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AN ADA* TRACKFR - EXPERIENCES AND LESSONS LEARNED

Terri Rodriguez and Lorraine Griffin

Ford Aerospace & Communications Corporation
Newport Beach, CA

Abstract

Although the Ada language was designed for
use in embedded computer systems (ECS), a rela-
tively small amount of work has been done with
Ada in embedded, real-time environments. The
goal of this project was to determine the amount
of work and the types of problems that would be
encountered using Ada for ECS. The redesign and
coding in Ada of a small subset of a target
tracker program that exists in 63000 assembly
language and runs on a custom built, 68000 sys-
tem was used as the medium for obtaining this
information. From this project it was concluded
that it is possible to use Ada for embedded
computer systems, although the curreant lack of
maturity in Ada tools and compilers for real-
time ECS work discourages it for immediate use
in large-scale ECS projects.

Background

Project Overview.

This project was 2 twelve man-month effort
executed over eight calendar wonths' time in
1985. The project was divided into several over-
lapping stages:

Learning/Training - 3 man-months

e Architectural/High Level Design -
2 man-months

e Detail Design and Ada Code - 3 man-months

Integration and Debug - 4 man-months.

Tracker Description.

A target tracker can be compared to the com-
bined working of the eyes and brain of a

*Ada is a registered trademark of the 1.,S.
Government (Ada Joint Program Office).

human as a wmoving object is followed from one
point in the field of view to another (Figure
1). The eyes send image data to the brain which
first recognizes and 'iocks on' to the object.
As the eyes continue to send image data to the
brain, the brain performs 'calculations' and de-
termines that the object is moving in a specific
direction at a specific rate. For each set of
image data received from the eyes, the brain
sends information resulting from its 'calcula-
tions' back to the eyes to adjust the eye posi-
tion so that the object can be kept within the
field of view.

In a similar fashion a camera or other input
source acts as the eyes of the tracker (Fig-
ure 2). The input source sends image data to the
tracker hardware and software that together act
as the brain. The hardware and software perform
calculations on the lmage data to determine the
target movement. Based upon the calculation re-
sults, position information is obtained and used
to keep track of the target as it moves within
the input source field of view.

Image Data

Position
Data

Figure l. Human Tracker
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Hardware and Software Resources.

The following resources were available for
this project:

e An Intellimac IN7000M (Motorola 68000
based) with the Telesoft subset Ada com—
piler (version 1,3d) and the Intellimac
Embedded Systems Kit (ESK),

® A Data General MV10000 with the Ada Devel-
opment Environment and validated Ada com-
piler,

e Two VAX 11-780s,
e The target 68000~based tracker hardware.

The tracker hardware for this project con-
sisted of the following major components:

o Video camera

® Analog/Digital processor

® Motorola 68000 main processor with subor-
dinate graphics processor and acquisition
processor

e Video monitor

The video camera sends an analog stream to
the Analog/Digital processor which converts the
data to a digital format, This digital stream is
sent to the acquisition and graphics processors
of the tracker system. The acquisition processor
receives the video data from the camera and ex-
tracts portions of the video data based on posi-~
tional information from previous tracker calcu-
lations. These portions of data are stored in an
area of the 68000 RAM called 'target memory'.
The 68000 main processor directs the execution
of the subordinate processors and performs the
tracker calculations on image data im the target

2 Annual National Conference on Ada Technology 1986
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memory. It also sends position information to
the acquisition and graphic processors. From the
position information received from the 68000,
the graphics processor generates a tracking gate
and sends the graphics gate along with the image
data received from the camera to the video moni-
tor. The video monitor displays the image data
and the graphics sent from the graphics proces-
sor, Figure 3 1illustrates the tracker hardware
system.

The Intellimac IN7000M was selected as the
development computer since it was capable of
generating s-record code for an embedded Moto-
rola 68000 processor. The Data General MV10000
was selected for high level test and debug of
algorithms because of its Ada tool set which in-
cluded a source level debugger. The VAXs (VAX A,
VAX B) were necessary resources for the transfer
of generated 68000 s-records since the tracker
hardware had no link to the Intellimac IN7000M.

Thus for the greater part of this project
the development cycle began on the Intellimac,
where Ada code was compiled and Motorola 68000
s-records were produced through the use of the
ESK. Next, a direct link to VAX A was utilized
to upload the s-records where a tape of the
s-records was produced for transfer to VAX B,
From VAX B the s-records were then downloaded to
the tracker hardware for test and debug (Fig-
ure 4). Portions of the code that could be
tested on the Data General were done so before
being subjected to the development cycle de-
scribed above.

Video
Camera
Acquisition
Processor T M 6
a e 8
rm 0
g o 0
e 0
Graphics t oy
Processor
Tracker
Hardware
Video
Monitor
e o o

Figure 3. Tracker System
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This process was repeated for each test pro—
gram or modification. However, during the inte-
gration and final debug portion of this project,
direct access to VAX A from the tracker hardware
was provided., This 1link eliminated the inef-
ficlent and time-consuming tape transfer of
s-records between VAXs,

P

BN L

O

Human Resources.

At the start of the project two persons were
assigned for part-time work. Both had a back~
ground in Ada and some familiarity with the ESK
process. One had a little tracker experience and
some 68000 familiarity. Neither had any knowl-
edge of the target tracker hardware or software.

A Yo' S Sul oS

b

h For the final portion of the project three
more pecople were assigned for part- and full-
time work. None had any previous Ada, 68000, or
tracker experience. To become educated as quick-
ly as possible about the project, these people
took part in an ‘Instant Ada Training’ program.
The program consisted of two one-hour sessions
on Ada, and approximately three one-hour ses-
sions on the Intellimac, ESK tools, tracker
hardware, tracker design, and the debug process.
They were also enrolled in a twelve-week, 36-
; hour Ada course, and assigned small ECS tasks to
1 reinforce the material they learned. This un-
orthodox method of training was used for the
following reason: the new personnel joilned the
project only six weeks before project comple-
tion and needed to be brought up to a contribu-
tory position as fast as possible. At this stage
all the high level design was complete, as well
as most of the detalled design. Sirce Ada was
used as the design language for the detalled
design most of the code was already complete.

oy

W b Y v

-
-
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For this project there were three 'consul-
tants' available on a casual basis who provided
initial instruction about the tracker hardware
and software, provided information on the 68000,
and provided hardware support and maintenance.
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Goals

The main goal of this project was to create
a real-time embedded computer system application
that would demonstrate the capability of Ada for
this type of work. The application selected for
the Ada project had to satisfy the following re-
quirements:

e Be applicable to the work of image pro-
cessing;

¢ Demonstrate the feasibility of Ada for pre-
existing specialized embedded system hard-
ware;

e Be able to execute sufficiently well;

e Be completed in the 12 wman-month time
frame.

Thus the application of redesigning and recoding
in Ada a small subset of an existing tracker was
selected.

In reaching the primary goal, a secondary
goal required answers for the following ques-
tions concerning Ada for embedded computer sys-
tems in general, and this project in particular:

® What problems were encountered using Ada?

® Can Ada be used for 100 percent of the
application code?

o What are the performance degradations and
their causes?

e What tools and environmeut are necessary
for this type of ECS project?

o What types of personnel are required for
this type of ECS project?

In addition, the project required documenta-
tion of all the project results and recommenda-
tions for an embedded systems development envi-
ronment .

The Experiences
Experlence 1 - A Prototype Mode.

Once it was determined to use a small-scale
tracker as the application for this project, a
prototype model of the tracker was quickly put
together. The prototype model used all the math-
ematical algorithms that would be part of the
final tracker, but since the prototype ran sole-
ly on a Data General MV10000, special wodules
for image input, target display, graphics, ac-
quisition and de-acquisition were used. Also,
the prototype did not simulate the interrupts
the final tracker software would be receiving
from the actual tracker hardware.

Annual National Conference on Ada Technology 1986 3
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The purpose in building a prototype model
was three-fold.

(1) First it acquainted project members with the
tracker algorithms that would be used in
the final tracker code. Implementing them
for the prototype required an understanding
of the tracker algorithms, how they inter-
acted, and what the expected inputs and out-
puts were, It also revealed the scope of the
tracker problem and what subset of the
tracker would be feasible to implement for
this project.

(2) Second it resulted in a rough design for the
tracker and provided the opportunity to
evaluate design decisions. Implementing the
prototype required decisions on overall
structure, interfaces, package coantents, and
subprogram breakdowns. The prototype demon-
strated the pros and cons of these design
decisions without the commitment of a final
design.

(3) Third, it produced something tangible that
worked. Although the prototype tracker was
not the final product and did not rum at
real-time speed, the fact that Ada was
tracking stirred interest in wmanagement
levels, giving the project, and Ada, greater
visibility,

Run Ada Tracker

Experience 2 - The Specifications Document.

After the successful completion of the pro-
totype model came the task of detailing the
tracker requirements. Since the goal of this
project was to demonstrate the capability of Ada
for embedded computer systems, and not to build
a full-blown tracker, the specifications de-
talled only those algorithms necessary to per-
form centrold tracking.

The specifications document established re-
quirements for selection of a target to track
using the control panel, defined the algorithms
that would be used for tracking and the por-
tions of the tracker hardware that would be
used, specified that tracking would be performed
for a single target, defined the hardware inter-
rupts that would be serviced, and defined the
format of the graphics display.

Experience 3 ~ The Design And Pretests.

From the specifications document and basic
information of the tracker hardware, the high
level design was developed. Several methodolo-
gies were considered for the design - Process
Abstraction Method, Object Oriented Design, and
Functional Decomposition., Functional Decomposi-
tion was selected since the algorithms used for
the tracker would execute in a serial manner,
and the only tasking required was to handle the
two hardware interrupts. After the initial de-
sign was completed, it was subjected to the
walk-through and redesign cycle. The results of
the high level design are illustrated inm Fig-
ure 5.

Start-U Process . _
art-Up External Acquisition Track Exec Graphics
and Initialization
Commands
Read Joy- Skip
Stick Sample
Exit
Getsums Threshold Centroid Skip Sample Fietd-ot-
View

Figure 5. High Level Design
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Upon approval of the high level design, work
began on the detailed design. Ada was selected
as the design language for this stage with
liberal use of English text both to document the
design and to describe intermediate implementa-
tion ideas and algorithms. At this stagz it was
realized that more information about the tracker
hardware and the way in which the compiler would
represent data structures on the hardware was
needed. This information was extremely important
to the detail design because there would be no
hardware-software tradeoffs in design. Design-
ers had to know the exact workings of the hard-
ware and conform the design to it if necessary.
To obtain this information a series of 'pre-
tests' were devised. Each pretest was based on a
specific design question or hardware question
that needed to be solved in order for the Ada
tracker to work. For instance, one pretest was

designed to find the way in which arrays were
mapped into target memory - row major or column
major order, The acquisition processor would
fi1l the target memory with image data in a row
ma jor fashion. This informatlion was necessary to
access the data in the same manner, Other infor-
mation needed to complete the design concerned
the method by which data structures were repre-
sented in portions of the memory space that were
not fully addressable (i.e., the wupper eight
bits of the word were not accessible); how to
handle the hardware iaterrupts using the Ada
tasking mechanism; and what needed to be in-
cluded in the run-time sgystem that would be
suitable for executing the Ada code. All prob-
lems were investigated individually until proper
information and solutions were found. The pre-
tests proved it was possible to implement all
critical portions of the design in Ada and
brought out hardware peculiarities previously
undocumented. They also provided a way of test-
ing ideas and concepts before the design was
completed thereby eliminating the need for re-
design during the integration and test phases.
Additionally, the pretests unveiled the metamor-
phosis required to produce s-record format code
from Ada source code. The metamorphosis required
use of the Ada compiler to generate executable
code followed by the use of the ESK to bind the
code to specific locations in memory, to provide
the necessary 1links into the target run-time
kernel, and to generate the s-records.

Finally, the pretests allowed an early op~
portunity to tailor the run-time kernel to suit
the tracker needs. The pretests determined which
features would be needed in the run-time kernel
to support the tracker execution and how to use
the ESK to build the kernel. The Intellimac run-
time kernel turned out to be a subset of the
Intellimac ROS operating system. From that basic
operating system floating point arithmetic and
TEXT I0 were eliminated. Support packages for
interrupt handlers were added.

The detailed design was completed based on
results from the pretests.
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Compiler ESK

S-Records

Figure 6, The Metamorphosis

Experience 4 - The Implementation Final Debug.

Upon completion of the detail design, the
Ada design language was finalized as Ada ccde.
Next a test plan for the tracker was developed.
It was decided to start with small, easily
tested portions of the code. New portlioas of
code would be logically added to the old as 1t
successfully passed all tests until the entire
tracker was debugged. The actual debug method
used in this phase was the same as that used for
the pretests. For the debug process no Inter-
active tools were available except for a monitor
resident on the 68000 tracker, The monitor al-
lowed the display and modification of memory,
the display and modification of registers, and
the setting of break-points.

The following process was used to debug the
pretests and final tracker code:

(1) Perform as much source level testing as pos-
sible on the Data General. When testing is
complete, move source code to the Intellimac.

(2) Place variables in the Ada source code to
monitor the execution progress of the code.
Tie these variables, as well as any other
variables that will contain useful debug in-
formation, to hardware locations so that
their contents can be examined using the
monitor oun the tracker. For the execution
progress variables use values such as hexa-
decimal value 7777 or 3333 so that the loca-
tion of these instructions can be easily
found in the disassembled listing.
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(3) Compile the code, generate the s-records and
transfer the s-records to the tracker hard-
ware.

(4) From the executable code produced by the
compiler, generate a disassembled listing of
the Ada source code. Get hardcoples of all
source code, disassembled 1listings, and
hardware maps.

(5) Run the program on the tracker hardware and
hope it works.

(6

~

Wwhen the program does not work, use the Ada
source map and the Ada source disassembled
listing to determine appropriate places to
halt execution to help pinpoint the problem
area. Use an editor to search for opcodes in
the s-record file to determine the approxi-
mate load address for the ianstruction. (The
disassembled listing did not contain 1load
address since it was generated from the com—
piler generated code file and not the final
s~records.)

(7) When the problem is identified, correct the
Ada source and repeat the above process.
Call upon the consultants for ideas and help
when unable to locate the cause of the prob-
lem.

Due to the extensive use of pretests, the
debug of the entire tracker code was minimal,
After 1iategration of the final code, 90 percent
of the tracker code worked correctly the first
time it was executed. The areas in which prob-
lems occurred were areas which had not been sub-
jected to a pretest checkout.

The Lessons Learned

It Can Be Done.

This project demonstrated that it 1s possi-
ble to use Ada for small embedded systeam type
projects. With meager resources it was possible
to complete a practical application using Ada
for 98 percent of the code. Only the lack of
maturity in the tools and compilers, and the
relatively small amount of experience in using
Ada for ECS restrict its immediate use on large,
time-critical projects.
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Qualified Human Resources Needed.

It is possible to complete a small scale ECS
project with little knowledge of Ada and the
target hardware. However, for a large ECS proj-
ect it is imperative that there are team members
with the following qualifications:

(1) Detailed knowledge of the target system and
the ability to express the way a hardware
configuration will impact the software de-
sign;

(2) Detailed knowledge of Ada and the code that
will be geaerated by the Ada compiler. This
knowledge may impact the detailed design and
implementation phase if the code generated
by the compiler for various Ada constructs
is space inefficient or time-consuming;

(3) Detailed knowledge of the tool set used for
the ECS project. This knowledge 1s necessary
for creating a good design of the ECS pro-
gram, for implementation of the design, and
for efficient test and debug of the final
code.

Good Tools Needed.

For a successful embedded systems project a
good tool set and a good ECS development envi-
ronnment are needed. Several characteristics of
an ECS environment and tool set follow:

(1) The environment should be easy to work in
and provide ready access to all ECS tools.
It should also provide easy access to the
target machine for quick download of code.

(2) The minimum tools included in the ECS en-
vironment should be the Ada compiler, a
source level debugger, a target level de-~
bugger, and a disassembler.

(3) The compiler should generate efficlent ex-
ecutable code and should support many fea-
tures from Chapter 13 of the Ada language
reference manual,

(4) There should be a complete set of hardware
and software documentation for the target
system and a complete set of documentation
on the ECS tools including information on
the size and characteristics of the run-time
kernel, the amount of code generated for
each Ada construct, and the execution speed
of the Ada constructs.

Finally, the target hardware should be available
for use during the design phase so that early
testing of design concepts can take place.
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;u Tying It All Together - Words Of Wisdom. code it generates, its ease of use, 1its

‘ot execution speed and required resources.

:;v o Large systems are an outgrowth of experi-

;1: ences from small systems. e Know the quality and characteristics of

i the run-time kernel to be used for the
o When in doubt try it out as a small test target system.

o program on the hardware.

) o Before embarking on contract work, obtain

"Q:i o All compilers are not created equal. Be- experience via a small ECS project such as

Wy fore purchasing a compiler for ECS work, this and learn the risks and probleas in a

:‘. thoroughly evaluate the quality of the non-critical environment.
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WILLIAM S. PEPPER IV

BOEING MILITARY AIRPLANE COMPANY
WICHITA, KANSAS

ABSTRACT

The application of high-order language
(HOL) to real-time avionics applications has
been fraught with assembly-language subroutines
and sundry workarounds to increase throughput.
In order to ensure that Ada would in fact
alleviate these concerns, work was undertaken
to develop an interface between a BMAC advanced
technology avionics processor and a touch-
sensitive Integrated Control Display Unit via
ARINC-429 and MIL-Standard 1553B protocol buses
utilizing one of the available Ada compilers.
These two protocols are the most widely utilized
communication protocols for general aviation and
militarv avionics applications.

INTRODUCTION

The avionics systems of existing aircraft
continue to be upgraded for various reasons. The
replacement of systems for purely logistic (main-
tainability) reasons and the addition of new
equipment for new mission requirements has caused
undesirable complexity as well as an additional
work load for aircrew members. Additionally, the
customization of cockpit layouts at the squadron
Tevel in an attempt to alleviate the problem has
caused additional divergence and training com-
plexity. As a result, the Boeing Military Air-
plane Company has established an on-going Aircraft
Cockpit Technology IRAD project. In order to meet
the technological challenges, BMAC developed a Bus
Interface Computer Unit (BICU) to upgrade aircraft
by interfacing older existing systems to newer,
more maintainable systems. Part of the effort
was to program the BICU in Ada and use it in a
laboratory cockpit scenario.

OBJECTIVES

The primary objective of the software portion
of the research was to develop Ada applications
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AN EXPERIMENTAL UTILIZATION OF ADA IN A REAL-TIME INTERACTIVE AVIONICS COMMUNICATION
APPLICATION

which would utilize RS~232C, ARINC-429 and Mil-
Standard 1553B protocols to establish a communica-
tion 1ink between the central avionics processor
of the BICU and a touch-sensitive Integrated Con-
trol Display Unit (ICDU) and other test devices.
The goals established for the work were:

1. To determine if all device drivers could
be written in Ada,

2. To test the efficacy of the Ada task
type and,

3. To determine if code execution times were
adequate to support a real-time avionics
environment.

HARDWARE ENVIRONMENT

In order to conduct the research, BMAC de-
veloped an Ada Integ Laboratory representative of
an aircraft cockpit avionics installation. The
Bus Interface Computer Unit (BICU) prototype with
ARINC 429, MIL-Standard 1553B and RS232C interface
cards was the core of the hardware configuration.

A serial bus analyzer was used to provide 1553B
inputs and a test aid was connected to the RS232C
channel. A pre-production touch-sensitive Inter-
active Control Display unit was connected to the
ARINC 429 bus to provide a simulated aircrew inter-
face. The Ada source code was developed on a host
computer and then compiled and downloaded to a
commercially-available integration unit. This unit
was used as an emulator to run the object code and
also served as a test and debugging tool.

GENERAL SOFTWARE DESCRIPTION

In order to provide a realistic scenario,
demonstration programs were developed which would
simulate flight activities in a tanker/airlift
scenario. Programs were developed to insert way-
point data, fly-to the waypoints and "delivery"
cargo via the airborne extraction method. An
engine monitoring demonstration was also developed
which included emergency decision making and crew
alerting functions. The software exercised the
ARINC-429 bus when generating displays and when
controlling the touch screen on the ICDU. The |
BICU acted as the 15538 bus controller when it
statused the Engine Monitor System simulated by
the serial bus analyzer.
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Six basic packages were used to implement the demo-
stration program. A brief description of each
package follows:

o The ARINCIO package served as the ARINC-
429 1/0 driver. It provided two user
interface programs which translated data
on the ARINC-429 bus. To transmit SEND
DATA formatted conand strings in;g DATA
ARINC-429 protocol. To receive G
interpreted the ARINC-429 protocol and
returned a buffer with data sent over the
bus.

o The ICDUIO package contained nine user
interface programs to control the ICDU,
Each of these programs called one of two
ARINCIO interface programs to communicate
to the ICDU via the ARINC-429 bus.

o The B155310 package drove the 1553B /0
card, It had two user interface programs
which translated data on the 1553B bus,
CHAIN BUILD assembled I/0 chains for
application programs. CHAIN EXECUTE
issued I/0 chains when the bus controller
was available.

o EMSIO contained two user interface pro-
grams to control the simulated Engine
Monitor System (EMS) via the 1553B bus.
STATUS-EMS was used to regularly status
engine data. EMS-WARN notified the
application programs of engine warnings
and directives received from the EMS,
Both EMSIO interface programs employed
the B155310 package to communicate with
the serial bus analyzer.

0 The MSNCTRL package was a non-executable
data base accessed only by the Demonstra-
tion program. It contained data records
for simulated missions and destination
records for those missions.

o The DISPLAYDB package was another non-
executable data base accessed only by the
Demonstration program. It contained all
the preformatted display data used in the
demonstration. Most display data took the
form of a record containing an array of 21
characters. Other records had arrays of
only six characters which made manipula-
tion of six or less characters more ef-
ficient. To conserve processing time,
some of the larger records were grouped
into arrays of records and accessed by
enumeration types. DISPLAYDB also con-
tained a decoding array used in determin-
ing what to do when the screen was touched.

The demonstration was controlled by a program
of the same name (DEMONSTRATION). This program
displayed the master menu and processed control
requests as a result of menu selection, waypoint
sequencing and engine warnings and directives,
Menu selection transferred control to a secondary
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group of subprograms which control subordinate
displays. The control hierarchy was designed as a
tree structure of controlling subprograms in order
to provide reusability of code.

Data was passed between subprograms as global
data which resided at the top of DEMONSTRATION. To
conserve memory and processing time, local data was
not allocated to any subprogram. This data was
also defined globally. DEMONSTRATION used over-
loaded operators with three functions ("+", "-*,
and "*"). These new functions allowed easy arith-
metic on arguments of the form "minutes: seconds"
for use in timer and navigation-oriented applica-
tions. Several utility subprograms provided
routine manipulation of display data. Other
utility subprograms were created from groups
statements that repeated elsewhere only to con-
serve memory.

Each menu control subprogram cyclically called
COMMONCALL. This subprogram was used to update
dynamic mission data and request engine status. It
also displayed engine warnings and directives on
the title line. Regular checks for touch screen
inputs were done in each menu control subprogram
by calling GET-INPUT which was resident in ICDUIO.
Regular updates of mission and engine data as well
as regular sampling of input controls created the
illusion of an ongoing mission.

Three types of displays were generated which
included menus, profiles, and performance informa-
tion. Displays could be selected at any time and
performance information appeared automatically.
The demonstration operator used menus to control
missions and to make subordinate menu selections.
Mission profile selection, mission start-up/abort,
flight status and engine monitoring were menu-
controlled. Profiles displayed mission starting
location, waypoint locations and waypoint types.
Performance information jnformation displays showed
mission progress and engine information. Flight
status and cargo drop information displays were
updated with fresh data as the mission progressed.
Engine data could be interactively requested and
problems or potential emergency situations were
reported automatically.

GENERAL IMPLEMENTATION NOTES

The implementation problems inherent in the
use of unproven hardware and an unproven Ada
compiler proved to be a challenging and sometimes
frustrating exercise. Several design problems
were encountered, all of which were solved. Some
were solved by software workarounds while some were
solved by changes to the hardware. Although many
of the solutions to the problems that were encoun-
tered are of a proprietary nature, the following
design issues, problems, results and conclusions
may be readily described.

Certain aspects of the Ada language made de-
velopment on the executive and bus driver level more
difficult than it might have been in another langu-
age. Although workarounds for the problems that
were encountered were possible, they sometimes
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proved costly in time and space utilization. As a
result, it is of the utmost importance to note the
potential effects of language limitations prior to
coding because of their impact on program design.

The strong typing that Ada imposes proved to
be a help in program correctness primarily by cut-
ting debug time. In some cases, however, the
inflexibility of this feature resulted in clumsy
or wasteful constructs. For instance, when pas-
sing data to the bus driver for transmission to
another device, the data types specified by the
caller and the receiver must agree. In order to
transmit data of several types, the caller must
buffer data after performing unchecked type con-
versions or the bus driver must have several dif-
ferent entry points for different data types and
perform the type conversion itself. The result
is a choice between an inelegant coding practice
or a seemingly unnecessary use of additional
memory.

A very important capability at the executive
level for efficient program design is the use of
pointers to users' data structures. Ada provides
a pointer with each access type which can only
point to objects of the type that they are de-
clared to point to. Ada further limits the
access type by restricting it to "only designate
an object created by an allocator", as described
in the Ada Language Reference Manual (LRM),
MIL-STD-1815A. The LRM continues "in particular,
it cannot designate an object declared by an ob-
ject declaration". In other words, access values
cannot point to data structures that are created
at compile time, but only to those created at
run time (even though both could conceivably be
of the same type). In an embedded avionics
system, the creation of a large number of objects
at run time is not desirable. The inability to
point to a user's objects by an executive utility
makes the design of that utility less efficient
than it could be if that ability were provided.

When slices of equal lenghts are taken of
arrays which have the same component type but are
of a different Tength, a compiler error is raised.
For example,

ARRAY1: array(1..10) of INTEGER:

ARRAY2: array(1..20) of INTEGER;
The following is an illegal statement:
ARRAY1(1..3) : = ARRAY2(1..3);

This restriction forces the use of separate
assignment loop to accomplish the intent.

The priority pragma was not implemented in
the Ada compiler used for this research. In a
system consisting of two tasks and a main pro-
cedure, the last task activated gains control of
the CPU first, followed by the first task, follow-
ed by the main procedure. The only way the latter
two aren't starved is if the task that has control
of the CPU relinquishes it in some predetermined
way. For example, the execution of a "PUT" state-
ment will force the task to release CPU control.
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In this particular compiler implementation this
was sufficient to swap a waiting task into execu-
tion. Empirical analysis determined that a task
context switch (resulting from a rendezvous for
instance) required approximately 3.2 milliseconds.

Timing tests were performed to determine the
most efficient method in terms of time to pass
parameters using this particular compiler. Four
parameters were passed. These consisted of two
integers, one enumeration type object, and a record
consisting of an array of 21 integers and another
integer. The following three methods were con-
sidered:

1. A1l four were passed as paramters in the
subroutine call. The time was 105 micro-
seconds.

2. A1l but the record were passed as para-
meters, and the record was in the global
database. The timing included the assign-
ment statement to set up the record. The
time was 160 micro-seconds.

3. A1l four parameters were in the global
database. The timing included the assign-
ment statements to set up the parameters.
The time was 290 micro-seconds.

The obvious lesson learned as a result of
these tests was that it did no good to try to
circumvent the compiler in this instance. The
case in which the compiler controlled the param-
eter passing was significantly more efficient than
the other two cases.

SCHEDULING (EXECUTIVE)

It is generally accepted theory that when a
significant level of control over the executive
is possible, a tasking envirgnment usually pro-
vides a greater level of flexibility in a complex
system than other approaches. Flexibility is
lost, however, if the executive cannot be molded
into something that conforms to the needs of the
applications it serves. In an embedded real time
avionics system, reliable and quick response to
events is paramount. Therefore, when designing an
executive for avionics applications, executive
overhead time is usually the most significant
issue. With these points in mind, an attempt was
made to design a viable executive for use on the
BICU prototype using only the Ada language.

Several approaches to the design of the exe-
cutive were considered in the preliminary design
phase. The use of Ada tasking for job control
was the ultimate goal, but the 3.2 millisecond
task context switch time inherent with this
compiler made such an approach unreasonable. If
task context switch occurred only two times in
the equivalent of a minor frame in a 64 Hz system,
41 per cent of the CPU time would have been con-
sumed in executive overhead for tasking alone.
Obviously, the use of tasking had to be avoided.
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Wy A second possible approach was the use of a
vy tasking system that ran "on top of" the Ada task-
:}b\ ing. In this approach there was one main Ada task
e and the tasking system was run within its context.
* This required two things that were either undesir-
q‘ able or impossible at this point:
N
:Q 1. Tasking primitives had to be written in
ﬁl assembly language because Ada doesn't
14' allow the Tevel of machine control
}%a necessary to perform this function
A4 and

e 2. A good working knowledge of the compiler's
I run-time support inner workings and the
h: parameter passign protocol was necessary.
{&.’ This information was proprietary to the
UK compiler vendor. (This version of the
tﬁﬂ compiler didn't provide assembly code

. listings for the target computer).
W The approach pursued was to use a single
MyA Ada task for all applications programs with a
$ﬁ~ 16 Hz timer providing the synchronization for
g, cyclic processing. All interrupts were handled
o using the compiler vendor's "fast interrupt"
:- y support to avoid task context switch delays.

‘ i Studies on time consumed by the I/0 drivers were
!-; used to determine the optimum scheduling and 1/0
M support that could be provided by this system.
> This system was overflow tolerant to the extent
3\. that a particular minor frame's processing didn't

‘ overflow past the following minor frame's time
i allocation. A Tlimit was also set on the number
) of consecutive minor frame overflows since a large
number of overflows is indicative of an unhealthy
a0 system.
A
*?k ARINC 429 COMMUNICATIONS
W
:QQ In the Ada Integration Lab, the only inputs
A via the ARINC-429 bus were from the ICDU. These
AN inputs represented the status of the ICOU touch
‘J screen and consisted of six 32-bit words. The
o ICDU sent the screen status to the host every
A 12-20 milliseconds. The first implementation of
9%4 the ARINC driver failed since it could not handle
g: all the interrupts that it was receiving. This
{é failure was due to two facts:
(%)
2“’ 1. The interrupt handier was written to
~“ require a full Ada rendezvous on each
7ﬂ interrupt which required a minimum of
4 3.2 milliseconds, and
1
{ﬁo 2. The ARINC-429 driver was bombarded with
ub unsolicited screen status interrupts.
bg‘ These interrupts were not event trig-
. gered (i.e. the screen wasn't being
',; touched. )
: . Two steps were taken to alleviate this prob-
‘ em.
3? 1. A latch was added in the hardware so that
. interrupts from the ARINC-429 could be
‘ masked on and off. Then when it was

desired to receive interrupts (inputs)
from the ICOU the interrupt latch was

set appropriately.

2. The ARINC-429 interrupt handler was changed
to use the compiler vendor's “fast inter-
rupt" capability. Using fast interrupts
meant that a procedure call took place when
an interrupt occurred instead of a rendez-
vous.,

These changes resulted in an interrupt handler

that could accomodate the workload imposed by the
ARINC-429 ICDU. A read of the ARINC-429 channel
was performed as follows:

o When a read request was received, the ICOU
interrupt latch was set to permit the
processor to be interrupted by the ICDU.

o When an interrupt occurred, the data from
the pertinent register was read.

o After all six words of the status trans-
mission were received, the ICDU interrupt
latch was set to prohibit the ICDU from
interrupting the processor.

The results of the read were then analyzed by
the program in order to determine which area of
the screen had been touched.

MIL-STD 15538 COMMUNICATIONS

The original design of the 1553B bus driver
incorporated features of Ada tasking to support
user interface and physical driver control. The
15538 driver package was comprised of three separ-
ate tasks and one procedure. The tasks handled
physical driver control, enqueuing of user reguests
for the physical driver task (a monitor task), and
general housekeeping which included the notifica-
tion of the user after receipt of the I/0 complete
interrupt. The procedure was available for users
needing I/0 chains to be built for them. A re-
quest for 1/0 execution was made via an entry call
from either a user with a chain to be executed or
from the chain building procedure after it had
constructed an 1/0 chain to the user's specifica-
tions, In this way, requests could be made when
the physical driver task wasn't in a position to
handle them but its monitor task was. The monitor
task would enqueue them (actually link them into
a pending chain) for execution after the presently
executing chain had completed.

When it was determined that the use of tasking
as implemented in this particular compiler should
be minimized to control execution in a cyclic en-
vironment, the 1553B driver package was revised to
use only procedure calls (with the exception of
the interrupt handling). The monitor task was
turned into a procedure serving the same function
as before. The execution task (physical driver)
was also changed to a procedure, requiring that
some cyclic scheduling of this procedure occur
to accommodate chained up requests.
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One of the major challenges of the 15538
driver design was linking together consecutive
requests to the monitor task. In order to vector
I/0 controller execution through chains from two
separate requests without CPU intervention the
chains had to be linked together. A user of the
driver had to allocate a Tink field at the end of
the chain so that the request handler could insert
either a Tink instruction (to the next user's
chain) or a halt instruction. A difficulty arose
in trying to retain reference to the end of a
previous requestor's chain when handling the next
request. Since Ada pointer (access type) can only
designate objects created by an allocator (run
time), either all chains had to end in such an
object or an alternative approach to pointing to
the end of the chain had to be devised.

The original solution to this dilemma was
the creation of an array of "“chain link cells".
When a chain request was made to the monitor, a
chain link instruction pointing to one of the
chain link cells was inserted at the end of the
user's chain. The index of the chain link cell
pointed to by the end of the last chain was
retained in the package data base so that when
a subsequent request was made a chain link in-
struction pointing to the beginning of the next
chain could be inserted into that link cell. This
required a small amount of memory management to
track available link cells and was generally a
cumbersome design.

The method for linking consecutive requests
that was subsequently employed used the Ada
unchecked conversion function. Since objects of
the access type and the address type (from
package SYSTEM) were of the same length and both
were actual memory addresses on the processor,
an unchecked conversion between the two types was
acceptable, This made it possible to designate an
object declared by an object declaration {at com-
pile time). Although this method was successful,
the use of unchecked conversion in general is
discouraged because it can potentially limit the
portability of an Ada program. Its use in this
circumstance, however, was acceptable because
it was limited to the hardware implementation
dependent portion of the driver code.

GENERAL_RESULTS

Several other implementation problems were
investigated and solved over the course of the
experiment, Techniques were learned and method-
ologies developed to minimize the use of memory
and increase throughput., Several of the problems
were due to the immaturity and incompleteness of
the Ada compiler that was used. In the final
analysis, however, the experiment was successful
in that all coding was performed in Ada and
valuable implementation lessons were learned.

In regard to the original goals for the work, the
primary conclusions to date are:

1. The subject device drivers may be
written entirely in Ada.

12 Annual National Conference on Ada Technology 1986

2. The code execution times warrant utiliza-
tion of Ada in an embedded real-time
application in the case of the aircrew/
aircraft interface.

3. Conclusive proprietary data regarding the
use of the Ada task type is now available.

This research and development project has
advanced Ada technology in the real-time avionics
arena in that concrete benchmarks have been
established for the development of future applica-
tions. The project has proven invaluable in the
training of software personnel and in the develop-
ment of hardware to support design, testing, and
implementation of Ada-based avionics applications.
System definition practices in an Ada environment
have been developed which will be utilized to great
advantage in future programs.
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A COMMUNICATIONS PROJECT IN ADA *

Author: Patricia J. Dousette

The Singer Company, Librascope Division ¢ 833 Sonora Ave., Glendale, CA 91201-0279

Abstract: The Communications Control System (CCS) is a
front-end communications processor. It was one of the first
mission critical systems to be implemented using the DOD
developed language Ada. The CCS software development
proved Ada technology to be practical for the following
reasons:
® A large scale embedded software project, in excess
of 45,000 lines of Ada is viable.
® A significant increase in programmer productivity was
observed using Ada.
©® The project pinpointed problems with existing Ada
support toois and methodologies and emphasized the
benefits to be gained by development of these tools.
® The use of Ada based Program Design Language as
a design tool is both feasible and desirable.
In addition, information concerning the following areas of
interest was obtained:
® Ada programmer training issues were analyzed.
® Ada Run-Time System problems i.e. speed of execu-
tion and code generator efficiency vs. Ada implementa-
tion were highlighted.
The following paragraphs will present the CCS project
history i.e. how and why Ada was chosen and the problems
and successes that were realized because of its use.

1.0 INTRODUCTION

In May of 1982 Singer-Librascope was awarded an Army con-
tract (from Program Manager, Field Artillery Tactical Data
Systems (FATDS)) for the Communications Control System
(CCS). In the short term the CCS was to be the front-end
communications processor for the Field Artillery’s TACFIRE
system and in the long term it was to be the communica-
tions front-end for the forthcoming Advanced Field Artillery
Tactical Data System (AFATDS) Program and a candidate
system for the Army Command and Control System (ACCS).
The CCS was required to be able to interoperate with all
Amy Communications equipment both existing and future
— up to the year 2010. The Contract was for an advanced
development model of the system, both hardware and soft-
ware. The software had been proposed to be written in
PASCAL for the Motorola MC68000 processor, with any time
critical software (the CCS is a real-time embedded system)
written in Assembly language. Even though Ada has been
specified in the CCS Preliminary Specification and contract,
it had not been proposed because of the lack of an Ada com-
piier. However, shortly after the contract award information
about the Ada language and its first implementation became
available. A first generation compiler, specifically the
Telesoft-Ada compiler had been released and was being
hosted on the Intellimac 7000 series of computers. The deci-
sion was made, having been approved by the Program Of-

fice, to write the CCS software in Telesoft-Ada—except for
time constrained software which would still be written in
Assembly language.

2.0 THE CHOICE OF ADA

The CCS software development was approached with a
great deal of confidence. The project functionally was very
similar to previously implemented communications pro-
jects. However, had we been able to predict some of the
problems we would encounter with a brand new host soft-
ware development system we might have opted for a more
standard approach. Admittedly, only a portion of the pro-
ject problems can be attributed to the use of Ada and look-
ing back now we would certainly not change our decision
to use Ada.

The programming department was used to writing software
for embedded systems in Assembly language. Mowever,
predicated on the magnitude of the CCS project we knew
that a High Order Language (HOL) would be necessary. We
had considerable experience in FORTRAN, more in CMS-2,
and a little in PASCAL. For the MC68000, the CCS target
processor, our choice was limited to PASCAL, Assembly
language and the just released Telesoft-Ada. Our experience
with PASCAL had not been particularly good. We found out
subsequently that this was completely due to a poor quali-
ty compiler. Pure Assembly language was considered but
was thought to be an extreme schedule risk—so the infant
Ada was agreed upon. It was chosen after some feasibility
studies, a trip to Telesoft (Singer and Government) and con-
sultation with the customer. it appeared that Telesoft-Ada,
even though it was a subset of Mil-Std-1815A Ada, supported
the language features necessary for the CCS target hard-
ware architecture. The MC68000 target Run-Time System
was promised for delivery within a few months. The In-
tellimac 7000 series of computers was available and already
hosting the new compiler. At this time however, only sim-
ple programs had actually been implemented in
Telesoft-Ada.

2.1 ADA TRAINING

We began the training of programmers in the new language
with a set of video tapes (18 hours of tutorial tapes by Jean
ichbiah, Robert Firth and John Bames). We also relied heavi-
ly on Ada Language Reference manuals, John Bames book
“Programming in Ada" and a “leam by doing" rationale. This
informal training in Ada went amazingly well and the reputed
difficulty of Ada training touted in some Ada literature was
never seen. We trained approximately 20 programmers and
5 lead programmers and found that personnel attitude had
a great deal to do with the programmer facility in the
language. Those programmers that wanted to learn the
language and were enthusiastic about it did so with
noteworthy ease. In addition, most of those programmers

*Ada is a trademark of the U.S. DOD Ada Joint Program Office
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who originally had reservations about the language became
enthusiastic as the project progressed.

2.2 PROJECT HISTORY

At the same time we were learning the language we were
writing Software/Hardware Requirement Specifications and
the CCS hardware was being developed. By the end of this
specification process it turned out that both hardware and
software were quite different from that proposed. A Com-
puter Program Development Plan and appropriate software
standards document were prepared and accepted. The
design methodology, based on previous company ex-
perience and policy, was chosen to be structured top-down,
using Ada-based Program Design Language (PDL) as the
design recording methodology.
As in all software developments the schedule crunch began
to be felt. We were still learning about the major system
interface to the TACFIRE system. The CCS hardware, utiliz-
ing a distributed processing concept, became increasing-
ly complex with the final 68000 processor count an im-
pressive 53 (see Figure 1). Communications Modems within
the system with identical software accounted for 40 of the
processors but there was still distinct software to be writ-
ten for 13 processors with interfaces being numerous and
complex.
The software architecture comprised of four Computer Pro-
gram Configuration Items (CPCIs) is shown in Table 1 and
Figure 2. The interface between CCS processors was ac-
complished via Dual-ported Random Access Memory (DPR).
The DPR was partitioned into status, control, and message
buffers. Bi-directional queues were used to control the
passage of data/messages between processors.
Messages entered/exited the system either via the TAC-
FIRE/Fire Direction Center (FDC) interface or externally via
the Communications Modems (denoted on Figure 1 as
Modem Processors). Message flow through the CCS was
then controlled by processing located in the Communica-
tions Processor (CP). Code in the CP—comprised of the
Control Processing (COP) and Communications Process-
ing (CMP) CPCls—was aimost entirely in Ada, while that
in the surrounding peripheral processors was in Assembly
language due to timing/memory constraints.
Messages were subject to the following processing:

® Reception/Transmission

® Forward Error Correction

o Oftf-line Encryption/Decryption

® Compaction/Decompaction

@ Authentication/Serialization

® Routing/Relay

® Transaction Accounting

2.2.1 EARLY SUCCESSES

Some early successes kept us going in spite of mount-

ing problems and missed software milestones. These were:
@ An early prototype of the CCS operator interface soft-
ware demonstrated Ada feasibility.
® Telesoft delivered their Run-Time System i.e. Embed-
ded Systems Kit (ESK) as promised. The day we first ran
preliminary software on the target, a sparsely populated
prototype CCS, was a great one.
® The Intellimac proved reliable and several im-
provements were made to speed up its operation.
However, more host development processing time was
necessary to support the growing staff of programmers.
Since the Telesoft compiler had by then been ported to
the WICAT 1508 desk top workstation, four of these were
obtained for the project.
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® The fact that the host computers—both Intellimac and
WICATS —were MC68000 based and virtually the same
as the target computer, allowed much of the code
checkout to be accomplished on the host systems before
the target CCS hardware was available. Even later when
CCS hardware was available, checkout was still done on
the host first since tools were more readily available and
atime consuming load module “bind” was not necessary.
Also if code ran on the host it was probable (not 100 per-
cent) that it would also run on the target.

® Ada and tasking were ideally suited to the CCS ar-
chitecture leading to a theoretically elegant though com-
plex software design.

® Ada had been selected for another small Army project,
Sigma-Heros Interoperability, which was very successful-
ly implemented.

2.2.2 SHORTCOMINGS

The early disappointments and shortcomings faced were:
® Lack of software development support tools. Only an
editor was provided with the compiler. While the com-
pany had a low level debugger for MC68000 Assembly
language it was unusable for Ada due to the fact that a
listing of Ada code with embedded Assembly language
was not available. Considerable effort was expended in
writing our own special purpose trace program.
® The size of the initial code greatly exceeded our
estimates and memory was increased from the original
1/2 Megabyte to 2 Megabytes. The average Telesoft-Ada
compiler expansion ratio was 22 bytes per line of Ada.
The compiler overhead was about 2.5 when compared to
handwritten Assembly language. This unforeseen in-
crease in memory had a significant effect on the CCS
hardware, but this was deemed less costly than heroic
efforts to squeeze the code into insufficient memory.
@ It became clear that the Telesoft compiler and Host
Operating Systems were never meant to support a pro-
ject the size of CCS. We constantly exceeded limits in
file size, number of files, number of packages, stack size,
etc. Most of them required fixes by Telesoft whose
support—via a maintenance contract—was nearly always
forthcoming and timely.
® The Ada-Assembly language interface which was a part
of all the peripheral processor Dual-ported RAM inter-
faces took considerable time to design and debug. The
interface required the use of the “‘for use at...” construct
which worked fine, but without a debugger on both sides
of the processor interface checkout was very cumber-
some and difficult.
@ Ada proved not to be well suited for a top-down design
methodology since the implementation is bottoms-up.
This was partially due to the lack of the ‘‘separate’ con-
struct in Telesoft-Ada, but even with this feature the
special code needed to use it precludes some of its
usefulness. However, Ada-PDL worked remarkably well
even though it was not consistently used. The design,
and code standards and guidelines had to be tightened
up considerably and compliance to them carefully
monitored.
® The separate compilation feature of the Ada language
was not fully implemented by Telesoft and compilations
were more frequent than planned.

2.2.3 INTEGRATION AND TEST

As the detailed design and implementation of the software
proceeded it was recognized that the integration and test
phase was going to take longer than planned. This phase
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of the program was replanned in painstaking detail into 12
“stages” of CCS development and testing. With this new
plan in place we proceeded to the end of the project slow-
ly but steadily. We have concluded that without this type
of phased integration and test, planned and successively
refined into test plans and procedures, that large software
projects wouid be impossible. The CCS integration and test
planning and development was a “‘team’ effort in the best
sense of the word. Software, systems and hardware
engineers worked and planned together toward the com-
mon goal of completing the 12 stages.
The following anomalies were experienced at various times
during the development:
@ The compiler was updated twice during the software
development and both times was installed immediately.
This naturally caused some delay, but the benefits of the
improvements far outweighed the incurred delay of about
one week each time.
® The source code to the Run-time Operating System
was purchased under license agreement with Telesoft
and several minor but important changes were made to it.
@ The internal stack size for each Ada task was defaulted
by the compiler to 2000 bytes. Since several of the CCS
tasks needed much more than 2000 bytes, a patch to the
compiler was obtained from Telesoft to vary the stack
size. Tracking this problem down literally shut down the
software development for about six weeks.
® Occasionally problems showed up at execution time
that were only solved by a complete recompilation. Once
the symptoms of this problem were recognized it wasn't
s0 serious, only frustrating and time consuming. A total
recompilation took approximately four hours.
® The process of “binding” the program packages into
a load module for the target system was slow. Subse-
quent releases of the ESK speeded this up from an hour
to about 15 minutes.
These problems were directly related tc the relative
“newness” of the first generation Ada compilers. Other ma-
jor problems not directly related to the use of Ada were:
® The target hardware sustained some major modifica-
tions during the middle of integration and test. Although
this took time it was beneficial to the software develop-
ment in the long run. With the hardware running more
reliably it was much easier to track software performance
and differentiate between software/hardware problems.
It should be noted here that the CCS hardware was also
pushing the “‘state of the art”.
® We were continuously plagued with timing problems
in the TACFIRE interface. Even though the interface was
used heavily it was never reliable and performance varied
significantly between TACFIRE systems used for
checkout.

3.0 CONCLUSIONS

The bottom line is that in about 2 1/2 years 45,000 lines of
Ada were designed, coded, checked out, integrated and
tested for the CCS. An equal number of assembly language
instructions (equivalent to another 11,000 lines of Ada) were
also developed for the project. In addition, a considerable
amount of test software and system support software was
also developed and integrated. The software staff peaked
at 20 people with the average being about 12. The distribu-
tion over the length of the project is depicted in Figure 3.
The peak represents that part of the program just before
the CCS equipment was shipped from the Singer facility
to the government test bed. Development and testing con-
tinued for some months after that until the test bed was

concluded in April of 1985. The software was not of “pro-
duction” quality, but it was sufficient for the concept evalua-
tion test of CCS with TACFIRE.

One of the results gleaned from the CCS test bed was that
the excessive compiler overhead was causing slow execu-
tion which in turn degraded the performance of the system.
A more optimized design has certainly taken care of some
of the problems, but it is obvious that major improvements
are still necessary in code generation optimization.

A comparison with other software projects within the com-
pany showed an increase in programmer productivity
(measured in lines of normalized code per day) between two
and three times greater than for other projects using other
languages. We attribute this to the use of Ada since a variety
of projects and languages were compared. The increase in
productivity was especially apparent when compared to two
other similar communications projects, one in Assembly
language and one in PASCAL. Improvements over Assembly
language can be attributed to the use of a High Order
Language (HOL), but even normalizing for that there was
significant improvement, and the improvement over
PASCAL and CMS-2 can only be attributed to Ada.

It is impossible to gquantitatively measure at this time
benefits gained by the use of Ada in readability, main-
tainability, reliability etc., but our subjective judgement is
that they will be significant. The key characteristics of Ada,
i.e. strong typing, tasks, packages, exceptions, generics
(unavailable for CCS), and mechanisms for data and con-
trol abstraction cannot help but improve the readability of
the code and reduce maintenance costs.

We look forward with great interest and anticipation to the
second generation of Ada compilers and improved tool sets,
some of which are already on the market.

TABLE 1. CCS CPCIS, CPCS

Control Processing COP
Communication Processing cMP
Network Protocol Processing NPP
Modem Processing MMP
COP CPCS

System Initialization COPINT
Diagnostics COPDIAGS
FDC Interface COPFDC
COMSEC Interface COPCSC
Keyboard/Display Interface COPKDP
Bubble Memory Interface COoPQIB
Modem Interface COPMP
NPP Interface COPNPP
System Executive SYSEXC
Interrupt Handler SYSINTR
CMP CPCS

Communications Initialization CMPINT
Network Management CMPNET
Communications Data Base CMPDATA
Voice Communications CMPVCM
Authentication CMPATH
NPP CPCS

Network/Executive NPPEXC
Abridgement/Compaction NPPCPTN
Network Management Aids NPPMGMT
MMP CPC

Executive MMPEXC
Initialization MMPINT
Protocol MMPPRT
Media/Device MMPMODV
Error Processing MMPFEC
Fiber-Optic intertace MMPFOI
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THE ARMY'S MAFIS COMMAND AND CONTROL

e
KN
ﬂ{ MicHaeL T. PeErkINs AND Joe E. BoLGer
i}
N i,
§
0 THe BDM CorPORATION
- AusTIN, TExAs
‘Rt
’,5,, Abstract C&C processing is distributed among a
-‘d —_ Network Communications Processor, an Applica-
] The G d & Control Subsystem of MAFIS is tions Processor, and Display Processors. The
. amanc, . Network Communications Processor collects the
(Y designed to monitor and control military doc- : . . - :
:.' trine and equipment testing exercises. The data, filters it, and distributes it to other

processors. The Applications Processor main-

Command 1 i distri i
& Control is a distributed processing tains a player database, records a history log,

system that controls a comunications network

for the collection of data, processes applica-
tions (such as simulaticns and database manage-
ment), and supports a user interface and graph-
ics display. The Command & Control Subsystem is
being designed and implemented in Ada*. A pilot
portion of the system was tested at the end of
FY85. This paper describes the requirements,

and executes simulations and other applications.
The Display Processors serve as the user inter-
face for monitoring and control of field activi-
tv. The processors commnicate over a high
speed Local Area Network (LAN). The primary
flux of data across this LAN is field exercise
activity broadcast to all other processors by

g' development me logy, and implementation. the Network Communications Processor.

Introduction and Background Requirements and Capabilities

#® The Mobile Automated Field Instrumentation
System (MAFIS), being built for the Armmy Train- ment and monitor 200 (expandable to 2000)
ing and Doctrine Command by BDM, allows for players interacting over a 50 by 50 kilometer
real-time monitoring of two-sided mechanized area. A real carbat environment is to be
cambat where weapon engagements are simulated. simulated as accurately as possible. The field

The broad goals of the MAFIS are to instru-

-

"
V) The MAFIS is camposed of three subsystems: 1) portion of the MAFIS provides a practically
My the Field Instrumentation Subsystem, 2) the invisible (greatly reduced in size) on-board
:: Cormand and Control (C&C) Subsystem, and 3) the equipment configuration. Both mechanized and
e Operations and Support Subsystem. The Field (eventually) infantry platforms are to be
v,‘ Instrumentation Subsystem equips combat partici- supported. Most mechanized platforms will have
s pants with electronics to perform digital multiple weapons systems that will need to be
:‘. comminication, position location, logic process- instrumented. Real-time casualty assessment
M) ing, and engagement simulation. The engagement (the ability to perform weapon engagement
[ simulation equipment consists of both low power, camputer decision-simulations within one sec-
[ bore~sighted lasers that flash a coded message ond), stimulated as a result of laser hit
o with each weapon trigger pull and an array of detection, will be done at the player level in
Vs laser light detectors to score weapon hit the on-board logic processing unit. Players
* information. The main processor is a Motorvla will report position and status information to
"o 68010 with up to 2 Mbytes of memory. Position CsC along with firing data and casualty assess-
b Location is to be provided by a module that ments; configuration data will be sent to C&C to
",g receives transmissions from the Global Position- confirm player identity. Should the player's
;,: ing System (GPS) space segment. The Position commnications equipment lose contact with the
‘q.' Location Module performs sat:el'llte. nultll"aterg— network, the logic processor will be able to
N tion. Player status and activity information is store several hours of data {enough for one

relayed to the C&C through a commnications trial) for transmission when network communica-
z repeater network. tion is re-established. Cs&C will be able to
p send messages to players to perform simulated
“"$ ammunition reloads, to disable and enable laser
firing, to perform an administrative kill

* Ada is a registered trademark of the simulation, to resurrect (re-enable) a platform,

)

'. Department of Defense (Ada Joint Program to report configuration status, and to report

¥ Office). special simulations.

.’-—v
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A major function of C&C is to control the
communications network. Communications are
implemented through a hybrid time-division
multiple access and demand reservation network
that uses line-of-sight, digital, spread-spec-
trum, 370 Mhz radios. Because of the line-of-
-sight communications constraints, a repeater
routing network mist be established that assigns
players to repeaters according to signal
strength. To ensure uninterrupted coverage as
players move away fram one repeater, they must
be able to be reassigned to the succeeding
network node. The network is confiqurable
according to exercise and terrain requirements.

The Cs&C functionality also supports the
processing of applications such as database
management, history log recording, and simula-
tion execution. A database is maintained that
records player type and configuration, player
location and status, player scoring data, and
the status of all active simulations. An event
history log is recorded in time order of event
to support off-line replay and review of exer-
cises. During the monitoring of an exercise,
there is no guarantee that C&C will receive
events in time order because of the logging
capability that exists at the player level.
Specific simlations are defined and programmed
according to their specific requirements;
however, software utilities are provided with
the system to support the detection of a play-
er's presence inside defined areas.

A third major function of C&C is to provide
a human interface. The operator is presented a
high-resolution color graphics map display gene-
rated from the Defense Mapping Agency's terrain
data. The map display allows selectable feature
visibility and supports zoom and virtual image
panning from a disk data file. A player symbol
display is superimposed over the map image. The
text, line strokes, etc., that define the player
are drawn in certain colors to designate attack-
ers, defenders, or referees; the symbol back-
ground, drawn as a rectangle, is ocolor-coded
according to player status. Groups of players
can be displayed as one symbol according to
relative position in the military chain of
command . Simulated weapon engagements are
displayed as they occur. The operator can
designate military planning control measures to
appear on the map. In addition to the color
display, an alphanumeric terminal is provided
for notifications and reports. Operator
commands are given by touching buttons drawn on
a graphic tablet.

Development Methodology

The software development process follows a
classical top—down design ([1]. The project
phases are requirements analysis, functional
design, general design, detailed design, code,
test, integration, and final test. Early in the
design phase, Ada was chosen as the inmplementa-
tion language. The detailed design phase was
tailored specifically to an implementation in
Ada.

AN
A .L‘?’u‘f'i ,'l »

Solutions to many design issues documented
by various authors have been incorporated into
the development effort. The software design
process is based on the Structured Analysis and
Design Method (SADM) and uses Ada as a formal
notation for expressing the (pictorial) results
of SADM, The structured methodologies are well
documented in Structured Analysis and System
Specification, T. DeMarco {2] and Structured
Design, Yourdon & Constantine [3]. The design
method implementation draws heavily on concepts
described in "A Software Design Method for
Real-Time Systems", H. Goma (4] and Ada Desi
Language for the Structured Design Methodology,
J.P. Privitera [5]. The translation from the
design results of SADM into the Ada design
notation is accamplished by a technique borrowed
fram the Process Abstraction Method (6]. The
layering and hiding of various design decisions
is detailed in "On the Criteria To Be Used in
Decamposing Systems into Modules", D. Parnas
[71.

Software design began with text descrip-
tions of the primary functionality. A hardware
architecture was developed based upon estimated
processing capabilities required for that
functionality. Sets of hierarchical data flow
diagrams were created to formalize software
module and interface definition. Data flow
diagrams depicted software modules as circles,
hardware interfaces as rectangles, and data
flows as connecting arrows; a text 1label is
associated with each object. Depending upon
camplexity, software modules were sub-catego-
rized in a hierarchy of other data flow dia-
grams. At the conclusion of general design,
data camunicated over each processor's external
interface was defined in the greatest possible
detail, and updates were issued as necessary.

The creation of Ada ocxxde at the highest
level began during detailed design. An Ada
master procedure was created for each processor.
The data tlow diagrams were used to identify
software modules and data structures. Because
of the camplexity of the software, the first
level data flow diagrams were used to define Ada
packages within the main procedure. To define
internal software interfaces, package specifica-
tions were written within the main procedure
according to the functionality defined by the
highest-level data flow diagrams. To limit
camplexity, each package body was a separate
Compilation unit. Data structures required for
comunication between packages followed the data
flow diagrams. Global data structures were
encapsulated in a package specification called
Global Types. Concurrent tasks were identified
on the data flow diagrams by enclosing software
modules in rectangles or polygons. The Ada task
specifications were then hidden inside the
package bodies. The task bodies were again
separate compilation units. For detailed
design, the description of processing required
inside the task bodies was no longer in compil-
able Ada, but was written in Ada psuedo-code.
Auxillary procedures required for data set
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Z:'n p preparation or wrap-up processing did not

,., require mlt?.-tasklng and were coonsiderably

:l : easier to design.

(et

ity Following detailed design, coding will

primarily involve transforming Ada psuedo-code

X into actual campilable Ada. As code is deve-

1N loped, testing will be done at the module

b -P..‘ interface level before integration begins.

~ Integration will take place on a module by
35 module basis, with testing following each step.
N After software integration is complete, the
v entire system will be tested during the king of
actual field exercise for which the system was

:i : developed.

e

.:a Implementation

BA

4 The hardware architecture chosen to imple-
“!..! ment the CsC design is as shown in Figure 1.

The LAN architecture is the key to flexibility
and expandability. The Communications Network
) Controller organizes the network and routes
":‘ messages between players and the applications

DATA
Corvo
INTERFACE

I

COFFUNICATIONS
-2 INTERFACE =<
CONTROLLER

RAW DATA
TAPE

HISTORICAL | APPLICATIONS
DATA BASE | PROCESSOR

software in C&C. Data received from players
that represent a significant change will be
broadcast over the IAN to all other C&C proces-
sors. Data generated within C&C that affects
the exercise (e.g., initialization data, simla-
tion data, and start/stop trial messages) will
also be broadcast over the LAN. Both the
Applications Processor and the Display Processor
read the broadcast information from the LAN in
processing exercise data according to their
specific functions. All three processors
communicate by sending messages between distinct
nodes. Fxpandability is achieved by use of the
LAN architecture, since other processors may be
added to the LAN as needed. For example,
additional Display Processors may be added to
the LAN to accommodate specialized or expanded
operator duties. The processors that execute
the Communications Network Controller and the
Applications Processor software are Data General
MV/8000's. The caomputer chosen to execute the
Display Processor software is a Data General
MV/4000 with a GDC/2400 graphics display.
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Functional assignments associated with each
processor are arranged according to network
control, applications execution, and human
interface control. The network control func-
tions are to 1) control the configuration and
timing of the network in such a way that
throughput is timely, 2) provide diagnostics in
the event of a network failure and correct the
problem if possible, 3) receive all commnica-
tions from the network and generate output that
indicates significant field activity, 4) trans-
mit messages from the operator/controller to the
player equipment, and 5) provide a raw data tape
of all comunications network messages. The
commnications messages data tape will provide a
camplete record of Cs&C input and output. The
applications functions are required not only
during real-time processing, but also in pre-
and post-exercise processing. The real-time
applications functions are to 1) create a sorted
historical event log, ?) oollect statistics
needed to generate configuration and scoring
reports, 3) route messages from the opera-
tor/controller at a Display Processcr to player
equipment, 4) assure player equipment acknow-
ledgement of the message, and 5) provide prooes-—
sing algorithms for specific simulations, such

special exeorcise-dependent statistics. The
Applications Processor history loag data tape
will allow complete reconstruction and permuta-
tion for post-exercise analysis. The applica-
tions functions performed in pre- and post-exer-
cise mode are to 1) edit the plaver configura-
tions and prepare initialization data, 2) create
the terrain rap image used by the Display
Processors, 3) merge post-test late data to
provide a camplete time-ordered log of exercise
history, and 4) replay the history log for
post-test review and analysis., The functions
performed by the Display processor are to
provide 1) a man-machine interface through which
the operator/controller can interact with the
players in the field, 2) a color graphic repre-
sentation of the field with appropriate symbols
representing players, their movements, and their

engagements, and 3) alphammeric and graphic
sumaries of information generated by the
Applications Processor relating to player

performance and overall evercise evaluation.
(An example of how this functionality was
defined for the Display Processor using data
flow diagrams is shown in Figure 2.) To create
and edit the data flow diagrams, an Ada graphics
editing program was written to support a machine

as area effect weapons, alerts or alamms, and readable database.
EMADGUDTE FOR p:m@ REPLAY GHAPGHOTE
mxrmu:mxou}:{‘_’w
R ~ 2
o <
040“* ,.,/ 3 ,ac"' g
- L] > 2
& 313 ol =
> Z
3 2 &
23 ) L -
zla L & .
E E v\‘(": A:\?‘ f
A oy
3 € . &
-“3}“ & i S0e-2400
G 2 INPUT
oCLra Event packics fPISTRIRUTE & '
EVENT VQ g y &
- ‘ﬂw o, & 5 ‘!%
< >
& R, & 2 T
\ & "{‘)“‘ © SiE b"a\
2 q 2 25 & B O
> | » 1
Gl ERE 513
MERIH 2 3
HERIH
E )
- MEDGAGED T COMTROL texe,
TTERNAL PROCEGEORE o8 LIm *ﬁ%._
"'c\.,ac” PROCES Sang
M\ s o]
<< \ e canrapn W caacs
2 2 migiiirgpe ) ver =
) 1t see
o 2 g
3|5 perg “» :"‘f,
L _2, > ‘\’-'7 %\r:\“
& W
[-L SN Pa MAVTER
FIGURE 2: LEVEL 1 DATA FLOW DIAGRAMS FOR THE DISPLAY PROCESSOR

80505 |

&

. o Sl o L) o R ¢
1 %] J
.I".‘ ;» ), ."‘“i"‘:'ét'.l lij“.'A !’!. " .t A A £ .

