
AD-Ai67 U2 PROCEEDINGS OF THE ANNUAL NATIONAL CONFERENCE ON ADA 1/2
(TRADE NAME) TECHNOL..(U) ARMY
COMMUNICATIONS-ELECTRONICS COMMAND FORT MONMOUTH NJ

UNCLASSIFIED t986 F/G 9/2 M

EEEEENEEh EEEhI
EIIIIIIIII.EEE
IIlfllllllllll
EIIEEEEEEEEI

= 136

11.25 11.4 111.

MICROCCn0Y '-ON TEST CHART
k~lt0"&4 "EA&U OF STANOafRos - 1963 - A

IN

CO t

Nk~

INh~

Ad

Procedingsof th

4th AnulNtoa ofrneo

'Ada~~ Teholg

C")- T -

Marc 19 2018
TEMA'7 18

86 5 160 3 1.

SPONORE BY .S.ARMYCOMUNICTIOS- EECTONIC COMAN
FORT~~ ~~ MOMUH NWJRE

HostColege-tlata Uivesity Atanta Gergi

'"'Aa I a egitere trdemrk f th U.. Gverment Ad Jont rogrm Ofic (A PO

PROCEEDINGS OF
4th ANNUAL NATIONAL CONFERENCE ON

Ada® TECHNOLOGY

Sponsored By
U.S. Army Communications-Electronics Command

Fort Monmouth, New Jersey

Host College
Atlanta University
Atlanta, Georgia

Hyatt Regency Atlanta
Atlanta, Georgia

March 19-20, 1986

Approved for Public Release: Distribution Unlimited

®Ada is a registered trademark of the U.S. Government, Ada Joint Program Office (AJPO)

4th ANNUAL NATIONAL CONFERENCE ON Ada TECHNOLOGY

CONFERENCE COMMITTEE

Elmer F. Godwin, Director, GEF Associates (201) 741-8864
Melissa Herrera, Assistant, U.S. Army CECOM (201) 544-2112
Michael Danko, RCA, Morristown, NJ
Mary R. Ellis, Hampton Institute, Hampton, VA
Edward J. Gallagher, U.S. Army CECOM
Judy Giles, Intermetrics, Inc., Huntington Beach, CA
Charlene Hayden, GTE Communication Systems Div., Needham, MA
Arthur M. Jones, Morehouse College, Atlanta, GA
Benjamin Martin, Atlanta University, Atlanta, GA
Isabel Muennichow, TRW, Redondo Beach, CA
William M. Murray, General Dynamics, DSD, St. Louis, MO
Susan Richman, The Pennsylvania State University, Middletown, PA
John Roberts, The BDM Corp., Norfolk, VA
Susan Rosenberg, SOFTECH, Inc., Waltham, MA
Ruth Rudolph, Computer Science Corp., Moorestown, NJ
Jeff Simon, M/A COM Linkabit Division, San Diego, CA
Ken Taormina, Teledyne Brown, Tinton Falls, NJ
James Walker, Prairie View A&M University, Prairie View, TX
Paul Wolfgang, Boeing Vertol, Philadelphia, PA

TECHNICAL SESSIONS

Wednesday, March 19, 1986

9:00 AM Session I Panel Discussion-Commitment to Ada
2:30 PM Session II Ada Applications I
2:30 PM Session III Ada Research/Methodology

Thursday, March 20, 1986

9:00 AM Session IV Ada Impact on Secure Operating Systems Panel
9:00 AM Session V Ada Education and Training
2:00 PM Session VI Ada Applications II
2:00 PM Session VII Ada Program Support Environment and Development Tools

PAPERS

Responsibility for the contents included in each paper rests upon the authors and not the Conference
Sponsor. After the Conference, all the publication rights of each paper are reserved by their authors, and
requests for republication of a paper should be addressed to the appropriate author. Abstracting is permit-
ted, and it would be appreciated if the Conference is credited when abstracts or papers are republished.
Request for individual copies of papers should be addressed to the authors.

ii
H.. _

-<'S ~Ak,

Proceedings

Bound-Available at Fort Monmouth

4th Annual National Conference on Ada Technology

lst-3rd copy-$20.00 each; 4th-10th copy-$15.00 each; 11 copy and above-10.00 each

Make check or bank draft payable in U.S. dollars to the Annual National Conference on Ada Technology
and forward request to:

Annual National Conference on Ada Technology
U.S. Army Communications-Electronics Command
ATTN: AMSEL-COM-IE (Melissa Herrera)
Ft. Monmouth, New Jersey 07703

Photocopies-Available at Department of Commerce. Information on prices and shipping charges should
be requested from the:

U.S. Department of Commerce
National Technical Information Service
Springfield, Virginia 22151
USA

Include title, year, and AD Number:

2nd Annual Conference on Ada Technology 1984 -AD A142403.
3rd Annual Conference on Ada Technology 1985 -AD A164338.

'f1or

itycodes
and/or" - accia1

Apest

NO 3:, 19 l

Highlights of the
3rd Annual National Conference on Ada Technology

March 20-21, 1985
Hyatt Regency Houston

Houston, Texas

Greetings

Mr. James E. Schell, US Army, CECOM Honorable Ernest McGowan, Dr. Percy A. Pierre, President, Prairie
Councilman, Houston, Texas View A&M University, Prairie View,

Texas

Banquet Guest Speaker Luncheon Guest Speaker

. < . ; w

Dr. Hugh Gloster, President, Honorable Pat Hillier, Assistant Mr. Martin B. Zimmerman, Technical
Morehouse College, Atlanta, GA Secretary of the Army (Financial Advisor to the Assistant Chief of Staff

Management) Department of the Army, for Information Management, Depart-
Washington, D.C. ment of the Army, Washington, D.C.

1Opening Session Panel Members
(Left to Right) Dr. Harland Mills, IBM,
Bethesda, Maryland, Dr. Barry Boehm,

TRW, Redondo Beach, CA, Dr. Nico
Haberman (STARS, Software Engineer-

Ir ing Institute) and Dr. Johannes Grande,
Microelectric & Computer Technology

Corp.

iv

34' JbAl Aal

-t

CONTRIBUTORS

AAI CORPORATION
Baltimore, Maryland

HONEYWELL, INCORPORATED
Minneapolis, Minnesota

INFORMATION SYSTEMS & NETWORK CORPORATION
Chevy Chase, Maryland

MAGNAVOX ELECTRONIC SYSTEMS COMPANY
Fort Wayne, Indiana

MERDAN GROUP, INC.
San Diego, California

MODCOMP
Ft. Lauderdale, Florida

RCA
Cherry Hill, New Jersey

ROCKWELL INTERNATIONAL CORPORATION
Dallas, Texas

SOFTECH-WALTHAM
Waltham, Massachusetts

TELOS
Santa Monica, California4
VITRO CORPORATION
Silver Spring, Maryland

viii
$

77-

TABLE OFdCONTENTS:

WEDNESDAY, MARCH 19, 1986-9:00 AM-12:00 N Development of an Ada*Package Library-B. Bur-
ton and M. Broido, Intermetrics, Inc., Huntington

Falcon Room- Hyatt Regency Beach, CA 42

Greetings: Experience with the Integration of Ada* Design
Mr. James E. Schell, Deputy Program Manager, ACCS Methods-P. L. Baker, Computer Technology
US Army Communications-Electronics Command, Associates, Inc., McLean, VA 51

Fort Monmouth, NJ Applying the Spiral Model: Observations on
Dr. Luther Williams, President Developing System Software in Ada-F. C. Belz,
Atlanta University, Atlanta, GA TRW, Redondo Beach, CA 57

Experience Collecting and Analyzing
SESSION I: COMMITMENT TO ADA Automatable Software Quality Metrics for
Chairperson: Mr. James E. Schell, US Army Ada*-J. A. Perkins, D. M. Lease, and S. E. Keller,

Communications-Electronics Command, Dynamics Research Corp., Wilmington, MA 67
Fort Monmouth, NJ The Technology Life Cycle and Ada-M. A. Carrio,

Panel Members: Jr., Teledyne Brown Engineering 75
MG Alan B. Salisbury, USA, Commander, US Army In-

formation Systems Engineering Command, Fort
Belvoir, VA

BG Michael H. Alexander, USAF (Invited), Joint Pro- THURSDAY, MARCH 20, 1986-9:00 AM-12:00 N
gram Manager, WWMCCS Information Systems,
McLean, VA Lancaster Rooms ABC

Rear Admiral Harry S. Quast, USN, Director, Informa- SESSION %V.ADA IMPACT ON SECURE OPERATING
tion Systems Division, Ch of Naval Operations, SYSTEMS'
Washington, DC

MG David J. Ramsbotham, CBE, UK (Invited), General Chairperson: M. Margaret Zuk, Mitre Corp.,
Officer, Commanding, 8th HO, 3rd Armoured Divi- Bedford, MA 83
sion, Germany Panelists:

R. Platek, Odyssey Research Associates, Ithaca,
NY/ 84

WEDNESDAY, MARCH 19, 1986-2:30-5:30 PM E. Anderson, TRW DSG, Redondo Beach, CA 85

Falcon Room W. E. Boebert, Honywell, Inc., St. Anthony, MN. . 86
S. Hart, MIA-M Linkabit, Inc., San Diego, CA... 87

SESSION II: ADA APPLICATIONS I
Chairperson: Paul Wolfgang, Computer Science Corp., L

Moorestown, NJ L s-D
An Ada* Tracker-Experiences and Lessons SESSION V: ADA EDUCATION AND TRAINING' '

Learned-T. Rodriguez and L. Griffin, Ford Chairperson: Art Jones, Atlanta University, Atlanta, GA
Aerospace & Communications Corp., NewportBeach, CA.................1 Development of a Corporate Ada Training Cur-

................................. l riculum- L. F. Blackmon, General Dynamics, Ft.
An Experimental Utilization of Ada in a Real-Time Worth, TX 88
Interactive Avionics Communication Applica- Using Structured Techniques to Teach Real-Time
tion-W. S. Pepper IV, Boeing Military Airplane Embedded Cpue to Teach Real-TimeCo., Wichita, KS...............8 Embedded Computer Applications-R. S.

............................. Rudolph, Computer Sciences Corp., Moorestown,
A Communications Project in Ada*-P. J. NJ .. 96
Dousette, The Singer Co., Librascope Div., Glen-dale, CA.................13 The Implementation of a Graphics Package in

.................................. 1 Ada- B. J. Martin, Atlanta Univ., Atlanta, GA, B.
The Army's MAFIS Command and Control-M. T. Selzer, Kennesaw Col., Marietta, GA, and R.
Perkins and J. E. Bolger, The BDM Corp., Austin, Walker, Atlanta Univ., Atlanta, GA 100
TX......................................22 Experiences of Pascal Trained Students in an In-
An Ada* Tasking Application in an Air Defense troductory Ada Course-R. C. Mers, NorthSystem-C. Ausnit, SofTech, Inc 28 Carolina Agricultural and Technical State Univer-

sity 104The Development and Implementation of an Ada*Phoenix Room Tutorial System-J. E. Walker, Prairie View A&M

SESSION Ill: ADA RESEARCH/METHODOLOGY University, Prairie View, TX 109

Chairperson: Susan Rosenberg, Softech, Inc., The Use of Computer-Assisted Instructions in the
Char uam, R g SAreas of Reinforcement and Testing for the L202Waltham, MA Module (Basic Ada Programming) of the US

Floating Point Computation Using Ada's Model Army's Ada Training Curriculum-P. Caverly, R.
Numbers-J. J. Buoni and R. L. Burden, Canavan, P. Goldstein, and K. Pastuzyn, Ada
Youngstown State University, Youngstown, OH.. 38 Technology Center, Jersey City State College, NJ 112

ix

THURSDAY, MARCH 20, 1986-2:00-5:00 PM . Lancaster Rooms D & E
SS Lancaster Rooms ABC , SESSION VII: ADA PROGRAM SUPPORT ENVIRON-

SESSION VI: ADA APPLICATIONS I1 * - MENT AND DEVELOPMENT TOOLS

Chairperson: John Roberts, The 8DM Corporation, Nor- Chairperson: Jeff Simon, M/A COM Linkabit Divisfon,
folk, VA San Diego, CA

Verification of Diana Producers and Diana Con-Implementation of an Ada* Real-Time Ex- sumers-C. F. Schaefer, Intermetrics, Inc 149
ecutive-A Case Study-J. D. Laird, B. A. Burton,
and M. R. Koppes, Intermetrics, Inc., Huntington The Back-End of a Multi-Target Compiler-G. De
Beach, CA 114 Bartolo and R. Richards, Intermetrics, Inc., Cam-
Practical Experiences of the Ada Language for bridge, MA 158
Real-Time Embedded Systems Development for Automated Drawing of Data Structure
the Defence-Related Market-M. Selwood, Diagrams-P. Mateti and G. M. Radack, Case
Plessey-UK Limited, England 125 Western Reserve University, Cleveland, OH 165
Tactical Database Management System-An Ada Ada* and the PC, Its Time Has Come-F. L.
Technology Project for the US Army-J. Moore, Texas Instruments, Inc., McKinney, TX... 173
Bamberger, P. Ritter, and J. Wilson, TRW Defense
Systems Group, Redondo Beach, CA 132
A Practical Approach for Translating FORTRAN
Programs to Ada-V. Santhanam, Wichita State
University, W ichita, KS 142

4,

I

"a

2.;

'p

9.x
7i

T.

." ' , ' .,' ." ° ", ' , ', " ."'-",.._ ' , ,t ,.'' ,2,' ' ' kv& ,', ,"t ., '',i; , ' _ ' " , , n -- , , ,- -.? , -.. ,, ., , ," , r I

AN ADA* TRACKER - EXPERIENCES AND LESSONS LEARNED

Terri Rodriguez and Lorcaine Griffin

Ford Aerospace & Communications Corporation

Newport Beach, CA

Abstract human as a moving object is followed from one
point in the field of view to another (Figure

Although the Ada language was designed for i). The eyes send image data to the brain which
use in embedded computer systems (ECS), a rela- first recognizes and 'Locks on' to the object.
tively small amount of work has been done with As the eyes continue to send image data to the
Ada in embedded, real-time environments. The brain, the brain performs 'calculations' and de-
goal of this project was to determine the amount termines that the object is moving in a specific
of work and the types of problems that would be direction at a specific rate. For each set of
encountered using Ada for ECS. The redesign and image data received from the eyes, the brain

coding in Ada of a small subset of a target sends information resulting from its 'calcula-
tracker program that exists in 68000 assembly tions' back to the eyes to adjust the eye posi-
language and runs on a custom built, 68000 sys- tion so that the object can be kept within the
tem was used as the medium for obtaining this field of view.
information. From this project it was concluded
that it is possible to use Ada for embedded
computer systems, although the current lack of s n acs ashio t c ra ter iu
maturity in Ada tools and compilers for real- source acts as the eyes of the tracker (Fig-
time ECS work discourages it for immediate use ure 2). The input source sends image data to the

in large-scale ECS projects. tracker hardware and software that together act
as the brain. The hardware and software perform
calculations on the image data to determine the
target movement. Based upon the calculation re-

Background suIts, position information is obtained and used
to keep track of the target as it moves within

Project Overview. the input source field of view.

This project was 3 twelve man-month effort
executed over eight calendar months' time in
1985. The project was divided into several over-

lapping stages:

2 man-months

* Detail Design and Ada Code - 3 man-months Position

" Integration and Debug - 4 man-months. Dt

Tracker Description.

A target tracker can be compared to the com-
bined working of the eyes and brain of a

*Ada is a registered trademark of the U.S.

Government (Ada Joint Program Office). Figure 1. Human Tracker

Annual National Conference on Ada Technology 1986 1

I

% - V .%

memory. It also sends position information to
the acquisition and graphic processors. From the
position information received from the 68000,
the graphics processor generates a tracking gate

Image Data and sends the graphics gate along with the image
data received from the camera to the video moni-

raker tor. The video monitor displays the image data
Hardwr and the graphics sent from the graphics proces-
Software sor. Figure 3 illustrates the tracker hardware

system.
Position Data

'The Intellimac IN7000M was selected as the
Image Data ' development computer since it was capable of

N generating s-record code for an embedded Moto-
rola 68000 processor. The Data General MV10000
was selected for high level test and debug of
algorithms because of its Ada tool set which in-
cluded a source level debugger. The VAXs (VAX A,

Figure 2. Machine Tracker VAX B) were necessary resources for the transfer
of generated 68000 s-records since the tracker
hardware had no link to the Intellimac IN7000M.

Hardware and Software Resources.

Thus for the greater part of this projectThe following resources were available for the development cycle began on the Intellimac,
this project: where Ada code was compiled and Motorola 68000

" An Intellimac IN7000M (Motorola 68000 s-records were produced through the use of the
ESK. Next, a direct link to VAX A was utilized

based) wveit the Telesoftsubse da c- to upload the s-records where a tape of the
pibede (vtesion t d)an t t s-records was produced for transfer to VAX B.
Embedded Systems Kit (ESK), From VAX B the s-records were then downloaded to

" A Data General MV10000 with the Ada Devel- the tracker hardware for test and debug (Fig-
opment Environment and validated Ada com- ure 4). Portions of the code that could bepiler, tested on the Data General were done so before

being subjected to the development cycle de-

" Two VAX 11-780s, scribed above.

" The target 68000-based tracker hardware.

The tracker hardware for this project con- Video
sisted of the following major components: Camera

" Video camera

" Analog/Digital processor

" Motorola 68000 main processor with subor- Proasor T.M
dinate graphics processor and acquisition - 0
processor 0

r 0
" Video monitor

The video camera sends an analog stream to Tracker

the Analog/Digital processor which converts the Hardware

data to a digital format. This digital stream is
sent to the acquisition and graphics processors
of the tracker system. The acquisition processor
receives the video data from the camera and ex-
tracts portions of the video data based on posi-
tional information from previous tracker calcu- I
lations. These portions of data are stored in an
area of the 68000 RAM called 'target memory'.
The 68000 main processor directs the execution
of the subordinate processors and performs the
tracker calculations on image data in the target Figure 3. Tracker System

2 Annual National Conference on Ada Technology 1986 I

Goals

The main goal of this project was to create
a real-time embedded computer system application
that would demonstrate the capability of Ada for

AVAX this type of work. The application selected for
the Ada project had to satisfy the following re-
quirements:urce~da -Records/ (

S-Records * Be applicable to the work of image pro-
cessing;

Tracker Demonstrate the feasibility of Ada for pre-
Hardware existing specialized embedded system hard-

ware;

* Be able to execute sufficiently well;

Figure 4. Transfer Process * Be completed in the 12 man-month time
frame.

This process was repeated for each test pro- Thus the application of redesigning and recoding
gram or modification. However, during the inte- in Ada a small subset of an existing tracker was
gration and final debug portion of this project, sned.

direct access to VAX A from the tracker hardware
was provided. This link eliminated the inef-
ficient and time-consuming tape transfer of In reaching the primary goal, a secondary
s-records between VAXs. goal required answers for the following ques-

tions concerning Ada for embedded computer sys-
tems in general, and this project in particular:

*Human Resources.

* What problems were encountered using Ada?
At the start of the project two persons were

assigned for part-time work. Both had a back- * Can Ada be used for 100 percent of the
ground in Ada and some familiarity with the ESK application code?
process. One had a little tracker experience and
some 68000 familiarity. Neither had any knowl- * What are the performance degradations and
edge of the target tracker hardware or software, their causes?

* What tools and environment are necessaryFor the final portion of the project threefothsypofESrje?

more people were assigned for part- and full-

time work. None had any previous Ada, 68000, or * What types of personnel are required for
tracker experience. To become educated as quick- this type of ECS project?
ly as possible about the project, these people
took part in an 'Instant Ada Training' program.
The program consisted of two one-hour sessions In addition, the project required documenta-
on Ada, and approximately three one-hour ses- tion of all the project results and recommenda-
sions on the Intellimac, ESK tools, tracker tions for an embedded systems development envi-
hardware, tracker design, and the debug process. ronment.
They were also enrolled in a twelve-week, 36-
hour Ada course, and assigned small ECS tasks to
reinforce the material they learned. This un- The Experiences
orthodox method of training was used for the

following reason: the new personnel joined the Experience 1 - A Prototype Mode.
project only six weeks before project comple-
tion and needed to be brought up to a contribu- Once it was determined to use a small-scale
tory position as fast as possible. At this stage tracker as the application for this project, a
all the high level design was complete, as well
as most of the detailed design. Since Ada was prototype model of the tracker was quickly put

usedas he dsig lanuag forthedetaled together. The prototype model used all the math-
used as the design language for the detailed ematical algorithms that would be part of the
design most of the code was already complete. final tracker, but since the prototype ran sole-

ly on a Data General MV10000, special modules

For this project there were three 'consul- for image input, target display, graphics, ac-
tants' available on a casual basis who provided quisition and de-acquisition were used. Also,
initial instruction about the tracker hardware the prototype did not simulate the interrupts
and software, provided information on the 68000, the final tracker software would be receiving
and provided hardware support and maintenance, from the actual tracker hardware.

Annual National Conference on Ada Technology 1986 3

The purpose in building a prototype model Experience 2 - The Specifications Document.
was three-fold.

