o ¥ o
-
-4

P
‘.
. !

PRI, !

ety %y
UL

[1%

R
‘l’.""‘ y
LA

N

W
v e

T Jn Jn TR IR
B AL
o ‘l:l.’
' OO R

A

X

N
Py

T NG
P I'.("’ -

N

i
. l"‘l.".,‘
)

vy

e
-4 B

P
;f't' A

et
“h
P
P
»
v,

.
ot el

v
INALAA

{*‘l'. t" o4
AAO
id

o e
] 'f./."
‘.l' ‘Y

I'4

h ',
PR

LY

\

.
ot

Al

~

\ -

L Y

e
4

-116-

service between REV requests. We used a RemoteRecord to avoid sending the same object to the
service with every REV request. RemoteRecords may also be used to keep (part of) the results
computed by an REV request at the service.

The remaining two examples show how REV can integrate different information sources. Suppose a
user can access three news services: the New York Times, Associated Press, and United Press
International databases. REV can hide the location of articles by sending each query to all three
services and then merging the responses. Figure 6-8 shows part of a program that combines articles
from all three news services. The program respects the autonomy of individual news services, which
may be supported by completely different organizations. As long as the nodes export the same
service (i.e., news), integrating disjoint databases for queries is straightforward. REV lets the query
language be independent of the news services, which simplifies application programming.

DB = articleDB X an equate

nytUp, apUp., upiUp: bool := false
nytData, apData, upiData: DB

nyt: news := Service[news]SLookup("new york times")
except when NotAvailable: nytUp := false end

ap: news := Service[news]SLookup("AP")
except when NotAvailable: apUp := false end

upi: news := Service[news]SLookup("UPI")
except when NotAvailable: upilp := false end

X If no accessible databases, stop here
1f bool$not(nytUp | apUp | upiUp) then signal NotAvailable end

X Submit queries to all news services that are up.
X As before, fetch full articles on demand.

Figure 6-8: Integrating three different news services.

If the three nodes exported different different kinds of news services, REV could be used to hide their

" differences from the end user, assuming each node exported enough general operations. An REV
programmer can construct new "remote procedures” that execute at a service, while an RPC
programmer can not.

Our final example uses a nested REV request and compares information kept in different databases.
A user who wants to know what subjects are currently covered by the AP database but not by the UPI
database would execute the code in Figure 6-9. The outer REV request is sent to the AP service,
while the nested REV request is sent from the AP service to the UPI service. Relocating the execution
of procedure subjects strips the article count at each news service. An implementation without REV

has higher commumcation costs because it also sends the articte count informahion to the client.

v
.
.t
et
.

L

ll { l- l' "’ ..' "

. - 117 -

! ss = sot{string] X an equate

subjects = proc (db: articleDB) returns (set[string])
subjCount = record[subject: string, number: int]
scts: sot[subjCount] := articleDBSsubjects(db)
DBsubjects: ss := ss$Screate()
for sct: subjCount 1n set[subjCount]Selements(scts) do

ss$insert(DBsubjects, sct.subject) end

return (DBsubjects)

end subjects

R
R

'

e
= s

begin transaction
answer: ss
« at ap eval
apArticles: articleDB := DB$accessDB("AP", user, password)
S except when accessDenied: abort signal NotAvailable end
APsubjects: ss := subjects{apArticles)
UPIsubjects: ss

at upi eval
. upiArticles: articleDB := DBSaccessDB("UPI", user, password)
A except when accessDenied: abort signal NotAvailable end
: UPIsubjects := subjects{upiArticles)
end X nested REV request
) answer := ss$difference(APsubjects, UPIsubjects)
X end X outer REV request
. on& except when failure (s: string): signal NotAvailable end
Figure 6-9: Comparing AP and UP) subjects.
: S
", :.__:: i
‘: :-\"-\ g
- . o . ~
~ This example shows how nesting two REV requests might reduce communication in comparison to %
two separate REV requests. If two separate requests are used, the AP subjects and the UP! subjects -~
j." are sent to the client, which calculates the difference between these sets. If the requests are nested,
. the UP1 subjects are sent to the AP service, which calculates the difference between the UPI subjects
",; and the AP subjects and returns this difference to the client. If the difference is significantly smalier
than the set of the AP subjects, nesting the requests can significantly reduce the size of the second
. result message. The first request message, however, is larger when the requests are nested, as this fycny
- request message must contain the code portion of the nested request. b
; iR
, 6.3 Discussion o
N -
:: The examples in this chapter attempted to convey two points. First, REV gives the programmer e
> fine-grained control over the location of processing. Once REV has been used to give a program the -:::«:'
desired semantics, the programmer can partition the program into fragments for local and remote A
= processing to improve performance and reduce communication. The ability to nest REV requests can
' improve performance and reduce communication even further. e
- :'.‘:*.
. SN
r\.v.A

& v 5
LA
. "

L YNl S

M
LR

-118 -

Second, remote objects give the programmer fine-grained control over the location of data, which is
very useful when the programmer must reduce the amount of communication between nodes. Either
the service or the client may introduce remote objects. A service introduces remote objects by
exporting a remote data type such as articleDB. Such remote data types support the partial
transmission of results. This technique, which can improve response time, reduces communication
when a user does not examine all the results in detail. A client can introduce remote objects by using
RemoteRecords and RemoteArrays, which let an REV programmer keep an object at the service
between REV requests. An REV programmer can use these types to keep the results of an REV
request at a service or to avoid sending the same data with each request to the same service.

REV and remote types are simple mechanisms that give an application programmer control over how
and where a program executes in a distributed environment. Some of this control is used to give a
program the desired semantics, but the rest is available for tuning performance.

T T S . . . - - . = R- ’_- .
. AT Y. T S . -, P Y - - . - . ~. - - . . o .
) 3) d . = > ¥y . - - »
et 8 L SN ERIIAI N Xt e e tetnw et o te et o
R L IR T SN I S SR WY WD AP\ N Y wN TN N L P

RS PAIL P

T
HSRGENS &

o
%

-119-

Chapter Seven

Experience and Evaluation

This chapter summarizes our experience with REV. It describes our prototype REV implementation,
presents representative performance measurements, and offers advice to future REV implementors.
We also give advice to service programmers supporting REV and application programmers using
REV. Finally, we evaluate the novel ideas in the thesis and present areas for further work.

