

. B -, |
AT S 4 4
[INCRCC RN PR

._

i

3 : !

d ; [

3 v <

w ;

i

.

: WV ol o

, SR EEE
: = = W —

. = =
. w®

) S EEE

. X aY am am ~t

v) : 2 3 -—__——
: ELE H ERTIIS — M
nl— .I"ll
ofil —

.I l. * 5

— N

-l —_— —_—

. — _—— =
"

~l.

Y

x

..!W
J-u,

4

....

g

o
r A

4\»
X
[Ld

..
IPTITIT

R P o p——

...... Shf LA Akt S g i A - S arE At Seil . S S vl i il Skl aUt il P SR S

A

Palo Alto Research Center

Chunking in Soar:

The Anatomy of a General Learning
Mechansim

AD-A163 359

R I

John E. Laird. Paul S. Rosenbloom, and Allen Newell

DTIC
e el o0ny §ELECTE.
' JUL 0 8 1986

D

.- N\

Chunking in Soar:

The Anatomy of a General Learning Mechanism

John E. Laird, Paul S. Rosenbloom®*, and Allen Newell**
ISL-13 September 1985 [P85-00110)

© Copyright Kluwer Academic Publishers 1985. Printed with permission.
Reproduction in whole or part is permitted for any purpose of the United States Government.

Abstract: In this article we describe an approach to the construction of a general learning
mechanism based on chunking in Soar. Chunking is a learning mechanism that acquires rules
from goal-based experience. Soar is a general problem-solving architecture with a rule-based
memory. In previous work we have demonstrated how the combination of chunking and Soar
could acquire search-control knowledge (strategy acquisition) and operator implementation
rules in both search-based puzzle tasks and knowledge-based expert-systems tasks. In this
work we examine the anatomy of chunking in Soar and provide a new demonstration of its
learning capabilities involving the acquisition and use of macro-operators.

This paper will appear in Machine Learning, vol. 1 no. 1, January 1986.

This paper is also available from the Department of Computer Science, Carnegie-Mellon
University, as technical report CMU-CS-85-154 and from the Knowledge Systems Laboratory,
Department of Computer Science, Stanford University, as report KSL-85-34.

XEROX Xerox Corporation

Palo Alto Research Centers
3333 Coyote Hill Road
Palo Alto, California 94304

*Departments of Psychology and Computer Science, Stanford University
** Department of Computer Science, Carnegie-Mellon University

1Al
E
3 Unclassind SRS
Y URITY CLASSIFICATION OF RIS PA OO
. AR
.. REPORT DOCUMENTATION PAGE A
. S St
. Ta, REPORT SECURITY CLASSIFICATION Tb RESTRICTIVE MARK:W _ W NS
...] : ’
: ssified
23, SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION / AVAILABILITY OF REPORT
: Approved for public release; distribution :.-:(:'
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE unlimited RN
v %
P
4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S) N
ISL-13 h. 1n

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL

(if applicable)

7a NAME OF MONITORING ORGANIZATION
Personnel and Training Research Program

Xerox Palo Alto Research Center Office of Naval Research (Code 442 PT)

7b ADDORESS (City, State, and ZIP Code)

6c. ADDRESS (City. State, and ZIP Code)

e 8% N]

i VA 17
3333 Coyote Hill Road Arlington, 222
Palo Alto, CA 94304
.. 8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENT.FICATION NUMBER

.. ORGANIZATION (If applicable)

N00014-82C-0067
10 SOURCE OF FUNDING NUMBERS

8c. ADORESS (City, State, and ZIP Code)

. PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NC ACCESSION NO
. 61153N RR042-06 |RR042-06-0A] NR667-4717

11, TITLE (Include Security Classification)

Chunking in Soar: The Anatomy of a General learning Mechanism

12 PERSONAL AUTHOR(S)

. . . p : . .
Newell, Allen Lalrdé_ﬁgggogdﬁ}]n«, Ros%%)loom aul Simon (Stanford Univeristy) and

(Carneal 1versi
13a. TYPE OF REPORT 13b. TIME COVERED 14 DATE QF REPORT (Year, Month, Day} NS PAGE COUNT

Techaical FROM _1/1/R2_TO £/15/85 Scptember 23, 1985 34 f

16. SUPPLEMENTARY NOTATION -

AN

17. COSATI CODES
; FIELD GROUP SUB-GROUP

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
Machine Learnina, chunking, macro-operator, Soar

19. ABSTRACT (Continue on reverse if necessary and identfy by block number) R

In this article we describe an approach to the construction of a general learning
mechanism based on chunking in SOAR. Chunking is a learning mechanism that acaquires .
rules from acoal-based experience. SOAR is a general problem-solving architecture with
- a rule-based memory. In previous work we have demonstrated how the combination of
chunking and SOAR could acquire search-control knowledage (strateagv acguisition) and
operator implementation rules in both search-based puzzle tasks and knowledge-based
expert-systems tasks. In this work we examine the anatomv of chunkina in SOAR and
provide a new demonstration of its learning carabilities involving the acquisition

and use of macro-operators.

. .
Lt

G

20 OISTRIBUTION / AVAILABILITY OF A8$TRACT 21 ABSTRACT SECURITY CLASSIFICATION

. CuncLassiFeDuUNLMITED [SAVE as RPT CJoric ussas Unclassied .
g 228 NAME OF RESPONSIBLE NDIVIDUAL 22b TELEPHONE (include Area Code) | 22: OFFICE SYMBOL
. Mikg Sahfto (202) 696-4322 4 42 PT

00 FORM 1473, 34 Mar 83 APR edit:0n may be useo U~ exnausted
. All other editions are coso'ete

SECJRITY CLASSIFICATION OF THIS 3AGE

Unclassifi:¢

P AR AN o i AMCEN M st gon- st AP I A N M

REFERENCES

Table of Contents
1. Introduction
2. Soar — An Architecture for General Intelligence
2.1. The Architecture
2.2. An Example Problem Solving Task
3. Chunking in Soar
3.1. Constructing Chunks
3.1.1. Collecting Conditions and Actions
3.1.2. Identifier Variabilization
3.1.3. Chunk Optimization
3.2. The Scope of Chunking
3.3. Chunk Generality
4. A Demonstration — Acquisition of Macro-Operators
4.1. Macro Problem Solving
4.2. Macro Problem Solving in Soar
4.3, Chunk Generality and Transfer
4.3.1. Different Goal States
4.3.2. Transfer Between Macro-Operators
4.4, Other Tasks
5. Conclusion
Acknowledgement
References

Accesion For

NTIS CRA&I
DIiC TAB
U.:anro.r.ced
Jus ut.caven

oo@a}-

By .
Di_t b tio /

|

Dist AV oy .d Jor

5'4-\:!‘11

| |

| f\.v.,iuullvty Codes

T

XEROX PARC. ISL-13. SEPTEMBER

1985

LTy
WD
3

N~——

W W

11
12
16
16
18
19
21
21
22
26
26
27
30
3l
3
32

Sa-adace Rar e Baih e g s Bow diat s B Bast Bk And A St o s

1. Introduction

The goal of the Soar project is to build a system capable of general intelligent behavior. We seek to
understand what mechanisms are necessary for intelligent behavior, whether they are adequate for a wide
range of tasks — including search-intensive tasks, knowledge-intensive tasks, and algorithmic tasks — and
how they work together to form a general cognitive architecture. One necessary component of such an
architecture, and the one on which we focus in this paper, is a general learning mechanism. Intuitively. a
gencral learning mechanism should be capable of lcarning all that needs to be learned. To be a bit more
precise, assume that we have a general performance system capable of solving any problem in a broad set of
domains. Then, a general learning mechanism for that performance system would possess the following three
properlie:s.l

o Task generality. It can improve the system's performance on all of the tasks in the domains. The
scope of the learning component should be the same as that of the performance component.

e Knowledge generality. It can base its improvements on any knowledge available about the domain.
This knowledge can be in the form of examples, instructions, hints, its own experience, etc.

® Aspect generality. It can improve all aspects of the system. Otherwise there would be a
wandering-bottleneck problem (Mitchell, 1983), in which those aspects not open to improvement
would come to dominate the overall performance effort of the system.

These properties relate to the scope of the learning, but they say nothing concerning the generality and

effectiveness of what is learned. Therefore we add a fourth property.

o Transfer of learning. What is learned in one situation will be used in other situations to improve
performance. [t is through the transfer of learned material that generalization, as it is usually
studied in artificial intelligence, reveals itself in a lcarning problem solver.

Generality thus plays two roles in a general learning mechanism: in the scope of application of the mechanism

and the generality of what it lcarns.

There arc many possible organizations for a general learning mechanism, cach with different behavior and

implications. Some of the possibilities that have been investigated within Al and psychology include:

o A Multistrategy 1.earner. Given the wide variety of learning mechanisms currently being
investigated tn Al and psychology. one obvious way to achicve 4 general learner is to build a
system containing a combination of thesc mechanisms. The best example of this to date is
Anderson’s (1983a) ACT™* system which contains six learning mechamsms.

o A Deliberate I earner. Given the breadth required of a general learning mechanism, a natural way
to build one is as a problem solver that dehiberately devises maodifications that will improve
performance. The modifications are usually based on analyses ot the tasks to be accomplished,

B .
These properties are related to but not 1somomhic with. the three dimensions of vaniation of Icarming mechanisms desenbed in
Carbonell, Michaiski. and Mitchell 1198 3) ~ application domain. underlying learming strategy and representation of knowledge

NEROX PARC ST 1V SEPTEMBER 19%s

4
W e,
MR
SRt
- -
LYK

AR ASAANS | %

£ of R W OF U WY

T e

2 CHUNKING IN SOAR

the structure of the problem solver, and the system's performance on the tasks. Sometimes this
problem solving is done by the performance system itsclf. as in L.enat’'s AM (1976) and Eurisko
(1983) programs, or in a production system that employs a build operation (Waterman, 1975) —
whereby productions can themsclves crcate new productions — as in Anzai & Simon's
(1979) work on learning by doing. Somectimes the learner is constructed as a separate critic with
its own problem solver (Smith, Mitchell, Chestck. & Buchanan, 1977; Rendell, 1983), or as a set of
critics as in Sussman’s (1977) Hacker program.

o A Simple Experience I.earner. There is a single learning mechanism that bases its modifications on
the experience of the problem solver. The learning mechanism is fixed, and does not perform any
complex problem solving. Examples of this approach are memo functions (Michie, 1968: Marsh,
1970). macro-operators in Strips (Fikes, Hart and Nilsson, 1972). production composition (Lewis,
1978: Neves & Anderson, 1981), and knowledge compilation (Anderson, 1983b).

The third approach, the simple experience learner, is the one adopted in Soar. In some ways it is the most
parsimonious of the three alternatives: it makes use of only one learning mechanism, in contrast to a
multistrategy learner; it makes use of only one problem solver, in contrast to a critic-based deliberate learner;
and it requires only problem solving about the actual task to be performed, in contrast to both kinds of
deliberate learner. Counterbalancing the parsimony is that it is not obvious a priori that a simple experience
learner can provide an adequate foundation for the construction of a general learning mechanism. At first
glance, it would appear that such a mechanism would have difficulty learning from a variety of sources of

knowledge. learning about all aspects of the system, and transferring what it has learned to new situations.

The hypothesis being tested in the research on Sear is that chunking, a simple experience-based learning
mechanism, can form the basis for a general learning mechanism. Chunking is a mechanism originally
developed as part of a psychological model of memory (Miller, 1956). The concept of a chunk — a symbol
that designates a pattern of other symbols — has been much studied as a model of memory organization. [t
has been used to explain such phenomena as why the span of short term memory is approximately constant,
independent of the complexity of the items to be remembered (Miller, 1956), and why chess masters have an

advantage over novices in reproducing chess positions from memory (Chase & Simon, 1973).

Newell and Rosenbloom (1981) proposed chunking as the basis for a model of human practice and used it
to model the ubiquitous power law of practice — that the time to perform a task is a power-law function of
the number of times the task has been performed. The model was based on the idea that practice improves
performance via the acquisition of knowledge about patterns in the task environment, that is, chunks. When
the model was implemented as part of a production-system architecture, this idea was instantiated with

chunks relating patterns of goal parameters to patterns of goal results (Rosenbloom, 1983: Rosenbloom &

2 . .
“For a companson of chunking to other simple mechamsms for learning by expenence. sec Rosenbloom and Newell (1985)

XEROX PARC IS1-13 SEPTEMBER {9RS

INTRODUCTION 3

Newell, 1985). By replacing complex processing in subgoals with chunks learned during practice, the model

could improve its speed in performing a single task or set of tasks.

To increase the scope of the learning beyond simple practice, a similar chunking mechanism has been
incorporated into the Soar problem-solving architecture (Laird, Newell, & Rosenbloom, 1985). In previous

work we have demonstrated how chunking can improve Soar’s performance on a variety of tasks and in a

variety of ways (Laird. Rosenbloom & Newell, 1984). In this article we focus on presenting the details of how

o

chunking works in Soar (Section 3), and describe a new application involving the acquisition of macro-

v{'}
N

operators similar to those reported by Korf (1985a) (Section 4). This demonstration extends the claims of

s
2

-

generality, and highlights the ability of chunking to transfer learning between different situations.

Before proceeding to the heart of this work — the examination of the anatomy of chunking and a
demonstration of its capabilities — it is necessary to make a fairly extensive digression into the structure and
performance of the Soar architecture (Section 2). In contrast to systems with multistrategy or deliberate
learning mechanisms, the learning phenomena cxhibited by a system with only a simple experience-based
learning mechanism is a function not only of the learning mechanism itself, but also of ihe problem-solving

component of the system. The two components are closely coupled and mutually supportive.

2. Soar — An Architecture for General Intelligence

Soar is an architecture for general intelligence that has been applied to a variety of tasks (l.aird. Newell, &
Rosenbloom, 1985: Rosenbloom. I.aird. McDermott, Newell, & Orciuch, 1985): many of the classic Al toy
tasks such as the Tower of Hanoi, and the Blocks World: tasks that appear to involve non-search-based
reasoning, such as syllogisms, the three-wise-men pussle, and sequence extrapolation: and large tasks
requiring expert-level knowledge, such as the RI computer configuration task (McDermott, 1982). In this

section we briefly review the Saar architecture and present an example of its performance in the Fight Puzzle.

