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1.0 INTRODUCTION

This report considers the use of aggregation in modeling and solving

network based logistics planning problems. Aggregation combines, or .

pools, certain attributes of a problem to facilitate its modeling and

solution. Frequently, after the model is solved it is necessary to

disaggregate the pooled attributes to their original level of detail.

This allows determination of the acceptability of the model output in

making the suggested decisions. If the aggregate model yields an

unacceptable solution, a mechanism is required by which the solution can

be modified to make it acceptable.

Aggregation imposes a natural decision hierarchy with higher level

aggregate decisions restricting lower level, more detailed, decisions.

For large scale planning situations requiring involvement of a number of

participants with skills in different areas, this can be very important.-

A structure is required to coordinate the efforts of the different

participants. This structure should

- provide initial guidelines for aggregation,

- utilize detailed plans for revising the aggregate plan,

- iterate until an acceptable overall plan is obtained.

A mathematica. structure for the aggregation process will be developed

which allows a large problem to be solved as a sequence of smaller

problems. This structure can also serve as a coordinating instrument for

the decision making hierarchy.

Motivation for examining aggregation in the context of network based

planning problems is summarized as follows. Detailed data is often not

available at the beginning of the planning process, but aggregate data ................

can be estimated. In such cases solving the aggregate problem frequently es .

. .. . /or
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indicates what detailed data is required before a solution can be

implemented. ____

Aggregating data tends to reduce variation. For example, monthly .

demand is likely to have less variation than daily demand. Consideration

of a problem at a detailed level often requires that parameters be

modeled as random variables, while an aggregate level allows the

parameter to be considered as essentially deterministic. This

significantly decreases model complexity.

In many situations a detailed planning model is too large to be

solved with available computer resources and planning time. Further, in

many planning environments the objective is not merely to optimize a

given function but to generate a plan which is satisfactory with respect

to multiple objectives, some of which are not quantitfiable. All or

parts of the model may be solved more than once, with the user

interacting to guide the process to an acceptable solution. This implies

a need for reorganizing a large monolithic model into a set of smaller

models which when linked together represent the original model.

Aggregation can be used to devise such a decomposition strategy.

Aggregation concepts developed here are motivated by the need for

aggregation in the SCOPE system developed in PDRC Report 84-09. One of

the fundamental modeling components of the SCOPE system it the assignment

of movement requirements to transportation channels given the MR

assignment problem. The optimization model used is a transportation

model. This model will be referred to throughout this report. It is

discussed in detail in PDRC Report 84-09. The generalized version of

this model is currently being coded as the MRMATE model in the MODES Nw

system under developed for the Joint Deployment Agency. The methodology

2p .°i
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devlopd ereIsapplicable to both the pueadthegerazd os .-..

of the model in that report. To simplify the presentation here, standard

notation riii be used rather than the more complex notation required to .4

describe the movement requirement assignment model. ,
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.~2.0 AGGREGATION

Consider the example transportation problem given below and its

corresponding network representation given in Figure 2.1.

3 4
Min E c x

i-i J-1

Subject to:

(1) 11 +* x5+ x 1  -a

(2) + x25 + x27 2

(3) + x34 + x36 + X37 3

5) 15 ++25 - a5

(6) x16 + x36 a6

(7) + X27 + x3 7  a7

xi 0 for i - 1..3, j - 1..4

In the model, xt is the flow on the arc from source node i to sink

node j and c is the corresponding cost. Nodes on the left-hand side of
ij

the transportation network are source nodes and nodes on the right-hand

side are sink nodes.

This report concentrates only on aggregation of nodes on the

right-hand side of the transportation network (i.e. sink nodes only).

This same logic can be extended to aggregation of both sources and sinks

by performing the aggregation in two steps.

Consider aggregation of nodes 4 and 5 in Figure 2.1 to form an

aggregate node 1 in Figure 2.2, and nodes 6 and 7 in Figure 2.1 to form

4

.9....-.;. . .,
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aggregate node 2 in Figure 2.2. Constraints corresponding to the network

In Figure 2.2 are shown in (II) below.

1 2
(8) Y + Y a

1 2(9) y2  +Y 2  a2

(10) y1 + y 2 a
y3 + 3  3II

1 1 1 " '
(11) 2 + Y3 a4

+ a5

(1)2 2 2

+ Y2 +)3 '-+ 7

y ;1 0 for i- 1...3, r- 1...2

In the model, y represents the flow on the arc from source node i

to aggregate sink node r and cr is the corresponding cost per unit of

flow.