7.1 A Prototype Implementation

We constructed a prototype implementation of an REV mechanism to facilitate experimentation,
debug algorithms, and evaluate the amount of work required to implement a production system.
Absolute performance was not a concern. Our computing environment consisted of two Symbolics
3600 Lisp Machines connected by a local area network. Both machines supported the LISP dialect
Zetalisp [45]. We used LISP because of its flexibility and its uniform treatment of code and data. For
simplicity, we assumed the existence of strong type checking and prohibited exceptions. Conditional
statments were allowed but toop.” were not. Our experimentation language contained the following
built-in types: integers, characters, booleans, strings, records, arrays, and procedures. All these
types were local, transmissible types. We added new types as necessary. Some of the new types,
such as services and windows, were remote types.

Most f the compue-time requirements for REV were implemented. We built a use-definition package
and converted implicit REV requests into explicit REV requests. The code portion of each REV
request was type-checked against the definition of the service class that would execute the request.
Stubs were generated for both the client and the service. We did not support client-supplied routines
or the compilation of interface and service descriptions. A small database of procedure, interface,
and service specifications was built manually. Our procedure folding algorithm did not handle
exceptions or local transfers of control.

Except for a name lookup service and a transaction mechanism. the run-time requirements for REV
were supported. We implemented call by value overwnite and supported remote types by generating
and transmitting global names. Source level procedures were transmissible. For simplicity, we did
not transmit compiled code. The external representation tor source code was a compressed form of
list structure. The remaining portion of the run-time environment consisted prnmarily of existing Lisp

Machine software. The chaos datagram package transterred packets from one node to another.

-120-

Ensuring that the code portion of every decoded request was compatible with Zetal.isp obviated the
need for a new interpreter. Requests were executed by calling apply, which invoked the resident
Zetalisp interpreter.

Although absolute performance was not a concern, we measured the time to perform simple remote

operations:
packet exchange 20-25 msec.
null REV request 100 msec.
X := X*x 121 msec.

Our REV implementation was based on the ability to send a string from one Lisp Machine to another
and receive a string reply. When both strings were empty, the round-trip time for a packet exchange
was 20-25 msec. A null REV request, which has no arguments, no results, and an empty procedure
body, took a tenth of a second. Executing a remote integer multiplication took slightly longer. We
used six hash tables to implement call by value-overwrite: three at the client and three at the service.
Creating a small hash table took about 10 milliseconds, which shows that hash table creation
accounted for much of the overhead on each REV request.

To test our thesis that REV may be viewed as an optimization, we compared the time to execute an
REV request with the time to execute the corresponding collection of RPC's. Since we had no RPC
package, we simulated an RPC with a simple REV request and used the following formula to estimate
its performance:
RPCtime = 0.5 * (REVtime - NETWORKtime) + NETWORKtime

NETWORKtime is 20 milliseconds, which is the time for a packet exchange. Except for the packet
exchange, we assumed that the REV request was twice as expensive as an RPC. For the objects we
transmitted between nodes, this is an upper bound on the performance difference between call by
value and call by value-overwrite.

Figure 7-1 contains a procedure with three REV requests. An array of size three (smallArray) was sent
to the service twice and returned to the client twice. The average time to execute P, which incurs
three REV overheads, was 466 milliseconds. Using the above formula, we estimated that the average
time to execute P with three RPC overheads was 263 milliseconds. !f we assume the RPC's use call
by value the array is sent to the service twice and never returned to the client. Executing P as a
single REV request, as shown in Figure 7-2, incurs only one REV overhead. The array is sent to the
service and returned to the client only once. The average time to execute P in this case was 183
miliseconds. Figure 7.3 summarizes the ditferences between the two REV executions and the

estimated R’C execution.

In dhscussing the compile time and run-time requirements of an REV mechanism. the previous

chigpters bhave conveyed much of the detaled structure of our prototype implementation. At this

N
P!
P P

wha N
o

o

LS
o

P = proc (aNode: built-ins, a: array[int], x, y: int) returns (int)
x := at aNode eval a[x] end
y := at aNode eval a[y] end
x := at aNode eval x*y end
return(x)
end P

smallArray: array[int]} := . . . X initialize smallArray
aNode: built-ins := Service[built-1ins]SAny()

P{aNode, smallArray, 1, 2)

Figure 7-1: A procedure with three RPC’s.

proc (a: array[int], x, y: int) returns (int)
:= a[x]
;= afy]
1= x%y
return(x)
end P

X< X 0

smallArray: array[int] := . . . X initialize smallArray
aNode: built-ins := Service[built-ins]$Any()

st aNode eval P(smallArray, 1, 2) end

Figure 7-2: A single REV request instead of the three RPC's.

program arrays integers average
transmitted transmitted time

466 msec.

263 msec. (estimated)

« 1 2
LI

.

.3
LA

183 mscee.

.

.t
R

b,
(4

P
» ‘v."':a']

Figure 7-3: An estimated comparison between REV and RPC's.

A
*y

TeTe 1 8

point, we present our reflections on implementing an REV mechanism. Whenever possible, REV

S g4 0'h LAt Sad Sl SefolaiaSl \ulle AL, Bhe 2ie gt ol A S R At S Stde Ay aal 8 F py YRL N A AL L L Sl G Sl St LA

- 122

implementors should augment an existing RPC implementation instead of beginning from scratch.
o Much of the compile-time and run-time support for RPC, including any modifications done for high
performance, can be used for REV. Communication primitives and protocols for RPC are applicable
to REV. Stub generation is similar in both schemes. For immutable types, call by value is equivalent
to call by value-overwrite. Unless optimizations are desired, no changes are necessary to their put
and get procedures. Slight changes have to be made to the put and get procedures of mutable
types using call by value-overwrite. The encoding and decoding contexts (REVcontext) must be
o extended to manage external names, as explained in Section 3.4.1. Excluding the need for an
. interpreter, the remainder of the conversion process consists of implementing procedure
transmission and accommodating syntax extensions, service definitions, and implicit REV requests
(use-definition analysis) in the compiler.