2.1.The Architecture

Performance in Soar is based on the problem spuce-hypothesis: all goal-oriented behavior occurs as search
in problem spaces (Newell. 1980). A problem space for a task domain consists of a set of states representing
possible situations tn the task domain and a set ot operarors that transform one state into another one. For
example. in the chess domain the states are configurations of pieces on the board. while the operators are the
legal moves, such as P-K4. In the computer-contiguration domain the states are partially configured
computers, while the operators add components to the existing contiguration (among other actions). Problem
solving 1n a problem space consists of starting at some given il state, and applying operators (yielding

intermediate states) until a desired state 1s reached that s recognized as achieving the goal.

NEFROX PARC ST 13 SEPTEMBER 198 N

RGN
Y I A SN IS

il Ll il e

K
4

.

..‘ '.a" P "
P RSTIV S S Bes Tl T Sy WP W S WY W

e T e T T T e T e A e e T

4 CHUNKING IN SOAR

In Soar. each goal has three slots, one each for a current problem space, state, and operator. ‘Together these
four components — a goal along with its current problem space, state and operator — comprise a context.
Goals can have subgoals (and associated contexts), which form a strict goal-subgoal hierarchy. All objects
{such as goals. problem spaces. states. and operators) have a unique identifier, gencrated at the ume the object
was created. Further descriptions of an object are called augmentations. Each augmentation has an identifier,
an attribute, and a value. The value can either be a constant value, or the identifier of another object. All
objects are connected via augmentations (cither directly, or indirectly via a chain of augmentations) to one of
the objects in a context, so that the identifiers of objects act as nodes of a semantic nctwork, while the

augmentations represent the arcs or links.

Throughout the process of satisfying a goal, Soar makes decisions in order to select between the available
problem spaces, states, and operators. Every problem-solving episode consists of a sequence of decisions and
these decisions determine the behavior of the system. Problem solving in pursuit of a goal begins with the
selection of a problem space for the goal. This is followed by the sclection of an initial state, and then an
operator to apply to the state. Once the operator is selected. it is applied to create a new state. The new state
can then be selected for further processing (or the current state can be kept, or some previously generated
state can be selected), and the process repeats as a new operator is selected to apply to the selected state. The
weak methods can be represented as knowledge for controlling the selection of states and operators (Laird &
Newell, 1983a). The knowledge that controls these decisions is collectively called search control. Problem

solving without search contro! is possible in Soar, but it leads to an exhaustive search of the problem space.

Figure 1 shows a schematic representation of a series of decisions. To bring the available search-control
knowledge to bear on the making of a decision, each decision involves a monotonic elaboration phase. During
the elaboration phase, all directly available knowledge relevant to the current situation is brought to bear.
This is the act of retrieving knowledge from memory to be used to control problem solving. In Soar, the
long-term memory is structured as a production system, with all directly available knowledge represented as
producticms.3 The elaboration phase consists of one or more cycles of production execution in which all of the
eligible productions are fired in parallel. The contexts of the goal hierarchy and their augmentations serve as
the working memory for these productions. The information added during the elaboration phase can take
one of two forms. First. existing objects may have their descriptions elaborated (via augmentations) with new
or existing objects, such as the addition of an evaluation to a state. Second. data structures called preferences
can be created that specify the desirability of an object for a slot in a context. Each preference indicates the

context in which it is relevant by specifying the appropriate goal, problem space, state and operator.

3We will use the terms production and rule interchangeably throughout this paper

XEROX PARC.IS] -13. SEPTIMBLER 1985

LIS P
bV Thil Y P U N

T TR N
PR PN G el Yl

AL

g

.
. -
“u
S
~

- llh 'l ‘.' e , T ,-'- -- 3 -. . .- --.b'.. .. - l- - - B adk 0 Yt

SOAR — AN ARCHITECTURE FOR GENERAL INTELLIGENCE [
DECISION 1 DECISION 2 DECISION 3
Elaboration Decigion \l‘ VL

y prase || Prohure | L] LIS
2222 22220122

Gather
Preferences

Quiescence \L Repilace
Interpret —> Context

Preterences Object

b

Impasse

b

Create
Subgoal

2
2

Figure I: The Soardecision cycle.

When the elaboration phase reaches quiescence — when no more productions are eligible to fire — a fixed
decision procedure is run that gathers and interprets the preferences provided by the elaboration phase to
produce a specific decision. Preferences of type acceptable and reject determine whether or not an object is a
candidate for a context. Preferences of type better, equal. and worse determine the relative worth of objects.
Preferences of type best, indifferent and worst make absolute judgements about the worth of objects.4 Starting
from the oldest context, the decision procedure uses the preferences to determine if the current problem
space, state, or operator in any of the contexts should be changed. The problem space is considered first,
followed by the state and then the operator. A change is made if one of the candidate objects for the slot
dominates (based on the preferences) all of the others, or if a set of equal objects dominates all of the other
objects. [n the latter case. a random selection is made between the equal objects. Once a change has been
made, the subordinate positions in the context (state and operator if a problem space is changed) are
initialized to undecided. all of the more recent contexts in the stack are discarded, the decision procedure

terminates, and a new decision commences.

If sufficient knowledge is available during the search to uniquely determine a decision, the search proceeds

unabated. However, in many cases the knowledge encoded into productions may be insufTicient to allow the

4'l‘here is also a paralle! preference that can be used to assert that two operators should execute simultaneously.

XEROX PARC. ISL-13. SEPTEMBER 1985

AN

B

' [NE NN g
S
. 'a .l *
l‘ \.l

'y
l

R
"‘.l » '
’-

.
*y

-«
.',f‘ A

t“'
-(-‘

.
o«

o
.

L W
AN
'.

.
. ¥

’
‘s “n

Loy
.

LI
PRI
NS

¥ .

‘.
<
s

MMM | Yo

[y
a

7O

LA

6 CHUNKING INSOAR

direct application of an operator or the making of a scarch-control decision. ‘T'hat is, the available preferences
do not determine a unique, uncontested change in a context. causing an impasse in problem solving to
occur (Brown & VanlLehn, 1980). Four classes of impasses can arise in Soar: (1) no-change (the claboration
phase ran to quiescence without suggesting any changes to the contexts), (2) tie (no single object or group of
cqual objects was better than all of the other candidate objects), (3) conflict (two or more candidate objects
were better than each other), and (4) rejection (all objects were rejected, even the current onc). All types of
impasse can occur for any of the three context slots associated with a goal — problem space, state, and
operator — and a no-change impasse can occur for the goal. For example, a state tie occurs whenever there
are two or more competing states and no directly available knowledge to compare them. An operator
no-change occurs whenever no context changes are suggested after an operator is selected (usually because

not enough information is directly available to allow the creation of a new state).

Soar responds to an impasse by creating a subgoal (and an associated context) to resolve the impasse. Once
a subgoal is created, a problem space must be selected. followed by an initial state, and then an operator. If an
impasse is reached in any of these decisions, another subgoal will be created to resolve it, leading to the
hierarchy of goals in Sear. By generating a subgoal for ecach impasse, the full problem-solving power of Soar
can be brought to bear to resolve the impasse. These subgoals correspond to all of the types of subgoals
created in standard Al systems (Laird, Newell, & Rosenbloom, 1985). This capability to generate
automatically all subgoals in response to impasses and to open up all aspects of problem-solving behavior to

problem solving when necessary is called universal subgoaling (Laird. 1984).

Because all goals are generated in response to impasses, and each goal can have at most one impasse at a
time, the goals (contexts) in working memory are structured as a stack, referred to as the context stack. A
subgoal terminates when its impasse is resolved. For cxample, if a tie impasse arises, the subgoal gencrated
for it will terminate when sufficient preferences have been created so that a single object (or set of equal
objects) dominates the others. When a subgoal terminates, Soar pops the context stack, removing from
working memory all augmentations created in that subgoal that are not connected to a prior context. cither
directly or indirectly (by a chain of augmentations), and preferences whose context objects do not match
objects in prior contexts. Those augmentations and preferences that are not removed are the results of the

subgoal.

Default knowledge (in the form of productions) exists in Sear to cope with any of the subgoals when no
additional knowledge is available. For some subgoals (those created for all types of rejection impasses and
no-change impasses for goals, problem-spaces. and states) this involves simply backing up to a prior choice in
the context, but for other subgoals (those create for tie, conflict and operator no-change impasscs), this

involves scarches for knowledge that will resolse the subgoal's impasse. If additional non-default knowledge

XEROX PARC STV SERPEEMBER YRS

v L and o e anvh o Sind anbih arie ol JaA . an, .
ot R I A A A S A A Akt Ak Gl i A A Lo 6 10 S O i e e S A e SN SUPA S SO AT A S DS)

]
Sal)
.
»

* i

[N
oK

”

-
2, 5
¥ ‘l:l.

.l
[

~
SN

R e Yt TR T il R S A i N S v Ve Y A A N

-
b SOAR — AN ARCHITECTURE FOR GENERAL INTELHTIGENCTE 7

is available to resolve an impasse, it dominates the default knowledge (via preferences) and controls the

g problem solving within the subgoal.

2.2. An Example Problem Solving Task

ALV

Consider the Fight Pussle. in which there are cight numbered, movable tiles set in a 3x3 frame. Once cell of

the frame is always ecmpty (the blank), making it possible to move an adjacent tile into the empty cell. ‘the

o,

problem is to transform once configuration of tiles into a second configuration by moving the tiles. The states

of the cight-puzzle problem space are configurations of the numbers 1-8 in a 3x3 grid. ‘T'here is a single

general operator to mave adjacent tiles into the empty cell. For a given state, an instance of this operator is
v created for cach of the cells adjacent to the empty cell. Fach of these operator instances is instantiated with
the empty ccll and one of the adjacent cells. To simplity our discussion, we will refer to these instantiated
operators by the dircction they move a tile into the empty ccll: up, down, left, or right. Figure 2 shows an

example of the initial and desired states of an Eight Pus/Ie problem.

Initial State Desired State

. 2 3 1 1 2 3

Figure 2: Fxample iital and desired states of the Faght Puysle.

To encode this task in Soear. one must include productions that propose the appropnate problem space,
create the mnitial state of that problem space, implement the operators of the problem space, and detect the
desired state when it achieved. If no additonal knowledge is availiable, an exhaustive depth-first scarch
oceurs as a result of the default processing for tie impasses. Tie impasses arise cach time an operator has to be

selected. In response o the subgoals for these impasses, alternatives are mvestigated to determine the best

move. Whenever another tic impasse arises during the investigation of one of the alternatives, an additional
subgoal 1§ generated, and the scarch deepens. 1 additional search-control knowledge s added to provide an
cvaluation of the states, the scarch changes to steepest-ascent hill cimbing. As more or different search-
control knowledge 1s added. the behavior of the scarch changes in response to the new knowledge. One ot the
properties ot Soar s that the weak methods, such as generate and test, means-ends analysis, depth-tirst scarch

- and bl chimbing, do not have to be explicitly selected, but instead emerge trom the structure ot the task and

NERONPARC ISE PVSEPTEMBER fuxs

W T T Y TR Y VT T Y vy o v

R CHUNKING IN SOAR

the available search-control knowledge (1 aird & Newell, 1983a; Laird & Newecll, 1983b: Laird. 1984).

Another way to control the search in the Faght puzsle 1s to break it up into a set of subgoals to get the
individual tiles into posiion. We will Took at this approach in some detaif because it forms the basts for the
use of macro-operators for the Fight Puzzie. Means-ends analyssis is the standard technique for solving
problems where the goal can be decomposed into a set of subgoals. but it is ineffective for problems such as
the Eight Puzzle that have non-serializable subgoals — tasks for which there exist no ordering of the subgoals
such that successive subgoals can be achieved without undoing what was accomphished by earlier
subgoals (Korf, 1985a). Figure 3 shows an intermediate state in problem solving where tles 1 and 2 are in
their desired positions. In order to move tile 3 into its desired position, tile 2 must be moved out of its desired
position. Non-serializable subgoals can be tractable if they are serially decomposable (Korf, 1985a). A set of
subgoals is serially decomposable if there is an ordering of them such that the solution to cach subgoal
depends only on that subgoal and on the preceding ones in the solution order. In the Eight Puzzle the
subgoals are, in order: (1) have the blank in its correct position; (2) have the blank and the first tile in their
correct positions; (3) have the blank and the first two tiles in their correct positions; and so on through the
eighth tile. Each subgoal depends only on the positions of the blank and the previously placed tiles. Within
one subgoal a previous subgoal may be undone, but if it is, it must be re-achieved before the current subgoal

is completed.

Intermediate State Desired State
1 2 4 1 2 3
3 8 8 4
7 6 5 7 6)

Figure 3: Non-serializable subgoals in the Eight Puzzle

Adopting this approach does not result in new knowledge for directly controlling the sclection of operators
and states in the eight-puzzle problem space. Instead it provides knowledge about how to structure and
decompose the puzzle. This knowledge cornsists of the set of senally decomposable subgoals, and the ordering

of those subgoals. To encode this knowledge in Soar, we have added a second problem space, eight-puzzie-sd.

XEROX PARC ISI 1V SEPTEMBER 1985

- . . S R e L L S
R aaaa R B SRR S0 S PR PE 08 1. PL ST WY WOy Wy W |

SOAR — AN ARCHITECTURE FFOR GENERAL INTELLIGENCE

with a set of nine operators corresponding to the nine subgoals.5 For example, the operator place-2 will place
tile 2 in its desired position, while assuring that the blank and the first tile will also be in position. The

ordering of the subgoals is encoded as search-control knowledge that creates preferences for the operators.

Figure 4 shows a trace of the decisions for a short problem-solving episode for the initial and desired states
from Figure 2. This example is heavily used in the remainder of the paper, so we shall go through it in some
detail. To start problem solving, the current goal is initialized to be solve-eight-puzzle (in decision 1). The
goal is represented in working memory by an identifier, in this case Gl. Problem solving begins in the
eight-puzzle-sd problem space. Once the initial state, S, is sclected, preferences are generated that order the
operators so that place-blank is selected. Application of this operator, and all of the eight-puzzie-sd operators,
is complex, often requiring extensive problem solving. Because the problem-space hypothesis implics that
such problem solving should occur in a problem space, the operator is not directly implemented as rules.
Instead, a no-change impasse leads to a subgoal to implement place-blank, which will be achieved when the
blank is in its desired position. The place-blank operator is then implemented as a search in the eight-puzzle
problem space for a state with the blank in the correct position. ‘This search can be carried out using any of
the weak methods described earlier, but for this example, let us assume there is no additional search-control

knowledge.