After the successful completion of the pro-
totype model came the task of detailing the
tracker requirements. Since the goal of this

(1) First it acquainted project members with the project was to demonstrate the capability of Ada
tracker algorithms that would be used in for embedded computer systems, and not to build
the final tracker code. Implementing them a full-blown tracker, the specifications de-

for the prototype required an understanding tailed only those algorithms necessary to per-

of the tracker algorithms, how they inter- form centroid tracking.
acted, and what the expected inputs and out-
puts were. It also revealed the scope of the The specifications document established re-
tracker problem and what subset of the quirements for selection of a target to track
tracker would be feasible to implement for using the control panel, defined the algorithms
this project. that would be used for tracking and the por-

tions of the tracker hardware that would be
used, specified that tracking would be performed
for a single target, defined the hardware inter-

(2) Second it resulted in a rough design for the rupts that would be serviced, and defined the

tracker and provided the opportunity to format of the graphics display.
evaluate design decisions. Implementing the
prototype required decisions on overall Experience 3 - The Design And Pretests.
structure, interfaces, package contents, and
subprogram breakdowns. The prototype demon- From the specifications document and basic

strated the pros and cons of these design information of the tracker hardware, the high

decisions without the commitment of a final level design was developed. Several methodolo-

design. gies were considered for the design - Process
Abstraction Method, Object Oriented Design, and
Functional Decomposition. Functional Decomposi-
tion was selected since the algorithms used for

(3) Third, it produced something tangible that the tracker would execute in a serial manner,

worked. Although the prototype tracker was and the only tasking required was to handle the
not the final product and did not run at two hardware interrupts. After the initial de-

real-time speed, the fact that Ada was sign was completed, it was subjected to the

tracking stirred interest in management walk-through and redesign cycle. The results of

levels, giving the project, and Ada, greater the high level design are illustrated in Fig-

visibility. ure 5.

and Initialization
tCommands

Stc Gpets Trsod Cnod SkpSml Filo-

Figure 5. High Level Design

4 Annual National Conference on Ada Technology 1986

! .- ''

Upon approval of the high level design, work
began on the detailed design. Ada was selected Ada Source
as the design language for this stage with
liberal use of English text both to document the
design and to describe intermediate implementa-
tion ideas and algorithms. At this stage it was
realized that more information about the tracker ESK
hardware and the way in which the compiler would
represent data structures on the hardware was
needed. This information was extremely important
to the detail design because there would be no
hardware-software tradeoffs in design. Design-
ers had to know the exact workings of the hard- Binder
ware and conform the design to it if necessary.
To obtain this information a series of 'pre-
tests' were devised. Each pretest was based on a
specific design question or hardware question
that needed to be solved in order for the Ada
tracker to work. For instance, one pretest was S-Records

designed to find the way in which arrays were
mapped into target memory - row major or column
major order. The acquisition processor would
fill the target memory with image data in a row
major fashion. This information was necessary to
access the data in the same manner. Other infor- Figure 6. The Metamorphosis
mation needed to complete the design concerned
the method by which data structures were repre-
sented in portions of the memory space that were
not fully addressable (i.e., the upper eight
bits of the word were not accessible); how to Experience 4 - The Implementation Final Debug.
handle the hardware interrupts using the Ada
tasking mechanism; and what needed to be in- Upon completion of the detail design, the
cluded in the run-time system that would be Ada design language was finalized as Ada code.
suitable for executing the Ada code. All prob- Next a test plan for the tracker was developed.
lems were investigated individually until proper It was decided to start with small, easily
information and solutions were found. The pre- tested portions of the code. New portions of
tests proved it was possible to implement all code would be logically added to the old as it
critical portions of the design in Ada and successfully passed all tests until the entire
brought out hardware peculiarities previously tracker was debugged. The actual debug method
undocumented. They also provided a way of test- used in this phase was the same as that used for
ing ideas and concepts before the design was the pretests. For the debug process no inter-
completed thereby eliminating the need for re- active tools were available except for a monitor
design during the integration and test phases. resident on the 68000 tracker. The monitor al-

Additionally, the pretests unveiled the metamor- lowed the display and modification of memory,
phosis required to produce s-record format code the display and modification of registers, and
from Ada source code. The metamorphosis required the setting of break-points.
use of the Ada compiler to generate executable
code followed by the use of the ESK to bind the
code to specific locations in memory, to provide The following process was used to debug the
the necessary links into the target run-time pretests and final tracker code:
kernel, and to generate the s-records.

(1) Perform as much source level testing as pos-

Finally, the pretests allowed an early op- sible on the Data General. When testing is

portunity to tailor the run-time kernel to suit complete, move source code to the Intellimac.

the tracker needs. The pretests determined which
features would be needed in the run-time kernel
to support the tracker execution and how to use (2) Place variables in the Ada source code to
the ESK to build the kernel. The Intellimac run- monitor the execution progress of the code.
time kernel turned out to be a subset of the Tie these variables, as well as any other
Intellimac ROS operating system. From that basic variables that will contain useful debug in-
operating system floating point arithmetic and formation, to hardware locations so that
TEXT 10 were eliminated. Support packages for their contents can be examined using the
inte-rupt handlers were added, monitor on the tracker. For the execution

progress variables use values such as hexa-
decimal value 7777 or 3333 so that the loca-

The detailed design was completed based on tion of these instructions can be easily

results from the pretests. found in the disassembled listing.

Annual National Conference on Ada Technology 1986 5

(3) Compile the code, generate the s-records and Qualified Human Resources Needed.
transfer the s-records to the tracker hard-
ware. It is possible to complete a small scale ECS

project with little knowledge of Ada and the
target hardware. However, for a large ECS proj-

(4) From the executable code produced by the ect it is imperative that there are team members
compiler, generate a disassembled listing of with the following qualifications:
the Ada source code. Get hardcopies of all
source code, disassembled listings, and (1) Detailed knowledge of the target system and
hardware maps. the ability to express the way a hardware

configuration will impact the software de-
sign;

(5) Run the program on the tracker hardware and
hope It works. (2) Detailed knowledge of Ada and the code that

will be generated by the Ada compiler. This
knowledge may impact the detailed design and

(6) When the program does not work, use the Ada implementation phase if the code generated
source map and the Ada source disassembled by the compiler for various Ada constructs
listing to determine appropriate places to is space inefficient or time-consuming;
halt execution to help pinpoint the problem
area. Use an editor to search for opcodes in (3) Detailed knowledge of the tool set used for
the s-record file to determine the approxi- the ECS project. This knowledge is necessary
mate load address for the instruction. (The for creating a good design of the ECS pro-
disassembled listing did not contain load gram, for implementation of the design, and
address since it was generated from the com- for efficient test and debug of the final
piler generated code file and not the final code.
s-records.)

Good Tools Needed.

(7) When the problem is identified, correct the For a successful embedded systems project a

Ada source and repeat the above process. good tool set and a good ECS development envi-
Call upon the consultants for ideas and help ronnment are needed. Several characteristics of
when unable to locate the cause of the prob- an ECS environment and tool set follow:

lem. (1) The environment should be easy to work in
and provide ready access to all ECS tools.

Due to the extensive use of pretests, the It should also provide easy access to the
debug of the entire tracker code was minimal, target machine for quick download of code.

After integration of the final code, 90 percent (2) The minimum tools included in the ECS en-
of the tracker code worked correctly the first vironment should be the Ada compiler, a
time it was executed. The areas in which prob- source level debugger, a target level de-
lems occurred were areas which had not been sub- bugger, and a disassembler.
jected to a pretest checkout.

(3) The compiler should generate efficient ex-
ecutable code and should support many fea-
tures from Chapter 13 of the Ada language

The Lessons Learned reference manual.

(4) There should be a complete set of hardware

It Can Be Done. and software documentation for the target
system and a complete set of documentation

This project demonstrated that it is possi- on the ECS tools including information on
ble to use Ada for small embedded system type the size and characteristics of the run-time
projects. With meager resources it was possible kernel, the amount of code generated for
to complete a practical application using Ada each Ada construct, and the execution speed
for 98 percent of the code. Only the lack of of the Ada constructs.
maturity in the tools and compilers, and the
relatively small amount of experience in using Finally, the target hardware should be available
Ada for ECS restrict its immediate use on large, for use during the design phase so that early
time-critical projects, testing of design concepts can take place.

6 Annual National Conference on Ada Technology 1986

ow V V ,W

Tying It All Together - Words Of Wisdom. code it generates, its ease of use, its
execution speed and required resources.

" Large systems are an outgrowth of experi-
ences from small systems. • Know the quality and characteristics of

the run-time kernel to be used for the
" When in doubt try it out as a small test target system.

program on the hardware.

• Before embarking on contract work, obtain
" All compilers are not created equal. Be- experience via a small ECS project such as

fore purchasing a compiler for ECS work, this and learn the risks and problems In a
thoroughly evaluate the quality of the non-critical environment.

. Lorraine Griffin, Engineering Specialist, Terri Rodriguez, Engineer, joined Ford Aero-
has been at Ford Aerospace since 1977. She is space in 1983. In addition to being Responsible
the project manager of the Ada Technology Spe- Engineer for the Ada Technology Special Project,
cial Project and a Corporate Ada project. She Ms. Rodriguez has written several reusable Ada
has taught several semesters of in-plant, Uni- packages including a fixed-point math library,
versity of California at Irvine Ada extension and guidelines for using Ada in embedded systems
courses and is the chairperson of the AdaJUG Ed- applications. Ms. Rodriguez holds a BS degree in
ucation committee. She has a BS degree in Mathe- Information and Computer Science from the Uni-
matics from Youngstown State University. versity of California, Irvine.

Authors' Address

Ford Aerospace & Communications Corporation
Aeronutronic Division
Newport Beach, California 92658-9983

Annual National Conference on Ads Technology 1986 7

61,1 WS. - - '1W 'W

AN EXPERIMENTAL UTILIZATION OF ADA IN A REAL-TIME INTERACTIVE AVIONICS COMMUNICATION
APPLICATION

WILLIAM S. PEPPER IV

BOEING MILITARY AIRPLANE COMPANY
WICHITA, KANSAS

which would utilize RS-232C, ARINC-429 and Mil-
ABSTRACT Standard 1553B protocols to establish a communica-

tion link between the central avionics processor
The application of high-order language of the BICU and a touch-sensitive Integrated Con-

(HOL) to real-time avionics applications has trol Display Unit (ICDU) and other test devices.

been fraught with assembly-language subroutines The goals established for the work were:

and sundry workarounds to increase throughput.
In order to ensure that Ada would in fact 1. To determine if all device drivers could

alleviate these concerns, work was undertaken be written in Ada,

to develop an interface between a BMAC advanced
technology avionics processor and a touch- 2. To test the efficacy of the Ada task

sensitive Integrated Control Display Unit via type and,

ARINC-429 and MIL-Standard 1553B protocol buses
utilizing one of the available Ada compilers. 3. To determine if code execution times were

These two protocols are the most widely utilized adequate to support a real-time avionics

communication protocols for general aviation and environment.

military avionics applications. HARDWARE ENVIRONMENT

In order to conduct the research, BMAC de-
veloped an Ada Integ Laboratory representative of
an aircraft cockpit avionics installation. The
Bus Interface Computer Unit (BICU) prototype with
ARINC 429, MIL-Standard 1553B and RS232C interface
cards was the core of the hardware configuration.
A serial bus analyzer was used to provide 1553B
inputs and a test aid was connected to the RS232C
channel. A pre-production touch-sensitive Inter-

INTRODUCTION active Control Display unit was connected to the
ARINC 429 bus to provide a simulated aircrew inter-

The avionics systems of existing aircraft face. The Ada source code was developed on a host
continue to be upgraded for various reasons. The computer and then compiled and downloaded to a
replacement of systems for purely logistic (main- commercially-available integration unit. This unit
tainability) reasons and the addition of new was used as an emulator to run the object code and
equipment for new mission requirements has caused also served as a test and debugging tool.
undesirable complexity as well as an additional
work load for aircrew members. Additionally, the GENERAL SOFTWARE DESCRIPTION
customization of cockpit layouts at the squadron
level in an attempt to alleviate the problem has In order to provide a realistic scenario,
caused additional divergence and training com- demonstration programs were developed which would
plexity. As a result, the Boeing Military Air- simulate flight activities in a tanker/airlift
plane Company has established an on-going Aircraft scenario. Programs were developed to insert way-
Cockpit Technology IR&D project. In order to meet point data, fly-to the waypoints and "delivery"
the technological challenges, BMAC developed a Bus cargo via the airborne extraction method. An
Interface Computer Unit (BICU) to upgrade aircraft engine monitoring demonstration was also developed
by interfacing older existing systems to newer, which included emergency decision making and crew
more maintainable systems. Part of the effort alerting functions. The software exercised the
was to program the BICU in Ada and use it in a ARINC-429 bus when generating displays and when
laboratory cockpit scenario, controlling the touch screen on the ICDU. The

BICU acted as the 15538 bus controller when it
OBJECTIVES statused the Engine Monitor System simulated by

the serial bus analyzer.
The primary objective of the software portion

of the research was to develop Ada applications
bo

8 Annual National Conference on Ada Technology 1986

1S M M Ilk ' -
; - '

... '2;34 " 'l'l ' "

Six basic packages were used to implement the demo- group of subprograms which control subordinate
stration program. A brief description of each displays. The control hierarchy was designed as a
package follows: tree structure of controlling subprograms in order

to provide reusability of code.

o The ARINCIO package served as the ARINC-
429 1/0 driver. It provided two user Data was passed between subprograms as global
interface programs which translated data data which resided at the top of DEMONSTRATION. To
on the ARINC-429 bus. To transmit SEND conserve memory and processing time, local data was
DATA formatted command strings into not allocated to any subprogram. This data was
ARINC-429 protocol. To receive GET DATA also defined globally. DEMONSTRATION used over-
interpreted the ARINC-429 protocoT-an-d- loaded operators with three functions ("+", "-"

returned a buffer with data sent over the and "*"). These new functions allowed easy arith-
bus. metic on arguments of the form "minutes: seconds"

for use in timer and navigation-oriented applica-
o The ICDUIO package contained nine user tions. Several utility subprograms provided

interface programs to control the ICDU. routine manipulation of display data. Other
Each of these programs called one of two utility subprograms were created from groups
ARINCIO interface programs to communicate statements that repeated elsewhere only to con-
to the ICDU via the ARINC-429 bus. serve memory.

o The B155310 package drove the 1553B I/0 Each menu control subprogram cyclically called
card. It had two user interface programs COMMONCALL. This subprogram was used to update
which translated data on the 1553B bus. dynamic mission data and request engine status. It
CHAIN BUILD assembled I/O chains for also displayed engine warnings and directives on
application programs. CHAIN EXECUTE the title line. Regular checks for touch screen
issued I/O chains when the bus controller inputs were done in each menu control subprogram
was available. by calling GET-INPUT which was resident in ICDUIO.

Regular updates of mission and engine data as well
o EMSIO contained two user interface pro- as regular sampling of input controls created the

grams to control the simulated Engine illusion of an ongoing mission.
Monitor System (EMS) via the 1553B bus.
STATUS-EMS was used to regularly status Three types of displays were generated which
engine data. EMS-WARN notified the included menus, profiles, and performance informa-
application programs of engine warnings tion. Displays could be selected at any time and
and directives received from the EMS. performance information appeared automatically.
Both EMSIO interface programs employed The demonstration operator used menus to control
the B155310 package to communicate with missions and to make subordinate menu selections.
the serial bus analyzer. Mission profile selection, mission start-up/abort,

flight status and engine monitoring were menu-
o The MSNCTRL package was a non-executable controlled. Profiles displayed mission starting

data base accessed only by the Demonstra- location, waypoint locations and waypoint types.
tion program. It contained data records Performance information information displays showed
for simulated missions and destination mission progress and engine information. Flight
records for those missions. status and cargo drop information displays were

updated with fresh data as the mission progressed.
o The DISPLAYDB package was another non- Engine data could be interactively requested and

executable data base accessed only by the problems or potential emergency situations were
Demonstration program. It contained all reported automatically.
the preformatted display data used in the
demonstration. Most display data took the GENERAL IMPLEMENTATION NOTES
form of a record containing an array of 21
characters. Other records had arrays of The implementation problems inherent in the
only six characters which made manipula- use of unproven hardware and an unproven Ada
tion of six or less characters more ef- compiler proved to be a challenging and sometimes
ficient. To conserve processing time, frustrating exercise. Several design problems
some of the larger records were grouped were encountered, all of which were solved. Some
into arrays of records and accessed by were solved by software workarounds while some were
enumeration types. DISPLAYDB also con- solved by changes to the hardware. Although many
tained a decoding array used in determin- of the solutions to the problems that were encoun-
ing what to do when the screen was touched. tered are of a proprietary nature, the following

design issues, problems, results and conclusions
The demonstration was controlled by a program may be readily described.

of the same name (DEMONSTRATION). This program
displayed the master menu and processed control Certain aspects of the Ada language made de-
requests as a result of menu selection, waypoint velopment on the executive and bus driver level more

sequencing and engine warnings and directives, difficult than it might have been in another langu-

Menu selection transferred control to a secondary age. Although workarounds for the problems that
were encountered were possible, they sometimes

Annual National Conference on Ada Technology 1986 9

A-= W:s

proved costly in time and space utilization. As a In this particular compiler implementation this
result, it is of the utmost importance to note the was sufficient to swap a waiting task into execu-
potential effects of language limitations prior to tion. Empirical analysis determined that a task
coding because of their impact on program design. context switch (resulting from a rendezvous for

instance) required approximately 3.2 milliseconds.
The strong typing that Ada imposes proved to

be a help in program correctness primarily by cut- Timing tests were performed to determine the
ting debug time. In some cases, however, the most efficient method in terms of time to pass
inflexibility of this feature resulted in clumsy parameters using this particular compiler. Four
or wasteful constructs. For instance, when pas- parameters were passed. These consisted of two
sing data to the bus driver for transmission to integers, one enumeration type object, and a record
another device, the data types specified by the consisting of an array of 21 integers and another
caller and the receiver must agree. In order to integer. The following three methods were con-
transmit data of several types, the caller must sidered:
buffer data after performing unchecked type con-
versions or the bus driver must have several dif- 1. All four were passed as paramters in the
ferent entry points for different data types and subroutine call. The time was 105 micro-
perform the type conversion itself. The result seconds.
is a choice between an inelegant coding practice
or a seemingly unnecessary use of additional 2. All but the record were passed as para-
memory. meters, and the record was in the global

database. The timing included the assign-
A very important capability at the executive ment statement to set up the record. The

level for efficient program design is the use of time was 160 micro-seconds.
pointers to users' data structures. Ada provides
a pointer with each access type which can only 3. All four parameters were in the global
point to objects of the type that they are de- database. The timing included the assign-
clared to point to. Ada further limits the ment statements to set up the parameters.
access type by restricting it to "only designate The time was 290 micro-seconds.
an object created by an allocator", as described
in the Ada Language Referencp Manual (LRM), The obvious lesson learned as a result of
MIL-STD-1815A. The LRM continues "in particular, these tests was that it did no good to try to
it cannot designate an object declared by an ob- circumvent the compiler in this instance. The
ject declaration". In other words, access values case in which the compiler controlled the param-
cannot point to data structures that are created eter passing was significantly more efficient than
at compile time, but only to those created at the other two cases.
run time (even though both could conceivably be
of the same type). In an embedded avionics SCHEDULING (EXECUTIVE)
system, the creation of a large number of objects
at run time is not desirable. The inability to It is generally accepted theory that when a
point to a user's objects by an executive utility significant level of control over the executive
makes the design of that utility less efficient is possible, a tasking environment usually pro-
than it could be if that ability were provided. vides a greater level of flexibility in a complex

system than other approaches. Flexibility is
When slices of equal lenghts are taken of lost, however, if the executive cannot be molded

arrays which have the same component type but are into something that conforms to the needs of the
of a different length, a compiler error is raised, applications it serves. In an embedded real time
For example, avionics system, reliable and quick response to

ARRAYI: array(l...1O) of INTEGER: events is paramount. Therefore, when designing an

ARRAY2: array(l..20) of INTEGER; executive for avionics applications, executive
overhead time is usually the most significant

The following is an illegal statement: issue. With these points in mind, an attempt was
ARRAY1(1..3) : ARRAY2(l..3); made to design a viable executive for use on the

BICU prototype using only the Ada language.

This restriction forces the use of separate Several approaches to the design of the exe-
assignment loop to accomplish the intent. cutive were considered in the preliminary design

The priority pragma was not implemented in phase. The use of Ada tasking for job control

the Ada compiler used for this research. In a was the ultimate goal, but the 3.2 millisecond

system consisting of two tasks and a main pro- task context switch time inherent with this

cedlre, the last task activated gains control of compiler made such an approach unreasonable. If

the CPU first, followed by the first task, follow- task context switch occurred only two times in

ed by the main procedure. The only way the latter the equivalent of a minor frame in a 64 Hz system,
two aren't starved is If the task that has control 41 per cent of the CPU time would have been con-

of the CPU relinquishes it in some predetermined sumed in executive overhead for tasking alone.

way. For example, the execution of a "PUT" state- Obviously, the use of tasking had to be avoided.

ment will force the task to release CPU control.

10 Annual National Conference on Ada Technology 1986

i

A second possible approach was the use of a set appropriately.
tasking system that ran "on top of" the Ada task-
ing. In this approach there was one main Ada task 2. The ARINC-429 interrupt handler was changed
and the tasking system was run within its context, to use the compiler vendor's "fast inter-
This required two things that were either undesir- rupt" capability. Using fast interrupts
able or impossible at this point: meant that a procedure call took place when

an interrupt occurred instead of a rendez-
1. Tasking primitives had to be written in vous.

assembly language because Ada doesn't
allow the level of machine control These changes resulted in an interrupt handler
necessary to perform this function that could accomodate the workload imposed by the
and ARINC-429 ICDU. A read of the ARINC-429 channel

was performed as follows:
2. A good working knowledge of the compiler's

run-time support inner workings and the o When a read request was received, the ICOU
parameter passign protocol was necessary. interrupt latch was set to permit the
This information was proprietary to the processor to be interrupted by the ICDU.
compiler vendor. (This version of the
compiler didn't provide assembly code o When an interrupt occurred, the data from
listings for the target computer), the pertinent register was read.