. *s ‘I .‘ .l ‘n

LNy N

. The introduction of REV need not degrade RPC performance. REV requests that are really RPC's
could be recognized and treated as such. The stub generator can avoid much of the encode and

X decode overhead by capitalizing on REV requests that have simple argument or result types. In short,

application programmers should not have to pay for the generality of REV unless REV is required.

7.2 Hints for the Service Programmer

The following discussion contains our advice to service programmers supporting clients that use
REV. We first discuss the kinds of routines a service should export and then discuss how the service
programmer can constrain the application programmer. Finally, we consider the relationship
:‘ between service programmers and application programmers.

When RPC's are used, a service exports routines tailored to a particular application. Because not all
applications will use the full power of REV, services should continue to export these specialized
routines.

B
i,

Jtate T e

In addition to specialized routines, REV services should export general routines and let the
application programmer compose them arbitrarily. Even inexpensive routines can be exported, since
good application programmers will structure their code to minimize REV overhead. Services should
also export routines that take routines (or closures) as arguments, since they let the application
- programmer customize existing service routines. lterators, for example, can and should be exported.

An application programmer, who often wants maximum fiexibility when partitioning a program, wants
the service to export as many interfaces as possible. On the contrary, a service designer does not
:: want to burden each service node with extraneous requirements. A useful compromise is to export
(some of) the interfaces whose implementations are guaranteed to exist at the service.'* Although

14 .
As explamed below, g service designer may withhold service itettaces to constian the apphcalion programmer.

e e 1

Sl e)

s

Y g E . N Fidil) Ca)
- - l\-“ - - . - . - - kY . - - - . &4 - - - - - e T a¥F e aTaTs »

-123-

this approach seems to put implementation before design, the relevant interfaces are known at design
time. A simple analysis of the interfaces exported by a service yields a fair amount of information,
under the assumption that a service able to contain an object of type T implements interface T. By
this assumption, the service implements all types mentioned in the exported interfaces, not only the
types defined by the interfaces. The additional types mentioned in the interfaces for the unexported
types must also exist at the service, and so on. In technical terms, the net result is the reflexive,
transitive closure of type dependence beginning with the exported interfaces. A set of interfaces is
closed if and only if it equals its type closure. Exporting this closed interface set places no new
requirements on a service yet provides application programmers with a moderate to large collection
of relevant routines. The routines are relevant because a program that encounters an object of type T
is likely to invoke routines from interface T. We suggest that services export closed interface sets.
Taking the closure of a service definition never burdens a service yet may improve the utility of the
service to an application programmer.

Having discussed some of the reasons for enlarging a service definition by taking its type closure, we
now consider some restrictions on service definitions and the particular benefit each provides.
Service designers may not want to burden their nodes with nested REV requests that can not be
short-circuited. The syntax for service definitions could be extended to inciude such a restriction.
Another restriction is to remove the RemoteRecord and RemoteArray interfaces from a service
definition. This prevents programmers from storing client data at the service between REV requests.

The responsibility for providing a useful computational environment to end users rests with both
service programmers and application programmers. REV permits a flexible division of labor,
depending on their relative numbers. For example, service programmers should view application
programmers as independent service programmers who might unexpectedly provide new ideas or
implementations. Heavily used REV requests are candidates. for new service routines. Because the
design, implementation, and debugging of these routines are already done, a service programmer
merely examines existing candidates instead of developing code from scratch.

7.3 Hints for the Application Programmer

We now present our recommendations to application programmers using REV. The main rule is to
assume that everything is remote and scattered. Different service capabilities should be thought of as
denoting different services, and each remote object should be thought of as existing at a distinct
service. Capitalizing on REV under these worst case conditions requires a programmer to group
together operations on a single remote object. The next step is to group together operations on
objects known (or thought) to be at the same service. The desirability of an intervening operation that
manipulates client data depends on the probability that it is exported by an arbitrary service as well as
its effect on data communication.

. N
.........

R
AT g
] L)
u'.v"/",
LI

"y
1

&

R
oK

- » ¥
AN
L)
‘-'1‘

.‘5

)
'O"" " i
s

"/”/."../
‘v %
LY

v
‘y
»

v" y

-]

Ve
s e
. e

S L Y

LR N A N

P

Caa s

1 T
el e

A e

e

PLEFUIR

A Y
-
’

- 124 .-

The degree to which these guidelines are followed depends on the trade-off between readability and
performance. The structure of an REV-based program may look unusual to a traditional programmer,
who might object to the rigid discipline we are apparently advocating. Two points need to be
remembered. First, the guidelines apply only to instances of remote types. In most parts of most
programs, we expect such objects will be in the minority. Second, what appears unusual at first
glance may become acceptable once we gain experience with REV. In fact, the additional discipline
mandated by performance considerations may actually improve programming style. Operations
involving a particular remote object will be limited to certain sections of the program. Although
programs may be harder to write (initiaily), readability and maintainability should improve.

Adding REV requests to an existing program will often require local code rearrangement. Reordering
statements wherever possible to meet the above guidelines will help. Other source-to-source
transformations may also be applicable. For instance, consider a single loop containing two REV
requests to two different services. Furthermore, assume the two services are the same for each
iteration of the loop. Loop splitting should be used in an attempt to create two REV requests and two
loops, such that each REV request contains one loop.

7.4 REV Drawbacks

An REV mechanism poses three problems that must be addressed:

1. implementation overhead;
2. computer security; and
3. lack of improvement in performance and functionality.

Production-quality solutions exist for the first two problems, but the third problem depends on the
computational environment and the distributed applications.