Once the initial state is selected (decision 7), a tie impasse occurs among the operators that move the three
adjacent tiles into the empty cell (left, up and down). A resolve-tie subgoal (G3) is automatically generated for
this impasse, and the tie problem space is selected. Its states are sets of objects being considered, and its
operators evaluate objects so that preferences can be created. One of these evaluate-object operators (O5) is
selected to evaluate the operator that moves tile 8 to the left, and a resolve-no-change subgoal (G4) is
generated because there are no productions that directly compute an evaluation of the left operator for state
S1. Default search-control knowledge attempts to implement the evaluate-object operator by applying the
left operator to state S1. This is accomplished in the subgoal (decisions 13-16), yielding the desired state (S3).
Because the left operator lead to a solution for the goal, a preference is returned for it that allows it to be
selected immediately for state S1 (IDecision 17) in goal G2, flushing the two lower subgoals (G3 and G4). If
this state were not the desired state, another tic impasse would arise and the tie problem space would be
selected for this new subgoal. The subgoal combination of a resolve-tic followed by a resolve-no-change on

an evaluate-object operator would recur, giving a depth-first search.

Applying the left operator to state S1 yields state S4, which is the desired result of the place-blank operator

5Both place-7 and place-8 are always no-ops because once the blank and tiles 1-6 are in place, either tiles 7 and 8 must also be in place.
or the problem s unsolvable. They can therefore be safely ignored

XEROX PARC, ISL-13. SEPTFMBER 1985

AR AR O Y DA S AN SN N A SNEAAREERMEAEMEC TSI scas SR i xR e b S dhi o At e A A S 8 A Dt R S It

10 CHUNKING IN SOAR

1 61 solve-eight-puzzle
2 Pt eight-puzzle-sd

3 s1
213}
8|4
716]s

4 01 place-blank
§ ==3>G2 (resolve-no-change)

6 P2 eight-puzzie
7 s1
8 ==>G3 (resolve-tie operator)
9 P3 tie
10 S2 {left, up, down})
11 05 evaluate-object(02(1eft))
12 ==>G4 (resolve-no-change)
13 P2 eight-puzzie
14 S1
16 02 left
16 S3
2 3 1
8 4
7 6 5

17 02 left
18 S4

19 S4

20 08 place-1

Figure 4: A problem-solving trace for the Eight Puzzle. Each line of the trace includes. from left to right,
the decision number, the identifier of the object selected, and possibly a short description of the
object.

in goal G1 above. The place-1 operator (O8) is then selected as the current operator. As with place-blank,
place-1 is implemented by a search in the eight-puzzle problem space. It succeeds when both tile 1 and the
blank are in their desired positions. With this problem-solving strategy, each tile is moved into place by one
of the operators in the eight-puzzle-sd problem space. In the subgoals that implement the eight-puzzle-sd
operators, many of the tiles already in place might be moved out of place, however, they must be back in

place for the operator to terminate successfully.

3. Chunking in Soar
Soar was originally designed to be a general (non-learning) problem solver. Nevertheless, its problem-
solving and memory structures support learning in a number of ways. The structure of problem solving in

Soar determines when new knowledge is nceded. what that knowledge might be, and when it can be acquired.

XEROX PARC. ISL.-13. SEPTEMBER 1985

LI SO0 -

Dl N S el]

CHUNKING IN SOAR

o Determining when new knowledge is needed. In Soar. impasses occur if and only if the directly
available knowledge is either incomplete or inconsistent. Therefore, impasses indicate when the
system should attempt to acquire new knowledge.

o Determining what to learn. While problem solving within a subgoal, Soarcan discover information
that will resolve an impasse. This information, if remembered, can avert similar impasses in
future problem solving,

o Determining when new knowledge can be acquired. When a subgoal completes, because its impasse
has been resolved, an opportunity cxists to add new knowledge that was not already explicitly
known.

Soar’s long-term memory, which is based on a production system and the workings of the elaboration phase,

supports learning in two ways:

o Integrating new knowledge. Productions provide a modular representation of knowledge, so that
the integration of new knowledge only requires adding a new production to production memory
and does not require a complex analysis of the previously stored knowledge in the system (Newell,
1973; Waterman, 1975; Davis & King, 1976: Anderson, 1983b).

e Using new knowledge. Even if the productions are syntactically modular, there is no guarantee that
the information they encode can be integrated together when it is needed. The elaboration phase
of Sear brings all appropriate knowledge to bear, with no requirement of synchronization (and no
conflict resolution). The decision procedure then integrates the results of the elaboration phase.

Chunking in Soar takes advantage of this support to create rules that summarize the processing of a
subgoal, so that in the future, the costly problem solving in the subgoal can be replaced by direct rule
application. When a subgoal is generated. a learning episode begins that could lead to the creation of a
chunk. During problem solving within the subgoal, information accumulates on which a chunk can be based.
When the subgoal terminates, a chunk can be created. Fach chunk is a rule (or set of rules) that gets added to
the production memory. Chunked knowledge is brought to bear during the elaboration phase of later
decisions. In the remainder of this section we look in more detail at the process of chunk creation, evaluate

the scope of chunking as a learning mechanism, and cxamine the sources of chunk generality.

3.1. Constructing Chunks e
Chunks are based on the working memory clements that are cither examined or created during problem S
solving within a subgoal. The conditions consist of those aspects of the situation that existed prior to the goal,

and which were examined during the processing of the goal, while the actions consist of the results of the goal.

XEROX PARCISE -1V SEPTEMBER 1988

»

- S e R '_.,'. "'-..'--.\- ' .
S W LT IFIEIFNI RN AL RO P PTN AN,

by g A

L, T,

(]

[N R AR A DR

D)

L LYL SR

hall D

12 CHUNKING IN SOAR

When the subgoal terminates.® the collected working-memory clements are converted into the conditions and
actions of one or more productions.7 In this subsection, we describe in detail the three steps in chunk

creation: (1) the collection of conditions and actions, (2) the variabilization of identifiers, and (3) chunk

optimization.

3.1.1. Collecting Conditions and Actions

The conditions of a chunk should test those aspects of the situation existing prior to the creation of the goal
that are relevant to the results that satisfy the goal. In Soar this corresponds to the working-memory elements
that were matched by productions that fired in the goal (or one of its subgoals), but that existed before the
goal was created. These are the elements that the problem solving implicitly deemed to be relevant to the
satisfaction of the subgoal. This collection of working-memory elements is maintained for cach active goal in
the goal’s referenced—Iist.8 Soar allows productions belonging to any goal in the context stack to execute at any
time, so updating the correct referenced-list requires determining for which goal in the stack the production
fired. This is the most recent of the goals matched by the production’s conditions. The production's firing
affects the chunks created for that goal and all of its supergoals, but because the firing is independent of the
more recent subgoals, it has no effect on the chunks built for those subgoals. No chunk is created if the
subgoal's results were not based on prior information; for example, when an object is input from the outsid :.

or when an impasse is resolved by domain-independent default knowledge.

The actions of a chunk are based on the results of the subgoal for which the chunk was created. No chunk
is created if there are no results. This can happen, for example, when a result produced in a subgoal leads to
the termination of a goal much higher in the goal hierarchy. All of the subgoals that are lower in the

hierarchy will also be terminated, but they may not generate results.

For an example of chunking in action, consider the terminal subgoal (G4) from the problem-solving

episode in Figure 4. This subgoal was created as a result of a no-change impasse for the evaluate-object

6l'he default behavior for Soar is to create a chunk al/ways; that is, every time a subgoal terminates. The major alternative to creating
chunks for all terminating goals is to chunk botrom-up. as was done in modeling the power law of practice (Rosenbloom. 1983). In
bottom-up chunking, only terminal goals — goals for which no subgoals were generated — are chunked. As chunks are learned for
subgoals, the subgoals need no longer be generated (the chunks accomplish the subgoals' tasks before the impasses occur). and higher
goals in the hierarchy become eligible for chunking. [t is unclear whether chunking always or bottom-up will prove more advantageous
in the long run, so to facilitate experimentation, both options are available in Soar.

7Producn’on composition (Lewis, 1978) has also been used to learn productions that summanze goals (Anderson. 1983b) [t differs most
from chunking in that it examines the actual definitions of the productions that fired in addition to the working-memony elements
referenced and created by the productions.

if a fired production has a negated condition — a condition testing for the absence 1n working memory of an element matching s
pattern — then the ncgated condition is instantiated with the appropnate vanable bindings from the producuion’s positive conditions {f
the identifier of the instantiated condition existed prior to the goal. then the instantiated condition 15 included in the referenced- hst

XEROX PARC IST -13. SEPTEMBER 1985

'v“v- .; -y
Y
X
»

AN

P
o) 0y 8 2
L L

.
)
SRR

,"n’
y
a7

Y 1L/

e
r

TN T W e Y W T WY W™

CHUNKING IN SOAR 13

operator that should evaluate the operator that will move tile 8 to the left. The problem solving within goal
G4 must implement the evaluate-object operator. Figure S contains a graphic representation of part of the
working memory for this subgoal near the beginning of problem solving (A) and just before the subgoal is
terminated (B). The working memory that existed before the subgoal was created consisted of the
augmentations of the goal to resolve the tie between the eight-puzzle operators, G3, and its supergoals (G2
and G1. not shown). The tie problem space is the current problem space of G3. while state S2 is the current
state and the evaluate-object operator (OS) is the current operator. D1 is the desired state of having the blank
in the middle. but with no constraint on the tiles in the other cells (signified by the X's in the figure). All of

these objects have further descriptions, some only partially shown in the figure.

The purpose of goal G4 is to evaluate operator O2. that will move tile 8 to the left in the initial state (S1).
The first steps are to augment the goal with the desired state (11) and then select the eight-puzzle problem
space (P2), the state to which the operator will be applied (S1), and finally the operator being evaluated (O2).
To do this, the augmentations from the evaluate-object operator (O5) to these objects are accessed and
therefore added to the referenced list (the highlighted arrows in part (A) of Figure 5). Once operator O2 is
selected. it is applied by a production that creates a new state (S3). The application of the operator depends
on the exact representation used for the states of the problem space. State SI and desired state D1, which
were shown only schematically in Figure S. arc shown in detail in Figurc 6. The states are built out of cells
and tiles (only some of the cells and tiles are shown in Figure 6). The nine cells (C1-C9) represent the
structure of the Eight Puzzle frame. They form a 3x3 grid in which each cell points to its adjacent cells. There
are eight numbered tiles (T2-T9). and one blank (T1). Each tile points to its name, 1 through 8 for the
numbered tiles and 0 for the blank. Tiles are associated with cells by objects called bindings. Fach state
contains 9 bindings, each of which associates one tile with the cell where it is located. The bindings for the
desired state, D1, are 1.1-1.9, while the bindings for state S1 are B1-B9. The fact that the blank is in the center
of the desired state is represented by binding 1.2, which points to the blank tile (T1) and the center cell (C5).
All states (and desired states) in both the eight-puzzle and eight-puzzle-sd problem spaces share this same cell

structure.

To apply the operator and create a new state, a new state symbol is created (S3) with two new bindings. one
for the moved tile and one for the blank. The binding for the moved tile points to the tile (T9) and to the cell
where it will be (C4). The binding for the blank points to the blank (1) and to the cell that will be empty
- (CS). All the other bindings are then copied to the new state. ‘This processing accessing the relative positions

° of the blank and the moved tile. and the bindings for the remaining ules in current state (S1). The

augmentations of the operator are tested for the cell that contains the tile to be moved.

- Once the new state (S3) is selected, a production generates the operators that can apply to the new state. All

XERON PARC ST SEPTEMBER 1985

................................

14 CHUNKING IN SOAR

A B
@ ¥ @ ®
x x| x x| x
TIED D1 X X TIED D1 X
x[x]x x| xx
P3 TE P3 TIE
3 S2 Q2) (03) (04 3 S2 02) (OJ3) (04
Ds EVALUATE-OBJECT 08 EVALUATE.OBJECT
P2 EIGHT-PUZZLE P2 EIGHT-PUZZLE
213} 213
S | 3 8l4 S1 4
7]6]5 S
02 02
- XXX X[X] X
o X X ! X
- X|X|X XX |
-’ (3] (3]
- Before subgoal Before subgoal
f'.-. Ourning subgoal * Dunng subgoal
. SUCCESS
NO-CHANGE @ NO-CHANGE
' @ 2131
- Ga) coe
: / Q 71615
: Q 8

Figure 5: An example of the working-memory elements used to create a chunk. (A) shows working
memory near the beginning of the subgoal to implement the evaluate-object operator. (B) shows
working memory at the end of the subgoal. The circled symbols represent identifiers and the
arrows represent augmentations. The identifiers and augmentations above the horizontal lines
existed before the subgoal was created. Below the lines, the identifiers marked by doubled
circles, and all of the augmentations, are created in the subgoal. The other identifiers below the
line are not new; they are actually the same as the corresponding ones above the lines. The
highlighted augmentations were referenced during the problem solving in the subgoal and will
be the basis of the conditions of the chunk. The augmentation that was created in the subgoal
but originates from an object existing before the subgoal (E1-->SUCCESS) will be the basis for the
action of the chunk.

cells that are adjacent to the blank cell (C2, C4, C6. and C8) are used to create operators. This requires testing
the structure of the board as encoded in the connections between the cells. Following the creation of the
operators that can apply to state S3, the operator that would undo the previous operator is rejected so that

% unnecessary backtracking is avoided. During the same elaboration phase, the state is tested to determine

XEROX PARC. [SL-13. SEPTEMBER (985

s

CHUNKING IN SOAR IS

Figure 6: Example of working-memory elements representing the state used to create a chunk. The
highlighted augmentations were referenced during the the subgoal.

whether a tile was just moved in or out of its correct position. This information is used to generate an
evaluation based on the sum of the number of tiles that do not have to be in place and the number of tiles that
both have to be in place and are in place. This computation, whose result is represented by the object X1 with
a value of 8 in Figure 5, results in the accessing of those aspects of the desired state highlighted in Figure 6.
The value of 8 means that the goal is satisfied. so the evaluation (E1) for the operator has the value success.
Because El is an identifier that existed before the subgoal was created and the success augmentation was
created in the subgoal. this augmentation becomes an action. [f success had further augmentations. they
would also be included as actions. The augmentations of the subgoal (G4), the new state (S3), and its
sub-object (X1) that point to objects created before the subgoal are not included as actions because they are

not augmentations, either directly or indirectly, of an object that existed prior to the creation of the subgoal.