’ () JORIOL
TR R R

Annual National Conference on Ada Technology 1986

25




[y

o, ol X% .
:r 1:;‘&5.9:.’2 gi“!‘g,'i‘ gu'l .'I

WO TIPTW Y wor o

The current proiect schedule is a two-
tiered incremental arrangement. Essential
software needed to meet minimum performance
criteria is to be developed first and will
constitute a Limited Operating Capability (LCC).
This system will then be augmented to develop
increased furctionality, until it constitutes
Final Operating Capability (FOC). In the
software development cycle, all phases beyond
gercral design will be duplicated for LOC and
FOC. 'The current status of the project is in
the coding phase for TOC. LOC is scheduled to
be completed in February of 1987, with FOC to
follow one year later.

Advantages and Difficulties

The advantages of using Ada early in the
design phase have been rewarding, The foresight
and planning that went into Ada have allowed the
development of tools that are reusable and
expandable, avoiding extensive redesign. The
modularity available in Ada contributes greatly
to the maintaining of camprehensible campilation
units. The software interface specifications
required in Ada have also greatly aided in
keeping separate software developers working
toward common goals. Other notable advantages
gained from using Ada are explicit multitasking
and exception handling.

The design methodclogy was to a large
extent refined as needs arose. The hardware
design was intended to complement the use of
Ada. This was accarplished by a balanced
approach of top—down design and functional
abstraction. The currently defined methodology
is a process leading fram high-level function-
ality to deeper and deeper levels of definition.
Every step of the process follows fram the
previous one without duplication of effort and
without large gaps in understanding.

Because of the flexibility of the hardware
architecture and the modularity of the software,
it is expected that the MAFIS C&C subsystem will
be able to be easily tailored to other project
needs. Portions of the MAFIS design can be used
directly in other systems. The software func-
tionality has been abstracted from hardware
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characteristics wherever possible and should
result in easily transportable software parts.
An ideal example of this would be the software
to generate the map image from the Defense
Mapping Agency's terrain database. The Govern-
ment could save a significant amount of develop~
ment expense if all Govermment software could be
centrally archived for ease of access by other
projects.,

Difficulties encountered in the project
have been associated with early implementations
of an Ada campiler. Compiler shortcoming have
forced programmers to develop work-around
solutions in same cases. The overhead associat-
ed with current implementations of Ada was not
anticipated when processor size was originally
established and has impacted capabilities. In
spite of these difficulties, project development
has benefited overall from the use of Ada.
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AN ADA* TASKING APPLICATION IN AN AIR DEFENSE SYSTEM

Christine Ausnit

SofTech,

Introduction

In designing the target tracking
processes of an air defense system, the
designer must choose an appropriate
tasking structure. The Ada tasking
features offer both multi-threads per
task and single thread per task
approaches to solving a given problem.
In this case, there are several options
available to the designer: a single
task, one task per blip, one task per
major function, one task per sector, and
one task per track. This paper will
discuss these strategies, their
advantages and disadvantages.

Background: Air Defense System

An air defense system is a large,
complex system consisting of a network
of individual centers, each responsible
for the defense of a particular
geographical segment. Each center
tracks aircraft within its area,
communicating with other centers as well
as with its own radar units, fire units
and human operators. JIts primary
activities may be summarized as
processing tracking information,
evaluating threats, and assigning
weapons. The design of the tracking
subsystem is explored further.

Each center's tracking subsystem
conducts a 360 degree radar scan of the
sky at a fixed rate. During cach scan,
the radar detects reflections or blips
from the objects, usually aircrafe,
flying through its area and records
range, bearing, and rate of change
information. This data is used in the
processing in order to correlate or
associate blips received on successive
scans into the track (or path) of a

single target, Furthermore, once during
cach scan, the ﬂubsystem attempts to
extend the track by predicting the next
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position of the target, and this
predicted location is fed back into the
association algorithm. This prediction
is computed whether or not a new blip
was received; however, if no new blips
are received over a specified period of
time (or a specified number of radar
scans) then the track is discontinued.

Alternative Design Approaches

The selection of a tasking
structure for an embedded computer
program is one of the most basic design
decisions that must be made. This
decision involves not only determining
what entities to represent with tasks
but also how many threads (in the sense
of functionality) to include per task.
In the case of the target tracking
system, there exist both multi-threaded
and single-threaded alternatives:

e singie task handling all the work

e one task per blip

e one task per major tracking
subfunction

e one task per scan sector (a sector
being a pie slice of the whole
scan)

e one task per track

The first choice, a multi-threaded
one in that it embodies many actions
within a single control element, can be
eliminated as too general a design.
Beyond some main program, it fails to
identify the salient program or data
structures. Furthermore it does not
recognize the potential for conceptual
concurrency (e.g. once a blip has been
associated with a given track, then that
track can be smoothed while other blips
are associated with the remaining
tracks).

The next choice, one task per blip,
shows a single-threaded approach, but it
can also be discarded as unworkable.
Blips are the input to the system, not
its mainstay. Logically, blips do not
control the computation: they are data
rather than actions. Moreover, they arte
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not persistent data: they record the
position of some object at a particular
instant. As the object moves and a new
radar scan detects it, a new blip
appears on the radar screen; the old one
no longer exists. The overhead
associated with the creation,
destruction and decision-making of blips
(i.e. deciding with which track to
associate) would be excessive.

The third alternative, one task per
each major subfunction, is a logical
design which models the actual operation
of the tracking subsystem. Because it
is best used in combination with either
the multi-threaded task per sector or
the single-threaded task per track
solution, only those two alternatives
are explored in the subsequent sections.

Task per Sector

Sectors are arbitrary divisions of
the radar scan, imposed by the software,.
Within each sector, the identical
processing occurs: all the blips are
associated with existing tracks, a
resolution stage is performed to ensure
that all tracks use different blips,
these tracks are then smoothed, and the
next point along the track is predicted.
Track information is maintained in a
database accessible by the entire
system,

On first glance, it would seem that
sector processing can be performed
independently and therefore
concurrently., Within a given sector,
association must be performed before
cither smoothing or prediction.
Association tries to find the best match
between a single blip and some track in
the database. Once the track has been
isolated, it will no longer be
considered as a possible match for other
blips, and it can undergo smoothing and
prediction at the same time that the
other tracks are still under
consideration by the association
algorithm. Thus there is additional
concurrency which can be exploited.

Problems arise, however, in the
case of tracks necaring the edge of or
crossing sector boundaries. Suppose a
track in sector A should be associatced
with a blip in Sector B, TIn a track per
sector scheme, this track does not have
visibility to this blip because it lies
in a different sector. Extra processing
is required to handle these potentially
"extra" blips that arec not associated
with a track in their sector before
these blips can be assigned to new
tracks. These additional computations

render the design more error prone, less
readable and less maintainable.

A final requirement is that sector
processing for a given sector must be
completed in the time the radar takes to
sweep n-1 sectors. If the processing is
not completed in this time, it must be
stopped so that the processing task is
then restarted with the fresh data from
the new radar sweep of the sector.

The design of this solution is
found in Figure 1, and the corresponding
code is sketched in Figure 2. An array
of tasks is declared with one task
corresponding to each sector. The
sectors are declared to be part of a
controller task, whose function is to
synchronize with the north sector pulse,
stop the next sector's processing and
provide an interface between the radar
data and the current sector processing.

The procedure Associate and the
tasks Smooth_Track and
Predict_Next_Point are declared in the
task body of the sector task. Were the
two tasks declared directly inside the
procedure's declarative portion instead,
then the benefits of tasking would be
lost. The procedure Associate could not
complete execution until both its
dependent tasks terminated. As
Associate performs no further computing
once it synchronizes with Smooth_Track,
the effect of the entry call would be
identical to that of a procedure call,
and no concurrency would be achieved.
The solution presented here declares the
smoothing and prediction tasks outside
Associate. Therefore, they are active
and running even after Associate returns
and while the parent
Sector_Processing_Task checks for
preemption before continuing to process
the next blip. (Should either smoothing
or prediction operate too slowly, a
buffering task can always be introduced
so that the entry call from Associate is
immediately accepted by the buffering
and does not need to wait for
Smooth_Track or Predict_Next_Point to be
ready to accept new tracks.)

Task per Track

Another, more elegant design for
the tracking subsystem is based on
assigning one task per track. Since the
system mav handle different numbers of
tracks at different times, a linked list
of track task objects will be used.
(Otherwise an assumption about some
arbitrary upper limit of tracks would
have to be made.) Once per scan, each
track is ready to receive a new blip
association. Fach track also awaits a
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signal from a master controller in order
to become active. A track may become
discontinued because no new blips are
associated with it during some specified
number of consecutive scans. The master
controller would allocate a new task if
a new track is needed. (See Figure 3.)

The body of the track task is
simple. Following the receipt of its
identification number, the track waits
to be associated with some blip. 1If a
blip is found, the track gets updated.
If no blip is found, the track is
updated as is a counter of the number of
missed blips. Should too many scans
fail to yield an associating blip, the
track task is ready to terminate. These
two signals (data receipt and track
activation) are the two entry points
into the task. The track itself
announces that it is ready to receive
data by making an appropriate entry
call. Similarly, once a particular
associated track is out of the market
for other associations, it calls the
track smoothing and prediction
operations.

The association function here is
declared as a task. Its interface
allows it to communicate with the radar
in order to receive the blip data as
well as to communicate with the track of
its choice. Association chooses which
track is the best match and calls that
track's data receipt entry accordingly.
The corresponding pseudocode is shown in
Figure 4.

Smoothing is declared as a
procedure rather than a task because the
smoothing operation for any single track
nust complete before the next position

for that track can be predicted. The
prediction computation, however, can
safely be declared as a task, as no

further computations depend upon its
execution.

Conclusion

This paper has discussed two
different approaches to an embedded
systems problem. Both designs addressed
the possiblities for concurrency. The
task per sector design is neither
control nor data driven. The design is
based on an arbitrary division of labor,
prematurely constraining the choice of
the overall software architecture.
Parallelism exists to the extent that
the similar processing is being done at
the same time for as many sectors as
there are in the radar, although sectors
are never concurrently updated.
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This design has all the
disadvantages of approaching a
concurrent problem from a linear
standpoint. It is more difficult to
maintain. Because of potentially
delicate timing, algorithms that should
be kept in a single unit may be split
across several modules, detracting from
the readability of the whole. Tt fails
to model the functionality of the

system: an air defense system is about
tracking targets, not about radar
sectors.

The task per track design, on the
other hand, represents a data driven
design. It is a much better abstraction
to represent the functionality of the
system, and it is consequently more
readable and maintainable. Moreover,
the mutually exclusive nature of tasks
enforces protection of the track data.
Only one track can be accessed or
updated at a time; these track tasks
form the database, obviating a database
superstructure.

Although this design is better than
a task per sector, it too may have
potential timing problems, which would
most likely be generated by the tasking
overhead needed to handle the greater
number of tasks and the dynamic
allocation of tracks., The success of
this implementation would depend in part
on the run time scheduler and the
existence of tasking optimizations &

Sectors are an implementation
detail that are useful in the
association algorithm itself in order to
do bookkeeping on the incoming blips;
however, this does not justify
highlighting sectors at the top level of
the design. 1In the task per track
approach, the sectors are hidden in the
association task.

The fundamental issue in this
design is which entities to choose to
model with tasks. Jackson's definition
of entities is useful here“; an entity
either performs or suffers actions in a
time secequence. Applying this criterion,
it is clear that a sector neither
performs nor suffers actions. It is
static and has no significant time
ordering. Tracks, on the other hand,
are associated with blips and predict
new positions, both of which events are
ordered in time. Blips are attributes
of tracks: in a loose sense, it is the
collection of blips that constitutes a
track. This entity-action concept is
especially appropriate in developing
tasking designs because of the dual
nature of tasks as program units and
objects.
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task Sector_Processing_Controller is
entry New_Sector_Pulse;
end Sector_Processing_Controller;

with Blip_Package; use Blip_Package; ~-- declarations for blips
task body Sector_Processing_Controller is

task type Sector_Processing_Task is
entry Get_New Blip_Data (Blips : in Blip_Type);
entry Stop_Processing;

end Sector_Processing_Task;

type Sector_Processor_List_Type is array (Sector_Count)
of Sector_Processing_Task;

Sector_Processor_List : Sector_Processor_List_Type;

Sector_Data : Blip_Type;

task body Sector_Processing_Task is separate;

begin

loop !
Current_Sector := Sector_Processing_List'Last; |
for Next_Sector in Sector_Processor_List'Range loop
accept New_Sector_Pulse;
Sector_Processor_List (Next_Sector).Stop_Processing;
Sector_Processor_List (Current_Sector).
Get_New_Blip_Data(Sector_Data);
Current_Sector := Next_Sector;
end loop;

end loop;
end Sector_Processing_Controller;

Figure 2: Sector Controller (1 of 4)
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;ﬂ separate (Sector_Processing_Controller)
%ﬂ task body Sector_Processing_Task is
1
d%v Local_Blip_Data : Blip_Type;
;JJ Preempted : Boolean;
Tt package Blip_Processor_Package is
bW> procedure Associate (Blip : in Blip_Records);
ﬁ* task Smooth_Track is
:‘ entry Get_Track (Track : in Track_Type);
y“ end Smooth_Track;
i task Predict_Next_Point is
ia entry Get_Track (Track : in Track_Type);
) end Predict_Next_Point;
’\ end Blip_Processor_Package;
bﬁ package body Blip_Processor_Package is separate;
j? use Blip_Processor_Package;
MY
R begin
loop
accept Get_New_Blip_Data (Blips : in Blip_Type) do
" Local_Blip_Data := Blips;
::3 end Get_New_Blip_Data;
oyt Preempted := False;
<p§ for Current_Blip in Local_Blip_Data.Number_Blips loop
ﬂ# Associate(Local_Blip_Data.Data(Current_Blip));
0 select
g accept Stop_Processing;
. Preempted := True;
46" else
) null;
§$ end select;
) exit when Preempted;
$ end loop;
By if not Preempted then -- processing finished early
accept Stop_Processing;
.“.'., end ifg
Sy end loop;
\ end Sector_Processing_Task;
k0
&
«; Figure 2: Sector Controller (2 of 4)
LY
ma with Track_Data_Package; use Track_Data_Package
N separate (Sector_Processing_Controller.Sector_Processing_Task)
‘q package Blip_Processor_Package is
O
hk procedure Associate (Blip : in Blip_Records) is
"% Track : Track_Type;
. Associated : Boolean := False;
I begin
‘:‘ -- algorithm to associate and resolve (not shown here)
W if Associated then
.4‘ Smooth_Track.Get_Track (Track);
S else
h:x -- initiate new track (not shown)
. end if;
: end Associate;
L
4% task body Smooth_Track is separate;
g: task body Predict_Next_Point is separate;
I
4. end Blip_Processor_Package;
.0
o Figure 2: Association (3 of 4)
W
»5{:
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)
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: separate (Sector_Processing_ConLroller,
‘_1 Sector_Processing_Task.
:.!' Blip_Processor_Package)
',;f!_ task body Smooth_Track is
~ Local_Track : Track_Type;
4 begin

’ loop
,‘. select
g'l accept Get_Track (Track : in Track_Type) do
f:‘ Local_Track := Tracks;
fﬂ: end;
! or

. terminate; -~ when there are no further tracks to smooth
»,,' -- and Associate has therefore stopped
o -- making entry calls to Get_Track
'.‘:-. end selecty
1.‘.‘ -- do track smoothing
) -- update data base
" Predict_Next_Point.Get_Track (Local_Track);
w end loop;

end Smooth_Track;

Sy
% § separate (Sector_Processing_Controller.

ﬁ’.‘ Sector_Processing_Task.
.‘q Blip_Processor_Package)

» task body Predict_Next_Point is

e Local_Track : Track_Type;
. begin
s - loop
A select
) accept Get_Track (Track : in Track_Type) do
) Local_Track := Track;
*j end;
‘i or
."‘ terminate; -- when there are no further points to
ot -- predict and Smooth_Track has therefore
. -- stopped making entry calls to Get_Track
’l.‘ end selecty
,‘. -- algorithm to compute next point
.:. -- update data base
" end loop;
:l end Predict_Next_Point;
&
,“ Figure 2: Association (4 of 4)
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a8 Controller Radar Interface
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LA -
1 Vs r
[ /
‘,’)y\ Activate / Radar
‘9}‘\1
k’:l / Track_Process / Associate
e
36
u
e pdate / = Ready /
[ Track_1d /
S
‘]
f ) New Blip
L
L0
L 4 Figure 3: Tasking Design
LTy
F 4
0y
Iy
g4
Aoy type Track_Type;
) type Track_Id_Type is access Track_Type;
$£ task type Track_Process is
b entry Activate (Track_Id : Track_Id_Type);
Y entry Update (Blip : Blip_Type);
B e end Track_Process;
o type Track_Parameters_Type is
record
. X, Y, Phi, Theta, Smooth_Index : Float;
Wk —
':'n end record;
\
?ﬂ type Track_Type is
! record
f@' Ready : Boolean;
) Process : Track_Process;
« Parameters : Track_Parameters_Type;
" Next_Track : Track_Id_Type;
Ly end record;
19,
(L%
L Track_List, Track : Track_Id_Type;
&
s task Associate is
> entry Radar (Blip : Blip_Type);
entry Ready (Track_Id : Track_Id_Type);
RSy end Associate;
P
;& task Radar_Interface; -- calls Associate with new blips
e -- task body not shown
[}
"0
f' Figure 4: Task per Track (1 of 3)
B,
4"
Akl
Y
)
[
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!
Ky task body Track_Process is :
N g
;J My _Track_Id : Track_Id_Type;
i New_Blip : Blip_Type;
> Missed_Blips : Natural;

Miss_Threshold : constant Integer := <{system-defined>;

procedure Smooth_Track (Blip : Blip_Type;
i Track_1d : Track_ld_Type) is separate;
< -- not shown
& task Predict_New_Position is
by entry Get_Id (Track_Id : Track_Id_Type);

end Predict_New_Position;
" task body Predict_New_Position is separate; ~- not shown

begin -- Track_Process

loop
P, accept Activate (Track_Id : Track_Id_Type) do
¥ My_Track_Id := Track_Id;
3 end Activate;

select
i loop
1N Associate.Ready (My_Track_Id);
U select
accept Update (Blip: Blip_Type) do

h -- received blip during this scan

New_Blip := Blip;
s end Update;
Smooth_Track (New_Blip, My_Track_Id);
. Predict_New_Position.Get_Id (My_Track_Id);
- Missed_Blips := 0;
b ] or
W Predict_New_Position.Get_Id (My_Track_Id);
o Missed_Blips := Missed_Blips + 1;
< end select;
L exit when Missed_Blips > Miss_Threshold;
end loop;
, or
at terminate;
) end select;
end loop;
o end Track_Process;

- Figure 4: Task per Track (2 of 3)
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..:.

kﬂ task body Associate is

:$: New_Blip : Blip_Type;

kh Best_Match, Match : Natural;

- Match_Threshold ¢t constant Integer := <system-defined>;
. Best_Track_1Id ¢ Track_Id_Type;

“ % -- sector declarations

?” function Degree_of_Fit (Blip : Blip_Type;

Track_Id : Track_Id_Type)
return Natural is separate;

g e

& procedure Initiate_New_Track (Blip : Blip_Type) is separate;
*t

; begin -- Associate

) loop

N Track := Track_List;
189 select

15 accept Radar (Blip : Blip_Type) do

e New_Blip := Blip;

z:A end Radar;

) Best_Match := 0;

while Track /= null loop

W if Track.Ready then -- try to match blip to this track
Wby Match := Degree_Of_Fit (New_Blip, Track);

:H. if Match > Match_Threshold and

(X Match > Best_Match then -- best match so far
,4&- Best_Match := Match;

'%f Best_Track_Id := Track;

0 -

. end if;

- end if;
,':. Track := Track.Next_Track;

s end loop;

‘o if Best_Match > Match_Threshold then

*x‘ Best_Track_TId.Ready := False;

Best_Track_Id.Process,Update (New_Blip);
-- call track task

.
-

else
. Initiate_New_Track (New_Blip);
||:$ end if;
i or
4 accept Ready (Track) do
: Track.Ready := True;
" end Ready;
I\ end select:

end loop;
end Associate;

22 44

Figure 4: Task per Track (3 of 3)
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FLOATING POINT COMPUTATION USING ADA'S MODEL NUMBERS

John J. Buoni and Richard L. Burden

Youngstown State University, Youngstown, Ohio 44555

The purpose of this paper is to point out
the background of Ada's model numbers. By con-
sidering the Ada manual as a set of Postulates
which an implementation of Ada must satisfy
certain properties of model numbers are derived.
It is the contention of the authors that only
after one completely understands model numbers
will the value of Ada's numerical approximation
facilities be fully understood.

81 Introduction

Ada defines the properties that approximates
of real arithmetic computation must satisfy. Be-
cause real arithmetic is implemented on machines
with different underlying hardware, the manner in
which these properties are achieved is left to the
jmplementation. The designers of Ada were faced
with the problem of allowing different implementa-
tions and yet making the properties general enough
fer common numerical algorithms. The Ada design
was based on W. S. Brown's work on floating point
arithmetic. However, differences between Ada
and Brown's work abound since their goals were dif-
ferent. Brown was interested in producing a model
of actual hardware; whereas with Ada, a machine
independent implementation was required.

The purpose of this paper is to point out the
background of Ada's model numbers especially
Brown's work. It is the contention of the authors
that only after one completely understands Brown's
model will the value of Ada's numerical approxima-
tion facilities be fully understood.

Throughout this paper we shall adopt the nota-
tion

b#O.dldz...dnﬂﬁe (1.1)

where b will indicate the appropriate base,

di for i=1...n will be digits in the hase b,

and Ee will mean that the base b 1s raised to the
e power.
§2 Approximate Computation

Ada assumes that the arithmetic facilities are
provided using binary numbers and allows the pro-
grammer to specify the minimal accuracy of a Real
data type. For floating point this specification
is an integer giving the minimal number of decimal
digits of significance in stored values by the im-
plementation and determines the floating point model
numbers. Since a binary radix 1s assumed, then we
define the floating point model numbers to consist
of zero and all numbers of the form

sign*binary normalized mantissa*
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(2.0 ** exponent) (2.1)
where the mantissa length B and exponent range
[-R...R] are determined from the number of decimal
digits D by the formulas

B = D*log(10)/log(2) = D*3.32
and

[-R..R] = [-4*B..4B).

Example 1. Suppose the Ada declaration

type F is digits 5;
is given. Then an easy calculation yields that
B = [16.6] = 17 which is the predefined attribute
F'Mantissa and that the exponent range is given by
[-4*%B..4%B] = [-68..68)]. Hence, the smallest
positive model number (the predefined attribute
F'Small) is in the notation of (1.1)

2#.1%-68 = 2.0°%% = 1.69%107 2L,

and the largest model number (F'Large) is

2#.11111111111111111#E68 = 268-2°1 = 2. 95%1020.

and the next model number greater than 1.0 is

2#.10000000000000001 #E1 = 1.0+2-16.
The predefined attribute F'Epsilon is the absolute
value of the difference between the 1.0 and the
next model number greater than 1.0; and in this

case is about equal to 1.52*10_5

2.0**(~F'Mantissa + 1).

Remark: The fact that (F'Large)-1> F'Small is
useful in dealing with small numbers.

The advantage of the Model Number approach is
that the model numbers are stored exactly, in the
sense that if one assigns a model number to a vari-
able, then one can test for equality and obtain the
expected result. The safe numbers of Ada have the
same number B of mantissa digits as the model num-
bers of that type and have an exponent range of

-E..+E where E is implementation defined and at
least equal to 4%, 1

Remark: The term normalized varies from archi-
tecture to architecture. The floating point archi-
tecture of the IBM 360/370 requires that the first
(high order) hexadecimal digit be non-zero whereas
the PDP-11 format adopted by the VAX-11l requires
the first bit of the fractional part to be non-zero.

Since an implementation will typically have
values which are not model numbers, the problem is
to develop a model for the approximation of the
numbers, some of these numbers are bounded by a
model interval i.e. a real number interval whose
endpoints are model numbers.

Definition 1. The model interval associated
with a value that belongs to a real type is the
smallest model interval that includes the value.
Model intervals which contain no other model numbers

or in general
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are called Atomic Model Intervals.

To illustrate this consider the following ex-
amples.

Example 2. Consider the model numbers whose
mantissa length is 8 i.e. B = 8, Using hexadecimal
notation we find that 16#0.A04 which is not a model
number is bounded by the model interval whose end-
points are given by 16#0.A0 and 16#0.A1. Also we
find that 0.1 which in hexadecimal is 16#0.1999...#
is bounded by the modelinterval [16#0.198, .16#0.19A].

Example 3. Consider the previous declaration
of type F, i.e. type F is digits 5. With this type
declaration, we have 17 binary places. The value
0.1 is bounded by the model interval [16#0.19999..
16#0.1999A] where the hexadecimal numbers are used
for convenience and are exactly equivalent to the
normalized binary representation since the first
three binary digits of the hexadecimal number 1
are zero. The width of this model interval is

approximately 9.5367%10"7
than F'Epsilon.

It is not hard to see that the Atomic model
intervals vary in width. Indeed, the atomic inter-
val [0.0..F'Small] has width of approximately

1.69%10721 yhile the interval [1.0..1.0 + F'Epsi-
lon] has width F'Epsilon which was found to be
approximately 1.53%10-5. The following Theorem is
then clear.

Theorem 1. The width of any Atomic interval
is less than or equal to F'Epsilon.

Remark: The role that F'Epsilon plays is ex-
tremely important in the error analysis for model
number computation. Hence the inequalities dis-
played in the following theorem are extremely im-
portant in scaling.

Theorem 2. F'Small < (F'Epsilon)z,

and F'Large > (F'Epsilon)-z.

These results lead us to the following theorem
Tlieorem 3. Let X3 and X, be respectively the

which we saw to be less

left and right endpoints of the atomic model inter-
val containing the number x. Then
(1.0-F'Epsilon)#*x < X < x < (1.0+F'Epsilon)*x

Hence, the relative error which we define as
[Xl, xr] - x |

< F'Epsilon.
(x|
§3 Arithmetic Properties

Throughout the remaining parts of this paper
we will indicate fl(x*y) to be the machine number
result of x with y under the binary operation *.
In a conventional model for floating point compu-
tation one begins by postulating the machine num-
bers (1.e. those numbers which are representable
on a machine) as exactly the model numbers with
floating point operations that are exact up to
rounding or chopping. Then one obtains that

f1(x*y) = (x*y)(l+del) where del < rlu| (3.1)
where * varies over the binary operations; r varies
from 1..4 depending on the type of arithmetic em-
ployed (round or chop); and u depends on the num~
ber of digits of accuracy.

We wish to derive such a bound for comput-
ation of model numbers but first we must introduce
some general properties.

Definition 2. Any machine number x is said
to be F-bounded if and only if [x|< F'Large. An

interval X is said to be F-bounded iff every x in
X is F-bounded. A machine number x is said to be
in F'Range if and only if x = 0 or F'Small < |x| <
F'Large. Adopting the notation of Brown, for x
any F-bounded machine number, we denote by x' the
Atomic model interval containing x. Furthermore,
if X is any F-bounded interval then X' is the
smallest model interval containing X.

The Ada Postulates for floating point oper-
ations (+,-,*,/) are stated in Ada as follows: 1

Postulate 1. The result model interval is the
smallest model interval (of the result subtype)
that includes the minimum and the maximumof all the
values obtained by applying the (exact) mathemati-
cal operation, when each operand is given any value
of the model interval (of the operand subtype) de-
fined for the operand.

Postulate 2. The result model interval is
undefined if the absolute value of one of the
above mathematical results exceed the largest
safe number of the result type. Whenever the
result model interval is undefined it is highly
desirable that the exception NUMERIC ERROR be
raised if the implementation cannot produce an
actual result that is in the range of safe num—

bers.
The floating point operations may be summa-

rized as follows:

(1.) For each operand., a model interval of
the appropriate type or subtype is obtained.

(2.) The mathematical operation is perform-
ed on the model intervals, obtaining a new interval
(3.) The interval from the last step is
expanded to a model interval. The model interval
attained from the last step bounds the accuracy of

the result.

Consider the following example:5

Example 4. Consider the following Ada declar-
ation:

type F is digits 5;
x,y:F;
We wish to compute x*y, where x=0.1 and y=10.0.

Step 1: says that x is the model interval
[16#0.19999..16#0.1999A] while y is the model num-—
ber 16#0.A#E1.

Step 2: then gives the interval [16#0.FFFFA..
16#1.00004]7.

Step 3: then gives the slightly larger model
interval [16#0.FFFF8..16#1.0001}.

Example 5. We wish to consider x+y, where
x=1.0 and y=F'Small.

Step 1: x and y are model numbers so no new
intervals are constructed.

Step 2: the interval at this step is the mach-
ine number 1.04F'Small.

Step 3: from previous computations we see that
this number is then expanded to the Atomic model
interval [1.0..1.0+F'Epsilon].

Unfortunately, machine anomilies play an impor
tant role in any computation as well as the model
number computation as the following example indi-
cates.

Example 6. Consider a three decimal digit
computer with no guard digit in its accumalator.
We shall stipulate a mantissa length of 3. Such
a machine would probably compute 10#1.00 * 10#.999
in the following manner.
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Step 1: would normalize the numbers and then
multiply in the following manner 10#.100E1 *
10#.999.

Step 2: would yield .099*10 or .990.

Step 3: would just return the result of Step 2
which is a seemingly unacceptable result because
.999 (the actual result) does not lie in the model
interval.

On the otherhand, with the mantissa length set
to 2 affording us the luxury of extra machine pre-
cision in its model numbers. We find that the
steps in that same calculation are:

Step 1: would compute the model interval ,0999'
which is [.99 1.00].

Step 2: would form the product of 1.00 times
[.99 1.00] which would yield the interval [.99
1.00].

Step 3: would return the result as in Step 2
since it is a model interval. This model inter-
val now does contain the answer of .999.

Remark: the same phenomena would result if
we replaced the above problem with the subtrac-
tion problem 1.00 - .999 and leads one to conjec-
tura the necessity of a guard digit in an Ada
declaration. Additional insight into this phe-
nomena will be given in Example 9.

Example 7. With the same computer in mind as
in Example 6 and mantissa length set at 3 consider
the computation of 1./x where x=9.0.

Step 1: would normalize the model numbers 1.0
and 9.0.

Step 2: would perform the reciprocal operation
to yield the normalized result 10#.111EO0.

Step 3: would return the result as in Step 3
since this result is a model number.

On the otherhand, if we had chosen the mantissa
length to be 2 then the steps would proceed as
follows:

Step 1: would normalize the model numbers
and 9.0.

Step 2: would perform the reciprocal operation
to yield the normalized result 10#.111EQ.

1.0

Step 3: would yield the model interval [.11..
.12].
The following result paraphrases the Ada
Postulates 1 and 2.
Theorem 4. Let x and y be F-bounded machine
numbers, and let * be any binary operator. Then

fl(x*y) is an element of (x'*y')' provided x'*y'
is F-bounded.

Some immediate consequences of these results
are the following:

Theorem 5. Let x and y be model numbers and
let * be any of the binary operations addition,
subtraction and multiplication. If x*y is a model
number then fl(x*y)=x*y.

Remark: Although the reciprocal of a model
number is not a model number one finds that if a
number is a power of 2 than it's reciprocal is
also a model number.

§4 Error Bounds

We are now interested in deriving error
bounds for various binary operations which is to
say that all operations may be considered accu-
rate to within F'Epsilon, whenever the operands
themselves are F-bounded machine numbers with an
F-bounded result. If the operands are model num-
bers whose product is also a model number then
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Theorem 4 supports this claim without any further
qualification. However, if an operand x is not a
model number, then the operation may effectively
replace it with a different value X in x', and the
relative error of the computed result will be small
if the exact result is obtained from X rather than
x. Since x and ¥ 1lie in the same model interval
x', then we may view X as being equivalent to x.
Hence, the exact position of x and ¥ are irrelevant.

Theorem 6. Let x and y be F-bounded real num-
bers and let * be a binary operation. In computing
x*y, let X and § be the effective values in x' and
y' for x and y respectively. Further suppose that
(x' *y')' 1s in F'range. Then for every % in
(f1(x*y))' there is a & such that

2 = (X*§)(148) where |§| < F'Epsilon (4.1)

Proof. By Theorem 4, fl(x*y) is in (x'*y')'.
If f1(x*y) is in x'*y' then by the definition of an
interval operation there exist % in x' and § in y'
such that f1(x*y)=%*§. If fl(x*y) is in (x'*y')'-
(x'*y'), that is fl1(x*y) is in u', where u is an
endpoint of x'*y'. Now choose %*} such that
u=%X*5. Then fl(x*y) is in (%*§)'. Hence, for any
Z in (fl(x*y))' we find that 2 is in (%*§)'. The
result now follows from Theorem 3.

§5 Arithemetic Comparisons

In performing an arithmetic comparison, great
care is required, since any error in either operand
may reverse the result. Nevertheless, the result
does convey information, which can be made precise
by analyzing the possible error in each operand
and then using the results of this section.

Postulate 3. For the result of a rela-
tion between two real operands, consider for
each operand the model interval (of the operand
subtype) defined for the operand; the result can be
any value obtained by applying the mathematical
comparison to values arbitrarily chosen in the
corresponding operand model intervals. 1If either
or both of the operand model intervals is undefin-
ed (and if neither of the operand evaluations
raises an exception) then the result of the com-
parison is allowed to be any possible value (that
is TRUE or FALSE).

This postulate immediately yields the follow-
ing theorem:

Theorem 7. Consider a comparison of two
F-bounded machine numbers x and y. Let Z be the
closed interval [x,y] 1f x<y or [y,x] otherwise.
If there are at least two model numbers in Z, then
the correct result is reported by Ada. If there
is exactly one model number in Z, then Ada may
report either the correct result or that x = y.
Finally, if there are no model numbers in Z, then
the report is implementation dependent.

Proof: Assume that Z = [x,y]. If Z contains
at least two model numbers then Z must contain y
(the left hand endpoint of y') and xt(the right

hand endpoint of x') with X, < vy Hence the inter-

vals x' and y' are disjoint and the result now
follows from the Postulate.

If Z contains exactly one model number then
we find that Z contains X, which is equal to ¥p-

Therefore the postulate indicate that the correct
result may be returned or that of equality if the
two arbitrary points in the model intervals x' and

y' that are chosen are xy and vy respectively.
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Finally, if Z contains no model numbers then

x' and y' must intersect at more than one machine
number and hence the report is implementation de-
pendent. This completes the proof of the Theorem.

Example 8. For the Ada declaration

type F is digits 5;

consider the comparison of the machine numbers
x=.1land y = .1 + F'Epsilon/16. Recall that x'
is given by the model interval [16#0.19999..
16#0.1999A] while y' may be found to be [16#0.1999A
..16#0.1999B] in which case the mathematical re-
sult is returned or that of comparing the equal
endpoints. Consider also the comparison of .1 with
itself. 1In this case the interval Z = [.1]; hence
does not contain a model number. Therefore, this
result is implementation dependent.

Example 9. To illustrate the importance of
"guard bits" consider approximating a root of

f(x) = -1 73x + .641x - .0584 using a bisec-
tion search algorithm. The polynomial f has a
root in the interval [.2,1] at p = .33378. The
algorithm begins with model intervals approxi-
mating .2 and 1.0, say a' and b'. At each step

a model interval p! (—(a + b! )' is formed
from model intervals a ané b' where (f(a ' and

(f(b{))' are of opposite sign. Dependlng on the

1
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and bi+1 are formed and Piv1 computed. The
procedure continues until the sign of (f(p!))’'
cannot be determined, correctly, as positive or
negative. The model interval corresponding to
p! is then reported as the approximation. Results
using N bit mantissa where N = 9,10,11 are given
in the following table.

sign of (f(p%))' new model intervals

N:Best Possible Model Interval

9 [.101010101, .101010110]

10 (.1010101011, .1010101100}

11 [.10101010111, ,10101011000]
N:Reported Model Interval

9 [.101001101, .101010000]

10 [.1010110100, .1010111001}

11 [.10101010011, .10101010111}
N:Corresponding Decimal Interval

9 [.3252, .3281])

10 [.3379, .3403]

11 [.3328, .3337] .

If the number of decimal digits selected were 3,
then minimally a 10 bit mantissa is required. This
example illustrates the improvement obtained by
using an 11 bit mantissa. The example further
i1llustrates a source of possible confusion. If ome
has a machine with an 11 bit mantissa and selects 3
decimal digits, the error between the actual an-
swer and our approximation is less than .001. If a
machine with a 10 bit mantissa is used and 3 deci-

mal digits are selected, the error is at least .004.

One could be lead to false conclusions regarding
the accuracy obtained using 3 decimal digits. The
accuracy obtained involves an important trade-off
between the number of decimal digits selected and
the number of guard bits available. Subsequent
work of the authors will investigate this further.
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ABSTRACT

A usable prototype Ada package
library has been developed and is
currently being evaluated for use in large
software development efforts. The library
system is comprised of an Ada-oriented
design language used to facilitate the
collection of reuse information, a
relational data base to store reuse
information, a set of reusable Ada
components and tools, and a set of
guidelines governing the system's use.
The prototyping exercise is discussed and
the lessons learned are presented. Our
experiences in developing the prototype
library and lessons learned from it have
led to the definition of a comprehensive
tool set to facilitate software reuse.

INTRODUCTION

With the rising demand for cost-
effective production of software, software
reuse has become increasingly important as
a potential solution to low programmer
productivity. In the Ada programming
language, explicit support is provided for
software reuse through the "package®” and
"generic" language features.
Unfortunately, the concept of Ada software
reuse is not a panacea for our current
software productivity problems. The
notion of software reuse has been popular
for decades. But implementing high
degrees of reuse has usually failed, with
the exception of some efforts in fairly
narrow areas (business and compiler
applications). The challenge then, is to
recognize the contributions that the Ada
language can make to a software reuse
effort while at the same time identifying
and resolving language-independent
problems. BRased on the promise of the Ada
programming language we undertook the
development of a prototype Ada package
library.

* Ada is a trademark of the U.S.
Department of Defense (AJPO).
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DEVELOPMENT OF AN ADA* PACKAGE LIBRARY

Dr. Bruce Burton and Mr. Michael Broido

Intermetrics, Inc.
Aerogpace Systems Group
5312 Bolsa Ave
Huntington Beach, California 92649

The prototyping exercise included:

® an examination of the reasons for
low software reuse in the past,

e identification of activities and
tools which would support a reuse
methodology that spans the software
development life-cycle from
requirements through maintenance,

e the development of a phased
implementation plan for software
reuse that defines a development
path from prototype to an operational,
multi-company, geographically
distributed systen,

¢ development of a prototype for
that methodology,

e the development, acquisition, and
evaluation of representative package
entries, and

® an examination of user interface
techniques that could be used to
maximize communications between a
reuse system and its users.

BACKGROUND

As discussed above, software reuse is
not a new concept. Significant efforts
have been underway since the early 1960's
to improve software development
productivity through reuse (consider
the early observations of McIlroy about
the benefits of reuse presented at the
NATO Software Engineering meeting in
Garmish in 1968) [STANDISH831. An
analysis of the problems attending reuse
has led to the identification of several
potential hindrances to reuse [STANDISH83,
BROIDO85], These impediments to reuse
can be categorized as technical, economic,
and political obstructions. Some typical
problems that hinder reuse include:
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f While the problems impeding reuse are

. significant, the large size and cost of Figure 1. Reuse process overview.

a major software development effort
provides substantial motivation to improve
productivity through reuse, Although Ada
provides a natural vehicle for encouraging
software engineering reuse, the same
technical and political obstructions
that have limited reuse in the past are
D likely to once again impede the sharing of
software engineering products across
projects. The Software Technology
Department within Intermetrics is actively

investigating the problems that hinder
reuse. We are determined to find
solutions to these problems and to collect
and reuse Ada packages.

a"a XN .4 2

APPROACH

Along these lines, we have defined a
phased approach to the development of a
reusable package library suitable for use
Table 1. Overview of a phased development on large Ada applications projects.

of a reusable package library. Rather than define an elaborate reuse

= facility and implement the library in a

Phase Activity single step, we are currently prototyping

-ﬁmﬁgznguwmwws parts of this_fgcility to investigate the

. 1dentiy information unique 1o Ada packages potential utility of our approach. An

necessary for the collection of Ada overview of this phased development plan

packages is shown in Table 1; a more complete view

is offered in [BURTON85]1. The initial

> ¢ effort on this project has been focused on

_ B T ASCAY e ot intertace the creation of an Ada Software CATalog
- (ASCAT) .

3. Automate ASCAT/CMS interface - Automate the interaction between the
software catalog and the Configuration

R 2 e it R}
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1. Analysis and requirements Definition

«¥a¥a alA

- Design and implement prototype Ada

2. Prototype software catalog
software catalog (ASCAT)

-

i»

Management System (CMS)

- Automate examination of submitted Ada
packages through incorporation of support
tools to ensure adherence to submission
standards

4. Integrate support tools

- Focus of package reuse system will shift
from a passive one where entries fiow
from users to software catalog to one
where EMAIL would be used to provide
automatic system/user communication

5. Expand the user communtly

6. Automatic ASCAT/Software library - Fully automate the interaction between the
interaction CMS ASCAT and the program hbrary

7 Provide mulli-site and multi-company - Add provigions within the system to handle

exiensions distnbution, licensing, use res.rictions

-

e

An overview of the ASCAT portion of
the Ada package reuse system is shown in
Figure 1. The system has been implemented
using Byron®*, "Intermetrics' Ada-based
program design language, and a commercial
relational database management system,
Central to the system is the ability of
Byron to support definition and use of
user-defined keywords.

* Byron is a trademark of Intermetrics,
Inc.
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Software Classification and Data Element
Selection

One key to the success of any reuse
scheme is the types of classifications
assigned to entries. The primary purpose
of these classifications is to facilitate
retrieval, but they may also be used to
assfst in defining storage strategies as
well,

Selecting the classifications to be
used is really a subset of a larger
question: what data elements do we want to
be able to retrieve about a particular
entry? The 1list of storable elements
seems in our opinion to be highly
influenced by the size of the library
(number of program units stored) and the
degree of cooperation (or potential
antagonism) among the users of the
library. An initial cut at such a
list was prepared [BROIDO85] from the
perspective of our ultimate (multiple
sites, multiple organizations, multiple
usage types) system. Over 60 items which
could potentially affect the suitability
of an entry were named in seven major
categories: identification (3 items),
description (16 items), component parts
(20), environment/usage (9), ordering
information (7), and revision history
(11) . Even at this length, we recognize
that there are undoubtedly many other
items which could be added.

This list was far too large for our
prototype, so we examined the context in
which the prototype would operate. We
characterized our initial environment as
follows:

¢ All the users would be from the
same company, although there would be
several divisions using the common
library. Thus, no restrictions on
access would need to be supported.

e All initial entries would be written
(when possible) in machine-independent
Ada, so the compilation and execution
environments would be well-defined.

e Source code would always be available,
so users could do their own tailoring
(no "black boxes"). Support in the
form of corrections and training
(other than by reading the source
code) would not be provided.

e Emphasis was centered around the
collection of reusable Ada packages
rather than complete programs. Two
factors influenced this decision. The
first is that most of the packages we
wanted to include already existed
prior to the start of our efforts, and
coherent design documents were not
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always available. The second factor
was the widely distinct set of
users we were addressing; they do not
share the commonality of purpose
which makes domain analysis an
effective top-down approach. The
decision to center our design on
packages enabled us to define a
standard header for each package,
based on the requirements of our Byron
program product. Formalized
requirements and design documentation
were not required,

This decision causes the library
to be more supportive of "bottom
up" software construction techniques
than most of today's top-down
methods. The top-down methods reflect
an attitude of defining what would be
a perfect system and do not adequately
recognize the influence of existing
tools (including code) should have on
requirements formulation in the
presence of real cost constraints.
(Note that the "object oriented
design" strategies that are emerging
with Ada reflect a tendency away from
strict top-down methods.)

e No a priori naming conventions
were established, although an informal
guideline was prompted by the
technical monitor of one of the
contributing programs.

e Configuration management was not
rigidly enforced, except within
the rules imposed by Ada. In
particular, no computerized list
of outstanding users (people or
programs) of the library routines
was maintained.

e The programs which were intending
to take advantage of the library
provided no explicit funding for tool
support or to ensure that any new
packages created were generalized and
otherwise suitable for future reuse.
Package headers and other programmer-
supplied information had to be easy
(in both time and difficulty) for the
programmers to supply.

e Various standards were established
for the data items we would collect.
Since we were attempting to catalog
packages which had been previously
created to support several different
projects, It was necessary to
retrofit many of the selected packages
to include the required Byron
comments. Part of our evaluation will
be to try to identify the difficulties
caused by "loose" definitions of
essentially narrative fields (e.g..
overviews). 1In addition, no common
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methodology had been established, so
the degree of formality and the list
of available support items (repeatable
test cases, previous sample output,
user documentation, etc.) also varied
considerably.

We filtered the original list down to
the following data items for the database
(others, such as the calling conventions
and parameters, would be available from
the source code if not given in the
overview):

1. Unit name

2. Author

3. Unit size

4, Source language

5. Date created

6. Date last updated

7. Category code (see below)

8. Overview

9. Algorithm description

10. Errors/exceptions generated
11. Up to 5 keywords (for retrieval)
12. Machine dependencies (if any)
13. Program dependencies (if any)
14. Notes

Our retrieval strategy was based upon
a combination of two alternate
mechanisms. The first mechanism was the
assignment of a hierarchical category
code, with the hierarchy defined ahead of
time and changeable only at well separated
time intervals. This scheme is similar in
concept to the ones used by Computing
Reviews [ACM85] and the IMSL library
[IMSL76}. But it was necessary to invent
our own classification scheme since
neither of those two was suitable to our
purposes. Our scheme has the advantage
that everyone knows what the codes are and
can use an effectively finite procedure
for searching the entries., Disadvantages
include a growing list of vastly
dissimilar "miscellaneous®™ entries and
the inability of the original hierarchy
designers to provide sufficiently
discriminatory categories to provide
effective retrieval (not too many or too
few candidates).

For the second mechanism, we allowed
the submitters to supply up to five
keywords to be associated with each
package. These keywords are not
associated (as implicitly occurs within
the hierarchy of categories), allow for
overlapping topics (the packages do not
conveniently fall into strict tree
classifications), and can grow (without
reprogramming or an all-knowing database
administrator) with the needs of the
projects they are created for. A scheme
similar to this has been employed on
NASA's COSMIC (Computer Software
Management Information Center) system on
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complete programs, although the keywords
allowed are suggested by the program
authors and filtered by an acceptance
team.

One of the authors is a member of the
Applications Panel of the Department of
Defense's Software Technology for
Adaptable, Reliable Systems (STARS)
Program. An important open issue
surrounding the formation of a potential
Ada package library to be available as GFE
materials for DoD contracts is defining
the quality of the entries. On the one
hand, some people advocate including only
items of the highest quality, with full
DoD standard documentation and even formal
independent validation and verification
(IV&V) required on new entries. Others
prefer to let a more flexible scheme
apply, with a "trust level" associated
with entries. This latter scheme
encourages "promotion" of existing entries
from "buyer beware"™ to higher trust
levels; after all, using informally
qualified designs and code and then
adding formal testing and documentation
can still take less time (and often risk)
than inventing from scratch. For the
prototype, we decided to let all submitted
entries be accepted and then evaluate the
impact of this decision.

Reuse Information Extraction Mechanism

Another critical phase in the
development of an Ada package library
involves the extraction mechanism used to
collect reuse-oriented information. The
extraction mechanism utilized in an Ada
package library must eventually provide
several different capabilities to insure
efficient operation. These required
capabilities include:

e support for automatic data collection,

e support for insuring standardization
of data entries,

e support for assuring continuity and
consistency of reuse information
across the Software Development
Life Cycle (SDLC),

e support for checking completeness and
reasonableness (e.g., dates), and

e support for reuse information

examination.

The reuse information extraction
approach utilized in our Ada package
library is detailed in Figure 2. An
analysis of this figure reveals that each
of the elements previously identified for
data collection has been mapped into
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predefined or user-defined keywords for
the Byron design tool. A Byron template
program was subsequently developed to
automatically extract the reuse-oriented
information. This information is placed
into a file that can be directly processed
into the ASCAT data base.

 ——
end example;
ADA BYRON RAW
PACKAGES TEMPLATE DATA
Figure 2. Extraction mechanism overview

The use of a Byron-oriented reuse
information extraction mechanism provides
most of the required capabilities
enumerated above. This approach provides
a means for automatic collection of data
standardized in field name and format.
Since the Byron design file is intended to
transition into the implementation
with reusc data intact, support is offered
to assure information continuity across
multiple phases of the SDLC.

While this extraction approach has
many positive features, it is not without
its shortcomings. The lack of predefined
reuse attributes within Byron fails to
support direct examination of reuse data
items for completeness, consistency, and
reasonableness. The inclusion of reuse-
oriented information into the
Byron-produced program library represents
a simple potential improvement to our
approach that could aid in the examination
of the reuse data items.

Software Catalog Implementation

The software catalog for the reusable
package library was implemented through
the use of a commercial relational data
base management package. The data
definition capability used for field
definition and the built-in data base
programming language facilitated the
examination of reuse data for limited
correctness and consistency checking. The
use of a data base also aided in the rapid
development of an interface between the
software catalog and potential Ada package
users through the utilization of
predefined reports and support for ad hoc
user queries. Nonetheless, the user
interface represents a weak 1link in our
prototype package library. The present
interface is very limited in the sense
that it offers no context-specific support
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for communication between the reuse
system and its users.

The present software catalog is
limited in its interaction with the user.
For example, consider the scenario of a
software engineer performing an
application software design of a routine
that requires a sorting package. In the
present system, the software engineer
would need to: 1) exit the editor, 2)
enter the software catalog data base
system, 3) enter a query to identify
the available sorting packages, 4) select
the desired package, and 5) re-enter the
editor and issue the necessary commands to
draw the desired package (design/code)
into the applications program design.

Compile Link

A sorting routine is
required. Exit the
editor. Invoke the
ASCAT data base
system and enter
appropriate query.

>ASCAT
ASCAT Dats Base Verson 1.1

> chsplay for category = ‘SORT

Select a package and
re-enter editor. Use
editor to add "use”,
"with" and calls to
package routines.

Figure 3.

Current ASCAT operational
scenario

This initial prototype software
catalog can readily be improved to enhance
the way in which it interacts with user.
In Figure 3, the present mode of
interaction is depicted. 1In Figure {4,
another potential scenario is shown. 1In
this scenario, a multi-window environment
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{iz Figure 4. Improved ASCAT operational scenario

“':n

£ . is used where the user may perform major Ada development contract within our
Ry the software catalog inquiry and division motivated us to emphasize reuse
{{ concurrently examine several promising of existing Ada packages as a cost and
Y packages without exiting the editor. risk reduction measure. Based on the
- results of that contract, we found that
a A third possible operational scenario reuse of existing generic support packages
A" of the software catalog is not pictured. significantly improved our productivity,
Ve In this third approach, the data base with over 33% of the code comprised of

query language would be replaced by a reused packages.

> natural language front-end, the software

ho] catalog search would be assisted by an On the negative side, we found that
) expert system, and the multi-window several of the tools initially exhibited
"»‘: approach would be supported by a language- poor perfcrmance. In almost every
" and context-sensitive editor. The instance, we found the general nature of
o third approach is feasible with the reused packages to contribute heavily

- investigation into its implementation to the performance problems. We also
— occurring in several current projects found that the generic Ada packages
s [ANDERSONS5] . offered much more functionality than
@ required in our application, The extra
:}2 functionality resulted in a size penalty
1(* LESSONS LEARNED with respect to the executable code. The
m‘ use of a performance analyzer and
N The development, collection, tailoring of the reused code for the
e evaluation, and cataloging of reusable current application substantially improved
~ components and tools undertaken in the tool performance [RATHGEBERS6].

2 development of an Ada package library has

‘$§ led to some interesting observations We also studied the problem of
B concerning Ada package reuse. composing reusable applications packages
DS Unfortunately, we 4o not yet have enough from existing reusable components. As part
:~ experience to evaluate the selected of an Air Force study, we compared the
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category scheme, keyword retrieval
capability, or the list of collected data
elements.,

During the past year, we have
developed a set of test and analysis tools
written in Ada and intended for Ada
software development efforts. The
fixed-price nature of this contract
and the fact that it represented the first

-
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performance of two different implemen-
tations of reusable Kalman filter
routines. One of the routines was written
in Ada; generic Ada mathematics packages
were heavily used in its development. The
other routine was written in FORTRAN and
specifically designed to solve a specific
Ralman filter problem. A performance
comparison of the generalized Ada package
against the custom-tailored FORTRAN
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Just as we express delivered products
as complete programs, we tend to express
requirements in single, monolithic
specification documents. 1In order to

AR routines showed the FORTRAN :routine to
*{ exhibit significant speed advantages over
its Ada counterpart. This performance
difference is probably due to the relative

immaturity of the Ada compiler used in
this study and also to the generalized
nature of the Ada packages. An important
conclusion of the study is that the
performance problems associated with
including a generalized reusable Ada
package into an applications program are
substantially compounded when an entire
system is comprised of reusable components
which also consist of reusable components.

Although many of our lessons learned
have negative implications for the use of
Ada reusable packages, there is some
light at the end of the tunnel. Reuse was
a big aid in increasing our productivity
in the development of Ada test and
analysis tools. We also found that reuse
can be successfully employed in the
development of efficient Ada systems if
sufficient thought is put into how the
packages are to be reused and if the
proper tools are available (e.g., such as

support high degrees of reuse during the
requirements phase, we need tools which
allow us to express sets of requirements
in small, reusable groups, just as we now
compose programs from subroutines which
are individually controlled. Refining
requirements into sets in turn means that
we need a new nomenclature: with the new
identification scheme, traceability would
not be tied to paragraph numbers which
vary from product to product. But also
in accordance with the subroutine analogy,
composition paradigms are needed to
establish compatibility (or at least
minimize contradiction) among requirements
sets.

Reuse also supports the rapid

development of prototypes for evaluating
user interface and time-line analyses.

Prelimi Design Pt

3 a performance analyzer). This is the phase during which the
r} highest life cycle pay-off is likely to
"‘; occur from improved levels of reuse. The
e RD A MPREHE E_REDSE ME ' overall system architecture and the
.#ﬁ interfaces between major elements are
[ A software development methodology frequently the most stable parts of a

1 which supports extensive reuse may be
quite a bit different from the
methodologies now popularly employed
(top-down, structured designs, chief

system, and hence the ones around which
the detailed changes are molded. Even in
the face of implementation differences,
new systems and upgrades tend to mimic the

.zﬂ programmer teams, data flow analyses, HIPO architecture of the original. (After all,

oy charts, etc.). These systems are not well look at the common functional partitioning
4,',‘ suited to achieving high levels of among the compilers, operating systems,
.é% software reuse., These methodologies focus etc., produced by each of the mainframe
N only on deriving systems almost and minicomputer vendors.)

Al exclusively from the requirements, without
much regard for components which may
already exist. The development of these

The major contribution of a reuse
methodology to the preliminary design

wu systems depends largely on the individual phase is to help make the designer aware
f} participants to know when existing of the contents of the tool box that
!x: components can fully or partially satisfy is available. Reinvention in software is
e the needs of the current project. When often a waste of resources, and it is a
ﬁ partial reuse is achieved (i.e., reuse major contributor to the low levels of
i) with modification), the degree of reuse productivity now achieved. As reusable
. (and two-way traceability) is not recorded sets of requirements are developed,
it in any systematic way. designs which implement them (even if only
Wt to the level of Ada generic packages) can
ﬂq Reusability can be applied in every serve as significant building blocks. New
:Q: phase of the Software Development Life design tools are needed which explicitly
M , Cycle. New tools are needed in each one partition programs into reusable and
|I: to support the activities involved. application-specific parts. Design
LAl documents must also provide more of
2 Reguirements Phase the designers' thought processes to future
;f users: rationale for choosing one design
:‘ ‘ Major new systems are rarely created over its alternatives should be
Y from scratch any more. Major subsets of documented. Also missing froq most
4? the requirements for new systems build current design documents is a list of
x upon the experiences gained with the old "invariants": those elements of a design
d ones. As a minimum, we have come to which are "always" to be true, even in the
- expect high degrees of reliability face of the most likely requirements
?__ and user friendliness in any new products. changes. Design tools which allow a user
s
|
% ;
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to specify "just like that one, except
.+s" can be built on systems which support
the decomposition of programs into
reusable components with well-defined
interfaces.

Rapid prototyping, as also described
under the requirements phase, can help
identify the proper sequencing of major
elements so that architecture validation
can be performed.

Retailed Design & Implementation Phases

Tools that can be used during the
detailed design and implementation phases
include context-sensitive editors which
assist the user in selecting an
appropriate package for inclusion (knowing
such parameters as what has already been
selected for this program, the intended
levels of optimization and error checking,
host/target computer selections,
invocation of an Ada generic package,
etc.). Other helpful tools include
interfaces with the configuration
management system to formally record
inclusion of existing packages into a new
program, logging modification histories so
that an error found in one can be traced
to all its "relatives®™, and performing
static analyses to identify deviations
from standards established for potential
new entries for the reuse catalog.

When changes to library entries are
made and formally approved, the
configuration management system can
aggressively (via electronic mail or other
netvork communications) notify users that
changes to library routines have been made
and the users may wish to include the
updates in their programs.
Integration and Test Phase

Reuse supports the integration and
test phase by supporting the definition
and generation of formal and informal test
cases. It can also simplify performance
tuning by allowing an analyst to select
alternate algorithms from the stored
library to adjust such parameters as
execution speed, static or dynamic memory
utilization, degree of internal checking
that is performed, etc. It can also
support the rehosting (if necessary) of
programs from the development computer
onto the intended target computer.

Maintenance Phase

Reuse during the maintenance phase is
the best example of reuse, but it is so
obvious that it is not even recognized as
such. Rarely are programs discarded

and reimplemented when the first bug is
discovered. Regression testing represents

<« L) o e T W

reuse of the original qualification tests,
and may be implemented using a
standardized mechanism for preparing,
executing and analyzing test cases.

CONCLUSIONS

In accordance with our previous plan,
we have completed a prototype mechanism
for extracting reuse information from
packages developed in the normal course of
business. We also have a primitive
mechanism for entering that data in a
catalog and searching the catalog for
entries that are potentially useful on new
projects. The approach centers on the
design and implementation phases, since
these are the ones to which reuse concepts
may most readily be applied in the given
environments.

We have confirmed with actual
experience our earlier assessment that
successful implementation of a reuse
methodology requires thought, action and
management direction and support
throughout the software life cycle. This,
however, may require a management
reorientation to the view of software
development as the acquisition of a
long-lived corporate asset rather than as
only the work required to produce the
current deliverable [(WEGNER84, YEHS85].
Complementing the reuse efforts being
conducted by the STARS office, which are
targeted at long range objectives, our
approach provides useful tools which can
be utilized immediately.

We have achieved some success in
applying software reuse. Effective use of
the packages forced us to define subsets
of them which subsequently required
performance tuning. This points out the
value of developing a comprehensive reuse
methodology, with adequate support tools
to facilitate the development of efficient
systems comprised of reusable components.

The Ada language and the methodologies
growing up around it provide a good start
toward achieving larger scale reuse than
we have achieved in the past. But they
are not enough by themselves. Even with
Ada, there are still plenty of obstacles
to reuse. A management commitment and
desire to improve productivity when
coupled with a comprehensive reuse
methodology and the proper tools offer
substantial promise for improvement.
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EXPERIENCE WITH THE INTEGRATION OF ADA* DESIGN METHODS

Paul L.

Baker

Computer Technology Associates, Inc

McLean,

ABSTRACT

A new software utility to manipulate data
bases of digital images and maps is being
designed in Ada using two design methods:
1) the Abstract Data Type method because
it describes the application concepts well
and because it works harmoniously with
Ada, and 2) the Data Flow Diagram techni-
que of Structure Analysis because it ex-
presses the data flow architecture of our
system clearly. The results of the two
design techniques must be properly inte-
grated to ensure a consistent design.
Several integration techniques have been
explored. All have been used manually, but
could be supported by automated tools. The
article contrasts two approaches to the
transformation between data flow diagrams
and Ada code and describes rules for con-
necting the code segments derived from the
two different design methods.

1. Background

CTA has designed and is implementing a
software system in Ada* to manipulate data
bases of coordinate-referenced data,
especially images. Funding for the work
has been provided by Phase I and II Small
Business Innovative Research (SBIR) grants
through the Goddard Space Flight Center of
the National Aeronautics and Space Admin-
istration (NASA-GSFC).

Even in the early phases of this work, the
Ada* language played an important role by
affording the means to document a key
claim, namely that coordinate referenced
data constitutes an Abstract Data Type
that can be formally specified. This claim
*ada is a registered trademark of

the U. S. Government,

Ada Joint Program Office (AJPO)
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explains the major motivation for the
project because it implies that general
purpose software can be written to manipu-
late not just one image format but whole
classes of image and cartographic formats.
Typically, one finds many formats in use
within the same agency; consequently,
there is a practical significance to this
claim.

This early application of Ada on the pro-
ject employed the Abstract Data Type (ADT)
method of design otherwise known as
Object-Oriented Designl. Although this
experience affirmed the value of this
method, it did not appear to be appro-
priate for all of the system design work.
Consequently, parts of the system were
designed using the Data Flow Diagram (DFD)
method of Structured AnalysisZ2.

The use of two design methods is effec-
tive, but it creates the possibility that
the two design documents are inconsistent.
Although the Abstract Data Types are writ-
ten directly in Ada, the Data Flow Diag-
rams must be transformed into code, creat-
ing another possibility for inconsistency.
Consequently, it became clear early that
the consistent integration of design meth-~
ods would be an issue for this project.