The approach pursued was to use a single o After all six words of the status trans-
Ada task for all applications programs with a mission were received, the ICDU interrupt
16 Hz timer providing the synchronization for latch was set to prohibit the ICDU from
cyclic processing. All interrupts were handled interrupting the processor.
using the compiler vendor's "fast interrupt"
support to avoid task context switch delays. The results of the read were then analyzed by
Studies on time consumed by the I/O drivers were the program in order to determine which area of
used to determine the optimum scheduling and I/O the screen had been touched.
support that could be provided by this system.
This system was overflow tolerant to the extent MIL-STD 1553B COMMUNICATIONS
that a particular minor frame's processing didn't
overflow past the following minor frame's time The original design of the 1553B bus driver
allocation. A limit was also set on the number incorporated features of Ada tasking to support
of consecutive minor frame overflows since a large user interface and physical driver control. The
number of overflows is indicative of an unhealthy 1553B driver package was comprised of three separ-
system, ate tasks and one procedure. The tasks handled

physical driver control, enqueuing of user requests
ARINC 429 COMMUNICATIONS for the physical driver task (a monitor task), and

general housekeeping which included the notifica-
In the Ada Integration Lab, the only inputs tion of the user after receipt of the I/O complete

via the ARINC-429 bus were from the ICDU. These interrupt. The procedure was available for users
inputs represented the status of the ICDU touch needing I/O chains to be built for them. A re-
screen and consisted of six 32-bit words. The quest for I/O execution was made via an entry call
ICDU sent the screen status to the host every from either a user with a chain to be executed or
12-20 milliseconds. The first implementation of from the chain building procedure after it had
the ARINC driver failed since it could not handle constructed an I/O chain to the user's specifica-
all the interrupts that it was receiving. This tions. In this way, requests could be made when
failure was due to two facts: the physical driver task wasn't in a position to

handle them but its monitor task was. The monitor
1. The interrupt handler was written to task would enqueue them (actually link them into

require a full Ada rendezvous on each a pending chain) for execution after the presently
interrupt which required a minimum of executing chain had completed.
3.2 milliseconds, and

When it was determined that the use of tasking
2. The ARINC-429 driver was bombarded with as implemented in this particular compiler should

unsolicited screen status interrupts, be minimized to control execution in a cyclic en-
These interrupts were not event trig- vironment, the 1553B driver package was revised to
gered (i.e. the screen wasn't being use only procedure calls (with the exception of
touched.) the interrupt handling). The monitor task was

turned into a procedure serving the same function
Two steps were taken to alleviate this prob- as before. The execution task (physical driver)

lem. was also changed to a procedure, requiring that
I. A latch was added in the hardware so that some cyclic scheduling of this procedure occur

interrupts from the ARINC-429 could be to accommodate chained up requests.
masked on and off. Then when it was
desired to receive interrupts (inputs)
from the ICDU the interrupt latch was

Annual National Conference on Ada Technology 1986 11

One of the major challenges of the 1553B 2. The code execution times warrant utiliza-
driver design was linking together consecutive tion of Ada in an embedded real-time
requests to the monitor task. In order to vector application in the case of the aircrew/
I/O controller execution through chains from two aircraft interface.
separate requests without CPU intervention the
chains had to be linked together. A user of the 3. Conclusive proprietary data regarding the
driver had to allocate a link field at the end of use of the Ada task type is now available.
the chain so that the request handler could insert
either a link instruction (to the next user's This research and development project has
chain) or a halt instruction. A difficulty arose advanced Ada technology in the real-time avionics
in trying to retain reference to the end of a arena in that concrete benchmarks have been
previous requestor's chain when handling the next established for the development of future applica-
request. Since Ada pointer (access type) can only tions. The project has proven invaluable in the
designate objects created by an allocator (run training of software personnel and in the develop-
time), either all chains had to end in such an ment of hardware to support design, testing, and
object or an alternative approach to pointing to implementation of Ada-based avionics applications.
the end of the chain had to be devised. System definition practices in an Ada environment

have been developed which will be utilized to great
The original solution to this dilemma was advantage in future programs.

the creation of an array of "chain link cells".
When a chain request was made to the monitor, a ACKNOWLEDGEMENTS
chain link instruction pointing to one of the
chain link cells was inserted at the end of the The author wishes to thank Donald W. Higgins,
user's chain. The index of the chain link cell Edwin D. Jones and James E. Kroening, all of BMAC,
pointed to by the end of the last chain was without whose contributions this work would not
retained in the package data base so that when have been successful.
a subsequent request was made a chain link in-
struction pointing to the beginning of the next
chain could be inserted into that link cell. This
required a small amount of memory management to
track available link cells and was generally a
cumbersome design.

The method for linking consecutive requests
that was subsequently employed used the Ada
unchecked conversion function. Since objects of
the access type and the address type (from
package SYSTEM) were of the same length and both
were actual memory addresses on the processor,
an unchecked conversion between the two types was
acceptable. This made it possible to designate an
object declared by an object declaration (at com-
pile time). Although this method was successful, AUTHOR
the use of unchecked conversion in general is
discouraged because it can potentially limit the Mr. Pepper is employed at Boeing Military
portability of an Ada program. Its use in this Airplane Company as an Avionics Engineering Systems
circumstance, however, was acceptable because Analyst. He has held positions in real-time
it was limited to the hardware implementation software development on tactical and strategic
dependent portion of the driver code. weapons systems. He performed undergraduate work

at SUNY-Cortland, the University of Arizona and
GENERAL RESULTS Wichita State University and graduate work at

Kansas State University and Wichita State
Several other implementation problems were University.

investigated and solved over the course of the
experiment. Techniques were learned and method-
ologies developed to minimize the use of memory Mr. William S. Pepper IV
and increase throughput. Several of the problems Boeing Military Airplane Company
were due to the immaturity and incompleteness of P.O. Box 7730, M/S K31-26
the Ada compiler that was used. In the final Wichita, KS 67277-7730
analysis, however, the experiment was successful
in that all coding was performed in Ada and
valuable implementation lessons were learned.
In regard to the original goals for the work, the
primary conclusions to date are:

1. The subject device drivers may be
written entirely in Ada.

12 Annual National Conference on Ada Technology 1986

A COMMUNICATIONS PROJECT IN ADA *

Author: Patricia J. Dousette

The Singer Company, Librascope Division • 833 Sonora Ave., Glendale, CA 91201-0279

Abstract: The Communications Control System (CCS) is a fice, to write the CCS software in Telesoft-Ada-except for
front-end communications processor. It was one of the first time constrained software which would still be written in
mission critical systems to be implemented using the DOD Assembly language.
developed language Ada. The CCS software development 2.0 THE CHOICE OF ADA
proved Ada technology to be practical for the following
reasons: The CCS software development was approached with a

* A large scale embedded software project, in excess great deal of confidence. The project functionally was very
of 45,000 lines of Ada is viable, similar to previously implemented communications pro-
* A significant increase in programmer productivity was jects. However, had we been able to predict some of the
observed using Ada. problems we would encounter with a brand new host soft-
* The project pinpointed problems with existing Ada ware development system we might have opted for a more
support tools and methodologies and emphasized the standard approach. Admittedly, only a portion of the pro-
benefits to be gained by development of these tools. ject problems can be attributed to the use of Ada and look-
* The use of Ada based Program Design Language as ing back now we would certainly not change our decision
a design tool is both feasible and desirable. to use Ada.

In addition, information concerning the following areas of The programming department was used to writing software
interest was obtained: for embedded systems In Assembly language. Rowever,

" Ada programmer training issues were analyzed. predicated on the magnitude of the CCS project we knew
" Ada Run-Time System problems i.e. speed of execu- that a High Order Language (HOL) would be necessary. We
tion and code generator efficiency vs. Ada Implementa- had considerable experience in FORTRAN, more in CMS-2,
tion were highlighted. and a little In PASCAL. For the MC68000, the CCS target

The following paragraphs will present the CCS project processor, our choice was limited to PASCAL, Assembly
history i.e. how and why Ada was chosen and the problems language and the just released Telesoft-Ada. Our experience
and successes that were realized because of its use. with PASCAL had not been particularly good. We found out

subsequently that this was completely due to a poor quali-
ty compiler. Pure Assembly language was considered but
was thought to be an extreme schedule risk-so the infant

1.0 INTRODUCTION Ada was agreed upon. It was chosen after some feasibility
In May of 1982 Singer-Librascope was awarded an Army con- studies, a trip to Telesoft (Singer and Government) and con-
tract (from Program Manager, Field Artillery Tactical Data sultation with the customer. It appeared that Telesoft-Ada,
Systems (FATDS)) for the Communications Control System even though It was a subset of MI-Std-1815A Ada, supported
(CCS). In the short term the CCS was to be the front-end the language features necessary for the CCS target hard-
communications processor for the Field Artillery's TACFIRE ware architecture. The MC68000 target Run-Time System
system and in the long term it was to be the communica- was promised for delivery within a few months. The In-
tions front-end for the forthcoming Advanced Field Artillery tellimac 7000 series of computers was available and already
Tactical Data System (AFATDS) Program and a candidate hosting the new compiler. At this time howdver, only sim-
system for the Army Command and Control System (ACCS). pie programs had actually been implemented in
The CCS was required to be able to interoperate with all Telesoft-Ada.
Army Communications equipment both existing and future
- up to the year 2010. The Contract was for an advanced 2.1 ADA TRAINING
development model of the system, both hardware and soft- We began the training of programmers in the new language
ware. The software had been proposed to be written in with a set of video tapes (18 hours of tutorial tapes by Jean
PASCAL for the Motorola MC68000 processor, with any time Ichbiah, Robert Firth and John Barnes). We also relied heavi-
critical software (the CCS is a real-time embedded system) ly on Ada Language Reference manuals, John Barnes book
written In Assembly language. Even though Ada has been "Programming In Ada" and a "learn by doing" rationale. This
specified in the CCS Preliminary Specification and contract, informal training In Ada went amazingly well and the reputed
It had not been proposed because of the lack of an Ada com- difficulty of Ada training touted in some Ada literature was
piler. However, shortly after the contract award information never seen. We trained approximately 20 programmers and
about the Ada language and Its first Implementation became 5 lead programmers and found that personnel attitude had
available. A first generation compiler, specifically the a great deal to do with the programmer facility in the
Telesoft-Ada compiler had been released and was being language. Those programmers that wanted to learn the
hosted on the Intellimac 7000 series of computers. The deci- language and were enthusiastic about it did so with
sion was made, having been approved by the Program Of- noteworthy ease. In addition, most of those programmers

*Ada is a trademark of the U.S. DOD Ada Joint Program Office

Annual National Conference on Ada Technology 1986 13

who originally had reservations about the language became 0 The fact that the host computers-both Intellimac and
enthusiastic as the project progressed. WICATS-were MC68000 based and virtually the same

as the target computer, allowed much of the code
2.2 PROJECT HISTORY checkout to be accomplished on the host systems before

At the same time we were learning the language we were the target CCS hardware was available. Even later when
writing SoftwarelHardware Requirement Specifications and CCS hardware was available, checkout was still done on
the CCS hardware was being developed. By the end of this the host first since tools were more readily available and
specification process it turned out that both hardware and a time consuming load module "bind" was not necessary.
software were quite different from that proposed. A Com- Also if code ran on the host it was probable (not 100 per-
puter Program Development Plan and appropriate software cent) that it would also run on the target.
standards document were prepared and accepted. The 0 Ada and tasking were ideally suited to the CCS ar-
design methodology, based on previous company ex- chitecture leading to a theoretically elegant though com-
perience and policy, was chosen to be structured top-down, plex software design.
using Ada-based Program Design Language (PDL) as the 0 Ada had been selected for another small Army project,
design recording methodology. Sigma-Heros Interoperability, which was very successful-
As in all software developments the schedule crunch began ly implemented.
to be felt. We were still learning about the major system
interface to the TACFIRE system. The CCS hardware, utiliz- 2.2.2 SHORTCOMINGS
ing a distributed processing concept, became increasing- The early disappointments and shortcomings faced were:
ly complex with the final 68000 processor count an im- 0 Lack of software development support tools. Only an
pressive 53 (see Figure 1). Communications Modems within editor was provided with the compiler. While the com-
the system with identical software accounted for 40 of the pany had a low level debugger for MC68000 Assembly
processors but there was still distinct software to be writ- language it was unusable for Ada due to the fact that a
ten for 13 processors with interfaces being numerous and listing of Ada code with embedded Assembly language
complex. was not available. Considerable effort was expended in
The software architecture comprised of four Computer Pro- writing our own special purpose trace program.
gram Configuration Items (CPCIs) is shown in Table 1 and * The size of the initial code greatly exceeded our
Figure 2. The interface between CCS processors was ac- estimates and memory was increased from the original
complished via Dual-ported Random Access Memory (DPR). 1/2 Megabyte to 2 Megabytes. The average Telesoft-Ada
The DPR was partitioned into status, control, and message compiler expansion ratio was 22 bytes per line of Ada.
buffers. Bi-directional queues were used to control the The compiler overhead was about 2.5 when compared to
passage of data/messages between processors. handwritten Assembly language. This unforeseen in-
Messages entered/exited the system either via the TAC- crease in memory had a significant effect on the CCS
FIRE/Fire Direction Center (FDC) interface or externally via hardware, but this was deemed less costly than heroic
the Communications Modems (denoted on Figure 1 as efforts to squeeze the code into insufficient memory.
Modem Processors). Message flow through the CCS was 0 It became clear that the Telesoft compiler and Host
then controlled by processing located in the Communica- Operating Systems were never meant to support a pro-
tions Processor (CP). Code in the CP-comprised of the ject the size of CCS. We constantly exceeded limits in
Control Processing (COP) and Communications Process- file size, number of files, number of packages, stack size,
ing (CMP) CPCIs-was almost entirely in Ada, while that etc. Most of them required fixes by Telesoft whose
in the surrounding peripheral processors was in Assembly support-via a maintenance contract-was nearly always
language due to timing/memory constraints, forthcoming and timely.
Messages were subject to the following processing: * The Ada-Assembly language interface which was a part

" Reception/Transmission of all the peripheral processor Dual-ported RAM inter-
* Forward Error Correction faces took considerable time to design and debug. The
" Off-line Encryption/Decryption Interface required the use of the "for use at..." construct
* Compaction/Decompaction which worked fine, but without adebuggeron both sides
* Authentication/Serialization of the processor interface checkout was very cumber-
* Routing/Relay some and difficult.
* Transaction Accounting 0 Ada proved not to be well suited for a top-down design

2.2.1 EARLY SUCCESSES methodology since the implementation is bottoms-up.
This was partially due to the lack of the "separate" con-

Some early successes kept us going in spite of mount- struct in Telesoft-Ada, but even with this feature the
ing problems and missed software milestones. These were: special code needed to use it precludes some of its

* An early prototype of the CCS operator interface soft- usefulness. However, Ada-PDL worked remarkably well
ware demonstrated Ada feasibility, even though it was not consistently used. The design,
* Telesoft delivered their Run-Time System Le. Embed- and code standards and guidelines had to be tightened
ded Systems Kit (ESK) as promised. The day we first ran up considerably and compliance to them carefully
preliminary software on the target, a sparsely populated monitored.
prototype CCS, was a great one. 0 The separate compilation feature of the Ada language
* The Intellimac proved reliable and several Im- was not fully implemented by Telesoft and compilations
provements were made to speed up its operation, were more frequent than planned.
However, more host development processing time was
necessary to support the growing staff of programmers. 2.2.3 INTEGRATION AND TEST
Since the Telesoft compiler had by then been ported to As the detailed design and implementation of the software
the WICAT 150S desk top workstation, four of these were proceeded It was recognized that the integration and test
obtained for the project. phase was going to take longer than planned. This phase

14 Annual National Conference on Ada Technology 1986

% % %

L "'A. "/ 4 , ",P ',', '', ,P ."
" '

,""X - , - "" -t% ".,'""%-=," " . " o. ., "7" % % " % ". ,' ' - ,""P

* of the program was replanned in painstaking detail into 12 concluded in April of 1985. The software was not of "pro-
"stages" of CCS development and testing. With this new duction" quality, but it was sufficient for the concept evalua-
plan in place we proceeded to the end of the project slow- tion test of CCS with TACFIRE.
ly but steadily. We have concluded that without this type One of the results gleaned from the CCS test bed was that
of phased integration and test, planned and successively the excessive compiler overhead was causing slow execu-
refined into test plans and procedures, that large software tion which in turn degraded the performance of the system.
projects would be impossible. The CCS integration and test A more optimized design has certainly taken care of some
planning and development was a "team" effort in the best of the problems, but it is obvious that major improvements
sense of the word. Software, systems and hardware are still necessary in code generation optimization.
engineers worked and planned together toward the com- A comparison with other software projects within the com-
mon goal of completing the 12 stages. pany showed an increase in programmer productivity
The following anomalies were experienced at various times (measured in lines of normalized code per day) between two
during the development: and three times greater than for other projects using other

0 The compiler was updated twice during the software languages. We attribute this to the use of Ada since a variety
development and both times was installed immediately. of projects and languages were compared. The increase in
This naturally caused some delay, but the benefits of the productivity was especially apparent when compared to two
improvements far outweighed the incurred delay of about other similar communications projects, one in Assembly
one week each time. language and one in PASCAL. Improvements over Assembly
0 The source code to the Run-time Operating System language can be attributed to the use of a High Order
was purchased under license agreement with Telesoft Language (HOL), but even normalizing for that there was
and several minor but important changes were made to it. significant improvement, and the improvement over
* The internal stack size for each Ada task was defaulted PASCAL and CMS-2 can only be attributed to Ada.
by the compiler to 2000 bytes. Since several of the CCS It is impossible to quantitatively measure at this time
tasks needed much more than 2000 bytes, a patch to the benefits gained by the use of Ada in readability, main-
compiler was obtained from Telesoft to vary the stack tainability, reliability etc., but our subjective judgement is
size. Tracking this problem down literally shut down the that they will be significant. The key characteristics of Ada,
software development for about six weeks. i.e. strong typing, tasks, packages, exceptions, generics
0 Occasionally problems showed up at execution time (unavailable for CCS), and mechanisms for data and con-
that were only solved by a complete recompilation. Once trol abstraction cannot help but improve the readability of
the symptoms of this problem were recognized it wasn't the code and reduce maintenance costs.
so serious, only frustrating and time consuming. A total We look forward with great interest and anticipation to the
recompilation took approximately four hours. second generation of Ada compilers and improved tool sets,
0 The process of "binding" the program packages into some of which are already on the market.
a load module for the target system was slow. Subse- TABLE 1. CCS CPCIS, CPCS
quent releases of the ESK speeded this up from an hour
to about 15 minutes. Control Processing COP

These problems were directly related to the relative Communication Processing CMPNetwork Protocol Processing NPP
"newness" of the first generation Ada compilers. Other ma- Modem Processing MMP
jor problems not directly related to the use of Ada were:

0 The target hardware sustained some major modifica- COP CPCS
tions during the middle of integration and test. Although System Initialization COPINT
this took time it was beneficial to the software develop- Diagnostics COPDIAGS
ment in the long run. With the hardware running more FDC Interface COPFDC

COMSEC Interface COPCSCreliably it was much easier to track software performance Keyboard/Display Interface COPKDP
and differentiate between software/hardware problems. Bubble Memory Interface COPOIB
It should be noted here that the CCS hardware was also Modem Interface COPMP
pushing the "state of the art". NPP Interface COPNPP
0 We were continuously plagued with timing problems System Executive SYSEXC
in the TACFIRE interface. Even though the interface was Interrupt Handler
used heavily it was never reliable and performance varied CMP CPCS
significantly between TACFIRE systems used for Communications Initialization CMPINT
checkout. Network Management CMPNET

Communications Data Base CMPDATA
3.0 CONCLUSIONS Voice Communications CMPVCM

The bottom line is that in about 2 112 years 45,000 lines of Authentication CMPATH
Ada were designed, coded, checked out, integrated and NPP CPCS
tested for the CCS. An equal number of assembly language Network/Executive NPPEXC
instructions (equivalent to another 11,000 lines of Ada) were Abridgement/Compaction NPPCPTN
also developed for the project. In addition, a considerable Network Management Aids NPPMGMT
amount of test software and system support software was
also developed and integrated. The software staff peaked MMP CPC
at 20 people with the average being about 12. The distribu- Executive MMPEXC
tion over the length of the project is depicted in Figure 3. Initialization MMPINT
The peak represents that part of the program just before Protocol MMPPRT

Media/Device MMPMDV
the CCS equipment was shipped from the Singer facility Error Processing MMPFEC
to the government test bed. Development and testing con- Fiber-Optic Interface MMPFOI
tinued for some months after that until the test bed was

Annual National Conference on Ada Technology 1986 15

L, ,j% ,- .,... ,-; .e, , ...,., ., .. ,.. ..-,,.. .,.....,., ...,...,,, ..,, , .,." L,.=J

DIVISION TACIFIRE ONLY DIVISIcON TACFIRE ONLY

DIVARTY JUrNCTION BOX TACIFIRE COMI&UNICAT 'ON
iOJB) IL57? 000 039) JUNCTION BOX ICmBI

34 3

.4.h

*AOTOC~~~IT -CIIA*CO

P90009833 PSO CIS ,CY.O

.13 -1A. MOW C .

IT W

.9W.