XEROX PARC ISE- 1Y SEPTFMBER 1985

SR ARN

P A
"\'.-.'.'»'.1

PP IR 4
I, L5 68089

oy

L Y B b an Ao S it e A on e AN
L e T Tk S Tt St Sl LIRS v e 0 S SV S dVute) S e 40 e At i S i -.'l‘ﬂ'-_“‘r'>\"w._f"~"'--"-"‘.:—i..‘._WJF-L"-L“-‘_"‘.L"-h Rt "t B A ARASe AR T

16 CHUNKING IN SOAR

L XA | SRS

e
Dy
S V)
When goal G4 terminates, the initial set of conditions and actions have been determined for the chunk. . ﬁ:ﬁ
| NG,
The conditions test that there exists an evaluate-object operator whose purpose is to evaluate the operator that f.:‘_:':'_
Prere

moves the blank into its desired location, and that all of the tiles are either in position or irrelevant for the
current eight-puzzle-sd operator. The action is to mark the evaluation as successful, meaning that the operator
being evaluated will achieve the goal. This chunk should apply in similar future situations, directly

implementing the evaluate-object operator, and avoiding the no-change impasse and the resulting subgoal.

3.1.2. Identifier Variabilization

Once the conditions and actions have been determined, all of the identifiers are replaced by pruduction
(pattern-match) variables, while the constants, such as evaluate-object, eight-puzzle, and 0 are left unchanged.
An identifier is a label by which a particular instance of an object in working memory can be referenced. It is
a short-term symbol that lasts only as long as the object is in working memory. Each time the object reappears
in working memory it is instantiated with a new identifier. If a chunk that is based on working-memory
elements is to reapply in a later situation, it must not mention specific identifiers. In essence the
variabilization process is like replacing an "eq" test in Lisp (which requires pointer identity) with an "equal”

test (which only requires value identity).

All occurrences of a single identifier are replaced with the same variable and all occurrences of different
identifiers are replaced by different variables. 'I'his assures that the chunk will match in a new situation only if
there is an identifier that appears in the same places in which the original identifier appearcd. The production
is also modified so that no two variables can match the sam identifier. Basically, Soar is guessing which
identifiers must be equal and which must be distinct, based only on the information about equality and
inequality in working memory. All identifiers that are the same are assumed to require equality. All
identifiers that are not the same are assumed to require inequality. Biasing the generalization in thesc ways
assures that the chunks will not be overly general (at least because of these modifications), but they may be
overly specific. The only problem this causes is that additional chunks may need to be learned if the original

ones suffer from overspecialization. In practice, these modifications have not led to overly specific chunks.

3.1.3. Chunk Optimization

At this point in the chunk-creation process the semantics of the chunk are determined. However, three
additional processes are applied to the chunks to increase the efficiency with which they are matched against
working memory (all related to the use in Soar of the OpsS rule matcher (Forgy, 1981)). The first process is to
remove conditions from the chunk that provide (almost) no constraint on the match process. A condition is
removed if it has a variable in the value field of the augmentation that is not bound elsewhere in the rule
(either in the conditions or the actions). This process recurses, so that a long linked-list of conditions will be

removed if the final one in the list has a variable that is unique to that condition. For the chunk based on

XFROX PARC [SI-13. SEPTHFMBER 198§

T AT N e e e e T e e B . e
EPL PR PU VL PRV Y T VPR WA S S S N SR Sy e oW s . 2 i e

r 'v'>

TN " ST T T

CHUNKING IN SOAR 17

Figures 5 and 6. the bindings and tiles that were only refercnced for copying (B1, B4, BS, B6, B7, B8, B9, and
1'9) and the cells referenced for creating operator instantiations (C2, C6, and C8) are all removed. The
evaluation object, E1. in Figure 5 is not removed because it is included in the action. Eliminating the
bindings does not increase the generality of the chunk, because all states must have nine bindings. However,
the removal of the cells does increase the generality, because they (along with the test of cell C4) implicitly
test that there must be four cells adjacent to the one to which the blank will be moved. Only the center has
four adjacent cells, so the removal of these conditions does increase the generality. This does increase slightly
the chance of the chunk being over-general, but in practice it has never caused a problem, and it can

significantly increase the efficiency of the match by removing unconstrained conditions.

The second optimization is to eliminate potential combinatorial matches in the conditions of productions
whose actions are to copy a set of augmentations from an existing object to a new object. A common strategy
for implementing operators in subgoals is to create a new state containing only the new and changed
information, and then to copy over pointers to the rest of the previous state. The chunks built for these
subgoals contain one condition for each of the copied pointers. If, as is usually the case, a set of similar items
are being copied. then the copy conditions end up differing only in the names of variables. FEach
augmentation can match cach of these conditions independently, generating a combinatorial number of
instantiations. This problem would arise if a subgoal were used to implement the eight-puzzle operators
instead of the rules used in our current implementation. A single production would be learned that created
new bindings for the moved tile and the blank, and also copied all of the other bindings. There would be
seven conditions that tested for the bindings. but each of these conditions could match any of the bindings
that had to be copied. generating 7! (5040) instantiations. This problem is solved by collapsing the set of
similar copy conditions down to one. All of the augmentations can still be copied over, but it now occurs via
multiple instantiations (seven of them) of the simpler rule. Though this reduces the number of rule
instantiations to linear in the number of augmentations to be copied. it still means that the other non-copying
actions are done more than once. This problem is solved by splitting the chunk into two productions. One
production does everything the subgoal did cxcept for the copying. The other production just does the
copying. If there is more than one set of augmentations to be copied, each set is collapsed into a single

condition and a separate rule is created for cach.?

‘The final optimization process consists of applying a condition-reordering algorithm to the chunk
productions. The efficiency of the Rete-network matcher (Forgy. 1982) used in Soar is sensitive to the order

in which conditions are specified. By taking advantage of the known structure of Sear’s working memory, we

9.
I'he inelegance of this solution leads us to behieve that we do not vet have the nght assumptions about how new objects are to be
created from old ones

SERON PARC ST 13 SEPTEMBER 1983

.- 2o v e
Y, 14, 'x"r P T
tAY S

CHUNKING IN SOAR

have developed a static reordering algorithm that significantly increases the efficiency of the match.
Execution time is sometimes improved by more than an order of magnitude, almost duplicating the efficiency
that would be achieved if the reordering was done by hand. This reordering process preserves the existing

semantics of the chunk.

3.2. The Scope of Chunking
In Section 1 we defined the scope of a general learning mechanism in terms of three properties: task
generality, knowledge generality, and aspect generality. Below we briefly discuss each of these with respect to

chunking in Soar.

Task generality. Soar provides a single formalism for all behavior — heuristic search of problem spaces in
pursuit of goals. This formalism has been widely used in Artificial Intelligence (Feigenbaum and Feldman,
1963; Nilsson, 1980; Rich, 1983) and it has already worked well in Soar across a wide variety of problem
domains (Laird, Newell, & Rosenbloom, 1985). If the problem-space hypothesis (Newell, 1980) does hold.
then this should cover all problem domains for which goal-oriented behavior is appropriate. Chunking can
be applied to all of the domains for which Sear is used. Though it remains to be shown that useful chunks
can be learned for this wide range of domains, our preliminary experience suggests that the combination of

Soar and chunking has the requisite generality.m

Knowledge generality. Chunking learns from the experiences of the problem solver. At first glance, it would
appear to be unable to make use of instructions, examples. analogous problems, or other similar sources of
knowledge. However, by using such information to help make decisions in subgoals, Soar can learn chunks
that incorporate the new knowledge. This approach has worked for a simple form of user direction, and is
under investigation for learning by analogy. The results are preliminary, but it establishes that the question of

knowledge generality is open for Soar.

Aspect generality. Three conditions must be met for chunking to be able to learn about all aspects of Soar’s
problem solving. The first condition is that all aspects must be open to problem solving. This condition is
met because Soar creates subgoals for all of the impasses it encounters during the problem solving process.

These subgoals allow for problem solving on any of the problem solver’s functions: creating a problem space,

selecting a problem space, creating an initial state, selecting a state, selecting an operator, and applying an

operator. These functions are both necessary and sufficient for Sear to solve problems. So far chunking has

been demonstrated for the selection and application of operators (Laird, Rosenbloom & Newell, 1984); that

mf’nr demonstrations of chunking in Sear on the Fight Pussle. Tic-Tac-Toe. and the R/ computer-configuration task. <ee [aird.

Rosenbloom. & Newell (1984), Rosenbloom. [aird. McDermott. Newell. & Orciuch (1985). and van de Brug. Rosenbloom. & Newell
{1985)

XEROX PARC.ISI-13. SEPTFMBER 1985

PIINL AP BN AN VS A A Nl Ak S Sad Sadh il Al dists e mie ey Sy Shau ok e -0 DA A Saamie ot

CHUNKING IN SOAR 19

1s, strategy acquisition (Langley, 1983: Mitchell, 1983) and operator implementation. However.
1

demonstrations of chunking for the other types of subgoals remain to be done.!

The second condition is that the chunking mechanism must be able to create the long-term memory
structures in which the new knowledge is to be represented. Soar represents all of its long-term knowledge as
productions, and chunking acquires new productions. By restricting the kinds of condition and action
primitives allowed in productions (while not losing Turing equivalence). it is possible to have a production

language that is coextensive syntactically with the types of rules learned by chunking: that is, the chunking

{'_‘ mechanism can create rules containing all of the syntactic constructs available in the language.

.

. The third condition is that the chunking mechanism must be able to acquire rules with the requisite
content. in Soar. this means that the problem solving on which the requisite chunks are to be based must be

understood. The current biggest limitations on coverage stem from our lack of understanding of the problem
solving underlying such aspects as problem-space crecation and change of representation (Hayes and Simon.
1976; Korf. 1980: [.enat, 1983: Utgoff. 1984).

3.3. Chunk Generality

Onc of the critical questions to be asked about a simple mechanism for learning from experience is the

degree to which the information learned in one problem can transfer to other problems. If generality is
lacking, and hittle transfer occurs, the learning mechanism is simply a caching scheme. 'The variabilization
process described in Section 3.1.2 is one way in which chunks are made general. However, this process would
by itself not lead to chunks that could exhibit non-trivial forms of transfer. All it does is allow the chunk to
match another instance of the same exact situation. The principal source of generality is the implicit
generalization that results from basing chunks on only the aspects of the situation that were referenced during
problem solving. In the example in Section 3.1.1, only a small percentage of the augmentations in working
memory ended up as conditions of the chunk. The rest of the information, such as the identity of the tile
heing moved and its absolute location, and the identines and locations of the other tiles, was not examined

during problem solving, and therefore had no effect on the chunk.

Together. the representation of objects in working memory and the knowledge used during problem
solving, combine to form the bias for the implicit gencralization process (UtgofT. 1984): that is. they determine
which generalizations are embodied in the chunks learned. The object representation defines a language for

the implicit generalization process. bounding the potential generality of the chunks that can be learned. The

ll :
In part this e s one of ranty - For example. selection of problem spaces 1s not vet problematical. and conthet impasses have not
vet been encountered

NERONXPARC ISE 1V SEPTENIBER 108 ‘

VR o aeA e s i e afar aAAnIHES S afe- i SEE IV aiiec SIS ML G Al AR A i - avd Jhi as ate sub S SBS ahl S oy

CHUNKING IN SOAR

problem solving determines (indirectly, by what it examines) which generalizations are actually embodied in
the chunks.

Consider the state representation used in Korf's (1985a) work on the Eight Puzzle (recall Section 2.2). In
his implementation, the state of the board was represented as a vector containing the positions of each of the
tiles. lLocation 0 contained the coordinates of the position that was blank, location 1 contained the
coordinates of the first tile, and so on. This is a simple and concise representation, but because aspects of the
representation are overloaded with more than one functional concept, it provides poor support for implicit
generalization (or for that matter, any traditional condition-finding method). For example, the vector indices
have two functions: they specify the identity of the tile, and they provide access to the tile’s position. When
using this state representation it is impossible to access the position of a tile without looking at its identity.
Therefore, even when the problem solving is only dependent on the locations of the tiles, the chunks learned
would test the tile identities, thus failing to apply in situations in which they rightly could. A second problem
with the representation is that some of the structure of the problem is implicit in the representation. Concepts
that are required for good generalizations, such as the relative positions of two tiles, cannot be captured in
chunks because they are not explicitly represented in the structure of the state. Potential generality is
maximized if an object is represented so that functionally independent aspects are explicitly represented and
can be accessed independently. For example, the Eight Puzzle state representation shown in Figure 6 breaks
each functional role into separate working-memory objects. This representation, while not predetermining
what generalizations are to be made, defines a class of possible generalizations that include good ones for the
Eight Puzzle.

The actual generality of the chunk is maximized (within the constraints established by the representation) if
the problem solver only examines those features of the situation that are absolutely necessary to the solution
of the problem. When the problem solver knows what it is doing, everything works fine, but generality can be
lost when information that turns out to be irrelevant is accessed. For example, whenever a new state is
selected, productions fire to suggest operators to apply to the state. This preparation goes on in parallel with
the testing of the state to see if it matches the goal. If the state does satisfy the goal, then the preparation
process was unnecessary. However, if the preparation process referenced aspects of the prior situation that
were not accessed by previous productions, then irrelevant conditions will be added to the chunk. Another
example occurs when false paths — searches that lead off of the solution path — are investigated in a subgoal.
T'he searches down unsuccessful paths may reference aspects of the state that would not have been tested if

only the successful path were followed. 2

5

1‘~\n expenmental version of chunking has been implemented that overcomes these problems by performing a dependency analysis
on traces of the productions that fired in a subgoal. The production traces are used to determine which conditions were necessary 1o
produce results of the subgoal All of the results of this paper are based on the version of chunking without the dependency analysis

XEROX PARC.ISI-13 SEPTEMBER 1985

e s e e . - . S e A
‘~‘_-'-'. N - DY -‘. - -

- co- " ° - =T -, . - N ~ - i RN - . - T e T e . P T - . T e .t .t - ‘o . .

I T S R T T T M S e R T T T TR I AP R PR

h PPN, PGPS tadaladaiatadodalodadalod obidh i PP TP P I PR Sl W o G L . o<

" eP AU Bt B et ey s A A A B I A S A S a e e e b A R Bl A A

A DEMONSTRATION — ACQUISITION O MACRO-OPFRATORS 2]

4. A Demonstration — Acquisition of Macro-Operators

In this section we provide a demonstration of the capabilities of chunking in Sear involving the acquisition
of macro-operators in the Eight Puzzle for serially decomposable goals (sce Section 2). We begin with a brief
review of Korf's (1985a) original implementation of this technique. We follow this with the details of its
implementation in Soar, together with an analysis of the generality of the macro-operators learned. This
demonstration of macro-operators in Soar is of particular interest because: we are using a general problem
solver and learner instead of special-purpose programs developed specifically for learning and using macro-

operators; and because it allows us to investigate the generality of the chunks learned in a specific application.