2. The Ada Design Methods

An Abstract Data Type (ADT) is a declara-
tion of program structure that encapsu-
lates a relatively complex data structure
and procedural operations associated with
the data. In the Ada community, this ap-
proach is also known as Object-Oriented
Designl; and it is basically a construc-
tion method. If the type is constructed
properly, it can be used without concern
for its internal structure thereby freeing
the attention of the designers for other
matters.
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In this project, the ADT definitions were
written in Ada concurrently with their
exposition in English prose. The two docu-
ments express the same ideas; consequent-
ly, the Ada statements were organized in
packages that corresponded one to one with
chapters in the English exposition. Be-
cause the Ada ADT definitions are compil-
able, subsequent integration with imple-
mentation code is straightforward.

In practice, it is convenient to specify
some of the next stage of design while
completing the current stage. Traditional-
ly, this is a role for PDL (Program Design
Language). A number of Ada PDL's have been
developed which provide syntax consistent
with Ada4 allowing the designer to inter-
sperse PDL freely to elaborate on the
definitions of the Ada ADT's. In our tax-
onomy, PDL is part of design but not a
distinct method.

The highest level of any new system design
serves to specify the virtual machine seen
by the intended user. The design method
used to express the design should be sel-~
ected to portray the character of the
virtual machine as clearly as possible.
Unless the system is a very simple state
machine, the Abstract Data Types cannot
represent it clearly.

Because the system under development is
basically a pipeline between an analysis
station and a large data store, it is
natural to portray the system design using
Data Flow Diagrams2 (DFD). Moreover, the
DFD representations were familiar to both
the project staff and outside reviewers.
Consequently, DFD's could serve as a com-
mon basis for discussion of the design.

In summary, the Abstract Data Type method
is perfectly adapted to the Ada language
environment, but no single method is ideal
for every view of the system. A logical
method to complement ADT's is the Data
Flow Diagram method. In previous nonAda
experience within our company, DFD's and
SREM® have been used about equally.

3. Integration Approachs
3.1 Assumptionsg

First let us establish a context for the
discussion. Software is developed to sat-
isfy a particular requirements gspecifica-
tion. In our view, a system design is
integrated when its parts are all mutually
consistent and consistent with the re-
quirements specification as well.
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At the very least, integration requires
maintaining the traceability of design
elements to requirements specifications.
For simple correspondence of the elements,
a requirements traceability matrix is ade-
quate. However, software development also
requires composition and decomposition of
elements, and these steps generate a need
for structured documentation. Structured
Analysis provides one documentation op-
tion; annotation embedded in structured
computer language statements is another.

3.2 The Data Dictionary

A basic feature of the Structured Analysis
method is the Data Dictionary which holds
structured definitions of all the data
items that pass between processes. The
equivalent structure in Ada is the decla-
ration section of a package where all the
data types are defined. Normally, a Data
Dictionary is organized alphabetically,
while the Ada type declarations are not.
Either alternative form can be taken as
primary but it helps to be consistent. The
pros and cons of the two options can be
summarized as follows:

Options for Integrating
the Data Dictionary

Option 1l: Data Dictionary is Primary

Pro: The Data Dictionary is easily read
and updated.

Con: The Data Dictionary must be
transformed to Ada

Mitigating Factor: Automated tool could
be built.

Option 2: Ada Text is Primary

Pro: No transformation. Directly
compilable.

Con: Not in alphabetical order. Hard to
read.

Mitigating Factor: Automated documenta-
tion tool could scan the Ada text
and build an alphabetic index.

Our project started with a Data Dictionary
but shifted quickly to using all Ada be-
cause the job of maintaining consistency
is too great without tool support.

3.3 The Data Flow Diagrams

Before Ada, the implementor had to invent
a procedure hierarchy to represent a set
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of DFD's. The Ada task construct revolu-
tionizes the coding of DFD's because
formal conversion to Ada is now possible
without concern for the thread of control.
If a diagram requires independent threads
of control, Ada provides them through the
tasking mechanism.

The hierarchical organization of Data Flow
Diagrams documents the designer's intended
system decomposition. A major choice to be
made when coding these diagrams is whether
to preserve this information in Ada and,
if so, how.

The most considered transformation method
known to this author is PAMELA, developed
by George Cherry3. In PAMELA, processes
that are not decomposed are associated
with tasks while those which have a decom-
position are associated with package con-
structs. Cherry argues that the compilable
Ada code should correspond to the hier-
archical design. Therefore, the hierarchy
of the data flow diagrams is transformed
into a nesting of packages within the
declarative part of enclosing packages.
That is, if processes B and C compose
process A, then the package corresponding
to A contains the packages corresponding
to B and C.

Cherry also argues that information flow
should be hierarchical; consequently, the
packages which represent decomposable pro-
cesses must contain procedures to communi-
cate between tasks nested in different
packages. The Ada procedures which define
this information flow up and down the
hierarchy serve as an interface definition
that corresponds completely to the orig-
inal DFD. Thus, complete traceability of
the Ada code to the DFD is preserved.

On the other hand, hierarchical communica-
tion involves a heavy overhead for proce-
dure calls. For example, if it is neces-
sary for a sub-sub-process to communicate
with a sub-sub-process elsewhere in the
hierarchy, the task that initiates the
communication first calls upward to a
procedure in the package of its enclosing
sub-process. This procedure in turn calls
a procedure in the top-level package. The
top-level process completes the call by
first calling downward to the appropriate
sub-process which in turn calls the
desired sub-subprocess.

Actually, the Ada code derived from a DFD
contains information that a conventional
DFD does not; specifically, it tells which
process initiates the data flow. Using
PAMELA design rules, this information can

0
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be added as annotation to the DFD.

PAMELA is an excellent method, but its
premise that communication should be hier-
archical is questionable. Although it is
reasonable to delegate authority and
responsibility hierarchically, once a
software process has been properly author-
ized to act, there seems no reason to
forbid communication with its peers.

In view of this criticism, one should
consider a simplification of PAMELA. One
can eliminate the packages and their com-
munication procedures by allowing direct
calls between the tasks which implement
the primitive processes. It is still pos-
sible to preserve information concerning
the or1glnal DFD hierarchy as annotation
by using structured comments surrounding
the task declarations.

The main objection to the simplification
concerns maintenance. Firstly, the flat
task arrangement forces massive
recompilation when parts are changed.
Also, whenever a task declaration is
changed, one must track down all refer-
ences to that task entry point and change
them. This replacement would be simplified
if Ada permlted task names as parameters
of generics; but it does not. Generally
speaking, Ada is weak in the area of re-
configuring task structure either to ac-
comodate change or utilize parts from a
stock of reusable software components5.

In the absence of tool support, the sim-
plified method was the obvious choice for
this project. It is too tedious to con-
struct all the interfaces of the hierarchy
in Ada particularly since they do not
contribute to the function of the system.

The pros and cons of these two options for
transforming data flow diagrams can be
summarized as follows:

Options for Transforming
Data Flow Diagrams

Option: PAMELA

Pro: Ada code is hierarchical.
Structure of the design is
preserved in Ada code.

Ef fect of change is local.

Con: Transform of design to code is
tedious and errorprone.
Hierarchy increases execution
overhead.
Conditional calls are hard to
implement.

Annual National Conterence on Ada Technology 1986 53

v -

- g

=

PR W

P NPy

i, Sl B D




'
o
o

2
L]
"y

Y

-

-

RO !

A

-

K <
¥

AN
*\‘\

Mitigating Factor: Automatic Design
Tool exists to convert
diagrams to Ada.

Option: Simplified, Flat Task Structure

Pro: No hierarchy to create execution
overhead.
Manual transformation to code is
simpler than PAMELA.

Con: Original design hierarchy is
present only in Ada comments.
Effect of change can be global.

Mitigating Factor: Automatic tool
could extract structured com-
ments and verify against data
flow diagram. Conversely a tool
could create the code as
suggested for PAMELA.

3.4 The Abstract Data Iypes

Structured Analysis is a form of top down
design; that is, it progresses by decompo-
sition rather than composition of ele-
ments. The Abstract Data Type method is
more general; one may work the problem in
either direction which encourages a
middle-outwards development. Because of
this basic difference in approach, the DFD
part of a design will only mesh at its
lowest level with ADT's. Part of the art
of top down design is guiding the decompo-
sition so that it meshes with the parts
available for implementation. The situa-
tion is no different in this case.

When DFD's must be integrated with ADT's,
the main decomposition criterion is that
the decomposition should proceed suf-
ficiently far that each primitive process
is simple enough to identify with one
operation of an abstract types. If decom-
position is not carried far enough, a
process may describe alternative and con-
current functional computations that are
hard to capture as a single ADT operation.

Rules for Integration
of DFD's and ADT's

o data flow items are identified with
abstract data types that are represented
by type declarations in Ada.

o primitive processes are identified with
an operation on an abstract type and are
represented in Ada by an entry point.
There should be a one to one relation of
processes and operations. This require-
ment is the major restriction on the
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decomposition.

o data flow arrows are grouped together to
define the operands of the operations.
These groups of arrows are represented
in Ada by the formal arguments of an
entry declaration. If desired, the for-
mal argument list can be made a named
entity in the Data Dictionary.

o the Ada statements are annotated with
comments to record their associations
with data flow diagram entities.

The first rule is rather obvious. The
second rule is more subtle because it
makes an implicit assumption, namely that
a DFD process identified with an ADT oper-
ation has the property that it executes
once for each set of data flow items. In
conventional Structure Analysis, one may
never assume such a property for a pro-
cess. This point underscores the need to
develop the decomposition properly with an
understanding of how it will be implemen-
ted by ADT's.

In general, the list of data flows con-
nected to a DFD process is not identical
to the parameter list of the corresponding
ADT operation, because the operation may
call on other processes in the DFD. The
data flows involved in these calls also
connect to the process. As a result, the
DFD's containing primitive processes
should be annotated to show how the flows
are being grouped.

Manually, one can group the data flows by
drawing a "cable-tie"™ around them. Manual
cabling provides sufficient documentation;
after all, the Ada code contains a speci-
fic, formal specification of these opera-
tions.

In an Ada environment, there is no special
rule for files. Files are introduced in
Structured Analysis because processes are
assumed to have no memory. However, a file
on a data flow diagram can be associated
with an entry point in Ada. Naturally, the
entry point must belong to a package that
hides the state information represented by
the file.

3.5 Final Thoughts

On the one hand, automated tools are
highly desirable for dealing with DFD's;
on the other hand, they may encumber the
effort to integrate the DFD's with ADT's
if the tool does not underscand the
cabling processes described above. If the
tool produces skeleton task and procedure
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statements that must be heavily modified
manually to mesh with ADT's, its benefits
may be dissipated.

Our discussion has concerned integration
at the level of the output of design
methods. Many investigators are interested
in the integration at the level of the
method itself. For example, R. J. A. Buhr
has proposed a graphical design technique
specifically for Ada that maps readily
into Ada code7,8. Closer to home, a group
in our sponsoring agency NASA-GSFC has
developed a graphical method for dealing
with Abstract Data Types9. This develop-
ment is particularly interesting because
it supports hierarchical, graphical decom=-
position in the manner that has proved so
valuable with Structured Analysis. Like
many software developers, we shall let our
final judgement be swayed by the avail-
ablity of affordable, convenient, support
tools.

4.0 Summary

In this project, two design methods were
used, Abstract Data Types and Data Flow
Diagrams. The results are integrated in
the sense that elements of each design are
connected though one or two of the follow-
ing three methods.

First, different parts of the design can
share the same data dictionary. The compo-~
sitions expressed in a Structured Analysis
data dictionary are isomorphic with Ada
record definitions; therefore, it is sim-
ple to maintain consistency between dif-
ferent forms of the same dictionary.

Second, an element in one design method
can implement the requirement stated by
the specification of an element in another
design method. For example, a primitive
process in a data flow diagram can be
implemented by an operation in an Abstract
Data Type package.

Third, the elements of one design can be
formally transformed into elements of
another design. For example, Data Flow
Diagrams can be formally transformed into
Ada code.

Each of these integration methods is te-
dious, time consuming and prone to error.
Consequently, tool support for the inte-
gration effort would be very desirable.
Automated support for PAMELA is undergoing
final tests3. However, simpler tools are
also needed. For example, the order of Ada
type definitions makes it difficult to
trace the composition of a type without
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the help of an alphabetical index. Trace-
ability matrices are notoriously difficult
to compile and maintain; again a tool
could extract them from the Ada annota-
tion. Finally and somewhat unfortunately.
Ada does not permit the parameterization
of task calls. This restriction compli-
cates the maintenance of code that makes
calls into a package where revisions must
be performed. Correct use of information
hiding in Ada can prevent this problem,
but the additional interfaces add over-
head. A text preprocessor to parameterize
the calls in a package could provide an
alternative solution.
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APPLYING THE SPIRAL MODEL:
OBSERVATIONS ON DEVELOPING SYSTEM SOFTWARE IN ADA!

Frank C. Belz

TRW
Redondo Beach, CA 90278

Abstract

A new model of software development and enhancement,
the spiral model, was introduced by Boehm in 1985; the
model defines a risk-driven rather than specification-
driven or prototype-driven approach to the software pro-
cess. The introduction of Ada has established a risk
laden transitional era especially in the development of
Ada system support software, and many projects are
taking a variety of risk-management approaches; the
spiral model providus a way to view the successful
approaches and may, as it matures, provide effective
guidance for future projects. This paper describes the
spiral model, some of the risks involved in developing
Ada system support software, and a (hypothetical)
application of the spiral model to a particular kind of
such software: an integration framework for Ada pro-
ject support environments.

1. Introduction

1.1. Overview In early 1985, Dr. Barry Boehm intro-
duced a spiral model of software development and
enhancement that provides a new framework for guiding
the software process [Boehm, 1985]. Its major distin-
guishing feature is that it creates a risk-driven approach
to the software process, rather than a strictly
specification-driven or prototype-driven process. It incor-
porates many of the strengths of other models, while
resolving many of their difficulties.

The spiral model is both descriptive, providing insight
into the important processes that characterize successful
software development projects in today's world of
rapidly changing technology, and preseriptive, providing
guidelines for better ways to organize the process of
software development in such a rapidly changing world.
The spiral model is in its early stages of development;
there are many aspects of the model awaiting clabora-

tion. Until the model reaches a useful level of complete-
ness, its role as a prescriptive tool will be limited. The
author, in collaboration with Dr. Boehm (and using the
experience of other researchers, developers and
managers), is attempting to lay the groundwork for such
an elaboration of the model.

The introduction of Ada presents a rich resource in such
an effort; the opportunities and risks abound in this
transitional era, and many different approaches to risk
management are being attemnpted. A particularly
interesting area to observe is the development of Ada
support software, especially persistent support systems
whose services may have an execution lifetime much
greater than that of a particular application program
execution. Examples include operating systems, data
base management systems, Ada Programming Support
Environment portability kernels (KAPSES) and the
integration frameworks for advanced Ada-based project
support environments.

This paper, then, has three purposes:

1. Describe the spiral model and the context from
which it grew; this introductory section excerpts
and summarizes parts of [Boehm, 1985], presenting
from that report: a brief historical review of
software process models and the issues they
address; a summary of the process steps involved
in the spiral model; and a brief demonstration of
the conditions under which the spiral mode! reduces
to other useful process models.

2.  Discuss some of the key risk factors involved in the
development of persistent support systems
developed in Ada; Section 2 provides that discus-
sion.

3. Suggest a hypothetical scenario in which the spiral
model approach is used in the development of an

'Ada is a trademark of the United States Department of Defense (AJPO)
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underlying framework of an advanced Ada-based
project support environment. Section 3 contains this
scenario.

This report is, therefore, very much a preliminary view
of work in progress, both with respect to the spiral
model itself and with respect to the industry-wide intro-
duction of Ada support services. Section 2 discusses a
particular risk area in the development of new Ada sys-
tems: the design of the data management interfaces of
support system software (such as operating systems,
data base management systems and tool portability ker-
nels). Section 3 describes a brief (hypothetical) scenario
of the application of the spiral model to this risk area.

1.2. Software Process Models

The Waterfall Model

One of the earliest software process models, the
stagewise model given in [Benington, 1956], recom-
mended that software be developed in successive stages
(operational plan, operational specifications, coding
specifications, coding, parameter testing, assembly test-
ing, shakedown, system evaluation).

The original treatmenis of the waterfell model given, for
example, in [Royce. 1970}, provided two primary
enhancements to the stagewise model:

e Recognition of the feedback loops between stages,
and a guideline to confine the feedback loops to
successive stages, in order to minimize the expensive
rework involved in feedback across many stages.

e An initial incorporation of prototyping in the
software life-cycle, via a "build it twice" step run-
ning in parallel with requirements analysis and
design.

The waterfall approach was largely consistent with the
top-down structured programming model introduced in
[Mills, 1971].

A risk-management variant of the waterfall model, dis-
cussed in |[Bochm, 1975| and elaborated in [Boehm,
1976/, expanded each step to include a validation and
verification actlivity Lo cover high-risk elements, reuse
considerations, and selective prototyping. Further ela-
borations of the waterfall model covered such practices
as incremental development |Distaso, 1980].
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Alternative Software Life-Cycle Models

Yet the waterfall! model encountered a number of
difficulties, leading to a number of alternative life-cycle
models which do a better job of coping with these
difficulties. For example:

e The waterfall model does not adequately address
concerns of developing program families and organ-
izing software to accommodate change. The Parnas
information-hiding approach [Parnas, 1979) does an
excellent job of addressing these concerns.

e The waterfall model assumes a relatively uniform
progression of elaboratlion steps. The two-leg model
[Lehman-Stenning-Turski, 1984], [Lehman, 1984
features separate processes of abstraction until a
formal specification is achieved, followed by a set of
formal deductive 'reification” steps to proceed
through design and into code.

e  The waterfall model does not accommodate the sort
of evolutionary development made possible by rapid
prototyping capabilities and fourth-generation
languages. Several evolutionary development models
{McCracken-Jackson, 1982] and mixed models [Gid-
dings, 1984] have been advanced to address this
approach.

e The waterfall model does not address the possible
future modes of software development associated
with automatic programming capabilities, program
transformation capabilities, and "knowledge-based
software assistant’” capabilities. The automation
paradigm [Balzer-Cheatham-Green, 1983] provides
an alternative life-cycle model and conceptual
framework for incorporating these capabilities.

However, although each of these alternative approaches
deals with some of the difficulties of the waterfall
approach, each has its own set of difficulties and chal-
lenges to resolve. The information-hiding as an organiz-
ing approach has not yet been fully elaborated to see
how it will cover such issues as prototyping. The two-
leg model has challenges in accommodating software
reuse, program families, and logical-physical design
tradeoffs. The evolutionary development approach has
challenges in scaling up to very large systems, ensuring
process visibility and control, avoiding the negative

effects of “information sclerosis,”” and avoiding the

'nformation sclerosis is a syndrome familiar to operational
information-based systems, in which temporary work-arounds for
software deficicncies increasingly solidify into unchangeable
constraints on evolution. A typical example is the following
comment: "It’s nice that you conld change those equipment codes to
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"undisciplined hacker" approach that the waterfall and
other models were trying to correct. The automation
paradigm has challenges in scaling up to very large sys-
tems accommodating program families, avoiding the
effects of information sclerosis, and handling the boun-
daries between older, stable, but less powerful capabili-
ties and new, unstable, but more powerful capabilities.

1.3. The Spiral Model

The spiral model of the software process serves as a
significantly more robust foundation for a software
development environment than previous models; it
includes most previous models as special cases, and
further provides guidance as to which combination of
previous models best fits a given software situation.

The spiral model is illustrated in Figure 1. The radial
dimension in Figure 1 indicates the cumulative cost
incurred in accomplishing the steps to date; the angular
dimension indicates the progress made in completing
each cycle of the spiral. The trajectory of the spiral
{working from the inside outward) tends to indicate the
efficiency of the software development process:

e tightly wound, spring-like spirals indicate a low rate
of cost increase as progress toward the product (or
product component) is achieved;

e loosely wound spiral trajectories indicate higher
cost for corresponding achievement.

The model holds that each cycle involves a progression
through the same sequence of steps, for each portion of
the product and for each of its levels of elaboration,
from an overall roncept-of-operation formulation to the
coding of each individual program.

1.4. A Typical Cycle of the Spiral

Each cycle of the spiral begins with the identification of:

e The objectives of the portion of the product being
elaborated (performance, functionality, ability to
accommodate change, etc).

o The alternative means of implementing this portion
of the product (design A, design B, reuse, buy, ete).

make them more intelligible for us, but the Codes Committee just
met and established the current codes as company standards.” The
greatest risk of information sclerosis occurs when the evolutionary
prototype is placed in an environment that desperately needs
improved capabilities.
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o The constraints imposed on the application of the
alternatives (cost, schedule, interface, ete.).

The next step is to evaluate the alternatives with
respect to the objectives and constraints. Frequently,
this process will identify areas of uncertainty which are
significant sources of project risk. If so, the next step
should involve the formulation of a cost-effective stra-
tegy for resolving the sources of risk. This may involve
prototyping, simulation, administering user question-
naires, analytic modeling, or combinations of these and
other risk-resolution techniques.

Once the risks are evaluated, the next step is deter-
mined by the relative risks remaining. If performance or
user-interface risks strongly dominate program develop-
ment or internal interface-control risks, the next step
may be an evolutionary development step: a minimal
effort to specify the overall nature of the product, a plan
for the next level of prototyping, and the development of
a more detailed prototype to continue to resolve the
major risk issues. On the other hand, if previous proto-
typing efforts have already resolved all of the perfor-
mance or user-interface risks, and program development
or interface-control risks dominate, the next step follows
the basic waterfall approach, modified as appropriate to
incorporate incremental development.

The spiral model accommodates any appropriate mix-
ture of specification-oriented, prototype-oriented,
simulation-oriented, automatic transformation-oriented,
or other approaches to software development, where the
appropriate mixed strategy is chosen by considering the
relative magnitude of the program risks, and the relative
effectiveness of the various techniques in resolving the
risks. (In a similar way, risk-management considerations
determine the amount of time and effort which should be
devoted to such other project activities as planning,
configuration management, quality assurance, formal
verification, or testing).

An important feature of the spiral model is that each
cycle is completed by a review involving the primary
pcople or organizations concerned with the product.
This review covers all of the products developed during
the previous cycle, including the plans for the next cycle
and the resources required to carry them out. The
major objective of the review is to ensure that all con-
cerned parties are mutually committed to the approach
to be taken for the next phase.

The plans for succeeding phases may also include a par-
tition of the product into increments for successive
development, or components to be developed by indivi-
dual organizations or persons. Thus, the review and
commitment step may range from an individual walk-
through of the design of a single programmer com-
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Figure 1. Spiral Model of the Software Process

ponent, to a major requirements review involving of missions) could be improved by a software effort. The
developer, customer, user, and maintenance organiza- spiral process then includes a test of this hypothesis: at
tions. any time, if the hypothesis fails the test, the spiral is

terminated. Otherwise, it terminates in the installation
The spiral model applies equally well to development or of the new or modified software, and the hypothesis is
enhancement efforts, each of which are initiated by a tested by observing the effect on the operational mission.

hypothesis that a particular operational mission (or set
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1.6. Spiral Model Advantages

The primary advantage of the spiral model is that its
range of options and risk-driven approach allow it to
accommodate the best features of existing software pro-
cess models, while avoiding most of their difficulties. In
appropriate situations, the spiral model becomes
equivalent to one of the existing process models. In
other situations, it provides guidance on the best mix of
existing approaches to be applied to a given project.

The primary conditions under which the spiral model
becomes equivalent to other main process models are
summarized below.

e If a project has a low risk in such areas as getting
the wrong user interface or not meeting stringent
performance requirements; and it has a high risk if
it loses budget, schedule, and product predictability
and control; then these risk considerations drive the
spiral model into an equivalence to the waterfall
model.

e If a software product’s requirements are very stable
(implying a low risk of expensive design and code
breakage due to requirements changes during
development); and if the presence of errors in the
software product constitutes a high risk to the mis-
sion it serves; then these risk considerations drive
the spiral model to resemble the two-leg model of
precise specification and formal deductive program
development.

e If a project has a low risk in such areas as losing
budget and schedule predictability and control,
encountering large-system integration problems, or
coping with information sclerosis; and it has a high
risk in such areas as getting the wrong user inter-
face or user decision support requirements; then
these risk considerations drive the spiral model into
an equivalence to the evolutionary development
model.

e If automated software development capabilities are
available, then the spiral model accommodates
them either as options for rapid prototyping or for
application of the automation paradigm, depending
on the risk considerations involved.

o If the high-risk elements of a project involve a mix
of the risk items above, then the spiral approach
will reflect an appropriate mix of the process models
above. In doing so, its risk-avoidance features raise
the probability that the difficulties of the other
modeis will be avoided.

2. Ada Support Software: Risk Issues

There are special properties of support software, espe-
cially persistent support software, which affect the pro-
ject risks when that software is being developed in Ada.
In this section, a brief summary of a software designer’s
view of some key characteristics of such software (and
some of their specific interactions with Ada) is followed
by a summary of the management and technical risks
that derive from these characteristics.

2.1. Characteristics of Persistent Ada Support
Software

Persistent support software systems are generally
designed to provide reliable resource management ser-
vices (eg, data, process, i/o) according to policies which
may restrict the provision of potentially sharable
resources {eg, access control {mandatory and/or discre-
tionary|, processor  allocation priority, device
allocation /assignment). Persistence is a characteristic of
such software when users of the software system® need
to keep data over multiple "sessions™ and when multiple
users need to access data maintained on shared
hardware resources. The essential property of such
software is that, when executing, its state has a longer
lifetime than (ie, the value of its data is kept longer
than) that of the software which is temporarily active
on behalf of the user in the “"session".

Examples of such software being developed in Ada
include

® operating systems such as ASOS [Anderson-Hart,
1985),

e Data Base Management Systems such as TDBMS
[Bamberger, et al, 1986), LDM, DDM, and Multibase
[CCA,1985),

e portability kernels for APSEs such as prototype
implementations of the facilities of the CAIS
[KIT/KITIA, 1985] and the integrating framework
of the ALS [ALS, 1985], both of which are based on
the KAPSE model of [Stoneman, 1980}, and

e a prototype implementation of the Ada/SQL sup-
port software to support the standard Ada-DBMS
Interface reported in [Friedman-Brykczynski, 1986];
this interface permits the replacement of underlying
DBMSs without affect the Ada programs using
them.

% including both people in a timesharing environment, and
sensors/effectors in a realtime control environment

4 "threads” in a realtime control environment
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These software entities need not be independent;
most database management systems rely on operat-
ing system services in critical ways.

2.1.1. Data management support

In fact, if we focus on the critical aspect of the integra-
tion framework for an APSE (in anticipation of the next
section), a key consideration, data management, can be
described with a layered view to order a whole family of
design issues. In [Friedman, et al, 1986], an 8-level refer-
ence model is proposed. In increasing order of complex-

ity:

1. Hardware layer provides the basic storage
resources.

2. Operating System layer provides file support (in
the normal file-system sense) and multi-user access
to files. (Supported by Ada 1/0.)

3. Record layer provides external-internal data for-
mat conversion. (Supported by Ada 1/0.)

4. File layer provides multi-user access to records, and
access to data by key. (Supported by a file-
management system.)

5. Tuple algebra layer provides specification of
operations as database commands, allowing data
management system to return subset of all data
examined to the program. (This is the minimum
layer for communication interface in a distributed
storage system.)

6. Relation layer provides different user views of the
data. (Typical Off-the-shelf DBMSs.)

7. Object layer provides invariant assertions about
the data used for consistency, and possibly inheri-
tance of date schema. (Research DBMSs.)

8. Heuristic layer employs probabilistic assertions
about the data used for efficiency. (Al research
areas.)

When designing the particular support software of
interest in the next section, an integration framework
for an APSE, it is critical to decide what capabilities
will be provided at the interfaces. The proposed
MILSTD CAIS specification probably resides at the File
level for the most part with some functions at the Tuple
algebra level. The requirements for the successor CAIS
[KIT/KITIA, 1985 "RAC"] mandate an interface set at
the Relation layer at least.
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The more capabilities present at the interface, the more
powerful the support service must be. Arguments in
favor of a lower level include the fact the overall perfor-
mance of the support software may be enhanced by vir-
tue of its relative simplicity. On the other hand if the
performance of interest is that of the overall system,
and if achieving an effective portability kernel is critical,
an engineering compromise may be necessary in which a
carefully selected set of high level services are provided
at the interface.

2.1.2. Ada Interaction Effects There are a number
of special properties of Ada that affect the interfaces
between such persistent support software and newly
developed Ada programs.

e  The interfaces are closely tied to the Ada program
construction mechanism. The Ada language was
carefully designed to permit programs to be con-
structed that rely on already existing and executing
capabilities; these capabilities can be described
using specifications of library units that are refer-
enced with context specifications (withs and uses).
The ways in which this process can occur depend on
the model of program construction assumed by the
Ada compiler.[ALRM, 1983|

If it must be possible to change the capabilities of
the support software in real time without bringing
the system down, effective techniques for achieving
this may involve both very sophisticated Ada pro-
gramming techniques and special properties of Ada
compilers.[Roubine, 1985]

®  Strong typing raises subtle interface design options.
Because of the ability (and mandate) to provide
strong type checking across the interface, designers
of the support software are provided with a new
choice: data of predefined types can be the only
data which cross the interface or the user defined
types can be permitted at the interfaces. For most
designers, the latter case has not heretofore been
available except with weakly typed languages; Ada
generics are necessary to achieve user defined types
at the {Ada) strongly typed interfaces.

Strong typing, enforced at compile time, provides
the opportunity in some cases to eliminate runtime
integrity checks; this is an incentive to permit
user-defined types at the interface. However, com-
pile time checks are limited (many conditions are
not definable at compile time in Ada) and reliance
on them may necessarily be augmented by other
runtime checks. [Friedman, et al, 1986]
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Maximal use of user defined types at the interface
may require very sophisticated, even complex (or
some say, arcane) use of Ada features including, at
the least, nested generics. [FriedmamBrykczynski,
1986

e  Processor management software, writlen in Ada,
tmpacts and 15 itmpacted by the Ada Runtime
Environment used by the Ada compiler. Ada tasking
semantics require that an unusual degree of control
of processor resources must be maintained within
the Ada RTE. For this reason it is particularly
difficult to design interfaces that simultaneously
use, say, the strong typing conventions, and permit
applications programs to be compiled with different
compilers.

° Whether or not all concurrency in the system is
modeled by Ada tasks has a dramatic effect on the
character of the persistent support software. If not, a
normal alternative is to permit concurrently execut-
ing Ada programs. These two forms of concurrency
must be carefully dealt with by the support
software.

For example, DBMS systems must be written with
interfaces that acknowledge both forms of con-
currency; this is in contrast to the current situation
in which many preexisting DBMS’s will only com-
municate with a single task at a time in an Ada
program because, for the DBMS, the only identified
source of concurrency is the executing program, not
the tasks within a program.

As another example, having multiple concurrently
executing Ada programs provides for a clean way of
separating the data-spaces of functions operating
on behalf of separate users, but may require the
definition of new inter-program communication pro-
tocols.

This is an incomplete, but representative list of issues
that arise from the interaction of the nature of Ada and
the intrinsic properties of persistent support software.
Associated with these issues are significant risks.

2.2. Related Risks

The principal risk associated with the issues raised
above is lack of maturity and availability of erthical
resources, such as people, including experts in the
domain of the particular support software to be
developed, Ada experts, and experts in both fields; and
support software, including compilers and software con-
struection aids. In most Ada development projects, these
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(as well as the perennial cost and calendar constraints)
are the driving risks.

Domain expertise and Ada expertise both have to be
present on the staff of a given development project, and
though it is usually not mandatory, it is very helpful to
have a single person with both.

Ada compilers are just beginning to exhibit the com-
pleteness and robustness required of the more ambitious
uses of Ada such as that proposed in [Friedman-
Brykczynski, 1986] and [Roubine, 1985]. The lack of the
required compiler sophistication leads to more conserva-
tive design approaches. (Of course, in some cases, such
as the requirement to support assurable multi-level secu-
rity [Anderson-Hart, 1985}, the requirements of the
development itself may lead to even more conservative
approaches.) In support software that must execute on
a variety of different target systems |[Bamberger, 1986,
the principal of the least common denominator will dom-
inate: for any particular Ada issue, the least capable
compiler for a given target will drive the design
approach.

The technical issues themselves pose substantial risks.

A fundamental aspect of the technical risk analysis is
that this kind of support software is not amenable to
the construction of tight requirements: for example, per-
formance is important, but not precisely specifiable (usu-
ally), and sometimes subordinate to other concerns, such
as verifiability. Unlike specific imbedded systems which
have well-defined usage requirements based on the
characteristics of the particular surrounding
hardware /software system, the persistent support
software must be able to accommodate several different
applications (perhaps several different embedded system
applications).

Failure to achieve satisfactory performance is a key risk;
support software must lead to effective use of computing
resources (both computational and storage). For some
systems, internal simplicity may be eritical [Anderson-
Hart, 1985]; for others |KIT/KITIA, 1985], raising the
level of the interfaces may provide an opportunity for
optimization which will offset the added complexity.

Failure to provide an interface that is effectively usable
by the designers of the user software is a significant risk.
Simplicity of the user model and ease of use of the inter-
faces can determine whether or not the facilities pro-
vided are ever used, and if they are, the degree to which
they can be used effic’ ntly. For example, taking advan-
tage of the Ada strong typing in the interface design in
order to move the cost of some integrity checking to the
compile time phase may have a signal effeet on runtime
performance, but if it leads to arcane usages of the Ada
language it will impaet the cost of all software develop-
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ment depending on those interfaces, and it may even
exceed the capability of many software development
shops to use the resulting interfaces.

Being locked in to a particular compilation technology is
a major risk in some cases. As indicated above, this risk
is severe when concurrency management is involved in
the support software, or when there are sophisticated
requirements for adding new capabilities to the support
software or for binding new programs to existing, exe-
cuting support capabilities since these activities depend
so heavily on the Ada program construction mechanism.
This technical risk may be commercially critical and
even where it is not, it may severely impact the ability
of the persistent support system to upgrade with
advances in compilation technology.

Being locked into a particular hardware technology may
be a significant risk. Certainly when the support
software of interest is the framework for an APSE, tying
it to a single Instruction Set Architecture not only limits
the conditions under which the framework (and there-
fore the APSE) can find acceptance but also limits the
ability of the framework to migrate to new hardware as
technology improves.

3. Applying the Spiral Model

Consider the [following hypothetical situation: it has
been determined by, say, organization ABC, that a new
integration framework is needed for future automated
environments that will support the development and
enhancement of Ada-based systems. The environment
to be developed using this framework will have to sup-
port the entire software process; it will have to be highly
flexible, extensible and adaptable (to new underlying
technologies, hardware and software).

How might the development of such a framework
proceed according to the spiral model? Here is a partial
scenario, in which the early stages of the project are
described at a very high level.

Round 1. In this round organization ABC forms a
small team of key advisors to analyze the feasibility of
the goal. The following outline suggests the activities of
the team.

Identify Goal: Obtain an environment framework with
the (qualitative) properties described above.

Enumerale alternatives: (1) Obtain an already existing
framework, eg: CAIS implementations, UNIX, PCTE,
TRW's Productivity System, The Rational RI1000,
Arcturus, Toolpack, ... (2) Build a new framework using
an already existing framework specification, eg MILSTD
CAIS, PCTE, ... (3) Design and build a new framework.
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Identify Risks: (1) Existing frameworks may fail on one
or more technical risks such as those described above.
(2) The specifications, even without the particular faii-
ings of their implementations, may fail the technical
risks also. (3) The design, development and validation
effort for a build from scratch may require excessive or
unavailable resources.

Resolve Risks: Based on this analysis, the advisors con-
duct a systematic comparison of the existing candidate
frameworks against the goals and the risk list, using
interviews, demonstrations and technical analysis. This
leads to the conclusion that no one framework satisfies
the goals with satisfactory risk. A similar analysis of the
specifications indicates that many features of the
specifications are satisfactory, but there are essential
technical risks that are not addressed. Finally, an
analysis of the technical complexity and scope of a
separate design and build concludes that

e The technical prerequisites for the essential com-
ponent of a framework seem to be present. Merging
them is a difficult technical exercise with uncertain
results in the very near term, although it should be
possible to develop a very strong framework in
about 5 years.

e The development will require the combined efforts
of several different kinds of expertise, unlikely to be
found at any one source; however, there are clusters
of researchers and developers that have already
established informal technical exchanges on similar
matters.

Plan for next phase: Organization ABC decides to
stimulate the formation of a consortium of research and
software development organizations. The analysis by
the advisory team is used to stimulate membership and
provide guidance to the consortium in its early delibera-
tions.

Round 2. The consortium, over some time, actually
forms. Its members include a large scale producer of
software and user of environments, several smaller
research groups specializing in program generation, pro-
gram analysis and program testing and development
process coordination tools; a small compiler vendor
developing new techniques for incremental compilation
of Ada programs. Two members have already con-
structed protolype environment frameworks. The con-
sortium has few natural competitors and each member
can immediately benefit from a framework based
environment, so the incentives for cooperation are high.

The consortium identifies high risk areas: lack of clear
assignment of responsibilities and contribution, lack of
clear consensus on architectural and design assumptions
and constraints, and lack of a short term approach to

separate development of cooperating tools. A risk

reduction strategy is agreed to: establish principles of
cooperation and a management plan for the consortium,
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formulate an initial concept of operation for the
framework, and establish near-term interface definitions
and rules of construction that enhance sharing of tool
capabilities. These are among the tangible results of
this Round; the group also establishes a Risk Manage-
ment Plan to create visibility of the outstanding risks.
Regular group meetings keep these issues under constant
attention. New risks are surfaced: there is insufficient
expertise in the consortium to solve the more subtle
aspects of the object management support capabilities in
the framework. The consortium agrees to search for a
new member who can bring that expertise to the party.

The project plan is produced (consistent with the
management plan and the principles of cooperation) in
which each consortium member has a dual role: to
develop particular capabilities (identified in the plan)
such as basic program construction tools, or user~
interface management systems, and to participate in
consensus formation activities on the unpartitioned
essential developments. Certain participants take
responsibility for exploratory prototypes for critical
areas, like the user interface. The consortium members
commit to the plan for the next round.
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Experience Collecting and Analyzing Automatable Software Quality
Metrics for Ada*

J. A, Perkins, D. M. Lease, and S. E. Keller

Dynamics Research Corporation
60 Concord Street, Wilmington, Ma., 01887

Abstract

Metrics researchers are currently in the early stages of
validating the relationships between metrics and the quality
problems encountered by users and developers of software. In
order to establish these relationships, large amounts of data
defined for validating specific metrics must be collected. Before
performing such costly validation, we believe the metrics should
be ovaluatgd with respect to whether they reflect our current
unders:gndan of quality principles. Our preliminary attempt at
valxda;xoq focuses on a human vs. automated approach to analyzing
En ex:st:ng Ada program. The program consists of fourteen
packages® and approximately 150 “procedures” and "functions”.
Segments of this code were selected and analyzed with respect to
the softvare quality sub-criteria of flow simplicity, limited
visibility, and error prevention and detection, The study focuses
on disagreements _betwveen human and automated analysis, and
attempts to explain those discrepancies and suggest possible ways
to improve both measurement techniques and the quality of the
softvare program analyzed.

Keyvords

software metrics, software quality, software measurement tools,
Ada, software training

1 INTRODUCTION

In the future, software metrics will provide a basis for making
scientific predictions of software project parameters. Time to
completion of a project, additional spending required to increase
product quality by x amount, and prediction of problems before
they are out of control are examples of parameters critical to the
successful management of software. Metrics relating cost to
quality will support the isolation of cost-drivers involved in
software development and the evaluation of cost-benefits of
alternative resource allocation strategies [Dunham83).

The Ads language provides a syntactic and semantic richness that
makes it possible to collect meaningful data by performing a
static analysis on existing Ada code,and then defining metrics in
terms of this data. These metrics have two main purposes, The
first is the improvement of quality of existing code. Secondly,
these metrics can form the basis for evaluating the current status
of an Ada programmer and pinpointing specific areas where that
programmer needs additional training. This can also lead to an
evaluation of training methodolgies.

DRC has developed a tool called ADAMAT** (Ada Measurement and
Analysis Tool that performs this static analysis on Ada code.
ADAMAT consists of three separate tools that together provide
extensive insight into the makeup of an Ada program. The first
tool is the automated data collection tool. The data collection
tool performs a static analysis of Ada code to collect information
about that code. Secondly, a quality analysis component, based on
the formal definition of the metrics hierarchy, provides both an
interactive analysis of the metrics and a method for pinpointing
specific problem areas of the softwvare. Thirdly, a report
generator creates a complete report, based on all defined metrics,
for any user-determined set of “"packages® or subprograms. Each of
the tools is implemented in Ada. (For further information on how
ADAMAT is implemented, see [Keller8S].)

* ads IS A REGISTERED TRAOEMARK OF THE U.S. GOVERNMENT Ada JOINT
PROGRAM OFFICE (AJPO)

** ADAMAT IS A TRADEMARK OF DYNAMICS RESEARCH CORPORATION

The metrics themselves exist in a hierarchy based on the McCall
metrics framework, tailored to the Ada language. At the lowest
level in the framework are data-items, collected by the automated
data collection tool directly from Ada source code. Examples of
data items are: 1) maximum level of nesting, 2) objects local to
a module, and 3) number of “®out® parameters in a "procedure”.
ents are lov-level metrics defined only in terms of
items (metric-elements will often be referred to simply
as metrics hereafter). Examples of metric-elements are:
1) nesting, which is the inverse of the maximum level of nesting,
2) local “"types” referenced, which is the percentage of “types”
local to a module that are referenced by that module, and 3) "out”
parameters with values, which is the percentage of "out”
parameters given a value on all possible exvcution paths of a
"procedure”. These metrics are then combined to form softwvare
quality sub-criteria, such as flow simplicity, limited visibility,
and error prevention and detection. Software quality criteria,
such as simplicity, modularity, and anomaly management are then
based on these sub-criteria.

The metric-elements are defined by a numerator and a denominator,
both non-negative, with the numerator less than or equal to the
denominator, rather than a value in the interval (0.0,1.0]. The
value of a criterion, sub-criterion, or a metric is the ratio of
the sum of all the numerators of metric-elements, to the sum of
all the denominators of metric-elements making up that metric.
The metric-elements themselves are broken into two distinct
categories, absolute and relative. Absolute metrics are
measurements of the absolute amount of a software characteristic.
Many of the traditional metrics fall in this category. Examples
are: 1) the number of lines of code, 2) number of operators, and
3) the number of branches. Absolute metrics support comparisons
between problem spaces, comparisons of interest to acquisition
managers. The value of most absolute metrics is calculated using
one as the numerator, and N+l as the denominator, where N is the
number of occurrences of the language feature [Keller85). A score
other than 1/1 ( i.e., a denominator greater than one ) for an
absolute metric indicates the presence of language features or
constructs that cause the code to move away from the desired goal.

An example of an absolute metric within our study is module exits,
which falls under the sub-criterion flowv simplicity. The
denominator for module_exits is the number of return statements in
a ‘"procedure®, or the number of return statements minus one in a
"function” (a "function" is required to have at least one return).
This metric is defined as an absolute metric because program flow
is made more complex by the use of muliiple exits from a module.

Relative metrics, on the other hand, are metrics that measure
actual gquality relative to an ideal or potential quality. These
metrics address quality within a problem space or problem
solution, Examples are: 1) the percentage of non-complex boolean
expressions, 2) the percentage of composite “types"™ which are
"private® “types", and 3} the percentage of globals referenced by
a subprogram that are declared in the “body® of the “package”
containing the subprogram. Relative metrics support comparisons
within problem spaces and solutions, comparisons of interest to
development managers and training managers, The value of most
relative metrics ig given by a numerator A and a denominator P,
vhere A is the number of actual occurrences and P is potential
number of occurrences of a language feature (Keller85].

An example of a relative metric within our study is 1lm_types,
vhich falls under the sub-criterion limited visibility. Lm_types
has the number of locally defined “"types” that are used to declare
an object as a numerator, and the number of locally defined
“types® as a denominator. Locally defined "types" should always
be used to declare a local object within a subprogram, or the
“type" should not have been declared within that module.

Metrics researchers are currently in the early stages of
validating the relationships betwveen metrics and the quality
problems encountered by users and developers of software. in
order to establish these relationships, researchers must collect
large amounts of data defined for validating specific metrics.
Before starting such a costly validation effort, wve believe the
metrics should be evaluated to determine whether they actually
reflect our current understanding of quality principles. To
perform this study, we evaluated the Ada code making up the
"report_generator” described above.
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The investigation focused on determining the answers to the PS8) For_loops is a relative metric. The numerator is the number
folioving questions: ?i 'fer loops"™. The denominator is the total number of
oops®.

1} Howv vell does the automatable asure of quality compare to A ) A . i .
the quality messurements obtained by human analysis? FS9) Multiple exit_location loops is a relative metric. The
numerator is the number of *"loops" where contro} cannot be
2) How well do the metrics detect quality problems in the given to a statement other than the one immediately
softvare. folloving the “end loop®. Control can be given to a
different location if the "loop” contains a "raise®, “goto”,
3) How well do the metrics detect the need for training in or “return” statement, or if the "loop” is nested inside
specific features of the Ada language? another "loop®, vith an "exit name statement within the

inner "loop".
4) How can the results of questions 1-3 be used to improve the L. L. . . .
) qu:).ity and "“di:, ofqthc metrics themselves? P The limited visibility sub-criterion attempts to measure how well
items that are not needed wvithin units are hidden from the units.
Examples of items that we believe should be hidden if they are not

2 METHOD used  are: user-defined “types®™ and “"subtypes®, variables,
- constants, “exceptions®, "procedures®, and "functions". If these

As was mentioned : items are made visible when they are not intended to be used,

'report_g.n."mrebo}’;; t::edaigﬁ‘rex::‘:?fd ';:c;::: g?d:hiogh::: program reliability may suffer from unanticipated usages.

nupber of s i - -

from each ‘-‘:ﬁ:ﬁg;:‘f’,g'; :::mg::?:g?s in':om:!é::::d tz:eseng‘:“:g Under limited visibility, ten metrics were collected. These wvere:

module picked wa . - i nsi

F' the 'pickaqe' :i::;utpa:::g.im;;:;::éa:?;:h ;:s ::ns:dered to be Lv1) wWithed packages referenced is a relative metric, The
" declared in the “package® specification of :h 5“”!{"'09'5“!5 numerator is the number of visible "packages® that wvere
;'l "packages”, we selected the pachkage it;elf in six!caseoun;en referenced in any of the following vays: i an subp'rogram
1 subprogram in eight cases. s and a call, use of an object, raising or handling an exception, or
) using a "type” that resides in the "withed™ "package”. The
‘.i . denominator is the number of "packages” made visible via
‘C' 2.1 Method Of Automated Analysis "withs", either by a "subprogram”, or the “package” “body”
l.{ or specification.

The investigated metrics constitiuted three gsub-criteria of the LV2) Lm_types is a relative metric. The numerator is the number

current ADAMAT metrics framework. The first sub-criterion, flow of” "types" declared local to the module that are referenced

simplicity, is part of the criterion simplicity. Secondly, by that module. If the module is a subprogram, the “types”
limited visibility is part of the criterion modularity, and local to it are those "types” and "subtypes® declared within
thirdly, error prevention and detection is part of the criterion the module. If the module is a "package”, the "types" local
anomaly management. to it are all those "types" and "subtypes” declared within

. . . . the “"package" specification, or within the declarative

The flow simplicity sub-criterion attempts to measurce the region of the "package” "body”. A "type" is defined to be

complexity of the flow, both from a traditional and referenced if the name of the “type® appears in any

non-traditional point of view. Traditional metrics such as level statement within the module., The denominator is the number
of nesting and number of branches were collected. We also of "types" local to the module.

congidered other causes of flow complexity, such as multiple exits

from “loops® or subprograms, branch constructs that can exit to LV3) Lm objects is the same as Lm_types, except objects local to

more than one location, and branches that can cause program flow a module are used instead of local "types”. Objects are

to go backward, We also considered a nested branch to be more variables,"constants”, and "exceptions”, An "“exception" is
complex than a non-nested branch. uged if it is "raised” or handled.

Under flow simplicity, a total of nine metrics were collected. LV4) Lm_operators is the same as lm_types and lm objects, except

The metric number is an abbreviation that can be used to access user-defined operators are counted. User-Jefined operators

values for this metric from the tables. Thers metrics were: include functions and procedures.

FS1) Branch_constructs is an absolute metric. Its denominator is LVS) Lmp _types is a relative metric. The numerator is the number
the number of branch constructs plus one. The following are of ““types” declared local to a module's "package" that are
branch constructs: “if", "elsif", "raise”, "goto”, referenced by that module. The denominator is the number of
"return®, “loop”, "exit", and “case”. “types” declared local to a module's “package" For a

. subprogram, a “type” is local to its “package™ if it s

F$2) Module_exits is an absolute metric. {[ts denominator is the declared either in the “package® specification or in the
number of exits from a module {(since every module has at declarative portion of the “package®. For a “"package®,
least one exit, it is unnecessary to add one to the there are no “types" local to the module "package”, unless
denominator). For a "function®, the number of exits is the the "package” is nested within another "package”. In that
number of return statements. For a “procedure® and a case, any declarations within the outer “package”
“package body”, the number of exits is the number of return specification that are visible to the nested “package® are
statements plus one. the "types” local to the "package".

FS3) Level_of nesting is an absolute metric. The denominator is LV6) Lmp_objects is the same as Lmp _types, except objects are
given by the maximum level of nesting caused by an "if", counted. -

"loop®, or “case” statement ("else® and "elsif" are part of
an “if" statement, and any deeper nesting within them is LV7) Lmp_operators is the same as Lmp_types and Lmp objects,
counted) plus one. Therefore, code without nesting will except user-defined operators are counted.

have a denominator of one.
LV8) Emp_types is a relative metric. Its numerator is the number

FS4) Non_back branching constructs is an absolute metric. The of "types” made visible to the module via "withs" that are
denominator is the number of branch constructs that can referenced. Its denominator is the number of "types® made
result in the return of program control to a8 line of code visible to the module via "withs".
that has already executed. The only branch constructs that
can cause return of control to a line already executed are LV9) Emp_objects is the same as Emp_types, except objects are
"goto's” or "loops". counted. -

LV0) Emp operators is the same as Emp_types and Emp objects,

FS5) Branch_and nesting is an absolute metric. Its denominator except user-defined operators are counted.

is the sum of the level of nesting over all branch
constructs plus one, For example, a branch coastruct at the
second level counts as two, d branch construct at level
three counts as three, etc. The level of nesting is said to
be one if no nesting has occurred. Therefore, the first
line of code is at level one, and the denominator will be
one if no nesting occurs. Nesting is defined as in (FS4).

The error prevention and detection sub-criterion does not attempt
to predict the number of errors that will be encountered when code
is executed, Rather, it attempts to measure hov vell features of
Ada were used to prevent or detect possible errors. Examples of
this kind of prevention/detection include insuring that
subexpressions are constraint-checked, insuring that “out”
parameters are always given values, and using default
initializations for var:iables, Metrics measuring the proper use
of "exceptions® were not collected for this study. Since the
proper use of "exceptions” limits their use to situations vhere an
error has already occurred, “exceptions” are addressed under the
separate sub-criterion error handling, which resides with error
prevention and detection under anomaly management.

FS6) Multiple exit_loops is a relative metric. The numerator s
the number Gf "loops” with only one exit. A "for loop” or
"while loop" has one exit if no "exit® statement, “raise"
statement, or "goto” which leaves the "loop™ 1s within the
"loop”. A "basic loop” has more than one exit if more than
one "exit" statement, “raise" statement, or "goto” which
leaves the "loop” is found in the "loop”. The denominator
is the number of "loops®.

Under error prevention and detection, five metrics were collected.
These wvere:

FS?) Structured_branch_constucts is a relative metric. The

numerator is the total number of structured branch FE : : s :
El) Default init is a relative metric. The number is the number
constructs, Any branch construct from (FSl) above is of locally declared variables which are given a default

structured except "goto”, “"raise®, “return”, or "exit name”, initialization. The denominator is the number of locally
vhere "name” is the name of a outer level “loop”. These declared variables.

control constructs are non-structured because they cause a
jump in program control from the current location to a
location other than the next line of code or end of the
current construct. The denominator is the number of branch
» constructs as defined in (FSl},

68 Annual National Conference on Ada Technology 1986

R R R S e i e R SR S L R Sl



£2) User_types is a relative metric. The numerator is the number
of usSer-defined "types” used by the "procedure®. A “type” is
defined to be used if its name appears in any statement
within the module. The denominator iS the total number of
"types", both user-defined and system-defined, used by the
“procedure”.

£3) And_then or else is a relative metric. The denominator
measures the number of times that an index into an array was
range checked in a compound boolean expression, The
numerator measures the number of times that the compound
boolean expression used an “and then®™ or an "or else”
construct to avoid the possible raising of CONSTRAINT_ERROR,
Por example,

a: array(l..10) of integer;

begin

loop

if (i in 1..10) and (a(i) > 0) then ...
may “raise® CONSTRAINT ERROR even if i is not in
range, because the order of evaluation for

operands is not defined: however, this cannot happen in
following case.

the legal
the boolean
the

a: array(l..10) of integer;

begin

loop

if (i in 1..10) and then (a(i) > 0) then .

E4) Out_params_w_values is a relative metric.
the nunbe; of "out”™ parameters guaranteed tc have a value
f’s?qnee into them on all paths if no “exception” is
-raxsed . The denominator is the number of *out® parameters.
In out”™ parameters are not considered to be "out® parameters
for this metric because they must have a value when the
procedure call is made, or the program is erroneous.

Its numerator is

ES

Constraint_checking is a relative metric. The numerator is
the numbgr of sub-expressions wvhich are constraint checked.
The denominator is the total number of sub-expressions.

2.2 Method Of Human Analysis

As our baseline for comparison, we chose a human analysis of the
modules we examined. Due to the difficulty of giving absolute
metric scores to the modules, we opted for a ranking system. For
each sub-criterion, the modules were given a ranking from one to
fourteen, with one being the best score and fourteen the worst.
This human analysis caused us to limit ourselves to the small
number of "procedures” that we analyzed. To accurately rank the
code, the total number of ranked modules had to be small
Hovever, within each "package", the most involved "procedure™ was
selected for rating. In some cases, no "procedure™ involved any
code other than simple variable assignments, so we opted instead
to investigate the “package” itgelf,

pefinitions of sub-criteria

The human analysis of the modules is based on the following

definitions of the sub-criteria:
Flow Simplicity:

The control flow of the module is easily understood for
combination of the possible input values to the module,

any

Limited Visibility:

such that the visible
items appropriate for that

the module is

The visibility of
limited to

software items are
module.

Error Prevention and Detection:

The implementation of the module is such that all errors that
can occur during elaboration or execution of that module are
prevented and/or detected.

These definitions vere developed to provide direction for the
numan analysis at the intuitive level without actually specifying
what features of the language should be investigated or how much
any positive or negative factor of the software should be
weighted.

The human analysis involved four Separate passes over the set of
modules. £ach pass involved investigating the set of modules with
respect to flov simplicity, then limited visibility, and then
ecror prevention and detection. On the first pass, the modules
vere not investigated in any particular order. On the second and
third pass, successive pairs of modules wvere investigated
according to the rankings established on the previous pass. The
ranking of the modules was modifed vhere appropriate. On the
fourth pass, the distinguishing factors that dictated the rating
were fidentified. These distinguishing factors were then used to

2atablish a final set of rankings.

The distinguishing factors dictating the ranking of the modules by
human analysis for each of the sub-criteria are as follows:

Distinguishing Factors for Flow Simplicity:

FSF1} the number of branches (ie. "if®, "case", and “loop"),

FSF2} the number of back branches,

FSF3) the number of "loops™ containing a single statement,

FSF4) the number of "loops" with multiple exits,

FSFS! the number of returns from the module, and

FSF6) the number of levels of nesting.

Distinguishing Pactors for Limited Visibility:

LVF1) the number of sets of operators “withed" that are
visible,

LVF2) the number of global variables that are visible,

LVF3) the number of sets of operators “withed" that are
unused, and

LVF4) the number of global variables visible that are unused,

Distinguishing Factors for Error Prevention and Detection:

EFl) the number of instances where variable declarations are
not isolated to a "loop® (where possible),

EF2) the number of instances where array Slices are not used
(where possible),

EF3) the number of wunrelated “types” declared in the
specification of a "package",

EF4) the number of instances where "and then” is not used
when required, and

EFS) the number of variables declared in the specification

of a "package”.

2.3 Guidelines For lmplementation

Prior to design and implementation of the “report_generator”, we
established a list of implmentation quidelines, ~A discussion of
the Ada-specific guidelines for each of the selected criteria aids
in understanding the results of both the human analysis and the
automated analysis.

This list does not contain Ada-specific guidelines concerning flow
simplicity, but does contain Ada-specific guidelines about limited
visibility and error detection and prevention.

The Ada-specific guidelines relating to limited visibility are as
follows:

LVGl) Every "package” specification should conceptually represent
a single object.

LVG2) Every "type", object, and operator declared in a “"package”
specification should be referenced by some other "package”
of the "report_generator”.

L¥G3) A library unit should be “withed® only if some “type",
object, or operator in that "withed” unit is to be directly
referenced.

LVG4) No *package” should be created that merely subsets the set
of wvisible "types", objects, or operators of another
“package® specification.

The Ada-specific gquidelines telating to error prevention and

detection are as follows:

EG1) No variables should be declared in a  “package”

specification.

EG2) Every variable should be declared using a user-defined
*type”, or be of "type” boolean, and each ccnstant should be
declared using a user-defined “"type" or anonymous type.

EG)) Every variable should be initialized vhen declared.

EG4) The short circuit operators "and then" and “or else™ should
be used only when the semantics of the compond boolean
expression dictates the order of evaluation.

EGS} Every “procedure” should initialize all "out”  mode

parameters at the beginning of the seguence of statements in
a body of code.

The crationale for most of the above guidelines is obvious. The

rationales for quidelines LVG4 and EGS are given below.
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Rationale for LVG4

Although creating multiple views of a "package” is a useful method
of limiting visibility, this benefit can only be realized if the
the different views are placed in separate library units. Given
the limited Ada environment available to us (specifically, the
TeleSoft Version 1.5 and 2.1 compilers on a VAX/VMS operating
system), we decided that the increased compilation difficulties
that we encountered by using more library units outveighed the
benefits of multiple views.

Rationale for EGS

We believe that initializing "out® mode parameters at the start of
each “procedure” will reduce the likelihood that undefined values
are returned in cases where defining an “out® parameter is not
part of the the functionality. For example, a 'proceduref that
performs a search often returns two values, where one value is the
location of the object, and the other value is a flag that
indicates if the desired object was found. In the case where the
object is not found, the value representing the location is
unimportant, but failure to define this value results in an
erroneous program.

The above guidelines are a subset of the guidelines which governed
the design and implementation of the "report generator®. Most of
the other guidelines are traditional guidelines that apply to
programming in any standard von Neuman language.

3 RESULTS
1.1 Results Of Automated Analysis

Th: automated metric scores of the selected modules for flow
simplicity, limited visibility, and error prevention and detection
are shown in Table 1. The metric-element scores of the modules
for the sub-criteria are shown in Tables 2, 4, and S. The metric
scores for limited visibility are broken into “local_to_moduie”,
"local_to_package", and “external_to_package” in Table 3.

Flow Limited Error

Module Name Simplicity Visibility P &D

N/D Score N/D Score N/D Score

type 5/5 1.00 49/84 0.58 83/85 0.98
t ime 5/5 1.00 14/100 0.14 8/8 1.00
set 5/5 1.00 10/92 0.11 8/9 0.89
module 5/5 1.00 14/97 0.14 5/5 1.00
farmat 474 1.00 7/1%0 90.70 8$/11 0.73
set_format 5/5 1.00 3/11 0.27 11/11 1.00
next_file 6/9 0.67 8/123 0.07 7/8 0.88
find_file 9/36 0.25 18/145 0,12 9/14 0.64
read module 15/29 0.52 16/120 0.13 14/16 0.88
module_order 9/17 0.53 28/164 0.17 13/24 0.54
next_trace 7/14 0.50 9/143 0.06 10/11 Q.91
store_trace 16/55 0.29 54/232 0.23 17/33 Q.52
make_report 9/17 0.53 14/16 0.88 2/4 0.50
fetch_level 13/31 0.42 19/199 0.10 8/14 0.57

TABLE 1. SCORE BY SUB-CRITERIA FOR ALL MODULES

Module Name FS1 FS2 FS3 FS4 FS5 FS6 FS? Fs8 FsS9

type /1 11 11 11 1/1 0/0 0/0 0Q/0 0/0
time 1/r 1/} 1/t w1 1/1 ©¢/0 0/0 0/0 0/0
set i/z1 11 1/1 1/1 /1 0/0 0/0 0/0 0/0
module /r w1 1/r 1/1 1/1 0/0 0/0 0/0 0/0
format /1 11 1/1 a/0 1/1 G6/0 0/0 0/0 0/0
set format /1 1/1 /1 1/1 1/1 0/0 oO/¢ 0/0 0/0
next file 1/2 1/1 1/2 1/1 1/2 0/0 1/ 0/0 0/0
find file 1/6 1/2 1/4 1/2 1/14 0/1 4/5 0/1 0/1

read module /5 /1 W/3 Y/3 /7 272 4/4 2/2 2/2
module_order 1/3 1/1 1/2 1/2 1/4 1/1 2/2 0/1 1/1
next_trace 173 1/1 /3 1/1 1/4 o0/0 2/2 0/0 0/0
store_trace /9 1/1 /S /2 1/27 1/1 8/8 1/1 i/l
make report 1/3 171 V2 1/2 /4 /1 2/2 0/1 1/1
fetch_level /5 1/1 /3 /3 1/9 272 4/4 0/2 2/2

TABLE 2. FLOW SIMPLICITY METRIC-ELEMENT SCORES
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Local to Local to External to

Module Package Package
Module Name N/D Score N/D Score N/D Score
type 49/84 0.58 0/0 1.00 0/0 1.00
time 1/15 0.07 0/0 1.00 12/84 0.14
set 4/7 0.57 0/0 1.00 5/83 0.06
module 5/12 0.42 6/0 1.00 8/84 0.10
format 7/10 0.70 0/0 1.00 0/0 1.00
set_format 0/0 1.00 0/0 1.00 2/10 0,20
next_file 3/3 1.00 2/18 0.11 2/100 0.02
find_file 7/8 0.88 0/21 1.00 8/113 0.07
read_module 3/3 1.00 2/14 0,14 9/101 0.09
module_order 12/12 1.00 2/5 0.40 9/142 0.06
next_trace 3/3 1.00 4/33 0,12 1/105 0.01
store_trace 17/17 1.00 20/44 0.45 15/163 0.09
make_report 3/3 1.00 0/0 1.00 10/12 0.83
fetch_level 6/6 1.00 1/12 0.08 8/176 0.05

TABLE 3. LIMITED VISIBILITY SCORES BROKEN DOWN BY
LOCATION OF TYPES, OBJECTS AND OPERATORS

Module Name Lvi Lv2 LV3 Lv4 LVS LV6 LV? LV8 LV9 Lvo

type 0/0 29729 20/54 0/1 0/0 0/0 0/0 0/0 0/0 0/0
time /1 /1 0/1 0/13 070 0/0 0Q/0 6/29 6/54 0/1
set 171 373 /1 0/3 0/0 0/0 0/0 5/29 0/54 0/1
module /1 272 2/2 1/8 0/0 0/0 0/0 5/29 3/54 0/1
format 0/0 377 0/3 0/0 0/0 0/0 0/0 0/0 0/0 0/0
set_format 1/1 0/0 0/0 0/0 0/0 0/0 0/0 0/7 2/3 0/0
next_file 172 0/0 3/3 0/0 0/2 1/4 1/12 1/30 1/55 0/15
find_file 3/3 0/0 7/8 0/0 0/0 0/4 0/17 3/30 1/55 4/28

read module 2/2 0/0 3/3 0/0 171 1/3 0/10 1/30 4/58 4/13
module order 5/5 0/0 12/12 0/0 O/1 0/1 2/3  0/31 1/59 8/52
next_trace 1/2 0/0 3/3 0s0 1/4 2/3 1/26 1/29 0/57 0/19
store_trace 2/8 0/0 17/17 0/0 2/3 0/2 18/39 15/38 0/61 0/64
make report 171 0/0 /3 o0s/0 0/0 0/0 0/0 2/3 0/1 8/8

fetch_level 4/5 0/0 6/6 0/0 1/3 0/2 077 3/33 0/59 5/84

TABLE 4. LIMITED VISIBILITY METRIC-ELEMENT SCORES

Module Name El E2 E3 E4 ES
type 0/0 29/31 0/0 0/0 54/54
time /0 7/7 0/0 0/0 1/1
set o/1 8/8 0/0 0/0 0/0
module 0/0 5/5 0/0 0/0Q a/Q
format 0/2 7/8 0/0 0/0 1/1
set_format 0/0  0/0 0/0 0/0 11/11
next file 0/0 172 0/0 2/2 4/4
find_file /4 3/4 6/0 2/2 4/4
read _module 0/2 2/2 0/0 171 1l/11
module_order 2/11 10/12 /0  0/0 1/1
next trace 0/0  2/3  0/0 2/2 6/6
store_trace 0/15 16/17 0/0 0/0 1/1
make_report 0/1 2/3 0/0 0/0 0/0
fetch_level /5 4/5 0/0 0/1 3/3
TABLE 5, ERROR PREVENTION AND DETECTION

METRIC-ELEMENT SCORES

3.2 Regults Of Human Analysis

The final rankings of the selected modules for flow simplicity,
limited visibility, and error prevention and detection based on
these distinguishing factors are shown in Tables 6, 7, and B8
respectively. The horizontal lines in these tables separate
modules into groups according to the distinguishing factors. The
lover the module is in the table, the lower the ranking of that
module according to the human analysis.