Examining the information that is lost in the aggregate problem in

Figure 2.2 the following observations can be made. There is a single

cost on each aggregate arc in Figure 2.2. This implies that flow on the

aggregate arc (1,1) incurs the same cost as it would on either of the

detailed arcs (1,4) or (1,5). If the two detailed arc costs are not the

same, then some amount of error is introduced by combining the two costs

into a single cost. If the amount of flow on each of these arcs is known

in advance, the aggregate cost could be weighted so that it would

6
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accurately reflect the detailed cost. While the detailed flows are not

known in advance, there is the potential for iteratively improving the

weighted aggregate cost after solving an aggregate problem and then -..-.

disaggregating.

A simple method for specifying the capacity of aggregate nodes is to

set the aggregate capacity equal to the sum of the corresponding detailed

node capacities. However, such a capacity may not be meaningful when the

nodes model different entities. For example, aggregating sea and air -.

channel capabilities in the MR assignment model allows materiel to be

sent by either air or sea. If some materiel can only go by sea then the

aggregate node capacity exceeds the practical total which can be shipped.

There is also a problem in specifying the capacity of aggregate

arcs. For example, consider the aggregate arcs (1,1) and (2,2) in Figure

2.2. Since (1,1) represents both arcs (1,4) and (1,5) in Figure 2.1, it

can have a maximum flow of (a4 + a5 ). However (2,1) in Figure 2.2

represents only (2,5) in Figure 2.1. Hence, it can only have a maximum

flow of a5. Procedures must be developed for passing this information to

the aggregate problem while retaining its transportation structure.

Simply putting the sum of the associated node capacities as capacities on

the eggregated arcs will not suffice.

This report outlines approaches to deal with each the above issues.

It also proposes a format which can be used to examine alternative

formulations of the aggregate problem to determine an optimum

aggregation.

7
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2.1 General Aggregation Model

This section describes approaches to aggregation methods presented

in the literature. The formulations are discussed in Zipkin [5J and

Taylor [4].

When the aggregate problem is formulated, the following parameters

must be specified

- capacities on the aggregate sink nodes

- costs on the aggregate arcs

- capacities (upper limits on flow) on the aggregate arcs.

The detailed problem is

i J .ii

subject to: E x a, for i = 1,2...Mj xii i .

x - b for j 1,2...N
i ii j

x 0O
ij

Construction of the aggregate problem is essentially a tw step

procedure. First, the nodes to be aggregated (e.g. Figure 2.3) are

combined into a single aggregate node (e.g., Figure 2.4). This resul-s -

in a set of parallel arcs as indicated in Figure 2.4. These parallel

arcs are then aggregated into a single aggregate arc.

The aggregate node capacity is derived from the capacities of the

individual nodes forming the cluster. If a linear relationship is ..

assumed (as a simplifying assumption), then the aggregate capacity can be

expressed as

8.
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Figure 2.4. Netw9rk in Figure 2.3 After Node Aggregation.
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where P is the set of nodes in the rth aggregation cluster, b is the
r

capacity of node J in P for the detailed problem, and t is a user
rj

defined multiplier between zero and one.

The motivation for different choices of t are as follows. If there

are arcs from all source nodes to all sink nodes in P, (e.g., any

movement requirement can be sent via any channel) then it is appealing to

represent the aggregate node capacities as the sum of the individual node

capacities. This implies that t - 1.

The motivation for a choice of t less than 1, is to prevent the

aggregate capacity from over estimating the actual capacity of the

system. For example, if some movement requirements can only move as

outsize cargo, an aggregate node representing both oversize and outsize

cargo would overestimate capability if it were simply the sum of the

individual detailed oversize and outsize channel capabilities. The

* amount of usable capability can b.e controlled by the factor t .

When node aggregation is performed, information is lost regarding

the detailed capacities on nodes to which each of the multiple arcs are

incident. The problem, as shown in Figure 2.5 represents the aggregate

model after the parallel arcs in Figure 2.4 have been aggregated.

If a relationship between the detailed arc flows x and the
ir

aggregate arc flow yr is assumed, then disaggregation is greatly

simplified. A simple relation is

x s * Y where JeP .

10
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where a is the fraction of the aggregate arc flow which is to be

allocated to the detailed arc Ij.

Such a relationship requires that the values of sij be specified. s.' .-

For a given tj,, if a is assumed to be a function of the data regarding
ii

sink nodes alone, (i.e. independent of the source node data) then the

condition that xii be a feasible solution to the detailed problem permits

the determination of the appropriate value for s
i" .