4.1. Macro Problem Solving

Korf (1985a) has shown that problems that are serially decomposable can be efficiently solved with the aid
of a table of macro-operators. A macro-operator (or macro for short) is a sequence of operators that can be
treated as a single operator (Fikes, Hart and Nilsson, 1972). The key to the utility of macros for serially
decomposable problems is to define each macro so that after it is applied. all subgoals that had been
previously achieved are still satisfied. and one new subgoal is achieved. Means-ends analysis is thus possible
when these macro-operators are used. Table 1 shows Korfs (1985a) macro table for the Eight Puzzle task of
getting all of the tiles in order, clockwise around the frame. with the 1 in the upper left hand corner, and the
blank in the middle (the desired state in Figure 3). Each column contains the macros required to achieve one
of the subgoals of placing a tile. The rows give the appropriate macro according to the current position of the
tile. where the positions are labeled A-1 as in Figure 7. For example, if the goal is to move the blank (tile 0)
into the center, and it is currently in the top left corner (location B). then the operator sequence u/ will

accomplish it.

P C rdiu

0

s D owr dlurrdlu dlur

1

t B oo Idrurdiu Idru rdllurdrul

1

o F dr uldrurdldrul lurdidru idrulurddlru lurd

n

s G d urdidrui ulddru urddiuldrrul uldr rdlluurdidrrul

H dl rulddrul druuldrdiu rutdrdluldrrut urdluldr uldrurdilurd urdi

l | drul ruliddru rdlutdrrui rulldr uldrruldlurd ruld

Table I: Macro wable for the Eight Puzzle (from Korf, 1985, Table 1). The primitive operators move a tile
one step in a particular direction; u (up). J (down). /(left), and r (right).

XEROX PARC IS! i3 SEPTEMRBER i9ss

RS SRR i s ot el gt A Al A A

22 CHUNKING IN SOAR

B C D
I A E
H G F

Figure 7: The positions (A-1) in the Eight Puzzle frame.

Korf's implementation of macro problem solving used two programs: a problem solver and a learner. The
problem solver could use macro tables acquired by the learner to solve serially decomposable problems
cfficiently. Using Table 1, the problem-solving program could solve any Eight Puzzle problem with the same
desired state (the initial state may vary). The procedure went as follows: (a) the position of the blank was
determined: (b) the appropriate macro was found by using this position to index into the first column of the
table; (c) the operators in this macro were applied to the state. moving the blank into position; (d) the position
of the first tile was determined; (e) the appropriate macro was found by using this position to index into the
second column of the table; (f) the operators in this macro were applied to the state, moving the first tile (and

the blank) into position: and so on until ali of the tiles were in place.

To discover the macros. the learner started with the desired state, and performed an iterative-deepening
search (for example, see Korf, 1985b) using the elementary tile-movement operators.l3 As the search
progressed. the learner detected sequences of operators that left some of the tiles invariant, but moved others.

When an operator sequence was found that left an initial sequence of the subgoals invariant — that is, for

some tile k., the operator moved that tile while leaving tiles 1 through k-1 where they were — the operator
sequence was added to the macro table in the appropriate column and row. In a single search from the
desired state, all macros could be found. Since the search used iterative-deepening, the first macro found was

guaranteed to be the shortest for its slot in the table.

4.2. Macro Problem Solving in Soar

Soar’s original design criteria did not include the ability to employ serially decomposable subgoals or to

acquire and use macro-operators to solve problems structured by such subgoals. However, Soar’s generality
allows it to do so with no changes to the architecture (including the chunking mechanism). Using the
implementation of the Eight Puzzle described in Sections 2.2 and 3.1.1, Soar’s problem solving and learning

capabilities work in an integrated fashion to learn and use macros for serially decomposable subgoals.

n
I or veny deep searches. other more efficient techmiques such as bidirectional search and macro-operator composition were used

XEROX PARC 1SI-13 SEPTEMBER 198S

o

N LA

O

A DEMONSTRATION — ACQUISITION OF MACRO-OPERATORS 23

The opportunity to learn a macro-operator exists each time a goal for implementing one of the
eight-puzzle-sd operators, such as place-5, is achieved. When the goal is achieved there is a stack of subgoals
below it, one for each of the choice points that led up to the desired state in the eight-puzzle problem space.
As described in Section 2. all of these lower subgoals are terminated when the higher goal is achieved. As
cach subgoal terminates, a chunk is built that tests the relevant conditions and produces a preference for one
of the operators at the choice poinl.M This set of chunks encodes the path that was successful for the
eight-puzzle-sd operator. In future problems, these chunks will act as search-controt knowledge. leading the
problem solver directly to the solution without any impasses or subgoals. Thus. Sear lcarns macro-operators.
not as monolithic data structures, but as sets of chunks that determine at each point in the search which
operator to select next. This differs from previous realizations of macros where a single data structure
contains the macro, either as a list of operators, as in Korf's work, or as a triangle table, as in Strips (Fikes.
Hart and Nilsson. 1972). Instead. for each operator in the macro-operator sequence, there is a chunk that
causes it to be selected (and therefore applied) at the right time. On later problems (and even the same
problem). these chunks control the search when they can, giving the appearance of macro problem solving,
and when they cannot, the problem solver resorts to search. When the latter succeeds, more chunks are
learned, and more of the macro table is covered. By representing macr. s as sets of independent productions
that are learned when the appropriate problem arises. the processes of learning, storing, and using macros

become both incremental and simplified.

Figure 8 shows the problem solving and learning that Sear does while performing iterative-deepening
searches for the first three eight-puzzle-sd operators of an example problem. The figure shows the searches
for which the depth is sufficient to implement each operator. The first eight-puzzle-sd opcrator. place-blank.
moves the blank to the center. Without learning, this yields the search shown in the left column of the first
row. During learning (the middle column). a chunk is first learned to avoid an operator that does not achicve
the goal within the current depth limit (2). This is marked by a " —" and the number 1 in the figure. The
unboxed numbers give the order that the chunks are learned. while the boxed numbers show where the
chunks are used in later problem solving. Once the goal is achieved, signified by the darkened circle. a chunk

is learned that prefers the first move over all other alternatives. marked by " +" in the figure. No chunk is
learned for the final move to the goal since the only other alternative at that point has already been rejected.
chiminating any choicc. and thereby climinating the need to learn a chunk. The right column shows that on a
second attempt, chunk 2 applied to select the first operator. After the operator applied. chunk | applied to
reject the operator that did not lead to the goal. This leaves only the operator that leads to the goal. which s

selected and applied. [n this scheme. the chunks controi the problem solving within the subgoals that

IR} : - :
Additonal chunks ure rreated for the subgoals resulting rom ro-change impasses on the evaluate-object operators such as the
example chunk o Section U, but these become rrelevant ter ths task once the rules that embody preferences are learned

NERONPARC ISV SERPTEMRBER v

EP S . P

vy —r— T — T T W T LS WS W
b s e s it et s S A T e b i N T Mg ARRAMACIA S A AT St A AL SRR AN IS A S REIO I A NS SN SRR S SR A

4 CHUNKING IN SOAR

-‘r’. implement the eight-puzzle-sd operator, eliminating search, and thereby encoding a macro-operator.

Without Learning During Learning After Learning

" Place Blank]
» in Cell A

4|2
3|18
516(7

p—
—
—

PlaceTile [
in Cell B

41112
3 8
5(6(7

|}

Place Tile
inCell C

< 1132
' 4| |8
5(6]7

Figure 8: Searches performed for the first three eight-puzzie-sd operators in an exampie problem. The left

column shows the search without learning. The horizontal arrows represent points in the search

where no choice (and therefore no chunk) is required. The middle column shows the search

: during learning. A "+ " signifies that a chunk was learned that preferred a given operator. A

" —" signifies that a chunk was learned to avoid an operator. The boxed numbers show where a

previously learned chunk was applied to avoid search during learning. The right column shows
. the search after learning.

The examples in the second and third rows of Figure 8 show more complex searches and demonstrate how

the chunks learned during problem solving for one eight-puzzle-sd operator can reduce the search both within

XEROX PARC.ISL-13. SEPTEMBER 1985

A DEMONSTRATION — ACQUISITION OF MACRO-OPEFRATORS

that operator and within other operators. In all of these examples, a macro-operator is encoded as a set of
chunks that are learned during problem solving and that will climinate the search the next time a similar

problem is presented.

In addition to learning chunks for each of the operator-selection decisions, Sear can learn chunks that
directly implement instances of the operators in the eight-puzzle-sd problem space. They directly create a new
state where the tiles have been moved so that the next desired tile is in place, a process that usually involves
many Eight Puzzle moves. These chunks would be ideal macro-operators if it were not necessary to actually
apply each eight-puzzle operator to a physical puzzle in the real world. As it is, the use of such chunks can
lead to illusions about having done something that was not actually done. We have not yet implemented in
Soar a general solution to the problem posed by such chunks. One possible solution — whose consequences
we have not yet analyzed in depth — is to have chunking automatically turned off for any goal in which an
action occurs that affects the outside world. For this work we have simulated this solution by disabling
chunking for the eight-puzzle problem space. Only search-control chunks (generated for the tie problem

space) are learned.

The searches within the eight-puzzle problem space can be controlled by a variety of different problem

solving strategies. and any heuristic knowledge that is available can be used to avoid a brute-force search.

Both iterative-deepening and breadth-first search’ strategies were implemented and tested. Only one piece

of search control was employed — do not apply an operator that will undo the effects of the previous
operator. Unfortunately, Soar is too slow to be able to generate a complete macro table for the Eight Puzzle
by search. Soar was unabie to learn the eight macros in columns three and five in Figure 1. These macros

require searches to at least a depth of eight.16

‘The actual searches used to generate the chunks for a complete macro table were done by having a user lead
Soar down the path to the correct solution. At each resolve-tie subgoal, the user specified which of the tied
operators should be evaluated first, insuring that the correct path was always tried first. Because the user
specified which operator should be evaluated first. and not which operator should actually be applied. Soar
proceeded to try out the choice by selecting the specified evaluate-object operator and entering an subgoal in
which the relevant eight-puzzle operator was applied. Soar verified that the choice made by the user was
correct by searching until the choice led to ecither success or failure. During the venification. the appropriate

objects were automatically referenced so that a correct chunk was generated. This is analogous to the

15'[" 1s was actually a parallel breadth-first search in which the operators at each depth were executed in parallel.

16
Although some of the macros are fourteen operators long. not eveny operator selection requires a choice (some are forced moves)
and. in addiion. Soar s able to make use of transfer from previousiy [earned chunks (Section 4 3).

XEROX PARC ISI-13. SEPTEMBER 1985

26 CHUNKING IN SOAR

explanation-based learning approach (for example, sece De Jong, 1981 or Mitchell, Keller, & Kedar-Cabelli
(1986)). though the explanation and learning processes differ.

Soar’s inability to search quickly enough to complete the macro table autonomously is the one limitation on
a claim to have replicated Korf's (1985a) results for the Eight Puzzle. ‘This, in part, reflects a trade-off
between speed (Korf's system) and generality (Soar). But it is also partially a consequence of our not using
the fastest production-system technology available. Significant improvements in Soar’s performance should

be possible by reimplementing it using the software technology developed for Ops83 (Forgy. 1984).

4.3. Chunk Generality and Transfer

Korf's (1985a) work on macro problem solving shows that a large class of problems — for example, all Eight
Puzzle problems with the same desired state — can be solved efficiently using a table with a small number of
macros. This is possible only because the macros ignore the positions of all tiles not yet in place. This degree
of generality occurs in Soar as a direct consequence of implicit generalization. If the identities of the tiles not
yet placed are not examined during problem solving. as they need not be, then the chunks will also not
examine them. However, this does not tap all of the possible sources of generality in the Eight Puzzle. In the
remainder of this subsection we will describe two additional forms of transfer available in the Soar

implementation.

4.3.1. Different Goal States

One limitation on the generality of the macro table is that it can only be used to solve for the specific final
configuration in Figure 3. Korf (1985a) described one way to overcome this limitation. For other desired
states with the blank in the center it is possible to use the macro table by renumbering the tiles in the desired
state to correspond to the ordering in Figure 3, and then using the same transformation for the initial state. In
the Soar implementation this degree of generality occurs automatically as a consequence of implicit
generalization. The problem solver must care that a tile is in its desired location, but it need not care which
tile it actually is. The chunks learned are therefore independent of the exact numbering on the tiles. Instead

they depend on the relationship between where the tiles are and where they should be.

For desired states that have the blank in a different position, Korf (1985a) described a three-step solution
method. First find a path from the initial state to a state with the blank in the center: second, find a path from
the desired state to the same state with the blank in the middle; and third, combine the solution to the first
problem with the inverse of the solution to the second problem — assuming the inverse of every operator is
both defined and known — to yield a solution to the overall problem. In Soar this additional degree of
generality can be achieved with the learning of only two additional chunks. This is done by solving the

problem using the following subgoals (see Figure 9 below): (a) get the blank in the middle, (b) get the first six

XFROX PARCISE-13 SEPTENMBE R 1985

.
P A R

hd

AR

’
s-

e

- n
b u

vy s vy
s
Vg

o
o

xX

3
A
1y
v

«
:"5-”

r"{‘)
Ty £, 8, 1, & & 4

LS

e

A DEMONSTRATION — ACQUISITION OF MACRO-OPFRATORS

tiles into their correct positions, and (c) get the blank in its final position. The first 7 moves can be performed

directly by the chunks making up the macro table, while the last step requires 2 additional chunks.
(A) (8) (€

X 2 2

Figure 9. Problems with different goals states, with different positions of the blank, can be solved by: (a)
moving the blank into the center, (b) moving the first six tiles into position. and (¢) moving the
blank into its desired position.

4.3.2. Transfer Between Macro-Operators

In addition to the transfer of learning between desired states. we can identify four different levels of
generality that are based on increasing the amount of transfer that occurs berween the macro-operators in the
table: no transfer, simple transfer. symmetry transfer (within column), and symmetry transfer (across column).
The lowest level, no transfer, corresponds to the generality provided directly by the macro table. [t uses
macro-operators quite generally, but shows no transfer between the macro operators. Each successive level
has all of the generality of the previous level, plus one additional variety of transfer. The actual runs were
done for the final level. which maximizes transfer. The number of chunks required for the other cases were

computed by hand. Let us consider each of them in turn.

No transfer. The no-transfer situation is identical to that employed by Korf (1985a). There is no transfer of

learning between macro-operators. In Soar, a total of 230 chunks would be required for this case.!” This is

considerably higher than the number of macro-operators (35) because one chunk must be learned for each
operator in the table (if there is no search control) rather than for each macro-operator. If search control is

available to avoid undoing the previous operator, only 170 chunks must be learned.