Although the relationship between the distinguishing factors and
the ranking of the modules is illustrated in Tables 6, 7, and 8,
further discussion is in order.

For flow simplicity, the two primary factors affecting the ranking
are the number of branches (FSFl) and the number of back branches
(FSF2)., Hovever, the other three factors (FSF3, FSF4, and FSFS)
did have an effect.

“Read modu.e®” is ranked higher in the human analysis than
“r1etch_level”™ despite "read module® having more branches and the
same number of back branches 3s "fetch_level®. "Read module” has
two "for loops" that contained a single statement. TRe purpose of
these two "loops® is to perform a copy of one array into another,
In fact, the “loops" could be replaced by array slices. These
simple "loops® vere considered less of 8 factor in increasing the
difficulty of understanding the flowv than other branches,
“Read module" is considered to be only sightly worse than
"next_trace” which has two branches and no back branches.
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*“pind file” is in a lower grouping than “fetch_level" because
*find file" has both multiple returns from the module and multiple
exits from a "loop” (a single "return” inside a "basic loop" is
the reason for both of these conditions). 1In fact, "find file® is
grouped with "store_trace” which has more branching and deeper
nesting.

For limited visibility, the ranking of the modules can be reduced
to two major considerations: the number of conceptual objects
available to the module and the number of the conceptual objects
available to the module that are not used. The conceptual objects
are the sets of operators made visible to the module by "withing”
and the set of variables made visible to the module by
declarations in the "package”™ containing the module.

For error prevention and detection, the ranking of the modules can
be reduced to two considerations. The first consideration is
vhether any unnecessary errors occur or any unavoidable errors
fail to be detected vhen the present code is executed. The second
consideration is whether any modification can be performed to the
code of the module to aid in preventing the introduction of errors
into the code durinqg maintenance.

All the modules in group 2 of Table 6 except "next_trace” fail to
reduce the scope of variables where possible. Each of these
modules contains a "loop" that has the following property:

The "loop” contains variables declared outside the scope of
the “loop" whose values depend only on the current instance
of the "loop".

Declaring these kinds of variables within the "loop”™ would
eliminate the possibility that their values are used across "loop”
instances or outside the scope of the "loop".

"Next_trace” implements the copying of arrays using "for loops”.
The use of array slices to perform these copies would decrease the
likelihood of inadvertent changes to the intended functionality.

"Type” is a "package" that declares many “types” in the “package”
specification. Although these "types" are either discrete “types"

or *string” “types", the “types" are unrelated. Separating these
"types” into individual "packages” would remove the need for users
of these "types” to have visibilty to other unneeded “types® in
“package” "type”.

"Next_file" is ranked low with reqard to error prevention and
detection because of the difficulty of understanding the simple
functionality provided. The intent of "next_file" 1is to return
the next file in a list of files. At one pdint in "next_file”, a
check is made to see if the value of the input parameter
references an existing file and to check that the reference is not
to the last file in the list. The check is performed by calling a
"function" called "validate _file_reference”. which is declared in
the specification of the “package” containing “next file”, and
then by checking that the value is less than "1Tst_tail", a
variable declared in the "body" of that "package”. This check is
written as follows:

if validate_file_reference(file_reference)
and file_reférence < list_tail

Although the intended functionally sugges:s the potential need for
the short circuit operator “"and then", examination of
“validate file_reference” shows that the above check s
functionally equivalent to the following:

it list _head <= file_reference
and fxle reference =< list_tail
and file_ “reference < list_ tail

This, of course, can be reduced to either of the following:

if ligt_head <= file reference
and file reference < Tist_tail

if file_reference in list_head..list_tail-~l

Rewriting the check in "next file" as indicated above would
significantly decrease the difficulty of understanding the simple
functionality that 1s being performed.

"Format® is a "package” that declares variables in the “package"
specification, The users of "format" are supposed to be able to
read the desired form for the report being generated, but are not
supposed to Dbe able to modify that form, Having access to the
variables declared in the “package” spec:ification provides the
undesired capability to modify the form of the report. Since the
contents of the format varxables are read from an external file, a
constant declaration is not appropriate. Hovever, declaring the
variables in the "body" of "format® and providing only "functions”
in the specification of "format” would eliminate the possibility
of users changing the desired form of the report,

Flov Simplicity

Module Name Distinguishing Factors

type | 0 branches
time } 0 branches
module | 0 branches
set | 0 branches
format | 0 branches
set_ formn: | 0 branches

make report | 1 branch | 1 back branch ]
module order | 1 branch | 1 back branch |
next_trace | 2 branches | 0 back branches l
read module | 4 branches | 2 back branches | 2 simple loops
fetch_level | 2 branches | 2 back branches

find_file | 3 branches | 1 back branch | 2 returns |
store trace | 8 branches | 1 back branch | deep nestan I

TABLE 6. FLOW SIMPLICITY RANKING FACTORS

Limited Visibility

Module Name

type | 0 withs I
format | 0 withs i
______________ | mmmmmc o m e mmmm e mmmme e —mmmmmmmmmm oo
time [ 1 with |
set { 1 with |
module | 1 with I
make _report | 1 with | 1 set used |
set Tormat | 1 with | 2 withed variables used

read_| moduxe |2 i 1 global variable unused
next_trace |2 | 1 set unused 1
find file 13 i All global variables unused |
module order | § { All global variables unused |
fetch Tevel |5 | 1 set unused i
next_Tile b2 | 1 set & 1 global variable unused |

store trace |

TABLE 7. LIMITED VISIBILITY RANKING FACTORS

Error Prevention and Detection

make_report loop isolation
stor! trace loop isclation
module_order loop isolation

fetch_level
next_trace
read_module

loop isolation
loop isolation
array slices

I i
| |
| !
find_file : loop isolation :
! 1
| |

TABLE 8. ERROR PREVENTION AND DETECTION RANKING FACTORS
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‘.'j 4 DISCUSSION Flow Simplicity

Y T e

4 . .

b " Our discussion of the results consists of comparing the human and Module Name Human Analysis Rank Metric Score Rank
L automated analysis, using the metric scores to pinpoint quality
e problems and training deficiencies, and suggesting changes to the

+ metrics framework.

4.1 Comparison Of Human And Automated Analysis

Comparisons of the rankings obtained through the human analysis

é' and the automated metric analysis are shown in Tables 9, 10, and
) 11. The rankings for flow simplicity compare favorably, but the
'Y correspondence between the rankings for the other two sub-criteria
[ is not readily apparent. make_report I 8 | 8 |
module_order 8 | 8 |
) Por Lloy ainplcity, the rankings are siniliar becouse ihe next_tace | 10 I !
a metric-elements a 1 e w
distinguishing factors used to prcduce the human rankings are read module J u ! 10 |
t el fetch_level | 12 | 12 [
similar. Both use the concepts of branches, back braches, returns etch_leve
[N from module, exits from "loops”, and level of nesting. The human ittt i
"'. analysis uses each of these in an absolute sense whereas the find_file | 13 | 14 [
'Q' automated analysis uses some in an absolute sense and others in a store_trace [ 14 | 13 |
H) relative sense. e e e e ——————
;l ?
) Two of the metric-elements, branch and nesting (PS5) and
'|" structured branch constructs (FS?7), are not specifically mentioned TABLE 9. FLOW SIMPLICITY RANKING
l". as distinguishing factors but are clearly related to the
(' distinguishing factors (FSFl, FSP2, FSPS) used. In fact, the
LM | count for branches in the human analysis corresponds more to a
count of the number of uses of structured branch constructs ("if",
"case”, and "loop”}) than to a count of the number of branch
[ constructs ("if", “case”, “loop”, “exit®, “"return", “raise”,
) oto”). The only metric element not clearly related to a st feihi
,-f :l?snngulshmq factor is "for_loops*® (FSB) and the only Limited Visibility
o8] distinguishing factor not related t3 a metric-element is simple o g0 o T CTTTTTomToos
.;, 'loops? (FSF3). Module Name Human Analysis Rank Metnc Score Rank
4 Por limited visibilty, the relationship between the rankings is type | 1 I 3 "_;
obscured by the number of data-items used and the means of ranking | 2
:" the modules based on the metric scores. The human ranking |is | 2
ﬁ' based on only two factors, the number of conceptual objects | 3
- visible and the number of conceptual objects not used, Moreover, 8 [
set {
the human ranking uses these factors in an absolute sense. A few 3 ] 11 |
ool of the metric-elements (LV1, LV6, LV9 and LV0) capture most of the module | 3 | 7 |
* information considered in the human analysis. None of the other = = = ~— -~ == -=~— e ———eo e e
~ metric-elements used to defined limited visibility were considered make_report | 6 | 1 |
1 Y as factors in the human analysis, Also, all of the se
- . ) ) i t_format | 7 | 4 |
Cd, metric-elements constituting this sub-criterion were interpreted o __T__ L _________ . _____ . __ . ____
in a relative sense. e T T T e me e
read_module | 8 | 9 |
$ » For error prevention and detection, any correspondence between the next_trace ! 9 | 14 1
-, two rankings is coincidental. The distinquishing factors used in find file | 10 | 10 |
the human analysis have no correlation to the metric-elements used module order | 11 | 6 |
in the automated analysis. In general, the combination of the fetch_Tevel [ 11 | 12 |
simple functionality of the "report qenerator' and adherence to nex i
. the guidelines outlined in Section 3.3 prevented any of the -_-E:.E:ES____-E__ 13 ! 13 !
St software principles measured by the metric-elements of this T T T T TTTTTT TS oo oo e s e e s s oo :
N criteria from being a distinguishing factor in the human ranking store_trace 1 14 | 5 | |
(n of the modules. The paragraphs to follow examine why each of the = =~ @ oo o s e e e e e .
" metric-elements does not have a corresponding distinguishing !
n, factor. TABLE 10. LIMITED VISIBILITY RANKING !
«
-’ Default init{El) measures the proportion of variable declarations
" 3 that are initialized as part of the declaration, The human
" analysis found that the only variable declarations that violated
L= guideline EG3 are variables that are clearly defined by a call to
: a "procedure” before being read. The human analysis also revealed
P Y
vy that the “types” used in the declaration of these variables have
no values that correspond to undefined or null. Based on these
P i two factors, default initalization of these variable is considered : ‘
By unnecessary and the use of initialization would be misleading. Error Prevention and Detection
5.ttt et il e ——
: . User :ypes(!;) T::::res ;:: p;azorng: ?s the l.tyges'dhused that Module Name Human Analysxs Rank Metric Score Rank
» are ~ user dec . an alysis found adherence to = = mmmem—mmmme—cme e PR e e
1) ’ quideline EG2. {n fact, there are only tvo system-supplied time | 1 | 1 |
“types” used, namely string and boolean, and these are used only |
'| occasionally. ;gttjule i i : f :
.:' And_then_or else(BJ) measures the potential need for the set__format ! 1 i 1 |
short-circuit operators. Only *next_file" has this potential need = = <~ 7777 TTTTomomorosssososooooosoo-oooooeo T SR
KW and the :utgmated(an:lyus did not zf:ap;ure the potential problem make_report | 5 | 14 i
) due to the form of the expression of the "if", store trace | 5 | 13 |
M 3
P Out_params_v_values(E4) measures the proportion of “out” r;?:;l?r(;;der : g I 12 !
; parameters that are defined for all paths. Aadherence to guideline Rl ! 10 1
1 EG4 results in all "out® parameters having this property. feti . evel I\ g I\ 11 |
y next_trace [ t
Constraint_checked(ES} measures the proportion of sub-expressions read_module | 5 ! 7 |
that are constraint checked. Almost all of the sub-expressions  ~-—=—===---- e et mmm e mmmm—
i are constraint checked due to the ‘simp icity of the numeric type | 12 | Iy |
Q processing  and the array indexing needed to perform the  _ ... ______o___ e
k i i the "ra L T TTTTTITS RS S oSS ss ssmmmms oo oo
functionality of e "raport_generator next file I 13 | 2 |
(]
N

TABLE 11, ERROR PREVENTION AND DETECTION RANKING

=X
K RAA
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4.2 Ppinpointing Quality Problems with sort_package;
package sort_type packace is

Although ranking the overall quality of the software system is an subtype sort type is

important exercise, the ability to locate specific problems is sort kage. t .

equally important. The paragraphs to follov indicate hov the undeliﬁg;csogt:’g;:s{g:é sort_type
automated metric scores for the set of modules can be used to ;= sort_type package.undefined_sort;
pinpoint problem areas. default_sort: Constant sort_type

The metric scores of the modules for limited visibility are 1= sort_type_package.default_sort;

extremely low. In fact, an examination of the scores for the

en t .
metric “external to_package® indicates that 10 of the 14 d sort_type_package;

"packages" have _M;n ghan 70 'tYPes', objects, or operatqrsAthat “packaging” the "types® in this manner di
are not used. Examination of metric-elements LV8 and LV9 indicate the pgobgems pin;gin:ed by the au:ama::;c:gl;:?;”slej:n:::::agf
that in all of these cases, many of the unused externals are . 1%

t X 0 “types®” no longer need to be visible to “packages” t

types® or objects. The common denominator for all of these a few of the "types". Operators for a 't;pe' o lo;::r :::g :Z"él
modules is the "withing® of "package” “type”. The metric-elements visible in cases vhere only the "type” and associated conStant
Lv2 and LV3 show that "package” "type® declares 29 "types” and 54 nts

t X ; are required. The undefined valu initiali
objects. The metric scores point out the need to reorganize the vax-iar::nl declarations in cases vh:re °=n§°"us'2° ::eda::t;\::'“::i::
contents of "type” into several "packages®. would be misleading, The undefined value is also useful for

R . . Lo initializing "out” e .
An examination of the scores for metric-element E) indicates that 9 parameters

default initialization does not accompany most variable
declarations. The reasons for this have Dbeen discussed in the
previous section. The metric scores indicate the need to
investigate whether the "types” in the "report _generator® can be
ce-defined so that default initialization is meaningful for all
local variable declarations {including variables that are detined
before used).

Both “store_trace® and *module_order" are “packaged” separately
from operators that are used local to 3 "package”. For example,
"store_trace" is placed in a “package” that "withs" the
‘tracg_jackage‘, where “trace_package® is the "package” currently
containing "store_trace”.

"packages” "format" and "set_format" are merged., The variables in

. . . Lo the specification "t - i i
An examination of metric-elements LV8, LV, and LVO indicate that -p.chg. body"'.'l 'Pu:f:tiong:.::\icha;:ov‘i)é:c::;éno::'e 522::?‘:3"::‘3
6 of the 12 modules vhich have access to *withed” information use desired format of the report are declared iny the 'packaqe?

the "types® and objects but not the operators from the "withed"
"packages®. An examination of the data items indicated that in
each case the objects are constants, The metric scores point out
the need to allow access to the "types® and constants declared in
these "package” specifications without providing access to the
v operators declared in that specification. We concluded that more
. than one view of a "package” may be required for some ot the
"packages® in the “report_generator”.

specification,

User-defined "types® are defined for those cases vhere type string
is currently used, "Type® "boolean” will continue to be used in
the "report_generator”.

The check in “next_file” is clarified by using the membership
operator, Variable declarations are isolated within "loops® vhere

P ssible.
An examination of metric-elements LVé and LV7 indicates that two 8o e

of the three modules that use operators declared
”local (o_packaqe" do not wuse the variables declared in that
"package", The metric scores reflect the need to further layer
the architecture of the "report_generator®. The modifications will result in changes to the metric scores for

the "report_generator®. The newv scores for limited visibility and
error prevention and detection are the most interesting, since the

4.2.2 pffect Of The Modifications On The Metric Scores

Although an examination of the scores for metric-element LV9 for

. »sackage® "set format” does not indicate the presence of the two modifications to sub-cri : S

v vgriab?es declared in the "package" specification of "format®, the these scores. to the sub-criteria have the greatest impact on

« broader definition of limited visibility that weltl.\se gor ADAMtT
would indicate this problem. in the overa framevork, For error prevention and detection, the

! metric-element LYY is not a metric-element but a metric. LVS is automated analysis are 1) the lack of gefagigbi:!::iafeii:ﬁﬁ a:z

» defined to be the sum of the usage of externel constantg(LV?l} and 2) the use of the “types® “string” and "boolean" 2nd
the usage of external variables(Lv92). For set_format”, LVI91 has modifications raise the scores for metric-elements El and E2 to
the score 0/1 and LV92 has the score 2/2 which™ results in LV9 near 1.0.

having the score 2/3. )
For limited visibility, the modifications directly address the

4.2.1 Modifications To The Report Generator problems detected by the metrics. Enough of the modifications
—_— = - " have been completed to allow collection of new metric scores for 6
The "report_generator” is presently being modified based on both og ;hg orginal modules. The new metric-element scores for limited
. the automated and human analysis., The paragraphs that follow visibility are shown in Table 12,
“u discuss these changes. peamination of Table 12 ind N
. . X3 ation of Table indicates that 1) all but one “package*
o Three changes are made to each of the "types® contained in jvnhed' is used, 2) the scores for “external to_gackag:'
. “package” “type®. Pirst, each of the "types” is moved into a improved for ail modules except ‘“store_trace®, 3) based” on the
separate "package”, Second, each of the "types" is defined so as scores for “"local to_package®", furthér layering may be required
to contain a null or undefined value. Third, each of these for "find_file®, and 47 the "local_to_module® scores sre low for
"packages” is given three views. For example, "sort_type” will be all the “modules that are "packages® and high for all the modules
"packaged” as follovs: that are subprograms.
package sort_value_type_package is
1
type improper sort_value_type is
"()undctinedafirs(_sort_valua, Module Name LVl LVZ LV LV4 LVS LV6 LV? V8 LVS LV
module_order, set 272 121 °
- /2 G/S 0/0 0/0 w/0
j e nodule 373 10 02 01 00 06 o0 3 s o003
metric_value, ) time 6/6 171 072 0/13 070 0/0 070 s;g 13/9 0/0
undefind_last_sort_value); '?:::;';:Y:n ;;; g;g i;i g;g 070 0/0 070 A 3%2 g;g
type sort_value type is r 0/0 0/3 3/6 1/2 /4 2/7
yganqc module_order .. metric_value: store_trace 19/20 0/0 2/2 0/0 1/1 0/0 0/2 2/19 2/98 38/124
end package sort_va\ue_typc_packagc; TABLE 12. NEW LIMITED VISIBILITY METRIC-ELEMENT SCORES

vith sort_value_type _package;

use sort-value_typepaqkage;

package sort_package is

. c 4.) Identifying Training Needs
type sort_type is private; Identifying Training Needs
undefined_sort: constant sort_type:

default_sort: constant sort_type; In genersl, relative measures are useful for indicating the need

tor training in specific features of the Ada lanquage. The
folloving paragraphs examine the relationship between the metric

function succ_sort scoras and the need for training.
uncti uee_

{sort: sort_type)

turn sort type For flow simplicity, the metric-element scores over the set of
retu _ :

modules for 3 of the 4 relative metrics are excellent. The metric
scores for FS6, FS7, and FS9 .ndicate there 1s no need for

o training in the ares of structured programming. The score for
"for_loops"(FS8) indicates that only 3 of the 8 "loops® are “for
private loops”®. Although there are advantages to using “for loops® over
other "loops” when possible, the score of 3/8 does not varrant the
need for training. 1In fact, this metric, despite being a relative
metric, may not be an appropriate metric for measuring the need

end sort_package; tor training.
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Por limited visibility, the overall metric score is lov for most
of the modules. An  examination of the scores for
"local_to_module”, 'local_toﬁpackaqc', “external_to_package”
indicates” that in general, the "local_to_module® usage is good,
the "local_to_package® fair, and the “external to_package® usage
poor. Clearly, training in how to limit visibility to unneeded
external information is required.

For error detection and prevention, the overall metric score is
high for most of the modules. In fact, 3 of the 5 metrics have
excellent scores, No conclusion can be reached concerning the
need for training in the area of the short-circuit operators. The
scores for default_init(El) are extremely low. The need for
training in the “area of default initialization of variable
declaration appears warranted.

4.4 Modifications To The Metrics

Improving the metrics for each of the three sub-criteria is a

primary goal of this study. The following paragraphs discuss the

possible modifications to the metrics based on the analysis of
Section 5.1, 5.2, and 5.3.
A major difference between the human analysis and the automated

analysis rankings is that the human analysis involves interpreting
the information in an absolute sense, whereas the automated
analysis combines both an absolute and relative interpretation,

We have determined that both forms of measurements
Therefore, three measurements based on the numerator and
denominator of relative metrics are in order. The first is the
current measurement (good/total), to provide a measure of the
proportion of times a specific principle is folloved. The second

are useful,

is 1l/total, providing an absolute measure of complexity with
respect to a specific principle. The third is 1/(total-good),
which is an absolute measure of the number of violations of a

specific principle.

Por example consider metric-element LV1l. LV] is currently defined
to be the proportion of "withed” “"packages” that are referenced by
the module. Under the proposed scheme, LV0I would have three
definitions. The first is as currently defined, the second is the

number of "packages® "withed", and the third is the number of
"packages" "withed®” that are not used.

The "report_generator” is being modified to allow the user of
ADAMAT to rank the modules according to any of these
interpretations.

Notice that absolute metrics have the same meaning under any of
the three intrepretations.

The human analysis indicates that the following four metrics are
candidates for addition to the metrics framevork:

1) The proportion of locally declared variables that cannot be

isolated in a "loop" contained within the module.

2) The proportion of “for loops® that cannot be eliminated through
the use of array slices.

3) The number of "if" constructs not wusing a short-circuit
operator when required,

4} The proportion of “packages® that do not contain variable
declarations.

The use of the metric scores to locate quality problems in the

"report_generator” indicates that the folloving metrics

candidate new metrics:

are

1) The proportion of modules that use types and/or objects from a

“withed” “package” without using any of the operators in that
“package”.

2} The proportion of modules declared in a package that use other
operators from the package vithout using any of the variables
declared in that package.

The new scores for the modified modules indicate that the

definition of “local_to_module® may need to differ depeixding on
whether the module is 3 "package” or a subprogram.

We are investigating the feasibility of incorporating each of

these modifications into our current metrics framework.
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S CONCLUSION

Our analysis indicates that the metrics for the three sub-criteria
flow simplicity, limited visibility, and error detection and
prevention are useful in pinpointing quality problems in existing
softvare and for identifying specific features of the Ada language
where training is required.

The comparison of the human and automated analysis suggests
interpretations of the metrics in our framework.

three

The identification of the distinquishing factors that determined
the human ranking and identification of deficiencies in the
analyzed softvare indicates the need for additional metrics in our
ADAMAT framewvork.

Each of the above conclusions is encouraging. However, our most
encouraging finding was that the investigation of the scores for
existing metrics lead to the discovery of nev software principles
that can be used as the basis for improving the exisitng metrics
framewvork.
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THE TECHNOLOGY LIFE CYCLE AND ADA

MIGUEL A. CARRIO, JR.

TELEDYNE BROWN ENGINEERING

ABSTRACT

The rate of change of technology development continues
to increase significantly while the system and software
life cycle's rate of change that assimilates the
technology continues to atrophy. Major technology
changes are occurring approximately every 2 to 3 years,
while system life cycles for complex and large embedded
computer systems are in excess of 12 years, and in some
cases as long as 18 years. Automated tools and
paradigms, coupled with modern methodologies and
technologies, and evolutionary development approaches
necessitate a reexamination of classical or traditional
life cycle models used to build systems. An examination
of the activities that occur during the maintenance
phase is required to properly identify and separate true
maintenance from pseudo-maintenance activities.
Furthermore, renewed and more extensive emphasis is
required on the early life cycle requirements and design
phases as a consequence of the emerging technologies.

BACKGROUND

The rapid infusion of software technology into embedded
computer systems and the dependency on this technology
to serve as the solution medium has itself created a
higher level of complexity whose interrelatiopships and
transformation algorithms are still not completely
understood. This situation is further obfuscated by the
lack of design discipline and the esoterism associated
with computer languages and code understood by a
relative few. What has resulted, despite the emergence
of information identifying the contribution that coding
activities represent as a function of the life cycle, (less
than twenty-percent in most cases) Figure 1, is a
misfocus of the problem. The misfocus occurs in part as
a consequence of the late detection of software design
errors (Figure 2), resulting in maintenance activities
being the costliest phase in the life cycle. Noiseux's
reference indicates that pseudo-maintenance can be as
high as 83% of maintenance costs. From a consumption
of resources and productivity view, one is led to believe
that concentration of solution resources should be
focused on the maintenance or support end of the life
eycle to effect the most savings. Despite the
expenditure of large quantities of resources in
maintenance, the last twenty years has yielded few
productivity gains, little discipline or significant
documentation that was of use in design maintenance
and fault correction insight.

'f'f : LR ‘-
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CURRENT PARADIGM, PROBLEMS

AND Ml§CONCE$TlON§

The current life cycle is essentially comprised of three
major phases - a conceptual and definition phase, a
development phase, and a deployment and operational
phase. In the conceptual and definition phase (i.e., the
initial or early life cycle phase), requirements are
identified, an intended performance envelope is stated,
and statements of needs are written. During this initial
and formative phase the prime individuals involved are
the users and the keepers of doctrine. The development
phase primarily consists of the design, code and test
activities concerned with the system implementation.
The development community, as the activities imply, are
in turn supported by the systems, hardware and software
engineers/designers; programmers and analysts; and test
and quality assurance specialists, to name a few. A
major difference between development and requirements
type individuals is that the latter represents the user and
functional expertise, while the former is more technical
specialist driven. The deployment and operational phase
also consists of the important maintenance and support
activities required to complete the final or last phase of
the life cycle.

For the most part, it is during the deployment and
operational phase that users and developers meet and
formally interact. The two initial major life cycle
phases, requirements and development, are the fiercely
guarded domains of the user and developer, or the
customer and builder.

It is interesting to note that in the world of high
technology and complex computer systems* that the
relationships and interactions between the key
individuals representing the different communities of
interest are difficult to grasp and understand. However,
a simple analogy is required to insure clarity since the
problem of understanding life cycle phase relationships
and responsibilities remains cloaked due in part to the
alphabet soup and acronyms that specific communities
use**, The problem is further exacerbated when the
different Government, industry and academic
communities are brought together to work on a project.

The analogy is one where an individual (homeowner)
desires to build a home by engaging a builder
(contractor). The prospective homeowner is isolated for
the most part from the various developer-subcontractors
(i.e., architect, plumber, electrician, mason, carpenter,
ete.). Initial meetings between the two are to select
type of house, appliances, color schemes, etc. and
contract finalization. During construction, a few limited
interactions, equivalent to development design reviews,
are made to satisfy contract construction draw schedules
of monies for completion work (e.g., basement, first
floor, roof) to reimburse the builder. The corresponding

*Other cquivalent terms are cmbedded computer systems,
mission critical computer svstems,  weapons  systems,
battlefield functional systems, real time systems, target
or applications.
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quality assurance or acceptance personnel are provided
by the customer or his bank in the form of inspectors
providing certificates of specific work completion, and
the ultimate acceptance certification, the certificate of
occupancy.

The problems of communicating requirements and
information is no less difficult or different between high
technology users and specialists than the homeowner
with his builder. Unless a homeowner can understand
architectural blue prints, electrical and plumbing
diagrams, he is at the same loss that a user or functional
expert is, in the event communications are attempted
with a software engineer or programmer (i.e., unless the
user understands the specific coding language and data
flow diagrams). In plain English, unless the user has
previously built his own home, he is at a communications
loss, caveat emptor. Similarly, a builder may encounter
his own difficulties because he built a house that did not
meet the full expectations of a buyer who wasn't sure of
what he wanted or where to locate certain partitions,
and selected tile colors and patterns he would have
subsequently preferred changed.

Thus, one key and fundamental problem that has been
identified across the life cycle, that continues today, is
that of communications, of understanding and insuring
the integrity and accuracy, of the initial set of
requirements. The passing of requirements information
becomes a significant issue that is commonly overlooked
since users and developers assume that because they all
speak the same language, English, that requirements
accuracy and specification clarity are all guaranteed and
that the language is sufficient to insure the intended
product. Would a builder consider building & house with
only an english written description, without architectural
renditions and blueprints? The question that must be
repeatedly asked is: Is the as specified system and
intended performance, the same as the as designed, the
same as the as documented, the same as the as tested
and the same as the as built? Under the current life
cycle and paradigms that are used to build systems the
answer is no.

In addition to the problem of communicating
requirements, a number of other issues and concerns
centered on the existing life cycle exist. Figure 3A
represents the life eycle currently used, with Figure 3B
representing a simplified version of Figure 3A, that will
be the one used as a reference throughout this paper,
unless otherwise stated. Under the current paradigm
used to develop systems, when design specifications are
passed to programmers in the coding phase, it is at this
point, and not prior, that the specification is converted
into an implementation. Additionally, the programmer
by default as a result of a lack of a viable
communications link back to the user or systems
engineer, is "licensed" to interpret requirements and

*shepartiment of Defense nees cither Milestone 0, 1,
M, N or conceptunl, design, development, deplovment
phnses respectivelv. Some Dold <ervices use svstem
& peeformance specifications, functional and product
specifications, while others eall them A level <pecs,
R level and O tevel specifientions  respectively, ad
natsenm,
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vs. "passed over" requirzments). Thus, the present
paradigm supports the maintenance of code and not the
mnaintenance of design specifications. This leads to the
sitiation that under the present paradigm the .nore
maintenance that is pecfor.ned on an existing system,
the :nore structire is destroyed and the less insight into
intended perforinance and requireinents rz2sults. Instead
of zgraceful system degradiation or evolutionary

Conceptual/Definition Development Deployment. Operational o R .

| Prase [ Phase ] ase | transitioning into an enhanced perfor.nance envelope,

I |

systems are discarded, and replaced by completely new

Design syste:ns with little commonality and reusability hetween

Maintenance

Requiremaents ! g:l: I Support them.
User - Developer User: Developer ilany systens' lifetimes are reduced by the
W | - | inco:nprehensible and voluminous specification

| | documentation produced that stifles the ability to gain
design  insight, traceability and correlation of

functionality with the same. Insight into development

| Requirements Analynis | Design  Code ""'l°°"‘- Mant. supt | and design methodology, and derived require nents are
also inhjbited. The few viable prototypes that are
created during initial design by systems engineers to
provide insight, are discarded and never used to assist in
the evolutionary and iterative processes of design and
) requirements synthesis. Further insight into curreat
Figure 2 versus automated paradigms can be derived from

references on Balzer and Sievert.

{1 }]

TRADITIONAL/CURRENT LIFE CYCLE

Current thinking and paradigms of the last 25 years
centered on life cycle phases, relationships and
technology that were stable and simplistic. Systems

implemment them based upon his understanding of the were manageable because they were snall in size (e.g.,
intent of the requirements using his own formal syntax program sizes of several thousand lines of codes); design
and senantics (i.e., using the coding/programming and programming teams consisted of fewer individuals,
language). This issue of interpretation is not really computers had not entered the world of nultiprocessing,
challenged until much later, in the test phase, when an nicroprocessing, virtual memories, concurrent tasks,
attempt at reconciliation of the as implemented versus relational data bases, and technology was slow to
as docu:mented design is made. At this point in the life change. Today, systems comprised of a half-million to a
cycle (testing phase) it is quite costly to correct million lines of codes, designed by tea ns of individuals
inistakes since considerable amounts of resources, have numbering 50-100 are common.

been expended in  time, people and costs. Froin design
to the syste.n integration phase, several years may have
intervened, requiring hundreds of specialists, producing CATCHING SOFTWARE ERRORS 1ATE: THE COST
thousands of pages of docu nentation. Software errors
are traditionally detected very late in the life cycle as

Figure 2 illustrates. Similarly as Figure 1 illustrates the .’— souncts

associated costs of detecting errors late in the life cycle o tmiee

are significant. Tewer errors can cost nore to correct = »l- o ot

the later they are detected. H * mutm

E »

Once design is implemented via code and the coding H i

specifications exist, fromn this point on in the life cycle, 2 w}

it is the code that is inaintained, changed and supported E

in an attempt to insure conformity between the a s}

implemented system and intended requirenents. E

Additionally once long lead procurement items and a L

hardware (LLPI/H) are delivered to the contractor, as a

resuit of commitments made early in the design phase, '

many requirement that cannot be accommodated by the N N N )

LLPI/H's are "passed over" to the software side of the nn—m mum CONt s WITNGRATE VALIATE SFESATION

house for accommodating implementation. The latter's b i
oY disruptive effect on schedules and costs is futher :nasked PRASE I8 THICH EAROA 1 SETECTED
'. N by the valid hardware/software tradeof( task found in PAESENTED BY MR. JACOUES GARSLER, BEPUTY ASSISTANT SECRETARY OF BEFENSE
Y major systems developments, (i.e., true apriori tradeoffs FOR MATERIEL ACQUISITION, AT THE 1977 AIAA SOF TMARE IWWAAGEMENT CONFERENCE .
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MALIGNED MAINTENANCE

The ratio of software to hardware dependency and
functionality has shifted significantly in the last 30 years
as illustrated in Figure 5. Present e¢mbedded co nputer
systems are prinarily dependent on and impacted most
by software. Since softwarz is labor intensive and
complex, the larger the syste:n, the greater the
resources required to support and maintain the software
activities. When probleins occur in an embedded
computer system, the last to be detected, .nost costly
and severe are the software problems. Why are the
software proble.ns so castly to resolve and detect? A
fundamental answer is that we collectively (industry and
government) are not as knowledgeable as we think we
are. The latter is not as negative as it sounds. With
the technology and corporate history about 25 years old,
and with individual system acquisition times of 10-13
years, all this means is that we are still learning about
the new technology, and have not had suffizient data
points to make many intelligent decisions. However, the
documented mistakes of the p‘lstl" together with the

e.nergence of new tools, different life cycle models and
software paradigms, coupled with innovative and formal
methodologies reveal that there are hetter and cost
effective ways to build systems in a disciplined and
predictable nanner.

Furthermore, examining maintenance activities in
zreater details reveals that .nost of the activities
occurring are not true corrective maintenance activities
(i.e., fixing latent defects, software bugs and errors
arising fron code). The majority of activities occurring
in this phase can be classified as pseudo-maintenance
activities. References by Boehm and Glass shed further
light on this subject. The activities found in the
maintenance phase consist of the following:

a. Making enhancements to the system perforinance
envelope, this is com.nonly referred to as adding
bells and whistles or gold plating. The core
requirements are not impacted but features are
added (e.g., modifying a screen format or adding
color graphics to it). Increased scope.

Changing the baseline perforimance by adding new

or substituting other require.nents relative to
those implemented. This primnarily results when
the user is not sure of his initial requirements set.
Increased scope.

Changing the baseline performance envelope to
improve response times in excess of requirements
or in anticipation of a future change in doctrine-
optimization. Increased scope.

Increasing the baseline requirements in order to
transition or evolve to an intended or objective
baseline. Intentional and planned for increase in
scope.

Corrective maintenance, in the true secnse, to
sustain an existing system and Keep it in an
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operational state by repairing defects arising
fromm its use within its original performance
envelope. No change in scope.

Conditions (a) through (e) are reflected in the following
five expressions (1) through (5) respectively:

Where pecrformance (P) is represented by:
T; - original timing constraints
ti - new timing constraints
- original function set
fj - new function set
Rj - original requirements envelope
Rg - sudstituted require.nents envelope

ri - new or additional requirements set

Subscript i represents the various iterations or versions
that result in satisfying and sustaining a level of
performance. This is part of the localized tuning
process.

(1) Enhancement
P > [T, [F;), [R{]

¥ie;)

(2) New or Substituted
P; DTy, [Fil, [R{)
N[ RSv rl]

(3) Optimization
Pi 3[Tj), [Fils [R{]
STl

(4) Transition or Evolutionary

PiBasetine ?{Til» [Filh (R

P:

iobjective > ITi*tik [Fi*fih [Rj+ri]

(3) Corrective Maintenance

P; 2 [T;}, [F;} [R{]

Activities (a) through {(d) and 1-4, represent pseudo-
maintenance activities, while (e), (5) represent true or
corrective maintenance in the classical sense. However,
the pie charts or bar graph representations found in texts
referencing major life cycle activities showing relative
weights of phases, for the most part just identify
maintenance as a whole thereby generating a
composition misconception,

Most of the activities occurring in the maintenance
phase, over 80%7, are of the psuedo-maintenance type.
This results as a consequence of the following:

'-.),\._-\.}.J.. \_{,\ -.)\J,\ "\,. n

L %



a. The problems generated by using the current
paradigm where as intended is different from as
implemented design. Effort is thus expended to
correct this.

b. Very late detection of complex problems and
unclear design, obfuscating traceability and
methodology.

c. Lack of a usable communications and graphical
language understood by users and developers - the
communications problem.

d. Lack of early working prototypes that can be
maintained and evolved into end-implementable
systems, instead of throw-away prototypes.

e. Documentation that precludes corporate design
histories and does not provide insight into design
and development methodologies.

f. Lack of automated tools to assist in harnessing
the new technology that enables the compatibility
of innovative concepts. These tools should also
enable deriving productivity synergism from the
merging of innovative concepts and technology.

g- Lack of an awareness of the changes being

wrought by the emerging technology, an
awareness to change and adoption to it.

NEW APPROACH TO LIFE CYCLE

By identifying new components to the life cycle and
addressing these areas via new tools, paradigms and
approaches, the pseudo-maintenance issues ideatified in
(a) through (g) can be resolved today. However, it is felt
that one of the biggest impediments to getting a grasp
on managing the development of large complex systems
and software productivity is item (g), an awareness of
the impact that emerging technology can have and a
willingness to change, to adopt, to experiment using the
new tools and paradigms.

The technology life cycle of Figure 6 shows a modified
life cycle, that can be used to support automated
paradigms and more accurately rellect technology
changes that impact how systems are built.

PERCENT OF COST MAINTENANCE  DF.VELOPMENT
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If advantage is to be taken of working prototypes based
on design that can be maintained and evolved into end-
item systems, then a greater emphasis must be placed on
the early or initial life cycle phases. Specifically, a
synthesis phase must be identified where the following
areas arc addressed:

Prototyping - Using an automated paradigml, early
design driven prototypes are established and
maintained for the duration of the life cycle. This
enables a strong traceable link between
requirements, design, implementation and
maintenance. A corporate history and process insight
is available.

Reusability - Designing for reusability must be
addressed at this point since costs and resources
required are greater than the single context or
sysiem used in a single application (point system).
Too!s that support reusability must be invoked at this
early phase to be effective and to insure
productivity.

Artificial _Intelligence/Knowledge Bases - The
emerging technology will emsﬁ the development of
intelligent tools supported by a knowledge base that
will provide the ability to identify minimum
functionality for generic systems and assist in the
allocation of functions, software and design
reusebility. AI/KB tools supported by automatic code
generators will enable concise and consistant
transformations of requirements to design to
implementation in significantly less time.

Generic_Instantiations - Once a system or class of
systems Is developed using these innovative concepts,
tools and paradigms, subsequent evolutionary
derivative systems and subsystems can be efficiently
and rapidly instantiated enadbling a higher degree of
verification, validation and a shorter deployment
time This activity may consume what is commonly
refecred to as rapid-prototyping using very high order
or Fourth Generation Languages. Punctional
instantiation and completeness would be enabled
earlier in the life cycle process instead of the
meaningless functional and physical configuration
audits that are required at the end of development.

Data Base Applications/Support Environment - With
systems Secom.[n_g larger and more complex, requiring
extensive support in their post-deployment period,
data base management of voluminous information
becomes a critical function. Separation cf the data
from its applications enables a concentration on
synthesis.  The migration of data between the
corporate, host & target development, and
applications data bases can then be focused on
relative to such functions as access, distribution,
fusion and transportability.

Technology Insertion - Under an automated paradigm,
using modern methodologies and an evolutionary
development scenario using automated tools, the
ability to assimilate technology rapidly is made
possible. This insures that developed systems can
take full advantage of what is available on the
market in a cost-effective manner.
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Autonated Tools - Systems have become so large,
complex, and labor intensive that adoption of
automated paradigms and modified life cycles while
essential is insufficient. Substantial increases in
productivity can only occur when innovative
concepts, paradigms and methodologies are fully
supported by automnated tonls that in turn incorporate
formalisms and graphics. Formalisms in the sense
that a methodology supported by a rigid syntax and
se nantics is embodied within the specific design tool
environment and is machine processable and
executable. Furthermore, the user interface to such
a design environinent shall be extre:nely friendly and
graphical so as not to burden an already technology-
overburdened architect.

In conjunction with the synthesis phase of the life cycle,
the maintenance phase would be divided into three
maintenance parts: baseline, enhancement and objective
naintenance phases. The baseline maintenance would
correspond to the traditional or corrective maintenance
performed on the original or baseline system, while the
other two consist of all of the pseudo-maintenance
activities. Enhanced maintenance would comprise all of
the pseudo-maintenance activities except for the unique
activities associated with transitioning to an objective
syste:m.

TAGSR Technology represents such an example of the
automated paradigm coupled with a formal methodology,
graphies, and documentation aides, automnated on an
engineering design workstation. The point being that
such automated tools with automatic code generation
back-ends are appearing and available on the
marketplace.

LIFE CYCLE EQUIVALENT MODELS

An equivalent representation of the Figure 3B and 6 life
cycles is shown in Figure 7.

Post Deployiment

Requremenis l Ievrtopment l i l |
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Figure 7A illustrates that the traditional life cycle is a
unidirectional flow model that cannot support
evolutionary development, and only supports the
maintenance iterations associated with the code and
coding products. Figure 7B is the technology life cycle
representation  allowing  bidirectional flow  of
require ments information, reusability, iterative
maintenance of design and evolutionary development.

The technology life cycle thus enables the assimilation
of AdaR with its different forms (e.g., Ada Program
Design Language). The concepts espoused by Ada
Technology such as data abstractions, packages, tasking,
generics, and types can easily be accommodated and are
preferred under the new paradigms. Module
functionality and interfaces can be effectively addressed
and referenced in design considerations without concern
for implementation details of such. As these concepts
are elevated to higher levels of abstractions and
addressed throughout the life cycle, the seeds of
common denominators and better communications are
ultimately planted leading to a greater understanding
between users and developers. This is essential for the
passing of requirements in a uniform and consistant
manner.

NEED FOR CHANGE

The traditional life eycle has been slow to change. It is
essential that the life cycle be viewed from a different
perspective, and that it too be subject to modification to
accommodate the technology changes imminent over
time. The rapid technology changes of the the last 25
years have focused attention on the specific activities
occurring within it. As a result, much attention has been
focused on the coding phase (i.e., Ada Language
initiatives), on deployment (i.e., Post Deployment
Software Support Concept), on software development
(i.e., Software Technology for Adaptable, Reliable
Systeins (STARS) Program), on environments (i.e.,
Software Engineering Environment (STARS-SEE)), but
until recently very little on the broader issues of the life
cycle.

If significant productivity gzains are to bDe made in
developing and fielding systems then a closer look at
those areas mentioned must be made. An understanding
of the relationships and transformations between phases
is key to transitioning between them.  Significant
resources, and much dialogue is expended on integrated
battlefield management concepts and open system
interfaces, but very little on integrating methodologies
with automated paradigms and evolutionary or
reusability concepts where significant benefits are to be
accrued.  Congress debates over systemns and their
numbers to be acquired for the .nilitary, but very little if
any debate is ever heard over how to build these syste ns
in tinely cost effective ways, or for that .natter,
identifying long ter n development strategies in light of
short term fiscal policy and rapidly changing technology.
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The entire design review process must also be examined.
Preliminary and <ritical design reviews should be
adhered to as intended, to signal major design
stabilization points, and not to satisfy a contractual
schedule or appease :nanagement. In light of the
synthesis and pseudo-maintenance phases discussed, new
milestone reviews should be identified (e.g., upon
complation of a working prototype or simulation run). A
reusability and data hase management review should also
be established. Depending on the type of development,
design reviews should he flexible and custom tailored for
the specific system, yet rigid and formal enough to
provide the insight into system progress and maturation.
Autommated prozram nanagement tools supported by
knowledge bases can be most effective in providing a
program manager insight into the systen development
and its specific life cycle.

A properly tuned and understood life cycle ean support
systemn development so as to conserve resources that can
be uscd elsewhere to address the larger multi-context
issues of reusability and evolutionary development where
significant payoffs are to be realized. In the long ter.n,
adoption of new paradigms and technology life cycles
would result in the disappearance or transformation of
pseudo-maintenance and the requirements phase into a
new combined process capable of synthesizing systems in
times less than that associated with the technology.

The commitiment of resources to and emphasis on the
initial phases of the life cycle should be viewed as viable
investments. Risks are optimally minimized,
productivity yields inaximized, and software
develop.nent with its schedules and cost can be
disciplined and most importantly - predicted.
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Evolution as a New Basis for Reusability.
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9/ Glass, R.G. & Noiseux, R.A. - Software Maintenance
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17/ U.S. Department of Defense - Reference Manual for
the Ada Programming Language; MIL-Standard 18154,
Feb. 1983.
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RTAGS is a registered trademark of Teledyne Brown
Engineering.

Rada is 2 registered trademark of the U.S. Govern.nent,
Ada Joint Program Office (AJPO)

Mr. Miguel A. Carrio, Jr. is
presently Manager of Advanced
Technology Programs at Teledyne
Brown Engineering's Washington,
D.C. facility., Mr. Carrio's past
responsibilities at TBE  have
been as program manager of
both the Defense Communications
Agency WWMCCS Advanced
Area Research & Development
Programs’ Independent Verification
& Validation/Testing & Prototype
(IVV/T&P) efforts; and the DoD
Joint Tactical Fusion Program IVV/T&P. Prior to
joining TBE he was a branch chief at the Army's
Communications Electronics Command-Software
Technology Center with responsibility for such
programs as the highly successful and first validated
Ada Compiler (NYU Ada/Ed), Ada Design Methodology
Efforts and Ada Education training programs.

Mr. Carrio's experience in systems and software
engineering spans 23 years. Mr., Carrio has a BS
Physics, LIU, and an MS Engineering from Fairleigh
Dickinson University.
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% SESSION IV: ADA IMPACT ON SECURE OPERATING SYSTEMS

CHAIRPERSON

M. Margaret Zuk, Group Leader

.

B IS BV A

MITRE Corporation

[}
L]
)
s Use of the Ada language for secure sys-
f‘ tems introduces many complex issues. The
& elaborate Ada Runtime Support Library, the
unpredictable behavior of Ada programs possi-

e ble with different compiler implementationms,

v and the complexity of the language itself are
5 concerns that secure system designers and b
o verifiers face. k
‘: This panel will focus on the impact that [
. Ada has on the design and implementation of f
[T secure systems. An overview of secure system
£ design and the techniques that are used to

g verify secure systems will be presented. Sys-

{ tem designers will then discuss current work

" in this area, and share their experiences
b with the use of Ada.

%
s
X "
n)
:& Margie Zuk is a group leader in the
A Trusted Computer Systems department at MITRE,

& Bedford. Her group provides security system
engineering support to the Army and to the DoD
Computer Security Center's Office of Applica-

@f tion Systems. She has been involved with Ada
.Q since 1981, and serves as chairman of the Ada
) Verification Workshop's Secure Systems Working
L2 Group.

v Margie holds a Masters degree in Computer
&- Science from Stevens Institute of Technology

and a BA in Math from the college of Mt. St.
Vincent. Prior to joining MITRE, Margie worked
for Bell Laboratories and Ford Aerospace.
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SESSION IV: ADA IMPACT ON SECURE OPERATING SYSTEMS

PANELIST

Dr. Richard A. Platek, President

Odyssey Research Associates, Inc.

The state of the art in formal Ada
specification/verification is reviewed
including current European work. Several
problems are surfaced and solutions
proposed. In particular, met hods for
dealing with Ada's so-called
non-predictability and complexity are
presented. The first 1is handled through
the use of non-deterministic

post-conditions for Ada program units. The
second is handled using the method of
Clusters which the author and his
colleagues are developing.

Richard Platek is President of Odyssey
Research Associates (ORA) of Ithaca, NY and
a member of the Department of Mathematics,
Cornell University. He has a B.S from
M.I.T. and a Ph.D. from Stanford
University, both 1in Mathematics. ORA s
concerned with the applications of formal
methods to the development of trusted
software with special emphasis on secure
systems. Their activities span the
spectrum from security engineering on
systems which are currently being fielded
to the development of advanced,
knowledge-based software engineering tools

-1’ for the inferential development of provenly

. correct systems. Prof. Platek is

[ Chairperson of the SIGAda Formal Methods

N Committee.
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1 SESSION IV: ADA IMPACT ON SECURE OPERATING SYSTEMS
- PANELIST
i
", Eric R. Anderson, Army Secure Operating System Project Manager
!
KO
. TRW DSG
M
3z
#"
b‘E This talk addresses some of the criticisms
Qﬁ that have been leveled against Ada's suit-
3 ability for use in trusted computer systems.
It treats the use of Ada for both untrusted
5 applications programs and security kernel
BN implementation. (It does not directly address
18 the use of Ada for other trusted software, but
t\{ much of what is said about its use for
i*_ security kernels applies to trusted software
? as well.) The paper concludes that each Ada
/

criticism is either unfounded or poses a
problem that has a solution; thus, Ada is
indeed suitable for trusted computer system
implementation.
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Mr. Anderson has 17 years of experience at TRW,
- both as a software manager and developer. His
areas of expertise include project management,

real time operating systems, programming
:: languagos, and computer security.
'5j Mr. Anderson is the project manager of the
‘) Army Secure Operating System (ASOS) project.
X In the Concept Definition Phase, he was the
'f‘ chief designer of both the Dedicated Secure
% Operating System and the Multilevel Secure
’u4 Operating System, and designed the Task

Management portions of both operating systems.
He previously managed the "Security Kernel

for Secure Operating Systems' IR&D project.

He was a subproject manager on the TDP project
operating system and a work package manager

on the MIFASS project real-time operating
system. lie was the project manager of the
Kernelized Relational Information and Storage
System (KRISS), and a work package manager of
the Kernelized Secure Operating System (KSO0S).

Education: A.B., Computer Science, University
of California, Berkeley, 1969. M.S., Computer
Science, University of Southern California, 1972,
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SESSION IV: ADA IMPACT ON SECURE OPERATING SYSTEMS

PANELTST

W.E. Boebert, Chief Scientist

Honeywell Secure Computing Technology Center

D
)h
fz
!
e
J.l.
oy There are three sets of issues which must be
R h fused in the use of Ada in secure systems.
bl The first set deals with the use of Ada as
L) a programming language for secure applications
4‘ whose operations are controlled by a Trusted
: Computing Base (TCB). The second set deals
b with the use of Ada in the implementation
Sr of "trusted processes'”, and the third deals
e with the use of Ada to implement the reference
>,} monitor subset of the TCB. The positions
4 taken by the Secure Ada Target project on
*f these three sets of issues will be described.
o
*-‘
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.ﬁ' Earl Boebert is currently the Chief Scientist
4! at Honeywell's Secure Computing Technology
X Center, where his prime responsibility is
N acting as Principle Investigator on the Secure
. Ada Target project. Prior to this, he held
N a variety of technical and managerial positions
N at Honeywell. Before joining Honeywell in
" 1966, he was an EDP officer in the United
) States Air Force, and before that, a programmer
? and machine operator at the Stanford Computation
N Center.
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ol Steven R. Hart - Staff Engineer
R
B% L
T
RR M/A-COM Linkabit
WL W
W
‘:::"t
a:|:i: SYNOPSIS: An overview of some of the problems
;.‘,:. associated with the use of Ada to develop trusted
jl:..t: computing systems is presented. A methodology
Vet and generic software architecture is given which
allows full Ada to be used as the development
KRy language for applications programs in a secure
!"t:l' environment, based on standard reference monitor
'0“. concepts. The methodology allows for bi-direc-
ey tional portability; that is, programs running
10 :
,'-'.ll;. under the secure environment can be easily ported
,‘Q:..l to any other machine, and externally generated
e AN programs may be brought into the secure environ-
.2 ment.
t 'r'f:\
e 7
"
L M
¢
' .
Y
: :’ Steve Hart is a Staff Engineer at M/A-COM Linkabit
'o' %, where he works on problems in computer security,
Rt satellite networking, and software engineering.
J His research interests include development of
" W combinatorial solutions to multichannel scheduling Cwr e
WA and formal techniques for verification of specifi- Caa
50 cations and protocols. He received a B.S. in ¥
oA Mathematics in 1977 from the University of Nevada, L~
%y Las Vegas, and a M.A. in Mathematics in 1980 from | N
: the University of California, San Diego. .
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¥ DEVELOPMENT OF A CORPORATE ADA TRAINING CURRICULUM
'.;'t:
[}
.é' Linda F. Blackmon
)
[ General Dynamics
Ft. Worth, Texas
R
)
ﬂf
o
li
o
Yo highest levels: 1t 1s necessary to involve the
: Abstract Q ) ;
rac mid and upoer level management of each of the
Y This ovDaper discusses the process followed to component divisions/companies in the
fﬁ define a large corporation's need for Ada decision-making process and in the delivery of
‘ >
ﬁg training and the establishment of a corporate the new nethodolo$y or Dr:d“c: once the d:2;51in
?ﬁ mandate to develop and deliver an effective Ada has been made. t s To » 0 °°“r:°= :eelfsat;
’0 training orogram to all divisions. The for the d*v:sxon-leve managemen 1ts
g‘ management process involved in obtaining carticipate in the oprocess directly: they will
J’ cooperation fFon all levels of staff in the most often delegate that responsibility to senior
{ devélonnent of a corporate~wide project s level technical or lower-level management
e, emphasized, along with a descrintion of the oersonnel.
ﬂ{- courseware design and development methodology
"y used to develoo the curriculum and the challenges General Dvnamics falls 1nto the categorv of a
i': in the design of a technology curriculum for an large . diversified corporation. Composed of
b. industrial setting as ooposed to an academic thirteen divisions and comoanies,. with goods and
e environment., services ranging from the production of military
products (tanks. fighter glanes, and nuclear
. submarines) to the mining of coal and lime, this
W\ corporation gractices matrix management to
¥ ) effectively oproduce goods and efficiently deliver
z services to a broad range of customers. The
Management Strategyv . majority of oproducts and services produced are
:sv targeted to military use, and the DoD has
B Perspective mandated that Ada will be the language used in
the develooment of all embedded and
W There are two extremes 1n the business world: mission-critical svstems. It was clear that a
MG the small individually owned and operated commitment to a well-defined. coherent olan to
;" company uh;ch focuses oﬁ one or two n}oducts train software engineers 1n Ada was essential.
‘?i and/or services, and the large. multi-national,
‘f' highlyv divers:fied corgoration. Such a In such a corporation the too-most level of
%' coroo%ation serves as an umbrella organization to management at the corporate headouarters must use
v a host of 1ndependent divisions and companies, their broad-range. "big oicture” point of view to
* anv one of which might be classified as a sizable 1dentify possible coroorate-wide needs.
W comoany 1f 1t operated on its own, and none of Identification must be followed with a orocess
$ which are necessarily functionally related to the which 1involves the division-level oeoole 1n the
B ? others. Each of these extremes has its own refinement of the needs statement. the
;,ﬂ unioue decision-making orocess and method for promulgation of aporopriate scolutions, and the
facilitating change within the organization. facilitation of those  solutions &t the
appropriate levels 1n the divisions. Too
management 1., 1n effect. more dependent on
In the small comoanv, the owner-manager 1¢ relationshios than on authority to assure
g ultimatelv responsible for the final decision: effective execution of their reguests:
employvees mayv or mav not be 1invited to authoritv impacts more and more individuals as
participate 1n the orocess, Once the decision the management hierarchy 15 descended. The
[ has been made, change 1s usuallv mandated and any larger the corooration the more possible 1t 1s
: emplovee who 18 unable or unwilling to coooerate for lower level emolovees to subvert or sabotage
ot
) will be asked to find other emnlovment. Large the wishes of upoer-level management 1f they feel
LN
) corporations, on the other hand, are not able tc that the decisions made are not tn their best
re effectively institute change by fiat from the interests or that thevy were not reoresented in
L]
|}
0
f.
..l'
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the decision-making oprocess. The answer to this The responsibilities of the design team also

oroblem lies in the utilization of the team include the constant monitoring of the training
approach, making it possible for representatives needs of the corporation and the need.to be alert
from each of the involved groups to have input to changes which reguire modification of the
into the decision-making process and the overall curriculum and/or reshuffling of
facilitation of the changes. priorities for course development.
Workj
Developmen ivery n
The production of a well designed, affective Maintenanc f th rri

curriculum reguires:

Eocus of the Design
1. Expertise in Instructional Design Methodology

When designing for an industrial rather than an
2. In-deoth understanding of the target academic setting. considerations include:
population needs and environment

1. Time: courses must be fast-paced and
3. A functional command of the subject matter to intensive: a two-semester course at a university
be covered may be compressed into two weeks in industry:
2. Audience: mixed audiences are common, with
The resources for the first two reauirements were experience ranging from none (the new graduate)
available in the divisions: subiect matter to the experienced programmer/analyst:
expertise was found by hiring an outside
consultant. The design team is composed of the 3. Reinforcing exercises and examples: courses
Corcorate Coordinator who serves  as a should include as much hands-on laboratory
facilitator-moderator-manager for the oprojects practice as possible, with the labs targeted to
recresentatives from the Computer Related actual production needs. One of the objectives
Training Department and the major oproduction of the design team is to build into the materials
locales: and the Subject Matter Expert (SME). a set of usable models for the software engineers
Each member of the design team is in close touch to apoly on the job when the training is
with oroduct oroduction to bhe sure that the completed. The examples and exercises mode) the
design of the curriculum remains focused on the concepts  underlying the applications but are
needs of the corporation. presented as "“fantasy games" or "case studies” in
order to focus learning on the conceptual level
The a1nitial objectives of the design team were rather than on a current specific apolication.
to:
1. Refine the overall curriculum requirements
and oroduce a detailed specification of need: Revelopment Tools
2. Define the focus for the corporate training Two main tools are used in the production of the
effort (not all needs could or would be met bv course materials:
the coroorate effort: some would have to be
addressed locally)s 1. Information Mapoing Technology (1)
Information mapping technoloogy structures
3. Set oriorities for both immediate and material in a too-down fashion: each topic is
long-term develooment efforts. decomposed into conceots, and each concept is
nresented in terms of a set of information
blocks. Materials structured in this wav are

Once these 1init:ial obiectives were accomplished,
the team moved +to the second set of goals, that
of establishing a set of standards for the
develooment of the courses {(including formatting

easy to read and to follow during class and serve
as an excellent reference for the students when
thevy return to their workplace.

standards Ifor such ngod:cts BSL ;he éﬁizzzt 2, A PC-based authoring svetem which allows the
busdes, nstructor uices., a N oresentation visuals to be oroduced using color
Presentaticon Visuals, and other support

and animated granhics. This method of production
of presentation visuals for the classroom has
many benefits: most authoring svstems sre easv
to learn and can reduce the time spent on
development of these tvpes of teaching aids: when
dealing with computer related subject matter it
18 easy to simulate screens: and, finally,
learning 1s facilitated when color and animatior
are used to emohasize teaching ooints.

materials), and for configuration management of
the completed curriculum.