First, REV has compile-time and run-time costs. REV complicates binding and type checking. Implicit
REV requests require use-definition analysis and procedure folding. Every service node must have an
interpreter for the language in which the REV requests are written. The alternative, dynamically
compiling and then executing a request, will often take longer than using RPC’s. Requests could be

-precompiled, but the feasibility of precompilation depends on the homogeneity of the environment.

A second problem is computer security. REV and remote types exacerbate the security issues that
must be considered in an RPC framework, such as service availability and protection. An RPC service
programmer protects a node by controlling the routines that a client may invoke. An RPC service
need not isolate concurrent requests from different clients; a single. shared address space will
suffice. Because a trusted team of programmers implements the service routines, nonterminating
RPC requests are not a problem.

On the contrary, REV service programmers must be suspicious of REV requests. An REV request

1

~ .

08

4

5
FA A/

v

LXs
L]

o

f,(-n' [

) A A 4
L e I)
L

oL
[]

B

. .‘.._-/..

v

§

e
" .

¢ S 'y

L'g

1,
LAY

v

4

AR
‘l.. *»

Ly

Y
CRRA

v b & G0

f‘ l f

LS

-y

)
Y "

/

I

'’

4

e e T e e e e e
-~ "‘" 4‘5 .'d"‘o'5-" w o .

4

-
[N

may run for a long time; in fact, there is no guarantee that it will terminate. To prevent program bugs
or malicious clients from intertering with the requests of other clients, protection mechanisms
developed for time-sharing systems will be necessary. Separate address spaces, authorization
checks, resource accounting, and preemptive scheduling may be needed.

Finally, REV may not improve performance or provide any new functionality. Consider RPC's whose
execution takes substantially longer than the REV overhead. Coalescing several such RPC's into a
single REV request will not improve performance and may actually degrade performance because of
the space and time overhead needed to support the advanced semantics of REV. If the RPC's form a
functionally complete set of routines, REV yields no new functionality. The utility of REV depends on
the communication channel, the exported routines, and the intended applications.

7.5 REV Advantages

REV is a simple mechanism that we expect will provide three benefits. Remote evaluation may:

1. increase performance by reducing processing time or network communication;

2. induce service designers to export additional routines that give application programmers
new power; and

3. simplify the construction of distributed applications.

We discuss each of these benefits in turn.

7.5.1 Increased Performance

REV, which lets the application programmer partition a program for distributed execution in many
ways, can realize a substantial reduction in communication requirements or time scales. An RPC
programmer, in contrast, must accept the unique partitioning of a program implicitly imposed by
service programmers.

REV may reduce the amount of communication between a client and a service, which can extend the
apparent capability of clients with limited processing power or storage capacity. The reduction in
communication may be substantial for database applications. A user extracts information from a
remote database by submitting a request and then waiting for a response. A request that typically
examines a sizable component of the database yet returns a comparatively small amount of
information is called a filter. Consider an application that needs a filter that is not directly supported
by the database. A programmer can use REV to construct a customized filter that executes at the
database. If the size of the REV request is negligible, an REV implementation of a filter requires much
less communication than the corresponding implementation without REV. If the communications
network is slow or expensive, or if the client node has limited storage capacity, REV is the preterred
mechanism for implementing filters. In those cases, an application programmer using REV can
relocate processing to reduce communication. Unlike data compression schemes, REV does not
require more processing to encode and decode the data that is transmitted.

Tatet et et MLl
-

“w " .

*

<

N
r s

'f.'f"

”,
&

Y

v

vy
¢

)
.
D

g Jarg
'1 i 5 ';’". ‘v,

L
.'l‘

O o

Ay s

<y

)

[}
'!'.‘ PGy l'.‘l

£
17

)

Some filters select those components of a database that satisty a predicate. If the routines exported
by the database easily express the predicate, REV should be used. For instance, a user of a news
service might be interested in all movie reviews by a famous reviewer. Other filters reduce the amount
of information returned to the client by summarizing the information contained in each (selected)
component. For instance, given the set of high priority articles at a news service, a user might be
interested in the authors of those articles.

Another example of filtering concerns dictionary maintenance. Dictionary editors add new words to
the dictionary and drop unused words as the language changes. Although reading newspapers and
periodicais is a useful method for spotting new words, the designers of a news service probably never
thought (seriously) about supporting dictionary maintenance. f the service designers had the
foresight to support REV, the database of articles is immediately useful to dictionary editors.
Although discovering novel uses for existing words is a difficult task to automate, discovering brand
new words is not. Consider the brute force approach. Every month an REV request, which examines
every article that appeared in the previous month, is sent to the news service. The request adds each
word in each article to a set of words and returns the word set to the client. The client sorts the word
set and then compares it with an on-line dictionary. The set of new words, along with close matches
for the unavoidable spelling errors, is finally presented to the dictionary editors. An editor could see
the articles in which each new word appeared by submitting the appropriate query to the news
service. A client using only RPC's must fetch the entire collection of last month's articles and then
compress the information into the word set. The REV approach filters the information at the news
service instead of at the client.

It may be possible to avoid the brute force implementation in this example. A news service supporting
keyword access to articles probably maintains a mapping from keywords to articles. Such a mapping
would be extremely useful to the dictionary editors, even if commonly occurring "noise" words are
not present. If the mapping is accessible to clients, an REV request that iterates over all pairs in the
mapping and saves the word component of each pair generates the word set.

This example, which combined a newspaper database with a dictionary to assist dictionary editors,
shows how REYV facilitates the smooth integration of independent databases. Combining a dictionary
with a thesaurus yields a service that is better than either alone. Associating a "yellow pages”
database with an electronic street map is yet another example of how simple information sources may
be combined to provide a new service. Joining independent databases for a new application typically
requires that data be extracted or updated in a manner not expected by the service designers. While
an application that uses several independent databases could be implemented with RPC's, their lack

of generality will often hamper the application programmer and impose intolerable performance
penalties on the resulting implementations.

Besides reducing the amount of communication between a client and a service, REV may improve
performance by reducing the number of times control is passed between the two nodes. An

application without REV may repeatedly access a particular service because of its specialized
hardware or data. If communications overhead dominates the execution time for most of the routines,
combining the routines into a single REV request may substantially improve performance. REV
amortizes the communications overhead over several former remote invocations.