From the detailed problem, the aggregate problem is formulated -

corresponding to the network shown in Figure 2.5. The aggregate node

capacities are as defined earlier and y refer to the flows on the

aggregate arcs (i,r).

Aggregate Problem. *"..'/

M L
rE cir Yii-l r,-l

Yii"br Ep t br r EP
r

r : y = ai "0-".

If t1 = I is selected, and

xij = Sj Yi

then, in order to ensure that the xij obtained from the solution to the

aggregate problem is feasible to the original problem, the feasibility -

conditions must be checked as follows , ,, .,

12
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r~ E l.. *

a 8a

jdr

- a~ if E s -1

Frmtefeasibility conditions -

E a 1

Next, the conservation of flow conditions are checked at the sink nodes

Ex - r
x ij 9 ijY

Assumning that a jdepends on the sink data alone then

E r r

a a 8 b
ijii kc k

a jkEPr b k~~

- b.
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The above relation holds for

s bj E bk)

k EP

If s J is independent of the source nodes and tj 1 then
' 81jb A/ b~

i. i ji, r
a- ob..

Also, for this specification of t and aij values, we have the objective

function value of the feasible solution generated to the original problem -

equal to the objective function value of the aggregate problem, if the

aggregate arc costs are

-.-. "-." -

cir - J~, c 8 -: '
i r JE ji

This follows since the objective function of the detailed problem is

rr

Sci~xi 4  -oZ" E-cii si. u
i oi.-.". P

rr
-E a c j  c =i ) .u

i r JCPr
r

c -ir Y.
I r

for the cost of the aggregate arc as specified above.

14



If the values of the node capacities involved in an aggregate node

are equal and t - 1, then asj - 1/( Pr) for j in P . This essentially

means that the arcs flows are distributed equally across all the incident

detailed arcs.

The discussion in this section permits the use of a detailed problem _

(assuming that there is an arc from every source to every single node)

together with a specified aggregation of nodes in order to define an

aggregate problem with aggregate costs

rc ir- cijsij 2 --

where r

b
stj for Jc r ...

E b r

kP k-
r

and aggregate node capacities

b o"E b.
r k eF k

Once the aggregate problem is solved, a disaggregarion scheme is

available which sets

r "°"r

k yP

xii - sij yi "

This always provides a feasible solution to the original problem.

15
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Unfortunately, in many deployment planning situations, the

transportation problem is sparse with the sparsity reflecting feasible

allocations of movements to transportation modes (i.e. some movement

requirements cannot be assigned to certain channels). In such cases

there is not an arc from every source node to every sink node and the

disaggregation outlined in this section will not always provide a

feasible solution.

The solution to the detailed problem generated Is guaranteed to be

feasible only if all such nodes in a cluster have arcs to the same set of

source nodes. Since a specified aggregation may not satisfy this

condition, formulations need to be examined which generate feasible

solutions when sink nodes with arcs to different source nodes are

aggregated. Such a procedure will be provided in Section 5.0.

16- ,.
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3.0 DISAGGREGATION ISSUES:

Given a detailed problem, an aggregate model can be constructed as

illustrated in the previous section. Once the aggregate model is solved,

the next question is how to disaggregate the aggregate solution.

Aggregation is used to determine a gross allocation of resources to the

aggregate sink nodes. Disaggregation distributes the allocated aggregate

resources across the detailed nodes and arcs.

Aggregation is usually motivated by a desire to decompose a large

problem into smaller manageable subproblems. A desirable feature of any

disaggregation is that it permit the subproblems to be solved

independently. This permits the subproblem solution process to occur in

parallel. The objective of disaggregation is usually to generate "good

feasible" solutions to the detailed problem. It is also desirable to be

able to evaluate alternative solutions to the detailed problems. The pg
characteristics of a good disaggregation procedure are that it:

(I) enable parallel processing of the clusters, so that the time is

merely the largest time among all clusters. This is useful

from the perspective of use of aggregation as a co-ordinating

procedure.

(2) generate a feasible solution to the original problem. This

permits the procedure to be interrupted by the user interface

so as to provide input to speed up the overall problem. -

solution. Also, even though optimality of the entire problem,

may not have been reached the solution at the end of each

iteration offers suboptimal scenarios which may be satisfactory,. -

17
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from the perspective of satisfying certain other qualitative

considerations.