The final (and on-going) mission of the design
team 1s tc particioate i1n the develooment of and
approval of . the detailed design for each course:
to oparticipate 1in and monitor the first and
second o1lot offerings of each course: and to
recommend and aoorove any changes generated from
those oi1lots.,

0
l"
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Instructional Design Methodclogy
“ rs r ngineering"

The oprimary basis for the design and development
of the courses is the standard Instructional
Svstem Design model: Analysis, Specificaticon of
Objectives, Design of the Course, Develooment of
Materials. First Pilot, Revise, Second Pilot,
Final Revision, and Turnover. Within this model .
this proiect has designated the student guide as
the orimary document from which all other
materials flow. Within this orocess, which
closely parallels the traditional software
development cvcle, software engineering
princioles such as abstraction, modularity,
information hiding, and configuration management
may be applied. The develooment of teaching
materials using such princioles mav be termed
"Courseware Engineering”.

To communicate the flavor of Courseware
Enaineering, the following is a broad ocutline of
the rules used to generate the basic desian of
the course, how that design is translated 1into
the Student Guide, and a brief descriotion of
information which whould be 1included 1in the
configuration management system of a course, as
expressed in a Course Standards document.

1. The Design Process

A detailed outline of the course must be
developed at the beginning of the desion
phase. The outline should break the
material into the following levels:

SECTIONS: The broadest subdivisions of the
course. sections correspond to chaoters of a
book .

TOPICS: General divisions of the sections,
tooics usually correspond to the oblectives
for the course,

CONCEPTS: The smallest "chunk™ of
1nformation oresented to the student .
concoots are the building blocts of tooics.

The orocess of outlining the course
represents the first cut at "chunking” the
learning materials. A further refinement
now occurs, as the CONCEPTS are analvzed and
divided into even smaller units, known as
“blocks".

Logically group and order conceots to
generate lecture segments that do not e-ceed
thirty to fortv-five minutes.

Once the student guide outline has been
completed, decisions must be made on the
details of the classroom presentation which
includes the olacement of exercises,
distribution of handouts and other Job Aids,
and the placement and tvoes of oresentation
visuals. The outline 1s now STORYBOARDED to
include these materials.
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EXERCISES:

Each logical concept group 1s followed by a
“cookbook" exercise or a set of reinforcing
questions.

Each topic 1s followed by a “"reinforcing
exercise” which 15 a problem reguiring the
student to apply the concepts of the topic.

Exercises are intended to be executed
in-line during the lecture. but can be done
as a group if the classroom does not have
individual terminals and a traditional
lecture-lab format must be used.

2._The Development Phase

Student Guide

The student guide flows from the outline.
The student is presented an overview of each
SECTION and TOPIC while the concepts are
detailed,. using information mapoing
technology.

Each concept is now defined, described and
illustrated using graphics and/or examples
and non-examples.

Cour Stan ument
a. Course Descrintion

1) Goals and objectives, stated 1n
behaviorial terms
2) Delivery Modalities

b. Target Audience

1) Intended audience

2) Prereguisites for the course

c. Environment specifications describing
the harduare and software tools reauired
for delivery and maintenance of the
course.

d. Configuration management soecifications
detailing the edit controls and file
management guidelines for the course.

v n r Mayntenance S v

Course maintenance 1s controlled through two
primary mechanisms:

a. Standardication of oroduction
methodolopy, 1.e.. a sinple PC-based
authoring svstem and word orocessing
pact age will be used for all of the
courses,
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b. Establishment of "course managers®, each
of whom has responsibility for the
ongoing maintenance of one or more
courses in the curriculum. Once a course
has been released for general delivery,
it is the responsibility of the course
manager to keep track of recommended
revisions and to provide current
materjals to the Ada instructors. When a
sufficient number of non-critical
revisions have accumulated, or on the
occasion of a critical revision
(a technical error 1s discovered, or the

language 1tself changes), the course Ms. Blackmon is the Coordinator for the Corporate
manager is responsible for calling in the fida Training Project at General Dynamics. She
design team to assist with the necessary also serves as Project Lead for Scientific and
modifications, as needed. Engineering Training at 6D's Central Center in

Fort Worth, Texas, Prior to loining the General
Dynamics Computer Related Training staff, 6 Ms,

Closing Summar Blackmon was a Software Engineer in the Advanced

Comouter Systems [aboratory at Texas Instruments

Corporate whilosophical and financial commitiment and an Instructor in Computer Science at Tarrant
to a large scale training effort in a new County Junior College, Fort Worth.

technology. such as Ada, assures that at least a
minimal level of expertise will be available to
all groups in the company. The creation of the
product must involve a bottom-up approach to
generate a sense of ownership on the part of the
users. Continued involvement of the actual
oractitioners of the technology 1n the ongoing
training efforts enriches all programs within the
company and encourages development of new
applications and tools.

An effective, efficient curriculum can be
developed and delivered for a large corporation
by:

Professionally managing the curriculum
develooment

Obtaining the hest technical expertise
available in the field

Involving the user community in all phases of
curriculum development and delivery.

ibliograph

(@) Horn, R.E. "How to Write Information
Mappinp“, Information Resources, Inc., Lexington,
Mass.

Olympia, P.L. “Information Mapoed SAS:

Teaching S5AS for Retention”, University of the
District of Columbia.
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Chemistrv", Journal of Chemjcal Education,
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Ada 1s a reqgistered trademark of the U.S.
Government . Ada Joint Program Office (AJPO).
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} IDENTIFIERS
j
'o% Definition An jdentifier is used as a name for an Ada entity.
l‘i An jdentifier is a sequence of characters that
e stands for whatever data may be associated with
ey it when the program is run.
?' Rules 1. An identifier is composed of
{ o the letters A through Z (upper or lower case)
o the digits 0 through 9
; o underlines
h 2, An identifier may be as long as the length of
a line,
3. Identifiers are pot case sensitive.
i 4. The first character of an identifier must be
a a letter.
5. An underline must be embedded between two
non underlines,
Q Examples Current_Altitude
N Maximum_Height
' Front_40
‘ FRONT_40
& Stack_Size
StackSize
. Maximum_Altitude_OF_CURRENT_Tirget
I MAXIMUM_Altitude_of_Current_Target
‘i MaximumAltitude_of_Current_Target
84
fﬁ Non-Valid 4_July (must start with letter)
e Examples _July_4 {must start with a letter)
. Grand_Total_ (underline rnwust be embedded)
xS Hello__There (underline must be embedded between
\ two underlines)
: Raise_10% (¢ not a legal character)
4
”
,“ Comment The identifiers Front_40 and FRONT_40 represent
; the game data item. The identifiers Stack_Size
u and StackSize represent distinct identifiers,
4
ﬂ Choose names that reflect the problem domain. Do
* not use cryptic identifiers like X, P, CC, etc.
:f Related reserved words
. Concepts
¥ L]
bl EXAMPLE OF “INFORMATION MAPPED = CONCEFPT
&
b)
N
X
R
o
D)
1’
R
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USING STRUCTURED TECHNIQUES TO TEACH

REAL-TIME EMBEDDED COMPUTER APPLICATIONS

e
v )

Moorestown,

{-g Abstract

a\ﬂ The task of teaching programmers to

p : work with real-time embedded computer sys-

li' tems is extremely complex. The number of

' topics to be discussed and the difficulty
of the concepts involved produce poorly

O organized, ineffective coursework. Use of

b Ada concepts to organize the material and

ié$ its presentation offers a solution. Since

@\# Ada is designed to handle complexity, its

i\} problem-solving approaches can also be

:&Q effective in teaching complex concepts.

At

‘e

B

The success of this effort (applying Ada
technology to such a curriculum) may serve
as the basis for designing new teaching
methods in the future. Ada constructs

for concurrency offer excellent tools for
understanding that aspect of real-time

*: systems. This initial attempt assumes
! that the students had no prior knowledge
of Ada language. Nevertheless, the
. description of concepts in an Ada-like
~g§. fashion still clarifies the material, If

r

o,

the class has some background in Ada, this
new method can be even more effective.

R, Introduction
s . .

I An Educational Fairy Tale
)

The curriculum listed the course as

1q : CMS-2, a high-order language, but the

;Q.- course content also included an introduc-
,bl tion to the hardware, assembler language,
", and operating system, and alluded to the
N . life cycle of the project. These topics
 £\ seemed inseparable in a real-time embedded
Y computer application. The students liked
,ﬁs the class with one reservation: the pre-
B sentation seemed to lack continuity. It

: : was disjointed. "Why," they asked, "does

)

)ﬂj read a book by Grady Booch called Software
!;*4 Engineering With Ada. Then the instructor
‘\) had a dream.

:;3 In the dream was shown a course that

: consisted of neatly-wrapped packages.

F% Each package contained little windows,

\. >

)

Lt

\"'I

:\%

‘5' 96 Annual National Conference on Ada Technology 1986

\
R

0 the instructor GO from one topic TO
another and never really complete any
single discussion?"” And so it went, year
after year, until one day the instructor
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Ruth S,

Rudolph

Computer Sciences Corporation
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08057

and in each window was a sign that corre-
sponded to an identical notation in the
course outline. Each package contained
detailed information about a topic, but
the packages were tied together in a
precise way. The ribbon around each
package NEVER became tangled with any
other.

The next day the instructor repackaged
the CMS-2 course. The topics carefully
were developed into individual self-
contained units that could be taken off
the shelf. The relationships between the
packages were described using standard
interfaces. The students did not have to
be confused by complex detail because all
they could see was what appeared through
the windows, and yet all the relationships
in the application were clear...and the
instructor taught happily ever after.

This fairy tale is fanciful perhaps,
but it illustrates an approach to pre-
senting a coherent picture of all the
aspects of a large, real-time system to a
class whose only experience with computer
applications has been writing a small
mathematical problem in a high-order lan-~
guage. This is a dilemma that has been
growing for the last 20 years. 1In seeking
a solution, an insight was gained into how
the system initially was put together.

"Structured" Teaching or a
Go-to-Less Course

The designers built a dedicated opera-
ting system that now looks very similar to
an Ada package. A number of services for
the user (applications programmer) were
specified. Each specification included a
predefined packet (similar to a procedure
parameter list in Ada) that served as a
template for the user. When the service
was requested, the user placed the real
values in the packet. All the implementa-
tion details of the service were hidden
from the user. However, if the request
for service was unsuccessful, a flag was
set in the user's local scope to indicate
it. This is somewhat like raising an
exception in Ada since the reason for
failure was clearly identified,
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Furthermore, implementation of the
services was designed in a modular
fashion; a look inside at the details
reveals an interesting and innovative
organization of procedures. The proce-
dures, themselves, were packaged by func-
tionality. This system was built before
"software engineering"” had become a "buzz"
word. The system designers intuitively
applied techniques that have since become
accepted practice.

Armed with an understanding of Ada,
software engineering techniques, and the
advantage of hindsight, the relationships
between the applications and the operating
system can be neatly described in an Ada-
like fashion. Ada terminology can be
applied aptly to pieces of this system
even though the designers had never heard
of Ada and, in fact, wrote in assembler
language.

The instructor's problem was to
explain to the class how an individual
application module fits into the system,
This required explaining some very diffi-~
cult concepts and contructs. The student
had to understand relative addressing and
relocatable programs; the reuse of a fixed
number of base registers; the relationship
between the high-order code and the effi-
ciency of the resulting machine language;
the trade-off between memory and time; and
the relationships between the operating
system, the application programs, and the
hardware.

This was an overwhelming teaching
task, There are two aspects to the
solution:

1. The topics are limited to details
essential to make the discussion coherent.
To accomplish this, complex ideas are
defined as primitives. The underlying
reasons or implementation details are
hidden from the student. (Examples
fnollow.)

a. Data definitions in this system
can affect the efficiency of execution
because of hardware addressing techniques.
The comnlexity of the explanation is dis-
tracting and confusing. The solution is
to provide user "defaults" for variable
declarations which will guarantee effi-
ciency. This is similar to providing
user-defined default parameter values in
Ada procedure calls. Such defaults are
identified as red flags for the class to
focus attention on a preferred (but not
essential) way of doing things.

b. Dbata structures can be defined by
either the user or the compiler. 1In addi-
tion, the user can select one of two for-
mats for the structure. The preferred

Wt "v-‘-‘"‘-"“'

choice generates object code that is much
more efficient than any of the alterna-
tives. Exceptions to these choices are
raised but not explained.

c. The system requires use of fixed-
point numbers instead of floating point,
and considerations of significance, preci-
sion, and accuracy are sometimes new to
the student., Awareness of this is essen-~
tial. A generic approach is used to pre-
sent this 1in an understandable way.

2. The relationship between the operating
system and the application programs is
described in terms of formal interfaces,
originally defined by the user but en-
forced by the operating system. A library
package or service provided by the operat-
ing system serves as an environment in
which a particular program executes. The
user sees only the specification of the
operating system services. The speci-
fication formally describes the interface
between the service and user. The result
is as if the user were looking through a
window. All of the implementation details
are hidden and only the necessary informa-
tion is in view. 1In turn, the application
program may hide details from others as
well by packaging related resources.
(Examples follow.)

a. A module may be scheduled at a
predefined number of standard entry points
and only at these points., This is pre-
sented as a generic package that contains
a group of procedures.

b. A program's data and instructions
are divided into two modules to expedite
program execution. This is made possible
through a single high-level directive to
the compiler. The physical base registers
assigned to the modules are identified as
actual parameters when the linker is in-
voked.

c. A module requests communication
with the operating system to be served or
to exchange information in a specified
manner. In this case the implementation
is viewed as a task. The application
module calls the operating system and
waits for a response.

d. A module provides parameterized
data to the operating system as specified
and points to it in a predefined manner.
The notion of access types that create an
object that holds the parameters helps
explain a high-level language function.

e. The operating system returns mes-
sages to the modules and points to them in
a predefined manner. Access and task
types help demonstrate this complex
relationship.
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f. A library of functions is made
available to any user who requires it
through a standard interface and a local
work area. The library is a package of
functions.

This new approach to the course pro-
vides the instructor with a collection of
teaching resources. These, in turn, are
carefully organized into library-like
units. Since the makeup of each class is
always different, and the classes them-
selves are not homogeneous groups, another
problem in presentation is solved. Now
the scope of the course work can be varied
in response to the needs of each particu-
lar group. 1In the future, any package
from the library can be presented in a
standalone fashion for an appropriate
audience. Then the hidden details can be
explained in a relevant way. Neither the
class nor the instructor speak of Ada, but
its problem-solving techniques are used to
develop the course structure and content.
This endeavor demonstrates two things:

1. The ideas in Ada have been used intu-
itively and effectively in developing
real-time embedded systems for at least
the last 20 years.

2. The Ada constructs can be used to
effectively describe such systems without
any reference to the Ada language and in
the absence of its use as a program design
or implementation language.

Concurrency in Real-time Systems

There is another aspect of embedded
systems that deserves analyzing. Real-
time systems must deal with problems of
concurrency whether the implementation is
logical or physical. The operating system
handles these issues and therefore they
are hidden from the user. However, the
application, once again, must make use of
specified services to avoid problems such
as mutual exclusion and deadlock in real-
time programming. The issues of concur-
rent programming require a ‘ifferent set
of problem-solving skills than those
required for sequential programming
because of the difficulty in ensuring
correctness. Mutual exclusion and absence
of deadlock present some unique problems
in guaranteeing correct implementation.
Since Ada supports concurrency, the
language provides an excellent vehicle
with which to capture the solutions to
system concurrency problems and present
them in an Ada-like fashion as a spring-
board for teaching concurrency to applica-
tions programmers.
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Summary

The Ada "effort" is now 10 years old,
and many feel it has become a mystique
that will never be a reality. The use of
Ada to improve presentations dealing with
real-time embedded computer systems may
prove to be effective in accomplishing a
variety of things:

1. Formal expression of intuitive imple-
mentations of difficult concepts.

2. Organized presentation of abstract and
complex notions,

3. Introduction to a state-of-the-art
method of problem solving for sequential
and real-time programs.

4. Easing of the Ada training burden by
introduction of Ada-like approaches in
non-Ada environments.

5. Exposure of faults in current design
caused by limitations in computer archi-
tecture and high-level languages.

The Ada language provides both struc-
ture and technique for more effectively
and efficiently teaching complexity. A
new teaching method has evolved on the
basis of the instructor's knowledge of the
Ada language, which has improved this
course (CMS-2) greatly. There is every
reason to expect similar results when this
method is applied to other courses. Ada
concepts provide a valuable tool, even in
a training setting.
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The Implementation of a Graphics Package in Ada

ﬂ?
i
f Benjamin J. Martin Bennett Setzer Reginald Walker
‘ LJ
[}
¥y Atlanta Univ. Kennesaw Col. Atlanta Uniwv.
Atlanta, GA Marietta, GA Atlanta, GA
e
“g
!" .
;ﬂ‘ This paper 1is a report on a project to is convenient for the student to use.
¢b develop a graphics package for the The Janus Ada compiler is large and
1;' Zenith Z-100 computer system. The complex to use if a hard disk 12 not
W0 project began with implementing a subset available.
of the CORE system in Pascal.
i\l Subsequently, the system was converted This report is organized into these
)\ to Ada. Current work concerns extending sections:
N the system. This report is mainly -- Rationale and history for the project
q ‘ concerned with the rationale for using as a whole.
\ﬂ Ada to implement both the original and -~ Comparison of the Ada and Pascal
-h; the extended graphics systems. We implementations.
a conclude that Ada is clearly superior to -- An extended graphics model.
{: Pascal in defining a graphics sgystem. -- Implementation considerations for the
/ > Some minor concerns have arisen due to extended model.
[} the size of the Ada conpiler,
RATIONALE AND HISTORY
* \ The origin of this project was the need
f’ for an inexpensive graphica package that
' could be used to support coursges in
2 camputer graphics and computer vision.
We are using the wvword "package" loosely
ph here, to mean a group of routines. The
5f hardware to be used consisted of over a
G dozen Zenith Z2-100 micro-computers in
'{ This paper is8 a report on a project to the Micro-computer Laboratory at Atlanta
W develop a graphics package for the University. Available packages were too
. Zenith Z-100 computer system. The expensive or were hosted by unsuitable
;{ overall project can be divided into languages, such as BASIC. Since Pascal
} these phasvus: was the major language used throughout
o -- Implementation of a subset of the the computer science curriculum at
CORE graphics system in Pascal. Atlanta University, we wanted Pascal, or
vdb -- Implementation of more sophisticated a similar language, to be the host
Yl hiecs drivers for the 2-100. language.
'g graphics nguag
LY -- Porting the original system to other

vergions of Pascal.

-- Converting the Pascal system to Ada.

-- Development of a different graphics
model.

-- Implementation of the new model in
one or more target languages.

-- Porting to different micro-computer
syatems.

This report is mainly concerned with the
rationale for using Ada to implement
both the original and the extended
graphics systems. We conclude that Ada
is clearly superior to Pascal in
defining a graphics system. We have some
concerns about setting up a system that
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A further problem with existing packages
vas that most were device drivers. That
ig, they implemented graphics
primitives, but provided no more. It was
finally decided to implement a portion
of the CORE graphics system using
Pascal. This was because of
availability: [(Harringtonl] contains a
very detailed description of a CORE
subset, including pseudo-code routines;
and, Pascal was available for the
micro-computers. This implementation was
carried out by G. Payne and completed by
him in 1985 (see (Paynel). An advantage
of developing the system locally was
that the actual algorithmg used would be
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available for study in courses.

At this point three issues arose that
prompted us to develop this package
further:

-- Because of limitations inherent in
Pascal, the package did not represent
the beast software design practices.
We felt that this would result in
students having difficulties using
the package.

-- Several faculty at Atlanta University
became heavily involved with
programming in Ada and proposed that
Ada become the basic language used in
the computer science curriculum.

Also, Ada became available for use in
the curriculum with Janus Ada.

-- Research efforts in computer vision
and artificial intelligence were
moving forward. To support this, a
graphics system with a dynamic and
hierarchical concept of a graphic
image was needed.

Two groups began work developing the
package further. Martin and Walker
undertook to convert the CORE package
into Ada. Setzer began the development
of a more efficient low-level interface
to the hardware and began designing the
new graphics model. We eventually
combined efforts. The following phases
of the project are complete: the CORE
gsubset has been implemented in Pascal
and converted to Ada; better drivers for
the Z-100 have been coded and tested. At
this time, we are working on designing
and implementing the new model.

In summary, we came to realize that our
educational and research objectives
required a refinement of both the
specifications of the graphic system and
the implementation.

-- The package itself needs to be a good
example of software design,
specifically, demonstrating
modularity, information hiding, and
security.

-- The specification of the package
should present a clean interface to
the user.

-- The package should support a dynamic,
hierarchical concept of a graphical
image.

IMPLEMENTATION COMPARISON

The subset of the CORE system supported
includes 2 dimensional pictures,
segments, filled polygons, and
transformations. No vindowing or
clipping and no mapping to viewports is
supported by the subset implemented. We
felt that this was adequate as a
starting point for the system. Also, the

AR '.w 'l. "' 2 :l.o aht, 0.0 "D‘)l WU

FRTRETIRTIRITITRT RS BV R Rrm TR TmTrTsrm s EmeE T aET v .

v .~ !\ :', 0'509!'- ::.J ‘: i ‘

decision tc pursue a completely
different design was made soon atter HNr.
Payne completed this 1mplementation,
vhich also delayed consideration ot any
extensions.

The Pascal version was implemented 1in
MicroSoft Pascal. Although this version
of Pascal supports separate compilation,
this is not a standard feature of
Pascal. Other vergions of Pascal do not
have this capability at all or support
it in a different manner. Since we
eventually wanted to use versions of
Pascal that would not support separate
compilation, such as Turbo Pascal, we
decided not to use this feature. Thas
dictated including the actual graphics
system source in a program using it. We
note that most Pascal compilers allow
the compile time inclusion of source
text. We emphasize, in this section ve
are discussing Pascal without separate
compilation.

The Ada version was implemented in Janus
Ada by converting the Pascal routines.
In the Ada implementation, the routines
are organized in a package with the work
areas hidden within the package body.
The package can then reside in a
library. An application then needs only
an appropriate ’‘with’ clause to access
the graphics routines.

We observed three major problems with
the Pascal implementation. Each problem
could cause difficulties for students
uging the Pascal version. The Ada
version effectively solves these
problems. The problems are

-- The necessity of global variables in
Pascal for certain data.

-- The inability, in Pascal, to hide the
actual type of certain data.

-- The necessity, in Pascal, of
including the entire source code for
the graphics package at each
compilation.

In the Pascal implementation, an
important part of the included source is
the definitions of work space for the
graphicse system. This includes storage
for segments as well as status
information, such as the current pen
position. The organization of the system
ig such that all the procedures act on
this body of data. Because of the number
of data, it is inconvenient to pass them
as parameters. Also, the data must
remain between invocations of the
system, For these reasons, Pascal global
variables are used for these work
spaces.

The global variables in the Pascal
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implementation represent its most
serious difficulty. First, status and
other work area data can be freely
manipulated by the user. The dangers of
this are well known. Second, there could
easily be conflicts with the names of a
user’'s global variables. Besides being
an annoyance, this could cause
considerable confusion to a student
trying to use the system. Searching for
the second definition of a variable,
vhen one definition of it is hidden in
an include file, can be frustrating.

In the Ada implementation, work areas
are hidden within the body of the
graphics package. This makes this data
unavailable to the user, except through
the exported routines. This also makes
the variable names invisible to the
user’s program.

Pascal does not allow the protecting of
a data type by defining a type for it.
For example, a segment name in the CORE
system is simply a small integer. It
seems, however, to make little sense
that segment names can, therefore, be
operands in arithmetic operations and
can be the results of arithmetic
operations. Hovever, Pascal does not
protect from such misuse. In Ada, making
a segment name a private type prevents
this.

The necessity of including the complete
source code of the graphics system into
a program presents two problema. The
first is simply a question of efficiency
and convenience. Object code is
generally more compact than source code.
This implies less disk space used, and
generally quicker processing of
programs., The size of the system as
distributed to others is particularly a
problem with the large Pascal compiler.

The second problem was observed wvhen, in
a programming, course students were
assigned a problem involving a set of
procedures provided by the instructor.
The procedures were in source form. A
significant number of students modified
the provided procedures to conform to
their program designs although that had
been strictly forbidden. These students
vere gquite dismayed with the evaluation
of their programsg, since the programs
vere run with the instructor’s original
set of procedures. It was quite
difficult to convince some of these
students that the problem was in their
programs and not in the procedures
provided by the instructor.

The point is similar to the previous
problems, given enough users, there will
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be migsuse. Since, in Ada, only the
compiled package would be distributed,
the students will not be able to
manipulate the source. This will
eliminate one cause of problems.

As can be seen, one of our major
concerns is security. Simply put, with
numerous students using a system, every
possible misuse will appear. Protecting
the package from the student and
vice-verega can considerably lower the
number of possible problems. In turn,
thig will benefit the student in the
learning process.

To conclude this section, we note that
Mr. Payne did a very good job of
implementing the CORE subset. The desire
to modify and extend his work was due to
problems with Pascal and with the CORE
system itself. As will be sgeen, our
design to remove some of the problems
with the CORE system would present more
difficulties in using Pascal.

AN EXTENDED MODEL

In response to new research and
educational needs, we developed aseveral
criteria for a graphics model. We use
the vord "model®" to refer to the way the
graphics system looks to the user,
independent of the implementation. A
model needs to meet these criteria to
satisfactorily support our work. The
effect of these criteria is to move
tovards a more object or data oriented
view of graphics and away from a
procedural view. Our criteria wvere as
follows.

-- Pictures, transformations, windows,
and display devices are objects that
can be manipulated by the system.

-- These objects can be manipulated,
combined, and brought into
relationships with one another by
operations defined by the system.

-~ Pictures can have hierarchical
structures of unlimited complexity.

-- Such objects can be created or
destroyed. Memory usage should
substantially reflect the number of
active objects and their complexity.

The CORE system did not meet these
requirements in several regards. For
example, in CORE a geometric
transformation is applied to a segment
by defining the transformation and then
drawing the segment. The drawing
commands are suitably transformed and
the result saved as the segment
definition. Thus, the relationship
between a tranusformation and the segment
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to vhich it is applied is implicit in a
time sequence of events. Other than flow
of control, there is no evidence in a
program of this relationship. In our
model transformation and a picture are
combined by a binary operator to result
in a nev picture. The new picture is the
original picture, transfomed.

One important class of operations on
pictures is that they be combinable into
larger pictures. This should be done
wvhile still preserving the
picture/sub-picture relationship. There
are at least two advantages to this.
Firgst, sub-pictures can be specified and
manipulated, independently of the
guper-picture. Second, analysis of
digitized images leads to a hierarchical
description of the scene. See, for
example, [(Ballardl, especially chapters
1@ and 11. Another discussion of the use
of hierarchies in modeling can be found
in (Foleyl, Chapter 9. Structured
pictures can better represent the
results of this analysis.

In the CORE system, pictures are
represented more by procedures than by
data. The hierarchical relationships of
several procedures involved in drawing
parts of one picture can represent the
structure of that picture. This is,
however, relatively static. We need to
be able to dynamically change the
structure of a picture.

In summary, the extended system can be
described as defining several data
types. Implicit in these definitions
will be the desired operations. Such a
description is more intuitive for
students: objects are being manipulated
with certain results. A functional
description, with little emphasis on
side effects, is easier to teach and
easier to verify.

IMPLEMENTATION CONSIDERATIONS

In this final section we present reasons

for and against using Ada to implement

the extended model. The positive reasons

can be summarized as follows:

-- Greater security problems in the
extended system.

-- The ability of Ada to represent data
types.

The negative reasons reduce simply to

the difficulty in using the Ada

compiler.

Any graphics system including the ideas
of the preceeding section will, of
necessity, represent pictures by means
of linked structures. For example,
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two-pointer nodes would suffice to
represent an arbitrarily complex
hierarchical structure. Pointers are
hazardous to deal with, even in a well
regulated environment such as Ada.
Keeping pointers hidden awvay within a
package can prevent numerous problems
for student and other users.

The Ada package is an ideal way to
implement a data type. All structure
irrelevant to the data type definition
can be hidden from the user. Both type
definitions and operations can be
exported to the user. Thus, the added
types and operations can appear to be
language extensions. This gives a very
clear picture to present to students,
greatly easing the teaching problems.

The major objection that we can see to
using a graphics package in Ada is due
to the compiler. The Janus Ada compiler
is a large program, requiring the
student to manipulate at least two
floppies for the compiler. It is also
fairly slow. In fairness, however, both
of these points are true of the
Microgoft Pascal compiler. A large
computer version of Ada using a
micro-computer as a graphics display
device may turn out to be one way to
solve this problem. Also, on a system
with a hard disk drive, the compiler
size would not be much of a problem.

We are naturally drawn to Ada by its
expressive pover and standardization. We
do feel that some effort will be needed
to set up an Ada system that is
convenient for students to use. Save
that one concern, using Ada offers great
benefits in the classroom.
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EXPERIENCES OF PASCAL TRAINED STUDENTS IN AN INTRODUCTORY ADA COURSE

Robert C. Mers

North Carolina Agricultural and Technical State University

Abstract

The author has designed and taught
a Programming in Ada course at North
Carolina A. & T. State University in
Spring and Fall semesters of 1985. This
course assumes a thorough knowledge of
all Pascal features, including records
and pointers, and attempts to give a
complete overview of the Ada language
in one semester. Hands~on experience
is an integral part of the course. 1In
this paper the content of the course,
including programming assignments, en-
vironment, and resources, is described.
A quantitative measure of student
achievement in Fall 1985 is taken and
an analysis is given. Observations of
the degree of difficulty students have
learning various Ada features and sug-
gestions for improvement in the course
are made.

1. Introduction and Goals

Several papers presented previously
at these conferences have dealt with the
contents of a first programming course
in the Ada language (e.g. Richman® and
Rudd"). This paper describes the con-
tent of such a course at North Carolina
A. & T. State University, but it also
addresses the degrees of difficulty that
Pascal trained students have learning
various Ada features. Both noncognitive
and cognitive instruments are used to
measure students' competencies in these
Ada constructs. The statistical results
from these instruments, along with the
instructor's direct experience with the
students, are used in improving the
course to challenge and yet enable these
students to more effectively learn Ada
features. This paper has been written
to provide direction in designing a
first Ada course which is geared to stu-
dents trained in a least two semesters
of Pascal.

The goals of this Programming in
Ada course are to give students a com-
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plete overview of the Ada language, pro-
vide hands-on experience programming var-
ious constructs of the Ada language, and
create awareness of development and con-
troversies of Ada and software engineering
and design techniques using Ada. Important
in achieving these goals is development of
competencies in advanced features of Ada
such as package design, separate compila-
tion, generics, exception handling, and
tasking.

2. Course Content and Methodology

(a). Syllabus

The topics of the course were covered
in the below order in both Spring and Fall
1985 with some minor permutations.

The first part of the course is an
overview of the language prior to nitty
gritty details, the purpose being to give
students a feeling of the spirit and style
of Ada. History and rationale of the Ada
language is given along with a brief de-
scription of its major goals and features
of Ada (see Barnes?). A fairly detailed
treatment of packages, subprograms, gener-
ics, and TEXT IO is given so that students
can understand simple Ada code and the use
of the TEXT_IO package in this code.

At this point the rudiments of the
language are covered. A section is now
done on the predefined types and opera-
tions as well as type, variable, and con-
stant declarations. Detailed discussion
of enumerated types, subtypes, and derived
types is covered immediately after control
structures rather than now in order to get
the students programming as soon as possi-
ble. Since meaningful programming re-
quires knowledge of conditional and loop
structures, the IF, CASE, and LOOP state-
ments are covered next. Basic loops and
EXIT statements are mentioned as well as
the familiar WHILE and FOR statements. At
this point the transition is made to user
defined types. Derived types, subtypes,
and enumeration types are now presented,
as well as attributes, overloading of lit~
erals, and general type conversion. To
complete the emphasis on modularization,
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the features of subprograms such as
named and positional notation, recursion,
default parameters, overloading of sub-
program names and operations, and scope
and visibility are covered next.

The course now makes the transition
from simple to compound data types. DE-
CLARE blocks are introduced here because
of their application to creation of ar-
ray objects at run time. Both constrain-
ed and unconstrained array types are in-
troduced, as are array attributes, as-
signment using aggregates, slices, array
operations, and strings. Records with-
out discriminants are covered in detail.

Emphasis is now shifted from pro-
grams as single compilation units to use
of packages external to the program and
separate compilation. Compilation units
are covered and more detail on packages
is given. Then abstract private and
limited private types are presented with
rationale, their position in the package,
and examples.

The advanced typing features cov-
ered next build on previous treatment of
types. Discriminated records and access
types are discussed. Students are then
introduced to user defined floating
point and fixed point types, including
their hardware implementation.

Exception handling, detailed treat-
ment of generics, and tasking are cover-
ed last since these concepts are most
foreign to the students' previous com-
puter science experiences. Predefined
exceptions, exception handling and pro-
pagation of exceptions are covered in
some detail, but detailed treatment of
generics and tasking get short changed
due to time constraints. However, the
rudiments of parallel processing, caller
and called tasks, task rendevous, entry
and accept statements, and select state-
ments are covered.

(b) . Environment

The compiler used is the New York
University Ada Ed for the Digital VAX
11-780 Computer, both provided to North
Carolina A. & T. State University by the
U. S. Army Center for Tactical Computer
Systems. In Spring 1985 version 1.1 of
Ada Ed was used. The slow compilation
and execution time of this version made
it difficult to complete more than a few
programming assignments and caused a
long turn around time (30 minutes per
run) even on batch mode. In summer of
1985 version 1.5 was made available, and
since then the turn around has improved
to the range of 5 to 10 minutes.
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(c) . Program Assignments

Due to the nature of the compiler de-
scribed above and the fairly extensive
programming background of the students,
the instructor's methodology has been to
use relatively few medium length program-
ming assignments rather than give many
short programming assignments. The con-
tents and objectives of the programming
assignments are indicated below.

Program 1. This is a rather simple
program involving use of the predefined
scalar types and IF and WHILE control
structures. The objective is two-fold, to
get used to the VAX system as well as be-
coming familiar with TEXT 10 and the rudi-
ments of Ada. -

Program 2. In this program the stu-
dents are doing Input and Output on enu-
merated types as well using the FOR and
CASE statements.

Program 3. This program requires the
students to use unconstrained arrays and
create array objects at run time. Use of
attributes is emphasized. Students do
matrix computations and provide error
handlers when operations are undefined.

Program 4. Here the students design
a package and use its resources from a
main procedure. Separate compilation is
required. One semester a package of trig-
onometric functions was designed; another
time the package consisted of complex num-
ber operations,

Program 5. This program focuses on
variant records and/or linked lists in-
volving these records. The students have
to observe the strict rules of discrimi-
nated records and get used to the non
pointer notation of 2da.

{(d) . Resources

A primary text is used, and students
are provided a copy of the Reference Man-
ual for the Ada Programming Language' .
However most of the material presented in
class consists of the instructor's lecture
notes compiled from sources listed in the
bibliography including SoftTech notes for
the CENTACS Summer Faculty Research Pro-
gram of 1983°, Barnes? was the primary
text in Spring 1985, but it was replaced
by Young® in Fall 1985. This author feels
that Young's text is the best current com-
prehensive elementary book on the Ada
language from the standpoint of complete-
ness, style, consistency in clarity of
presentation, and applications.

3. Analysis of Stuvdent Experiences

(a) . Method of Data Collection
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To analyze quantitatively the de-
grees of student difficulty in various
areas of the Ada language, both cognitive
and noncognitive instruments were admin-
istered to the Fall 1985 Ada class at the
end of the semester. The noncognitive
instrument was a questionnaire on 25
topics from the Ada language. These were
briefly described, and the students were
asked to choose a response for each from
the choices "Quite Difficult," "somewhat
Difficult,” and "Not Difficult." Ques-
tions with the same responses were asked
regarding the Language Reference Manuall,
textbook, and instructor’'s lectures.

The cognitive instrument was the
final examination of the course, consist-
ing of 25 qguestions, one in each topic
from the noncognitive questionnaire. Stu-
dent performances in each area were re-
corded. Numbering of the noncognitive
questionnaires enabled the instructor to
match these with the corresponding final
examinations.

Each student was asked to give the
overall GPA (grade point average), grade
in introductory Pascal (C260) and grade
in advanced Pascal (C265) in order to
determine what effect these variables
might have on student performance on the
various topics of Ada.

The 25 topics guestioned were (1)
subprograms, (2) packages, (3) generics,
(4) predefined types and operations, (5)
enumerated types, (6) subtypes and de-
rived types, (7) basic control struc-
tures, (8) basic LOOP and EXIT state-
ments, (9) unconstrained arrays, (1.0)
simple records, (11) aggregate assign-
ment, (l12) attributes, (13) overloading,
(14) named notation, (15) default values,
(16) separate compilation, (17) private
types, (18) real types, (19) discriminat-
ed records, (20) access types, (21) TEXT_
I0, (22) type conversion, (23) exceptions
(24) blocks, and (25) tasking.

The population was a set of students
from the C290 (Ada) class. 15 students
completed the noncognitive guestionnaire;
16 took the final examination; and 14
participated in both.

Copies of both the cognitive and non-
cognitive instruments are available upon
request.

(b). Analysis of the Noncognitive Instru-
ment

A Chi Square test of proportionality
was completed for each of the 28 items
(the 25 listed above plus the questions
on the Reference Manual, textbook, and
lecture notes). With a 20% chance risk
of rejecting a null hypothesis (propor-
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tion of students having problems same as
those not having problems), we conclude
that students perceive themselves having
problems with survey items 12 (attributes)
17 (private types), 24 (block structures),
and 25 (tasking). A regression analysis
was also performed to determine if the
variation in student self perceived pro-
blems (measured by the noncognitive vari-
able) can be attributed to GPA and grades
in C260 and C265. The multiple correla-
tion between the noncognitive items and
GPA and C260 (Introductory Pascal) grade
is 0.452. The proportion of variation in
student perceptions of Ada problems ac-
counted for by the joint knowledge of GPAs
and C260 grades is 20%, and this contri-
bution is not statistically significant at
the 0.05 level (i.e., by replicating the
experiment 100 times, we are guaranteed
that 95 of such experiments will lead to a
conclusion that the variation in student
perceived problems explained by the GPA
and C260 grade is not significant). The
C265 (Advanced Pascal) grade was found to
be unrelated to student perceptions of Ada
problems.

(c). Analysis of the Cognitive Instrument

Again a Chi Square test of propor-
tionality and regression analysis were
used. The correlation between GPA and
total score on the cognitive test (final
exam) is 0.510. The proportion of the
variation in the Ada final test scores
accounted for by knowledge of GPA is 26%.
Although this contribution of the total
variance explained is not statistically
significant at the 0.05 level (f = 4.216
with 1,12 degrees of freedom), the GPA
appears to be a determinant factor of
problems that students will face in higher
level computer science courses including
Software Engineering Using Ada.

Given that the knowledge of GPA has
already been used to explain the varia-
tion in the C290 (Ada class) cognitive
test scores, 4% is the additional varia-
tion in the test scores explained by
grades in C260 and C265. This additional
variance is not statistically significant
at the 0.05 level, indicating that grades
in C260 and C265 do not have much in com-
mon with performance in C290.

The Chi Square proportionality test
was performed on the number of scores be-
low the average versus the number of
scores above the average on each item.
With a 10% chance of making a wrong in-
ference, we conclude that students have
problems with cognitive items 13 (over-~
loading), 21 (TEXT I0)}, and 24 (block
structures). Although not statistically
significant, students appear to have pro-
blems with item 25 (tasking).
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(d) . Degrees of Consistency

It is clear from the above analyses
that there is consistency between a stu-
dent's perception of having problems and
the student actually having problems in
the areas of block structures and tasking
Students thought that they had problems
with private types and attributes but did
not have problems on the cognitive test.
But for overloading and TEXT_IO students
had problems on the cognitive test but
did not perceive themselves to have pro-
blems.

Reasons for the inconsistency could
be (1) students' lack of clarity about
their strengths and weaknesses and (2)
the varying levels and kinds of questions
asked on the cognitive instrument. These
questions included True-False, short es-
say, listing, short computations, fill in
the blank, writing declarations, and
writing short coding segments. The
greatest discrepency was on the item
TEXT IO0. Students felt very comfortable
with it, having used it in programs all
semester. However the students had
trouble with the TEXT IO question on the
cognitive test, which was "Name and de-
scribe 4 procedures in TEXT_IO other than
GET or PUT." The author was stunned that
students would OPEN, CREATE, and CLOSE
files and do NEW_LINE and SET_COL com-
mands all semester and yet not be able to
name them on an exam!

4. Conclusion and Recommendations

In addition to above mentioned
topics in which students have difficulty,
the author has found that students have
difficulty on topics such as access types
discriminated records, separate compila-
tion, and exception handling, although
this is not statistically shown by this
study. In general, Pascal trained stu-
dents have had the most difficulty on the
Ada features that are most unlike Pascal.
Therefore the author feels that a strong-
er emphasis on Ada features unlike Pascal
and a more rapid treatment of Pascal like
features will more successfully fulfill
the goal of giving Ada students a deeper
knowledge of all the major Ada features
in a one semester course.

The background of the students,
teaching experience by the author, upgrad
ing of the North Carolina A. & T. compu-
ter science program, and students' vary-
ing abilities to learn various Ada con-
structs are all factors in the develop-
ment and delivery of this course. The
level of the students seems to be improv-
ing as the computer science program
matures. Grades in the Fall 1985 course
were considerably better than in the
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Spring 1985 course. Both courses covered
essentially the same topics although
slightly more time was spent on elementary
topics (beginning through simple records)
in the Fall as a response to poorer stu-
dent performance in the spring. About ten
of the fifteen weeks of the course were
spent on elementary topics.

The instructor, in consultation with
the Department of Computer Science is in
the process of upgrading this course. Be-
ginning in Spring 1986 only six to seven
weeks will be spent on elementary topics
and far more time spent on advanced topics
and the software engineering aspects of
Ada. The students should be able to ab-
sorb those constructs that duplicate Pas-
cal more quickly and more completely un-
derstand packages, separate compilation,
advanced types, exception handling,
generics, and tasking because more time
will be spent on these topics.

The programming assignments will be
adjusted accordingly. Only the first pro-
gram will be restricted to discrete types.
The second program will focus on run time
array processing, and the third will in-
volve package design. Remaining programs
will involve advanced types, generics, ex-
ception handling, and possibly tasking.
Perhaps individual or team projects will
be assigned emphasizing software engineer-
ing techniques and design.

In addition the course title and num-
ber will change from C290, Programming in
Ada, to C490, software Engineering Using
Ada. This change is in the spirit of the
ACM (Association for Computing Machinery)
recommendations for accreditation, which
deemphasize a proliferation of elementary
language courses and emphasize rigorous
computer science courses as electives in
the undergraduate major.
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THE DEVELOPMENT AND IMPLEMENTATION OF AN ADA® TUTORIAL SYSTEM

James E. Walker

Prairie View A&M Universit
Department of Mathematics and Computer Science

Prairie View, Texas TTikLé

ABSTRACT

This paper describes how good instructional
development techniques can be maximized when
integrating Computer Assisted Instruction (CAI)
strategies with those of Computer Managed In-
struction (CMI). The Ada progremming language
will be used to implement the system. This
project is referred to as a system because of
the CAI/CMI integration. Instead of just tea-
ching information to students via a computer,
students are provided a custom-designed learn-
ing progrem that is managed by the computer.
The computer may instruct a student to refer to
the Ada Reference Manual, review a tutorial,
take a test, or continue with the next level
of instruction. As a student completes each
level of the tutorial, the student's achieve-
ment and progress are recorded. By accessing
the records of a particular student, a teacher
can determine what success the student is having
and can identify any problem areas that might
exist. The teacher can also determine the
effectiveness of the learning program itself.

JIBFTRQDUCTION

Because of the diversity of student's background
the Ada Tutorial System (ATS) provides an {deal

situation for the use of the individualization
based on rate-of-progress. Each student can
proceed through a given program at a rate that
is commensurate with past job experience. The
ATS is an information system designed to facil-
itate the management of instruction and indivi-
dualized instruction in particular. It provides
the automated data collection, data processing,
and reporting capability needed to cope vwith
the managerial demands of individualized in-
struction. The ATS frees the instructor from
much of the low-level clerical work inherent

in modern training curricula while providing
the tools necessary to manage instruction.

Phase 1: Design
Competency Analysis

Competency analysis is a particularly critical
component of instructional development. It
allows the course developed to break up what
must be learned into manageable-sized segments,
and it ensures that the ATS addresses all that

neeas to be taught. Competency analysis involves
breaking down large tasks or educational gosls in-
to smaller subtasks so that learning can be opera-
tionalized. It is important that the course devel-
oper krows what components make up a skill so that
each component can be taught and behavior can be
shaped with the result that the student can per-
form the whole task correctly and reliably. Since
a competency is a set of performance objectives,
it can be used as an indicator of what a person
can do.

The development of this component was simplified by
using the competency level segments that were pre-‘
defined by the Ada textbook that is currently

being used to teach Ada at Prairie Viev A&M Uni-
versity. Because of the magnitude of the Ada
language, the ATS will only cater to the "Pascal
Subset" and packeges. The method of iearning used
to acquire each competency will be cognitive do-
main.

Design Evaluation

In the previous stage the designer ascertained,

in a sense, the destination of the ATS. Now the
designer must decide how to determine when that

destination has been reached.

In the cognitive domain, short answer, multiple
choice, true/false, and matching are suitable for
testing depending on the performance level of the
objJective. The ATS is particularly well suited
to the evaluation of competencies in the cogni-
tive domain becsuse of it's capability for pro-
viding testbanking functions.

During this stage of design, testbanks are created.
A testbank 1s a set of questions or test items
that measure the students' ability to perform one
or more competencies. It is critical that test
items be matched to the type of learning and
performance level of the associated obJectives.

As mentioned earlier, ATS will implement the cog-
nitive domain method of learning. Fig. 1.1 shovs
the Flow of the ATS.

®Ada is a registered trademark of thel. S, Covernment, Ada Joint Program Office (AJPO).
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Phase 2: Development

During the development phase, decisions are
made about now the outcomes identified in the
design phase will be attained. It is during
the development phase that the instructional
activities are assembled in a way that will
enable students to achieve the competencies
identified.

Hardware/Software Requirements

Because of the campus wide availability, the
IBM PC was chosen as the host computer for ATS.
Each PC has a minimum of 256K, color graphics
capabilities, and a dot matrix printer.

The ATS software package was written in Micro-
soft Basica because of it's many available
functions.

Delivery

The instructional delivery system consists of the
instructors and facilities used to train the
students. The goal of the instructional delivery
component is to trai. the students totheir maxi-
mum potential within a minimal time frame and
with the available resources, The contents of
each module in the ATS are as follows:

I. ATS MENU
A. Lessons ( In Levels)
B, Exams ( In Levels)

C. Course Exam
D. Evaluations
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E. Exit ATS
II. Lessons

Introduction

Names in Ada

Predefined Data Types
Constants and Expressions
Control Structures
User-Defined Types

Arrays, Strings, and Records
Subprograms

Formatted Input and Output
Packages
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III. Exams (Tests For Each Lesson)
IV. Evaluations ( Analyze Test Results)

Instructionally Related Functions

Data Collection: To support the instructional
management process, a wide variety of data must be
collected by the ATS. The data defining each stu-
dent's instructional history are generated as the
student passes through the curriculum defined by
the design phase.

Diagnosis and Prescription: From a student's
point of view, diagnosis and prescription are the
core of the ATS. The diagnosis function is used to
determine the basis of the students' observed per-
formance. A mechanism was implemented in the ATS
to diagnose students' performance at the unit of
instruction.

Reporting"” Because the ATS is basically a
management information system, reporting is a
crucial function. Each of these persons, from his
or her own point of view, is interested in the in-
structional and other data stored by the ATS. As
a result a variety of reports are needed: A Student
Competency report, Diagnosis and Prescription re-
port, and a System-Related report.

Set Progression or Achievement Criteria

Part of the development phase required the ATS
developer to establish measures for progression
decisions and testing functions. It is at this
stage where decisions are made regarding when
students will be tested and on what portion of the
subject matter. Also, standards for achievement
must be set. The ATS developer must decide the
standards by which the student will be Jjudged to
have achieved competency in a particular area.

The measure for progression in the ATS is for the
student to make a grade of 90 or better. There
are tests for each lesson and the questions are
equally weipghted. The highest possible score for
each test is 100.

Set Remedial Strategies

In order to achieve an individualized learnine
system, the ATS developed must address the needs
of students who have difficulty achieving the pre-
scribed competencies or who do not have the




4,
2
,"
&S5 appropriate entry level skills and knowledge. Phase 4: ATS Evaluation
N <’ Toward this end, the ATS developer must establish
o remedial strategies so that the learning is maxi- Feedback is an essential component of the in-
0'5 mized for all students. structional development process. During the
- evaluation phase, the ATS developed draws on
. The ATS handles remedial strategies by prohibi- many sources of data in order to judge the success
»}: ting the student from continuing to the next of the Ada Tutorial System he has created. The
P lesson until the recommended competencies for most potent indicator of success is whether stu-
‘é that particular lesson have been achieved. Each dents have indeed learned what was intended.
AN time a student logs into the system a database is
] searched to locate that students location in the Based on feedback, the course developed identi-
L\ course. fies areas of the ATS to be improved, and the
' cycle begins again, at the design phase.
@

Phase 3: Implementation

References
To explore fully the management of instruction
). via the ATS conceptualized in the preceding 1. Computer Based Training Systems, 198k.
?} phases is a very large task. Therefore, we will
tl look at the operation of the ATS from the point 2. 0'Neil, Harrold F.: Computer Based Instruc-
of view of the student and the instructor. The
o8 intent is to present the flavor of the system in tion, Academic Press, 1981.
)-. a concise manner. 3. Reference Manual for the Ada Programming
1]
) The Student Language, ANSI/MIL STD 1815A, 1983.
o) Upon logging into the ATS the student is prc L., Siad, Sabina: Ada: An Introduction, CBS Col-
[ sented with the ATS Option Menu. If the stu-
dent chooses to view a lesson then he/she is lege Publishing, 1985.

presented with a menu of competency level lessons.
If the student chooses a lesson with sub-lessons,
then the student may select which sub-lesson he/

"
‘o
M she wants to view. Jnce the student has viewed
% each sub-lesson with a comfortable level of
:? assurance, then he/sne will be eligible to
take a competency level exam. If the student
’ receives a grade of 90 or above on the compe-
< tency level exam then he/she may proceed to
?, the next competency level tutorial. If the re-
.t quired score was not achieved then the student
R may be directed to additional reading material,
N asked to review a certain sub-lesson, or to
Ph X X
¥ review the entire competency level lesson.
. Wren the student has successfully completed the
b‘ entire curriculum presented by the ATS then he/she
ﬁ. will receive a transcript report verifying this
4‘ accomplishment.

] The Instructor

Because the level of instructional management re- Biographical Sketch
- lated to behavioral objectives has been automated
“ by the AT3, the instructor can focus on higher Mr. James E. Walker is an instructor of Mathema-
. levels of management. The ATS puts at the in- tics and Computer Science at Prairie View A&M Uni-
[ structor's fingertips a large number of reports, versity, Prairie View, Texas. Mr. Walker is a
.‘: which can be used in many ways. Because the graduate of Prairie View A&M University where he
i, instructional procens is hipghly individualized, received his BS/MS in Mathematics. Mr. Walker is
the instructor can monitor individual students. currently the secretary for the Conference on
!. He or she can use the Unit Report to see where Software Technology.

the students stand relative to the curriculum.
The Performance Profiles can be used to check
progress. By using the computer to generate per-
formance profiles, the instructors may discover
areas in which they mirht change the ATS to im-
prove learning technolosy.
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The Use of Computer-Assisted Instructions in the Areas of Reinforcement and
. 24 Testing for the L202 Module (Basic Ada Programming) of the US Army's Ada
Training Curriculum

- of

i)

¥
:as P. Caverly, R. Canavan, P. Goldstein, and K. Pastuzyn
p
0
(¢ Ada Technology Center
et Jersey City State College, NJ 07305
]
0
§ ' Abstract completing a course and returning to their
i work site, many students do not have any !
. The Ada Technoloqgy Center at Jersey means or resources to enhance their |
City State College has received a contract understanding of what they have learned.
h from CECOM to produce Computer-Assisted- To help them overcome this limitation we
: Instruction materials for use in are developing the mecans by which students
reinforcement of concepts and testing can reenforce their wunderstanding and
ey of students taking the L202 course (Basic test their knowledge at their own pace. We
§ Ada Programming) of the U.S. Army's Ada are doinyg this via an automated portable
N Training Curriculum, medium. We are also providing a testing
‘x Based on our experience of teaching capability for managers so that they can
’¢ﬁ the L202 course to hundreds of students assess the expertise of course attendees.
Q . of wvarying backgrounds, we feel that
- reinforcement will be particularly
i[— valuable to them both while they are CAI for Reinforcement and Self-Testing
F, taking the course and after they have
#{ returned to work. The testing capability For our initial effort, we have chosen
iﬁ- will be of special interest to managers to develop CAI Reinforcement and testing
" who will be able to evaluate the materials for L202, Basic Ada Programming,
4 f: achievement of those employees who the first hands-on course in the Ada
) take the course. The materials are language in the U.S. Army's Ada Training
being developed using Digital's Dimension Curriculum,
gy huthoring System which runs under the We are developing our CAI materials )
> VAX/VMS operating system. using Digital Equipment's DIMENSION ?
S Authoring System (DAS). DAS is a complete |
Yl system for writing and delivering |
1958 computer-aided-instruction lessons, and i
j Introduction has the capability for various types of |
" record keeping and report generation on .
;) This paper describes our approach to students activities. DAS runs under VMS on
vie the cost effective and efficient use of VAX computer systems and 1is therefore
& CAl for support of Ada Technology training portable over VAX systems.
" programs. It 1is our experience after We have zeroed in on the difficult
g training over a thousand qgovernment and aspects, such as
! ] insdustrial programmers, scientists and
L engineers that a multi-media approach is Strong Typing
U most efficient and cost effective. Generic 1/0 Packages
v The U.S. Army has spent a great deal Structured Programming
. of rmoney to develop an Ada Curriculum Packages
v which contalns software enjinoering Soeparate Comnilation anag
C nothodology courses and hands-on Ada Library Facilities
e language courses. The training in the
14} software engineering courses is currently The combination of instructor, student
\ delivered by lecture and some problem guides, hands-on experince, self-paced
N sets, while the hands-on Ada language automated reinforcement and self-testing
3 courses are delivered by lecture and lab provides greater opportunities for 1in-
N work in computer program development, depth learning.
s These courses are very intensive
‘f\ presenting a great amount of material
7 over short periods of time. This means Testing
:b that students need to apply the concepts
N presented almost immediately. Before they Testing, on the other hand, 1is for
- can gain any proficiency in a topic, a new the manaqger. There has been wide concern
topic is already being covered. After about the expertise of professionals who
Rt
\d
Yl
b
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have taxken the intensive Ada courses.
Managers have been sending their people to
Ada courses at considerable expense and
time away form the job, yet without any
means of judging the level of competency
of the attendee once he returns from the
course.

By providing the manager with a CAI
test package consisting of a set of graded
exercises on the facilities of the
language, the muanager can get a grasp on
student competency level and make a vale
judgement to see if the student can go on
for further studies in Ada technology, or
shiould revisit the reinforcement self-
testing portion. We are providing these
two packages under this contract effort,
but there has to be further investigation
to develop norms for the testing phase.

Conclusion

A grecat deal of time, effort and
expense 1s involved in creating good CAI
lessons  and tests. When CAI is used as
the sole delivery medium, the results can
be disappointing. In most circustances
students learn best when exposed to a
variety of teaching approaches, and this
is especially true in learning a
programming languaye, particularly one
like Ada since the philosophy on the use
of Ada differs substantially from most
other general purpose programming
languages. Hence, we find that our
approach in which CAI is wused to "add
value" to training is efficient and cost
effective,

\
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IMPLEMENTATION OF AN ADA* REAL-TIME EXECUTIVE - A CASE STUDY

James D. Laird
Dr. Bruce A. Burton
Mary R. Koppes

Intermetrics, Inc.
Aerospace Systems Group
5312 Bolsa Avenue
RBuntington Beach, California 92649

ABSTRACT

Current Ada language implementations
and runtime environments are immature,
unproven and are a key risk area for
real-time embedded computer systems
(ECS). This study provides a test-case
environment in which the concerns of the
real-time, ECS community are addressed. A
priority driven executive is selected to
be implemented in the Ada programming
language. The model selected is
representative of real-time executives
tailored for embedded systems used in
missile, spacecraft, and avionics
applications. An Ada-based design
methodology is utilized, and two designs
are considered. The first of these
designs requires the use of vendor
supplied runtime and tasking support. An
alternative high-level design is also
considered for an implementation requiring
no vendor supplied runtime or tasking
support. The former approach is carried
through to implementation,

INTRODUCTION

Since the inception of the common
DoD High Order Language (HOL) effort in
the mid-70's, the Ada programming language
has remained a cornerstone of the
government effort at producing software in
a cost-effective manner., Validated Ada
compilers are becoming available on a
variety of different computers with at
least 17 validated compilers now available
and more slated for validation during the
current year. There are currently 37
different defense programs using Ada, and
this number is anticipated to exceed 120
during the next four yearsl. While
this progress is encouraging, the success
of the Ada language in meeting the needs
of specific applications will hinge on the
consideration of the potential risks that
face the implementors of a given system.

" Ada is a Registered Trademark of the

U.S. Government (AJPO)
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This process of risk identification should
be followed by development of risk
minimization and avoidance strategies
tailored to meet the needs of the system.
The emphasis of this paper is in the area
of technical risk identification and
resolution for real-time ECS
applications. While the Ada programming
language is intended for real-time
applications, current compilers and
runtime systems are unproven for these
types of programming efforts.
Consequently, the impact and implications
of using the Ada language and Ada-oriented
methodologies in embedded real-time
development efforts should be
assessed. While it is necessary to examine
how well and to what extent the built-in
real-time features of the langquage meet
the needs of ECS applications,
additionally, we must re-evaluate the
standard approaches to solving real-time
problems in light of the new capabilities
and assess the impact, if any, on the way
we design and implement these solutions in
softvare.

SCOPE

Perhaps the major consideration
with regard to the use of the Ada
programming language for real-time ECS
applications is the cost of doing so in
terms of memory and processing overhead.
The relative costs associated with the
use of Ada and its real-time features is
especially relevant to small embedded
computer system applications given the
physical and temporal constraints imposed
on these types of applications. The
determining factor in the decision to
utilize a particular high order language
(HOL) feature is often the efficiency of
its implementation. 7Tt is important to
know what the utilization of Ada with its
real-time tasking primitives,
representation specifications, exception
handling, and various other features
translates to in terms of program size,
speed, and efficiency. The ability to
selectively include runtime support and




its resultant overhead for these features

on an "as needed" basis is another
important consideration. During the
course of this investigation, answers
to fundamental questions such as these
were sought. In addition, other issues
specific to real-time ECS applications
were examined and addressed as they
naturally developed within the context
of the implementation of the case study
executive. In addition to runtime
support issues, Ada specific solutions
and strategies were sought and implemented
with regard to issues such as shared data,
adaptability to hardware, effective
deadlock, task management, maximization of
concurrency, and reliability.

BACKGROUND

It is important to stress the
significant conceptual differences
between the two approaches investigated
with regard to this case study
implementation of a priority driven Ada
executive., Figure 1 serves to illustrate
the alternative approaches and concepts
and their implications for the developer
of an Ada executive.

The terms 0.S.,
runtime support or
often used rather 1loosely when ECS
topics are discussed. The ambiguity of
this terminology in the ECS environment
is primarily due to the overlap in
functionality provided by different
implementations for different
applications. An application residing
on a bare machine may interface with
software providing minimal scheduling
and memory management. This software
is often referred to as an "executive"
or runtime kernel whereas the same
services provided on another system may
be obtained from software referred to
as an 0.S. The primary difference in
terminology is attributable to the
variety and nature of the services
provided by the support software in
question. The more minimal the services
provided, the more likely that the terms
runtime support, runtime kernel, or
executive will be applied. True operating
systems in the strict sense are
distinqguished by two major factors. They
are typically developed independently of
any compiler/applications software and
are acquired independently rather than
as a part of a given compiler system or
package. The other major distinction
is in the comprehensiveness of the
services provided by an 0.S. for the
target machine; services that may be
targeted and utilized by a variety of
differing applications and tools as
well as many different compiler systems.
The minimal runtime support for
applications developed under a single

executive, and
system (RTS) are

e

Current Ada RTS Approaches include:

Compiler Generated iniline Su

Software Routines and Libs (Runtime Calis)

Firmware (Interrupt Equivaient of Runtime Calls) e.g. VRTX
Any Combination of the Above (e.g. VERDIX/VRTX)

7

.

Large
fSystems

£C8's

Primarily
Smatl
ECS's

* RTS

{Interigce) Libraries

Components Include:

Task Management (Support for Ada Tasking Modet)
Memory/Storage Management

Excepti: Handling S
Type Support

pRont

pport for Predefi Language Packages (1/0)
FIGURE 1.
SUPROAT (ATS) APPROACHES

compiler system may interface to, and
utilize, the comprehensive services
provided by an 0.S. Therefore, the RTS

for an ECS can be thought of as providing
the minimal required subset of
0.S. services needed for a given
application. As stated, this minimal
subset can be provided by direct access
to the underlying machine or through the
utilization of the services provided by
an underlying comprehensive 0.S. The
former case is the most typical for
embedded computer systems. The term
"executive” is most often used to refer
to that part of the RTS that performs the
basic scheduling and memory
management. Other portions of the RTS may
include I/0 control, timer/clock
management, and a certain amount of
systems level runtime error and interrupt
trapping.

The RTS or runtime environment of an
ECS is the combination of hardware and
software that supports the execution of
application programs and the programming
language features utilized to develop
those programs. As illustrated in Figure
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1, this support can be implemented in
hardware, microcode, through direct calls
to an 0.S8S., through the use of runtime
support libraries, or by compiler
denerated (in-line) code. The operating
system and RTS needs of small embedded
computer systems are typically modest.
All that such small ECS targets usually
require is an "executive" consisting of
little more than a basic scheduler,
memory manager and some type of I/0
manager or controller. Obviously,
different applications may have specific
needs relative to memory management, I/0,
or clock services which will be reflected
in the "executive/0.S8" software.