One example is a service with an array processor. If an application performs four array operations in
a row and needs only the final result, REV should be considered. Similarly, if an application performs
four operations on the same array and needs all four results, REV could again be used. The same
argument applies to four operations on four different arrays. In these examples, REV reduces the
number of times control passes between the client and the service. In the first two examples, REV
also reduces the total amount of data communicated across the network.

Another example in which an application repeatedly accesses a service involves a on-line dictionary.
Assume the dictionary service exports dictionary$liookup as well as the built-in types.
Dictionary$lookup takes a string and either returns the word'’s definition or raises an exception
when no such word exists. One problem with conventional dictionaries is that a person looking up an
unknown word is often forced to Jook up one or more words that appear in the definition of this word.
REV efficiently supports a smart dictionary that performs expected lookups in advance. When a user
asks for the definition of word X, an REV request could look up X as well as the (unusual) words in
the definition of X. Another extension using REV transforms the dictionary service into a spelling
corrector. In an RPC implementation, each attempt at correcting a misspelled word requires a

separate remote invocation. Correcting a word with REV requires only a single remote invocation. If
the dictionary service exports the RemoteRecord interface, the client can store the correction
algorithm at the service for the duration of the binding between the client and the service.
Transmitting a sizable correction algorithm only once may be useful during a session in which the
user interactively corrects many words. '

Our final example of an application that repeatedly accesses a remote node involves an airline flight
reservation system. Each traveler has preferences regarding the itinerary, dates, departure and
arrival times, stopovers, airlines, ticket class, and cost. Efficiently expressing all possible preferences
and combinations of preterences with only RPC's is nearly impossible. On the other hand, REV
permits a wide variety of preterences to be sent to the airline service. In more technical terms,
arbitrary algorithms approximate preferences better than a fixed "universal" preference algorithm. A
client using RPC's has two options: use the service's preference algorithm or extract the necessary
information and evaluate all possibilities locally. Using REV to send the user's preference algorithm
to the service generates trip plans more etficiently by eliminating unacceptable plans early. A more
focused search may let the REV implementation find better plans in less time.

The dictionary and airline examples reflect search problems in which the next action depends on the
presence or absence of data as well as the current state of the search. Unloss the search strategy is
built into the service, applications without REV are limited. Since RLV mukes code transmissible, the
particular search strategy can always be sent to the service and applied to the database.

(N g g ar g0 gu RS EF Ry, 1o

YA

-128-

7.5.2 New Capabilities

Besides improving performance, REV may give the application programmer new capabilities.
Although theoretically REV is no more powerful than RPC's, REV may induce service designers to
support a wider variety of routines including those with procedures or closures as arguments.
lterators are one example.

REV reduces the effect of performance on the choice of service routines. A simple routine whose
execution time is dwarfed by the RPC overhead is an unlikely candidate for a traditional remote
procedure. An application programmer using REV, however, can often use such a routine efficiently.
For example, a traditional mail service may not export routines that parse the header of a message in
a mailbox. A client using RPC's that wants to retrieve certain messages based on their headers must
retrieve all the messages. A client using REV, in contrast, can examine each message header at the
service and retrieve only the desired messages.

7.5.3 Eftect on Distributed Programming

REV simplifies the design and implementation of services, because service programmers do not have
to provide all the software that executes at a service. Application programmers can construct
customized facilities for the applications they write. Thus service software can be smaller, more
stable, and easier to debug.

REV is also useful to application programmers. REV is more powerful than RPC's but introduces only
minor syntactic extensions to a programming language. Like RPC implementations, an REV
mechanism hides the bookkeeping and communication details from the application programmer.
Location-independent REV requests assist a programmer tuning the performance of a distributed
system. These requests are recognized by the compiler and do not change program semantics. This
contributes to network transparency and facilitates reconfiguration. In short, REV is a simple but
powerful technique for implementing and tuning a distributed system.

7.6 Key Ideas

This thesis has proposed and investigated a new primitive for constructing loosely-coupled
distributed systems. Remote evaluation is the ability to send an expression to a remote node and
evaluate it there. We assumed that the overhead for invoking a remote procedure was much greater
than the overhead for invoking a local procedure and that a transaction mechanism spanned the
distributed system. Our goal throughout the thesis has been to give the programmer fine-grained
control over the location of processing and chient data in a distributed application. A key constraint
was that this relocation of processing and data should not affect program semantics for location-

independent requests. The solution, RE.V with implicit procedures and remote types, is moderately

AR
& ¢,

X

)T
)

Ky -"'(.'1 I
4

.
-
v .n‘-' 3
e [
ior” oF .

S X

o

N
NS

complex. Since simpler systems achieve many of the benelits REV provides, we describe the set of

ideas behind our solution: oAS,
e Transmissible Procedures: Procedures with no free variables may be sent to a service R
and executed by the service as long as all routines accessible from the procedure are By
known at link time. Furthermore, every routine invoked by the procedure at the service ;-:I'
must accompany the procedure or exist at the service executing the procedure. The . '
programmer can use such a procedure as an argument to a remote procedure or as a “"‘,::

new remote procedure. (Chapter 2) ' .