Simple transfer. Simple transfer occurs when two entries in the same column of the macro table end in
cxactly the same set of moves. For example, in the first column of Table 1, the macro that moves the blank to
the center from the upper-right corner uses the macro-operator ur (column 0, row D in the table). The chunk
learned for the second operator in this sequence, which moves the blank to the center from the position to the
right of the center (by moving the center tile to the right). is dependent on the state of the board following the

first operator, but independent of what the first operator actually was. Therefore, the chunk for the last half

I7These numbers include only the chunks for the resolve-tic subgoals [f the chunks generated for the evaluate-object operators were
included, the chunk counts given in this sectton would be doubled

XEROX PARC.ISI -13. SEPTEMBER 1985

28 CHUNKING IN SOAR

of this macro-operator is exactly the chunk/macro-operator in column 0, row E of the table. This type of

transfer is always available in Soar. and reduces the number of chunks needed to encode the complete macro

table from 170 to 112. The amount of simple transfer is greater than a simple matching of the terminal
sequences of operators in the macros in Table 1 would predict because different macro operators of the same

length as those in the table can be found that provide greater transfer.

Symmetry transfer (within column). Further transfer can occur when two macro-operators for the same
subgoal are identical except for rotations or reflections. Figure 10 contains two examples of such transfer.
The desired state for both is to move the 1 to the upper left corner. The X's represent tiles whose values are
irrelevant to the specific subgoal and the arrow shows the path that the blank travels in order to achieve the
subgoal. In (a), a simple rotation of the blank is all that is required, while in (b), two rotations of the blank
must be made. Within both examples the pattern of moves remains the same, but the orientation of the

pattern with respect to the board changes. ‘The ability to achieve this type of transfer by implicit

generalization is critically dependent upon the representation of the states (and operators) discussed in

e et
.

Section 3.3. The representation allows the topological relationships among the affected cells (which cells are i
next to which other cells) and the operators (which cells are affected by the operators) to be examined while
the absolute locations of the cells and the names of the operators are ignored. This type of transfer reduces ;ﬁ.‘_

the number of required chunks from 112 to 83 over the simple-transfer case.

Desired State
1 X X
X X
(a) (b)
X X X
Symmetric Initial States Symmetric Initial States
X 1 X X X X X X 1 X X X
1 (s anl semisa [
0 0 1y
X - X — 1 e X X X —_— X 4 p—>- X
X X X X X X X X X 1 X X

Figure 10: Two examples of within-column symmetry transfer.

Symmetry transfer (across column). The final level of transfer involves the carryover of learning between
different subgoals. As shown by the example in Figure 11. this can involve far from obvious similarities
between two situations. What is important in this case is: (1) that a particular three cells are not affected by
the moves (the exact three cells can vary); (2) the relative position of the tile to be placed with respect to

where it should be: and (3) that a previously placed piece that is affected by the moves gets returned to its

XEROX PARC.IST -13. SEPTEMBER 1985

L T SR SPNr S SO - - e e . . -
o e I A e U ST . - AL . - .

O o o St Pt JEUL I P T

s '-‘-' 2. . e e T e L K o . K et
(R T I T R L N R T N T T Tl e IO SRR
VS IRy ST R e ta . e ' : i

e e SN e S A N A A (VLS L AL AR S N A R At s Al D o od g

t‘ A DEMONSTRATION — ACQUISITION OF MACRO-DPERATORS 29
¥ original position. Across-column symmetry transfer reduces the number of chunks to be learned from 83 to
b

v 61 over the within-column case.'8 Together, the three types of transfer make it possible for Soar to learn the

complete macro table in only three carefully selected trials.

(a) (b)
Ditferent Intermediate Subgoals Different Intermediate Subgoals
A Place Tile 2 Place Tile 4 Place Tile 3 Place Tile 5
1 2 X 1 2 3 1 2 3 1 2 3
: X X —_—] X 4 X X —_— X 4
N X X X X X X X X X X X 5
Symmesiric Initial States Symmetric Initial States
) 1 x | 2 1 2] 1 2 1 2] 3
. [
I J
X X X 4 X X X 4
L {
J g T Y
X X X X X 4 X X 3 5

Figure 11: An example of across-column symmetry transfer.

Table 2 contains the macro-table structure of the chunks learned when all three levels of transfer are
available (and search control to avoid undoing the previc;us operator is included). In place of operator
sequences, the table contains numbers for the chunks that encode the macros. There is no such table actually
in Soar — all chunks (productions) are simply stored, unordered, in production memory. The purpose of this

table is to show the actual transfer that was achieved for the Eight Puzzle.

The order in which the subgoals are presented has no effect on the collection of chunks that are learned for
the macro table, because if a chunk will transfer to a new situation (a different place in the macro table) the
chunk that would have been learned in the new situation would be identical to the one that applied instead.
Though this is not true for all tasks, it is true in this case. Therefore, we can just assume that the chunks are
learned starting in the upper left corner, going top to bottom and left to right. The first chunk learned is

number 1 and the last chunk learned is number 61. When the number for a chunk is highlighted, it stands for

all of the chunks that followed in its first unhighlighted occurrence. For example, for tile 1 in position F, the

chunks listed are 13, 12, 11, 10. However. 10signifies the sequence beginning with chunk 10: 10, 9. 8. 4. The

18The number of chunks can be reduced further. to 54. by allowing the learning of macros that are not of minimum length This ".-;'_ o

increases the total path length by 2 for 14% of the problems. by 4 for 26% of the problems and 6 for 7% of the problems A

XEROX PARC.ISL-13 SEPTEMBER 1988

N " ke " et Sl AL Sa Il A I S o b Ve MR St sl s Sl i aadi S Ay BAAEAA N BaR AT R YL A SN b N T
e Yl SRl e Sl Nl A A A AN Rk Sl . . S

30 CHUNKING IN SOAR

£
N terminal 4 in this sequence significs the sequence beginning with chunk 4: 4, 3, 1. ‘Therefore, the entire
N
- sequence for this macrois: 13, 12,11, 10,9,8.4, 3. 1.

Tiles

0 1 2 3 4 2 6

Cc 1 431
D 2 7654 15.14.1
E 1 109.8.4 18.17.16 34.33.32.31.30.29.1

F 2 13.12.10.10 21.20.19.18 40.39.38.37.36.35.30 15

®“ 50 - =~ - ® o0

G ! 10 232217 46,45.44.434241.30 18 61.60.59.58.56,55.29
H 2 7 26.25.24.23 54,53.52.51,50.49.48.47 46,29 21 40 15

7 4 28,21.22 51 23 46 18

Table 2: Structure of the chunks that encode the macro table for the Eight Puzzle.

The abbreviated macro format used in Table 2 is more than just a notational convenicnce; it directly shows
- the transfer of learning between the macro-operators. Simple transfer and within-column symmetry transfer
- show up as the use of a macro that is defined in the same column. For example, the scquence starting with
chunk 51 is learned in column 3 row H, and used in the same column in row 1. The extreme case is column 0,
where the chunks learned in the top row can be uscd for all of the other rows. Across-column symmetry
transfer shows up as the reoccurrence of a chunk in a later column. For example, the sequence starting with
chunk 29 is learned in column 3 (row E) and used in column 5 (row G). 'The extreme examples of this are

columns 4 and 6 where all of the macros were learned in earlier columns of the table.

- 4.4. Other Tasks

The macro technique can also be used in the Tower of Hanoi (Korf, 1985a). The thice-peg, three-disk
version of the Tower of Hanoi has been implemented as a set of serially decomposable subgoals in Soar. In a
single trial (moving three disks from one peg to another), Soar learns eight chunks that completely encode

Korf's (1985a) macro table (six macros). Only a single trial was required because significant within and across

RUNCNAEIRORG

column transfer was possible. The chunks lcarned for the three-peg. three-disk problem will also solve the

three-peg, two-disk problem. These chunks also transfer to the final moves of the three-peg. N-disk problem

N A

when the three smallest disks are out of place. Korf (1985a) demonstrated the macro table technique on three

.
N

additional tasks: the Fifteen Puzzie, Think-A-Dot and Rubik’s Cube. The technique for learning and using
macros in Soar should be applicable to all of these problems. However, the performance of the current

implementation would require user-directed searches tor the Fifteen Puzzle and Rubik's Cube becausc of the

XEROX PARC ISI-13 SEPTEMBER 1985

LAY e e AT iR L T TR TAT LT EATAN W GE L HOUAT T A T JR TR T R T R TR T TR

D A DEMONSTRATION — ACQUISITION OF MACRO-OPERATORS

L. size of the problems.

5. Conclusion
.. In this article we have laid out how chunking works in Soar. It is a learning mechanism that is based on the
acquisition of rules from goal-based experience. As such, it is related to a number of other Icarning
mechanisms. However, it obtains extra scope and generality from its intimate connection with a sophisticated

problem solver (Soar) and the memory organization of the problem solver (a production system). This is the

- most important lesson of this research. The problem solver provides many things: the opportunities to learn,
:'_ direction as to what is relevant (biases) and what is needed. and a consumer for the learned information. The
memory provides a means by which the newly learned information can be integrated into the existing system
b and brought to bear when it is relevant.

§

[:' In previous work we have demonstrated how the combination of chunking and Soar could acquire scarch-
N control knowledge (strategy acquisition) and operator implementation rules in both search-based puzzle tasks

and knowledge-based ecxpert systems tasks (Laird, Rosenbloom & Newell, 1984; Rosenbloom, laird,

McDermott, Newell, & Orciuch, 1985). In this paper we have provided a new demonstration of the PO
capabilities of chunking in the context of the macro-operator learning task investigated by Korf (1985a). This :._:;.:::‘_

-_'~$'..-
demonstration shows how: (1) the macro-operator technique can be used in a general, learning problem .‘-'_.:‘_.':

solver without the addition of new mechanisms; (2) the learning can be incremental during problem solving
rather than requiring a preprocessing phase: (3) the macros can be used for any goal state in the problem; and
(4) additional generality can be obtained via transfer of learning between macro-operators, provided an

appropriate representation of the task is available.

Although chunking displays many of the properties of a general learning mechanism, it has not yet been
demonstrated to be a truly general learning mechanism. It can not yet learn new problem spaces or new
representations, nor can it yet make use of the wide variety of potential knowledge sources, such as examples
or analogous problems. Qur approach to all of these insufficiences will be to look to the problem solving.
Goals will have to occur in which new problem spaces and representations are developed, and in which

different types of knowledge can be used. The knowledge can then be captured by chunking.

Acknowledgement —

We would like to thank Pat [.angley and Richard Korf for their comments on an earlier draft of this paper.

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order No.
3597. monitored by the Air Force Avionics Laboratory under contracts F33615-81-K-1539 and N00039-83-

XEROX PARC.ISI -13. SEPTEMBER 1985

..........

32 CHUNKING IN SOAR

C-0136. and by the Personnel and Training Research Programs, Psychological Sciences Division, Office of
Naval Research, under contract number N00014-82C-0067. contract authority identification number
NR667-477. The views and conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies. either expressed or implied, of the Defense Advanced

Research Projects Agency, the Office of Naval Research, or the US Government.

References
Anderson, J. R. The Architecture of Cognition. Cambridge: Harvard University Press, 1983.

Anderson, J. R. Knoweldge compilation: The general learning mechanism. In R. S.Michalski, J.G.
Carbonell, & T. M. Mitchell (Eds.). Proceedings of the 1983 Machine I.earning Workshop. , 1983.

Anzai, Y. and Simon, H. A. The Theory of Learning by Doing. Psychological Review, 1979, 86(2). 124-140.

Brown, J.S., & VanLehn, K. Repair theory: A generative theory of bugs in procedural skills. Cognitive
Science, 1980, 4, 379-426.

Carbonell, I. G., Michalski, R.S., & Mitchell, T. M. An overview of machine learning. In R. S. Michalski,
J. G. Carbonell, T. M. Mitchell (Eds.). Machine Learning: An Artificial Intelligence Approach. Palo
Alto, CA: Tioga, 1983.

Chase, W. G. & Simon, H. A. Perception in chess. Cognitive Psychology. 1973, 4, 55-81.

Davis, R. and King, J. An overview of production systems. In FE. W. Elcock & D. Michie (Ed.). Machine
Intelligence 8. New York: American Elsevier, 1976.

Delong, G. Generalizations based on explanations. In Proceedings of IJCAI-81. , 1981.
Feigenbaum. E. A. and Feldman, J. (Eds.). Computers and Thought. New York: McGraw-Hill, 1963.

Fikes, R.E., Hart, P.E. and Nilsson, N.J. Learning and executing generalized robot plans. Artificial
Intelligence, 1972, 3(4), 251-288.

Forgy. C. L.. OPSS5 Manual. Computer Science Department, Carnegie-Mellon University, 1981.

Forgy, C.1.. Rete: A fast algorithm for the many pattern/many object pattern match problem. Artificial ;':‘.jv'f
Intelligence, 1982, 19, 17-37.

Forgy, C.L.. The OPS83 Report (Tech. Rep. #84-133). Carnegie-Mellon University Computer Science
Department, May 1984.

Hayes, J. R. and Simon, H. A. Understanding complex task instructions. In Klahr, D. (Ed.), Cognition and
Instruction. Hillsdale, NJ: Erlbaum, 1976.

Korf, R. E. Toward a model of representation changes. Artificial Intelligence, 1980, 14, 41-78.
Korf, R. E. Macro-operators: A weak method for learning. Artificial Intelligence, 1985, 26, 35-77.

Korf, R. E. Depth-first iterative-deepening: An optimal admissable tree search. Artificial Intelligence, 1985, In
press.

Laird, J. E. Universal Subgoaling. Doctoral dissertation, Computer Science Department, Carnegic-Mecllon

XEROX PARC. ISL-13. SEPTEMBER 1985

REFERENCES 3N :::::.f.-::'_
}

R
University, 1984. KRN
'.’:.-.‘I
Laird. J. E. and Newell, A. A universal weak method: Summary of results. In Proceedings of 1JCAI-83. 1.0s g
Altos, CA: Kaufmann, 1983. .:::._::.:J'

lLaird. J. E., and Newell, A, A4 Universal Weak Method (l'ech. Rep. #83-141). Carnegic-Mcllon University L--

Computer Science Department, June 1983,

Laird, J. E.. Newell, A and Rosenbloom, P.S. Soar: An Architecture for General Intelligence. 1985. In
preparation.

l.aird, J. E.. Rosenbloom, P.S.. and Newell, A. Towards Chunking as a General | .carning Mechanism. In
Proceedings of AAAI-84, National Conference on Artificial Intelligence. Austin: American Association
for Artificial Intelligence, 1984,

l.angley, P. l.carning Fffective Search Heuristics. In Proceedings vof 1JCAI-83. 1.os Altos, CA: Kaufmann,
1983.