Figure ~ ~ ~ ~ ~ ~ "II .CmuIain onrlSse CS

Functional5 Block iagra

16~igr Anua Coamnionaln Connerenc onte Ad(TchoogS18

Fucioa Blc Diagram- . p' 9,~

C.B4

oo 3'

00'

.1F 0

6.C3CANL6 MA 1BV

*Figure 1. Communications CnrlSystem CS
Functional Block Diagram
Final Design Model Rev. 3, Continued

Annual National Conference on Ada Technology 1986 17

I "A A. N, I 1

JLNT4 TRIA BX.T

FUCIOA LOKD.GA

10~ SEON *Sf Ol

NUNS ONAL'VR!FU TO

F~gue 1 Comun~atios Cntro Sytem CCS

Funciona Blok Digra
Final ~ ~ ~ ~ ~ ~ AM DeinMdl.v.2 otne

18 AnualNatinalConfrenc on da echnlogy198

,,O'UI-FIF C

REMOTE COMMUNICATIONS MONTORING UNIT (RCIMJ)
FUNCTIONAL BLOCK DIAGRAM (L200 016 OU)

DATA

I" EEI E El
TO CCM OR T B

:] E
Dfl.rERS D

VO CE

O TO
ou OU ,O'(N

CORU A1

Figure 1. Communications Control System (CCS)
Functional Block Diagram
Final Design Model Rev. 3, Continued

A.F

Annual National Conference on Ada Technology 1986 19

~ ~'N.

4NPP COP cmp

DPRITERFAE OlDSYSTEM EXECULIZ TIVE I EUSS NTORKIZGT

INLOUPSDNERRUPTOLDIPLY

DATA/CONTROLTR

INE1C HOADMSALR

FORTG SYSEM0
NPP APPLICATCOSMCOMAEA BASE

COMPACTIONNKRDL

CO TO AIDSST TORETW RKHIMUIS

DIPAUOSIA

DATA ADATA

NPP EECUTIDATAT

INTERRUPTS INTERFACE CNTRL

DPRINTERFACEigur 2.D SYSTE EI10tEra ETS NEWiKonM

20~TR Annual NationalE] Cofrec onT Ad Tenloy98

BACKGROUND~. I O T O O T O O T O

20

15

0 0
z

5

4

3

2

0 1 2 3 4 5 6 7 8 9 10 11 12 24 30
START T
OF ACCEPTANCEPROJ ECT (MONTHS) TEST

Figure 3. Project Manpower Distribution

Author: Patricia J. Dousette 0 Supervisor, Army Applications Programming
Extensive background in Systems Engineering and AnalysisAddress: The Singer Company, Librascope Division with emphasis on Software Engineering. Most recently,

833 Sonora Ave. Manager of Software Development for the Communications
Glendale, California 91201-0279 Control System (CCS).

Biographical Sketch:
B.S. Mathematics, 1968 from California State Polytechnic
University, San Luis Obispo, Ca.
M.S. Mathematics, 1977 from California State University
at Los Angeles.
Employed at Singer-Librascope since July 1968 in the
following capacities:
* Associate Mathematician '
* Mathematician

Z6 0 Technical Programmer
, Engineer
0 Senior Engineer
0 Systems Programming Specialist
0 Research Programming Specialist

Annual National Conference on Ada Technology 1986 21

* S ,i- ,- ,, ' - -.4;,:] ii, d ;/ d,

THE AR TY'S MAFIS COMMAND AND CONTROL

MICHAEL T. PERKINS AND JOE E. BOLGER

THE BDM CORPORATION
AUSTIN, TEXAS

Abstract C&C processing is distributed among a
Network Communications Processor, an Applica-

The Command & Control Subsystem of ?4/AIS is tions Processor, and Display Processors. The
designed to monitor and control military doc- Network Communications Processor collects the
trine and equipment testing exercises. The data, filters it, and distributes it to other
Cormand & Control is a distributed processing processors. The Applications Processor main-
system that controls a coinications network tains a player database, records a history log,
for the collection of data, processes applica- and executes simulations and other applications.
tions (such as simulations and database manage- The Display Processors serve as the user inter-
ment), and supports a user interface and graph- face for monitoring and control of field activi-
ics display. The Command & Control Subsystem is ty. The processors commiunicate over a high
being designed and implemented in Ada*. A pilot speed Local Area Network (LAN). The primary
portion of the system was tested at the end of flux of data across this LAN is field exercise
FY85. This paper describes the requirements, activity broadcast to all other processors by
development methodology, and implementation. the Network Ccmunications Processor.

Introduction and Background Requirements and Capabilities

The Mobile Automated Field Instrumentation The broad goals of the MAFIS are to instru-
system (MAFIS), being built for the Army Train- ment and monitor 200 (expandable to 2000)
ing and Doctrine Ccmnand by BDM, allows for players interacting over a 50 by 50 kilometer
real-time monitoring of two-sided mechanized area. A real combat environment is to be
corbat where weapon engagements are simulated, simulated as accurately as possible. The field
The MAFIS is ccnposed of three subsystems: 1) portion of the MAFIS provides a practically
the Field Instrumentation Subsystem, 2) the invisible (greatly reduced in size) on-board
Command and Control (C&C) Subsystem, and 3) the equipment configuration. Both mechanized and
Operations and Support Subsystem. The Field (eventually) infantry platforms are to be
Instrumentation Subsystem equips cormbat partici- supported. Most mechanized platforms will have
pants with electronics to perform digital multiple weapons systems that will need to be
comnunication, position location, logic process- instrumented. Real-time casualty assessment
ing, and engagement simulation. The engagement (the ability to perform weapon engagement
simulation equipmnt consists of both low power, computer decision-simulations within one sec-
bore-sighted lasers that flash a coded message ond), stimulated as a result of laser hit
with each weapon triqger pull and an array of detection, will be done at the player level in
laser light detectors to score weapon hit the on-board logic processing unit. Players
information. The main processor is a Motorola will report position and status information to
68010 with up to 2 Mbytes of memory. Position C&C along with firing data and casualty assess-
Location is to be provided by a module that ments; configuration data will be sent to C&C to
receives transmissions from the Global Position- confirm player identity. Should the player's
ing System (GPS) space segment. The Position communications equipment lose contact with the
location Module performs satellite multilatera- network, the logic processor will be able to
tion. Player status and activity information is store several hours of data (enough for one
relayed to the C&C through a camunications trial) for transmission when network caumunica-
repeater network. tion is re-established. C&C will he. able to

send messages to players to perform simulated
ammunition reloads, to disable and enable laser
firing, to perform an administrative kill

Ada is a registered trademark of the simulation, to resurrect (re-enable) a platform,
Department of Defense (Ada Joint Program to report configuration status, and to report
Office). special simulations.

22 Annual National Conference on Ada Technology 1986

L_ "- % N 1 'V,, -. . .. " " . ' .% % "% ' . %.% - ' . ,. ". ". . ' - . "" ,., , ".% ''

A major function of C&C is to control the Solutions to many design issues docimented
communications network. Communications are by various authors have been incorporated into
implemented through a hybrid tie-division the development effort. The software design
multiple access and demand reservation network process is based on the Structured Analysis and
that uses line-of-sight, digital, spread-spec- Design Method (SA1M) and uses Ada as a formal
trum, 370 Miz radios. Because of the line-of- notation for expressing the (pictorial) results
-sight communications constraints, a repeater of SADM. The structured methodologies are well
routing network must be established that assigns documented in Structured Analysis and System
players to repeaters according to signal Specification, T. DeMarco (2] and Structured
strength. To ensure uninterrupted coverage as Design, Yourdon & Constantine [3]. The design
players move away from one repeater, they must method implementation draws heavily on concepts
be able to be reassigned to the succeeding described in "A Software Design Method for
network node. The network is configurable Real-Time Systems", H. Cma [4] and Ada Desi
according to exercise and terrain requirements. Language for the Structured Design Methodology,

J.P. Privitera [5]. The translation fram the
The C&C functionality also supports the design results of SADM into the da design

processing of applications such as database notation is accamplished by a technique borrowed
management, history log recording, and simula- fran the Process Abstraction Method [6]. The
tion execution. A database is maintained that layering and hiding of various design decisions
records player type and configuration, player is detailed in "On the Criteria To Be Used in
location and status, player scoring data, and Decomposing Systems into Modules", D. Parnas
the status of all active simulations. An event [7].
history log is recorded in time order of event
to support off-line replay and review of exer- Software design began with text descrip-
cises. During the monitoring of an exercise, tions of the primary functionality. A hardware
there is no guarantee that C&C will receive architecture was developed based upon estimated
events in. tire order because of the logging processing capabilities required for that
capability that exists at the player level, functionality. Sets of hierarchical data flow
Specific simulations are defined and progranmed diagrams were created to formalize software
according to their specific requirements; module and interface definition. Data flow
however, software utilities are provided with diagrams depicted software modules as circles,
the system to support the detection of a play- hardware interfaces as rectangles, and data
er's presence inside defined areas. flows as connecting arrows; a text label is

associated with each object. Depending upon
A third major function of C&C is to provide complexity, software modules were sub-catego-

a human interface. The operator is presented a rized in a hierarchy of other data flow dia-
high-resolution color graphics map display gene- grams. At the conclusion of general design,
rated from the Defense Mapping Agency's terrain data ccmmunicated over each processor's external
data. The map display allows selectable feature interface was defined in the greatest possible
visibility and supports zoom and virtual image detail, and updates were issued as necessary.
panning fran a disk data file. A player symbol
display is superimposed over the map image. The The creation of Ada code at the highest
text, line strokes, etc., that define the player level began during detailed design. An Ada
are drawn in certain colors to designate attack- master procedure was created for each processor.
ers, defenders, or referees; the sybol back- The data tIow diagrams were used to identify
ground, drawn as a rectangle, is color-coded software modules and data structures. Because
according to player status. Groups of players of the complexity of the software, the first
can be displayed as one symbol according to level data flow diagrams were used to define Ada
relative position in the military chain of packages within the main procedure. To define
ccmnand. Simulated weapon engagements are internal software interfaces, package specifica-
displayed as they occur. The operator can tions were written within the main procedure
designate military planning control measures to according to the functionality defined by the
appear on the map. In addition to the color highest-level data flow diagrams. To limit
display, an alphanumeric terminal is provided complexity, each package body was a separate
for notifications and reports. Operator compilation unit. Data structures required for
cammands are given by touching buttons drawn on coamnication between packages followed the data
a graphic tablet, flow diagrams. Global data structures were

encapsulated in a package specification called
Development Methodology Global_Types. Concurrent tasks were identified

The software development process follows a on the data flow diagrams by enclosing software
classical top-down design [l]. The project modules in rectangles or polygons. The Ada task
phases are requirements analysis, functional specifications were then hidden inside the
design, general design, detailed design, code, package bodies. The task bodies were again
test, integration, and final test. Early in the separate compilation units. For detailed
design phase, Ada was chosen as the implementa- design, the description of processing required
tion language. "he detailed design phase was inside the task bodies was no longer in coil-
tailored specifically to an implementation in able Ada, but was written in Ma psufdo-code.
Ma. Auxillary procedures required for data set

Annual National Conference on Ada Technology 1986 23

preparation or wrap-up processing did not software in C&C. Data received from players
require multi-tasking and were considerably that represent a significant change will be
easier to design. broadcast over the LAN to all other C&C proces-

sors. Data generated within C&C that affects
Following detailed design, coding will the exercise (e.g., initialization data, sivula-

primarily involve transforming Ada psuedo-code tion data, and start/stop trial messages) will
into actual compilable Ada. As code is deve- also be broadcast over the LAN. Both the
loped, testing will be done at the module Applications Processor and the Display Processor
interface level before integration begins. read the broadcast information fron the LAN in
Integration will take place on a module by processing exercise data according to their
module basis, with testing following each step. specific functions. All three processors
After software integration is complete, the communicate by sending messages between distinct
entire system will be tested during the king of nodes. Fcxpandability is achieved by use of the
actual field exercise for which the system was LAN architecture, since other processors may be
developed, added to the LAN as needed. For example,

additional Display Processors may be added to
Implementation the LAN to accommodate specialized or expanded

operator duties. The processors that execute
The hardware architecture chosen to imple- the Communications Network Controller and the

ment the C&C design is as shown in Figure 1. Applications Processor software are Data General
The LAN architecture is the key to flexibility MV/8000's. The computer chosen to execute the
and expandability. The Communications Network Display Processor software is a Data General
Controller organizes the network and routes MV/4000 with a GDC/2400 graphics display.
messages between players and the applications

I!ADDITIONAL 0 0
I TCC/MOC

IVANS

F V LOCAL AREA NETWORK I
C VDATA I (INCLUDING DELTA-EVENT-BUS) I

COtiiO LICO~t"10GRAPHlICS

IINTERFACE AND TEXTv',..xA
DISPSPLAYS

!i'] D ISP A _ISPLAY
, STATION

AE LET ANDf KEYI;UARD I

....DAT CO;.:;IUN I CAT I ONS EVENT AND
RAW DATA INrERFACE TERRAIN
TAPE \CONTROLLER DATA BASE

D ISPLAY

* IHISTORICAL k L - APPLICATIONS__ AiE

DATA BASE PROCESSOR L I

I EVENT AND
--- I TERRA INL J D A I A ! W k ')

L.

FIGURE 1: COMMAND AND CONTROL HARDWARE ARCHITECTURE

24 Annual National Conference on Ada Technology 1986

%

Functional assigrments associated with each special exercise-dependent statistics. The
processor are arranged eccording to network Applications Processor history log data tape
control, applications execution, and humn will allow ccrzplete reconstruction and perruta-
interface control. The network control func- tion for post-exercise analysis. The applica-
tions are to 1) control the configuration and tions functions performed in pre- and post-exer-
timing of the network in such a way that cise irx-e are to 1) edit the player configura-
throughput is timely, 2) provide diagnostics in tions and prepare initialization data, 2) create
the event of a network failure and correct the the terrain map image used by the Display
problem if possible, 3) receive all ccmunica- Processors, 3) merge post-test late data to
tions from the network and generate output that provide a caiplete time-ordered log of exercise
indicates significant field activity, 4) trans- history, and 4) replay the history log for
mit messages frnm the operator/controller to the post-test review and analysis. The functions
player equipnent, and 5) provide a raw data tape performed by the Display processor are to
of all ccamications network mssages. The provide 1) a man-machine interface through whichi
com~unications messages data tape will provide a the operator/controller can interact with the
couplete record of C&C input and output. The players in the field, 2) a color graphic repre-
applications functions are required not only sentation of the field with appropriate symbols
during real-tine processing, but also in pre- representing players, their movements, and their
and post-exercise processing. The real-time engagements, and 3) alphanuneric and graphic
applications functions are to 1) create a sort-ed sminaries of information generated by the
historical event log, 2) collect statistics Applications Processor relating to player
needed to generate configuration and scoring performance and overall exercise evaluation.
reports, 3) route mssages from the opera- (An exanple of how this functionality was
tor/controller at a Display Processor to player defined for the Display Processor using data
equipmnrt, 4) assure player equipment acknow- flow diagrams is shown in Figure 2.) To create
ledgement of the message, and 5) provide proces- and edit the data flow diagrams, an Ada graphics
sing algorithns for specific simulations, such editing program was written to support a machine
as area effect weapons, a] erts or alarms, and readable database.

Fr RE P2: L EL&A

A

*10

~Annual Natlonal Conference on Ada Technology 1988 25

- lo

,),} ? , •" " ",. .. ' ,' C ,, "€ ".... .. . ""-7"' " P "

The current project schedule is a two- characteristics wherever possible and should
tiered increwental arrangement. Essential result in easily transportable software parts.
software needed to meet mininum performance An ideal example of this would be the software
criteria is to be developed first and will to generate the map image from the Defense
constitute a Limited Operating Capaility (LCC). Mapping Agency's terrain database. The Govern-
"his system will then be augmented to develop ment could save a significant amount of develop-
increased functionality, until it constitutes ment expense if all Government software could be
Final Cperating Capability (FOC). In the centrally archived for ease of access by other
software development cycle, all phases beyond projects.
general design will be duplicated for LOC and
FOC. .ne current status of the project is in Difficulties encountered in the project
the coding phase for LOCC. LOC is scheduled to have been associated with early implementations
be completed in February of 1987, with FOC to of an Ada compiler. Compiler shortcoming have
follow one year later. forced progranIers to develop work-around

solutions in some cases. The overhead associat-
ed with current implementations of Ada was not

Advantages and Difficulties anticipated when processor size was originally
established and has impacted capabilities. In

The advantages of using Ada early in the spite of these difficulties, project development
de"sign phase have been rewarding. The foresight has benefited overall from the use of Ada.
and planning that went into Ada have allowed the
development of tools that are reusable and
expandable, avoiding extensive redesign. The References
modularity available in Ada contributes greatly
to the maintaining of comprehensible compilation [1] BDM Ivnagement Services Company. MAFIS
units. The software interface specifications Software Management Plan:Volume I, PolTies
required in Ada have also greatly aided in (Ocobr 198 ad oe II, Procedures
keeping separate software developers working (April 1984). BDM/Austin.
toward common goals. Other notable advantages
gained from using Ada are explicit nultitasking [2] DeMarco, T. Structured Analysis and System
and exception handling. Specification. New York: Yourdon Press,

1978.
The design methodology was to a large

extent refined as needs arose. The hardware (3] Yourdon, E., and L. Constantine. Structured
design was intended to complement the use of Design. 2nd ed. New York: Yourdon Press,
Ada. This was acccvplished by a balanced 1978.
approach of top-down design and functional 141 Camaa, H. "A Software Design Method for
abstraction. The currently defined methodology Rpal-Time Systems." Cannunications of the
is a process leading from high-level function- AOCM 27 (September 1984): 938-949.
ality to deeper and deeper levels of definition.
Every step of the process follows from the [5] Privitera, J.P. Ada Design Language for
pievious one without duplication of effort and the Structured Design Methodology. Ford
without large gaps in understanding. Aerospace and Comnnications Corporation.

Because of the flexibility of the hardware [6] Cherry, George W. Process Abstraction
architecture and the modularity of the software, Method. Reston, Virginia: Cherry, 1984.
it is expected that the MAFIS C&C subsystem will
be able to be easily tailored to other project (7] Parnas, D.L. "On the Criteria To Be Used
needs. Portions of the MAFIS design can be used in Decomposing Systems into Modules."
directly in other systems. The software func- Camrunications of the ACM 12 (December
tionality has been abstracted from hardware 1972): 1053-1058.

26 Annual National Conference on Ada Technology 1986

-~~Z N,' ~S

MR. MICHAEL T. PERKINS DR. JOSEPH E. BOLGER
9020-I CAPITAL OF TX HIGHWAY, SUITE 600 9020-I CAPITAL OF TX HIGHWAY, SUITE 600

AUSTIN, TX 78759 AUSTIN, TX 78759

Mr. M. T. Perkins is Vice President, Dr. J. F. Bolger is a Senior Staff Member
Advanced System Design and Integration, for the for the BDM Corporation. He received his PhD
BDM Corporation. He received his BS in 1972 and from the University of Texas in 1977, majoring
Masters in Fngineering in 1979 frcm Cal Poly San in experimental nuclear physics. He did gradu-
Luis Obispo. His graduate work focused on ate work at the Meson Physics Facility in Los
computer applications to cormunications and Alamos and as a post-graduate, he did experi-
systems. He has spent the majority of his last mental research in Switzerland at the Swiss
10 years with BDM designing inplementing real- Institute for Nuclear Research. All of his
-time, distributed processing systems for range research required development and use of ccaput-
testing and data collection. He participated in er automated data acquisition and analysis
IEEF 730 Software Quality Assurance Standards. systems. Currently, he is the Software Manager

, He is presently heading up the Mobile Instrumen- of the applications and human interface softwale
tation Field Instrwientation System (MAFIS) development for the MAFIS Command and Control.

"* ' development and integration. In his spare time,
he collects and thrashes BZR-1s.

"S.

Annual National Conference on Ada Technology 1986 27

AN ADA* TASKING APPLICATION IN AN AIR DEFENSE SYSTEM

Christine Ausnit

SofTech, Inc.

Introduction position of the target, and this
predicted location is fed back into the

In designing the target tracking association algorithm. This prediction
processes of an air defense system, the is computed whether or not a new blip
designer must choose an appropriate was received; however, if no new blips
tasking structure. The Ada tasking are received over a specified period of
features offer both multi-threads per time (or a specified number of radar
task and single thread per task scans) then the track is discontinued.
approaches to solving a given problem.
In this case, there are several options Alternative Design Approaches

available to the designer: a single
task, one task per blip, one task per The selection of a tasking
major function, one task per sector, and structure for an embedded computer

one task per track. This paper will program is one of the most basic design

discuss these strategies, their decisions that must be made. This

advantages and disadvantages, decision involves not only determining
what entities to represent with tasks
but also how many threads (in the sense

of functionality) to include per task.
In the case of the target tracking

system, there exist both multi-threaded
and single-threaded alternatives:

Background: Air Defense System
0 single task handling all the work

An air defense system is a large, 0 one task per blip
complex system consisting of a network * one task per major tracking

of individual centers, each responsible subfunction
for the defense of a particular * one task per scan sector (a sector
geographical segment. Each center being a pie slice of the whole
tracks aircraft within its area, scan)
communicating with other centers as well * one task per track
as with its own radar units, fire units
and human operators. Its primary The first choice, a multi-threaded
activities may be summarized as one in that it embodies many actions
processing tracking information, within a single control element, can be
evaluating threats, and assigning eliminated as too general a design.
weapons. The design of the tracking Beyond some main program, it fails to
subsystem is explored further, identify the salient program or data

structures. Furthermore it does not

Each center's tracking subsystem recognize the potential for conceptual
conducts a 360 degree radar scan of the concurrency (e.g. once a blip has been
sky at a fixed rate. During each scan, associated with a given track, then that
the radar detects reflections or blips track can be smoothed while other blips
from the obje(ts, usually aircraft, are associated with the remaining
flying through its area and records tracks).

range, bearing, and rate of change
itt ormation. This data is used in the The next choice, one task per b ip,

pro(tssing in order to correlate or shows a single-threaded approach, but it
IjssO(iaite bI ips received on successive can also be discarded as unworkabIe.
sc;ns into the track (or path) of a Blips are the input to the syst em, not.
;ingl e target. Furthermore, once during its mainstay. Logically, blips do not

,,,jc an, the subsystem attempts to control the computat ion: they 'Ire dat;I
eyt nd t he t ra(k by predicting the next rather than act ions. Moreover, they at

28 Annual National Conference on Ada Technology 1986

1

.' %v,%

not persistent data: they record the render the design more error prone, less
position of some object at a particular readable and less maintainable.
instant. As the object moves and a new
radar scan detects it, a new blip A final requirement is that sector
appears on the radar screen; the old one processing for a given sector must be
no longer exists. The overhead completed in the time the radar takes to
associated with the creation, sweep n-i sectors. If the processing is
destruction and decision-making of blips not completed in this time, it must be
(i.e. deciding with which track to stopped so that the processing task is

" associate) would be excessive, then restarted with the fresh data from
the new radar sweep of the sector.