o
P
e Services: We characterize a remote node by the set of interfaces it exports. This O
information lets the compiler verity the validity of a transmissible procedure and encode '}I‘_}‘-
it. Because the application programmer can compose several service routines into a DR
single REV request, services can export general routines in addition to routines tailored -
to a specific application. (Chapter 2) _, ¥
- e REV Semantics: Explicit REV requests let a programmer relocate the execution of a ::-::_'j
transmissible procedure from the client to a service. We decouple the transaction ;:::{'
structure from the way a program is partitioned into components for local and remote N
execution. Each REV request must run as part of some transaction that is aborted if the A
request does not complete. REV requests, like ordinary procedure calls, use call by
sharing. (Chapter 2) N
Y
e Location Independence: Service programmers declare the location independence of f':;'.}-.
exported service routines. A routine is location-independent if its semantics does not S,
depend on the node that executes it. A location-independent REV request imports only N
location-independent routines and preserves program semantics. (Chapter 2) :l:. -l
NN
e Call by Sharing in a Distributed System: We implement call by sharing with call by value- :':.'-'
overwrite, transactions, and compiler-enforced restrictions on service programmers. -:::\‘
(Chapter 3) -
e Implicit REV Requests: We let the programmer relocate the evaluation of a closure whose '-Z':_-j'.-
code is apparent at compile time. Procedure folding converts each implicit REV request e
to an explicit REV request at compile time. Implicit REV requests simplify the use of REV ':'j'_:-’_
without impairing program readability. They directly support remote iterators and other
routines with closures as arguments. Finally, implicit requests bring us one step closer to
an automatic program partitioner. (Chapter 4) T
e Remote Data Types: We developed a naming mechanism that lets one node refer to an ',
object kept on another node. The naming mechanism is integrated into the type system '_{.; :'
via remote data types. Only the global name of a remote object, rather than its abstract "
value, is transmitted between nodes. Compiler-entorced rules for implementing remote —
types guarantee that call by value-overwrite implements call by sharing and that location- :-'.;-'.
independent REV requests preserve program semantics. (Chapter 5) '_:'_:’ o
o ’:.
e RemoteRecords and RemoteArrays: These system-delined remote types are identical to "
the record and array types except for transmissibility. They give the application]
programmer fine-grained control over the location of client data. (Chapter 5) 'Cj-."‘

Although these ideas mesh nicely. designers of programming languages and distributed systems do

St et - e Sttt A i ok e A B Dt g I S i e S AT e e

} -130.-
L]
'; not have to incorporate all of them to realize substantial benefits. The appropriate ideas depend on
] the computational environment, the sophistication of the programmers, and the intended
applications.
o+
- 7.7 Areas for Further Research
&% Many questions concerning REV remain unanswered. Once a production system has been built and
i3 .
practical experience with REV is gained, alternatives we rejected may need to be reexamined. Some :
- of the areas we feel deserve more attention are primarily theoretical: ’
.4 e Enhanced Compile-Time Analysis: Use flow analysis techniques to determine which -
mutable arguments to REV requests are read-only and which global names =
f;f accompanying a request denote objects at the service executing the request. e
N e Transmission of Clusters: Let clusters, which are modules that implement abstract data .:Ef'.:l
\ types, be transmitted between nodes. Investigate the implications of sending an instance TN
- of a type to a service that does not export the type.
. ‘ -
3 e Muitiple Languages: Let applications written in different languages use REV to interact ?-:p
" with the same service. Specily the semantics of inter-language communication and :{:_‘
:‘. investigate procedure transmission. Design a method for specifying the control X %
. constructs that a service "exports.” s £a
- e Automatic Program Partitioning: Formulate a cost model of distributed computation and DRDA
- let the compiler relocate processing with location-independent REV requests. RN
N 35T
; The remaining extensions to REV are practical: N X
- e Practical Experience: Design, build, and tune a production REV system. Implement real O
. applications and evaluate the usefulness of various REV features, such as implicit o
- requests and remote data types. AN
- EAS
. e Optimizations: Let the service cache the code portion of repeated REV requests. ‘I-""
Investigate the utility of suggesting that a service do background compilation or dynamic s
._' compilation of particular requests. Let the programmer or compiler make these '-:.j
R suggestions and measure the performance changes. -
': e Precompilation: Evaluate the level of service protection when requests are precompiled -
by the client. Measure the changes in code size, communication time. and performance. "
Evaluate the utility of a trusted compilation service that attaches a digital signature to the ~
. code it compiles. A
", '_-\:u.
. e
- e
'-.:$
- ‘f."p
: 5
‘. cj-.
o [N
. Ltt"
B [SALN

Ve AP

Fa¥a'20a%al

DR NI T W

-131-

7.8 An Evaluation

In this chapter we used many realistic examples to illustrate the advantages of REV. We usually
outlined an RPC implementation of a system and then described an application for which the
procedures exported by the service were not useful. The REV-based solution we proposed naturally
solved the problem. A staunch believer in remote procedures might declare that a similar solution
using only RPC’s is possible. While conceding this point, we would continue the debate by describing
another application for which the extended RPC interface was not useful. If the RPC defender
augmented the extended interface, we would again propose another problematic application. This
endless debate reflects a key motivation for REV. Because of unexpected applications, an “optimal”
RPC interface probably does not exist for many kinds of services. Moreover, the user community is
likely to be much larger than the service implementation team. Therefore, for most new applications,
users should take the initial responsibility for providing useful service routines.

Conventional programming languages offer a useful analogy. Early languages had a fixed set of
built-in types but gave the programmer little or no opportunity to construct new types. The inability to
define new types was eventually recognized as a serious shortcoming. Language designers solved
this problem by including simple but powerful mechanisms that let a programmer define new types
that have equal standing with the built-in types.15 In a distributed computing environment, an RPC
service exports a fixed interface of routines. On the other hand, REV lets the application programmer

compose service routines to create new routines that have equal standing with the exported routines.

One goal of this thesis has been to convince others that remote evaluation, which is by now fairly well
understood, is both feasible and desirable in a number of situations. REV can improve performance
and provide generality for distributed applications. Besides being easy to use, REV has powerful
semantics and an efficient implementation. REV supports reconfiguration because location.
independent requests have no effect on program semantics. REV increases network transparency,
because both local invocations and relocated invocations use call by sharing. Finally, REV is more
powerful than RPC's: an RPC is a simple REV request that invokes only a single service routine.

Adding REV to a system that supports RPC's is not a difficult task, because the bulk of an REV
mechanism is an RPC mechanism. Earlier in the chapter we listed the set of ideas behind implicit
REV requests and remote types. We hope that these ideas, either alone or in combination, will make it
easier to design and implement distributed computer systems that need both generality and good
performance.

15

Most languages. however, do not permit a progrtammer to redeling special type constructors such as record.