Disaggregation procedures reported in the literature are essentially

of two types: fixed weight disaggregation and optimal disaggregation.

Fixed weight disaggregation uses the same weights used in the aggregated

problem formulation. It is fixed in the sense that it is a single,

noniterative multiplication procedure. It uses the s values to
i-

generate a feasible solution to the detailed problem as follows.

x .j s8 j *y for JcPr

This provides a feasible solution to the detailed problem provided

that there is an arc from every source node to every sink node. This

procedure is easy, quick, and does not involve any specific algorithmic
I NA.

procedures. However, since the s values were assumed to be independent

of the source nodes, the solution generated for sparse problems may be

infeasible because information regarding the missing arcs is notm
utilized.

Optimal disaggregation is optimal in the sense that, given a

partition of the source flow allocation to the clusters, this flow is

routed optimally within each cluster. The solution generated is no worse

then the fixed disaggregation case.

The optimal disaggregation procedure allows each cluster of nodes to '

be evaluated independently from the aggregate problem solution. This

permits parallel solution of the disaggregation problems for each

cluster. The essential idea is to flow the aggregate flows back

8.
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V.

through the detailed arcs and nodes. The problem constructed for each

cluster would be a transportation problem. It would have a number of

source nodes equal to the number of aggregate basic feasible arcs

incident to the aggregate cluster node, and a number of sink nodes equal

to the number of detailed nodes aggregated into the cluster. The costs

on the arcs are the costs on the detailed problem, with the aggregate

flows forming the capacities on the source nodes and capacities (obtained

from the detailed problem) on the sink nodes. The disaggregation problem

for each cluster r is as follows

Min . ctj xiji J i..i.

rr
subject to: E. xJ =Yi for i 1,2,...M .-'

JEP
ELx - b for JcPr

* j 0 r 21'

xii 0

The corresponding general network model is shown in Figure 3.1.

Since the disaggregation problems allow flows only on arcs which exist in

the original problem, a feasible solution, if one exists is assured to

the detailed problem.

For the example whose detailed formulation is given in (I) and whose

aggregate formulation is given in (II), disaggregation involves

allocating the aggregate flow variables yr to the detailed flow variables

x . Since there are two aggregate clusters, there are two disagregation :. .'-
iji

problems. "pt

19
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Figure 3.1. Optimal Disaggregation Network for Cluster r.
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C.. For each cluster, the following is the optimal disaggregation

problem. The values of yrare specified from the solution to the

aggregate problem. The networks are shown in Figure 3.2 for cluster 1 -

and in Figure 3.3 for cluster 2. The constraints corresponding to these

networks are given in (III) and (IV) respectively.

(13) 1 14 +x15 Y

(14) + x

(15) + 34 - 33

(16) x1 +13x a4

(17) 11 12 a5

2
(18) x 1 6  - y

2

(19) + x2 Y2

(20) + x6+37 2

(IV)

(21) x+13 x a6

(22) + x2 +1 x a727 ~ 37 7

and )i >0

21
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.* 4.0 THE ITERATIVE STEP

Once an aggregate problem has been solved and a feasible solution to

the detailed problem generated, this information is used to decide how

the aggregate problem can to be modified so that the procedure will move
r- '- L

towards an optimal solution of the detailed problem. The goal is to add

enough additional information to the aggregate problem to move it

ultimately to an optimal solution of the detailed problem.

Methods have been developed to generate a dual variable solution to

the detailed problem using the aggregate dual information. These dual

variable values can be used to identify dual infeasible arcs in the

detailed problem. (Dual infeasible arcs are those which do not satisfy

the dual constraints.) Given dual infeasible arcs, various procedures

have been suggested to reaggregate the detailed problem. Balas [1]

suggests the following procedure. The aggregate problem duals are used

to generate a dual variable solution to the detailed problem. All the

nodes are separated into a cluster that have dual infeasible arcs

incident to them. Singleton clusters are setup for each such node in the

new aggregation. This procedure is iterated until the solution of the

detailed problem is obtained.

The problem with this procedure is that the -ggregate problem size

tends to grow very rapidly. This may not be a desirable feature.

Taylor [4] suggests a modified approach where only the most dual

infeasible arc in each cluster is considered. The corresponding node tc

which it is incident is separated to form a single node cluster. This

method uses the same motivation as the earlier approach but controls the

growth of the aggregate problem size. The procedure uses the duals to

identify the most dual infeasible arc in a cluster. From each cluster r,

23
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the node j cP is separated to form a cluster by itself in the
r r

reaggregated problem.