The third alternative, one task per
each major subfunction, is a logical The design of this solution is
design which models the actual operation found in Figure 1, and the corresponding
of the tracking subsystem. Because it code is sketched in Figure 2. An array
is best used in combination with either of tasks is declared with one task
the multi-threaded task per sector or corresponding to each sector. The
the single-threaded task per track sectors are declared to be part of a
solution, only those two alternatives controller task, whose function is to
are explored in the subsequent sections. synchronize with the north sector pulse,

stop the next sector's processing and
Task per Sector provide an interface between the radar

data and the current sector processing.
Sectors are arbitrary divisions of

the radar scan, imposed by the software. The procedure Associate and the
Within each sector, the identical tasks Smooth Track and
processing occurs: all the blips are Predict NextPoint are declared in the
associated with existing tracks, a task body of the sector task. Were the
resolution stage is performed to ensure two tasks declared directly inside the
that all tracks use different blips, procedure's declarative portion instead,
these tracks are then smoothed, and the then the benefits of tasking would be
next point along the track is predicted. lost. The procedure Associate could not
Track information is maintained in a complete execution until both its

, database accessible by the entire dependent tasks terminated. As
system. Associate performs no further computing

once it synchronizes with SmoothTrack,
On first glance, it would seem that the effect of the entry call would be

(sector processing can be performed identical to that of a procedure call,

independently and therefore and no concurrency would be achieved.
concurrently. Within a given sector, The solution presented here declares the
association must be performed before smoothing and prediction tasks outside

% either smoothing or prediction. Associate. Therefore, they are active
- Association tries to find the best match and running even after Associate returns

between a single blip and some track in and while the parent
the database. Once I he track has been Sector _ProcessingTask checks for
isolated, it will no longer be preemption before continuing to process

* considered as a possible match for other the next blip. (Should either smoothing
blips, and it can undergo smoothing and or prediction operate too slowly, a
prediction at the same time that the buffering task can always be introduced
other tracks are still under so that the entry call from Associate isconsideration by the association immediately accepted by the buffering
algorithm. Thus there is additional and does not need to wait for

concurrency which can be exploited. SmoothTrack or Predict_Next_Point to be
ready to accept new tracks.)

Problems arise, however, in the
case of tracks nearing the edge of or Task per Track
crossing sector boundaries. Suppose a
track in sector A should be associated Another, more elegant design for
with a blip in Sector B. In a track per the tracking subsystem is based on
sector scheme, this track does not have assigning one task per track. Since the

visibility to this blip because it lies system mav handle different numbers of
in a different sector. Extra processing tracks at different times, a linked list
is required to handle these potentially of track task objects will be used.
fext ra" blips that are not nssociated (Otherwise an a ssumpt.ion about some
with a track in their sector before arbitrary tipper limit of tracks would

S these blips can be assigned to new have to be made.) Once per scan, eachi
tracks. These add itional computat ions track is ready to receive a new blip

assoc iation. Each track also awa its a

Annual National Conference on Ada Technology 1986 29

%. % % % %"" . d% % % % % % % " % " .' .'" .% -" ' -" , %'" ,'

signal from a master controller in order This design has all the
to become active. A track may become disadvantages of approaching a
discontinued because no new blips are concurrent problem from a linear
associated with it during some specified standpoint. It is more difficult to
number of consecutive scans. The master maintain. Because of potentially
controller would allocate a new task if delicate timing, algorithms that should
a new track is needed. (See Figure 3.) be kept in a single unit may be split

across several modules, detracting from
The body of the track task is the readability of the whole. It fails

simple. Following the receipt of its to model the functionality of the
identification number, the track waits system: an air defense system is about
to be associated with some blip. If a tracking targets, not about radar
blip is found, the track gets updated. sectors.
If no blip is found, the track is
updated as is a counter of the number of The task per track design, on the
missed blips. Should too many scans other hand, represents a data driven
fail to yield an associating blip, the design. It is a much better abstraction
track task is ready to terminate. These to represent the functionality of the
two signals (data receipt and track system, and it is consequently more
activation) are the two entry points readable and maintainable. Moreover,
into the task. The track itself the mutually exclusive nature of tasks
announces that it is ready to receive enforces protection of the track data.
data by making an appropriate entry Only one track can be accessed or
call. Similarly, once a particular updated at a time; these track tasks
associated track is out of the market form the database, obviating a database
for other associations, it calls the superstructure.
track smoothing and prediction
operations. Although this design is better than

a task per sector, it too may have
The association function here is potential timing problems, which would

declared as a task. Its interface most likely be generated by the tasking
allows it to communicate with the radar overhead needed to handle the greater
in order to receive the blip data as number of tasks and the dynamic

%%: well as to communicate with the track of allocation of tracks. The success of
its choice. Association chooses which this implementation would depend in part
track is the best match and calls that on the run time scheduler and the
track's data receipt entry accordingly. existence of tasking optimizationsi.
The corresponding pseudocode is shown in

* Figure 4. Sectors are an implementation

detail that are useful in the
Smoothing is declared as a association algorithm itself in order to

procedure rather than a task because the do bookkeeping on the incoming blips;
smoothing operation for any single track however, this does not justify
must complete before the next position highlighting sectors at the top level of
for that track can be predicted. The the design. In the task per track
prediction computation, however, can approach, the sectors are hidden in the
safely be declared as a task, as no association task.
further computations depend upon its
execution. The fundamental issue in this

design is which entities to choose to
Conclusion model with tasks. Jackson's definition

of entities is useful here 2 ; an entity
This paper has discussed two either performs or suffers actions in a

different approaches to an embedded time sequence. Applying this criterion,
systems problem. Both designs addressed it is clear that a sector neither
the possiblities for concurrency. The performs nor suffers actions. It is
task per sector design is neither static and has no significant time
control nor data driven. The design is ordering. Tracks, on the other hand,
based on an arbitrary division of labor, are associated with blips and predict
prematurely constraining the choice of new positions, both of which events are
the overall software architecture, ordered in time. Blips are attributes
Parallelism exists to the extent that of tracks: in a loose sense, it is the
the similar processing is being done at collection of blips that constitutes a
the same time for as many sectors as track. This entity-action concept is
there are in the radar, although sectors especially appropriate in developing
are never concurrently updated. tasking designs because of the dual

nature of tasks as program units and
objects,.

30 Annual National Conference on Ada Technology 1986 objects

References

IHood, P. and V. Grover, Ada Real Time
Studies Report, Soffech, Inc., 1986.

2Jackson, M.A., System Development,
Prentice-Hall, NJ 1983.

SofTech, Inc. Ada Software Design
Methods Formulation Case Studies Report,
1982.

Associate

Smooth-Track

PredictNext-Point

/
BlipProcessor Package

Sector_Processing _Task

SectorProcessingController

Figure 1: Sector Design

Annual National Conference on Ada Technology 1986 31

task SectorProcessingController is
entry New Sector Pul. e;

end SectorProcessingController;

with BlipPackage; use Blip_Package; -- declarations for blips
task body SectorProcessingController is

task type Sector_Processing_Task is
entry Get New Blip Data (Blips : in BlipType);
entry Stop Processing;

end SectorProcessingTask;

type SectorProcessor_List_Type is array (SectorCount)
of Sector Processing_Task;

SectorProcessor List : SectorProcessor _List Type;
SectorData : Blip_Type;

task body Sector_ProcessingTask is separate;

begin

loop
Current _Sector := Sector Processing_List'Last;
for NextSector in SectorProcessorList'Range loop

accept NewSector _Pulse;
SectorProcessorList (NextSector).Stop_Processing;
SectorProcessor List (Current Sector).

GetNew_Blip_Data(Sector_Data);
CurrentSector :- NextSector;

end loop;

end loop;
end SectorProcessingController;

Figure 2: Sector Controller (I of 4)

32 Annual National Conference on Ada Technology 1986

" "J1 ,"

separate (SectorProcessingController)
task body SectorProcessingTask is

LocalBlip_Data BlipType;
Preempted : Boolean;

package BlipProcessorPackage is
procedure Associate (Blip : in BlipRecords);
task Smooth Track is

entry GetTrack (Track : in TrackType);
end Smooth_Track;
task PredictNextPoint is

entry Get_Track (Track : in Track _Type);
end Predict NextPoint;

end BlipProcessor-Package;

package body BlipProcessor_Package is separate;
use BlipProcessorPackage;

begin
loop
accept Get_New_BlipData (Blips : in BlipType) do

Local BlipData := Blips;
end Get New BlipData;
Preempted := False;
for CurrentBlip in Local _Blip_Data.NumberBlips loop
Associate(Local_BlipData. Data(CurrentBlip));
select
accept StopProcessing;
Preempted := True;

else
null;

end select;
exit when Preempted;

end loop;
if not Preempted then -- processing finished early
accept StopProcessing;

end if;
end loop;

end SectorProcessingTask;

Figure 2: Sector Controller (2 of 4)

with TrackDataPackage; use TrackDataPackage
separate (SectorProcessing Controller.SectorProcessing_Task)
package BlipProcessorPackage is

procedure Associate (Blip : in Blip Records) is
Track : Track Type;
Associated : Boolean := False;

begin
-- algorithm to associate and resolve (not shown here)
if Associated then
SmoothTrack.GetTrack (Track);

else
-- initiate new track (not shown)

end if ;
end Associate;

task body Smooth Track is separate;
task body PredictNextPoint is separate;

end BlipProcessor_Package;

Figure 2: Association (3 of 4)

Annual National Conference on Ada Technology 1986 33

-k

separate (Sector ProcessingConLroller.
Sector -ProcessingTask.
Blip ProcessorPackage)

task body Smooth Track is
LocalTrack : TrackType;

begin
loop

select
accept GetTrack (Track : in Track Type) do
LocalTrack Track;

end;
or

terminate; -- when there are no further tracks to smooth
-- and Associate has therefore stopped
-- making entry calls to GetTrack

end select;
-- do track smoothing
-- update data base
PredictNextPoint.GetTrack (LocalTrack);

end loop;
end Smooth_Track;

separate (SectorProcessingController.
SectorProcessingTask.
BlipProcessor_Package)

task body Predict Next Point is
Local _Track : Track Type;

begin
loop

select
accept GetTrack (Track : in TrackType) do

LocalTrack Track;
end;

or
terminate; -- when there are no further points to

-- predict and Smooth Track has therefore
-- stopped making entry calls to GetTrack

end select;
-- algorithm to compute next point
-- update data base

end loop;
end Predict Next Point;

Figure 2: Association (4 of 4)

34 Annual National Conference on Ada Technology 1986

" e

New Bi p

Figure 3: Tasking Design

type TrackType;

type TrackId Type is access TrackType;task type TrackProcess is

entry Activate (Track_Id :Track Id Type);
entry Update (Blip :BlipType);

end Track_Process;
type Track_Parameters_Type is

record
X, Y, Phi, Theta, Smooth_Index :Float;

end record;

type TrackType is

record
Ready Boolean;

Process r TrackProcess;

Parameters Track_Parameters Type;

Next Track Track_Id Type;
end record;

Track_List, Track Track Id Type;

task Associate is
entry Radar (Blip BlipType);

entry Ready (TrackId: TrackIdType);

end Associate;

task RadarInterface; -- calls Associate with new blips

-- task body not shown

Figure 4: Task per Track (I of 3)

Annual National Conference on Ada Technology 1986 35

task body Track-Process is

My Track Id : Track Id Type;
New Blip Blip Type;
Missed Blips Natural;
Miss_Threshold constant Integer <system-defined>;

procedure SmoothTrack (Blip : Blip_Type;
TrackId TrackIdType) is separate;

-- not shown
task PredictNewPosition is
entry Get_ Id (Track_ Id : Track_ IdType);

end Predict New Position;
task body Predict_NewPosition is separate; -- not shown

begin -- TrackProcess
loop
accept Activate (TrackId : TrackId Type) do
MyTrackId := TrackId;

end Activate;
select

loop
Associate.Ready (MyTrack_Id);
select
accept Update (Blip: Blip Type) do

-- received blip during this scan
New Blip := Blip;

end Update;
SmoothTrack (New_Blip, My_TrackId);
Predict New Position.GetId (MyTrackId);
MissedBlips := 0;

or
Predict NewPosition.Get _Id (My TrackId);
MissedBlips := Missed_Blips + 1;

end select;
exit when Missed-Blips > Miss_Threshold;
end loop;

or
terminate;

end select;
end loop;

end TrackProcess;

Figure 4: Task per Track (2 of 3)

36 Annual National Conference on Ada Technology 1986

.0..

task body Associate is

New Blip : BlipType;
Best_Match, Match : Natural;
Match Threshold : constant Integer <system-defined>;
Best Track Id : Track Id Type;

-- sector declarations
function Degree ofFit (Blip Blip_Type;

Track_ Id : Track_ Id Type)
return Natural is separate;

procedure InitiateNewTrack (Blip : BlipType) is separate;

begin -- Associate

loop

Track := Track-List;
select

accept Radar (Blip : Blip_Type) do
New Blip Blip;

end Radar;

Best Match : 0;
while Track /= null loop

if Track.Ready then -- try to match blip to this track
Match := DegreeOfFit (New Blip, Track);
if Match > Match Threshold and

Match > Best Match then -- best match so far

Best Match := Match;
Best TrackId := Track;

end if;
end if;
Track := Track.NextTrack;

end loop;
if Best Match > MatchThreshold then

Best -TrackId.Ready := False;
BestTrackId.Process.Update (NewBlip);

-- call track task
else

InitiateNewTrack (New_Blip);
end if;

or
accept Ready (Track) do
Track.Ready := True;

end Ready;

end select;

end loop;
end Associate;

Figure 4: Task per Track (3 of 3)

Annual National Conference on Ada Technology 1986 37

FLOATING POINT COMPUTATION USING ADA'S MODEL NUMBERS

John J. Buoni and Richard L. Burden

Youngstown State University, Youngstown, Ohio 44555

(2.0 ** exponent) (2.1)
where the mantissa length B and exponent range

The purpose of this paper is to point out [-R...RI are determined from the number of decimal

the background of Ada's model numbers. By con- digits D by the formulas

sidering the Ada manual as a set of Postulates
and

which an implementation of Ada must satisfy [-R..R]
=

[-4*B..4B].

certain properties of model numbers are derived. Example 1. Suppose the Ada declaration
It is the contention of the authors that only Exml . S s t A l
after one completely understands model numbers type F is digits 5;

is given. Then an easy calculation yields that
will the value of Ada's numerical approximation B = R6.61 = 17 which is the predefined attribute

facilities be fully understood. F'Mantissa and that the exponent range is given by
§1 Introduction [-4*B..4*B] = [-68..68]. Hence, the smallest

Ada defines the properties that approximates positive model number (the predefined attribute
of real arithmetic computation must satisfy. Be- F'Small) is in the notation of (1.1)

cause real arithmetic is implemented on machines -69 -
21

with different underlying hardware, the manner in laest m 2.0 e1.69L1021.
which these properties are achieved is left to the and the largest model number (Farge) is

implementation. The designers of Ada were faced 2#.llllllllllllllll#E68 = 268-251 2.95*1020.

with the problem of allowing different implementa- and the next model number greater than 1.0 is

tions and yet making the properties general enough 2#lOOOOOOOOOOOOOOO0fiEl = l.2-l6

for common numerical algorithms. The Ada design The predefined attribute F'Epsilon is the absolute

was based on W. S. Brown's work on floating point value of the difference between the 1.0 and the

arithmetic.
2

However. differences between Ada next ode numbereate than 1.0 and the
and Brown's work abound since their goals were dif- next model number greater than 1.0; and in this

ferent. Brown was interested in producing a model case is about equal to 1.52*0 or in general

of actual hardware; whereas with Ada, a machine 2.0**(-F'Mantissa + 1).

independent implementation was required. Remark: The fact that (F'Large)-l> F'Small is
The purpose of this paper is to point out the useful in dealing with small numbers.

background of Ada's model numbers especially The advantage of the Model Number approach is
Brown's work. It is the contention of the authors that the model numbers are stored exactly, in the

that only after one completely understands Brown's sense that if one assigns a model number to a vari-

model will the value of Ada's numerical approxima- able, then one can test for equality and obtain the

tion facilities be fully understood. expected result. The safe numbers of Ada have the

Throughout this paper we shall adopt the noa- same number B of mantissa digits as the model num-

tion bers of that type and have an exponent range of

b#O.d d...d n#Ee (1.1) -E..+E where E is implementation defined and at
1l2- n least equal to 4*B.

1

where b will indicate the appropriate base, Remark: The term normalized varies from archi-

di for i=l.. .n will be digits in the hase b, tecture to architecture. The floating point archi-

and Ee will mean that the base b is raised to the tecture of the IBM 360/370 requires that the first

e power. (high order) hexadecimal digit be non-zero whereas

§2 Approximate Computation the PDP-11 format adopted by the VAX-11 requires

Ada assumes that the arithmetic facilities are the first bit of the fractional part to be non-zero.

provided using binary numbers and allows the pro- Since an implementation will typically have

grammer to specify the minimal accuracy of a Real values which are not model numbers, the problem is

data type. For floating point this specification to develop a model for the approximation of the

is an integer giving the minimal number of decimal numbers, some of these numbers are bounded by a

digits of significance in stored values by the im- model interval i.e. a real number interval whose

plementation and determines the floating point model endpoints are model numbers.

numbers. Since a binary radix is assumed, then we Definition 1. The model interval associated

define the floating point model numbers to consist with a value that belongs to a real type is the

of zero and all numbers of the form smallest model interval that includes the value.

sign*binary normalized mantissa* Model intervals which contain no other model numbes

38 Annual National Conference on Ada Technology 1986

L=

are called Atomic Model Intervals.
To illustrate this consider the following ex-

amples. interval X is said to be F-bounded iff every x in

Example 2. Consider the model numbers whose X is F-bounded. A machine number x is said to be

mantissa length is 8 i.e. B = 8. Using hexadecimal in F'Range if and only if x = 0 or F'Small < lxi <

notation we find that 16#0.A04 which is not a model F'Large. Adopting the notation of Brown, for x

number is bounded by the model interval whose end- any F-bounded machine number, we denote by x' the

points are given by 16#0.A0 and 16#0.Al. Also we Atomic model interval containing x. Furthermore,

find that 0.1 which in hexadecimal is 16#0.1999... # if X is any F-bounded interval then X' is the

is bounded by the modelinterval [16#0.198..6#0.19A]. smallest model interval containing X.

Example 3. Consider the previous declaration The Ada Postulates for floating point oper-

of type F, i.e. type F is digits 5. With this type ations (+,,*,/) are stated in Ada as follows:
1

declaration, we have 17 binary places. The value Postulate 1. The result model interval is the
0.1 is bounded by the model interval [16#0.19999.. smallest model interval (of the result subtype)

16#0.1999A] where the hexadecimal numbers are used that includes the minimum and the maximum of all the

for convenience and are exactly equivalent to the values obtained by applying the (exact) mathemati-

normalized binary representation since the first cal operation, when each operand is given any value
three binary digits of the hexadecimal number 1 of the model interval (of the operand subtype) de-

are zero. The width of this model interval is fined for the operand.
-7 Postulate 2. The result model interval is

approximately 9.5367*10 which we saw to be less undefined if the absolute value of one of the
than F sEpsilon. above mathematical results exceed the largest

It is not hard to see that the Atomic model safe number of the result type. Whenever the
.0intervals vary In width. Indeed, the atomic inter- result model interval is undefined it is highly

val [0.0..F'Small] has width of approximately desirable that the exception NUMERIC ERROR be

1.69*10-21 while the interval [1.0..1.0 + F'Epsi- raised if the implementation cannot produce an
Ion] has width F'Epsilon which was found to be actual result that is in the range of safe num-

approximately 1.53*10-5. The following Theorem is bers.

then clear. The floating point operations may be summa-

Theorem 1. The width of any Atomic interval rized as follows:

is less than or equal to F'Epsilon. (I.) For each operand, a model interval of
Remark: The role that F'Epsilon plays is ex- the appropriate type or subtype is obtained.

tremely important in the error analysis for model (2.) The mathematical operation is perform-

number computation. Hence the inequalities dis- ed on the model intervals, obtaining a new interval

played in the following theorem are extremely im- (3.) The interval from the last step is
portant in scaling, expanded to a model interval. The model Interval

Theorem 2. F'Small 2 (F'Epsilon) attained from the last step bounds the accuracy of

-2 the result.
and FMarge > (F'Epsilon)- Consider the following example:

5

These results lead us to the following theorem Example 4. Consider the following Ada declar-
Theorem 3. Let x1 and xr be respectively the ation:

left and right endpoints of the atomic model inter- type F is digits 5;

val containing the number x. Then x,y:F;

(1.0-F'Epsilon)*x < xI < x < (1.0+F'Epsilon)*x We wish to compute x*y, where x=O.l and y=l0.0.
-- -- r -- Step 1: says that x is the model interval

Hence, the relative error which we define as [16#0.19999..16#0.1999A] while y is the model num-

I [xI , xr] - x I ber 16#O.A#El.
< F'Epsilon. Step 2: then gives the interval [16#0.FFFFA..