LIRS
»
&

a
.

s
8

T, x
yl.r' '#
[Scovl] L,

+ . &R

v

SN

A

RN
"' Ik"

>

»
», 'v'i
B

Bibliography

Allen, F. E., and Cocke, J.
A Program Data Flow Analysis Procedure.
Communications of the ACM 19(3):137-147, March, 1976.

Atkinson, M. P,
IDL: A Machine-Independent Data Language.
Software Practice and Experience 7(6).671-684, November- December 1977.

Birrell, A. D., Levin, R., Needham, R. M., and Schroeder, M. D.
Grapevine: An Exercise in Distributed Computing.
Communications of the ACM 25(4):260-274, April, 1982,

Birrell, A. D., and Nelson, B. J.
Implementing Remote Procedure Calls.
ACM Transactions on Computer Systems 2(1):39-59, February, 1984.

Bintwistle, G. M., Dahl, O.-J., Myhrhaug, B., and Nygaard, K.
Simula Begin.
Auerbach Publishers Inc., Philadelphia, 1973.

Burton, F. W.

Annotations to Control Parallelism and Reduction Order in the Distributed Evatuation of
Functional Programs.

ACM Transactions on Programming Languages and Systems 6(2) 159-174, April, 1984,

Daniels, D., Selinger, P., Haas, L., Lindsay, B., Mohan, C Walker, A., and Wilms, P.

An Introduction to Distributed Query Compilation in R

In Proceedings of the Second International Symposium on Drstrlbured Databases. September,
1982,

Available as IBM Research Report RJ3497.

Donahue, J. E.

Complementary Definitions of Programming Language Semantics.

In Goos and Hartmanis (editors), Lecture Notes in Computer Science. Springer-Verlag, New
York, 1976.

Eastlake. D. E., Il

Tertiary Memory Access and Performance in the Datacomputer.

In Proceedings of the Third International Conference on Very Large Data Bases, pages
259-267. October, 1977.

El-Dessouki, O.
Program Partitioning and Load Balancing in Network Computers.
PhD thesis, Hlinois Institute of Technology, December, 1978.

U ¢ e Atedlo-aiat v Y al ool Sl 0 At i AIEAR B BULE L & At Rl A M i S AL S gl ph)

......

-133.

' [11] El-Dessouki, O., Huen, W., and Evens, M.
',' Towards a Partitioning Compiler for a Distributed Computing System.
In Proceedings of the First International Conference on Distributed Computing Systems,
pages 296-304. October, 1979.

. [12] Farrell, J.

o The Datacomputer -- a Network Data Utility.

¢ In {First} Berkeley Workshop on Distributed Data Management and Computer Networks,
' pages 352-364. May, 1976.

- [13] Gaines,R.S.
. An QOperating System Based on the Concept of a Supervisory Computer.
Communications of the ACM 15(3):150-156, March, 1972,

[14] Gifford, D. K.
Information Storage in a Decentralized Computer System.
PhD thesis, Stanford, June, 1981.
Also available as Xerox PARC Technical Report CSL-81-8.

[15] Good, M. D., Whiteside, J. A., Wixon, D. R., and Jones, S. J.
Building a User-Derived Interface.
Communications of the ACM 27(10):1032-1043, October, 1984.

. [18] Gordon, M. J.C.
- The Denotational Description of Programming Languages: An Introduction.
) Springer-Veriag, New York, 1979.

[17] Gray, J. N.
Notes on Data Base Operating Systems.
In Goos and Hartmanis (editors), Lecture Notes in Computer Science, pages 393-481.
Springer-Verlag, Berlin, 1978.

[18] Herlihy, M.
Transmitting Abstract Values in Messages.
Master’s thesis, Massachusetts Institute of Technology, April, 1980.
Also available as MIT Technical Report MiT/LCS/TR-234.

M 5‘."".141

[198] Herlihy, M. and Liskov, B.
A Value Transmission Method for Abstract Data Types.
ACM Transactions on Programming Languages and Systems 4(4).527-551, October, 1982,

[20] Jones, A. K., and Liskov, B. H.
A Language Extension for Expressing Constraints on Data Access.
Communications of the ACM 21(5):358-367, May, 1978.

Lr, 02 o s

[21] Lampson, B. W. and Sturgis, H. E.
Crash Recovery in a Distributed Data Storage System.
Xerox PARC, Palo Alto, CA, April, 1979.

[22] Leverett, B. W., Cattell, R. G. G., Hobbs, S. O., Newcomer, .. 4, Reiner, A. H., Schatz, B. R,
! and Wulf, W. A,
An Overview of the Production Quality Compiler-Compiler Project.
Technical Report CMU-CS-79-105, CMU D xpartment of Computer Science, February, 1979.

SOOOD L KAAL

‘. .I .I .l ~

PR)
PR S T Y

[23]

(24]

[25]

(26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

(34]

-134.

Lindsay, B. G., Haas, L. M., Mohan, C., Wilms, P. F., and Yost, R. A.
Computation and Communication in R : A Distributed Database Manager.
ACM Transactions on Computer Systems 2(1):24-38, February, 1984.

Liskov, B., Atkinson, R., Bloom, T., Moss, E., Schaffert, J. C., Scheifler, R. and Snyder, A.

CLU Reference Manual.

In Goos and Hartmanis (editors), Lecture Notes in Computer Science. Springer-Verlag, New
York, 1981,

Liskov, B. and Scheifler, R.
Guardians and Actions: Linguistic Support for Robust, Distributed Programs.
ACM Transactions on Programming Languages and Systems 5(3):381-404, July, 1983.

Liskov, B., Snyder, A., Atkinson, R., and Schaffert, C.
Abstraction Mechanisms in CLU.
Communications of the ACM 20(8):564-576, August, 1977.

Mamrak, S. A, Leinbaugh, D. and Berk, T. S.

A Progress Report on the Desperanto Research Project -- Software Support for Distributed
Processing.

Operating Systems Review 17(1):17-29, January, 1983.

Mamrak, S. A., Maurath, P. Gomez, J., Janardan, S. and Nicholas, C.