{.cnat 1). AM: An Artificial Intelligence Approach to Discovery in Muthematics us Heuristic Search. Doctoral - ;:-;
dissertation, Computer Science Department, Stanford University. 1976, .

1.enat, D. B. Furisko: A program that learns new heuristics and domain concepts. Artificial Intelligence, 1983,
21.61-98,

|.ewis, C. H. Production system models of practice effects. Doctoral dissertation, University of Michigan, 1978.

Marsh, 1). Memo functions, the graph traverser, and a simple control situation. In B. Mcltzer &). Michie
(Ed.). Machine Intelligence 5. New York: American Elsevier, 1970.

McDermott, J. R1: A rule-based configurer of computer systems. Artificial Intelligence, 1982, 19, 39-88.

Michie,). "Memo” functions and machine learning. Nature, 1968, 218, 19-22.

Miller, G. A. The magic number seven, plus or minus two: Some limits on our capacity for processing
information. Psychological Review, 1956, 63, 81-97.

Mitchell, I M. I carning and Problem Solving. In Proceedings of 1JCAi-83. Los Altos, CA: Kaufmann, 1983.

Mitchell, T. M., Keller, R. M., Kedar-Cabelli. S.'1. Explanation-based gencralization: A unifying view.
Machine l.earning, 1986, Vol. /. In press. > ’

Neves, 1). M. & Anderson, J. R. Knowledge compilation: Mechanisms for the automatization of cognitive
skills. In Anderson, J. R.(Ed.). Cognitive Skills und their Acquisition. Hillsdale, NJ: Erlbaum, 1981,

Newell, A. Production Systems: Models of Control Structures. In Chase. W.(kd.). Visual Information
Processing. New York: Academic, 1973.

Newell, A. Reasoning, problem solving and decision processes: The problem space as a fundamental ::-}‘_-:::
category. In R. Nickerson (Ed.), Attention and Performance VII. Hillsdale, N.J.: Frlbaum, 1980. (Also ’_':.
available as CMU CSD Technical Report, Aug 79). ::-S'.\

RN
Newell. A. & Rosenbloom. P.S. Mechanisms of skill acquisition and the faw of practice. In J. R. Anderson !
(kd). Cogmitive Skidls and Their Acquisition. Hilisdale, NJ: Erlbaum, 1981, (Also avatlable as PSS
T
LSRR
T
“:':_\.‘_\
PR A

XPROXPARC IS CUSEPTEMBER TUss

~ S i it A Y bt M s aan ot oo —p
- I‘I ——" . ~l_ A A LA SR ARA A D A A L AL SR e h A Al A Ak iet S S
}
g
'

!
]
3
]
)
)

4 CHUNKING IN SOAR

Carncgic-Mcllon University Computer Scienee ‘Tech. Rep. #80-145).
Nilsson. N. Principles of Aruficial Intelligence. Palo Alto, CA: "lhoga, 1980,

Rendell, 1. A. A new basis tor state-space learning systems and a successtull implementation. Artificial
Intelligence, 1983, 2x4), 369-392,

Rich. E. Artificial Intelligence. New York: McGraw-Hill, 1983

Rosenbloom, P.S. The Chunking of Goal Hierarchies: A Model of Practice and Stimulus-Response
Compatibility. Doctoral dissertation, Carnegic-Mctlon University, 1983, (Available as Carncgiec-Mclon
University Computer Science T'ech. Rep. #83-148).

Roscnbloom, P.S., & Newcell, A. The chunking of goal hicrarchies: A generalized model of practice. In R.
S. Michalski, J. G. Carbonell, & I'. M. Mitchell (Eds.). Machine @earning: An Artificial Intelligence
Approach, Volume 11. 1.os Altos, CA: Morgan Kaufmann Publishers, Inc., 1985, In press (Also
available in Proceedings of the Second International Machine I earning Workshop, Urbana: 1983).

Rosenbloom, P.S.. Laird, J. .. McDermott, J.. Newell, A and Orciuch, E. R1-Soar: An experiment in
knowledge-intensive programming in @ problem-solving architecture. I1F 1 Transactions on Pattern
Analysis and Machine Intelligence, 1985. In press (Also available in Proceedings of the 1EEEE Workshop
on Principles of Knowledge-Based Systems, Denver: IEEE Computer Society, 1984, and as part of
Carncgic-Mcllon University Computer Science ‘T'ech. Rep. #85-110).

Smith, R.G.. Mitchell. 'I. M., Chestek, R. A., and Buchanan, B.G. A Modcl for 1.carning Systems. In
Proceedings of 1JCAl-77. 1977,

Sussman, G.). A Computer Model of Skill Acquisition. New York: Elsevier, 1977.

UtgofT. P.E. Shift of buas for inductive concept learning. Doctoral disscrtation, Rutgers University, October
1984.

van dc¢ Brug. A.. Rosenbloom, P.S.. & Newcell, A, Some Ixperimenis with RI-Soar (T'ech. Rep.).
Carncgic-Mcllon University Computer Science Department, 1985, In preparation.

Waterman, 1. A. Adaptive Production Systems. In Proceedings of 1JCAT-83. 1975.

NERONYPARC IS TSP MBER JOKS

Yot e .t K o S e, . - . . Tt et C
AL, TR T L L. LA PRSPPI LIS . ., W PP Sy o e

Personnel Analysis Division,
AF/MPXA

5C360, The Pentagon

Washington, DC 20330

Air Force Human Resources Iab
AFHRL/MPD
Brooks AFB, TX 78235

AFOSR,

Life Sciences Directorate
Bolling Air Force Base
Washington, DC 20332

Dr. Robert Ahlers

Code NT11

Human Factors Ieboratory
NAVTRAEQUIPCEN

Orlando, FL %2813

Dr. Bd Aiken
Navy Personnel R&D Center
San Diego, CA @152

Dr. Barl A. Alluisi
HQ, AFHRL (AFSC)
Brooks AFB, TX 78235

Dr. John R. Anderson
Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

Dr. Nancy S. Anderson
Department of Psychology
University of Maryland
College Park, MD 20742

Dr. Steve Andriole
Perceptronics, Inc.
21111 Erwin Street
Woodland Hills, CA 91367-3713

Technical Director, ARI
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Alan Baddeley
Medical Research Council
Applied Psychology Unit
15 Chaucer Road
Cambridge CB2 2EF
ENGIAND

...................

LR - P LS
PR R T TR AL L B N I . . . L TNt et
PV PV PRV TN T YT Yy T T VR Ve T I -A-L-‘x.'h‘-

P Ated aliet afut AReC Ala A hai A ke e i hes AR ARG e i Ake AV e 8 0a A Aae

Xerox PARC/Brown

Dr. Patricia Baggett
University of Colorado
Department of Psychology

Box 345
Boulder, CO 80309

Dr. Gautam Biswas

Department of Computer Science
University of South Carolina
Columbia, SC 29208

Dr. John Black

Yale University

Box 114, Yale Station
New Haven, CT 06520

Arthur S. Blaiwes

Code NT11

Naval Training Bjuipment Center
Orlando, FL 32813

Dr. Jeff Bonar

Learning R&D Center
University of Pittsburgh
Pittsburgh, PA 15260

Dr. Gordon H. Bower
Department of Psychology
Stanford University

Stanford, CA 34306

Dr. Robert Breaux
Code N~O9S5R
NAVTRAEQUT PCEN
Orlando, FL 328173

Dr. John S. Brown

XEROX Palo Alto Research
Center

3333 Coyote Road

Palo Alto, CA 94304

Dr. Bruce Buchanan
Computer Science Department
Stanford University
Stanford, CA 94305

Dr. Patricia A. Butler
NIE Mail Stop 1806
1200 19th St., Nw
Washington, DC 20208

N e e

NaAie i e fie Ale Ste die aie giagiad o g e s o f ad's d0s SN
- -

1985/08/22

.....
.................

N it A 2 b A Suchi e e ie St Sasts b B Bt 20 ki b AL AR RGN e i Rt A I A AT
1985/08/22
Xerox PARC/Brown

Dr. Jaime Carbonell Dr. Allan M. Collins
Carnegie-Mellon University Bolt Beranek & Newman, Inc.
Department of Psychology 50 Moulton Street
Pittsburgh, PA 15213 Cambridge, MA 02138
Dr. Susan Carey Dr. Stanley Collyer
Harvard Graduate School of Office of Naval Technology
Education 800 N. Quincy Street
337 Gutman Library Arlington, VA 22217
Appian Way
Cambridge, MA 02138 CIR Mike Curran
Office of Naval Research
Dr. Pat Carpenter 800 N. Quincy St.
Carnegie-Mellon University Code 270
Department of Psychology Arlington, VA 22217-5000
Pittsburgh, PA 15213
Bryan Dallman
Dr. Robert Carroll AFHRL/IRT
NAVOP O1B7 Lowry AFB, CO 80230
Washington, DC 20370
Dr. R. K. Dismukes
Dr. Eugene Charniak Associate Director for Life Sciences
Brown University AFOSR
Computer Science Department Bolling AFB
Providence, RI 02912 Washington, DC 20332
Dr. Michelene Chi Defense Technical
Learning R & D Center Information Center
University of Pittsburgh Cameron Station, Bldg S
3339 O'Hara Street Alexandria, VA 22314
Pittsburgh, PA 15213 Attn: TC
(12 Copies)
Mr. Raymond E. Christal
AFHRL/MOE Dr. Richard Elster
Brooks AFB, TX 78235 Deputy Assistant Secretary
of the Navy (Manpower)
Dr. Yee-Yeen Chu OASN (M&RA)
Perceptronics, Inc. Department of the Navy
21111 Erwin Street Washington, DC 20350-1000

Woodland Hills, CA 91367-3713
ERIC Facility-Acquisitions

Dr. William Clancey 483% Rugby Avenue
Computer Science Department Bethesda, MD 20014
Stanford University
Stanford, CA 4306 Dr. Marshall J. Farr
2520 North Vernon Street

Chief of Naval Fducation Arlington, VA 22207

and Training
Liaison Office Dr. Pat PFederico
Air Force Human Resource Iaboratory Code 511
Cperations Training Division NPRIDC

Williams AFB, AZ 85224 San Diego, CA 92152

Dr. Jercme A. Feldman
University of Rochester
Compater Science Department
Rochester, NY 14627

Dr. Paul Feltovich

Southern I1linois University
School of Medicine

Medical Mucation Department
P.0. Box 3926

Springfield, IL 62708

Dr. Craig I. Fields
ARPA

1400 Wilson Blvd.
Arlington, VA 22209

Dr. Gerhard Fischer
University of Colorado

Department of Computer Science

Boulder, CO 80309

Dr. Kenneth D. Forbus
University of Illinois

Department of Computer Science

1304 West Springfield Avenue
Urbana, IL 61801

Dr. Carl H. Frederiksen
McGill University

3700 McTavish Street
Montreal, Quebec H?A 1Y2
CANADA

Dr. John R. Frederiksen
Bolt Beranek & Newman
50 Moulton Street
Cambridge, MA 02138

Dr. R. Edward Geiselman
Department of Psychology
University of California
Los Angeles, CA 90024

Dr. Michael Genesereth
Stanford University
Camputer Science Department
Stanford, CA 94305

R Mt h A A £ R i e A R ey i ol A o0 o da e de Bar Bn- e~ o T

1985/08/22

Xerox PARC/Brown

Dr. Dedre Gentner
University of Illinois
Department of Psychology
603 E. Daniel St.
Chaempaign, IL 61820

Dr. Robert Glaser
learning Research

& Development Center
University of Pittsburgh
2G39 O'Hara Street
Pittsburgh, PA 15260

Dr. Gene L. Gloye

Office of Naval Research
Detachment

1030 E. Green Street

Pasadena, CA 91106-2485

Dr. Sam Glucksberg
Princeton University
Department of Psychology
Green Hall

Princeton, NJ (08540

Dr. Joseph Goguen

Computer Science Iaboratory
SRI International

333 Ravenswood Avenue

Menlo Park, CA 94025

Dr. Sherrie Gott
AFHRL/MODJ
Brooks AFB, TX 783%5

Dr. Richard H. Granger
Department of Computer Science
University of California, Irvine
Irvine, CA 717

Dr. Wayne Gray

Army Research Institute
5001 Eisenhower Avenue
Mexandria, VA 22333

Dr. Bert Green
Johns Hopkins University
Department of Psychology
Charles & 34th Street

Baltimore, MD 21218

.....

X

Qarh by & 5, 5,

Dr. James G. Greeno
University of California

Berkeley, CA 94720

Dr. Henry M. Halff
Haiff Resources, Inc.
4918 33rd Road, North
Arlington, VA 22207

Stevan Harnad

Editor, The Behavioral and
Brain Sciences

20 Nassau Street, Suite 240

Princeton, NJ 08540

Dr. Barbara Hayes-Roth
Department of Computer Science
Stanford University

Stanford, CA 95305

Dr. Frederick Hayes-Roth
Teknowledge

525 University Ave.

Palo Alto, CA 94301

Dr. Geoffrey Hinton
Computer Science Department

Carnegie-Mellon University
Pittsburgh, PA 15213

Dr. Jim Hollan

Code 51

Navy Personnel R & D Center
San Diego, CA 92152

Dr. John Holland

University of Michigan
2313 East Engineering
Ann Arbor, MI 48109

Dr. Keith Holyoak
University of Michigan
Human Performance Center
330 Packard Road .

Ann Arbor, MI 48109

Dr. Earl Hunt

Department of Psychology
University of Washington
Seattle, WA 98105

Xerox PARC/Brown

Dr. Bd Hutchins
Navy Personnel R&D Center

San Diego, CA ®152

Dr. Dillon Inouye
WICAT Education Institute
Provo, UT 84057

Dr. Alice Isen
Department of Psychology
University of Maryland
Catonsville, MD 21228

Dr. Zachary Jacobson

Bureau of Management Consulting
265 Laurier Avenue West

Ottawa, Ontario K1A 0S5

CANADA

Dr. Marcel Just
Carnegie-Mellon University
Department of Psychology
Schenley Park

Pittsburgh, PA 15213

Dr. Milton S. Katz
Army Research Institute

5001 Eisenhower Avenue
Alexandria, VA 2233%3

Dr. Dennis Kibler
University of California
Department of Information

and Computer Science
Irvine, CA 2717

Dr. David Kieras

University of Michigan
Technical Communication
College of IEngineering

1223 E. Engineering Building
Ann Arbor, MI 48109

Kenneth A. Klivington
The Salk Institute
P.0. Box 85800

San Diego, CA 92138

Dr. Janet L. Kolodner
Georgia Institute of Technology
School of Information
& Computer Science
Atlanta, GA 30332

AT
bl

.
't.'

ettt
WY
e

P

w T E b
» 1

......