(xI - 16#1.00004].
§3 Arithmetic Properties Step 3: then gives the slightly larger model

Throughout the remaining parts of this paper interval [16#0.FFFF8..16#1.0001).

we will indicate fl(x*y) to be the machine number Example 5. We wish to consider x+y, where
result of x with y under the binary operation *. x=1.0 and y=F'Small.
In a conventional model for floating point compu- Step 1: x and y are model numbers so no new

tation one begins by postulating the machine num- intervals are constructed.

bers (i.e. those numbers which are representable Step 2: the interval at this step is the mach-
on a machine) as exactly the model numbers with ine number 1.O+F'Small.

floating point operations that are exact up to Step 3: from previous computations we see that
rounding or chopping. Then one obtains that this number is then expanded to the Atomic model

fl(x*y) = (x*y)(l+del) where del < rlul (3.1) interval [1.O..l.O+F'Epsilon].

where * varies over the binary operations; r varies Unfortunately, machine anomilies play an impor-
from 1..4 depending on the type of arithmetic em- tant role in any computation as well as the model

ployed (round or chop); and u depends on the num- number computation as the following example indi-
ber of digits of accuracy.

4
cates.

We wish to derive such a bound for comput- Example 6. Consider a three decimal digit
ation of model numbers but first we must introduce computer with no guard digit in its accumalator.

some general properties. We shall stipulate a mantissa length of 3. Such
Definition 2. Any machine number x is said a machine would probably compute 10#1.00 * 10#.999

to be F-bounded If and only if Ixir F'Large. An io the following manner.

Annual National Conference on Ada Technology 1986 39

Step 1: would normalize the numbers and then Theorem 4 supports this claim without any further
multiply in the following manner IO#.I0OEl * qualification. However, if an operand x is not a
10#.999. model number, then the operation may effectively

Step 2: would yield .099*10 or .990. replace it with a different value i in x', and the
Step 3: would just return the result of Step 2 relative error of the computed result will be small

which is a seemingly unacceptable result because if the exact result is obtained from R rather than
.999 (the actual result) does not lie in the model x. Since x and R lie in the same model interval
interval. x', then we may view as being equivalent to x.

On the otherhand, with the mantissa length set Hence, the exact position of x and R are irrelevant.
to 2 affording us the luxury of extra machine pre- Theorem 6. Let x and y be F-bounded real num-
cision in its model numbers. We find that the bers and let * be a binary operation. In computing
steps in that same calculation are: x*y, let R and 9 be the effective values in x' and

Step 1: would compute the model interval .0999' y' for x and y respectively. Further suppose that
which is [.99 1.00]. (x' *y')' is in F'range. Then for every 2 in

Step 2: would form the product of 1.00 times (fl(x*y))' there is a 6 such that
[.99 1.00] which would yield the interval [.99 = (i*)(i+6) where 161< F'Epsilon (4.1)
1.00]. Proof. By Theorem 4, fl(x*y) is in (x'*y')'.

Step 3: would return the result as in Step 2 If fl(x*y) is in x'*y' then by the definition of an

since it is a model interval. This model inter- interval operation there exist R in x' and 9 in y'
val now does contain the answer of .999. such that fl(x*y)=R*g. If fl(x*y) is in (x'*y')'-

Remark: the same phenomena would result if (x'*y'), that is fl(x*y) is in u', where u is an

we replaced the above problem with the subtrac- mndpoint of x'*y'. Now choose 9*9 such that
tion problem 1.00 - .999 and leads one to conjec- u=*9. Then fl(x*y) is in (*9)' Hence, for any
ture the necessity of a guard digit in an Ada z in (fl(x*y))' we find that 2 is in (i*9)'. The
declaration. Additional insight into this phe- result now follows from Theorem 3.
nomena will be given in Example 9. §5 Arithemetic Comparisons

Example 7. With the same computer in mind as In pcrforming an arithmetic comparison, great
in Example 6 and mantissa length set at 3 consider care is required, since any error in either operand
the comnoutation of l./x where x=9.0. may reverse the result. Nevertheless, the result

Step 1: would normalize the model numbers 1.0 does convey information, which can be made precise
and 9.0. by analyzing the possible error in each operand

Step 2: would perform the reciprocal operation and then using the results of this section.

to yield the normalized result I0#.1IIEO. Postulate 3.1 For the result of a rela-
Step 3: would return the result as in Step 3 tion between two real operands, consider for

since this result is a model number. each operand the model interval (of the operand

On the otherhand, if we had chosen the mantissa subtype) defined for the operand; the result can be
length to be 2 then the steps would proceed as any value obtained by applying the mathematical
follows: comparison to values arbitrarily chosen in the

Step 1: would normalize the model numbers 1.0 corresponding operand model intervals. If either

and 9.0. or both of the operand model intervals is undefin-
Step 2: would perform the reciprocal operation ed (and if neither of the operand evaluations

to yield the normalized result 10#.IIIEO. raises an exception) then the result of the com-
Step 3: would yield the model interval [.11., parison is allowed to be any possible value (that

.12]. is TRUE or FALSE).
The following result paraphrases the Ada This postulate immediately yields the follow-

Postulates 1 and 2. ing theorem:
Theorem 4. Let x and y be F-bounded machine Theorem 7. Consider a comparison of two

numbers, and let * be any binary operator. Then F-bounded machine numbers x and y. Let Z be the
fl(x*y) is an element of (x'*y')' provided x'*y' closed interval [x,y] if x<y or [y,x] otherwise.

is F-bounded. If there are at least two model numbers in Z, then
Some immediate consequences of these results the correct result is reported by Ada. If there

are the following: is exactly one model number in Z, then Ada may
Theorem 5. Let x and y be model numbers and report either the correct result or that x = y.

let * be any of the binary operations addition, Finally, if there are no model numbers in Z, then
subtraction and multiplication. If x*y is a model the report is implementation dependent.
number then fl(x*y)=x*y. Proof: Assume that Z = [x,y]. If Z contains

Remark: Although the reciprocal of a model at least two model numbers then Z must contain Yl

number is not a model number one finds that if a (the left hand endpoint of y') and xr (the right
number is a power of 2 than it's reciprocal is hand endpoint of x') with x < Y Hence the inter-
also a model number. r- I

§4 Error Bounds vals x' and y' are disjoint and the result now
We are now interested in deriving error follows from the Postulate.

bounds for various binary operations which is to If Z contains exactly one model number then

say that all operations may be considered accu- we find that Z contains xr which is equal to yI.

rate to within F'Epsilon, whenever the operands Therefore the postulate indicate that the correct
themselves are F-bounded machine numbers with an result may be returned or that of equality if the
F-bounded result. If the operands are model num-
bers whose product is also a model number then two arbitrary points in the model intervals x' and

y' that are chosen are xr and yl respectively.

40 Annual National Conference on Ada Technology 1986

Finally, if Z contains no model numbers then References
x' and y' must intersect at more than one machine [1.] American National Standard. "Reference Man-
number and hence the report is implementation de- ual for the Ada Programming Language", 1983.
pendent. This completes the proof of the Theorem. [2.] Brown, W.S., A Simple but Realistic Model of

Example 8. For the Ada declaration Floating Point Computation ACM Transactions of
type F is digits 5; Mathematical Software, v7, pp. 445-480, 1981.

consider the comparison of the.machine numbers [3.] Moore, R. E., "Methods and Applications of
x = .1 and y = .1 + F'Epsilon/16. Recall that x' Interval Analysis" SIAM Studies in Applied Math-
is given by the model interval [16#0.19999.. ematics, Philadelphia, Pa., 1979.
16#0.1999A] while y' may be found to be [16#0.1999A [4.] Vandergraft, J. S., "Introduction to Numer-
..16#0.1999B] in which case the mathematical re- ical Computations", Academic Press, New York, N.Y.,
sult is returned or that of comparing the equal 1983.
endpoints. Consider also the comparison of .1 with [5.] Wichmann, B. A., "Tutorial Material on the
itself. In this case the interval Z = [.1]; hence Real Datatypes in Ada", Centacs Fort Monmouth, N.J.
does not contain a model number. Therefore, this

result is implementation dependent.
*Example 9. To illustrate the importance of

"guard bits" consider approximating a root of

f(x) = x
3
-1.73x

2
+ .641x - .0584 using a bisec-

tion search algorithm. The polynomial f has a
root in the interval [.2,1] at p z .33378. The
algorithm begins with model intervals approxi-
mating .2 and 1.0, say a' and b'. At each step

0 0

a model interval p ! = (-(af + bl)'. is formed
from model intervals a.-anl b! where (f(a'))' and

1 1

(f(b!))' are of opposite sign. Depending on the

sign of (f(p!))' new model intervals a' N
i +

and bi+ are formed and p!+l computed. The f

* procedure continues until the sign of (f(p'))'
cannot be determined, correctly, as positive or J. J. Buoni, Professor
negative. The model interval corresponding to Youngstown State University

Pi is then reported as the approximation. Results Youngstown, Ohio 44555
using N bit mantissa where N = 9,10,11 are given
in the following table.

N:Best Possible Model Interval
9 [.101010101, .101010110]

10 [.1010101011, .1010101100]
11 [.10101010111, .10101011000]

N:Reported Model Interval
9 [.101001101, .101010000]

10 [.i010110100, .1010111001]
11 [.10101010011, .10101010111]

N:Corresponding Decimal Interval

9 [.3252, .3281]
10 [.3379, .3403]
11 [.3328, .3337]

If the number of decimal digits selected were 3,
then minimally a 10 bit mantissa is required. This
example illustrates the improvement obtained by
using an 11 bit mantissa. The example further
illustrates a source of possible confusion. If one
has a machine with an 11 bit mantissa and selects 3
decimal digits, the error between the actual an- Richard L. Burden
swer and our approximation is less than .001. If a Youngstown State University

* machine with a 10 bit mantissa is used and 3 deci- Youngstown, Ohio 44555

mal digits are selected, the error is at least .004.
One could be lead to false conclusions regarding

the accuracy obtained using 3 decimal digits. The
accuracy obtained involves an important trade-off
between the number of decimal digits selected and
the number of guard bits available. Subsequent
work of the authors will investigate this further.

Annual National Conference on Ada Technology 1986 41

% % %. . ,

DEVELOPMENT OF AN ADA* PACKAGE LIBRARY

Dr. Bruce Burton and Mr. Michael Broido

Intermetrics, Inc.
Aerospace Systems Group

5312 Bolsa Ave
Huntington Beach, California 92649

ABSTRACT The prototyping exercise included:

A usable prototype Ada package * an examination of the reasons for
library has been developed and is low software reuse in the past,
currently being evaluated for use in large
software development efforts. The library * identification of activities and
system is comprised of an Ada-oriented tools which would support a reuse
design language used to facilitate the methodology that spans the software
collection of reuse information, a development life-cycle from
relational data base to store reuse requirements through maintenance,
information, a set of reusable Ada
components and tools, and a set of * the development of a phased
guidelines governing the system's use. implementation plan for software
The prototyping exercise is discussed and reuse that defines a development
the lessons learned are presented. Our path from prototype to an operational,
experiences in developing the prototype multi-company, geographically
library and lessons learned from it have distributed system,
led to the definition of a comprehensive
tool set to facilitate software reuse. * development of a prototype for

that methodology,

•* the development, acquisition, and
evaluation of representative package

With the rising demand for cost- entries, and
effective production of software, software
reuse has become increasingly important as * an examination of user interface
a potential solution to low programmer techniques that could be used to
productivity. In the Ada programming maximize communications between a
language, explicit support is provided for reuse system and its users.
software reuse through the "package" and
" generic " language features.
Unfortunately, the concept of Ada software 8AIGBQUID
reuse is not a panacea for our current
software productivity problems. The As discussed above, software reuse is
notion of software reuse has been popular not a new concept. Significant efforts
for decades. But implementing high have been underway since the early 1960's
degrees of reuse has usually failed, with to improve software development
the exception of some efforts in fairly productivity through reuse (consider
narrow areas (business and compiler the early observations of McIlroy about
applications). The challenge then, is to the benefits of reuse presented at the
recognize the contributions that the Ada NATO Software Engineering meeting in
language can make to a software reuse Garnish in 1968) [STANDISH83]. An
effort while at the same time identifying analysis of the problems attending reuse
and resolving language-independent has led to the identification of several
problems. Based on the promise of the Ada potential hindrances to reuse [STANDISH83,
programming language we undertook the BROID085]. These impediments to reuse
development of a prototype Ada package can be categorized as technical, economic,
library, and political obstructions. Some typical

Ada is a trademark of the U.S. problems that hinder reuse include:

Department of Defense (AJPO).

42 Annual National Conference on Ada Technology 1986

.. 1 .1

-...... V -, w , t w : MTV z x 1 C7 11-17 110X11 MIL.-, M-7 K" T 1 T-4

" lack of universal standards for
component composition, level of
documentation, coding techniques,
testing, etc.,

" difficulty in transferring an

understanding of the purpose of a
software routine from the author
to the potential reuser, ADA TEMPLATE DATA

" higher initial development costs PACKAGES

and longer schedules,
UNITNAME: DTTA

amtle PREDEFINED DATATR E

" risk management issues such as AUTHOR: REPORTS

w ar ra nt y, lia b iIi ty, a nd jh

accountability, t

" the "not invented
here" syndrome,

and REUSE
DATA " DTBS

Enter MESU" the lack of pride typically exhibited kdto BE
when reuse has been selected in a Sor.. UER

software development project over QUERIES MANUA D
: original development. ENTRY 9)EI

While the problems impeding reuse are
significant, the large size and cost of Figure 1. Reuse process overview.
a major software development effort
provides substantial motivation to improve

. productivity through reuse. Although Ada investigating the problems that hinder
provides a natural vehicle for encouraging reuse. We are determined to find
software engineering reuse, the same solutions to these problems and to collect
technical and political obstructions and reuse Ada packages.
that have limited reuse in the past are
likely to once again impede the sharing of
software engineering products across APPROACH
projects. The Software Technology
Department within Intermetrics is actively Along these lines, we have defined a

phased approach to the development of a
reusable package library suitable for use

Table 1. Overview of a phased development on large Ada applications projects.
of a reusable package library. Rather than define an elaborate reuse

facility and implement the library in a
s Asingle step, we are currently prototyping

1 Analys,sandrequirementsOefinition -Identifycharacterrsticsofprevious parts of this facility to investigate the
software libraries
IdentifyinformationuniquetoAdapackages potential utility of our approach. An
necessaryor hecollctionofAda overview of this phased development plan
packages is shown in Table 1; a more complete view

2 Prototypesoftwarecatalog .DesignandimplementprototypeAda is offered in [BURTON85] . The initial
software cataog (ASCAT) effort on this project has been focused on

- Catalog inita holdings
Evaluate ASCAT and user interface the creation of an Ada Software CATalog

(ASCAT).
3 Autornate ASCAT/CMS iterface - Automate the interaction between the

software catalog and the Configuration
Management System (CMS) An overview of the ASCAT portion of

4 Inltegratesupport tools Automateexamination ofnsubmi.ttedAda the Ada package reuse system is shown in
packages through incorporation of support Figure 1. The system has been implemented
toostoensureadherencetosubmission using Byron*, Intermetrics' Ada-basedsotardd• program design language, and a commercial

5 Expandtheuser communty Focus of package reuse system will shift relational database management system.fromapassiveonewhereentreslow Central to the system is the ability of
from users b software catalog to one
where EMAILwouldbeusedtoprovide Byron to support definition and use of
automatic systern/user ommunication user-defined keywords.

6 Automatc ASCAT/Software lIbrary - Fully automate the Interaction between the
r:eactlon CMS ASCAT and the program library

7 Provide multi-ste and multt-company Add provisionswithin the system to handle Byron is a trademark of Intermetrics,
extens o distribution, licensing, use renrictions Inc.

Annual National Conference on Ada Technology 1986 43

V"% % 4

Software Clasmification and Data Element always available. The second factor
Selection was the widely distinct set of

users we were addressing; they do not
One key to the success of any reuse share the commonality of purpose

scheme is the types of classifications which makes domain analysis an
assigned to entries. The primary purpose effective top-down approach. The
of these classifications is to facilitate decision to center our design on
retrieval, but they may also be used to packages enabled us to define a
assist in defining storage strategies as standard header for each package,
well. based on the requirements of our Byron

program product. Formalized
Selecting the classifications to be requirements and design documentation

used is really a subset of a larger were not required.
question: what data elements do we want to
be able to retrieve about a particular This decision causes the library
entry? The list of storable elements to be more supportive of "bottom
seems in our opinion to be highly up" software construction techniques
influenced by the size of the library than most of today's top-down
(number of program units stored) and the methods. The top-down methods reflect
degree of cooperation (or potential an attitude of defining what would be
antagonism) among the users of the a perfect system and do not adequately
library. An initial cut at such a recognize the influence of existing
list was prepared [BROIDO85] from the tools (including code) should have on
perspective of our ultimate (multiple requirements formulation in the
sites, multiple organizations, multiple presence of real cost constraints.
usage types) system. Over 60 items which (Note that the "object oriented
could potentially affect the suitability design" strategies that are emerging
of an entry were named in seven major with Ada reflect a tendency away from
categories: identification (3 items) , strict top-down methods.)
description (16 items), component parts
(20) , environment/usage (9) , ordering e No a priori naming conventions
information (7) , and revision history were established, although an informal
(11). Even at this length, we recognize guideline was prompted by the
that there are undoubtedly many other technical monitor of one of the
items which could be added. contributing programs.

This list was far too large for our a Configuration management was not
prototype, so we examined the context in rigidly enforced, except within
which the prototype would operate. We the rules imposed by Ada. In
characterized our initial environment as particular, no computerized list
follows: of outstanding users (people or

programs) of the library routines
e All the users would be from the was maintained.

same company, although there would be
several divisions using the common e The programs which were intending
library. Thus, no restrictions on to take advantage of the library
access would need to be supported. provided no axp.ink funding for tool

support or to ensure that any new
* All initial entries would be written packages created were generalized and

(when possible) in machine-independent otherwise suitable for future reuse.
Ada, so the compilation and execution Package headers and other programmer-
environments would be well-defined, supplied information had to be easy

(in both time and difficulty) for the
* * Source code would always be available, programmers to supply.

so users could do their own tailoring
(no "black boxes"). Support in the Various standards were established
form of corrections and training for the data items we would collect.
(other than by reading the source Since we were attempting to catalog
code) would not be provided, packages which had been previously

created to support several different
e Emphasis was centered around the projects, It was necessary to

collection of reusable Ada packages retrofit many of the selected packages
rather than complete programs. Two to include the required Byron
factors influenced this decision. The comments. Part of our evaluation will
first is that most of the packages we be to try to identify the difficulties
wanted to include already existed caused by "loose" definitions of
prior to the start of our efforts, and essentially narrative fields (e.g.,
coherent design documents were not overviews). In addition, no common

44 Annual National Conference on Ada Technology 1986

e.

methodology had been established, so complete programs, although the keywords
the degree of formality and the list allowed are suggested by the program
of available support items (repeatable authors and filtered by an acceptance
test cases, previous sample output, team.
user documentation, etc.) also varied
considerably. One of the authors is a member of the

Applications Panel of the Department of
We filtered the original list down to Defense's Software Technology for

the following data items for the database Adaptable, Reliable Systems (STARS)
(others, such as the calling conventions Program. An important open issue
and parameters, would be available from surrounding the formation of a potential
the source code if not given in the Ada package library to be available as GFE
overview): materials for DoD contracts is defining

the quality of the entries. On the one
1. Unit name hand, some people advocate including only
2. Author items of the highest quality, with full
3. Unit size DoD standard documentation and even formal
4. Source language independent validation and verification
5. Date created (IV&V) required on new entries. Others
6. Date last updated prefer to let a more flexible scheme
7. Category code (see below) apply, with a "trust level" associated
8. Overview with entries. This latter scheme
9. Algorithm description encourages "promotion" of existing entries
10. Errors/exceptions generated from "buyer beware" to higher trust
11. Up to 5 keywords (for retrieval) levels; after all, using informally
12. Machine dependencies (if any) qualified designs and code and then
13. Program dependencies (if any) adding formal testing and documentation
14. Notes can still take less time (and often risk)

than inventing from scratch. For the
Our retrieval strategy was based upon prototype, we decided to let all submitted

a combination of two alternate entries be accepted and then evaluate the
mechanisms. The first mechanism was the impact of this decision.
assignment of a hierarchical category
code, with the hierarchy defined ahead of Reuse Infor-mtion Rxtratlon Kechanim-
time and changeable only at well separated
time intervals. This scheme is similar in Another critical phase in the
concept to the ones used by Computing development of an Ada package library
Reviews EACM85] and the IMSL library involves the extraction mechanism used to
1IMSL76]. But it was necessary to invent collect reuse-oriented information. The
our own classification scheme since extraction mechanism utilized in an Ada
neither of those two was suitable to our package library must eventually provide
purposes. Our scheme has the advantage several different capabilities to insure
that everyone knows what the codes are and efficient operation. These required
can use an effectively finite procedure capabilities include:
for searching the entries. Disadvantages
include a growing list of vastly * support for automatic data collection,
dissimilar "miscellaneous" entries and
the inability of the original hierarchy * support for insuring standardization
designers to provide sufficiently of data entries,
discriminatory categories to provide
effective retrieval (not too many or too e support for assuring continuity and
few candidates). consistency of reuse information

across the Software Development
For the second mechanism, we allowed Life Cycle (SDLC),

the submitters to supply up to fivekeywords to be associated with each * support for checking completeness and

package. These keywords are not reasonableness (e.g., dates), and
associated (as implicitly occurs within
the hierarchy of categories), allow for * support for reuse information
overlapping topics (the packages do not examination.
conveniently fall into strict tree
classifications), and can grow (without
reprogramming or an all-knowing database The reuse information extraction
administrator) with the needs of the approach utilized in our Ada package
projects they are created for. A scheme library is detailed in Figure 2. An
similar to this has been employed on analysis of this figure reveals that each
NASA's COSMIC (Computer Software of the elements previously identified for
Management Information Center) system on data collection has been mapped into

Annual National Conference on Ada Technology 1986 45

LAA

predefined or user-defined keywords for for communication between the reuse
the Byron design tool. A Byron template system and its users.
program was subsequently developed to
automatically extract the reuse-oriented The present software catalog is
information. This information is placed limited in its interaction with the user.
into a file that can be directly processed For example, consider the scenario of a
into the ASCAT data base. software engineer performing an

application software design of a routine
that requires a sorting package. In the

prd ~present system, the software engineer
.PI* .6 would need to: 1) exit the editor, 2)

uloor Joohn D. enter the software catalog data base
-. 1 system, 3) enter a query to identifythe desired package, and 5) re-enter the

000 -J* the available sorting packages, 4) select

ADA BYRON RAW
PACKAGES TEPLATE DATA editor and issue the necessary commands to

draw the desired package (design/code)
into the applications program design.