APPROACH

This paper addresses two basic
options or approaches to the
implementation of an Ada executive and
briefly discusses ongoing as well as
proposed work in a third area of related
investigation. The first of these
approaches is explored in depth (through
to implementation) and consists of a
combination of a "pseudo executive" or
scheduler at the applications layer in
concert with vendor supplied executive
software at the runtime system level. The
obvious benefits of such an approach -
imposing an additional layer of control
upon the runtime system scheduling
mechanism - include ease of portability,
and relative target independence with
respect to the underlying scheduling
algorithm at the RTS layer. These
benefits as well as the tradeoffs in
overhead and consistency from
implementation to implementation will be
discussed in detail. Another option is
explored at a high level only. This
alternative, termed the bare machine
approach, is consistent with the
traditional approach to avionics-based
executives and is considerably more
limited in scope than the first in the
sense that it assumes no underlying vendor
supplied runtime support. This executive
performs all necessary support for the
execution of user jobs or "tasks".
However, this approach is significantly
more restrictive than the first with
respect to the nature of what constitutes
a "task" as well as to the use of certain
Ada langquage features involving both the
Ada tasking model and dynamic memory
management and certain other real-time
aspects of the language. The final
option is considered only in terms of
current and ongoing investigative work
and proposed future studies based upon
the results of past investigations. This
approach diverges from the others in that
it proposes a complete migration to the
runtime system layer in order to probe
the issues of efficiency and risk
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reduction for real-time Ada applications.
This option emphasizes the tailoring and
optimization of the executive functions
provided at the RTS layer.

A multi-phased approach beginning
with a requirements specification was
utilized for the design and development
of the priority driven executive. The
functional capabilities that were to be
provided were extracted from an existing
avionics executive implemented in a
combination of FORTRAN and Assembly
language, It was determined that these
same functional capabilities would be
provided within the executive being
implemented in the Ada language.

Figure 2 is a schematic representation
outlining the functional interaction of
the major components of the
FORTRAN/Assembly model utilized. This
representative model of a priority
driven executive exerted its control
over the user task states through the
creation and management of task control
blocks. These contained fields of
information specific to each user task
transition between the active and inactive
state. The type of scheduling mechanism
utilized within this system was a
non-preemptive, voluntary context
switching algorithm. Ultimately, the
actively executing user tasks were
responsible for initiating the scheduling
of other user tasks and, in many cases,
themselves. This was accomplished through
explicit calls to the scheduling
primitives provided by the executive and
consisted of both time and signal
dependent scheduling. Based upon the

ACTIVE USER TASKS (SCHEDULED/EXECUTING)
TASKQUEUE TMERQUELE
(READY/ (TME DEPEN-
EECUTING) DENTEXEC)
task
—tvalion
4 task control block 4
creation/managemernt
CORE EXECUTME
TASK TIME schedllin?g
MANAGER descheduli
——>
TBGASYN NTERRUPT HANDLING
base
frame REAL TME CLOCK
interrupt
T8G
FIGURE 2.

FORTRANASSEMBLY EXECUTIVE FUNCTIONAL SCHEMATIC

*’\ I\' - " » (P '*F
.:: :'.' .'¢ \' " » nl'.:'l.ul.t.




receipt of either a time-based or
signal-based event, the executive managed
the task state transitions between
inactive, ready for execution, and
executing.

This model was selected primarily
for its representative features as a
real-time, multi-tasking, priority
driven avionics executive and for its
relative small scale. Using this model,
an Ada equivalent was developed to provide
as much, if not the same, functionality
available in the FORTRAN/Assembly language
implementation. While equivalent in
functionality provided, the Ada equivalent
constituted a complete re-design utilizing
Ada concepts and features where possible.
For this reason, the Ada executive posed
some unique problems from the outset with
respect to use of the new Ada concepts
and features such as the Ada tasking
model. These issues will be addressed
in some detail in the RESULTS section
of this paper.

The Ada priority driven executive
was to provide facilities for the creation
of active tasks via a scheduling
mechanism. The scheduling mechanism
would provide time-dependent scheduling
capabilities, precision timing of task
activation as measured by time base
generated (TBG) epochs, and signal
dependent scheduling capabilities. The
Ada priority driven executive would
perform prioritized tasking and would
have the option of enabling and disabling
interrupts. The capability to directly
connect to a real-time clock interrupt
would be provided. In the absence of
such a facility, the real-time clock
interrupt would be simulated with the
smallest dgranularity possible. In short,
the Ada priority driven executive was
required to be a real-time, multi-tasking
process manager with interrupt handling
and both cyclic and asynchronous
scheduling capability.

Integral to the design of the Ada
priority driven executive was the
selection and application of a
state-of-the-art, Ada-based design
methodology. A somewhat novel design
approach was selected that wasg based

upon Object Oriented Design2 with
enhancements and modifications }mcific
for real-time embedded systems The

methodology derived was termed Real-Time
Object Oriented Design (RTOOD) and drew
upon another real-time, systems-based
design methodology called Design %?proach
for Real-Time Systems (DARTS) The
steps utilized in this hybrid methodology
are outlined in Figure 3.

Using Object Oriented Design
constructs often referred to as

oy oy ™ - Oy oy T, e ol
,\ x)_.’ s_,s. ')‘\J“ ‘.‘-,::S,. SN DR

R ARIR
.'J‘ \

I.  Definition/statement of the problem

Il.  Informal strategy (Modifled specification)
I1l. |dentify objects and attributes

IV. |dentity Operations

V. Identify concurrency *(DARTS)

Decomposition into tasks/packages
based on:

The asychonous nature or major transforms
-- sequentlal vs. concurrent --

spectiiically:

i/lo dependency

time critical functions
computational requirements
function cohesion

temporal cohesion

periodic execution

Vi. Establish the Interfaces

VIi. Implement the operations

* (DARTS)
Design Approach for
Real-Time Systems

Figure 3.

REAL-TME OBJECT ORIENTED DESIGN (RTOOD) METHODOLOGY

Booch-o-grams®, a high level schematic
depicting the major Ada program units
required for implementation of the Ada
priority driven executive is presented
in Figure 4. This high-level overview
establishes the necessary relationships
between the major components of the
system in terms of visibility among
program units as well as defining the
interfaces through which they
communicate. The design arrived at and
presented here is a top-level abstraction
only. It was necessary to iteratively
apply the design methodology from the
highest level of abstraction downward to
arrive at a complete definition of the
required components.

Similarly, a high level design was
developed for the alternate approach -
termed here "the bare machine approach”
- to the development of an Ada executive.
This high-level abstraction is shown in
Figure 5 and represents the more
restrictive traditional approach to
implementation of a bare machine
executive. The model represented
implements its own concurrency through
the executive while disallowing the use
of the Ada tasking model per se as well
as any difficult, and potentially
risk-prone, dynamic storage management.
The potential benefits and risks of each
of these approaches was examined with the
former approach being carried through
to implementation and limited utilization.
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GLOBAL_DATA

INTERRUPT HANDUNG |
PACKAGE

USER_TASK
£_DATA | 4
CORE_EXECUTIVE_MAIN TIMER_TASK_PACKAGE

CALL_TASK_ENTRES

TIMER_MANAGER

FIGURE 4.
HIGH LEVEL RTOOD SCHEMATIC
EXECUTIVE WITH UNDERLYING RTS

An important function of this case
study was to provide an evaluation of
the tools and methodologies that would
be utilized in an actual project
consisting of the specification, design,
and implementation of a real-time
application. The ByronTM* program
development language and toolset developed
by Intermetrics was utilized as a
component of the overall design
methodology. The Byron Program Design
Language (PDL) is based on the Ada
language and provides a mechanism to
associate textual information with
Ada language constructs. The Byron
toolset facilitates program design and
development through the provision of
documentation support and analysis
tools.

The approach to testing and analysis
of the executive under development
considered several issues. Functionality
as well as program sizing and overhead

*

ByronT"'is a Registered Trademark of
Intermetrics, Inc.
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were considered. An examination was made
of various runtime system parameters such
as task scheduling, interleaving, and
prioritization.

BRESULTS

I. ADA EXECUTIVE WITH VENDOR RONTIME
—SUPPORT

The capabilities of ¢the
FORTRAN/Assembly language implementation
and the Ada lanquage implementation are
summarized in Table 1. The Ada language
version consists of two major components
- the program code and the vendor supplied
runtime system. In both implementations
the scheduling primitives are provided by
the executive, but the ultimate
responsibility for cyclic/acyclic task
scheduling lies with the user
(application) tasks. Note, however, that
the task interleaving and task waiting in
the Ada language version is strictly under
the control of the Ada runtime system and
not under the control of the executive as
in the FORTRAN/Assembly implementation,
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TABLE 1. FORTRANASSEMBLY VERSUS Ada IMPLEMENTATION

Ada
BECUTVE

Ada RUNTIME
SYSTEM

CAPABILTY FORTRANASSEMBLY
EXECUTIVE

CYCLIGAACYCUC . .
TASKSCHEDULNG Provided Provided

TASK DE-SCHEDULING Provided Provided

TASKINTERLEAVING Provided

TASK WAIT Provided

PRIORITIZED TASKING Provided

TBGINTERRUPT Provided

ACTIVE TASKS
(WAITING FOR RENDEZVOUS)

ACTIVE TASKS
(EXECUTING)

ADA task

activation

timer/
signal
queue
[

user task

CORE_EXECUTIVE_ MAN _ scheduling

TASKTIMER | soHEDULNG
MANAGER FUNCTIONS

TBG INTERRUPT HANDUNG

ACTUAL/SMULATED
REAL TME CLOCK
TBG INTERRUPT
GENERATION

base
frame
interrupt

FIGURE 6.
ADA PRIORITY DRIVEN EXECUTIVE
FUNCTIONAL SCHEMATIC

Furthermore, although tasking could be
prioritized dynamically {(changed) in
the FORTRAN/Assembly implementation,
priorities at the runtime system level
are static in the Ada language version.

Figure 6 depicts
the major functional components of the
Ada equivalent prototype developed for
the case study investigation. The major
distinction between the Ada implementation
and the FORTRAN/Assembly model depicted
previously in Fiqure 2 involves the
interaction of the Ada runtime system with
the priority driven executive functions.
While the FORTRAN/Assembly model managed
all state transitions for user tasks from
inactive to executing and all information
associated with these state transitions,
the Ada implementation utilizes the Ada
runtime support system (for the tasking
model) to manage the active processing
phase of any user task as well as the
body of information associated with a
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tasks' active execution. Specifically,
the Ada runtime system manages the
interleaving or time-slicing of
concurrently executing user tasks and is
responsible for management of the
associated task activation information.
The start of a user tasks' scheduled
execution phase is strictly under the
control of the Ada priority driven
executive at the applications layer, yet,
the management of the transfer of control
between any number of concurrently
executing user tasks is by definition
under the control of the vendor supplied
Ada runtime system. In addition, the Ada
language specification dictates the
enforcement of critical regions
(non-interruptable sections of code) with
respect to the acceptance of task entry
requests and subsequent processing. The
enforcement of these critical regions in
conjunction with the priority-based
scheduling through the Ada executive
imposes upon the Ada runtime system an
additional 1level of control via a
predetermined algorithm for transfer of
control (interleaving) among concurrently
executing program units.

To satisfy the requirement for a
cyclic capability, the executive was
required to have some method for
specifying fixed-rate scheduling. This
was provided on two levels. In keeping
with the scheme utilized in the original
model, the facility for scheduling a task
for execution is provided. Active tasks
currently executing may therefore utilize
this facility to re-insert themselves
into the schedule for future execution,
or this may be done by some other active
user task. This requires some
hypothetical scheduling scheme among
the user tasks. In the original model
a voluntary, non pre-emptive scheduling
scheme was utilized among the user
tasks that enforced the notion that neo
transfe: of control or context switching
among tasks could occur unexpectedly.
Bearing in mind that within an Ada
environment the underlying operating or
runtime system utilizes another level of
scheduling for the interleaving of
currently active tasks, a task
prioritization scheme among these tasks is
then required to enforce the notion that a
particular task is incapable of having its
scheduled execution interrupted once it
begins. In short, we have a scheduling
scheme at the user task level to specify
fixed~-rate triggering of a tasks'
processing and the Ada pragma "PRIORITY"
enforced at the underlying operating or
runtime eystem level to ensure
uninterrupted completion of that
processing.

The major potential point of failure
with respect to this type of approach to
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task scheduling at the applications level
is at the underlying runtime system
level. The issue is one of consistency
from implementation to implementation
with respect to time slicing of
concurrently executing processes of equal
priority. While fixed rate triggering of
task execution can be guaranteed via a
combination of algorithmic control,
prioritization, and interrupt handling
through the "psuedo executive", no such
guarantee can be made with respect to the
method of time slicing utilized by the
underlying runtime support for concurrent
tasks of equal priority. This will vary
from implementation to implementation
although adhering to the so-called "FAIR"
requirement dictated by the language
specification. Given the stringent
nature of typical ECS performance and
reliability requirements, this potential
inconsistent behavior across
i@ﬁsementations could pose a significant
risk.

Static prioritization of Ada tasks
may be a problem in some instances of
task scheduling or interrupt handling
since external events often dictate a
need to dynamically change priorities.
The Ada rendezvous occurs in a first
in, first out manner using a queue
structure for multiple entry calls
issued for any given task entry point
(ACCEPT statement). There is no way to
reorder and influence the position a
calling task may occupy in such a queue.
It is possible that with dynamic task
prioritization this could be programmer
controlled although it is not cleaz
whether task prioritization is used
for the queueing order of simultaneous
entry calls in a given implementation.
Presently, if it is desired to hold or
halt the acceptance of an entry call that
has been issued and is queued, there is
no recourse for doing so (cleanly) aside
from termination through the ABORT
mechanism and re-invocation.

The FORTRAN/
Assembly language implementation used as a
model in this case study was coded in a
little over 1 K (bytes) of memory and
accounted for somewhat less than two
percent of the entire system. While the
entire Ada system consisted of just over
700 lines of code, the space requirements
varied with respect to the host machine.
The Ada version required anywhere from 27
K to 38 K bytes of memory for the
applications code alone. The runtime
kernel on one machine imposed an
additional penalty of 200 K bytes to
utilize the Ada tasking model. It
should be noted, however, that the
executive was developed for functional
realism and was not optimized for minimal
program size. The runtime kernels were
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large, as much as 200K bytes, but the
runtime kernels were intended for a
main-frame environment, not a typical ECS
application. The significant lessons
learned were in what options were
available to optimize the size and speed
of the executable image. Significant
savings - approximately 100K - were
available via a selectively loadable
tasking kernel in at least one
implementation while other options
resulting in savings were no runtime
checking (1-2K savings), and no debugging
instrumentation (5K savings). In one
particular implementation, the option for
space optimization was offered yet yielded
no appreciable difference in the size of
the executable image. While there is no
strict linear relationship with respect
to overhead between host and ECS
environments, the significant savings
realized through configurability within
the host environments has significant
positive implications for ECS environments
where efficiency constraints are
paramount.

The granularity of clock services
available was insufficient to perform
significant timing analysis at the time
of the case study investigation. However,
parallel investigations within the same
environments at a later date revealed data
significant to the type of real-time
processing utilized within the prototype
executive, It was found that the total
storage penalty to include a minimal
exception handling capability within each
Ada program unit was on the order of 4-5
percent of the total program storage while
the cpu overhead to invoke an exception
handler ranged from 30-500 microseconds.
This represents an acceptable cost in
either a host mainframe or embedded
environment.

The overhead in terms of time to
utilize the rendezvous mechanism within
the host environment was rather high,
being approximately 11-12 milliseconds.
Given the relatively rapid frame times
of many real-time applications (on the
order of 40-100 milliseconds), a feature
that uses approximately one tenth of the
frame time poses serious risk3. However,
based upon current investigations with Ada
for embedded 16 and 32 bit targets, the
case can be made that this is a problem
somewhat localized to the mainframe
environment.

While there
are a number of methods available to
trigger the processing of a task, each
has a relative cost in terms of
efficiency. Many of these methods can be
‘rery expensive in terms of memory
utilization and rely heavily on efficient
garbage collection by the underlying
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runtime system to ensure adequate storage
availability. The danger of exceeding
maximum storage capacity is always present
and, therefore, many of the available
methods are entirely unsuitable for small
to moderate size machines.

One acceptable technique is to
make task processing dependent upon
a rendezvous that is placed inside a
loop. The processing is triggered by
the rendezvous acceptance. When the
processing is complete, the task merely
loops back to the accept statement and
goes to sleep until a subsequent entry
call is made. This assumes that an unmet
rendezvous constitutes a sleep state. The
assumption is that it should be a sleep
state to prevent waste of valuable CPU
time, but this may be implementation
dependent. There is an additional problem
with this approach. The Ada rendezvous
mechanism is defined in such a way that a
calling program unit is suspended until
the processing that is contained within
the ACCEPT-DO END block of the_task being
rendezvoused with is completed7. This is
comparable to the synchronous behavior of
a procedure call. The acceptable solution
to this problem is to place any processing
in a called task after an empty ACCEPT-DO
END block ( the DO/END would be
optional). By placing the processing
segment following the point of rendezvous,
and not within it, the task that issued
the entry call can rendezvous quickly and
continue executing, concurrently, with any
processing that has been triggered in the
called task. This was the method utilized
successfully in the case study.

Resource Contention Resource
contention among user tasks with regard
to the scheduling facilities was detected
in the design phase as well as at the
coding stage. In an Ada tasking
environment, contention for shared data
and processing resources seems to dictate
a tasking solution in the form of a
monitor task that encapsulates the
resource in question. The use of flags
or a semaphore system has the inherent
danger of collision on the flag and
does not seem satisfactory in a heavily
task oriented system. The tasking
approach therefore seems to be the most
satisfactory solution,

A problem was encountered when the
executive tasks prioritization levels
were equal to or lower than the least
urgent user task. This introduced the
problem of a highly active user task
locking out the executive tasks and
affecting the stability of the timing
cycle. A satisfactory solution to this
problem is to make the executive tasks'
prioritization levels the highest in
the system and to introduce enough

delay to allow the user tasks sufficient
processing time.

I1. THE BARE MACHINE APPROACH

The alternate design approach proposed
in this study for the Ada priority driven
executive (see Figure 5) is intended for a
bare machine environment with no resident
operating system nor any vendor supplied
Ada runtime support. The design of such
an executive raises some important
issues with respect to what must be
provided to support the execution of an
Ada application on such a bare target.
When operating within such an environment,
the implications of the traditional model
of an executive, such as the original
FORTRAN/Assembly language implementation
used as a basis for this study, must be
considered. This approach differs greatly
from that which utilizes an underlying
runtime system. This approach implies
that beyond the generation of native
machine instructions from the HOL by some
generic translator or compiler, it becomes
necessary to provide programmer supplied
support for any HOL language features not
directly implementable through primitives
on the bare hardware. It therefore
becomes the task of the runtime supervisor
or executive software to provide this
underlying support for things such as
concurrency or multi-tasking, I/0,
dynamic storage and memory management
to name a few. In addition, this executive
must not, in turn, rely on some underlying
support for its own execution.

The design of this executive was
purely hypothetical and no specific
embedded target was selected. For that
reason, only a high-level design was
iterated. Currently, typical vendor
supplied Ada runtime support packages
facilitate things such as: system
elaboration or initialization, task
communication and scheduling, exception
handling, interrupt, I/0, and type
support. The amount of overhead varies
with each vendor's implementation, The
design proposed here is for an Ada
executive function that would minimally
support the execution of other Ada
software constituting jobs or
"tasks". However, the Ada tasking
model is not supported by the proposed
subset Ada implementation for a bare
ECS target. As in the traditional
model, concurrency is achieved via the
executive utilizing a non pre-emptive,
voluntary context switching mechanism.
Control over scheduling is therefore
explicit and known to the programmer.
In addition, any dynamic data or storage
management is restricted to that which
supports the execution of the executive
functions only. It must be noted that
the notion of an "“all Ada executive™ at
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this level is fallacious. A certain
amount of privileged accessing of register
and stack contents by the executive
functions to facilitate the basic context
switching and memory management would be
required. This is not directly achievable
from within the Ada language. Therefore,
a component of the executive software
(e.g. the Control_Transfer_Package) would
by necessity be implemented in a lower
level programming language. In current
commercial Ada runtime systems for
embedded targets such as the 1750A,
this accounts for approximately two
percent of the supplied runtime support.
Ada packaging concepts facilitate the
encapsulation and isolation of such
machine context sensitive components.

The rationale for the approach to
concurrency presented is straightforward.
While explicit context switching can be
considered risky, it has certain potential
benefits., It avoids the necessity of
excessive locking since the programmer
knows exactly when context switches are to
be performed. Another benefit is realized
when a high priority event occurs that
must be handled rapidly as is the case in
many real-time systems. While handling
such an event, it may be deleterious to
release the processor. Finally, the
avoidance of unnecessary context switches
and/or checking results in greater
efficiency8. Admittedly, however, it
becomes necessary to question the
feasibility and advantages of using Ada
without its tasking features and other
real-time components versus using any
other high-level programming language. It
should also be noted that, with some
re-working of the design, there is
nothing to explicitly prevent the use
of the Ada tasking model and rendezvous
concept, provided that the necessary
runtime support is supplied at an
acceptable cost in memory overhead and
execution efficiency. This is the
motivating concept driving our current
and future investigations with respect
to Ada real-time systems and will be
discussed in the following section.

T h e
rationale for an approach such as the
bare machine option is that given the
present state of tasking support in an
environment that supports full Ada
tasking, exception handling and other
HOL features, the resultant program
size may be unsuitably large for an
embedded application. While the bare
machine approach represents one available
option, an additional alternative exists
that holds some promise for the design of
compact, efficient real-time systems and
is the focus of our current and future
investigative work. This consists of a
migration to the RTS layer in pursuit of
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optimization and risk reduction at this
level while maintaining the complete (or
nearly complete) functionality of the
language. The focus is on tailorable,
configurable runtime support for the
design of efficient real-time systems in
Ada. It is highly likely that the full
functionality of the traditional model of
a priority driven executive can be
achieved in this manner by minimizing the
role of a programmer supplied executive
and relying on the efficient
implementation of the Ada tasking model
at the operating or runtime system
level. While it may still be necessary
to provide customized runtime/executive
support, this can be provided primarily
through tailoring of existing systems at
the RTS level to meet specific performance
requirements rather than exerting
additional control at the applications
layer.

CONCLUSION

Many issues of concern exist due to
the immaturity and quality of Ada language
implementations and uncertainties
regarding performance. The performance of
the code generated by early compilers may
be poor and may result in poor system
performance. In addition, although
several of the issues that face developers
of real-time ECS applications in Ada are
design issues or primarily resolved
through good programming technique, many
issues remain that pose risk to the
development of real-time systems in Ada.
Current design techniques for real-time
applications in Ada are inadequate, and
some issues can be resolved by development
of a comprehensive design method for
real-time systems. Furthermore, the
development of programming techniques or
strategies, and the education of
programmers can aid the elimination or
minimization of many concerns.

The unique constraints imposed upon
real-time embedded computer applications
often require that specific solutions and
strategies be utilized. Implementation
languages, in turn, must be sufficiently
flexible and powerful to accommodate
these solutions in the most efficient
manner possible. We have identified a
number of key risk areas and issues for
real-time ECS applications and have
explored these issues, and solutions,
within the context of a specific Ada
language application. With respect to
the issues that were successfully
addressed within the scope of this case
study, the following conclusions can be
made.

Current runtime support required
for implementation of the Ada tasking
model is generally high in memory
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utilization and execution overhead.
However, as Ada language systems mature
and currently available optimizing
technology is employed, large runtime
overhead with respect to memory
utilization and execution speed should
certainly become less of an issue.
This is in fact the case with some of
the Ada language systems currently
under development. Current investigations
with a variety of differing compiler
systems and runtime environments for 16
and 32 bit embedded targets have revealed
that kernel runtime systems currently
exist that appear to be providing the
minimal, configurable support necessary to
accommodate Ada language features in a
timely and efficient manner. Standardized
kernel runtime support on the order of 2K
provided by minimal system service
interfaces is currently available
(e.g. VRTX) and can be targeted and
utilized efficiently by Ada compiler
systems for a variety of embedded
targets. In addition, preliminary
analysis and timing studies with Ada
language systems for embedded targets such
as the AIE 1750A cross compilation system
have indicated that the basic language
features are being implemented in an
efficient manner. Basic context switching
times on the order of twenty microseconds
and general code expansion ratios on the
order of four to six are encouraging for
the development of compact, efficient
real-time applications in Ada. 1In
addition, hardware architectures optimized
to execute Ada code and that implement Ada
language features in hardware at runtime
are being developed.

Problems remain with the non-support
among many Ada implementations of certain
real-time features of the Ada language. A
case in point is the vectoring of
interrupts to task entries via the Ada
representation specification. This
continues to be a concern to the real-time
applications community although it is
somewhat localized to the mainframe
environment. Additional problems are
rooted in the language specification
itself (MIL STD 1815A) which fails to
provide certain features desirable in
typical real-time systems. While
alternatives exist, this lack of certain
explicit language primitives poses unique
problems for many types of real-time
applications. Specifically, the lack of
explicit language primitives to allow
dynamic "disconnection™ and "connection"
to interrupts without the termination or
creation of a program unit (task) and
the inability to utilize dynamic task
prioritization are of major concern to
ECS developers. Furthermore, the lack
of precision in the specification of
exact delays as well as the lack of
alternatives or ability to time-out

WA

TENTWU IO VAN L M AN TR TOE T RATAIN T AO IRTE K A TN ¥

during initiated rendezvous' is an
impediment to the development of
efficient, reliable real-time systems
in Ada.

There is a continuing need for a
clear, concise design methodology for
real-time embedded Ada applications
that includes a criteria for the
identification of concurrency and a
graphic means of depicting concurrent
relationships with timing and
synchronization information at any
given point in the system. While helpful,
the hybrid method utilized during this
case study falls short of fulfilling such
a broad requirement.

The difficulties encountered during
the course of the case study investigation
in assessing Ada real-time features in a
host machine environment were significant
and underscored the need for further study
of the problems and issues encountered in
real-time applications. We are currently
continuing our real-time investigations
to evaluate the effectiveness of Ada
language systems for real-time embedded
applications within realistic host and
target environments. This work is being
carried out with a focus on the 1750A
and 68000 compiler and runtime
environments., A comparative analysis
of runtime characteristics and performance
among various Ada compiler systems and
sample runtime environments is ongoing.
We are also identifying and utilizing
state of the art real-time Ada evaluation,
test, and simulation tools in the effort
to analyze the performance characteristics
of Ada applications in realistic target
environments. The focus of our initial
case study was at the applications
level although an alternative was proposed
for a prohibitively restrictive Ada
executive that fulfilled a subset of
the runtime responsibilities to support
the execution of concurrent Ada programs.
The current approach calls for migration
to the RTS level to investigate
optimization and tailoring of existing
systems to allow efficient use of the Ada
tasking model and other real-time features
within realistic target environments, It
is in this manner that we will attempt to
address and seek additional information
and solutions to those issues left
unanswered in our preliminary Ada
real-time investigations.

The authors wish to acknowledge the
support and advice of the personnel at
Intermetrics, Inc. in the preparation
of this manuscript.
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PRACTICAL EXPERIENCES OF THE ADA LANGUAGE FOR
REAL-TIME EMBEDDED SYSTEMS DEVELOPMENT FOR THE DEFENCE~RELATED MARKET

Dr Mel Selwood

Plessey~UK Limited, England

Summary

This paper describes some of the
experiences gained to-date from an Ada
research programme, undertaken within the
Plessey Company in the U.K., by the author
and his team. This programme is investig-
ating the cost-effective and beneficial
introduction of the Ada language for
Defence~related (mostly real-time) software
applications. Particular emphasis is
placed upon minimising the risks and
maximising the benefits for large and / or
embedded microprocessor-based systems,
Within the context of this largely
practical work programme, the paper
identifies a number of key concerns within
the team (and it is suggested within
industry at large) in making the transition
to Ada. Also, some suggestions for
improving the application of current Ada
compilers and tools is provided to the
vendors of these products.

Introduction

Clearly, in order to obtain the longer term
benefits claimed for the Ada language, it
is first necessary for any commercial
organisatioan to be able to bid for and
implement Ada projects both profitably and
at minimum risk. This can only be done
with confidence (at least for fixed-price
contracts) when that organisation has

already 1implemented ‘"representative'" Ada
projects, so that it can draw upon real
experience of the technical issues
involved. Only then can it, for example,

reliably establish criteria for estimating
project timescales and costs, and define
appropriate standards and procedures for
Ada-based developments.

In general, for large and complex
(especially real-time embedded micro-
processor based) systems, for which Ada {is
intended, the risk of using Ada ahead of
gaining such real experience may well be
too great. Further, although the
introduction of Ada may go hand-in-hand
with improved software engineering
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practices, 1t would be inappropriate to
ignore the often large existing investment
in non-Ada software and systems products
(and the associated manpower skills,
working practices, equipment etc.) in
favour of some totally new, unproven
development scenario.

Instead, the situation demands an optimum
(transition) solution for which on the
one-hand changes to the status gquo are
minimised, while on the other hand the
potential benefits of Ada and associated
development methods are maximised.

This paper reports on some of the practical
experiences gained to-date from an Ada
research programme which was set up to
address this problem.

Ada Research Programme

The programme was set up as a “virtual”
project, involving a hybrid mix of
practical study activities and real Ada
software developments. This project is
ongoing and involves multiple study teams
with distributed interests, thereby
ensuring a broad approach to the problem.

Given that the coding phase of projects

typically equates to only 102 of the

overall development effort, it is clear

that the real value of Ada will come not

from the direct characteristics of the

language 1itself but from the catalytic

(secondary) 1influence wupon the software

engineering methods employed. Thus, the

following issues are being examined:

i. the appropriate time-frame for
introducing Ada,

if. the impact of Ada upon the overall
development lifecycle,

ii{i., the necessary standards and procedures
(Project Management Baseline),

iv. the anticipated effort / cost - time
profile for Ada projects,
v, constraints upon the design and

implementation of products, and their
expected characteristics,

vi., operational aspects (eg appropriate
development environment),
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Within this context, the programme focusses
upon the production of Ada demonstrators
for gaining practical experience of Ada, to
demonstrate representative Ada-based
software systems actually working, and to
allow ancillary studies eg into code size
and performance issues, The work 1is
complemented by a series of across-
application studies to check the consist-
ency of the results and their applicability
to varied applications.

Three demonstrators are currently being
worked upon:

A Digital Telephone Exchange Demonstrator

This system implements the complex multi-
tasking activities associated with setting
up, supporting, and terminating, one or
more concurrent two-party telephone calls
from Digital Voice Terminals (DVTs). The
system supports a variety of facilities eg
system configuration, abbreviated dialling,
diversion of calls, call pre-emption etc.

The system is a conversion of an existing
product which was developed using the
"Modular Approach to Software Consftruction,
Operation and Test (Mascot) ", and
implemented wusing the Coral 66 language.
The majority of the new system preserves
the existing Mascot design (excluding the
Mascot “machine” concept, which supports
primitives such as operations on control
queues for synchronising access to shared
data areas). The required system functions
were then manually re-implemented using the
full features of the Ada language.

Subscriber Subscriber Subscriber
7625341 7624762 6523484
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2000
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[-1-1-1-]
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1« CPCSOTRAITIC CIRCUIT CPCROIDLE -
- CRCGOTRAIT SWITCH PO
- Twnw - CPOCA
Fumber $ Numpor ¢ Namber 7 Wamber &
o oooo
[=1-1-1-]
L gg8s
=/
Subscriber Subscriber Subscriber Subscriber
3435366 25087454 7654321 7234511

Figure 1 - Typical Screen Snapshot
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In contrast, the man-machine interface
(MMI) sub-system is both newly designed and
implemented and this serves as a test case
for studies into Ada design methods.

The demonstrator involves three platforms:

i. an entirely DEC Vax-based Ada systenm
with software emulating the function
of the real (DVT) hardware - a typical
screen snapshot is shown in figure 1.

ii. the Vax-based Ada system linked via an
RS232 interface to an existing
hardware rig supporting real DVTs,

iii. the Ada software at ii. re-—-ported to
run on an Intel 80286-based target.

A Sonar System demonstrator

This system 1s based wupon an existing
Pascal implementation and demonstrates a
typical naval surface ship sonar data
processing and colour display function. It :
presents both Active and Broadband Passive

sonar data Iin grey-scale format, updated in :
real-time, together with automatic target
detection and tracking functions. Opervator

interaction is via “soft” keyboards
presented on the sonar data displays, and
manipulated using a special purpose

five-button keypad. A sonar cursor is also
provided, controlled from a rolling ball,.

—DRMe 'J"_Cﬂ}__j

( Ada Programme )
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Figure 2 - Platform | Sonar Demonstrator
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There are two platforms (figures 2 and 3).
In the first the Ada software runs in a Vax
which is directly coupled via twin parallel
interfaces to two IEE796 microprocessor
busses, on which are situated multi-plane
colour graphics display generators and
man-machine interface (MMI) cards. All
intelligence 1is deliberately removed from
the 1IEE796 cards, and accordingly the
Vax-based Ada software deals with the
display and MMI hardware at the lowest
level of bit manipulation.

In the second platform, the majority of the
demonstrator is reconfigured for a multiple
Intel 8086 microprocessor system whilst the
remaining Ada control module runs in either
Vax or IBM PC-AT machines,

(Ada Contro! Progromme)
Vax

e

r
_i_._ Microprocessor Evoluation
I Intel 8086, 136
PC/AT Evaluation ;
f ! S
‘(—} ! [ [
Asys |l ! S -
JIL- "L WM
{.D 3 J Two 1 Diq)hy
mm "7 Port
i e
BM-PC/AT L. ~ imuc ET%E!! ]
{Ada Control Programme)
Figure 3 - Platform 2 Sonar Demonstrator

An Engine Monitoring System demonstrator

This de?onstrator is based on an existing
product which performs a range of engine
life count calculations, incident /
exceedance monitoring and vibration
analysis, for the Rolls Rovce Pegasus
engine. It provides a platform for
investigating the use of Ada in  high
performance-critical applications; the
majority of complex algorithmic
calculations being carried out in real-
time.
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The initial investigations involve
re-ifmplementing in Ada that software which
is used to assess the low cycle fatigue

damage on the wmajor components of the
engine.
There are two phases to the work. The

first involves an examination of the
existing design and Pascal implementation,
and re-implementing the system in Ada to
run on a Vax. In the second stage the
system 1is re-targetted to run in the real
Motorola 68000-based hardware config-
uration.

RESULTS AND DISCUSSION

Digital Telephone Exchange Demoanstrator

NDevelopment of this demonstrator commenced
using the Telesoft Ada compiler V2.1, and
later the Karlsruhe Ada compiler V1.1,
However, the performance of these products
was below expectation and a change was made
to the newly arrived DEC Ada compiler V1.0,
with which the implementation of the first
(Vax-based) platform was satisfactorily
completed. The second platform is still
under development but 1is expected to be
completed very shortly.

For the third platform, involving an Intel
80286 embedded microprocessor target, it is
planned to use the Verdix/VADS system
(running under VMS) since the DEC Ada
compiler does not currently support code
generation for non-DEC microprocessor
targets. This work should allow comparison
between the DEC and Verdix products.

The following 1list {identifies some of the
operational 1issues which have been raised
by the demonstrator experience:

i. The security and robustness of the Ada
library management facilities.

{i., The ease with which software developed
using one compiler can be recompiled
under another.

iii. The robustness of the compiler, and
the existence of any implementation
constraints.

iv. The development
required.

' The speed of compilation.

vi. The extent of interference by the
operating system in the execution of
the Ada software.

machine resources

Thus, taking point v. as an example: for
both the Telesoft and Karlsruhe Ada
compilers, 1in the particular application
used in the demonstrator exercise, the CPU
time required to build the first demonstr-
ator platform (before the system was fully
coded) was in excess of two hours - the
elapsed time being substantially longer.
Considering only the MMI sub-system (ca.
25% of the total system), this meant that
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the "(re-) build and run - analyse and
debug" development iteration could be
performed on average two or at most three
times per normal working day (depending on
the extent of re~compilation required).

When the DEC Ada compiler was used 1in the
same application, the eantire system was
built in 16 minutes CPU time (typically two
hours elapsed time) on a Vax-11/785 with 8
Mbytes main memory. This turn-round time
compared favourably with experiences of
traditional languages eg Coral, and led to
much greater overall productivity.

The platform 1 software comprises some 40
packages, including 34 Ada tasks, and is
implemented in approximately 25,000 1lines
of code (including comments). This
represents a substantial working example of
a complex Ada system, albeit a Vax-based
implementation,

Sonar Demonstrator

The first (Vax-based) platform was
implemented wusing both the Karlsruhe and
DEC Ada compilers. In transferring to the
DEC Ada compiler it was noted that
successful re-compilation and build
occurred without needing any code changes
at all. Despite the inevitable differences
in run-time characteristics, this is an
optimistic sign for portability of Ada
across different projects,

The first platform is implemented in
approximately 8,000 lines of code
(including comments). This compares with
approximately 5,500 lines of Pascal code in
the original implementation. However, this
smaller size <can be attributed ¢to the
reduced number of facilities for error
recovery and reduced program robustness,
rather than to any verboseness of Ada
(except where enforced by the strong typing
features of the language).

The speed of progression of the Sonar
“ping-front” from the bottom to the top of
the display screen provides a simple
measure of the net relative performance of
the software., Such measurements show that,
in the applications wused, for single-
threaded (non multi-tasking) versions of
the platform, the DEC Ada-based system
slightly outperforms the DEC Pascal
version. An extended multi-tasking DEC Ada
implementation is showing comparable
performance to its single-threaded counter-
part.

For the second platform (multi-Intel 8086
microprocessor configuration) the SofTech
ALS system is being used. However, to meet
the operational requirements of the system,
the target hardware is not based on
standard Intel boards. Accordingly,
certain non-trivial problems are involved:
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i. Support for the different hardware
components employed.
ii. The size of the run-time support (RTS)

system - this currently exceeds the
amount of the processor card on-board
memory.

iii., Alterations to the standard RTS to
cater for the different configuration
of the target hardware.

This work is ongoing but is already
highlighting a number of important issues
eg the impact on validation.

Engine Monitoring System (EMS) Demonstratoc

In the past for this application the
Structxrgd Analysis / Structured Design
method >~ has been used. For Pascal, this
has often involved considerable pre-
implementation “engineering” of the design.
However, for Ada the information hiding
features (primarily) appear to permit a
more optimal mapping with <consequential
improvements in the software structure.
This area of 1investigation is still at an
early stage, but the initial results look
encouraging.

Comparing functionally equivalent single
threaded (non multi-tasking) Vax-based
versions of the software implemented
respectively in (DEC) Pascal and (DEC) Ada,
shows a decreased run-time performance in
the latter case, contrary to the results
from the Sonar Ada platform. A number of
implementation changes to the Ada version
have been made in an attempt to explain
this difference, but so far these have not
substantially altered the results.

The reduced Ada performance for this
application may be due tc the significantly
higher degree of numerical processing
involved, and this 1is being investigated.
Work 1is progressing on the implementation
of a driver/display wunit (to display the
low cycle fatigue results) for which no
such numertcal calculations are 1{involved.
This should provide an opportunity for
further comparison.

For the second stage of the work, it is
planned to wuse the Verdix/VADS «cross-
development system and this should provide
both size and performance data for the
68000-based target configuration in the
near future.

Ancillary studies

Apart from the demonstrator projects, a
number of additional studies are Dbeing
carried out in the following key areas:

The design of Ada-based systems: A
number of methods eg, %tructured Aqalysis /
Structured Design 7, Mascot , the
Structured Systems Analysis and Design
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Method (L%D%/SSADM)é, and object-oriented
approaches’’” are being reviewed.

In the design and implementation of the MMI
sub-systenm for the Digital Telephone
Exchange Demonstrator, using a Mascot-like
approach, it was found that for example:

i. Significant effort was needed to
design and efficiently package the

data types and objects (Mascot
provides insufficient support).
ii. Packaging structures were initially

adopted which were subsequently found
to be non-optimal, Thus, while
undesirable sharing of data objects
was avoided, the first implementation
required excessive sharing of data
type definitions.

iii. Although ¢the strong typing of Ada
generally led to a much more straight-
forward mapping between the design and
code, this was at the expense of some
awkwardness in the processing of the
data.

ive Using “with” alone, rather than “with”
and “use”, for referencing other
packages was found to be much clearer
and less error-prone (for this large
scale development). This contrasts
with the (implied) recommendations of
most Ada textbooks whose examples are
rather simple.

The following points were also observed:

Mascot segregates processing units
(activities) and intercommunication data
areas (IDAs), the access procedures for
which encapsulate the more complex
inter-task communication and synchronis~
ation aspects. This 1is useful when the
implementation teams are of mixed ability,
In Ada, 1inter-task communication 1is an
implicit part of all of the applications
software. The full 1impact of this upon
large systems developments has yet to be
established.

A direct mapping of a Mascot design to Ada
usually leads to all activities being
implemented as (active) Ada tasks.,
However, since Ada assumes a synchronous
tasking model (rendezvous) the
implementation of the IDAs leads to two
possibilities: (1) treating them as
decoupled (asynchronous) inter-task
communication mechanisms, and hence coding
them as (passive) Ada tasks, or (2)
effecting a synchronous inter-task
communication by means of a rendezvous. In
the first (more general) case, the overall
system performance depends even more
heavily upon the efficiency of Ada tasking.,

It {8 important in defining the application
boundary for an Ada task, to bear in mind
that it 1{is not possible to alter the
priority of an Ada task dynamically (at

ARatEi. b _au - up Al Vel Rl Sk car aksal tal ral oal Eall tial

run-time). Thus, care has to be taken not
to group functionally related processing
activities within a single task if the
functions are inherently not of equivalent
priority.

The MMI sub-system has now been re-designed
and re-implemented based upon the findings
of the review into this and other methods.
This serves as a model example from which a
reasonably optimal design and implement-
ation code of practice is being derived for
future applications.

Program testing: Most Ada compiler
vendors are supplying symbolic debuggers
for use within the program debugging stage
of software development. However, most
Defence-related projects 1involve a high
degree of stringent testing (verification
and validation against the requirements and
design) and this aspect appears to be
receiving scant commercial attention,

Accordingly, the suitability of using
commercial symbolic debug facilities as the
basis of a more sophisticated test harness
is being investigated. To-date a prototype
test tool has been produced which involves
lexical analysis of the software under
test and the automated production of
command files to drive the DEC symbolic
debugger. Further work 1s being carried
out to investigate the representation of
the complex real-time behaviour of Ada
systems by advanced graphical means.

During this work numerous 1instances have
been encountered of having to gather data
about the software under test which must
clearly have already been obtained during
the course of Ada compilation. However,
this information is not made extermnally
visible by the compiler. It is felt that
there is {immense scope for Ada compiler
suppliers to collaborate with industry to
help overcome this sort of problem.

Configuration Management: Because of
the inherent complexity of most Defence-
related programmes, and the fact that they
require multiple development teams, strong
emphasis is placed on the need for
efficient tool-based configuration
management methods to support Ada projects.
0f particular 1interest 1is support for
software re-use across projects and in
devising suitable schemes for linking
existing or future configuration management
databases to Ada system build facilities.

Current investigations are looking at the
use of the DEC, SofTech and Verdix products
for this purpose. The results are expected
to form the basis of a future paper.

Run-time support: The provision of
efficient run time support for embedded
microprocessor—-based Ada systems is cructal
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%‘I to the use of Ada for such applications, However, for the complex and real-time
l‘" To-date studies in this area have been applications described here, the experience
s frustrated by the frequent lack of detailed gained to-date gives cause for optimism,
Wy, data from the compiler vendors about the Thus, 1In the development of the Vax-based
N characteristics of the run-time support platforms the DEC Ada compiler appeared to
o systems to be supplied. Again, this 1is a be well engineered and operationally
:0" problem area which could benefit from efficient. In these particular
":; further collaboration between the Compller circumstances 1t resulted in comparable
“"i: suppliers and Industry. Some of the issues run-time performance in at least one
j"‘. of importance are: application to Pascal, and although 1t
~":Q currently involves 1increased <code sizes
R i. the functionality, size and w#hen the run-time allocation of storage is
' performance of the RTS, and the taken into account, it is thought 1likely
Pu X “hooks” provided for use by that this situation will improve in future
" applications software, products.
f\j ii. the advantages and disadvantages (eg
"3 for portability) of using proprietary At the same time, the fact that the
“‘V RTS systems eg Intel”s 1RMX, and the research programme has slipped in time-
:E. Hunter & Ready VRTX system, as well as scales due to the non-availability of high
Ada specific products, performance cross-compilers and tools to
iii. the interaction between the underlying support representative embedded micro-
e Ada compiler technology and the RTS processor configurations 1is a cause of
A system in the context of the often concern., Such delays <could frustrate
) non-standard hardware <configurations industry in bidding for and implementing
)\'. used in embedded microprocessor these types of application. A further
“;- applications. concern is that there often seems to be
WY insufficient documentation concerning the
At the present time software that can be detailed compiler characteristics eg
used to “bench-mark” the commercially resource requirements, availability of
. supplied run-time support systems 1s being intermediate compiler outputs, run-time
L, developed. support features etc., This 1is an area
i which is just beginning to receive greater
‘o9 Conclusions attention in the Ada community and needs to
) be encouraged.
‘h The research programme being carried out by
’ the Plessey Company represents a major As a general conclusion, it is felt that
’ initiative to examine the key issues to-date there has been considerable
\,‘,‘ associated with the transition to Ada. In emphasis (perhaps not surprisingly) on
},[\.‘ common with views expressed elsewhere”, Ada producing validated Ada compilers, but much
Xy is regarded as much more than another less on providing genuine support for real
A0 programming language and is expected to Ada developments (whether this be
*': provide a new and real opportunity to appropriate compilers, support tools or in
) catalyse substantial improvements in devising effective working methods for use
Y industry’s software engineering capability. with Ada). Clearly, if Ada is to be put
; In particular, by allowing the unification into real service and provide the benefits
_',J of working practices, Ada 1is expected to that industry 1is expecting this balance has
‘ increase the opportunities for much greater to be redressed at the earliest
,'. levels of software portability and re-use, opportunity.
Q:i' software reliability, and overall
:':! productivity.
2
4 Industry is keen to take advantage of these
L. benefits but clearly any significant
S advance requires the availability of
P (cross-) compilers and support tools
‘.' appropriate to the systems to be produced.
'1:. Such compilers need to be not only
1 technically compliant with the Ada Language
i Reference Manual but also of high ‘
) performance and operationally efficient. !
e
:. This 1is still an area of concern and !
t$ despite the (increasing) number of :
'\' validated Ada compilers available it is :
:'I thought that there 18 much to be done !
‘.“ before Ada can really be put to effective
ta use for embedded microprocessor applicat- ‘
;. ions for which Ada has most to offer. |
b
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Tactical Database Management System -

An Ada! Technology Project for the US Army?

v Judy Bamberger, Phil Ritter, Jackson Wilson
k) TRW Defense Systems Group
}g Redondo Beach CA

;:; The Tactical Database Management System (TDBMS) is management system developed in Ada on: Sun worksta-
D a prototype of a state-of-the-art database management  tions running under Unix®, VAX* 11/780s running under

system being developed in Ada for an Army laboratory VMS®, and IBM-PCs running under PC-DOS. The
i responsible for developing, testing, and evaluating new database management system is coupled with a test bed

hardware and software designed to meet the information
management needs of battlefield automated systems.
There are three major portions to the TDBMS contract:

$ » The database management system itself, sup-
porting system maintenance programs, and

k) front end programs to provide a variety of

:‘ ways the user may access the database;

" e A test bed in which to run experiments;

o e A number of studies that emphasize areas of

| future research.

! This paper presents an overview of TDBMS and then
4\) concentrates on two issues we have faced in the develop-
ment of TDBMS: (1) using an Ada-based program design
language (PDL); and (2) selection of an Ada compiler.

Re) s Background
iz
! \ As a part of its initiative to upgrade the technology of all
é ‘ areas of its battlefield management strategies, the Army
- has recognized that more sophisticated data management
:,:l capabilities are required. An integrated database
[ management system (DBMS) will provide uniform and
-:.: consistent control of the data as opposed to each applica-
:\‘ tion having its own private files, with the data widely
o:.t dispersed so that there is little or no attempt to control it
R in a systematic way. The Tactical Database Management
ri System (TDBMS) project is one attempt to improve over-
all Army effectiveness by developing a prototype rela-
_'c tional, distributed database management system that is
fO implemented in Ada, designed to meet the Army's re-
» quirements for information processing in battlefield situa-

o tions. TDBMS comprises a state-of-the-art database
\
~3
\ lAda is a registered trademark of the US Government, Ada Joint
: Program Office (AJPO)

2This work is being funded under contract number DAAB07-84-C-
K578 for the US Army, CECOM, COMM/ADP Center, Information
Processing Technical Directorate.
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in which to examine and explore simulated battlefield
data management issues. In addition, several studies will
be performed to explore issues related to the Army’s bat-
tlefield modernization, including security of database
management systems, the suitability of using Ada for a
fieldled DBMS, and characterization of battlefield data
flow scenarios.

Current off-the-shelf, commercial DBMSs fall short of
meeting the Army’s needs due to the lack of sensitivity to
battlefield requirements, including poor response time,
complexity of the user interface, and large storage re-
quirements.

TDBMS addresses these issues in the following ways:

TDBMS is a database management system. A
database management system (DBMS) is used to: define
data, organize data, store data, access data, and modify
data. A DBMS supports the following characteristics:

e Centralized control of data;

o Consistency and uniformity of the data;

e Data indcpendence of the applications
programs; and

o Protection of the data.

By centralizing control of the data, redundancy of stored
data is itself controlled, and inconsistency of stored data
can be avoided. A single point of control (which may, in
practice be one or more individuals) may be established;
this is called a database administrator (DBA). Security
restrictions may be more readily controlled, and data in-
tegrity may be maintained by the DBA who has the
central responsibility for the entire database. From the
DBA'’s viewpoint, requirements can be addressed from a

3Unix is a trademark of Bell Laboratories.
4VA)( is & rademark of Digital Equipment Corporation.

5V'MS is a trademark of Digital Equipment Corporation.
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general view for the good of the system as opposed to ad-
dressing each requirement from an individual user's
standpoint. Thus, data independence becomes possible,
allowing the various applications of the data to be im-
mune to any changes in storage structure or access
strategy.

TDBMS is a relational DBMS. Relational database
technology has been maturing over the past decade.
Much has been published about the definition and theory
comprising the relational calculus and relational algebra
on which relational DBMS technology is based [Codd 70|,
[Date 81], [Ullman 82]. All types of relationships {one-
to-one, many-to-many, n-way, and reflexive) can be
naturally represented in a relational database. Infor-
mation is represented as relations (i.e., tables), regardless
of the kind of relationship being described. This provides
a more uniform representation of the information within
the database to the user. Figure 1 illustrates an example
of the kinds of relations that could be found in a tactical
database.

{ quicklook
®-2 | quicklook
®-3 | quicklook
-6 | quicklook

| i
2730810 | MRR-t | s3a1me 102788

1 i

| |

to-1 | 3

fo-s { 221 2730822 | tank-1 | 534975 | 101750

J -t | 7 2730950 | engineer-1 | 535500 | 101800

|a-1 | s 2731148 [ anti-tank | $3483%5 | 102945

Ja-2 | 126 2731200 | san-t | 531006 | 105000

|oe-3 | 18 2731317 | MRR-2 | 536710 | 103525

Ja-t | 12 2731527 | 1R-1 | 535280 | 102390
w6 | 213 211910 | sm-2 | 534000 | 102000
w6 | 2 132001 | WR-y ] 53a300 | 106100

first_seen
I (

last_seen | activity

1
| | |
GRD | 535240 | 102190 | 2730810 2731527 | march e

—! |

[ | 1

| eR-2 | ankwn | 536710 [ te3s25 | 2731373 291317 | assen 219
1| me-3 [ Seh-sciock | 534300 | toomno | 2732000 [ 273200 sarch 130
T ] tenk-1 | unom ] 834975 | 101750 | 2730822 | 2730822 | march 170
4| sana | ankwm | 531000 | 105000 | 2731200 23200 | assem 195
1| san-2 | unkwn | 534000 | Lo2000 | 2731810 2731810 | azsen 148
1| engineer-t | 234tn | 535500 | 101800 | 2730950 [ 2730958 | march %
t | enti-tank | ankwn | 534835 | 102948 | 2731148 | 2731145 | march 190

Figure 1. Example Tactical Database.

Since all types of relations are represented in a similar
manner, query optimizations may be performed in a
uniform manner. TDBMS uses a data manipulation lan-
guage called TDL, which is based on SQL, a de facto in-
dustry standard. Figure 2 presents a sample TDL query
against relations found in Figure 1, with the result of the
query also given.

TDBMS is a distributed DBMS. The TDBMS
prototype DBMS consists of two portions: a front end
and a back end. The front end programs are provided for
Sun workstations, terminals tied to VAX VMS, and IBM-
PCs. The front ends communicate with a back end by
means of a network connecting the two®. The back end

5Tl\e term “‘network’ is used here in a general sense; it covers
point-to-point and broadcast instances.

select m.sensor, m.message. m.regiment
from messages m
where

( m.time between 2730800 and 2731800 )

and
( m.sensor = "QL-1" or m.sensor = "QL-2" ) ;
examp le
sensor message reglment
I !
QL-1 | E0831 | MRR-1
-1 | E0903 | eugineer-1
gL-1 | E0921 | anti-tauk
Q-2 | E0955 | SAM- 1
gL-1 | E0977 | MRR

Figure 2. TDL Query and Resulting Relation.

comprises one or more network-connected, dedicated
machines. The back end program (the DBMS itself) runs
on a Sun workstation. TDBMS supports the capability
to query relations that reside on multiple back end
machines. The specific location of the data may, at the
user’s option, be either transparent or visible to the front
end user. Relations may be replicated across one or more
back end machines. This replication may be either trans-
parent or visible to the front end user. By supporting a
distributed database management system, TDBMS
responds to the Army’s need for a database that is sur-
vivable in harsh environments, when the failure of a
single node of the database must not impact continuance
of overall DBMS support. Figure 3 presents a pictorial
representation of TDBMS.

|
|
o _ ETeREY |
I T
TosMS. M TORMS M TosMS. M : oo END o o
bl aua wom | Lo ) H
< f

Figure 3. TDBMS is a Distributed DBMS.

TDBMS is implemented in Ada. The Army has taken
a positive stand with respect to Ada - that it is to be the
implementation language of choice for all Army software.
This has multiple benefits to the Army. With respect to
the TDBMS project in particular, this requirement en-
sures that:
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o A generally useful tool, a DBMS, is provided
in a language that is available on multiple
host/target pairs, so the Army may export
database technology to any number of other
Army projects.

¢ TDBMS can be ported to militarized
hardware in the future. Since Ada is a DoD
standard language, one can assume with a
high degree of confidence that the next
generation of Army standard computers will
have Ada compilers targeted to them.

e TDBMS is compatible with other on-going

technology efforts sponsored by the Army.

This includes the Army Secure Operating Sys-

tem (ASOS) project, which is building a mul-

tilevel secure operating system on which ap-
plication programs may be run.

TDBMS also provides a focus for discussion

and evaluation of the merits and demerits of

the Ada language, Ada compilers, and other

Ada-related support software for systems

development.

Thus, implementing TDBMS in Ada fully supports the
Army's Ada initiative.

TDBMS is designed to meet Army requirements.
By implementing TDBMS in Ada, as discussed in the pre-

vious paragraph, the requirement of portability has been
addressed. This statement by no means implies that just
because a program is written in Ada, it is then automati-
cally portable. However, with the strong backing of DoD
for the availability of Ada on a wide variety of hosts and
targets, the compiler support is anticipated to be avail-
able. The validation of these compilers provides a high
degree of assurance that the Ada source code processed
correctly by one compiler will also be processed correctly
by any compiler.

TDBMS is readily mod:fiable and extendible. TDBMS
was designed in a modular, building block fashion that
easily permits the addition or replacement of single
modules. Figure 4 illustrates some of the modules that
compose TDBMS.

For example, the prototype TDBMS uses a recursive
decent parsing algorithm. This is known to be not as ef-
ficient as other parsing techniques, yet the error detection
and recovery provide for a more robust parser. Should
the Army decide at some point that greater speed is re-
quired, the current parser building block could be
replaced with a new, table-driven parser.
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Figure 4.

The Army has an obvious requirement for survivability
in its databases. It is toward this end that the need for
distributed databases, and integrity checks implemented
by triggers and command procedures, have been included
as a part of TDBMS.

The Army has a requirement for high performance. To
this end, several internal optimizations have been made.
in addition, much attention has been paid to using ef-
ficient algorithms to access information within the
database. Much research has been performed in the area
of query optimization [Hanani 76|, and the use of B-trees
for indexing [Comer 79]. The TDBMS test bed will be
used to measure certain characteristics of the DBMS
during simulations of “‘real world” scenarios, after which,
the Army may decide to further tailor and enhance the
basic capabilities of TDBMS.

There is also the need for security. The prototype
TDBMS will support access security; that is, that
database users must have the appropriate authorizations
(database access, read, write, execute) on the appropriate
relations (the data dictionary, relations, views, command
procedures) in order to perform certain classes of
database manipulations (select, update, insert, delete, in-
vocation of a command procedure). Multilevel security is
not a requirement on this phase of TDBMS; however, this
is a major concern to the Army when TDBMS is ul-
timately fielded. One of the studies for the TDBMS con-
tract identifies requirements for making TDBMS mul-
tilevel secure at some future date [Garv85]. TRW is per-
forming additional research and development on the
design and implementation of a secure database manage-
ment system using TDBMS as a baseline.
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Using an Ada-based program design language (PDL)

Both flow charts and program design languages (PDLs)
are often used for the representation of system design.
Flow charts, more traditionally used, provide a graphical
representation of system flow. PDLs, on the other hand,
describe the system in a textual format. The formatting
(indentation, keyword high-lighting) of a PDL captures
the information that is provided via arrows and different
shapes of figures in flow charts. The Army is requiring
its new projects to represent their system design in an
Ada-based PDL. We used TRW’s Ada PDL [Ada PDL
84].

Several issues came to the forefront as we progressed:

e The kinds of people who were best at using
Ada PDL;

e The degree of formality we required;

o The degree of detail we required;

e Changes required when we moved from design
to code; and

o Implications for our customers.

Each of these are discussed below.

People Impacts. The qualities we found in those people
who had the easiest time of doing the system design and
representing that design in Ada PDL included:

o Excellent abstraction capability;
o Experience in the application; and
e Familiarity with Ada used as a PDL.

We found this last point to be of relatively little impor-
tance compared to the second, and the first point to have
the most significance of all the characteristics. Our
design team was composed of one senior technical lead,
two more senior people, with the remainder of the team
relatively young, inexperienced, and well-educated in
computer science fundamentals. Among us, we knew
multiple programming languages; only a few of us knew
Ada. We found that those team members who had the
best underlying conceptual models of how systems work
had the least problems understanding and using Ada
PDL to represent the design. We found those individuals
who were best at viewing complex systems as layers of
controlled abstractions produced the best, most under-
standable design.

Degree of Formality. The top-level design of TDBMS
[System Specification 85] was represented textually.
Each of the requirements of TDBMS was identified and
described in English. These requirements were then
iteratively refined into a number of functional units [Part
1 Rationale 85|, which we designed as Ada PDL
packages. As we progressed through the design phase, we
added more details to the package specifications, we iden-

tified capabilities that were required across the system
and added those to the system-wide utilities units, and
we added more details about how each of the functional
units were to behave. This process is not unique to those
situations  where Ada PDL is being used to represent
design. However, we did make some decisions on our use
of Ada as a PDL that we felt aided this process.

We made a decision early on in the design phase to write
our inter-unit interfaces in ‘“‘pure’” Ada; i.e., for the ap-
propriate level of detail, all semi-colons, commas, and
parentheses would be required. Inter-unit interfaces were
defined as those package specifications that were used by
more than a single functional unit. By requiring a high
degree of formality in the definition of our interfaces, we
were able to discuss issues in a concrete, unambiguous
framework. This helped us control and verify our inter-
unit interfaces. '

For the design of bodies, we left the degree of formality
up to the individual designer. TRW’s Ada PDL supports
the use of formal Ada constructs and less formal,
English-like “design narrative’’. We found a high degree
of design narrative used throughout the body design
modules. The use of design narrative in the body design
modules enabled us to capture the sense of the design
without being entrapped by the details of an implemen-
tation language.

Degree of Detail. The question of ‘“‘where does design
stop and coding begin” becomes even more of a problem
when the design and implementation languages are the
same (or extremely close). When designing in any Ada-
based design language with the intent of implementing in
Ada as well, this distinction is not clear.

Because we required ‘“‘pure” Ada to be used for our inter-
unit interfaces, and because many of these interfaces were
complex data structures that can be represented quite
naturally using Ada’s data structuring capabilities, we of-
ten found a subprogram body that was to validate cer-
tain fields of the input parameter and return some func-
tion of that input parameter could be fully and ac-
curately written in three or four Ada (PDL) statements.
Such subprograms were transformed into code in a mat-
ter of minutes.

The degree of detail of the design varied from designer to
designer, and even within pieces of design produced by a
single designer. In some cases, the choice of the algo-
rithm and the data structure to be used to implement a
given system function were obvious, given known system
requirements and constraints. These areas were not
described in as much detail as were those areas that were
deemed the highest risk either by the project as a whole
or by the individual. Those high risk areas were designed
in substantial amount of detail, perhaps even looking
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more like code than like design. It was often the case
where the designer would write a short piece of English-
like design narrative to describe the function to be per-
formed, question whether or not that design narrative
correctly described the required functionality, and then
provided a short series of Ada statements (including sub-
program calls) to prove to her/himself that the design
narrative was essentially correct in the first place. Thus
the design became more detailed than was required.

Moving from Design to Code. We had a relatively pain-
less time moving from design to code. The degree to
which this has to do with using an Ada PDL, using Ada
as the implementation language, with the design itself, or
the quality of the design and implementation team is not
discussed here. What is of interest is those areas, and
they fall into a few categories, where we needed to make
“significant” changes when implementing the Ada PDL
design.

We found that we used limited private in design in
places where we could not when we implemented in Ada.
The TRW Ada PDL processor does not check whether or
not a data object is (limited) private, so we were pass-
ing aggregate structures containing limited private
components as output parameters. As a result, we had to
*‘demote” some of our limited private types to simply
‘‘private’ types at implementation time. However, we re-
quired that the intent of the type being limited be iden-
tified clearly in the comments in the code.?

Due to storage allocation issues, we found that we had to
reorder some fields in some aggregates. This was not a
major issue, just one of which to be aware.