Guest Layering Distributed Processing Support on Local Operating Systems.

In Proceedings of the Third Iinternational Conference on Distributed Computing Systems,
pages 854-859. October, 1982.

Marill, T. and Stern, D.
The Datacomputer -- A Network Data Utility.
In Conference Proceedings, 1975 NCC, pages 389-395. AFIPS, 1975.

Marshali, H. Z.

The Linear Graph Package, A Compiler Building Environment.

SIGPLAN Notices 17(6):294-300, June, 1982.

(Proceedings of the SIGPLAN '82 Symposium on Compiler Construction).

Minsky, N.

Files with Semantics.

In J. B. Rothnie {editor), Proceedings of the International Conference on Management of Data,
pages 65-73. ACM-SIGMOQOD, 1976.

Mitchell, J. G., Maybury, W., and Sweet, R.
Mesa Language Manual.
Technical Report CSL-79-3, Xerox PARC, Aprit, 1979.

Morris, J. H.

Towards More Flexible Type Systems.

In Goos and Hartmanis (editors), Lecture Notes in Computer Science, pages 377-384.
Springer-Verlag, New York, 1974,

Nelson, B. J.

Remote Procedure Call.

PhD thesis. Carnegie-Mellon University, May, 1981,

Also available as Xerox PARC Technical Report CSL-81-9.

D Sl 'r- "v'];"L""'i llv_“ "L“ ke) -'\ - X b 2 R e 4]
e Ty -i‘- KRTOTRT RN oy ~L i oty A NS NN p A ANE S au S At P vat e A Bl in ble 1 ik B -2k RN ek
P 0 S DR R A P T

-135-

[35] Schneiderman, B. and Shapiro, S. C.
Toward a Theory of Encoded Data Structures and Data Translation.
International Journal of Computer and Information Sciences 5(1):33-43, March, 1976.

[36) Shapiro, M.
The Design of the GIROLLE Remote-Procedure Call Protocol.
CMIRH, Paris, November, 1983.

[37] Strom, R.E. and Yemini, S.
NIL: An Integrated Language and System for Distributed Programming.
SIGPLAN Notices 18(6):73-82, June, 1883.
(Proceedings of the SIGPLAN '83 Symposium on Programmmg Language Issues in Software
Systems).

[38] Stroustrup, B.
On Unifying Module Interfaces.
Operating Systems Review 12(1):90-98, January, 1978

[39] Stroustrup, B.
An Inter-Module Communication System for a Distributed Computer Sustem.
In Proceedings of the First International Conference on Distributed Computing Systems,
pages 412-418. October, 1979.

[40] Swinehart, D., McDaniel, G., and Boggs, D
WEFS: A Simple Shared File System for a Distributed Environment.
In Proceedings of the Seventh Symposium on Operating Systems Principles, pages 9-17.
December, 1979.

[41] Tanenbaum, A.S.
Computer Networks.
Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

[42] Wallis, P. J. L.
External Representation of Objects of User-Defined Type.
ACM Transactions on Programming Languages and Systems 2(2):137-152, Aprit, 1980,

[43] Weihi, W.E.
Specification and Implementation of Atomic Data Types.
PhD thesis, Massachusetts Institute of Technology, March, 1984.
Also available as MIT Technical Report MIT/LCS/TR-314.

[44] Weihl, W. and Liskov, B. :
Implementation of Resilient, Atomic Data Types. S
ACM Transactions on Programming Languages and Systems 7(2):244-269, April, 1985, SOy

[45] Weinreb, D. and Moon, D. P
Lisp Machine Manual. o)
MIT Artificial intelligence Laboratory. Sy
. N
(46] White, J. E. o
A High-Level Framework for Network-Based Resource Sharing. :.r
In Conference Proceedings, 1976 NCC, pages 561-570. AFIPS, 1976. =
o
e
SR
-

P B T L B R .- e

o e .. R s .
WA AR .") 0\) . SN l‘.-L PR 5 D\A\A\.l_l R .C‘.. - N .} .". .\' "\:-‘. \.'h"ﬁ'.\'.\': ‘:‘- n\)'

o . o~
R AN A 4N NI I PO
il Sl AEN A RIS P L RS D O A AR I L P P I U U I T

-136-

[47] White, J. E.
Elements of a Distributed Programming System.
Computer Languages 2(4):117-134, 1977.

[48] Courier: The Remote Procedure Call Protocol
Xerox Corporation, Stamford, Connecticut, 1981.
Available as Xerox System Integration Standard XSIS-038112.

T L T L T, e
P R S R S R P S
LS TLIRN AL OISR L

(el

R

LG

”

»
.H
I‘I.

DA 4
"

Ca” Y
Ol“l‘

»
2te?

77
PN

[M
/. e b

" .ﬁ?

q-'
at

”

L

TN A e
AR

»
-

12

b

,...,
A
‘l.l..

A
2

AL L T I

L% ., - -
RN

oAt

LR S

OFFICIAL DISTRIBUTION LIST

1983

Director

Information Processing Techniques Office
Defense Advanced Research Projects Agency

1400 wilson Boulevard
Arlington, VA 22209

Office of Naval Research

800 North Quincy Street
Arlington, VA 22217

Attn: Dr. R. Grafton, Code 433

Director, Code 2627
Naval Research Laboratory
Washington, DC 20375

Defense Technical Information Center
Cameron Station
Alexandria, vaA 22314

National Science Foundation
Office of Computing Activities
1800 G. Street, N.W.
washington, DC 20550

Attn: Program Director

Dr. E.B. Royce, Code 38
Head, Research Department
Naval Weapons Center
China Lake, CA 93555

Dr. G. Hopper, USNR
NAVDAC-O0H

Department of the Navy
Washington, DC 20374

A li"h S i ns ond-ama- o

2 Copies

2 Copies

6 Copies

12 Copies

2 Copies

1 Copy

1 Copy

s

e, v ¥ ¥ W

S EF BN T SR s e o SEEEY

f

A AAN ST UL L I TR LT PP 2%