Y

1985/08/22

Xerox PARC/Brown

Dr. Kenneth Kotovsky

Department of Psychology

Community College of
Allegheny County

800 Allegheny Avenue

Pittsburgh, PA 15233

Dr. Benjamin Kuipers
Department of Mathematics
Tufts University

Medford, MA 02155

Dr. Patrick Kyllonen
AFHRL/MOE
Brooks AFB, TX 78235

Dr. David R. Lembert
Naval Ocean Systems Center
Code 4417

271 Catalina Boulevard
San Diego, CA 92152

Dr. Pat langley

University of California

Department of Information
and Computer Science

Irvine, CA 92717

Dr. Jill Iarkin
Carnegie-Mellon University
Department of Psychology
Pittsburgh, PA 15213

Dr. Paul E. Iehner

PAR Technology Corp.
7926 Jones Branch Drive
Suite 170

Mclean, VA 22102

Dr. Alan M. Lesgold
learning R&D Center
University of Pittsburgh
Pittsburgh, PA 15260

Dr. Clayton lewis

University of Colorado
Department of Computer Science
Campus Box 430

Boulder, CO 80309

Science and Technology Division
Library of Congress
Washington, DC 20540

nnnnnnnnnnn

...

Dr. Sandra P. Marshall

Department of Psychology
University of California
Santa Barbara, CA 93106

Dr. Manton M. Matthews
Department of Computer Science
University of South Carolina
Columbia, SC 29208

Dr. James L. McGaugh
Center for the Neurobiology

of Iearning and Memory
University of California, Irvine
Irvine, CA @277

Dr. James McMichael
Navy Personnel R&D Center
San Diego, CA R152

Dr. Arthur Melmed

U. S. Department of Flucation
724 Brown

Washington, DC 20208

Dr. Al Meyrowitz

Office of Naval Research
Code 433

800 N. Quincy

Arlington, VA 22217-5000

Dr. Ryszard S. Michalski
University of Illinois
Department of Computer Science
1304 West Springfield Avenue
Urbana, IL 61801

Prof. D. Michie

The Turing Institute

26 North Hanover Street
Glasgow G1 2AD, Scotland
UNITED KINGDOM

Dr. George A. Miller
Department of Psychology
Green Hall

Princeton University
Princeton, NJ (08540

.....
.......

A 5 oA L

O LN W N

L OO,

Xerdx PARC/Brown

Dr. lance A. Miller

IBM Thomas J. Watson
Research Center

P.0. Box 218

Yorktown Heights, NY 10598

Dr. Mark Miller
Computer*Thought Corporation
1721 West Plano Parkway
Plano, TX 75075

Dr. Andrew R. Molnar
Scientific and Engineering
Personnel and Fducation
National Science Foundation
Washington, DC 20550

Dr. Williem Montague
NPRDC Code 13
San Diego, CA 92152

Dr. Tom Moran

Xerox PARC

3333 Coyote Hill Road
Palo Alto, CA 94304

Dr. Allen Munro

Behavioral Technology
Iaboratories - USC

1845 S. Flena Ave., 4th Floor

Redondo Beach, CA 90277

Spec. Asst. for Research, Experi-
mental & Academic Programs,
NTTC (Code 016)

NAS Memphis (75)

Millington, TN 38054

Dr. David Navon

Institute for Cognitive Science
University of California

La Jolla, CA 093

Asgistant for Planning MANTRAPERS

NAVOP 01B6
Washington, DC 20370

Assistant for MPT Research,
Development and Studies
NAVOP O1B7

Washington, DC 20370

Satiate el S T IR R N R TR R RS PN T T T TR TN TN RN T

1985/08/22

Dr. T. Niblett

The Turing Institute

36 North Hanover Street
Glasgow G1 2AD, Scotland
UNITED KINGDOM

Dr. Richard E. Nisbett
University of Michigan
Institute for Social Research
Roam 5261

Ann Arbor, MI 48109

Dr. Donald A. Norman

Institute for Cognitive Science
University of California

la Jolla, CA 92093

Director, Training Iaboratory,
NPRIC (Code 05)
San Diego, CA 92152

Director, Manpower and Personnel
ILaboratory,
NPRDC (Code 06)

San Diego, CA 92152

Director, Human Factors
& Organizational Systems lab,
NPRDC (Code 07)

San Diego, CA 2152

Library, NPRDC
Code P201L
San Diego, CA 92152

Commanding Officer,

Naval Research Iaboratory
Code 2627
Washington, DC 20390

Dr. Harry F. O'Neil, Jr.
Training Research Iab
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Stellan Chlsson
Learning R & D Center
University of Pittsburgh
30%9 O'Hara Street
Pittsburgh, PA 15213 NRANEY

Ty Ll . 4 .
RN e At sl A A e Al A i e o Ty v 3 e Yy

1985/08/22
Xerox PARC/Brown
Director, Technology Programs, Dr. Jesse Orlansky
Office of Naval Research Institute for Defense Analyses
Code 200 1801 N. Beauregard St.
800 North Quincy Street Alexandria, VA 22311
Arlington, VA 22217-5000
Lt. Col. (Dr.) David Payne
Director, Research Programs, AFHRL
Office of Naval Research Brooks AFB, TX 78235
800 North Quincy Street
Arlington, VA 22217-5000 Dr. Douglas Pearse
DCTEM
Office of Naval Research, Box 2000
Code 433 Downsview, Ontario
800 N. Quincy Street CANADA
Arlington, VA 22217-5000
Dr. Nancy Pennington
Office of Naval Research, University of Chicago
Code 442 Graduate School of Business
800 N. Quincy St. 1101 E. S8th St.
Arlington, VA 22217-5000 Chicago, IL 60637 -
LKA
Office of Naval Research, Military Assistant for Training and My
Code 442EP Personnel Technology, e
800 N. Quincy Street OusD (R & E) S
Arlington, VA 22217-5000 Roam 3D129, The Pentagon >~
Washington, DC 20301 v
Office of Naval Research, RS
Code 442PT Dr. Ray Perez RO
800 N. Quincy Street ARI (PERI-II) N
Arlington, VA 22217-5000 5001 Eisenhower Avenue e
(6 Copies) Alexandria, VA 2233 _.:
Psychologist Dr. David N. Perkins e
Office of Naval Research BPducational Technology Center e
Branch Office, Iondon 2337 Gutman ILibrary S
Box 39 Appian Way e
FRO New York, NY 09510 Cambridge, MA 02138 AR
Special Assistant for Marine Administrative Sciences Department,
Corps Matters, Naval Postgraduate School o
ONR Code 10M Monterey, CA 93940 5
800 N. Quincy St. -
Arlington, VA 22217-5000 Department of Operations Research,
Naval Postgraduate School =
Psychologist Monterey, CA 93940 v
Office of Naval Research N
Liaison Office, Far Fast Department of Computer Science, NN
APO San Francisco, CA 96503 Naval Postgraduate School -.::-f::z
Monterey, CA 93940 Seundd
Dr. Judith Orasanmu 2
Amy Research Institute RS
5001 Eisenhower Avenue NI
Alexandria, VA 22333 O
RIRCIAS

......................
....................
.................................
...........
......
LA

» . . . - e - ‘e -v -
. N FEIPEPUE SR W . I P AP,y

\‘ \ - N
O N O S)
LRI VRV I WA YA I T T S A G S T

Dr. Tjeerd Plomp

Twente University of Technology
Department of Education

P.0. Box 217

7500 AE ENSCHEDE

THE NETHERIANDS

Dr. Martha Polson
Department of Psychology
Campus Box 346
University of Colorado
Boulder, CO 80309

Dr. Peter Polson
University of Colorado
Department of Psychology
Boulder, CO 80309

Dr. Steven E. Poltrock
MCC

9430 Research Blvd.
Echelon Bldg #1

Austin, TX 78759-6509

Dr. Harry E. Pople
University of Pittsburgh
Decision Systems laeboratory
1360 Scaife Hall
Pittsburgh, PA 15261

Dr. Joseph Psotka

ATTN: PERI-1C

Army Research Institute
5001 Eisenhower Ave.
Alexandria, VA 22333

Dr. Lynne Reder
Department of Psychology
Carnegie-Mellon University
Schenley Park

Pittsburgh, PA 15213

Dr. James A. Reggia
University of Maryland
School of Medicine
Department of Neurology
22 South Greene Street
Baltimore, MD 21201

Dr. Fred Reif

Physics Department
University of California
Berkeley, CA 94720

.
............................

............

..............

AC At i Nal s A E S it G A MO g YAt Mt i S e S0 YA S AN AL A A g A I A AP A A A e dc 8 s A A R AP it A gl gt il gt SN g N

Xerox PARC/Brown

.......................
................

1985/08/22

Dr. leuren Resnick
learning R & D Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213

Dr. Mary S. Riley

Program in Cognitive Science

Center for Human Information
Processing

University of California

Ia Jolla, CA 093

William Rizzo
Code 712 NAVTRAEQUIPCEN
Orlando, FL 32813

Dr. Williem B. Rouse

Georgia Institute of Technology

School of Industrial & Systems
Engineering

Atlanta, GA 30332

Dr. David Rumelhart

Center for Human
Information Processing

Univ. of California

Ia Jolla, CA 92093

Dr. Roger Schank

Yale University

Computer Science Department
P.0. Box 2158

New Haven, CT 06520

Dr. Walter Schneider
University of Illinois
Psychology Department
603 E. Daniel
Champaign, IL 61820

Dr. Janet Schofield
Learning R&D Center
University of Pittsburgh
Pittsburgh, PA 15260

Dr. Marc Sebrechts
Department of Psychology
Wesleyan University
Middletown, CT 06475

Xerox PARC/Brown

Dr. Judith Segal
Room 819F

NIE

1200 19th Street N.W.
Washington, DC 20208

Dr. Sylvia A. S. Shafto
National Institute of Education
1200 19th Street

Mail Stop 1806

Washington, DC 20208

Dr. T. B. Sheridan

Dept. of Mechanical Engineering
MIT

Cambridge, MA 02139

Dr. Ted Shortliffe
Computer Science Department
Stanford University
Stanford, CA 34305

Dr. Lee Shulman
Stanford University
1040 Cathcart Way
Stanford, CA 94305

Dr. Randall Shumsker
Naval Research Iaboratory
Code 7510

4555 Overlook Avenue, S.W.
Washington, DC 20375-5000

Dr. Robert S. Siegler
Carnegie-Mellon University
Department of Psychology
Schenley Park

Pittsburgh, PA 15213

Dr. Herbert A. Simon
Department of Psychology
Carnegie-Mellon University
Schenley Park

Pittsburgh, PA 15213

Dr. Zita M Simutis

Instructional Technology
Systems Area

ARI

5001 Eisenhower Avenue

Alexandria, VA 22333

Bt S g auae

Dr. H. Wallace Sinaiko
Manpower Research

and Advisory Services
Smithsonian Institution
801 North Pitt Street
Alexandria, VA 22314

Dr. Derek Sleeman

Stanford University
School of Hiucation
Stanford, CA 34305

Dr. Bdward E. Smith

Bolt Beranek & Newman, Inc.
50 Moulton Street
Cambridge, MA 02138

Dr. Elliot Soloway

Yale University

Computer Science Department
P.0. Box 2158

New Haven, CT 06520

James J. Staszewski
Research Associate
Carnegie-Mellon University
Department of Psychology
Schenley Park

Pittsburgh, PA 15213

Dr. Robert Sternberg
Department of Psychology
Yale University

Box 11A, Yale Station
New Haven, CT 06520

Dr. Albert Stevens

Bolt Beranek & Newman, Inc.
10 Moulton St.

Cambridge, MA 02238

Dr. Paul J. Sticha

Senior Staff Scientist
Training Research Division
HumRRO

1100 S. Washington
Alexandria, VA 22314

Dr. Thomas Sticht
Navy Personnel R&D Center

San Diego, CA @152

1985/08/22

Xerox PARC/Brown

Dr. John Tangney
AFOSR/NL
Bolling AFB, DC 20332

Dr. Kikumi Tatsuoka

CERL

252 Engineering Research
Laboratory

Urbana, IL 61801

Dr. Perry W. Thorndyke

MC Corporation

Central Engineering labs
1185 Coleman Avernue, Box 580
Santa Clara, CA 95052

Dr. Douglas Towne
Behavioral Technology labs
1845 S. Elena Ave.

Redondo Beach, CA 90277

Dr. Paul Twohig

Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Headquarters, U. S. Marine Corps
Code MPI-20
Washington, DC 20380

Dr. Kurt Van Iehn
Xerox PARC

3333 Coyote Hill Road
Palo Alto, CA 94304

Dr. Donald Weitzman
MITRE

1820 Dolley Madison Blvd.
Maclean, VA 22102

Dr. Keith T. Wescourt

FMC Corporation

Central Engineering labs
1185 Coleman Ave., Box 580
Santa Clara, CA 95052

Dr. Douglas Wetzel

Code 12

Navy Personnel R&D Center
San Diego, CA @152

Dr. Robert A. Wisher

U.S. Army Institute for the
Behavioral and Social Sciences

5001 Eisenhower Avenue

Mexandria, VA 22333

Dr. Martin F. Wiskoff
Navy Personnel R & D Center
San Diego, CA 92152

Dr. Wallace Wulfeck, III
Navy Personnel R&D Center
San Diego, CA @152

Dr. Joe Yasatuke
AFHRL/IRT
Iowry AFB, CO 80230

Dr. Masoud Yazdani

Dept. of Computer Science
University of Exeter
Exeter EX4 AQL

Devon, ENGIAND

Major Frank Yohannan, USMC
Headquarters, Marine Corps
(Code MPI-20)

Washington, DC 20380

Mr. Carl York

System Development Foundation
181 Lytton Avenue

Suite 210

Palo Alto, CA 94301

Dr. Joseph L. Young

Memory & Cognitive
Processes

National Science Foundation

Washington, DC 20550

Dr. Steven Zornetzer
Office of Naval Research
Code 440

800 N. Quincy St.
Arlington, VA 22217-5000

Dr. Michael J. Zyda
Naval Postgraduate School
Code 52CK

Monterey, CA 93943

- .. %. ‘.
tods
'-‘{;-j’-

e