We identified and implemented a number of abstract
data types. These included an 8-bit type holding values
0 .. 255. We built this on top of an existing 8-bit integer
type, and provided a complete set of operators so we
could manipulate objects of that type as naturally as any
other integer type. We also required a variable length
string capability. We identified the need for this during
the design phase, and we designed assuming that we
would have a fully variable length string capability avail-
able to us at implementation time (which we built). We
also identified the need for a generic storage manager7

%In this context, we had some discussion as to whether or not this
is only an idiosyncrasy of the Ada PDL processor, the design of the
Ada language, the manner in which we represented our design, or
any or none of the above. There were constructs that we used
during the design phase to more naturally and logically represent the
intent of the design that cannot be exactly replicated in ANSI-
standard Ada. Whether or not this is an acceptable use of an Ada-
based design language is an issue often discussed with religious fer-
vor.

7Snppoﬂ. for the {de)allocation of a variety of types of data.
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early on during design. We provided a detailed specifica-
tion of the capability at design time, and dealt with the
detailed design as implementation time neared.

These examples illustrate the different points at which we
needed different capabilities than those we identified at
design time. Due to the sophistication of the initial
design, making these changes and additions were clean
and painless.

Impacts on the Customer. This area does not get much
discussion, yet it is one of the most important aspects be-
fore the Army Ada initiative can be deemed successful.
Both the customer and the contractor must identify that
there is an impact when using an Ada-based PDL on the
customer. In e near term, this impact is a major one -
one of education.

Since design has been traditionally represented using flow
charts and data flow diagrams, customers reviewing such
a design have developed standards for recognizing good
(and bad) designs. The customer receiving a design in
Ada PDL must be sufficiently knowledgeable in software
engineering, design techniques, and Ada PDL to recognize
whether or pot the design is a good design. This is no
different from when a customer has to learn to read flow
charts and data flow diagrams. However, the number of
usable primitives in an Ada-based design language are far
greater than the number of primitive shapes and kinds of
arrows in traditional flow charts.

In addition, the customer is required to understand which
Ada PDL constructs best lend themselves to being used in
a ‘‘good” representation of a design. Where encapsula-
tion is required, packages are the feature to expect to be
used. Where encapsulation and parallelism are both re-
quired, tasks are the feature to expect. An encapsulation
should support the complete abstraction of the object or
type being encapsulated: a full set of operations, a full
set of state functions, a full set of I/O and error handling
capabilities. To support robust error handling, excep-
tions specific to each unit should be exported in a pack-
age specification. Generics should be used for those areas
where common functionality is required over a variety of
types of data structures. Libraries of utility subprograms
should be provided for software components that are re-
quired by a number of functional units. No more infor-
mation should be made visible at any given level than is
required by the users of the software at that level. That
is, global data should be minimized; state information
and local variables should be hidden and declared at the
level where they are actually used.

The customer must be able to recognize a good design in
Ada PDL, not just the fact that an Ada-based PDL has
been used.




Selection of an Ada compiler

There are several major points that we considercd when
selecting an Ada compiler for use on TDBMS:

¢ Whether or not a compiler is available on the
hardware on which we need to develop Ada
code;

e Whether or not the compiler is validated; and

e Whether or not the compiler is suitable for
use for our application.

What is presented in this section is not the only con-
siderations that we had when selecting an Ada compiler,
but some major areas that impacted us directly and how
we chose to deal with them.

There are several Ada compilers currently available for
multiple hosts and targets [Shugerman 85]. Many of
these compilers are validated [Arpanet 85]. But what
does ‘‘validated” really mean to a project?

Validation

The official validation policy is currently under going
clarification. Previous incarnations of the policy and
procedures for complying with the policy have been sum-
marized in [Hook 85|, [Knoop 85|, and [Kopp 85]. Com-
piler users have long been concerned with the validation
policy and the requirements of controlling and baselining
support software changes in a real project environment.
As a result, an embedded computer industry Ada Com-
piler Validation Working Group (AVWG) was formed,
which meets with those responsible for making and en-
forcing the validation policy. The AVWG report is
published as [AVWG 85].

Quite briefly, ‘‘The objective of the validation process is
to certify Ada compilation systems that conform to the
language standard.” [Hook 85|That is, the intent of the
validation process is to stamp out all dialects - no
validated Ada compiler shall accept a subset or a superset
of the language as defined in ANSI/MIL-STD-1815A
|ALaRM 83].

It is quite important to projects using Ada compilers
today to recognize what validation does not guarantee.

e Validation does not indicate the suitability of
a compiler for a particular purpose.

e Validation does not replace a set of
application-specific requirements.

¢ Validation does not measure the performance
of a compiler.

¢ Validation does not evaluate any other com-
ponent of the programming environment.
[Kopp 85]
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Again, the goal of validation is to stop language
proli feration, nothing more.

While TDBMS was no. required to use a validated Ada
compiler, we chose that route for one major reason. In
order to be validated, a compiler is required to pass a
substantial test suite (currently some 2000+ tests). While
the test suite does not (and cannot) test every combina-
tion of language features, it does serve to provide a sig-
nificant measure of the capability of a compiler to cor-
rectly process the entire Ada language.

Compiler Suitability

Performance. There are a number of measures of
suitability of a compiler. Obvious among them is
compile-time speed. We had a choice of two compilers
for the Sun workstation at the time we needed to commit
to a single compiler. Both compilers were validated at
the time. We had a substantial piece of Ada code
developed internally that was similar to the TDBMS ap-
plication, and we attempted to compile it using each of
the two compilers. One compiler was quite slow (about
150 - 200 lines per minute), and, in fact, was unable to
correctly compile our test program, without our having
to make significant changes to thc Ada code. The other
compiler was significantly faster (about 400 - 600 lines
per minute on our sample code), and was able to success-
fully detect a number of Ada coding errors that were not
detected on a previously-used, unvalidated compiler or on
the first of the two candidate compilers. Only a few,
relatively minor changes to the Ada code were required to
avoid the compiler bugs on the second candidate com-
piler. The advantage of having benchmark programs
similar to the application in question cannot be over-
emphasized when evaluating a compiler.

However, in other types of projects, and in future work
on TDBMS, the run-time performance of the generated
code is of at least as much importance to the compiler
selection process. For Increment 1 of TDBMS, this was
not an issue. We did note, however, that our test code
executed at a reasonable speed. Had performance been
an issue, we would have needed to determine the
tolerances and required performance levels prior to run-
ning our test programs. It would be at this point that we
would possibly have had to make a trade-off between the
compile-time speed and the run-time speed.

Tasking Support. TDBMS uses tasks, both dynamically
spawned tasks and statically initiated tasks. We needed
to ensure that the compiler supported these language fea-
tures. Since we had decided to select a validated com-
piler, we got this guarantee ‘‘for free’’. However, since
performance is not of primary importance during Incre-
ment 1 of TDBMS, we did not evaluate in detail the
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speed with which context switches occur during rendez-
vous. Again, when speed becomes a factor in our
development, this issue must be examined. We did create
a test program that simulates some of the functionality of
the TDBMS back end to examine how the tasking
scheduler works. It should be noted that writing code
based on the knowledge of how the task scheduler works
produces ‘erroneous” Ada programs; i.e., programs that
are written with that knowledge may not be portable.
During design, we assumed that all tasks would be
scheduled ‘fairly”, that rendezvous would be performed
within a tolerable period of time, and that no entries
would be starved. The tasking test program that we
wrote bore this out, so we put no special priorities,
guards, or timing controls in our programs. The advan-
tage is that we have cleaner, simpler code; the disadvan-
tage is that there is a chance that there may be some
problems porting the existing TDBMS to other machines.
So, for Increment 1, we did rely on the knowledge that
the task scheduling algorithm implemented by the com-
piler that we are using does, in fact, rely on that algo-
rithm being “fair”. We explicitly called this out in our
project documentation. However, in some portions of our
code, notably those portions that we deemed the highest
risk in porting to a new compiler, we chose to implement
our tasking using a ‘“pure Ada model” (i.e., not depend-
ing on the knowledge of how the task scheduler works).

One additional concern with tasking has to do with
storage allocated for dynamic tasks. TDBMS is a
program that will run, conceivably, infinitely. When a
user decides to establish a session with TDBMS, the user
indicates that on a TDBMS front end machine, and a
back end server task is dynamically spawned to handle
the user’s session. When the user indicates that the cur-
rent session is to be terminated, the dynamically spawned
task is terminated as well. Since it is anticipated that a
substantial number of these server tasks may be initiated
and terminated over time, it is of major importance to us
that all storage space used by each dynamically activated
task be reclaimed when that task terminates. If not,
there is obviously some limit on the number of user ses-
sions that can be permitted over time, and our current
implementation, which assumes this storage is reclaimed,
must be adjusted to take this into consideration.

Chapter 13. There are language features in Ada that
are not required to be provided, even in validated com-
pilers. And the presence or absence of these features may
be of just as much importance to the compiler sclection
process as any other issue. These language features are
defined in Chapter 13 of [ALaRM 83] and include:

o Interface to subprograms written in other pro-
gramming languages;

e Unchecked programming, including unchecked
conversion and unchecked deallocation; and

138 Annual Nationai Conference on Ada Technology 1986

-

T I s R
IR AN 2 T Y

R L S R

HAL N

g i ol v T W

e Representation, length, and address clauses,
which address how types and objects are to be
mapped onto the underlying machine.

Two of these language features are required by TDBMS:
(1) interface to the C programming language, to access
the TCP/IP network and device driver primitives; and
(2) unchecked programming, to move conceptually un-
typed data into a typed location, and vice versa.

All instances of interfacing to C routines are isolated into
a single unit - the OS Interface unit. The OS Interface
unit presents an Ada interface to all who use it. Inter-
nally, the subprogram bodies perform transformations on
parameters in accordance with the limitations of the in-
terface as defined in Appendix F of the vendor’s compiler
documentation, call the C subprograms, and transform
the output parameters into a format compatible with the
Ada interface. Since the TDBMS project chose to use
off-the-shelf TCP/IP interfaces and not develop such an
interface as a part of the project, we required minimal
support for interfacing with C routines.®  However, the
need for interfacing with device drivers is present in
many kinds of systems programs, so the project must en-
sure that this capability is supported to some extent by
the compiler.

There are two places where TDBMS is required to effec-
tively ‘‘ignore” the strong typing enforced by the Ada
programming. As a systems program, the DBMS portion
of TDBMS is required to read untyped bytes off the disk,
and to format them according to certain byte patterns
that are known only after the information is read off
disk. The second place where the strong typing must be
ignored is in transmitting information over the network
when communicating among TDBMS machines; infor-
mation is placed on the network as a string of (untyped)
bytes; it must be read off and then reformatted according
to byte patterns that are known only after the infor-
mation is received at the other end. Both of these two
situations are similar, and the unchecked programming,
an optional feature of Ada, is required in both instances.
Unchecked conversion is not a required feature of Ada,
and TDBMS had to ensure not only that the compiler
supported it, but also to what extent it was supported.
We discovered, by trial and error, that there were well-
known (but poorly documented) limitations to the cases
where unchecked conversion would “do what we thought
it should do". It must be remembered, when selecting a
compiler for a project where unchecked programming is

81t should be noted that an Ada interface to TCP/IP is to be
provided as part of the NOSC tool set, and will be in the public
domain. This capability was not available when we required it,
however, nor will it support our needs once it becomes available, as
it implements only a subset of the TCP/IP capabilities that we re-
quire.
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required,
capabilities and limitations of this feature.

to have a complete understanding of the

Two other portions of Chapter 13 that would have saved
us substantial time and effort had they been present are
the representation and length clauses and unchecked
deallocation (i.e., garbage collection). Representation and
length clauses could have been judiciously used early on
in the coding phase to help simplify some of the
manipulations and conversions of data that we must per-
form. Since they were not present, there are some
“‘unusual’’ pieces of code that implement, in a non-direct
manner, the movement of data from one strictly and
tightly defined memory location to another. The
presence of unchecked deallocation would have greatly
simplified the writing our own storage allocator.

Other Environment Tools. Ada compilers are only a
single component of the tools required over the software
life-cycle. However, they are intensively used during the
code, unit test, and integration and test phases of a
project. A fully developed software engineering environ-
ment is many years and many millions of dollars off in
the future. However, the bulk of our work was done on
the Unix operating system which provides a rich comple-
ment of tools that can be combined to build a wide
variety of life-cycle support tools.

Some tools are still provided as a part of the compilation
environment. The importance of a symbolic debugger
cannot be overlooked. Regardless of how careful
programmers are, they still make errors. A symbolic
debugger in our environment has been quite helpful in as-
sisting us locate certain errors. A symbolic debugger that
is robust and complete would be even more help.

Library management and configuration management
tools are also important on any project where more than
a single person is involved. With the basic library
management capability supplied with the Ada compiler,
we have found that we could build more sophisticated
library management and configuration management tools
in the Unix environment, where we are doing the vast
majority of our development. By having the Ada com-
pilation system provide only the minimal support for
library and configuration management, we are able to
tailor our programming environment to the way that
TRW best does business, instead of having another view
of project management foisted upon us and being, per-
haps, incompatible with TRW standards and policies.

Vendor Support. This area is often overlooked in
evaluation of a compiler, yet it is extremely important.
Vendor support is required in two major areas:
documentation and maintenance. Without proper
documentation, any tool is virtually useless, and Ada

compilers and environment tools are no exception.
However, without timely maintenance support, the com-
piler may be useless anyway. Once we have identified a
bug, we report it to our vendor. As of yet, we have not
encountered any ‘‘show stoppers” - i.e., we have always
found a work around. However, this may not always be
the case. We have found it invaluable to foster a good
working relationship with our vendor such that we can
keep the lines of communication open. This includes
providing them access to our source libraries (having had
them sign non-disclosure agreements, of course). We an-
ticipate that because of this good relationship, should we
ever encounter a ‘‘show stopper’ bug, we will receive
prompt attention and timely response.

Summary

The TDBMS project is a research project aimed towards
developing a DBMS that addresses the specialized re-
quirements of a tactical database. The TDBMS design
was driven by the following tactical requirements:

¢ Maintenance of system survivability and
reliability by the hardware and software;

e Flexibility of real-time performance factors
dependent upon the particular tactical situa-
tion;

o Built-in data security; and

e Portability and adaptability without perfor-
mance degradation.

These driving requirements are what separates
prototype TDBMS from other commercial DBMSs.

this

Upon completion of this phase of the TDBMS contract,
the Army will receive a sophisticated database manage-
ment system with a variety of user interfaces, a test bed
in which to use and tune the DBMS, and a number of
studies exploring issues for future research in the areas of
database security, the applicability of Ada to database
management systems and system software, and battlefield
information requirements. Both the Army and TRW will
have gained substantial experience at evaluating several
Ada compilers and other support software, using an Ada-
based design language, procuring Ada systems, and im-
plementing major system components in Ada. For the
Army, this experience will not only result in obtaining
state-of-the-art products that can be used in a variety of
applications programs, but it will enhance the Army's
capability to be a wise and educated consumer of
software and Ada products.

Using any new technology has benefits as well as pitfalls;
Ada (both for design and implementation) is no excep-
tion. The early days of Fortran compilers and Fortran-
based design methodologies were traumatic. History has
shown that the introduction of other new languages and
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methodologies has also met with a difficult initiation
period, as individuals, academia, corporations, and the
services come up on the learning curve. The same can be
said for the current time period with respect to Ada.
The Ada community has seen a substantial investment on
all parts toward increasing the quality of tools, personnel,
education, and software products. With this kind of im-
petus, and the backing of the DoD, we feel that quantifi-
able benefits of Ada will be seen by the end of the
decade.
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P A Practical Approach for Translating FORTRAN Programs to Adal:2

R
V:L‘ V. Santhanam
D

o Computer Science Department
Wichita State University, Wichita, Kansas

¢
’: X notes two major difficulties of automatic
p : Abstract translation: (1) there are constructs in FORTRAN
% that do not readily translate to Ada (e.g.. COMMON
e Attempts to translate FORTRAN programs to and EQUIVALENCE)}, and (2) translated code often
equivalent Ada programs using automatic translators contains unidiomatic uses of Ada constructs (i.e.,
vy date back to 1983. While a number of translators the translation, though valid, does not have the
ﬁ%& has been constructed to date, few have attempted to "native Ada" style). Several other reports have
N\“ provide maintainable Ada code at the output. This also discussed the importance output style and the
&“t paper describes a translation approach which difficulties of attaining that with simple
vt emphasizes the quality of output code. The goal is transliteration systems [4,5].
: to produce Ada code that can be subsequently

; maintained and retargeted easily. This goal is This report presents an approach that reduces
‘T: achieved by abstracting portions of the fnP“t the problem of the inadequate output style which
g source code that do not lend themselves to simple characterizes statement-by-statement translators.
i transliteration and  then reconstructing an Using a combination of analysis techniques germane
{{: equivalent output code.. The approac? uses a to optimizing compilers and a limited amount of
?\: combination of optimization techniques and user input, the style of output code is improved
I knowledge from user-supplied directives. The significantly. User input is accepted in the form
=7 conclusion drawn from this work is that while of annotations embedded within the FORTRAN source.

: table-driven transliteration schemes may have The approach is backed by the detailed design of a
. failed to yield acceptable translations, a more translation system, which is depicted in figure 1.
oy sophisticated translator based on the abstraction The dialect of FORTRAN addressed in this report is
[l and reconstruction approcach can be devised to ANSI FORTRAN-77 [6}.

.';$ produce maintainable Ada code at the output.

Y

:::": The Approach
" .

; Introduction Much of the difficulty reported in the
‘T{ . . literature stems from the fact that the attempts to
?ﬂ:  Numerous pieces of  time-tested software date have concentrated on a statement-by-statement
f*, written in FORTRAN exist today within the defense translation of FORTRAN subprograms in isolation.
'S industry. With the Department of Defense moving While FORTRAN compilers indeed work on individual
«f' toward mandating the exclusive use of Ada in future subprograms one at a time, Ada compilers do not.
gd. software SY?tems, much of the .existing SQEtware It is, therefore, not appropriate to translate
th must be' either s?rapp?d or relm?lemented 1n.Ada. subprograms in isolation. In the approach

Whin tfeimPleTentaglon 1"'d§da is . apprggrlateé presented here, FORTRAN subprograms are translated
potential savings from avoiding manual recoding an in groups. The group must Eform a functionally
subsequent retesting warrant a closer look at the complete set. That is, every subprogram that is
possibility of automatic translation. However, if called from one or more subprograms under
automatic translation is to be acceptable as a translation is itself under translation, or it has
broad reimplementation strategy, the quality of Ada been described by a user-supplied interface
output must be higher than if one simply needed an annotation. The translator not only checks the
equivalent Ada program. validity of subprogram interface but also
N L determines the correct parameter-passing modes for
An early attempt to translate FORTRAN programs each subprogram.
to Ada using a language transformation tool is
qesctfb?d by Sla?e and ?allis [1}. .The report The functionally complete group of subprograms
identifies valid mappings of major FORTRAN at the input yields an Ada package at the output.
constructs to equivalent Ada constructs. It also This is in contrast with the Slape-Wallis converter
1. Ada is a registered trademark of the .S, 2. This research was supported by Boeing Military
Government, Ada Joint Program Office. Airplane Company, Wichita, Kansas.
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Figure 1. A Translation System based on the Present Approach
{1], which generates a package for each subprogram. Array parameters. When the dimensionalities

(Wichmann and Meijerink (5] argue that such a
translation is not an idomatic use of the Ada
package facility). If the group of modules

includes the main program an Ada (main) procedure
is also produced at the output. A separate pass of
the translator is used to generate packages
corresponding to COMMONs if any.

The packages and the main procedure can, of
course, be compiled separately. Each compilation
unit 'WITH's a predefined translator environment
package and other packages as necessary. The
predefined environment package would include the
type declarations corresponding to FORTRAN data
types and the declaration of all intrinsic
functions.

Language Issues

Several FORTRAN constructs are known to
present difficulties in tramslation. This section
presents the methods employed 1in the present
approach for handling the translation of such

constructs.

Subprogram Interface

FORTRAN-77 rules for interfacing with
subprograms are not as rigid as those laid down by
Ada. For example, a formal one-dimensional array
parameter may be associated with a multidimensional
actual parameter array. To compound the problen,
most FORTRAN compilers do not check subprogram
interfaces, thus allowing more freedom than
permitted by the language. The following
discussion pertains only to the problems of
translating legal FORTRAN-77 programs.

LS. Y »

t.:'o... W

of a formal parameter array and the corresponding
actual parameter array differ, the following
technique is wused to translate the program: both
the formal and the actual parameter arrays are
linearized, 1i.e., translated to one-dimensional
vectors. The translator is directed to 1linearize
an array (formal or actual parameter) through a
user-supplied annotation. When an array is
linearized, reference to its elements is through a
single subscript. Converting multiple subscript
references to single subscript references is
straightforward. Other approaches, such as
UNCHECKED_CONVERSION to convert the actual
parameter to the same type as that of the formal
parameter, are not likely to work. This is because
the mapping of array elements to storage is rigidly
specified in FORTRAN-77 (the infamous column-major
order), whereas it is implementation-dependent in
Ada.

Another potential problem with
parameters is that the bounds of the actual
parameter array index need not match those of the
formal parameter array index. Fortunately, free
conversion is permitted in Ada between the types of
two arrays of the same dimensionality and the same
number of components in each dimension. Thus, an
explicit type conversion is generated whenever this
situation occurs:

array

SUBROUTINE SORT(A)
INTEGER A(50)

END

.

INTEGER X(0:49)

CALL SORT(X)
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ﬁ translates to when others => null:
bh ) end case;
i type ARRAY A_IN_SORT is INTEGER_ARRAY_1(1..50); end CALL_DECIDE;
2 procedure SORT( A: in out ARRAY A IN_SORT ):
H Notice that the interface to the subroutine changes
iy end SORT; from three parameters to two. The subprogram
LR : declaration is translated in a compatible manner to
‘“: X: INTEGER_ARRAY_1(0..49); include an OUT parameter (say, RET_LABEL) in place
:%i : of the first * parameter (* in FORTRAN stands for
Iy SORT( ARRAY_A IN_SORT(X) ): the label parameter), ignoring all other *
ML parameters. The return statements such as
Y In addition, FORTRAN-77 allows the actual parameter
to be an array element, provided enough elements RETURN T
“" follow it to match the size of the formal parameter
ﬂ? array. The situation is handled in the translation are translated to
j': by slicing the actual parameter array before
k) applying the type conversion. RET_LABEL := I
Qh ) return;
'“" Variable number of parameters. FORTRAN-77
: does not permit variable number of parameters for
user-written subprograms. However, there are a Subprogram parameters. FORTRAN-77 permits
ﬂa number of intrinsics in the language that can be parameters to subprograms to be subprogram names
1)) referenced with a variable number of parameters, themselves. It is common, for example, to use this
£$ e.g., the function MAX0. The desired effect can be feature to build numerical subroutines which work
3# obtain?d in Ada either by providing default. values with a user-specified function. Although Ada does
L for input  parameters or by overloading the not provide the same facility, the “"generics"
) subprogram  declaration for all counts of feature of Ada can be employed to obtain a similar

parameters. When the number of parameters is
unbounded, as is the case with MAX0, the subprogram
could be overloaded with an array argument. For
example,

effect provided all actual parameter subprograms
have the same type signature. When this condition
does not hold (FORTRAN-77 does not require it),
there is no simple translation.

:v- function MAX0( M: INTEGER_ARRAY_1 ) Functions with side-effect. FORTRAN functions

“; return INTEGER_FORT; that produce side-effect by manipulating parameters

at, pose yet another problem since Ada permits only
would permit the translator to convert the input IN-mode parameters to functions. If the use of

. argument 1list into an aggregate, as illustrated such functions is present, the translation is

:.' below. effected as illustrated below.

::" MAXO( 24, I+5, J ) FUNCTION SIDE( A )

i J A = A+1.0

jﬂ would translate to SIDE = A

atY END

o MAXO( INTEGER_ARRAY_1(24, I+5, J) ) s

it Z = SIDE( A )+2.0

A H

:i Alternate returns. FORTRAN-77 allows X = SIDE( A )+SIDE( B )

-

- ‘-“v‘g’ o
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= =
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s

subroutine subprograms to return to a statement
other than the one that follows the CALL. For
example,

CALL DECIDE( X, *100, *200 )
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translates to

procedure PROC_SIDE{ SIDE_VAL: out REAL_FORT;
-- SIDE_VAL is a new parm for return value

1 A: in out REAL_FORT ) is
W would allow the subroutine DECIDE to return to begin

L, statement 100 or 200, or to the statement that A := A+1.0;

\)3 follows the CALL as is normally the case. The SIDE VAL := A;
: j} construct would be translated as follows. end;

' : ;

' CALI DECIDE: declare

x declare SIDE_VAL: REAL_FORT;
b RET_POINT: INTEGER_FORT := 0; begin
gy begin PROC_SIDE( SIDE_VAL, A ):
My DECIDE( X, RET POINT ); 2 := SIDE_VAL+2.0:

LK case RET POINT is end;
:.;:: when 1 > goro LABEL 100: :
J“' when 2 => qur . LABF" 204; declare

V."

N 3." '!Ea\, 1 P\"."‘E”\‘ -:m
{ - o"l“.‘ . Ai&- ™ ™

: SRR by " SO, ‘n‘. Ay s AT OOCODE,
‘_’:‘?h"',h !h‘?ﬁ'.'i ¢ “"»“‘:‘th"ﬁ“‘ " ‘.'n' L ‘|:.t'~"‘n.‘ﬁl.. :‘?‘o‘e'l "0.?':.2':‘2'. ! "!:2..»'



1 -
R

My
1.
(3
i'.
K
’r SIDE_VAL_1, SIDE VAL 2: REAL_FORT;

~ in -~ -
" begin pragma SUPPRESS(DISCRIMINANT_CHECK);
s, PROC_SIDE( SIDE VAL _l, A ); ’
o PROC_SIDE( SIDE VAL_2, B ); AREAl_VARIABLE: AREAl_RECORD(1);

X := SIDE_VAL_l+SIDE_VAL_2; -- The following renames permit the retention

»,! end; -- of the original COMMON variable names.
el‘ﬂ DIST: REAL_FORT renames AREAl VARIABLE.DIST;
:‘5C RADIUS: REAL_FORT renames AREAl VARIABLE.RADIUS:

] ~- etc.
> . e
i COMMON and EQUIVALENCE end COMMON_AREA1l;
4
L3 R !

COMMON blocks of FORTRAN defmg globélly The second method is useful if pragma SUPPRESS

. accessible data, and as such they readily map into is not implemented in the target Ada system. In i
,.lﬁ library packages in Ada to be 'WITH'ed by the units this method, each COMMON area layout is defined as ;
~f’ needing access to the data. The translation of an independent record type along with an access :
uh COMMON statements, however, is made more difficult type to that record. Using UNCHECKED CONVERSION
?“‘ by the freedom provided by FORTRAN to alias the and the ADDRESS attribute, each record is forced to '
0 common data area. FEach program unit referencing a map to the same storage address. For example, the
WO common block may define its own set of variables. COMMON declarations used in the previous example

Each such definition is assumed to remap the same
. storage region. An additional aliasing capability
N is available through the EQUIVALENCE statement,
o which may be used to remap common blocks as well as
local data areas.

are translated as follows:

with SYSTEM, UNCHECKED_CONVERSION;
with FORTRAN_ENVIRONMENT;
use FORTRAN_ENVIRONMENT;
package COMMON_AREAl is
type AREAl RECORD_1 is record
DIST: REAL_FORT;
RADIUS: REAL_FORT;
NTRI: INTEGER_FORT;

,-
s}

Ada supports a limited form of aliasing with
the RENAMES clause. Slape and Wallis [l] discuss
how to use this clause to translate limited forms
of COMMON and EQUIVALENCE. A more general solution

= o

<

5 X
£ o Wi

.

would have to be implementation-dependent. Two
methods have been developed toward this end. The
first method consists of using a variant record
declaration for each COMMON area and invoking
pragma SUPPRESS(DISCRIMINANT_CHECK) to be able to
access storage without regard to the discriminant
value. This method requires that the various
components of the record be mapped to storage
exactly the way the FORTRAN environment does.
Hence the implementation-dependency of this method,
which is illustrated by the following example.

end record;
type AREAl_ACCESS_l1 is access AREAl_RECORD 1;
type AREAl_RECORD_2 is record
DIST: REAL_FORT;
RADIUS: REAL_FORT;
FLAGS: CHAR_ARRAY 1(1,1,4);
end record;
type AREAl_ACCESS_2 is access AREAl_RECORD 2:

function ADDR_TO_ACCl is new
UNCHECKED_CONVERSION

(SYSTEM.ADDRESS, AREAl ACCESS_1);
function ADDR_TO_ACC2 is new

UNCHECKED_CONVERSION

(SYSTEM.ADDRESS, AREAl_ACCESS 2);

kr COMMON /AREAl/ DIST, RADIUS, NTRI

COMMON /AREAl/ DIST, RADIUS, FLAGS

Wy CHARACTER*1 FLAGS(4)

;:.' ) AREAl _VARIABLE: AREAl_RECORD_l;

I'|'0 would translate in Ada to AREAl _ACCVAR_l: AREAl_ACCESS_1 :=

NN ADDR_TO_ACCl( AREAl_VARIABLE'ADDRESS ):

:ﬂ“ with FORTRAN_ENVIRONMENT ; AREA2_ACCVAR 2: AREAl ACCESS 2 :=

‘o:. use FORTRAN_ENVIRONMENT: ADDR_TO_ACC2( AREAl_VARIABLE'ADDRESS ):

L package COMMON_AREAl is

b type AREAl RECORD(TAG: POSITIVE := 1) is -- The following renames enable the retention
) record -- of the original COMMON variable names

] case TAG is DIST: REAL_FORT renames AREAl_ACCVAR_1.DIST;
}‘g when 1 => RADIUS: REAL_FORT renames AREAl_ACCVAR_1.RADIUS:
:‘ ; DIST: REAL_FORT; -- etc.

.q RADIUS: REAL_FORT: end COMMON_AREAL;

NTRI: INTEGER_FORT;
when 2 => The use of access variables to get at the COMMON

UNNAMED 1: REAL_FORT; data may result in a performance penalty on some

e

’Q UNNAMED 2: REAL FORT; implementations.

e FLAGS: CHAR_ARRAY 1(1,1,4):

.‘lt when others =>

ua null; Style Issues

) end case;

2.8

h end record; If validity and run-time performance were the
-—

M

! ts

W

WM
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transliteration

only criteria, a table-driven
system could convert most FORTRAN programs to Ada.
The limited abstraction capability of such a system
would tend to carry the FORTRAN style over to the
Ada output making the translation unsuitable for
subsequent maintenance. This section abstraction
techniques which capture the intent of the input
statements and reconstruct it in Ada.

The following 1list of output refinement
techniques represents a modest step in the
direction of abstraction and reconstruction. Most

of the refinements apply to single statements or
simple sequences of statements. The techniques
that apply are by no means limited to those

presented in this paper, but the list is intended
to illustrate the potential of the approach.

Naming in Ada

Names in the translation should be meaningful.
Maintaining the original FORTRAN names whenever
possible is important, but does not always yield
acceptable Ada code. Due to a limitation of the
language, FORTRAN names tend to be cryptic. The
translator should provide for renaming of
variables. Additionally, the translation is likely
to generate new names, such as type names, which do
not correspond to any names in the FORTRAN program.

Such names should be derived from other related
entities in FORTRAN and should be renamable by the
user. For example,

SUBROUTINE SORT(A,N)

REAL A(100)
should generate a reasonable type name for A:

type ARRAY_A_IN_SORT is REAL_ARRAY_1(1..100);

procedure SORT(A: in out ARRAY A _IN_SORT;

N: INTEGER_PFORT);

Some FORTRAN labels will translate to GOTO labels

in Ada. Again, the wuser should be allowed to
rename the labels with descriptive names.

Another form of renaming that can greatly
improve the style of output code 1is grouping
FORTRAN variables into a record structure in Ada.
For example, it is not uncommon to have

INTEGER DOBDAY, DOBMON, DOBYR
in FORTRAN to represent the day, month and year of
someone's date of birth. In Ada, a record
structure would be a more natural choice here:
type DATE_OF _BIRTH_RECORD is
record
DAY, MONTH, YEAR: INTEGER FORT:;
end record;
BIRTH DATE: DATE OF BIRTH _RECORD:
The translatsr sh-ull permit such restructuring of

tata items at the .,-wr’'s hption.
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Control Flow Structures

The FORTRAN-77 range constructs for flow
control, though richer than that of its precessors,
is limited in comparison with Ada. For example,
there are no loop constructs other than the DO-
loop. It would, therefore, be worthwhile to
attempt to improve the structure of flow control in
the translation. Freak [3] describes several
techniques for improving the structure when
translating from FORTRAN to Pascal, all of which
are applicable in the Ada context, with two main
differences: (a) Ada provides the EXIT statement
whereas Pascal does not; (b) Pascal provides the
REPEAT. .UNTIL statement whereas Ada does not.

Another simple analysis
significant improvement to the output code. 1In
FORTRAN-77, labels are permitted on any statement
regardless of the need. Translating each
executable statement label to a GOTO label in Ada
could result in poor output style. Labels that are
not referenced should be eliminated in the
translation. It should be noted that a label
(e.g., the target of a DO) may have a reference in
FORTRAN, but the same may not be true in Ada.
Thus, the criterion should be to eliminate labels
that have no significance in the translation.

can provide a

Inline Input/Output

Most implementations of FORTRAN handle
formatted input/output via run-time procedures that
match up the format codes and the data stream

interpretively. A literal translation would result
in numerous calls to similar interpretive
procedures in Ada. This not only is likely to

obscure the the translation, but also could lead to
performance degradation. Torsun and Robinson [2]
describe techniques to implement FORTRAN i/0 using
noninterpretive procedures under suitable
conditions. The same techniques can be used to
invoke inline translation to Ada. A simple of
example of this approach is given below.

WRITE(6,100) N, (A(I),I=1,N)
100 FORMAT(I4/(1018))

can be translated to

with TEXT_IO; use TEXT_IO:
PUT(N, WIDTH=>4};
NEW_LINE;
for I in 1..N loop
if T /= 1 and then I mod 10 =
NEW LINE;
end if;
PUT(A(T),
end loop:
NEW_LINE;

1 then

WIDTH=>8);
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DO loops

While simple forms of the FORTRAN DO-loop map
readily into Ada's for-loop structure, the
translation of the general case is more
complicated. A number of reasons exist for the
complexity: (a) The FORTRAN loop variable may be
of the type INTEGER, REAL or DOUBLE-PRECISION
whereas the Ada for-loop index must be a discrete
scalar which excludes the real and double-precision
types. (b) In Ada, the scope of the loop index |is
the same as the body of the 1loop, whereas in
FORTRAN the loop variable is either a local, COMMON
or parameter variable., (c) The Ada for-loop index
must be incremented (or decremented) in unit steps,
whereas FORTRAN DO-loop index can be stepped by any
non-zero value.

The general case of the FORTRAN DO-loop is
translated as illustrated below.

DO 10 I = init, fini, step

.

10 CONTINUE
translates to:

declare
STEP_I: typeof(I)
begin
I := init;
for LOOP_I in
1..INT((fini-I+STEP_I)/STEP_I) loop

I := I+STEP_I;
end loop:
end;

1= step:;

The above translation scheme is too cumbersome for
the simple cases which are far more frequent. If
output style is important, the translator must work
toward generating a more readable translation
whenever possible. The following considerations
will help achieve this goal.

1. Eliminating the block statement.
The declare..begin..end sequence can be
eliminated if the step expression is a simple
variable or constant, or is omitted. The
temporary variable STEP_I then is replaced by
step itself.

2. Simplifying the iteration count expression.
When init, fini and step are all static (which
is most often the case) the iteration count
expression can be simplified to a constant.
Simplification is possible even when one or two
of the parameters are nonstatic expressions.

3. Eliminating duplicate loop indexes.

The FORTRAN loop variable (I) and the Ada loop

index (LOOP I) may be identified as one, under
certain conditions: (a) both indexes are
integers, (b) *ns step is ¢+l or -1, (c) the

FORTRAN index .- - r a COMMON variable, and (d)
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there are no transfers out of the 1loop.
Although the conditions seem quite restrictive,
they are frequently met in practice.

The following examples illustrate the output style
improvement that can result from an application of
the above refinements:

C EXAMPLE 1: THE GENERAL CASE.
DO 10 I=N,M,K+MYFUN(I)
10 CONTINUE
C EXAMPLE 2: DECLARE BLOCK ELIMINATED.
DO 20 X=10.1,0.0,-0.05
20 CONTINUE
Cc EXAMPLE 3: SINGLE LOOP INDEX.
DO 30 J=N,2,-1
30 A(J) = A(J-1)

is translated to

-- Example 1: The general case.
DO_10_1I:
declare
STEP_I: INTEGER_FORT := K+MYFUN(I):
begin
I := N:
for LOOP_I in
1. INT((M~N+STEP_I)/STEP_I) loop
I := I+STEP_I;
end loop;
end DO_10_I;
-- Example 2: Declare block eliminated.
X := 10.1;
for LOOP_X in 1..203 loop
X 1= X~0.05;
end loop:
-- Example 3: Single loop index.
for LOOP_J in reverse 2..N loop
A(LOOP_J) := A(LOOP_J-1):
end loop:

J := 1; -- FORTRAN-77 requires this.

Parameter Modes

FORTRAN parameters are passed by reference.
When an actual parameter expression is not a simple
variable, the reference applies to a temporary
variable containing the value of the expression;
otherwise the reference is to the actual parameter
variable. One simple way to translate a subroutine
with parameters is to declare each parameter as an
IN OUT parameter; in translating the calls, the
actual parameters that are expressions are passed
via temporary variables. This technique, which is
employed by the Slape-Wallis converter (1]}, has two

problems: (a) it is not applicable to functions,
and (b) it constitutes merely an acceptable
solution rather than -°n exploitation of the Ada

feature which requires
the intended
the translator

> explicit declaration of
mode of parameter passing. Instead,
should attempt to determine the

exact mode from the infarmation available tu it
It is always possible to determ:ine the precise m:de
-- IN, OUT or IN JOUT =-- f:r a jiven t.rma;
rarameter by analy. ing the oodp ot tne Lebproynam,
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5 provided the same knowledge is available for all Conclusion
subprograms to which the formal parameter is being
al‘ passed as an actual parameter. The mode IN is Automatic translation of FORTRAN to Ada is
hd applicable if and only if the formal parameter is feasible for a large subset of FORTRAN, especially
. never assigned a value by an assignment statement the popular dialect FORTRAN-77. While a wvalid
fv\ nor passed as an actual parameter against an OUT or translation can be constructed readily from a
-‘.._‘ IN our formal parameter. The mode OUT is table-driven transliteration system, the task of i
c \ applicable if and only if the formal parameter is producing maintainable code at the output presents
4 Y never referenced in an expression. The mode IN OUT a greater challenge. In the effort to improve the
1Y is applicable if the modes IN and OUT are not style of output code, this paper has presented an
'Y applicable. approach that |is based on abstraction and
. reconstruction rather than on simple
.y The only difficulty then |is having the transliteration. Even with the conventional
By 2 required knowledge regarding the other subprograms analysis techniques employed, the improvement is
v being invoked from the one under translation. The shown to be significant. Knowledge-based
f#) present approach gets around this by requiring any translators capable of global abstraction and
N subprogram invoked by the current subprogram to: expert reconstruction are just a step ahead.
'ﬂh (a) have been translated earlier in the same i
e execution of the translator, or (b) be described by
an annotation declaring the correct parameter References
¥ modes. The user needs to provide the information
t%¢ via an annotation only in the rare cases involving l. Slape, J. K., Wallis, P. J. L. "Conversion of
.i: subprograms which are not to be translated for some FORTRAN to Ada using an Intermediate Tree
\ reason or which invoke each other. Representation,” The Computer Journal, vol. 26,
l' no. 4, pp. 344-353, 1983.
’&J Identifying Constants 2. Torsun, I. S., Robinson, S. K. "Non-
L,' 'Interpretive' FORTRAN input/output," Software
58 FORTRAN-77 provides for the declaration of --Practice and Experience, vol. 7, pp. 205-213,
? constants using the PARAMETER statement. However, 1977.
L the PARAMETER statement cannot be used to declare
‘$$ constant arrays. It is common, therefore, to 3. Freak, R. A. "A Fortran to Pascal Translator,”
[ declare constant arrays as variables and initialize Software--Practice and Experience, vol. 11, pp.
: them via DATA statements, as illustrated below. 717-732, 1981,
¥
INTEGER MAXTMP(12) 4. Wallis, P. J. L. "Automatic Language Conversion
DATA MAXTMP/45,50,68,79,2*100,98,3*75,60,53/ and its Place in the Transition to Ada,"

\ 5

-‘v

In Ada, there may be a significant improvement in
run-time performance of the program if such arrays
are identified as constants. In general,
identifying constant entities as such improves both
readability and performance. The nature of
analysis required to make this identification is

similar to that required for determining parameter

Proceeding of Ada International Conference,
Cambridge University Press, pp. 275-284, 198S5.

5. Wichmann, B. A., Meijerink, J. G. J.
“"Converting to Ada Packages," Proc. Third Joint
Ada-Europe/AdaTEC Conference, Cambridge
University Press, pp. 131-139, 1984.

'ﬁf: modes. A "variable" is determined to be a constant 6. American National Standard Programming Language
y 'y if and only if it never is modified by assignment FORTRAN, ANSI X3.9-1978, American National
' . and is not passed as an actual parameter against an Standards Institute, 1978.
Y (g OUT or IN OUT formal parameter. Such a variable
W"' naturally would be initialized by a suitable DATA
; statement. Thus, the above declaration of MAXTMP Dr. V. Santhanam is an
» would be translated to: associate professor of
1SN Computer Science at
(A% MAXTMP: constant INTEGER_ARRAY 1(1..12) := Wichita State Univer-
}_ (45,50,68,79,100,100,98,75,75,75,60,53); sity. He joined WSU
xé{ after earning his Ph.D.
5*$ The techniques listed above, while nelping to in Computer and Infor-
‘AN improve the style considerably, cannot expleit the mation Science from
B entire range of Ada constructs in the translation, Ohio State University
K For example, the use of range constraints and in 1975 and his B.Tech.
associated exception handlers to deal with out-of- degree in Electrical
3 : range conditions would require considerably more Engineering from the
v analysis and user-input than represented in the Indian Institute of
,i techniques presented in this paper. Technology, Kanpur,
" India in 1971, He 15 1
L member of the ACM a4 ' e [EEE “omputer Society.
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bt semantics of Diana, it is not possible to
2% A Diana verification system presupposes a complete embark on a verification program.
specification of Diana, which does not now exist.
] > Further requirements on a Diana verification 0 Tool-independence of the verification
R " system are that it be independent of the system
MEL particular function and independent of the
particular implementation of the Diana producer or The purpose of a Diana verification
RN consumer being verified. A verification system is system would be to verify that in one of
,l::‘ justified only if it furthers the goals of the its functions a tool behaves in a certain
!@\ ) Diana program. In this light, the Diana standard way. The verification system should be
‘Q'l. ) should be made more concrete by specifying a user neutral with respect to any other
' ; interface to a Diana environment, including a function of the tools.
wn particular set of Ada access routines for
i pre-defined Diana nodes and attributes as well as o Implementation-independence of the
'i'.._.‘ a definition capability for user-defined nodes and verification system
s attributes.
A
,:_:*.- The Diana specification imposes no
o specific implementation. Therefore, a
\_& verification system must not presuppose
' ’x 1 Introduction any particular range of implementations.
DL This is a very challenging requirement on
Once a standard is widely recognized and the verificatton system.
~iugy accepted, and once there is an accepted means of
a‘ ] verifying conformance with the standard, it is a
5... safe investment €or a developer to commit
,l. resources to build a tool that conforms to this
!:‘ standard. But {f the standard is not widely 2 Completeness of the Diana Specification
:,‘O:I recognized and accepted, or if there is no -
Wt accepted means of verifying conformance with the The current version of the Diana Reference
J standard, the investment carries considerably more Manual [3) uses several means to specify Diana:
> risk. 1In the case of Diana, the latter . an IDL [1, 2] structure description, comments in
‘p‘ N unfortunately applies. Most Ada compiler projects the IDL structure description, diagrams, and
l|'|‘ have not used Diana, and those that have used running English text.
.: .:‘, Diana (AIE, ALS, DG/Rolm, Rational, to name
0y several) have used divergent verslons of Diana. The IDL structure description is analogous to
'.l Furthermore, there is no accepted means of Appendix E of the Ada Language Reference Manual,
ahet verifying conformance to a standard Diana. An the syatax summary of Ada. Just as the BNF of
. important part of any plan to achleve wider Appendix E specifies the syntactic structure of
iy acceptance of Dial.\a would be developing the all legal Ada programs, so the IDL of the Diana
q:'. ) capability to verify that a tool that advertises Reference Manual specifies the graph structure of
!||'::' itself as a Diana producer or consumer is indeed a intermediate forms of legal Ada programs. But
y '; producer or consumet of the Diana defined in the just as there are more Ada restrictions than can
TN :
\ reference manual. be captured in BNF, so there are more Diana
.0' restrictions than can be captured in IDL. To take
i There are three tmportant issues in a Diana a very simple example, the IDL
verification program.
b
:‘t o Completeness of the Diana specification

Unless there Ls somewhere a document
specifying completely the structure and

A

z

BEEN

-
-
- - .
- -
-

\)
[

\G‘
1

-
.-
-

Annual National Conference on Ada Technology 1986 149

Co v o o,
:’h"x}'."'f:' :"_.' e
N e T - R

P SPRE AP N SR
A ALSARAN
'.1-.}-."' 's

f\-'._(._-'ﬂ-\-'m (,_{\n'\-r O LR LT a
? 8 ) b ) )
NSNS TN v I e




?' as_id : 1D,
- as_type_spec : TYPE_SPEC;

'q 1D ::= type_id;

type_id =>
sm_type_spec : TYPE_SPEC;

S

says:

that a type node has the attributes as_id
and as_type_spec

s e
[«

e
N
o that type_id is a kind of ID
T} o that a type_id node has the attribute
e, sm_type_spec
.
) o that the type of the attribute as_id is
ID
Y]

o that the type of the attributes
as_type_spec and sm_type_spec is
TYPE_SPEC

SR,

What the IDL does not say is that the as_type_spec
of a type node must have the same value as the
sm_type_spec of the as_id of the type node. This
is analséous to static semantic restrictions of
Ada such as the restriction that in an assignment
statement the named variable on the left-hand side
of the statement and the expression on the

right -hand side of the statement must be of the
same type.

o

The Diana Reference Manual does specify some
of the static semantics of Diana, but it does not
do so systematically. The means chosen to specify

-k

[V the semantics of a particular attribute depends in
dﬁ part on the kind of attribute. Diana attributes
‘& are divided into four classes, each class having
:’ its speclal prefix:

)

ﬁﬂ o lexical (1x_) attributes record lexical

“ information such as source position

- (1x srcpos source position; 1lx symrep
€ oy = -

Il symbol_rep)
Bo-

&Y o structural (as_) attributes represeat the
4 parse tree

Vg

3% .

“ o semantic (sm_) attributes represent

miscallaneous semantic information
"
o code attributes (ed_), of which there is

: only one (cd_impl_size integer),

provide target-machine-specific

™
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The values of the lexical attributes and of the
single code attribute, cd_impl size, are specified
informally in Section 3.10.1 "Summary of
Attributes" The following extract, for example,
specifies the value of 1x_prefix:

1x_prefix is of type Boolean, indicates
whether a function call was written using
prefix (True) or infix (False) notation, see
3.3.4.

Section 3.3.4, referred to in this extract, gives
justification for the inclusion of this attribute
in Diana:

Diana records whether a function call was made
using infix of prefix notation through the
1x_prefix attribute. This information is
necessary for subprogram specification
conformance rules (Section 6.3.1 of the Ada
LRM).

For lexical and code attributes, this means of
specification is adequate.

The structural attributes are not included in
the "Summary of Attributes". However, the order
of specification of the Diana nodes and
attributes, together with the Ada syntax included
as comments in the IDL specification, makes clear
the intended static semantics of these attributes.
Thus, to resume the earlier example, the following
fuller extract from the manual makes it clear what
the intended values of the as or structural
attributes are. -

- Syatax 3.3.1.A
-« full_type_declaration ::=

.- type Tdentifier [diseriminant part] is
.- type_definition;
type => as_id : ID =< a “type_id",

-- "1 prtvate id" or
-+ "private_type_id"
as_dscrmt_var_s : DSCRMT_VAR S
-- discriminant T1ist, see 3.7.1
as_type_spec : TYPE_SPEC;

Like the lexical attributes, the semantic
attcibutes are included in the "Summary of
Attributes". The euntry for sm_type_spec is not
untypical:

sm type spec denotes the specification which
beTbngs_Eo a type ildentifier; for private and
incomplete types, see Section 3.5.1, for tasks
and task body fdentifier, sce Section 3.5.5.

.
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The summary specification of semantic attributes
ts often clarified, narrowed, or reinforced by
diagrams and running English commentary in Section
3 "Rationale”. Thus, the diagram reproduced in
Figure 1 illustrating an incomplete type makes
clear the intended value of sm_type_spec.

While values of many of the semantic
attributes are adequately specified by this mix of
means, there are numerous gaps. The designers of
Diana were fully aware of the shortcomings in the
specification of static semantics and devnted
Section 1l.1.4 "Specification of Diana" to a
discussion on how to remedy the problem (see also

(41).

For a few examples of incompleteness in the
current NDiana Reference Manual, we turn to
aggregates. The representation of aggregates in
Diana is complicated, and it is not surprising
that the Diana Reference Manual is less than
complete in specifying the static semantics of
Diana in this area. We will look at two examples:
the attribute sm normalized_comp_s and the
representation of subaggregates.

Aggregates have the following structural
description in IDL:

EXP ::= aggregate;

aggregate =>
as_list
sm_exp_type

: Seq Of COMP_ASSOC,
: TYPE SPEC,

sm constraint : CONSTRAINT,
s@znurmaltzed_comp_g EXP_S;
EXP_S ::= exp s;
exp s =>
Tas_list Seq Of Exp;

The '"'Summary of Attributes'" tells us that
sm_normalized_comp_s

... denotes the normalized list of values for
a record aggregate or for a discriminant
constraint, including default -values.

But what does the sm normalized comp_s
attribute in an aggregate node really look like?
One might presume that this is list of the
component expressions in the proper order;
however, such a list is not always desirable or
poesible to construct. Consider the array
aggregate (1..N => 0). The value of N is not
statically determinable, thercfore one cannot make
a list of N zeros. A list containing a single
zero without the corresponding raaye would be of
no use, Consider the array aggregate (2..1000 =>
N, 1 =>0). It would not he very effictent to
construct a list of 1001 elements, particularly
when only two would suffice {f the corresponding
ranges were included. 1t scems that a normalized

N P N R A p A A A N

components list using named assoclations would be
more appropriate; but then why does the IDL
explicitly specify EXP_S rather than, say, named_s
as the type of sanormalized_pomp_p?

The Diana Reference Manual is also unclear on
the representation of a subaggregate of a
multi-dimensional aggregate. In the following
example, the Ada code will raise CONSTRAINT ERROR
during elaboration, but the compiler must be able
to produce the code that will raise this
exception.

type A is array ( integer range <>,
integer range <> ) of boolean;
c: constant A := (1 =>
( 4..5 => false ),
(2=
( 6..7 => false )
)3
-- will raise CONSTRAINT_ERROR during elaboration

Presumabhly a subagpregate ("4..5=>false" or
"6,,7=>false" in the above example) is represented
by a separate aggregate node, but it {s not clear
what value the sm exp type attribute of a
subaggregate of a node should have; there is no
explicitly declared type for the subaggregate.
Should a new TYPE SPEC node be created? We might
also ask how the sm_constraint attribute of the
subaggregate is related to the sm_constraint of
the enclosing aggregate; is the second index
constraint of the enclosing aggregate taken from
the constraint of the first subaggregate (4..5) or
from the second subaggregate (5..6). In this case
it does not matter whether the first or second
subaggregate contributes the constraint, but one
must he chosen in order to detect the
CINSTRAINT_ERROR.,

This last example illustrates an interesting
point about completeness of specifications: a
specification mist also make it clear when
something is deliberately undefined. There are
several ways for a complete Diana specification to
accommodate undefined values:

o There could be a general rule that if
something is not explicitly specified in
the Diana Reference Manual, then its
value {s undefined. This is dangerous,
since it would obligate the specification
to be complete even for the values of
obvious attributes (the structural
attributes, for example).

o The manual could say that for particular
attributes (in particular contexts) the
value of the attribute is undefined.

»  The manual could say that for parricular

attcibutes (in particular contexts) the
value must he one of several things, the
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choice among possidbilities bheing
undefined (e.g. 1in the above example,
could say the index constraint of the
enclosing aggregate must be a node shared
by one of the enclosed subaggregates, the
particular choice heing undafined).

This i{s not the place to propose a scheme for
formal specification of the static semantics of
Diana (see [8] for one proposal). We note,
however, that it simply makes no sense to speak of
verifying that a purported Diana producer really
produces Diana unless there is agreement on the
static semantics of Diana. This is not to say
that a completely formal specification of static
semantics 1is required; carefully worded English
prose may be sufficient. But something more than
we now have is required. 1In the absence of this,
it is i{s premalure to speak of establishing a
Diana verification system.

3 Tool-indepeadence of the Verification System

The Diana Reference Manual wisely
distinguishes between Diana producers and Diana
consumers, with the following definitions (Section
1.1.3):

In order for a program to be considered a
Diana producer, it must produce as output a
structure that includes all of the information
contained in Diana as defined in this
document. Every attribute defined herein must
be present, and each attribute must have the
value defined for correct Diana and may not
have any other value. ... There is an
additional requirement on a Diana producer:
The Diana structure must have the property
that it could have been produced from a legal
Ada program.

In order for a program to be considered a
Diana consumer, it must depend on no more than
Diana as defined herein., This restriction
4does not prevent a consumer from being ahle to
take advantage of additional attributes that
may be defined in an implementation; however,
the consumer must also be able to accept input
that does not have these additional
attributes. It is also incorrect for a
program to expect attributes defined herein to

have values that are not here specified.

A Diana verification system should be
tool-independent; that is, it should focus on the
tonl”s use of Diana -- whether the tool was a
Diana consumer or a Diana producer -- ignoring
other functions of the tool. Furthermore, it
should distinguish between a tonl whose sole
function is to translate Ada source into Diana
(the front end of a compiler) and other Diana
producers. 1In the case of the front end of a
compiler, one would try to verify not only that
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the output is Diana (hence the represeatation of
some legal Ada program) but also that the output
Ts the correct mapping of the given input. 1In the
case of other Diana producers, one would try only
to verify that the output is Diana, without
attempting to verify that the mapping from input
to output is correct. In the case of a Diana
consumer, one would try to verify that the tool
accepts (i.e. does not issue any error
diagnostics against) any Diana represeantation, but
one would not attempt to verify that the tool
produces the correct, non-Diana output for a given
input. In the case of Diana consumers, there is
no predefined unique product, and Diana
verification should not become cnmeshed in
verification of some other function of a tool.

As a first approximation w: might suppose
that a Diana verification system would involve
developing the following components:

o Input test cases for Diana producecs.

o A means of verifying that tha Dana
output of Ada compilers is the correct
mapping of the Ada source t> Diana.

o Diana input test cases for Diana
consumers.

o A means of verifying the Diana output of
general Diana producers.

Several considerations lead to a simpler picture.
First, for a Diana producer we do nat know, in
general, what the input to the tool is. The input
could be, among other possibilities, Fortran
source, Ada source, some other intermediate
language, or Diana itself. Accordingly, it is
probably simplest to declare the input test cases
of the tool”s own validation suite to be the input

test cases for verifying that the tool is a Diana
producer. That is, input test cases for Diana
producers are not part of the Diana verification
system. Second, if a Diana producer is also the
front end of a compiler, it will have undergone
the ACVC and it is therefore not necessary for the
Diana verification system to check that the
mapping from Ada soutce to Diana is correct.

From the foregoing, it appears only two
components ate required:

o A set of Diana inputs that systematically
sample the set of all Diana
representations.

n A Diana assection checker -- a prougram
that can check the truth of assertions
about the structure and semantics of
Diana representations output by a Diana
producer.
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The consteaction of the set of Diana f{apat test
casas is not particualarly ditfienlt orovided there
s a rellable Mda-sou. o 2-fo-Diana franslator
available; many of the test cases could he derived
from those ACVC tests consisting of legal Ada.

The construction >f an assertion checker with any
sretensions £H completeness wonld bhe acduous.

4 Implementation-independence of the Verification

System

The specification of Diana i{n the Diana
Reference Manual is intended to be
implementation-independent. The specification
does not say how the nodes and attributes are to
be encoded at the level of a programming language,
and certainly says nothing about how they are to
be encoded at the level of bits in memory or on a
disk. Any program producing or consuming Diana
will have a particular encoding of this
information. How, then, can there bhe a single
verification system to verify that any alleged
Diana producar is really a Diana producer?

One solution is nse a standard external
representation of Diana in the verification
system. The Diana Reference Manual (Section 5)
provides an example of an external representation,
In the verification system, we then verify not
that a program is a Diana producer but that a pairc
consisting of the program and a compatible Diana
writer (whare compatible means understanding the
same encoding) is a Diana producer. Likewise for
ihe Diana consumer, we verify that the pair
{program, compatible Diana reader) is a Diana
consumer.,

Figure 2 shows the resulting configuration
for Diana producers, Figure 3 for Diana consumers.

5 Implications for the Definition of Diana

We have sketched a fairly simple-minded Diana
verification capability. We might now ask whether
this capability would promote the goals of the
NDiana program the way the ACVC promotes the gonals
nf the Ada program.

Suppose there were a Diana producer DP and a
Diana writer DWDP that translates the output of DP
to the the standard external representation of
NDiana, Suppose further that DP has been verified
in the following way (assume that DP is a
Foctran-to-Diana translator; DP is therefore a
Diana producer without heing the front end of an
Ada compiler):

l. The original validation suite for DP is
run through DP.

2., The resulting Diana output {s wan through
bwop,

3. The resulting external Diana i3 run
through the Diana assertion checker.

Since DP is not the front end of an Ada compilter
we do not need to verify the accuracy of the
mapping of input to output.

Suppose now there is a Diana consumer DC
(perhaps a target-independent optimizer) and a
NDiana ceader DRDC., Suppose further that DRDC has
been verified in the following way:

l. The implementation-independent test cases
(in standard external Diana) are
converted to ianternal Diana via DRDC.

2. The test cases (in internal form) are cun
through DC.

We now have two tools, DP and DC, the first
of which is a verified Diana producer and the
second of which is a verified Diana consumer.
Furthermore, the tools can be run in conjunction
provided that the output of DP is run fiest
through DWDP and the result of that run through
DRDC.

te-e-t puceens +
INPUT «-->| DP |+--> INTERNAL (DP) --->| DWDP |
Feo--¥ DIANA becaeen +
STANDARD

R EE TR R PP RTRE EXTERNAL -ceccvesce. +

| DIANA

v
prooens + SRR
| DRDC |---> INTERNAL (DC) --->| DC |--->0UTPUT
S CERER t DIANA Heeenk

But this translation to and from standard extecaal
Niana is costly, and there {s no rcason to believe
that DC can run directly on the output of DP. In
this case it is clear that the tools actually do
conform to the Diana standard; but {t is not cleac
that the tools are more widely usable because they
conform to the Diana standard. The verification
program we have outlined above {s in danger of
becoming verification for its own sake while
loosing sight of the original goal of Diana: to
promote the development of inter-operable
Ada-related tools by defining a standard
representatfon for Ada programs.

For different programs to operate on comm-'n
data, one of two conditions must hold:

o the programs must incorporate knowledge
of how the data i{s represented; or

o the programs must call on a common set of
access routines.
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If the goal of Diana is to enable a given program
to operate on (produce and/or consume) Diana
representations across N different Diana
environments, then either

o there must be N different verslons of the
program, each incorporating the knowledge
of how Diana {s represented in one
environment; or

o all N environments must provide the same
set of Diana access routines.

The first alternative is wasteful of human
resources; furthermore, market consideratioans (the
small number uf potential users per version) might
inhibit the development of tools. The second
alternative, by standardizing at a greatec level
of detail, can easily inhibit technological
progress; furthermore, it may be wasteful of
machine resources by precluding certain efficient
implementationas, But {f we are to be serious
about the goals of Diana, the choice is clear: a
Diana standardizad to the level of access routines
(presumably in Ada) Is required. The Diana
Reference Manual currently specifies Diana in an
abstract mannar: using IDL and associated text
for specification of the static semantics. An
example of a possible set of routines i{s given {a
Section 4 of the Diana Reference Manual, hut the
example 1s not proposed as a standard Diana
intecface. Serious consideration should be given
to augmenting the standard with a more concrete
level of specification: a set of Ada routines
providing the operations of c¢reating and deleting
nodes, reading and setting attributes, walking
sequences, and so forth,

If Diana is defined to be a unique set Ada of
access routines with clearly specified semantics,
we can speak of a Diana environment existing
independently of Diana producers and consumers.

[t would then be possible to separate the
verification of Diana environments from the
verification of Diana producers and consumers and
to dispense with the requirement for Diana writers
and Diana readers.

This was the approach taken in the VHSIC
Hardware Nescription Language Program (6, 7]. The
intecmedtate fForm of VHDL is callad IVAN, for
Tatermediate VHDL Attribured Notatioa. In
addition to an ML steacture desceription and an
informal English specification »>f semantics, [VAN
s defined by a sct of Ada access routines for
creating and deletlng nodes, reading and setting
the values of atiributes, detecmining the kind of
a node, walking sequences, aad so €acth [5]. The
Ada package IVAN providas a standard environment;

any IVAN-producing tool that uses this standarld
eavironmen: is guaranteed to ba {ater-operable
with any [VAN-consani iy (ool chat also uses the
standard envi onment, Thuare are currently four
VHDL tools (Analyzer, Reverse Analyzer,
Simplifier, Similat r) andee davelopment that use
the standard IVAN environment.
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Taking seriously the goals of Diana entails
considering another change to the Diana standard
-« provision for user-defined extensions. The
definitions of Diana producer and Diana consumer
were carefully phrased to allow a Diana producer
to output a structure containing non-Diana nodes
and attributes and for a Diana consumer to operate
on a structure containing non-Diana nodes and
attributes. Experience has indicated that real
Diana tools do need additional nodes and
attributes. To take one example, the front end of
the AIE defines some 532 node kinds and some 638
attributes, in contrast to the 170 node kinds and
131 attributes defined in the Diana Reference
Manual. If the environment does not provide for
additional nodes and attributes, each tool will
have to provide its own, separate implementation.
But if Diana is defined to be a set of access
routines, and if DNiana producers and consumers are
to be portable across Diana environments, how are
the additional nodes and attributes to be
accommodated? One possibility is to require that
a Diana environment provide a definition
capability allowing a using tool to declare
additional nodes and attributes that can be
accessed in exactly the same way as the predefined
N{ana nodes and attributes. It is premature to
propose this addition to the Diana standard; but a
study of how to integrate a data definition
capability with the pre-defined Diana is in order.
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Figure 2: Configuration for Diana Producers
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Figure 3: Configuration for Diana Producers
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THE BACK-END OF A MULTI-TARGET COMPILER

Gil De Bartolo and Rou Richards

Intermetrics, Inc.yCambridge, Massachusetts
)

Abstract

This paper discusses the implementation of the b.aclf-end 9{ an op-
timizing Ada compiler which is able to defer the binding of its target
machine until compiler execution time. There are several advantages to
this deferral. Any compiler enhancements are immediately available to
all targets. A congsistent uger interface is guaranteed across all.targets.
The cost of adding a new target is minimized. The apparant dls‘advan-
tages of this approach involve performance as such a compiler !mght. b.e
slower and bigger. We present an implementation in Ada which mini-
mizes these disadvantages yet retains the advantages of implementing
in Ada (specifically, strong type checking and range checking). Further
our approach allows the mechanical construction .of a smaller, fafater
compiler supporting only one target from the multi-targeted compiler.