These procedures can be summarized as follows:

(1) The problem information is used to partition nodes into

clusters of similar nodes.

(2) These nodes are aggregated to setup an aggregate problem

(3) The aggregate problem solution is used to generate upper and

lower bounds on the original problem.

(4) The dual aggregate solution is used to generate a dual

solution. This dual solution is used along with additional

information about the problem instance, to reaggregate the __-"

problem.

(5) Steps (1) through (4) are repeated until an optimal solution to

the detailed problem is obtained or until the user is satisfied

with the sub-optimal solutions generated at some stage.

These procedures have two major shortcomings with regard to

deployment planning problems. The first is that they only work for the

situation where energy node in a cluster has the same connectivity to

source nodes (i.e., if one sink and in the cluster is connected to a

particular source node, then all sink nodes in '.he cluster are connected

to the same source node). This condition is not normally satisfied for

the MR assignment problem.

The second shortcoming is that a larger aggregate problem results

after each iteration. If the computer system is constrained by storage

space, then this can result ultimately in an unacceptably large problem.

The following reformulation has the potential to over come both of -

these problems.

24
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5.0 MODEL REFORMULATION

For the example problem in section 2.0, consider the original

constraints (1) through (7) and the new constraints (8) through (22).

Substituting constraints (13),(14), and (15), constraint (11) can be

rewritten as

This is a relaxation of the original constraints (4) and (5). Similarly

constraint (12) is a relaxation of constraints (6) and (7).

Constraint (8) together with constraints (13) and (18) provides

• x4 + x1 + x6 aI  ..'
114 + 1 5 +16 1

which is constraint (I). Constraint (9) with (14), and (19) provides

(2); constraints (10) with (15) and (20) provides (3). Constraints (4)

through (7) are identical to (16) through (17) and (21) through (22).

Thus, if constraints (8) - (22) were compared to the original problem (1)

through (7), the additional constraints are simply relaxations or can be

used to generate the same original constraints. Constraint set (8)

* . through (22) can be rearranged to form the system of equations

Min E E ci "-"i J j x j

subject to: constraints (8) through (12)

and for cluster 1 : constraints (13) through (17)

for cluster 2 : constraints (18) through (22)

25
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This system of equations has a matrix structure as shown in Figure

5.1. The matrix has a structure which consists of a master

transportation problem linked via columns to subproblems which are also

transportation problems.

5.1 General Model I WE

The above specific example can be generalized with the following

notation

Detailed Problem: Min EE c x
ii i ii

(23) s.t. E x - ai i - 1...M (V)
j ii)

(24) E x j = b j - 1 ... N
i~

xii 0

Given a specified aggregation of detailed nodes an equivalent

problem can be formulated as follows.

Let r 1 ,2,...L be the number of clusters.

Let P denote the nodes j which comprise each cluster r.
r

pLet Y, be defined as

(25) Yi E xj for each i 1 l,2,...M and r - 1,2,...L For

each r 1 l,2,...L add the redundant constraints

M r ° -

(26) Z Yr £ b
i-I

r

to problem (V). Constraints (26) are redundant since combined with the

definitions of y in (25) a relaxation of the detailed problem

constraints (24) is obtained. The y, variable definitions (25) also

result in an equivalent representation of the constraints (23) as

26
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'lY2 Y 2 2 2 1 15 '25 X34 16 27 36 37 RH.S. I'~~

1 
a 4 a 7 %

1 82

1 1 ~a5  A'~~

-1 w-

Figure 5.1. Reformulated Matrix Structure.
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(27) 1 y, ai 1-,2,..M

The constraint sets (24) through (27) can be rearranged to obtain

Min X E c x

subject to: L rY - a i 1 ,2,..M

=1E b
i~ E-

(VI)

and for each cluster r, r 1 ,2,..L

x ii y- r 1,2,..M

r

i-i

Tea mTistructuresfornte dny eile proemit howanvue 5.2 anddt

(V) in order to obtain (VI). Hence, solving (VI) also solves (V). A

reformulation of the form (VI) can be constructed for any specified

aggregation of nodes.

28 %
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5.2 Solution of the Reformulated problem

There are two extreme cases with regard to the reformulated

problem. If each node forms a cluster then the aggregate problem is as

large as the original problem. If all nodes together form a cluster

then the aggregate problem is trivial. In the latter case there is just

one arc out of each source node to the aggregate sink node, and the

solution is to fill the arc to the source supply value. Between these

S- two extremes, there is a distribution of time and complexity of solution.