Figure 2. Extraction mechanism overview

The use of a Byron-oriented reuse Edi Asortingroutineisrequired. Exit the
information extraction mechanism provides piAI,00,0 editor. Invoke the
most of the required capabilities -- ASCAT data base
enumerated above. This approach provides -- system and enter
a means for automatic collection of data -sowoma appropriate query.
standardized in field name and format.
Since the Byron design file is intended to
transition into the implementation
with reuse data intact, support is offered
to assure information continuity across
multiple phases of the SDLC.

While this extraction approach has CT

many positive features, it is not without ACAT Data - V.,. 1.1

Its shortcomings. The lack of predefined dap"efor.et pry -'O

reuse attributes within Byron fails to
support direct examination of reuse data Ou.wkw

items for completeness, consistency, and
reasonableness. The inclusion of reuse-
oriented information into the
Byron-produced program library represents
a simple potential improvement to our
approach that could aid in the examination
of the reuse data items.

0 Edgoftyare aalogm Iplmntntion wo el: .e Ibrp ;l

The software catalog for the reusable Select a package and
package library was implemented through -SonthM re-enter editor. Use
the use of a commercial relational data khrgorl (7); editortoadd'"use",
base management package. The data- with" and calls to

definition capability used for field package routines.

definition and the built-in data base
programming language facilitated the
examination of reuse data for limited
correctness and consistency checking. The Figure 3. Current ASCAT operational
use of a data base also aided in the rapid scenario
development of an interface between the
software catalog and potential Ada package
users through the utilization of This initial prototype software
predefined reports and support for ad hoc catalog can readily be improved to enhance
user queries. Nonetheless, the user the way in which it interacts with user.
interface represents a weak link in our In Figure 3, the present mode of
prototype package library. The present interaction is depicted. In Figure 4,
interface is very limited in the sense another potential scenario is shown. In
that it offers no context-specific support this scenario, a multi-window environment

46 Annual National Conference on Ada Technology 1986

New windows are opened

St r i to browse the sellcted AcAT Je& PMA i OWeiW

required. Open a *ulay~ aol.0 y ,SCrT, pada(a. OUd .
0I EM new window for

ASCAT applicationI
EeiP Apkasn a

(ASCAT S-) ckae sel .

- s-wIn ebl z

0aui ASA?.M-fl eg.

ASCAT" vePe .

03 EMaa Hqwn al

.w- .V lww...& CN

paiq Aepiw l Cpiudie al I.
3 A package aS selected. It
U is utilized by adding the

in Ithe program being
developed.

Figure 4. Improved ASCAT operational scenario

is used where the user may perform major Ada development contract within our
the software catalog inquiry and division motivated us to emphasize reuse
concurrently examine several promising of existing Ada packages as a cost and
packages without exiting the editor, risk reduction measure. Based on the

results of that contract, we found that
A third possible operational scenario reuse of existing generic support packages

of the software catalog is not pictured. significantly improved our productivity,
In this third approach, the data base with over 33% of the code comprised of
query language would be replaced by a reused packages.
natural language front-end, the software
catalog search would be assisted by an On the negative side, we found that
expert system, and the multi-window several of the tools initially exhibited
approach would be supported by a language- poor performance. In almost every
and context-sensitive editor. The instance, we found the general nature of
third approach is feasible with the reused packages to contribute heavily
investigation into its implementation to the performance problems. We also
occurring in several current projects found that the generic Ada packages
[ANDERSON85]. offered much more functionality than

required in our application. The extra
functionality resulted in a size penalty

LESSONS LEARNED with respect to the executable code. The
use of a performance analyzer and

The development, collection, tailoring of the reused code for the
evaluation, and cataloging of reusable current application substantially improved
components and tools undertaken in the tool performance [RATHGEBER86].
development of an Ada package library has
led to some interesting observations We also studied the problem of
concerning Ada package reuse, composing reusable applications packages
Unfortunately, we do not yet have enough from existing reusable components. As part
experience to evaluate the selected of an Air Force study, we compared the
category scheme, keyword retrieval performance of two different implemen-
capability, or the list of collected data tations of reusable Kalman filter
elements, routines. One of the routines was written

in Ada; generic Ada mathematics packages
During the past year, we have were heavily used in its development. The

developed a set of test and analysis tools other routine was written in FORTRAN and
written in Ada and intended for Ada specifically designed to solve a specific
software development efforts. The Kalman filter problem. A performance
fixed-price nature of this contract comparison of the generalized Ada package
and the fact that it represented the first against the custom-tailored FORTRAN

Annual National Conference on Ada Technology 1986 47

routines showed the FORTRAN Loutine to Just as we express delivered products
exhibit significant speed advantages over as complete programs, we tend to express
its Ada counterpart. This performance requirements in single, monolithic
difference is probably due to the relative specification documents. In order to
immaturity of the Ada compiler used in support high degrees of reuse during the
this study and also to the generalized requirements phase, we need tools which
nature of the Ada packages. An important allow us to express sets of requirements
conclusion of the study is that the .n small, reusable groups, just as we now
performance problems associated with compose programs from subroutines which
including a generalized reusable Ada are individually controlled. Refining
package into an applications program are requirements into sets in turn means that
substantially compounded when an entire we need a new nomenclature: with the new
system is comprised of reusable components identification scheme, traceability would
which also consist of reusable components. not be tied to paragraph numbers which

vary from product to product. But also
Although many of our lessons learned in accordance with the subroutine analogy,

have negative implications for the use of composition paradigms are needed to
Ada reusable packages, there is some establish compatibility (or at least
light at the end of the tunnel. Reuse was minimize contradiction) among requirements
a big aid in increasing our productivity sets.
in the development of Ada test and
analysis tools. We also found that reuse Reuse also supports the rapid
can be successfully employed in the development of prototypes for evaluating
development of efficient Ada systems if user interface and time-line analyses.
sufficient thought is put into how the
packages are to be reused and if the Preliminary Design Phase
proper tools are available (e.g., such as
a performance analyzer). This is the phase during which the

highest life cycle pay-off is likely to
occur from improved levels of reuse. The

TOWARD A COKPREDENSIVE REUSE ETHODOLOGY overall system architecture and the
interfaces between major elements are

A software development methodology frequently the most stable parts of a
which supports extensive reuse may be system, and hence the ones around which
quite a bit different from the the detailed changes are molded. Even in
methodologies now popularly employed the face of implementation differences,
(top-down, structured designs, chief new systems and upgrades tend to mimic the
programmer teams, data flow analyses, HIPO architecture of the original. (After all,
charts, etc.). These systems are not well look at the common functional partitioning
suited to achieving high levels of among the compilers, operating systems,
software reuse. These methodologies focus etc., produced by each of the mainframe
only on deriving systems almost and minicomputer vendors.)
exclusively from the requirements, without
much regard for components which may The major contribution of a reuse
already exist. The development of these methodology to the preliminary design
systems depends largely on the individual phase is to help make the designer aware
participants to know when existing of the contents of the tool box that
components can fully or partially satisfy is available. Reinvention in software is
the needs of the current project. When often a waste of resources, and it is a
partial reuse is achieved (i.e., reuse major contributor to the low levels of
with modification), the degree of reuse productivity now achieved. As reusable
(and two-way traceability) is not recorded sets of requirements are developed,
in any systematic way. designs which implement them (even if only

to the level of Ada generic packages) can
Reusability can be applied in every serve as significant building blocks. New

phase of the Software Development Life design tools are needed which explicitly
Cycle. New tools are needed in each one partition programs into reusable and
to support the activities involved, application-specific parts. Design

documents must also provide more of
Reguirements Phase the designers' thought processes to future

users: rationale for choosing one design
Major new systems are rarely created over its alternatives should be

from scratch any more. Major subsets of documented. Also missing from most
the requirements for new systems build current design documents is a list of
upon the experiences gained with the old "invariants": those elements of a design
ones. As a minimum, we have come to which are "always" to be true, even in the
expect high degrees of reliability face of the most likely requirements
and user friendliness in any new products. changes. Design tools which allow a user

48 Annual National Conference on Ada Technology 1986

% VV V V V- % V, 5

to specify "just like that one, except reuse of the original qualification tests,
... can be built on systems which support and may be implemented using a
the decomposition of programs into standardized mechanism for preparing,
reusable components with well-defined executing and analyzing test cases.
interfaces.

Rapid prototyping, as also described CONCLUSIONS
under the requirements phase, can help
identify the proper sequencing of major In accordance with our previous plan,
elements so that architecture validation we have completed a prototype mechanism
can be performed. for extracting reuse information from

packages developed in the normal course of
Detailed Design & Implementation Phases business. We also have a primitive

mechanism for entering that data in a
Tools that can be used during the catalog and searching the catalog for

detailed design and implementation phases entries that are potentially useful on new
include context-sensitive editors which projects. The approach centers on the
assist the user in selecting an design and implementation phases, since
appropriate package for inclusion (knowing these are the ones to which reuse concepts
such parameters as what has already been may most readily be applied in the given
selected for this program, the intended environments.
levels of optimization and error checking,
host/target computer selections, We have confirmed with actual
invocation of an Ada generic package, experience our earlier assessment that
etc.) . Other helpful tools include successful implementation of a reuse
interfaces with the configuration methodology requires thought, action and
management system to formally record management direction and support
inclusion of existing packages into a new throughout the software life cycle. This,
program, logging modification histories so however, may require a management
that an error found in one can be traced reorientation to the view of software
to all its "relatives", and performing development as the acquisition of a
static analyses to identify deviations long-lived corporate asset rather than as
from standards established for potential only the work required to produce the
new entries for the reuse catalog, current deliverable EWEGNER84, YEH85].

Complementing the reuse efforts being
When changes to library entries are conducted by the STARS office, which are

made and formally approved, the targeted at long range objectives, our
configuration management system can approach provides useful tools which can
aggressively (via electronic mail or other be utilized immediately.
network communications) notify users that
changes to library routines have been made We have achieved some success in
and the users may wish to include the applying software reuse. Effective use of
updates in their programs. the packages forced us to define subsets

of them which subsequently required
Integration and Test Phase performance tuning. This points out the

value of developing a comprehensive reuse
Reuse supports the integration and methodology, with adequate support tools

test phase by supporting the definition to facilitate the development of efficient
and generation of formal and informal test systems comprised of reusable components.
cases. It can also simplify performance
tuning by allowing an analyst to select The Ada language and the methodologies
alternate algorithms from the stored growing up around it provide a good start
library to adjust such parameters as toward achieving larger scale reuse than
execution speed, static or dynamic memory we have achieved in the past. But they
utilization, degree of internal checking are not enough by themselves. Even with
that is performed, etc. It can also Ada, there are still plenty of obstaclessupport the rehosting (if necessary) of to reuse. A management commitment and

programs from the development computer desire to improve productivity when
onto the intended target computer. coupled with a comprehensive reuse

methodology and the proper tools offer
Maintenance Phase substantial promise for improvement.

Reuse during the maintenance phase is
the best example of reuse, but it is so
obvious that it is not even recognized as
such. Rarely are programs discarded
and reimplemented when the first bug is
discovered. Regression testing represents

Annual National Conference on Ada Technology 1986 49

7 . -

ACM85 "Introduction to the CR Dr. Bruce Burton is the manager of the
Classification System," Software Technology Department at
Computing Reviews, Vol. 26, Intermetrics Inc., where he has worked
No.1. Association for since 1981. He holds an M.S. in
Computing Machinery, information and computer science and a
January, 1985, pp. 45-57. Ph.D in physical chemistry from the

University of California, Irvine.
ANDERSON85 Anderson, C.M. and Mc- Dr. Burton's department is responsible for

Nicholl, D.G., "Reusable the investigation of software development
Software - A Mission problems that hinder the cost-effective
Critical Case Study", AIAA construction of reliable software. The
Computer in Aerospace V specific areas addressed by current
Conference, October 21-23, research include Ada software reuse and
Long Beach, California. real-time programming issues in Ada.

BROIDO85 Broido, Michael D., "Soft- Michael D. Broido received the
ware Commonality Study B.S. degree in mathematics from the
for Space Station Phase B", California Institute of Technology in
Intermetrics Report 1970, and the M.S. degree in computer
IR-CA-029, Intermetrics, science from the University of Southern
Inc., 29 May 1985. California in 1973. He has been with

Intermetrics since 1983 and has been
BURTON85 Burton, B.A. and Broido, involved in improving software engineering

M.D., "A Phased Approach to methods since 1976. He is a member of the
Ada Package Reuse", STARS Applications Panel of the STARS Program.
Workshop on Software Reuse, His research interests include configura-
April 9-12 1985, Naval tion management, software quality
Research Laboratory, assurance, and performance improvement.
Washington, DC 20375-5000.

IMSL76 Reference manual, The
International Mathematical &
Statistics Libraries, IMSL,
Fall, 1976.

RATHGEBER86 Rathgeber, R.L., "Technical
Report on Ada Test and
Analysis Tools", Inter-
metrics, Inc., Huntington
Beach, California, In
Preparation.

STANDISH83 Standish, T.A., "Software
Reuse", presented at the ITT
Workshop on Reusability in
Programming, Rhode Island,
September 7-9, 1983.

WEGNER85 Wegner, Peter, "Capital-
Intensive Software Tech-
nology," IEEE Software,
Vol. 1, No.3, IEEE Computer
Society, July, 1984, pp.
7-45.

YEH85 Yeh, Dr. Raymond T.,
"Japanese and Brazilian
Software Technology Initia-
tives". (Luncheon address).
Published by the NSIA
Software Committee in
the Proceedfngs of the First
DOD/Industry STARS Program
ConfeXLncA, 30 April 1985 -
2 May 1985.

50 Annual National Conference on Ada Technology 1986

a,4

A. ,ak&a

EXPERIENCE WITH THE INTEGRATION OF ADA' DESIGN METHODS

Paul L. Baker

Computer Technology Associates, Inc
McLean, VA 22102

ABSTRACT

A new software utility to manipulate data explains the major motivation for the
bases of digital images and maps is being project because it implies that general
designed in Ada using two design methods: purpose software can be written to manipu-
1) the Abstract Data Type method because late not just one image format but whole
it describes the application concepts well classes of image and cartographic formats.
and because it works harmoniously with Typically, one finds many formats in use
Ada, and 2) the Data Flow Diagram techni- within the same agency; consequently,
que of Structure Analysis because it ex- there is a practical significance to this
presses the data flow architecture of our claim.
system clearly. The results of the two
design techniques must be properly inte- This early application of Ada on the pro-
grated to ensure a consistent design. ject employed the Abstract Data Type (ADT)
Several integration techniques have been method of design otherwise known as
explored. All have been used manually, but Object-Oriented Design1 . Although this
could be supported by automated tools. The experience affirmed the value of this
article contrasts two approaches to the method, it did not appear to be appro-
transformation between data flow diagrams priate for all of the system design work.
and Ada code and describes rules for con- Consequently, parts of the system were
necting the code segments derived from the designed using the Data Flow Diagram (DFD)
two different design methods. method of Structured Analysis 2.

The use of two design methods is effec-
tive, but it creates the possibility that

the two design documents are inconsistent.
L-I.r Although the Abstract Data Types are writ-

ten directly in Ada, the Data Flow Diag-
CTA has designed and is implementing a rams must be transformed into code, creat-
software system in Ada* to manipulate data ing another possibility for inconsistency.
bases of coordinate-referenced data, Consequently, it became clear early that
especially images. Funding for the work the consistent integration of design meth-
has been provided by Phase I and II Small ods would be an issue for this project.
Business Innovative Research (SBIR) grants
through the Goddard Space Flight Center of 2. Th& Ada D.aign Mathods
the National Aeronautics and Space Admin-
istration (NASA-GSFC). An Abstract Data Type (ADT) is a declara-

tion of program structure that encapsu-
Even in the early phases of this work, the lates a relatively complex data structure
Ada* language played an important role by and procedural operations associated with
affording the means to document a key the data. In the Ada community, this ap-
claim, namely that coordinate referenced proach is also known as Object-Oriented
data constitutes an Abstract Data Type Designl; and it is basically a construc-
that can be formally specified. This claim tion method. If the type is constructed
--Ada- isaeiserdtrproperly, it can be used without concern
*Ada is a registered trademark of for its internal structure thereby freeing

the U. S. Government, the attention of the designers for other
Ada Joint Program Office (AJPO) matters.

Annual National Conference on Ada Technology 1986 51

* ,. NU

In this project, the ADT definitions were At the very least, integration requires
written in Ada concurrently with their maintaining the traceability of design
exposition in English prose. The two docu- elements to requirements specifications.
ments express the same ideas; consequent- For simple correspondence of the elements,
ly, the Ada statements were organized in a requirements traceability matrix is ade-
packages that corresponded one to one with quate. However, software development also
chapters in the English exposition. Be- requires composition and decomposition of

6 cause the Ada ADT definitions are compil- elements, and these steps generate a need
able, subsequent integration with imple- for structured documentation. Structured
mentation code is straightforward. Analysis provides one documentation op-

tion; annotation embedded in structured

In practice, it is convenient to specify computer language statements is another.
some of the next stage of design while
completing the current stage. Traditional- 3,2 Tha Data Dictionary
ly, this is a role for PDL (Program Design
Language). A number of Ada PDL's have been A basic feature of the Structured Analysis
developed which provide syntax consistent method is the Data Dictionary which holds
with Ada 4 allowing the designer to inter- structured definitions of all the data
sperse PDL freely to elaborate on the items that pass between processes. The
definitions of the Ada ADT's. In our tax- equivalent structure in Ada is the decla-
onomy, PDL is part of design but not a ration section of a package where all the
distinct method, data types are defined. Normally, a Data

Dictionary is organized alphabetically,
The highest level of any new system design while the Ada type declarations are not.
serves to specify the virtual machine seen Either alternative form can be taken as
by the intended user. The design method primary but it helps to be consistent. The
used to express the design should be sel- pros and cons of the two options can be
ected to portray the character of the summarized as follows:
virtual machine as clearly as possible.
Unless the system is a very simple state Options for integrating
machine, the Abstract Data Types cannot the Data Dictionary
represent it clearly. Option I: Data Dictionary is Primary

Because the system under development is
basically a pipeline between an analysis Pro: The Data Dictionary is easily read
station and a large data store, it is and updated.
natural to portray the system design using
Data Flow Diagrams 2 (DFD). Moreover, the Con: The Data Dictionary must be
DFD representations were familiar to both transformed to Ada
the project staff and outside reviewers.
Consequently, DFD's could serve as a com- Mitigating Factor: Automated tool could
mon basis for discussion of the design. be built.

In summary, the Abstract Data Type method Option 2: Ada Text is Primary
is perfectly adapted to the Ada language
environment, but no single method is ideal Pro: No transformation. Directly
for every view of the system. A logical compilable.
method to complement ADT's is the Data
Flow Diagram method. In previous nonAda Con: Not in alphabetical order. Hard to
experience within our company, DFD's and read.
SREM6 have been used about equally. Mitigating Factor: Automated documenta-

In. Igratio Approa tion tool could scan the Ada text
and build an alphabetic index.

3.1 Anaumpi2.nni Our project started with a Data Dictionary

First let us establish a context for the but shifted quickly to using all Ada be-
discussion. Software is developed to sat- cause the job of maintaining consistency
isfy a particular requirements specifica- is too great without tool support.

tion. In our view, a system design is
integrated when its parts are all mutually 3.1 The Data Flow Diagramn
consistent and consistent with the re-
quirements specification as well. Before Ada, the implementor had to invent

a procedure hierarchy to represent a set

52 Annual National Conference on Ada Technology 1986

% % %1%

of DFD's. The Ada task construct revolu- be added as annotation to the DFD.
tionizes the coding of DFD's because
formal conversion to Ada is now possible PAMELA is an excellent method, but its
without concern for the thread of control. premise that communication should be hier-
If a diagram requires independent threads archical is questionable. Although it is
of control, Ada provides them through the reasonable to delegate authority and
tasking mechanism. responsibility hierarchically, once a

software process has been properly author-
The hierarchical organization of Data Flow ized to act, there seems no reason to
Diagrams documents the designer's intended forbid communication with its peers.
system decomposition. A major choice to be
made when coding these diagrams is whether In view of this criticism, one should
to preserve this information in Ada and, consider a simplification of PAMELA. Oneif so, how. can eliminate the packages and their com-munication procedures by allowing direct

The most considered transformation method calls between the tasks which implement
known to this author is PAMELA, developed the primitive processes. It is still pos-
by George Cherry 3. In PAMELA, processes sible to preserve information concerning
that are not decomposed are associated the original DFD hierarchy as annotation
with tasks while those which have a decom- by using structured comments surrounding
position are associated with package con- the task declarations.
structs. Cherry argues that the compilable
Ada code should correspond to the hier- The main objection to the simplification
archical design. Therefore, the hierarchy concerns maintenance. Firstly, the flat
of the data flow diagrams is transformed task arrangement forces massive
into a nesting of packages within the recompilation when parts are changed.
declarative part of enclosing packages. Also, whenever a task declaration is
That is, if processes B and C compose changed, one must track down all refer-
process A, then the package corresponding ences to that task entry point and change
to A contains the packages corresponding them. This replacement would be simplified
to B and C. if Ada permited task names as parameters

of generics; but it does not. Generally
Cherry also argues that information flow speaking, Ada is weak in the area of re-
should be hierarchical; consequently, the configuring task structure either to ac-
packages which represent decomposable pro- comodate change or utilize parts from a
cesses must contain procedures to communi- stock of reusable software components5 .
cate between tasks nested in different
packages. The Ada procedures which define In the absence of tool support, the sim-
this information flow up and down the plified method was the obvious choice for
hierarchy serve as an interface definition this project. It is too tedious to con-
that corresponds completely to the orig- struct all the interfaces of the hierarchy
inal DFD. Thus, complete traceability of in Ada particularly since they do not
the Ada code to the DFD is preserved, contribute to the function of the system.