This paper describes the implementavion of a multi-target compiler.
That is, a compiler able to defer the biting of its target until compiler
execution time. The first two sections >ut the back-end into perspec-
tive first by briefly describing the front 11d middle-ends of the compiler.
The third section is concluded with a d+=cussion of BILL, the intermedi-
ate representation which the back-end t -anslates to machine code. The
next section describes what we had hoped to achieve by constructing
a multi-targeted compiler. The ffth section is the heart of the paper.
In that section we describe the four different approaches that were em-
ployed to implement the multi-targeted compiler. Which of the four
approaches was employed depends of the characteristics of the phase.
The material on the implementation approaches assumes a knowledge
of Ada. The paper is concluded with a brief discussion of the succes:
of this endeavor.

Overview of the compiler

The Intermetrics Ada compiler has tive phases which process a program
prior to the six back-end subphases. In this section we will present a
brief averview of the first five phases: the front and middle ends of the
compiler.

*The authors are mdebted to Mark Davis, Vucker Taft, and Denms Struble for
subatantial contnbutions to botl the deaign of the implententation presentesd and
commenting on earlier drafts of this paper
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The front-end of the compiler is comprised of the first two phases,
tree build and semantics. The tree builder builds an abstract syntax
tree for the Ada input program which the semantics phase translates
into a DIANA (1] representation of the program. There are no signifi-
cant target dependencies in these pha:e-.

The middle of the compiler comptises three phases: storage, ex-
pand and flow. We will briefly discuss « ach of these phases.

The storage phase adorns the DIANA representation of the pro-
gram with information about how objects in the input program should
be allocated storage.

The expand phase reads the DIANA representation of the program
and translates this into a interface description language (IDL) [2] called
BILL. In this low-level representation all calculations are made explicit.

The flow phase massages the BILL tree performing target inde-
pendent optimizations. For example, redundant constraint checks and
inaccessible code are deleted. Opportunities to reuse previously calcu-
lated values {constant sub-expressions) are recognized by this phase.
Flow also decorates the BILL tree with access mode sets. An access
mode is an indication of how a node (and possibly some its descendants)
may be addressed.

All three of the middle phases do contain some target dependen-
cies. For example, the layout of a record may well be affected by what
the target architecture supports. Similarly, the BILL produced by ex-
pand will depend significantly on the target-specific run-time model
chosen. Since the focus of this paper iz not on target dependencies in
the middle-end, we won’t elahorate here on how these dependencies
are dealt with. However, it is accurate to say that the solutions em-
ployed in the middle phases are not unlike some of those employed in
the back-end which will be discussed in detail.

Overview of the Jiack-End

The back-end of the compiler consist- of six phases. Oue could view
the major task of the back-end phasi. of the compiler as translating
the program from the low-level intermediate representation produced
by the middle-end to either an assembly language like representation
of the program or an object module representation of the program.
The representation produced by the middle phases is in BILL. Before
we discuss the roles of each of the back-end phases we will present an
overview of BILL.

Introduction to BILL

BILL is a tree structured language designed to meet three apparenlty
conflicting goals. First, BILL makes explicit all calculations {includ-
ing address calenlations). Second, BILL abstracts away from the tar-
get specific detail which is inessential in producing high quality code.
Third, BILL maintains a “structured” representation of the program.

Since BILL is a tree-structured langnage, the elements of the lau-
gauge are nodes and these nodes have attributes (which are often
other nodes). Examples of typical BILL nodes for arithmetic oper-
ations are bl int plus, blint minus, bl_fit plus, and bl Bt times.  fx-
amples of BILL nodes pertaining to : ddress caleulations ave bl offset
and bl known frame offset. Some BIL., nodes related to flow of control
wonkd be bl case, bl handlers (for exceptim handlers), bl if, bl loop and
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. bl exit. For calling subprograms we have bl proc call and bl func call
:) as example woes : : Goals of multi-targeting
-_‘* Two kinds of calculations are commaonly required in a program. b § of muiti-targeting
The program text itself spedifies that certainly calenlations be per- N L o T )
S N formed. For example, a variable may be assigued the cum of two other Intermetrics had previously developed an easily retargetable compiler.

As a separate effort we took advantage of our retargetable approach to
implement the multi-target compiler. This compiler was designed to
enhance our compiler development environment.

Inteimetrics is simultaneously developing ada compilers targeted

variables or a variable might be meremented. Of course, the list is end-
.
‘. less

leut), are calenlattons requied to addiess objects. Sor example, a local

and not very interesting. Less otwioms (but possibly more preva-

' T ay he a certain offset from the frane pointer or a vecord com- ! ! :
\ (l’)""]l::.:"";"'{l" ‘:n‘:".'\\‘ of records may reguive 4 \'n-r'y mvolved expression for '“o_l"“{'y“llﬂle‘”g «‘l|rc|\;tticture.s. to be l‘.(;sse‘d_ ‘0(;‘ sevel‘al(:'(l.lﬁere)\t °Pﬂ:‘
addressing. In ll;e BILL vepresentation of the program both of these :"."'.g ’y*(e"_"" "? ‘“0‘" e f""g“’ ‘_30“"1"‘ el? is developed in two stage’a.
" irst, we build a cross compiler which i+ hosted on our development ma-
e types of caleulations are expheat chine. After testing the cross compiler, we rehost it to the specific host
. There ave mauy operations which sequie several machine mstrue operating system, normally using the :ross compiler to rehost itself.
R tions but whicl ate best viewed as atomic opetations even i low-level The multi-target backend was proposed not only to reduce the costs of
: Language like BILL. For example, vasng 4 oset debined exception o the the first stage, when many targets are developed and maintained
' calling anather subprogram may reguire several target machine instrue- on the =ame host machine; but also to reduce the whole life-cycle cost
: tion=. Yet cach of these uperations 1< «inghe node i BILL (b raise of a target. Rather than being forced to maintain several different com-
0' and bl "r"'" call, 'T""”;v"lvl' i this way. BILL abstracts away from pilers, we will essentially be maintaining just one compiler as bug fixes
o nessential taget dependencies are immediately available to all targets.
" BILL maintains a structured view of the prograne by using nodes 4 &

Prior to this project, we had develuped a retargetable backend.
Periodically, separate teams would take a release of this backend and
retarget it. Target dependencies, although well identified, existed at all
levels of the backend sources. The existence of target dependencies in

for structured fow of contral constructs hike “if then elze”, “loop”, and
“case”. By keeping these constructs and not translating inunediately

into conditional branches, analysis of the program for optimization and

; register allocation is made easier. low level package specifications ruled out any sharing of the program
) libraries, or object modules accross the different targets. Even though
Back-Eud Subph.ses most packages in the backend were target independent, the retarget
. . . teams found it very difficult to share fixes and enhancements, If the
.’i The six sul)pl\:\fcs of the h.\ck«:m! A i “l“‘ “"‘"‘"' n which they ex- interface to packages changed, as often happens in a developing project,
‘ ecute, V'{("l" {virtual code generation}, tubiand !bmd lemporary nawes copying a single updated package often required copying several other
(X7 to ""Td""c resources), codegen (,mdc gc“”ml'o")' jump (jump opt changes. Keeping the different target backends up to date became very
:: mization), hran'ch (bmurll resalution), ..m(l objgen (generate an object costly, both in manpower and computer resources.
D« module). We will discuss each phase briefly. R To reduce the costs of simultancously developing several compilers,
o Veode creates temporary names (Tos) for compiler created tem- we identified several goals for the multi-target backend. First, sources
he poraries. When two Tus are known to have the same value (at least for all targets must be able to reside in the same program library. Sec-
gl initially), vcode sets up a preference relation between the two Tas.

ond, we want to maximize the number of lines of shared code. Third,
target dependent code should be easily changed without requiring re-
compilation of other sources.

Each compiler contract requires the delivery of a backend for a
specific target. Each delivered backead should not have the runtime
overhead of selecting a target. Thus, another goal of the multi-target
backend, is that a single target backend be easily built from the multi-
target sources.

If two Tns are preferenced, tubind will attempt to allocate them to

the same machine register. The ontput of this phase is the BILL tree

LA supplied by the middle phases of the compiler adorned with Tus repre-

senting intermediate results. Each Tn has an attribute which indicates

% what type of register would he best for storing this value as well a list
3 of preferences to other Tns.

‘ J Tubind allocates the Tus to machine registers, Before the alloca-

') tion can be made tnbind must determine which Tns conflict (two Tns

which hold values at the same point in a program are said to conflict). Implementation of multi-targeting
After this phase has run, each Tn has been allocated to a machine . . . R K
;’— register or spilled As we discussed in the section presenting an over view of the back-end,
(| egisiel or s ed. . . b nl
! . . . . : s hack-e e inherently tar-
". Codegen generates code given the allocation of machine registers many of the algorithms employed '",”“‘ ack-end ar o y
[ ’ L . . get dependent. In this section we discuss how the “essential” target
nd to Tns. A table describing the code to emit for a particular sequence of ! . K X
) R ; dependencies were dealt with. We ended up employing four different
‘ BILL nodes and the allocation of the Tus used by those nodes is con- !
) ; ; approaches to this problem. The first of these approaches could be sum-
§ sulted to determine what code to gererate. While the contents of the ized ling in the target dependent information in at compiler
iy table are obviously target dependent the manuer in which information marized as reading (n the targ ! ¢
D) X . : : - : execution time. This technique accounts for most of the target depen-
- is gleaned from the table is not. The implementation of this table will , Gi he decisi 1 i information. there is no extea
be discussed in section 5.1. The output of this phase is the IDL CODE, dencies. Given the « verson “t read ut mtorin b ) ’
hich is very similar to assembly languag performance cost associated with supporting more than one target.
e which is very similar to assembly L age.
- Jump processes the CODE representation of the program attempt-
f *: ing to optimize jumps to jumps, unlabeled code following an uncondi- Tables initialized by reading a file
. tional branch, and jumps aronud jumps. The output of this phase is
k) E R s
X 'c also CODE ' ! ' ! ! Both the veode and codegen phases of the back-end process the BILL
i . . . . representation of the program with an aim toward ps 3 -
“é Branch processes the CODE representation to build the exception 'l. res T ! BILL 1 ! Rll_"l; X ! lhl " ‘i";';l @ ard l"""‘ll(; (‘;‘I‘ _8""‘“
. . ation. ¢ s tree supphe W 3 « s b DI ;
P map, to pool literals, and to chovse between long and short jumps. e ¢ Lo Aree sipplied by tie niddle < processed by beginning

at the root and matching as much ol the tree as possible with a pat-
tern chosen from the table of all match..ble patterns. After the actions
appropriate for the pattern matched v completed, the matching pro-
cesx is repeated on the unmatched chiidren of the matehed nodes. The
children are processed in reverse execution ordey,

After this phase has
in the module,

run every CODE node has a known location with

Objeen processes the CODE vrepresentation and builds an object
module,

The algorithm used to decide whether a pattern matches a por-
tion of the BILL input is target independent. We will discuss this
algorithim as an excellent example of how ezsential target dependencies

- L EASRARARA

are deferred until compiler run-time.
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Patterns are comptised of four different types of tokens  bill,
operand, restriction tokens, and end mark, The bill tokens are used
to match the BILL node of the same name. The operand tokens indi-
cate the value of an 7 Operand Class” which describes a set of sub-trees
which could mateh this token. An vperand class is actnally a set of
access modes, An access mode is an enumeration corresponding to the

different ways data may be accessed on the target machine. The restric-
tion tokens are used to dezcribe a condition which must be true about
the values of the nodes (ur attributes of the nodes) if the restriction is
to be true. All of the restriction tokens for a pattern must follow all of
the bill and operand tokens. The end mark token designates the end
of a pattern.

Using this terminology, a pattern matches a sequence of BILL
nodes if every node in the sequence matches. The couditions to de-
termine whether a node matches a pattern token depend on the type
of pattern token. [f the pattern token is a bill token, then the token
matches the corresponding node in the sequence of BILL nodes if and
only if the node and token are of the same kind. If the pattern token
is a restriction token, then the restriction token matches if and only if
the restriction holds given the values » the attributes of the nodes in
the sequence. If the pattern token is 1 operand token, then the token
matches if either of the following conditions hold:

o the operand class includes an access mode which is included in the
accesz mode set of the BILL node corresponding to the operand
token.

o the operand class includes an access mode which represents a direct
access to a register

Before we can present example patterns for different architectures
we must define some access modes and operand classes. For this exam-
ple we will use four different access modes, listed below

e r.a  address of a register (this is a direct access to a register)
e r v contents of a register (this is a direct access to a register)
® x a - address of memory (using a base register aud a displacement)
e x v contents of memory location {(addressable through x_a)
e lit an integer literal
We will alzo have four operand classe: s showu helow
e OCA {xa}
e OCB {rv}
¢ OCD - {ra}
e OCD - {xv,lit}
o LIT - {lit }

For our examples we will use the <ame oo cess modes and operand
classes for different target architectures. It iz important to understand
that this is for convenicuce in this exposition. I the compiler no such
restrictions apply. hi fact we will dizcuss helow how different access
mode and operand class ennmerations are supported for different tar-
gets,
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Consider the BILL tree below whbich vepresents decrementing a

local variable:

bl store

T~

bl frame offset blint minus
bl fetch value bl int literal
bl frame .offzet

We will present some example patterns for the 1750A and IBM
370 architectures. Recall that a pattern is a sequence of tokens. A bill
token is represented by the name of the BILL node kind it matches. An
operand token is represented by the a parameter number and operand
class separated by a ‘2. Restriction tokens are represented by the nanie
of the restriction followed by the list of parameter values surrounded
by parentheses. The end token is not explicitly represented as it is
implicit in the terminating *;".

For the 1750A architecture we w.nld have a pattern like

blstore $0:0CA blint minns $1:0CB $2:L1T <oe{0 1)
int val(2,1);

This pattern matches the whole example tree. Lets sce why. The
first token matches since it is a bl store and the root node is also a
bl store. The second token is an operand token which matches since
the operand class OCA includes the access mode x_a (which transforms
frame offset). The third token is a bill token for blint minus which
matches since the corresponding BILL node is also a bl int minus. The
fourth token is an operand token which corresponds to the first child of
the minus node. This token matclies since the operand class includes
the access mode x.v (which transforms a fetch from a frame offset).
The next token is also an operand token. This time corresponding to
the other child of the minus node. The token matches since the operand
class contains lit (which transforms the int literal). The last two tokens
are restriction tokens. The first test whether the operand zero repre-
sents the same location as operand one. The second restriction tests
whether the value of the Iiteral for operand two has value one. Since
all the tokens match, the whole pattern matches. Hence for 1750A we
can process this whole tree during one pattern match.

On an architecture like the IBM 370 this tree does not correspond
to a single pattern. For the 370 we would have patterns like the fol-
lowing:

bl store $0:0CC bl int minus $1:9CB $2:0CD ;
bl.store $0:0CC bl.int minus $1: 7B $2:0CB ;
bl store $0:0CC $1:0CD
bl store $0:0CA $1:00B ;

For the 370 matching this tree requires first matching the store to
wemory then matching the subtract one, aud finally the fetch from
memory {recall that we mateh BILL trees in reverse execution order).

3l

The single Larget appr

We will ignore the multi-target issue for a wowent aund sketch how
we would implement some of the imj. rtant data structures and algo-
rithms. For any particular target we might first set up the access mode
and operand class enumerations. For example we could have:

type access mode is (ra, r v, x a, x.v, lit);
type operand class is ( oca, och, oce, ocd, lit});
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We might have the information on access modes and vperand classes
in arrays of records. The declarations and objects might be:

type access mode record is record
is_direct : boolean;
end record;

type access .mode set is array ( acsess.mode ) of boolean;

type access mode.array is array( access mode ) of
access mode record;

type operand class record is record
contalns : access Juode.set;

end record;

operand_infu table : array ( operand class ) of
operand class record :=
oca = ({x.a=>true, others=>false}),
och = ((r.v->true, others >false)),
vce > ((r.a->true, others->false)),
ocd > ((x-v=>true, lit=>true, others >false)),
lit => ((lit->true, others >false)));

access _mode info table : access mode array :== (
r.a => (true),
r.v => (true),
x.a = (false),
x.v > (false),
lit = (false));

In the actual implementation, the tables are in bodies and functions
are defined to access them.

Before defining the data structure for patterns, we define some pre-
liminary types which will be necessary fr dealing with pattern records.

type token type is (bill, restriction, operand, end mark);
type restriction type is (same, int val);

type formaldigit is new integer range 0 .. 2;

The patterns wonld be set up as an array of records.

type pattern range is hew integer range 0 .. number pat nodes;
type pattern record (token @ token type) is record

case token 1=

when hill >
kind : bl bill. Kind;

when restriction >
restriction name : restriction type;
param 1@ integer;
param 2 @ integer:
param 3 integer:

when vperand >
operamd name © oporand class;
formal : formal digit;

when end mark >
null;

end case;

type pattern array is array t pattern range ) of
pattern record,

pattern : pattern array,
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Now lets consider what some code might look like to test whether a pat-
tern matched a BILL tree. We will present a function which will take
two parameters the tree to match and the start of the pattern. The
function will return true if the tree matches a pattern. This function
does not check whether the restrictions at the end of a pattern are sat-
isfied (which is required for the whole pattern to match). It should be
emphasized that the code below just sketches what the function might
look like. The function relys on several more primitive functions. We
assume Last Child returns the number of childven given the BILL node
kind. similarly, child(i, tree) returns the i** child of the tree. The func-
tion intersect ams returns true if its two arguments (both access mode
sets) have a non-null intersection. Contains divect returns true if its ar-
gument contains an access mode which has is direct equal to true. The
variable pattern index iz a global variable representing the next pattern
token to check. It is advaunced by the function advance pattern index
when a pattern token is matched.

function match(
tree bl billlocator
} return boolean
is
begin
case node{pattern_index).token is
when bill =
if bl_bill. “="{node(pattern index).kind,
bl_bill.kind(tree)) then
advance _pattern index;
for i 1.. blbill.Last.Child{blbhill. Kind(tree))
loop
if not match(bl bill.Child(i,tree)) then
return false;
end if;
end loop;
return true;

else
return false;

end if;
when operand =
if intevsect ams( bl bill.fl_amset{tree),
operand info table(node(pattern range).
operand name).contains) then
advance pattern index;
return true;
elsif contains direct{operand info(node(
pattern range).operand name).contains} then
advance pattoryindex;
return true;
else
return false;
end if;
when restriction >
return false;
when end mark >
return false;
end case;
end match;

The match function mimics closely our definition of matching pre-
sented above. If the pattern token is a bill token, the check if the
BILL node kind corresponds. If they match, recursively check if the
children match. The recursion ends when we reach an operand token.
The test for matching an operand involves first checking if the BILL
node and the operand class have an access mode in common. If there
is no common access mode, a check is made for an access mode which
directly accesses a register. The match function as presented does not
check any restriction tokens which might follow the bill and operaund
tokens. These would be checked by the subprogram which called match
if match returned true.

This section has sketched out th: matching algorithm employing
a target dependent approach.

Annual National Conference on Ada Technology 1386 161

¥ 0
B A AL TN

G AT AT A



The malti-target approach

The developient of the matehing algorithm as presented above was
target dependent. In thiz section we will zhow liow 1t would have t1a be
modified to become target independent.

What is target dependent about our development in the previous
section” A close look at the match function will indicate that the
target dependencies are not there, Farther a look at the declarations of
the basic record types (operand class recond, access mode record, and
pattern record) also don’t reveal any target dependencies. The target

dependencies are in the most basic enunmerations, the upper bounds of
ranges {pattern range and formal digit), the contents of the objects (
access mode info table, operand class info table, and pattern). Even if

one were not planning to retarget the compiler, some of these target
dependencies are likely to be a problem during development. We found
that it was very ditheult to get the operand class and access _mode
ennmerations just right.  Each time the enumerations were changed

substantial recompilations were required.

It s possible to maintain the spirit of the development shown
above, yet defer (or hide) the target dependencies. We desire to keep
the compile time strong type checking and execution time range check-
ing of Ada. We are able to accomplish these goals by replacing our
earlier type declarations with the variants shown below.

type accesz mode base is pew integer;
subtype access mode is access m wle base range {
0 .. access mode basze(TGTow i access mode));

type operand class base ix new neger;

subtype operand class is operand class base range (
0 .. operand class base{ TGT.num operand class));

type formal_digit base is new integer;
subtype formal digit is formal digit_base range
. formal digit_base(TGT.num formal digit));

type unconstrained access mode set is array {
access mode base range <> ) of boolean;

subtype access_mode set is unconstrained .access mode set(
access mode’first .. access _moade’last);

type unconstrained operand class array is array {
operand class_base range - » ) of operand class record;

subtype operand class array is
nnconstrained operand class arvay(
operand class'first . operand class’last);

operand info table : operand ¢l - array;

We have introduced a new package TGT which contains a function
for each target specific constant {num access mode, num operand class,
num pat nodes, amd num formal digits) 1 there were only one target,
the body of TGT might just contain vaues for vach of these constants.
Thix would minimize the recompilation required to change a basic enu-
meration. We did something a little different (bt mnch better). The
body of TGT reads an external file to get the values of the constants,
In this way the ranges on the enumerations are not hound until com-
piler execution time. Heuce a switch to the compiler triggers which
input file is read and hence which set of bownds are selected,

To support many targets it iz not =afficient to just change the
bounds om ennmerations. The contents of the objects like operand -
info table, access mode info table, and pattern may also be initialized
by reading a file. Hence at compiler execution time the target depen-
dent ranges and objects are initialized,

We will briefly describe how the objects are tnitialized. Each ob-

jeet ix initialized by veading its binary image. For example we wse a
statment like
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Image 10.Read{file > “patterns.ini”,
address = pattern’address,
size -> pattern'size);

to read the file “patterns.ini” and te place the indicated number of
bits (xize) at the indicated location (address).  To insure that the
binary image that is read is compati-le with the binary image be-
ing written by the target specific -ode, we have only one decla-
ration of the defining types. That is, there is only one package
which defines types like access.mode set, operand class_array, and pat-
tern arvay. There are several packages which have versions of the ob-
jects ( access mode info table, operand class info table, and pattern).
First there are the copies which are initialized at run-time in the com-
piler. In addition there is a copy in the file writer for each target. These
target-dependent file writers are run once to produce an image of the
object which is appropriate for that target. Each of these file writers
“withs” the same set of packages that the compiler “withs” to define
the objects,

Selecting cude thru a case statement

Some phases of the back-end must contain some code which is target
specific, even if the algorithm is largely not specific to any one target.
The following approach deals with these phases.

The jump optimization phase is a good example of a phase which
must contain some target specific code. The jump phase scans instruc-
tions in the CODE intermediate language searching for three sets ol
target independent patterns:

o chains of jump nstructions
e dead code

& a conditional jump instruction in mediately followed by an uncon-
ditional jump.

To find the patterns, the algorithm st distinguish conditional and
unconditional jumps from the other instructions in CODE. This dis-
tinction is target dependent, as it involves looking at the opcode and
condition code in the instruction.

Jump optimization’s transformations of the CODE are both tar-
get dependent and independent. The first two optimizations are target
independent. To eliminate jump chains, the second jump instruction
is deleted and the first jump instruction is changed to point to the
ultimate destination of the jump chain. The structure of the CODE
language allows the label operand of the junmp instruction to be changed
by target independent code. Dead code elimination involves only delet-
ing instructions and is also target independent. The third optimization
requires some target dependent code to invert the conditional jump
instruction. Deleting the unconditional branch is target independeut.

Once the target dependent code is identified, it mast be isolated
into separate procedures. The interface to the procedures will be vizible
to the shared target independent code, and thus must he wide enough
to accommodate all planued planned targets.  We placed all of the
target dependent procedures for the jump phase into a set of separate
packages.

We tmplemented the target deper dent packages in two layers. The
first layer is a package called TGT Jump. 1€°s specification contains all
of the target dependent procedures for the jump phase. All veferences
to target dependent routines are mad- to this package. The procedure
bodies in TGT Jump consizt of a single case statement which callz a
specific implementation of the target dependent routine based on a
global target identifier.

The second layer consis
of the target dependent vantines. Each targets implementation is in
a zeparate package. The nanme of eacl target implementation package
begins with a prefix that identifies the target. e.g. T 370 Jump or
T 1750A Jump. The specification of these packages is identical to the
specification of TGT fump. The package badies contain the actual

< of the target specific implementations

implementations for the target,
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The package prefixs “TGT ", T 370 ", “T 1750A ", ect. are used
throughout the compiler to identify the switch package and the various
uupletentations, It is trivial then to locate the target dependent pacts
of the compiler. We can add new targets to the jump phase by adding
a target implementation package to the second layer and modifying the
case statements in TGT Jumip to include the new target.

With this structure we can easily build a single target compiler.
For example, to build 4 370 only version of the jump phase, we sub-
stitute the body of T 370 Jump for the TGT Jump body. Since the
procedure specifications are identical, this substitution only requires
changing the name of T 370 Jump to TGT Jump. This substitution
alse breaks the link between the other target implementations and the
rest of the back-end code, so other target implesnentations will no longer
be tncluded in the back-end executable.

Selecting code unly wlen neceszary

It both veode and codegen, some peas of the BILL tree are walked
by hand written code instead of by the pattern matcher. The hand
written tree-walks process BILL nodes that cannot be expressed in
patterns. These include BILL uodes whose rexnlting code is dependent
on the runtime model of the target. For example, the processing of a
procedure call involves knowledge of how parameters are passed. Tar-

gets which have similar runtime models can share the same tree walk
proceclures, while other targets must have separate tree walk proce-
dures. The technique of selecting code only when necessary deals with
sitnations where a given procedure may be target dependent.

We bhave defined a standard runtime model for procedure calls
in the Ada compilers. In the standard model, a certain number of
parameters, and the static back chain {SBC) are passed in vegisters.
Additional parameters are passed in a block called the subprogram
commupication area (SCA). The address of the SCA is also passed
in a register. We have implemented a shared procedure for walking
procedure call nodes according to this model. The number of parameter
registers and their specific assignments are all parameterized in the
BILL. As long as a target shares this runtime model, it can use the
shared routine.

One of onr targets has a very d Frerent runtime model from our
default model for procedure calls which takes advantage of a special in-
struction. As in the standard rantime model, some number of parame-
ters are passed in registers. However, addit jonal parameters are passed
via argument pointers which follow the special instruction. This model
differs enough from the standard to require a separate implementation.

Optional target dependent procedures are implemented in the
sante manner as in the case statement approach. We first identify
all hand coded tree-walk procedures that might be target dependent.
We then implemented the target dependent routines in the two layer
approach with a switch routine at the top layer and target depen-
dent implementations at the second layer. Each specification in the
switch routine has a boolean variable which indicates il the routine is
implemented the specified target. Target dependent specifications for
procedure calls would be:

package TGT Tree Walk is

dependent procedure call @ boolean:
procedure walk procedure call { tree o bl hilllocator )

dependent case statement : boolean;
procedure walk caze statement ( tree : bl billlocator )

end TGT Tree Walk:

The second layer package specification are identicalta TGT Tree Walk,
except that the hoolean variables beeome boaolean constants. I the con-

stant is false, then the corresponding procedure hady is null and will

never he called. If the constant is true - hen the procedare body must

be implemented. The following tree valk package specifies that anly
walk procedure call is implemented:

package T SPC TRG Tree Walk is

dependent procedure call @ constant hoolean :-- true;
procedure walk_procedure call { tree bl bill.locator );

dependent case statement : constant boolean : false;
procedure walk caze statement ( tree : bl_bill.locator };

end T SPC.TRG Tree Walk;

The package body of TGT Tree Walk initializes the boolean variables
in its specification from the constant in the selected target package.
As in the case approach, the procednres in TGT Tree Walk are =imply
case statements that call the selected target package.

The shared procedure for walking procedure call nodes first inter-
rogates the boolean variable in TGT Tree Walk and then either calls
the target dependent routine or executes the shared code:

procedure walk procedure call { t1ee: bl bill.lacator ) is
begin
if TGT Tree Walk.dependent procedure call then
TGT Tree Walk.walk procedure call;
‘.lS\'
- code for processing p « cedure calls
- according to standare untime model.
end if;
end walk procedure calls;

When we bunild a single-target back-end, the unuceded code will be
eliminated automatically. To build a single target for the special
target, we replace the specification and body of TGT Tree Walk by
T SPC TRG Tree_Walk. The boolean variable dependent procedure -
call becomes static, causing the unused code in the procedure walk -
procedure call to be removed by constant folding and dead code elim-
ination in the host compiler. Thus, the single target back-end for the
special target will contain ouly the code for walking procedure calls in
the special way.

Uzing target independent tools in a target dependent way

As our final example of the approaches we employed to make a multi-
target compiler we will cousider the Loanch resolution phase. Branch
resobution process the CODE repre- utation of the program by choosing
between =hort and long jumps as neces ary, poohing literals, building the
exception map, and breaking the code siream into chnuks as necessary.
There is a tremendous diversity acro=- targets concerning these tasks.
For example some targets don’t have « choose between short and long
Jjumps. On =ome targets the literals are poaled in the code stream while
on other targets they are pooled i a read-only data area. Most targets
do not require that the code be broken inta chunks,

The approach we employed for thix sitnation was to create a pack-
age of utilities upon which target dependent drivers for the branch
resolution phase eonbd draw. To onr wrilities package we lave routines
dealing with literal pooling. These temtines are called to create a new
literal table, free an existing table. pool a liteval, and to cutpuat the
literal pool ( the code stream which holds the ponl 1= a parameter
of this procedure). The utilities package also contains procedures 1o

update the exception nrap and to nclnde the exception nap in the
code stream. Other frequently nsed procedures which are inclided
the ntilities package is o procedire tooanchade an anstonctem {and i<
operands) in the corrent chunk and a procednre to pat the followine
tnstractions ina different code stream These procedures are unples
mented ina tar et independent fashion Owly the dovers whid call

them are target U endent

Annual National Conference on Ada Technology 1986 163

P
PRI

_'::'.:_\ ‘&-.';-.;.‘7\;\:\:; o~
LA LA VLS CRA DA Yo W 1o WA, I




P

-
-

-~

LA

-

- -

-
g

"

"
-
-
-

N P )
ok ) s! : v ,».’-l\'.:'t

Conclusion

In section 4 we discussed the goals of constructing a multi-targeted
compiler. As discussed there, & major goal was to reduce the cost of
retargeting our compiler. This goal has been achieved. Retargets are
now possihle within a fraction of the effort required previously.

This endeavor would not have been considered successful if the
performance of the compiler were sigt ificantly worse than a single tar-
get compiler. In fact, the results have been very encouraging. The
multi-targeted compiler seems to be e:sentially as fast as the single
targeted compiler and only about 10 > ¢ cent larger.
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Automated Drawing of Data Structure Diagrams

Prabhaker Mateti & Gerald M. Radack
Department of Computer Engineering and Science
Case Western Reserve University
Cleveland, Ohio 44108

Abstract

We describe the architecture of a subsystem that helps
draw data structure diagrams similar to those found in
text books on programming. These diagrams are gener-
ated from the variable and type declarations, a few hints
about the composition of the diagram, and the memory
image that contains the internal values of the variables.
Our drawing process consists of three stages: construct
an abstract figure that gives the topological constraints
among the various figure elements, determine a display
representation that specifies in a device-independent way
the relative sizes, coordinates, color and fill texture for the
figure elements, and finally produce an actual display from
this representation using a device-specific driver. The
hints are about the abstract relationships between index
variables and arrays, between pointer variables and ob-
jects pointed to, and whether the graphs are indeed trees,
etc.

This drawing subsystem is being presently constructed,
and will be incorporated into the Unix debugger dbx.

1 Introduction

For a variety of psychological reasons, many people
prefer pictures to textual descriptions. In the con-
text of programs and data structures, figures become
all the more important. Indeed, we do not know of
any text book on data structures that does not use
figures extensively. In a given section, they are usu-
ally concentrating on one data structure at a time,
and much attention is devoted to the composition
of the figure. However, the situation becomes very
tedious even for moderate sized (say 1000-line long)
programs. It would improve our effectiveness as pro-
grammers, if we could automate the production of
pictorial views of data structure both in archival doc-
umentation about the programs and during the de-
bugging phase.

In this paper, we describe the architecture of a sub-
system that helps draw data structure diagrams sim-

ilar to those found in text books on programming.
These diagrams are generated from the variable and
type declarations, a few hints about the composition
of the diagram, and the memory image that contains
the internal values of the variables. The hints are
about the abstract relationships between index vari-
ables and arrays, between pointer variables and ob-
jects pointed to, and whether the graphs are indeed
trees, etc. We are currently in the process of imple-
menting this subsystem as part of the Unix debugger
known as ‘dbx’. This work is part of an effort to
build a software design environment named CaseDE
[Mateti et al. 1984].

2 Data Structure Diagrams

Figure 1a is typical of data structure diagrams (dsd).
The declarations of the relevant variables and types
are shown in Figure 1b. This diagram is hand-drawn
based on the layouts indicated by the drawing algo-
rithms discussed in the paper. We will be using these
figures as running examples.

2.1 Basic Semantic Concepts
Connected Diagrams

Often data structure diagrams are connected; i.e.,
there is a connecting line from one (part of the) di-
agram to another (part of the) diagram. Examples
of such diagrams (see Figure la) include arrays and
their indices, pointers and pointed objects, etc. Some
of these connections are such that they cannot be de-
duced from either the declarations, or their values:
that i and j are used as indices of array A can only
be deduced from the executable statements but not
from their declarations.
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Composition of Related Diagrams

We often wish to see together the diagrams of several
‘related’ data structures. While we have defined con-
nectedness among diagrams based on programming
language concepts, we leave it entirely to the pro-
grammer to specify which diagrams he wishes to see
together.

1 ‘—-—){_‘4 > 7 9
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Fig. 1Ia
type NODE;
type PNODE 1is access NODE;
type NODE is
record
info : integer;
link : PNODE;

end record;

var
A : array (1 .. 8) of PNODE;
i, j : integer;
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Generic Diagrams

The diagram in Figure 1a is a pictorial view of specific
values that the variables had: i was 3, j was 6, and the
first element of A was pointing to a list of three items,
etc. A generic diagram, on the hand, aims to illustrate
a typical situation for these variables without being so
abstract as to suggest nothing; Figure 2 is an example
of this. To produce the most ‘general’ generic diagram
automatically is a futile task for the declarations in a
typical language has too little semantic information.
For example, the declarations of Figure 1b do not say
whether shared list structures are possible in the lists
pointed at by the array elements.

Derived Diagrams

We consider certain diagrams, e.g., bar charts and pie
charts drawn from numeric data, as derived diagrams.
One might also think of the binary tree hidden in the
array of heap sort as a derived one. Clearly, this no-
tion of derivedness is a subjective one and depends on
how much computation is involved in producing the
perceived diagram from one that immediately sug-
gests itself as a result of our familiarity with tradi-
tional data structures.

In the rest of the paper, we do not consider generic
and derived diagrams.

2.2 Display Considerations
Good Diagrams

An important question that we must discover answers
to is “What is a good diagram?” Answers to this
highly subjective question depend on the information
content, and the ease with which it is communicated
as well as symmetry, relative sizes of components, and
traditional ways of drawing. Although it will require
experimentation to devise rules that capture one’s no-
tions of “good” diagrams, we can state some obvious
taboos here:

(1) Arrows should not cross figure elements. (2)
No two displays of figures should overlap. (3) The
appearance of variables of a given type should not be
inconsistent.

In addition, the kinds of traditional diagrams we
are used to seeing in text books and articles play a
role.

Whenever pointers are used, we have, in general,
a graph structure. There are many ways to draw a
graph data structure. In order to make the graph
easier to comprehend, we would like to reduce visual
complexity. The number of edge crossings, average
edge length (relative to the size of the picture), the
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symmetry of the picture with respect to rigid rota-
tions and reflections have all been proposed as mea-
sures of visual complexity. Figures 2 and 3 indicate
the variety possible in the layouts of graphs.

Fig. a: K4

> = =
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Fig 3: [wirth 1985]

Binary trees could be handled by the same algo-
rithms used to draw graphs. However, trees occur
very frequently in computer science and are impor-
tant enough to deserve special treatment, and there
i8 a virtual consensus about what constitutes a ‘tidy’
picture. Wetherell and Shannon[1979], and Reingold
and Tilford[1981] list the following requirements of
aesthetics for drawing pictures of trees. Almost all
well-drawn diagrams of trees that we have seen sat-
isfy these requirements; obviously a layout of a tree
drawn to satisfy requirements beyond aesthetics may
look quite different (see Figure 4).
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1. Nodes at the same level of the tree should lie
along a straight line, and the straight lines defining
the levels should be parallel.

2. A left son should be positioned to the left of its
father and a right son to the right.

3. A father should be centered over its sons.

4. A tree and its mirror image should produce
drawings that are reflections of one another; more-
over, a subtree should be drawn the same way re-
gardless of where it occurs in the tree.

Customization

Though we do not yet have a complete set of rules for
producing aesthetically pleasing figures, we are confi-
dent that many common situations can be captured
by such a set. In spite of this, it is inevitable that
users will find occasionally that some fully automated
drawings produced by our subsystem are unaccept-
able. For example, they may wish for certain arrays
to be drawn vertically, rather than horizontally. Our
solution to these problems is a hint language to influ-
ence the layout and composition of the diagram.

2.3 Subsystem Considerations

The drawing of data structures, whether fully auto-
mated or not, is not an end in itself. We see it as
part of two most time consuming tasks: debugging
and documentation. Both these tasks impose special
requirements on the drawing subsystem.

Debugging requires that diagrams of acceptable
quality be drawn fast in real time as we debug and
monitor the execution of the program. It is even nec-
essary to consider animation techniques to display the
diagram as it changes values. Documentation requires
higher quality diagrams drawn perhaps off-line and
incorporated later into the documentation. 1t also
typically requires generic diagrams.

We construct a representation of the display gener-
ated from the figure in a machine independent way.
From this representation, we can drive most graph-
ics terminals and laser printers. Our representation
is a dialect of VDI [Bono 1985]. We expect our inter-
face to the symbol table and memory contents to be
quite independent of the host programming language,
compiler and operating system.

3 The Process of Drawing
There are three major steps in the process of generat-

ing the diagrams, which are sketched out in more de-
tail in later sections. From the given type and variable
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declarations, the memory contents, and additional in-
put from the user that we call hints, we produce first
an abstract figure, then a device-independent display
representation, and finally the actual display as seen
on a graphic terminal.

3.1 Figure Elements

A figure element (figel) is an abstract object that cap-
tures certain attributes of a dsd. No rigid notions of
dimensions, geometric shapes, color or fill-texture are
associated with a figel. The attributes are such things
as content, label, and descriptions of how the content
is to be displayed.

Associated with each variable of the program is a
composite or atomic figel, depending on whether the
variable can be considered composite (such as an ar-
ray), or atomic (such as a scalar). The figels associ-
ated with a variable are considered independent and
their layout (sans scale and absolute coordinates) is
determined independently of others.

3.2 Display Representation

Having produced an abstract figure for the data struc-
ture, which gives certain topological constraints that
must be satisfied, we decide on the placement, sise,
geometric shape etc. of each of the atomic and com-
posite figels, and the visuai representations for the
figel composition operations.

Our global strategy for determining the display of
an abstract figure is as follows: Determine the display
of each independent figel. Enclose each of these in a
polygon and begin tiling a potentially infinite sheet
with these polygons while satisfying the composition
operations given in the abstract figure. The display
of the independent figels is similarly determined, ex-
cept that we expect certain kinds of regularity in the
constituent figels (such as elements of an array, nodes
of a tree, etc.).

4 Computing the Independent
Figels

Figels have at least three attributes: a content, a la-
bel, and a description of how the content is to be
displayed. The label of an atomic figel is usually the
name of the variable ( if the variable is atomic), the
index (if an array element), or the field name (if a
record component). The content of an atomic figel is
the internal value contained in the memory location
corresponding to (that part of) the variable.
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The computation of the independent figel corre-
sponding to each variable is driven by the abstract
syntax tree of the type declaration of the variable, and
user-given hints. A standard file contains a schematic
description of (1) all scalar types, and type construc-
tors along with their atomic figels, (2) the figel com-
position operations corresponding to composite type
constructors (such as array, record, etc.). In this con-
text, we associate with each access type an atomic
figel (and separate the associated record type),a nd
consider the entire structure reachable via the point-
ers to constitute a single data structure variable.

So far, we have identified two binary composition
operations that are basic: juxtaposition, and point-
ing. Other operations are combinations of these two.
Juxtaposition requires that the two figels be displayed
so that they are aligned along a chosen axis separated
by a gap that is a parameter to this operation. Point-
ing is an asymmetric relation, and requires that in the
display there will be an arrow from one figel to the
pointed figel.

In Figure la, the box containing the integer value,
and the one containing the tail of the arrow are atomic
figels. These two atomic figels are juxtaposed to give
the composite box representing the nodes. The ar-
row from one box pointing to another is an example
of yet another composition operation. Indeed, the
dsd shown in Figure 1a contains thirty atomic figels -
eight due the array elements, twenty due to the nodes,
and two due to the indices i and j. There are nine in-
dependent figels, one corresponding to each list, and
one for the array and two for the index variables. Note
also that i and j do have boundaries but were made in-
visible, and their values were indicated by positioning
them appropriately on the elements of A.

5 Layout of Independent Figels

We sketch our layout algorithms assuming that we
know what kind of a data structure (an array, binary
tree, linked list, etc.) an independent figel represents.

5.1 Well-Known Data Structures

Scalars

The default layout for an atomic figel that corre-
sponds to a scalar variable is a horisontal composition
of the label (which is the character string denoting
the identifier of the variable), and a rectangular box
containing the value of the variable. This value is dis-
played according to the prescription given in the third
attribute. For example, an enumerated value is dis-
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played as an identifier denoting that value obtained
from the symbol table.

Arrays

We consider the figels corresponding to the N ele-
ments of the array as independent, and determine
their layouts. Compute the smallest polygon P that
can enclose each of the elements. Make N juxtaposed
copies of P aligned along an axis, and insert the k-th
element’s layout in the k-th copy of P. The orienta-
tion of this axis, and the scaling of P are determined
by how the array diagram fits in with the rest, or is
controlled by a user-given hint.

Records

Determine the layouts of the comporent fields of the
record. Arrange these layouts in a 2-D packing (see
below) inside a rectangle.

Linear list

Linear list layouts are similar to arrays. Determine
the layouts of all, say N, the reachable nodes. Com-
pute the smallest polygon P that can enclose each of
the nodes. Make N equi-distant, say d, copies of P
aligned along an axis, and draw straight line arrows.
Distance d is dependent on the sise of P.

Non-linear lists

Do a depth-first search, and arrange the layouts of
the nodes of each forward chain along parallel axes as
for linear lists, and then draw straight line arrows for
these, and spline-curved arrows for the back pointers.

Graphs

Non-linear lists are nothing but graphs; however, cir-
cular lists etc. are so common that we treated them
separately. The general problem of drawing graphs
has received considerable attention over the decades.
For example, it is well-known that graphs can be
drawn using only straight lines unless self-loops are
present. Such layouts however are often ugly and take
unacceptably large areas. Lipton, North and Sand-
berg [1985| described an algorithm that draws graphs
emphasising symmetry. They characterize symmetry
in terms of automorphism groups. They assume that
nodes are very small, and use straight lines for edges
without worrying about edges crossing nodes. We are
in the process of adapting this algorithm for the usual
case of dsds where the nodes are of non-trivial sige,
and edges should not cross the nodes.

‘‘‘‘‘

Binary trees

Reingold and Tilford {1981], Wetherell and Shan-
non(1979] and Supowit and Reingold[1983] present al-
gorithms for drawing aesthetically pleasing trees (see
Section 2) while attempting to minimise the width of
the picture. We have chosen to adapt Reingold and
Tilford’s algorithm. This algorithm was intended for
positioning nodes on a rectangular grid, where a node
could be drawn within one grid cell. We are interested
in positioning nodes on a real coordinate plane, so
each “grid cell® would be infinitesimally small. How-
ever, Reingold and Tilford’s algorithm takes as a pa-
rameter a variable called minsep, which is the min-
imum separation between nodes. If we consider the
algorithm to be positioning the centers of boxes and
set minsep to the box sise plus the desired separation
between boxes, then the algorithm will produce the
correct result.

5.2 Two-Dimensional Packing

Given a set of layouts of figels, we pack them into a
rectangle. This problem is related to bin-packing but
since we are not interested in minimising the num-
ber of bins or some other quantitative optimisation,
we have chosen to use the following simple algorithm.
This algorithm assigns positions to nodes of the graph
searching in the breadth first manner. Since each
node has its own local coordinate system, we need
simply specify a translation to relate its local coordi-
nate system to the graph's coordinate system.

The following algorithm places a node X so that
it is as close as possible to a given node Y without
its enclosing rectangle overlapping any other enclos-
ing rectangles. We can represent a position of X as a
translation to be applied to its local coordinate sys-
tem. Let rect(X) denote the enclosing rectangle of
X. Consider the case where rect(X) is centered at the
origin in its local coordinate system and has width
w and height h. Then the space of invalid positions
is obtained by expanding the rectangles by w/2 hor-
isontally and h/2 vertically and taking the interior
of their union. The valid position of X closest to Y
must be on the boundary of the invalid region. Thus,
to find this position, we need only check points on
this boundary. This can be done efficiently (in N log
N time where N is the number of boxes) by sorting
the coordinates of the rectangles and using a plane
sweep algorithm.
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6 User-Given Hints

We have aimed to reduce the need to control the dis-
play image by choosing default styles of display af-
ter observing numerous diagrams of data structures
found in text books. For each programming language
handled by our display system, there is a file of de-
scriptions as to how various built-in and user-defined
types are to be displayed. A user may choose to edit
this file to reflect his tastes, or temporarily override
the default descriptions by providing hints along with
the declaration of the variable in the programming
language. Another occasion where a user may want
to provide hints is when the system cannot mechan-
ically recognize a data structure to be, say, a binary
tree in spite of suggestive names in its declarations.

Controlling the appearance of the final image of the
dsd is possible at three levels by

(1) defining what parts of a data structure are con-
sidered as independent figels,

(2) influencing the construction of the display rep-
resentation of an independent figel,

(3) altering the mappings of abstract attributes of
figels to visual representations.

The particular form our hint language takes is an
active topic of our research; consequently, we have
stated these hints in free style English. However we
expect it to be influenced by drawing languages such
as PIC [Kernighan 1981], IDEAL [Van Wyk 1981} and
MIRA [Magnenat-Thalmann and Thalmann 1981].

6.1 Figel Hints

Connection hints tell how variables are related, or just
assert that they are. This introduces figel composition
operations among otherwise unrelated figels causing
these variables to be connected (usually by arrows) in
the figure.

We quite frequently construct structures with mul-
tiple pointer fields such that if we consider all the
fields they become an arbitrary graph. However, if
we restrict ourselves to a chosen set of pointer fields
they exhibit more structure such as a certain kind of
a tree.

Figel compositional hints are used to express
declarative procedures for composing abstract figures
whose relationship is not explicit enough in the dec-
larations of the data structure. For example:
figure F5( a, x1, b2, cl1, d)
caption ‘An Example Figure’ centered
layout hints about the layout of a, etc., if any
end figure
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where the a etc are the names of variables visible at
the present scope and denote the dsds for them.

6.2 Display-Specific Hints

Diagram composition hints control what will actually
appear in the picture, and how parts will be drawn;
e.g., we may wish to omit field d from variable m.
Spatial layout hints state a preference as to where
components of a diagram should be laid placed. Some
additional examples are:

use bgcolor maroon, fgcolor (RGB 1 .9 .2)
bordercolor (HSV .6 .5 .7)

when drawing m1,m2;

use shape circle when drawing type node
use line pattern patl when connecting i

draw A horizontally

place x east of y

place m within .5 of q

layout node as vbox(hbox(a,c),b,hbox(11,12,13))
align arrays a, b, c vertically

6.3 Data Abstraction Hints

Data abstraction hints allow the programmer to map
record/pointer structures onto certain common ab-
stract data structures. These structures are then
drawn in the customary way. This is a stop gap
measure — it does not support data structures imple-
mented in a nonstandard way (e.g. trees implemented
with arrays). Once a design specification language,
such as CaseDL [Mateti 1985], is integrated with the
debugger, these hints will become unnecessary.

stack p, top(stk), next(p.next)

(p is a dummy variable used in the hint only. stk is a
pointer to the top of the stack.)

linked list p, head(studlist), tail(p.next)

(The programming language implementation of lists
and stacks are identical, yet the abstract data struc-
tures are drawn differently.)

binary tree p, root (dict),

left(p.son), right(p.daughter)

circular doubly linked list p, start(list3),
prev(p.back),next(p.fwd)
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i;x Freeman L. Moore
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Xl Texas Instruments, Inc.
‘ McKinney, Texas 75069
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P
;%x' In an education oriented
?g?{ environment, as well as a software
! development environment, the need exists
ABSTRACT to make computer resources available to
. . . all concerned. If Ada compilers can be
Su Until recent}y! Ada compilers h;ve been made usable on a personal computer of
ofy found on minicomputers and mainframes. reasonable cost, then some of the access
Sl With the acceptance of the personal burden can be taken off of the mainframe, :
W computer as an individual programmer alleviating its workload for other !
(O workstation, there is the need for usable purposes.
= Ada compilers which operate in that |
‘ ; domain. This paper identifies some the Most business software for small ;
Ada-like compilers for personal computers systems is written in compiled Basic,
2% as well as the most recent developments interpreted Basic, Cobol, Pascal, or
’z ; indicating that validated compilers are assembly language. Most software for
s available for personal computer (PC) home systems is in interpreted Basic or
i“ users. assembly language. In both of these
L areas, the principles of software
. engineering may be unknown and not
practiced. The approach taken may be one
Y INTRODUCTION of code first, and solve second. Pascal
! programmers are generally better than
',q Thg Ada programming language has been in some because of tpe structure imposed by
3 existence in one form or another for the their language. Since the Ada language
1 ; past seven years. Over that time period, allows for more organization that Pascal,
~ it has matured from the preliminary the introduction of the Ada language to
) definition of 1979 to its current the personal computer market could have a
version, approved in 1983 as ANSI/MIL-STD favorable impact on the quality of
sl 1815A., Concurrent with the language software developed for personal compucer
&}3 development process, efforts were also users.,
gl taking place towards the development of
b 4 compilers and the necessary runtime ) The search for and status of current
.: ) support systems. The first Ada compilers implementations of Ada compilers for
%Ho were developed and implemented on personal computers 1is the emphasis of
e mainframes and superminicomputers. The this paper. It must be realized that
o current trend in software development this area has the potential for rapid
MO environments is towards distributed changes, with new product announcements
g environments, moving away from the occurring frequently. The information
_\‘: mainframe system to individual presented here 1is accurate as of the
.t&. engineering workstations. While it may writing of the paper, and will  be
N be that the power of some workstations supplemented with additional material
ot rivals that of some of the minicomputers, during the presentation as appropriate.
Sy the real concern is whether it is
s practical to develop Ada applications SCOPE
A using a personal computer as the
et workstation, The first validated Ada compiler was
gﬁk; developed concurrently during the
' language specification phase by New York
Jedt * Ada i . University, and delivered on a DEC-VAX*
X 4 1s a registered trademark of the computer system. The second validated
' u.s. Government (Ada Joint Program compiler was for the Data General
;;ﬂ? Office) computer System, F~"ther of these
'f’c;'b
i
o
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computer systems is likely to be found in
the home of the average software
engineer, For purposes of this paper, a

distinction is made between personal
computers and workstations. Machines
such as the SUN and APOLLO shall be
considered as advanced workstations,
whereas machines such as the IBM PC¥*,
TI-Professional, KAYPRO* are considered
in the personal computer category. In
particular, attention will be focused on
personal computers which are capable of
supporting their own compiler. That is,
the compiler runs on and produces code
for that machine. Cross compilers are
programs which execute on one machine
while producing machine code for a
different processor. There has been a
substantial amount of work in this area,
but this is beyond the realm of personal
computers and is not addressed here.

KINDS OF IMPLEMENTATIONS

When developing an Ada compiler for
a personal computer, one is confronted by
several choices. The first is to develop
either an interpreter or a compiler.
Interpreters do not produce any machine
code which can be kept from one execution

to the next. Most implementations of
Basic make use of the interpreter
approach. 1f a compiler approach is

taken, the compiler can be make to
generate machine for the target machine,
or else generate a hypothetical machine
code. This is the approach taken with
some Pascai compilers and their use of
p-code. The p-code represents the
hypothetical machine code. While the use
of p-code is attractive from the
developer's point of view for portability
reasons, it has the distraction that the
final product will execute slower than if
actual machine code had been generated.
It is commonly recognized that the
writing of interpreters is easier than
true compilers, but again, there is the
execution performance price that must be
paid. In the case of the Ada langquage,
an interpreter would not be adequate
because of the language features allowing
for separate compilation of packages and
subunits.

As part of the development of an Ada
compiler, the compiler must pass the
validation process as controlled by the
Ada validation Office. This process will
ensure compilance with the Ada Reference
Manual. Thus subset compilers are not
permitted to be called Ada, nor are
superset compilers allowed. However,
this does not permit the development of
compilers for "Ada like" languages as
long as they do not use the name "Ada"
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The Ada validation Office maintains
a collection of programs (currently over
2000), which must be properly processed
by an Ada compiler and corresponding
runtime environment. This collection of
programs is referred to as the Ada
Compiler Validation Capability (ACvVC),
and is subject to change every six
months. If a compiler does not pass the
ACVC, it can not be called an Ada
compiler,

NON-ADA IMPLEMENTATIONS

In this section, implementations of
"Ada-like" languages and subsets are
considered. Because of the ACVC test
requirements, these products can not be
called Ada translators. Even though they
do not implement the entire language,
some are worthy of consideration.

An inexpensive possibility is an
implementation called AUGUSTUS by Edward
Michael. AUGUSTUS is not a pure subset
implementation of the Ada language and
does not purport to be an Ada compiler
either now or in the future. Minor
modifications to the Ada syntax were
incorporated along with the restriction
of not being able to recognize the entire
syntax. The translator and supporting
interpreting system  were originally
developed on an Osborne I computer system
in Basic. As such, the compiler will run
on other microcomputers with little or no
modification. The source code has been
published in Dr. Dobb's Journal (1983).

The advantage of considering
AUGUSTUS is really not wusing it for
learning the Ada language, but rather as
a case study of compiler writing. 1It's
use for teaching and learning the Ada
language 1is not recommended, except for
other than the simplest of home/hobby
users. It would not be practical to list
the limitations of AUGUSTUS because of
its great divergence from the Ada
standard.

AUGUSTUS is just one example of a
product which may be more appropriate for
compiler study rather than language
learning, Other examples from academic
institutions can be found in the
publications of the special interest
groups on programming languages and
computer science education, groups within
the Association for Computing Machinery.

JANUS/ADA, from RR software, is
clearly considered as the most widely
available and supported system

approaching the full Ada language. RR
software has been marketing and improving
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JANUS/ADA for some time, and has
indicated their willingness to continue
their development. According to
literature from RR software, several U.S.
government agencies, including the
Department of Defense, have begun
programming with JANUS/ADA. It is also
stated that JANUS/ADA is being used by
the governments of Canada, France, and
Australia. The claims of the company are
documented by the number of published
references to their product. While
JANUS/ADA is not a complete
implementation, it does support a rich
portion of the language. Some of the
features of Ada which are not implemented
include:

fixed pcint numbers
slices/aggregates

boolean array operations

tasking

separate compilation with subunits
generics

representation specification

From this list, it is apparent that only
the more advanced features of the
language are not available. One would
not experience Ada tasking, programming
in the large concepts, and other subtle
points of the language but still,
JANUS/ADA is a practical alternative to
learning a major portion of this exciting
language. A major benefit of JANUS/ADA
is 1its error handling, both at compile
time and execution time.

The  JANUS/ADA  compiler is a
multi-pass compiler which produces
relocatable files. Compilation speed
varies based upon the machine and
resources available. All code generated
is ROM-able and re-entrant.

TeleSoft* has the TeleSoft-ADK (Ada
Development Kit) including the
TeleSoft~Ada compiler and various tools
and utilities, available for the IBM PC.
The system |is based on a p-code
interpreter. Floating point operations
require the use of an 8087 math
coprocessor, The utilization of p-code,
rather than native code, saves memory
space during development and execution,
but limits execution speed. TeleSoft
also has versions available for various
68000 processors and operating systems,
typically using the UNIX* operating
system. These 68000 systems are not as
generally accepted in the personal
computer area and will not be discussed
further in this paper. Hardware
requirements specify either a hard disk
along with 320K bytes of RAM or two DSDD
floppy disk drives, and 576K bytes of
RAM, In addition to its microcomputer
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compilers, TeleSoft has been developing
compilers on the DEC-VAX systems since
1981, some with cross compiler support
for other processors.

VALIDATED COMPILERS

This paper has been written upon the
assumption that the following vendors
will have wvalidated their products by
March 1986; the time of the conference.

New York University
General Transformation Corp.
Alsys, Corp.

New York University announced their
personal computer version of the AdakEd
system in July of 1985, with expectations
of validation by November of 1985.
General Transformation Corporation plans
to validate their compiler in the first
quarter of 1986, and Alsys has a

pre-validated version for the IBM PC,
using validation suite 1.6. Further
information about each of these is
presented in the following sections.

New York University (NYU) AdaEd

The first version of the New York
University (NYU) AdaEd compiler was
written in SETL, a very high level
interpretive language. Being interpreter
based, the performance of the compiler is
less than outstanding. Because of the
computer resources required, it is
generally not acceptable for any degree
of high volume development on a time
shared system. NYU is currently
rewriting their compiler using the C
language, with the intention of porting
the system to personal computers. It was
stated in the Ada Information
Clearinghouse News Events on July 30,
that NYU had announced the availability
of the compiler. No further information
is available, although the compiler was
reportedly demonstrated at a conference
in the fall of 1985. It is unknown at
this time if the compiler will still
generate 1its internal machine code or be
a native code compiler. Speculation is
that it will continue to wuse its own
machine code, and that the translation
from SETL to C will show a 10X
improvement in compilation speed.

General Transformation Corporation (GTC)

Again, at the time of this writing,
the product is not yet avsilable but is
expected by conference time, March 1986.
An earlier schedule had planned for the
compiler to be available in late 1985.
Plans now indicate an early 1986 delivery
date, with internal wvalidation being
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expected by December 1985, and formal
validation in first quarter of 1986. GTC
is a relatively new company, founded in
1983 with the goal aof producing Ada
products of exceptional gquality and
providing excellent technical support for
its products.

This compiler appears quite
promising. An earlier brochure had
stated full implementation of

representation clauses, along with Pragma
INTERFACE. A revised brochure indicated
that most of the features will be
implemented, along with the inclusion of
package MACHINE_CODE.

It is worthwhile to note that GTC
claims to be developing their system on
an IBM PC, so as to have their
development engineers fully aware of the
capabilities of the system it is intended
to run on. Also noteworthy is the
company's decision not to release a
subset compiler. "In the spirit of this
valuable effort toward standardization,
and despite the long time to product
release, the company chose to release
only full Ada compilers and not subsets
of the language, believing this to be in
the best interests of its customers.”
Compilation speeds of 1000 1lines per
minute are expected. A 8087 math
coprocessor, 512K RAM and 10 megabyte
hard disk are required. While this
hardware configuration is not a minimal
system, it does fall within the range of
what a software engineer might have,
although the cost of the compiler ($1000)
may be too much for the average home
personal computer user,

ALSYS

Alsys announced in late 1985 their
Alsys Ada compiler for the IBM PC-AT*,
This is a full Ada compiler that will be
unofficially pre-validated under ACVC
version 1.6 prior to shipment. It is
clained that the compiler generates very
efficient machine code for the 8086
microprocessor family. The compiler can
be directed to take advantage of the
80286, in which case the generated code
will 1include 80286 instructions where
appropriate. The host for the compiler
is an IBM PC-AT with at least 512K RAM
and a 20 megabyte hard disk, running DOS
3.0. In addition, one full slot must be
available for a memory board delivered
along with the compiler, The poard will
have approximately 3 megabytes of
extended memory. The target can be the
same as the host machine, or any IBM PC
(or compatible) running DOS 2.1 or
higher. Floating point in an application
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is implemented using the 8087/80287 math
coprocessor; however the compiler itself
does not require the coprocessor.

Although the introduction of this
compiler is for the IBM PC-AT, Iits
capabilities include generating code for
the IBM PC. One might speculate on how
long it might be before the compiler is
hosted on the IBM PC. Alsys has produced
various other compilers, including
compilers for the SUN and APOLLO
workstations, in addition to a DEC-VAX
compiler. Alsys also has the distinction
of having the first cross-compiler ever
validated, using the DEC-VAX as the host
with the ALTOS 68000 as the target.

SPECULATIONS

Will the future find Ada compilers
for the small machines with only 64K of
RAM? Probably not hosted on those
machines, but we may see more work in the
area of cross compilers. Ada compilers
will have substantial memory
requirements, both in RAM and disk
storage. The development of Ada
compilers for other machines will depend
heavily upon the demands of the market
and what software engineers what and
need. Pascal 1is widely accepted in the
academic and home markets, an area in
which the Ada language has not yet
penetrated. If an compiler existed for
your favorite eight-bit processor, who
knows how the markets would respond.
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