These vary between the aggregate and detailed levels which allows the

problem to be solved within the time and space specifications.

Considerable latitude is available in trading-off size the aggregate

problem versus size and number of the disaggregated problems.

- An immediate approach to solving the reformulated problem is to

setup the aggregate problem as a master problem. The subproblems are

formed by the disaggregation problems linked together by Benders'

constraints [2]. For the problem discussed in section 5.0, the master

problem would be

Mi z

2
subject to: a yr = ai i-1...3

1

2
Y = a + a5

i--
, ~~ £Y a6 +  7.'"

one Benders' constraint for each iteration and

Y r 0 for i-1...2, r-l...2 ..

30
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rThe subproblems a given y"wouldbe

, ~ ~SUBPROBLEM 1 =

pKn I 14x14 + 1515 + c25x25 + c34x34

j:' x14 + x15 =Y, "

'" x~34 =Y3 .;''-

" X~14 X34 = 4  :~~'

"" ~SUBPROBLEM 2---.-

.'....

min C 16 x16 + c27x27 + c36x36 + c37x37 :'::'

='l6 "Yl m

x36 + x37 TM Y3 "

x27 + 37 = 7 "-.
iand x 0

~~~Benders' constraints of the form "'"

z 1 +Eu2 y2 +v1 a l 2 a +.'v 2 au Y +I Y + v14 2 5 1 6 2 7

-:: are added to the master problem at each iteration, with the u's and v's._--

being the duals of subproblems 1 and 2.

'-'." Benders' procedure is discussed In detail in PDRC reports 84-09 and ''.

85-03. The procedure involves solving the master problem (in this case '.

. the aggregate problem) and then solving the subproblems (in this case the
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disaggregation problem). Based on the solutions to the subproblems, a..4

Benders' constraint is constructed and added to the master problem. The

new master problem is solved and the process repeated. A lower and upper

bound on the value of the optimal objective function of original detailed

problem is generated at each iteration. When the two bounds are equal,

the process terminates with an optimal solution.

5.3 Advantages and Disadvantages of the Benders' Approach

Benders' decomposition is suggested to solve the reformulated

problems. The basic advantage of Benders' procedure is that it separates

the solution of the aggregate problem and the disaggregate subproblems.

Once the aggregate problem is solved, the disaggregation subproblems, one

for each cluster, can be solved independently. The linking Benders'

constraints generated by the subproblem, one constraint for each cluster,

are added to the aggregate problem, guiding It towards the solution of R

the entire problem. Furthermore, at each iteration upper and lower

bounds on the optimal objective function value are generated. These

bounds permit termination when the solution Is reasonably close to

optimal.

A problem with the use of Benders' decomposition is that the

constraints added to the aggregate problem cause it to be a network flow

with side constraints model. This reduces the advantage of its original

pure network structure. Research is in progress on a procedure which

permits the additional Benders' constraints to be used to change flow

capacities in the aggregate transportation model. This would allow use

of network algorithms to solve the aggregate problem. Based on
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information available at an iteration, the aggregation itself may also be

changed to hasten the solution.

While Benders' decomposition is a procedure which can be used to ,-..

solve the reformulated model, other procedures which exploit the network

structure of the aggregate and disaggregation problems many expedite the

solution mechanism for the reformulated model.
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6.0 EXTENSIONS AND RESEARCH AREAS

The concepts discussed in this report suggest various areas for future -

research.

(1) Though the aggregation has been discussed with respect to a two

r Z%
level solution procedure, the procedure could be extended to a

multi-level hierarchical procedure. The decisions are refined

at each level with preceding level providing resource

constraints for succeeding levels.

(2) Since any minimum cost flow problem on a general network can be

transformed into a transportation problem as in Lawler [3], the -"-

aggregation procedure could be applied to solve minimal cost

flow problems. This aggregation and problem reformulation

might be carried out without transforming the network, thereby

working directly with the network itself.

(3) Since the master and subproblems are transportation problems,

techniques which replace the Bender's cuts with equivalent

capacities on aggregate arcs might be devised so that the

master problem remains a network flow problem, rather than

become a network flow with side constraints model.

(4) In solving the mas..er problem, the Benders' might retained in

the objective function. This would produce a network flow

problem with a minimax objective function. In this case the

L" objective function is a pieceise linear convex objective

function.

(5) Even though only sink node aggregation has been discussed, it

can be extended to aggregation of both source and sink nodes by

performing the operation sequentially.
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