On the other hand, hierarchical communica- The pros and cons of these two options for
tion involves a heavy overhead for proce- transforming data flow diagrams can be
dure calls. For example, if it is neces- summarized as follows:
sary for a sub-sub-process to communicate
with a sub-sub-process elsewhere in the Options for Transforming
hierarchy, the task that initiates the Data Flow Diagrams
communication first calls upward to a
procedure in the package of its enclosing Option: PAMELA
sub-process. This procedure in turn calls
a procedure in the top-level package. The Pro: Ada code is hierarchical.
top-level process completes the call by Structure of the design is
first calling downward to the appropriate preserved in Ada code.
sub-process which in turn calls the Effect of change is local.
desired sub-subprocess. Con: Transform of design to code is

Actually, the Ada code derived from a DFD tedious and errorprone.
contains information that a conventional Hierarchy increases execution
DFD does not; specifically, it tells which overhead.
process initiates the data flow. Using Conditional calls are hard to
PAMELA design rules, this information can implement.

Annual National Confetence on Ada Technnlogy 196 40

=N

decomposition.

Mitigating Factor: Automatic Design
Tool exists to convert o data flow arrows are grouped together to
diagrams to Ada. define the operands of the operations.

These groups of arrows are represented

Option: Simplified, Flat Task Structure in Ada by the formal arguments of an
entry declaration. If desired, the for-

Pro: No hierarchy to create execution mal argument list can be made a named
overhead, entity in the Data Dictionary.

Manual transformation to code is
simpler than PAMELA. o the Ada statements are annotated with

comments to record their associations

Con: Original design hierarchy is with data flow diagram entities.
present only in Ada comments.Effect of change can be global. The first rule is rather obvious. Thesecond rule is more subtle because it

Mitigating Factor: Automatic tool makes an implicit assumption, namely that

could extract structured com- a DFD process identified with an ADT oper-

ments and verify against data ation has the property that it executes

flow diagram. Conversely a tool once for each set of data flow items. In

could create the code as conventional Structure Analysis, one may
suggested for PAMELA. never assume such a property for a pro-

cess. This point underscores the need to
3,A Thl Ahstract Data Ty develop the decomposition properly with an

understanding of how it will be implemen-
Structured Analysis is a form of top down ted by ADT's.

design; that is, it progresses by decompo-
sition rather than composition of ele- In general, the list of data flows con-

ments. The Abstract Data Type method is nected to a DFD process is not identical

more general; one may work the problem in to the parameter list of the corresponding

S"either direction which encourages a ADT operation, because the operation may

" middle-outwards development. Because of call on other processes in the DFD. The

this basic difference in approach, the DFD data flows involved in these calls also

part of a design will only mesh at its connect to the process. As a result, the

lowest level with ADT's. Part of the art DFD's containing primitive processes

of top down design is guiding the decompo- should be annotated to show how the flows

sition so that it meshes with the parts are being grouped.

available for implementation. The situa-tion is no dif ferent in this case. Manually, one can group the data f lows by
drawing a "cable-tie" around them. Manual

When DFD's must be integrated with ADT's, cabling provides sufficient documentation;

the main decomposition criterion is that after all, the Ada code contains a speci-

the decomposition should proceed suf- fic, formal specification of these opera-

ficiently far that each primitive process tions.

is simple enough to identify with one
operation of an abstract types. If decom- In an Ada environment, there is no special

position is not carried far enough, a rule for files. Files are introduced in

process may describe alternative and con- Structured Analysis because processes are

current functional computations that are assumed to have no memory. However, a file

hard to capture as a single ADT operation. on a data flow diagram can be associated
with an entry point in Ada. Naturally, the

Rules for Integration entry point must belong to a package that
of DFD's and ADT's hides the state information represented by

the file.

o data flow items are identified with
abstract data types that are represented 35 Final Thmigb±a

[by type declarations in Ada.
by tOn the one hand, automated tools are

o primitive processes are identified with highly desirable for dealing with DFD's;
an operation on an abstract type and are on the other hand, they may encumber the
represented in Ada by an entry point, effort to integrate the DFD's with ADT's

There should be a one to one relation of if the tool does not understand the
processes and operations. This require- cabling processes described above. If the

ment is the major restriction on the tool produces skeleton task and procedure

54 Annual Nalional Conference on Ada Technology 1986

.D% V. . . .

statements that must be heavily modified the help of an alphabetical index. Trace-
manually to mesh with ADT's, its benefits ability matrices are notoriously difficult
may be dissipated. to compile and maintain; again a tool

could extract them from the Ada annota-
Our discussion has concerned integration tion. Finally and somewhat unfortunately,
at the level of the output of design Ada does not permit the parameterization
methods. Many investigators are interested of task calls. This restriction compli-
in the integration at the level of the cates the maintenance of code that makes
method itself. For example, R. J. A. Buhr calls into a package where revisions must
has proposed a graphical design technique be performed. Correct use of information
specifically for Ada that maps readily hiding in Ada can prevent this problem,
into Ada code7,8. Closer to home, a group but the additional interfaces add over-
in our sponsoring agency NASA-GSFC has head. A text preprocessor to parameterize
developed a graphical method for dealing the calls in a package could provide an
with Abstract Data Types 9. This develop- alternative solution.
ment is particularly interesting because
it supports hierarchical, graphical decom- REFERENCES
position in the manner that has proved so
valuable with Structured Analysis. Like
many software developers, we shall let our
final judgement be swayed by the avail- 1) see pg. 38, Software Eag, with Ada,
ablity of affordable, convenient, support Grady Booch, Benjamin/Cummings (1983).
tools. 2) see Part 2 of Strni-tirAd Analygis and

4- Sumay Sy0 Am Sp cification, Tom DeMarco,
Prentice-Hall (1978).

In this project, two design methods were
used, Abstract Data Types and Data Flow 3) seminar notes for Software £nginar.ing
Diagrams. The results are integrated in with Ada, George Cherry, U. S. Profes-
the sense that elements of each design are sional Development Institute (1984).
connected though one or two of the follow- Contact George W. Cherry,
ing three methods. P.O. Box 2429, Reston, VA 22090.

First, different parts of the design can 4) unrya Af Ada-agad PDLa, January 1985,
share the same data dictionary. The compo- contact Dr. L. Lindley, Naval Avionics
sitions expressed in a Structured Analysis Center, Indianapolis, IN 46218.
data dictionary are isomorphic with Ada
record definitions; therefore, it is sim- 5) "Structured Tasking in Ada?", P. H.
ple to maintain consistency between dif- Welch, Ada Lattars, Vol. 5, No. 1,
ferent forms of the same dictionary. pg. 17 (July 1985).

Second, an element in one design method 6) "SREM at the Age of Eight",
can implement the requirement stated by Mack Alford, o ,utar Vol. 18, No. 4,
the specification of an element in another pg. 36. (April 1985).
design method. For example, a primitive
process in a data flow diagram can be 7) t DnJAign Xith Ada, R. J. A. Buhr,
implemented by an operation in an Abstract Prentice-Hall, (1984).
Data Type package. 8) "An Informal Overview of CADAE...",

Third, the elements of one design can be R. J. A. Buhr and G. M. Karam,
formally transformed into elements of Ada L attar, Vol. 4, No. 5, pg. 49
another design. For example, Data Flow (March 1985).
Diagrams can be formally transformed into
Ada code. 9) preprint, nJhank DiagramR,

Ed Seidewitz, NASA-GSFC,
Each of these integration methods is te- Greenbelt, MD 20771, (May 1985).
dious, time consuming and prone to error.
Consequently, tool support for the inte-

* gration effort would be very desirable.
Automated support for PAMELA is undergoing
final tests 3. However, simpler tools are
also needed. For example, the order of Ada
type definitions makes it difficult to
trace the composition of a type without

Annual National Conference on Ada Technology 1986 55

The author may be contacted at the
following address:

Dr. Paul L. Baker
Computer Technology Associates
7927 Jones Branch Drive, Suite 600W
McLean, VA 22102
(703) 8482713

The author earned his BS and MS degrees in
the field of Physics and his Phd in Astro-
nomy. For 7 years, he conducted astro-
nomical research specializing in the com-
puter assisted analysis of 3d spectral
line radio observations. Thereafter, he
joined CSC (Silver Spring, MD) and, for
three years, managed groups of programmers
who analysed data from space physics and
Landsat experiments. For the past 4 years,
he has performed system analysis and de-
sign in his current position as Chief
Scientist with CTA's Technologies Divi-
sion. CTA is incorporated in the state of
Colorado and has offices in seven states.

A

0.

56 Annual National Conference on Ada Technology 1986

0. Lt

APPLYING THE SPIRAL MODEL:
OBSERVATIONS ON DEVELOPING SYSTEM SOFTWARE IN ADA'

Frank C. Belz

TRW
Redondo Beach, CA 90278

Abstract tion. Until the model reaches a useful level of complete-
ness, its role as a prescriptive tool will be limited. The

A new model of software development and enhancement, author, in collaboration with Dr. Boehm (and using the

the spiral model, was introduced by Boehm in 1985; the experience of other researchers, developers and

model defines a risk-driven rather than specification- managers), is attempting to lay the groundwork for such

driven or prototype-driven approach to the software pro- an elaboration of the model.

cess. The introduction of Ada has established a risk

laden transitional era especially in the development of The introduction of Ada presents a rich resource in such

Ada system support software, and many projects are an effort; the opportunities and risks abound in this

taking a variety of risk-management approaches; the transitional era, and many different approaches to risk

spiral model providcs a way to view the successful management are being attempted. A particularly

approaches and may, as it matures, provide effective interesting area to observe is the development of Ada

guidance for future projects. This paper describes the support software, especially persistent support systems

spiral model, some of the risks involved in developing whose services may have an execution lifetime much

Ada system support software, and a (hypothetical) greater than that of a particular application program

application of the spiral model to a particular kind of execution. Examples include operating systems, data

such software: an integration framework for Ada pro- base management systems, Ada Programming Support

ject support environments. Environment portability kernels (KAPSES) and the
integration frameworks for advanced Ada-based project
support environments.

1. Introduction1. ItThis paper, then, has three purposes:

1.1. Overview In early 1985, Dr. Barry Boehm intro- 1. Describe the spiral model and the context from
duced a spiral model of software development and which it grew; this introductory section excerpts
enhancement that provides a new framework for guiding and summarizes parts of [Boehm, 1985], presenting
the software process [Boehm, 1985]. Its major distin- from that report: a brief historical review of
guishing feature is that it creates a risk-driven approach software process models and the issues they

to the software process, rather than a strictly address; a summary of the process steps involved
specification-driven or prototype-driven process. It incor- in the spiral model; and a brief demonstration of
porates many of the strengths of other models, while the conditions under which the spiral model reduces
resolving many of their difficulties, to other useful process models.

The spiral model is both descriptive, providing insight 2. Discuss some of the key risk factors involved in the

into the important processes that characterize successful Develome of perist ort syste

software development projects in today's world of developen A c povidesstht ss-

rapidly changing technology, and prescriptive, providing sion.

guidelines for better ways to organize the process of

software development in such a rapidly changing world.
The spiral nmodel is in its early stages of development; 3. Suggest a hypothetical scenario in which the opiral

there are many aspects of the model awaiting elabora- model approach is used in the development of an

'Ada is a trademark of the United States Department of Defense (AJPO)

Annual National Conference on Ada Technology 1986 57

%

underlying framework of an advanced Ada-based
project support environment. Section 3 contains this Alternative Software Life-Cycle Models
scenario.

Yet the waterfall model encountered a number of

This report is, therefore, very much a preliminary view difficulties, leading to a number of alternative life-cycle
of wrk n pogrssbot wih rspet t th spral models which do a better job of coping with theseof work in progress, both with respect to the spiral difficulties. For example:

model itself and with respect to the industry-wide intro-

duction of Ada support services. Section 2 discusses a
particular risk area in the development of new Ada sys- * The waterfall model does not adequately address
tens: the design of the data management interfaces of concerns of developing program families and organ-
support system software (such as operating systems, izing software to accommodate change. The Parnas
data base management systems and tool portability ker- information-hiding approach [Parnas, 1979] does an

nels). Section 3 describes a brief (hypothetical) scenario excellent job of addressing these concerns.
of the application of the spiral model to this risk area.

0 The waterfall model assumes a relatively uniform
progression of elaboration steps. The two-leg model
[Lehman-Stenning-Turski, 19841, [Lehman, 1984]

1.2. Software Process Models features separate processes of abstraction until a
formal specification is achieved, followed by a set of
formal deductive "reification" steps to proceed

The Waterfall Model through design and into code.

One of the earliest software process models, the a The waterfall model does not accommodate the sort
stagewise model given in [Benington, 1956], reconi-stagwis moel ivenin ~enngtn, 1561 reom-of evolutionary development, made possible by rapid
mended that software be developed in successive stages ootinadvlopen ad possiblebyraid(operational plan, operational specifications, coding prototyping capabilities and fourth-generation
specifications, coding, parameter testing, assembly test- languages. Several evolutionary development models
ing, shakedown, system evaluation). [McCracken-Jackson, 1982] and mixed models [Gid-

dings, 1984] have been advanced to address this
'Phe original treatme I s of the waterfall model given, for approach.

example, in [Royce. 19701, provided two primary
enhancements to the stagewise model: * The waterfall model does not address the possible

future modes of software development associated

a Recognition of the feedback loops between stages, with automatic programming capabilities, program

and a guideline to confine the feedback loops to transformation capabilities, and "knowledge-based
successive stages, in order to minimize the expensive software assistant" capabilities. The automation

rework involved in feedback across many stages. paradigm Balzer-Cheathal-Green, 19831 provides
an alternative life-cycle model and conceptual
framework for incorporating these capabilities.

a An initial incorporation of prototyping in the

software life-cycle, via a "build it twice" step run-niiig in, p;ia lll with requirements analysis and However, although each of these alternative approaches
design. deals with some of the difficulties of the waterfall

approach, each has its own set of difficulties and chal-
lenges to resolve. The information-hiding as an organiz-
ing approach has not yet been fully elaborated to see

The waterfall approach was largely consistent with the how it will cover such issues as prototyping. The two-
top-down structured programming model introduced in leg model has challenges in accommodating software
Mills, 11711. reuse, program families, and logical-physical design

A v n wtradeoffs. The evolutionary development approach has
A risk- management variant of the waterfall model, dis- challenges in scaling up to very large systems, ensuring
cussed in jlloehni, 1975] and elaborated in]Boehm, process visibility and control, avoiding the negative
19761, expanded each step to include a validation and effects of "information sclerosis,"I and avoiding the
verification activity to cover high-risk elements, reuse
considerations, an(] selective prototyping. Further ela-

'Information selcrosis is a syndrome familiar to operational
borations of the waterfall model covered such practices information-based systems, in which temporary work-arounds for
as incremental development IDistaso, 1980]. software deficiencies increasingly solidify into unchangeable

constraints on evolution. A typical example is the following
comment: "It's nice that you could change those equipment codes to

58 Annual National Conference on Ada Technology 1986

LMM~~~~ ~ ~ ~ -a M a" , -I IA

"undisciplined hacker" approach that the waterfall and 0 The constraints imposed on the application of the
other models were trying to correct. The automation alternatives (cost, schedule, interface, etc.).
paradigm has challenges in scaling up to very large sys-
terns accommodating program families, avoiding the The next step is to evaluate the alternatives with
effects of information sclerosis, and handling the boun- respect to the objectives and constraints. Frequently,
daries between older, stable, but less powerful capabili- this process will identify areas of uncertainty which are
ties and new, unstable, but more powerful capabilities. significant sources of project risk. If so, the next step

should involve tile formulation of a cost-effective stra-

1.3. The Spiral Model tegy for resolving the sources of risk. This may involve
prototyping, simulation, administering user question-

The spiral model of the software process serves as a naires, analytic modeling, or combinations of these and

significantly more robust foundation for a software other risk-resolution techniques.
development environment than previous models; it
includes most previous models as special cases, and Once the risks are evaluated, the next step is deter-

further provides guidance as to which combination of mined by the relative risks remaining. If performance or
previous models best fits a given software situation. user-interface risks strongly dominate program develop-

ment or internal interface-control risks, the next step

The spiral model is illustrated in Figure 1. The radial may be an evolutionary development step: a minimal
dimension in Figure I indicates the cumulative cost effort to specify the overall nature of the product, a plan

incurred in accomplishing the steps to date; the angular for the next level of prototyping, and the development of

dimension indicates the progress made in completing a more detailed prototype to continue to resolve the
each cycle of the spiral. The trajectory of the spiral major risk issues. On the other hand, if previous proto-
(working from the inside outward) tends to indicate the typing efforts have already resolved all of the perfor-

efficiency of the software development process: mance or user-interface risks, and program development
or interface-control risks dominate, the next step follows

Sth o s - sat the basic waterfall approach, modified as appropriate to
S tightly wound, spring-like spirals indicate a low rate ncorporateincrementaldevelopment.

of cost increase as progress toward the product (or
product component) is achieved; The spiral model accommodates any appropriate mix-

ture of specification-oriented, prototype-oriented,
0 loosely wound spiral trajectories indicate higher simulation-oriented, automatic transformation-oriented,

cost for corresponding achievement, or other approaches to software development, where the

appropriate mixed strategy is chosen by considering the
The model holds that each cycle involves a progression relative magnitude of the program risks, and the relative
through the same sequence of steps, for each portion of effectiveness of the various techniques in resolving the
the product and for each of its levels of elaboration, risks. (In a similar way, risk-management considerations
from an overall ,oncept-of-operation formulation to the determine the amount of time and effort which should be
coding of each individual program. devoted to such other project activities as planning,

configuration management, quality assurance, formal
verification, or testing).

1.4. A Typical Cycle of the Spiral
An important feature of the spiral model is that each

Each cycle of the spiral begins with tile identification of: cycle is completed by a review involving the primary
people or organizations concerned with the product.
This review covers all of the products developed during

being the previous cycle, including the plans for the next cycle• The objectives of the portion of the product big and the resources required to carry them out. The
elaborated (performance, functionality, ability to adtersucsrqde ocrytenot h
eabormate (pe ane, nc tmajor objective of the review is to ensure that all con-
accommodate change, etc). cerned parties are mutually committed to the approach

to be taken for the next phase.
7*. The alternative rneans of implementing this portion

of the product (design A, design 11, reuse, buy, etc). The plans for succeeding phases may also include a par-
• ":tition or the produict into increments for successive

make them more intelligible for us, but the Codes (onmittee just tetion o h rompct to i entsvfor ed niv-
detvelopmuuenut, or comuponent s to he developed by indivi-met and established the current codes as company standards." The dual organizations or persons. Thus, the review and

greatest risk or information sclerosis occurs when the evolutionary

prototype is placed in an environment that desperately needs coinitmtnent step may range from an individual walk-
improved capabilities, through of the design of a single programmer corn-

Annual National Conference on Ada Technology 1986 59

5.%

COST

PROGRESS

DETERMINE EVALUATE ALTERNATIVES.

OBJECTIVES. IDENTIFY. RESOLVE RISKS

ALTERNATIVES.

ANA'Y RIS K AN --LYSIS

R o" \ ROTO,..3 PROTOTYP
A YE' PROTO TYE

COMMITMENT AI ET N S

PARTITIONF ROTS PLAN C PTONPT SOF TAE/CL --- ..

D

\DEVELOP REQUIREMENTS SOFTWAEM,,NT PLAN VLD TIO PRODUCT --

AN ITS DESIGN VALIDATION " I I /
SAND VERIFICATION 1

U N IT

l--- --r -" - INTEGRA TEST

'," IMPL .. N ACCEPTANCE '_TEST I

ITATION ,TEST I

,PLANDEEO.VRF
NEXT PHASES NEXT LEVEL PRODUCT

Figure 1. Spiral Model of the Software Process

ponent, to a major requirements review involving of missions) could be improved by a software effort. The

developer, customer, user, and maintenance organiza- spiral process then includes a test of this hypothesis: at

tions. any time, if the hypothesis fails the test, the spiral is
terminated. Otherwise, it terminates in the installation

The spiral model applies equally well to devropment or of the new or modified software, and the hypothesis is

enhancement efforts, each of which are initiated by a tested by observing the effect on the operational mission.

hypothesis that a particular operational mission (or set

60 Annual National Conference on Ada Technology 1986

-:?.%
& P

1.5. Spiral Model Advantages 2. Ada Support Software: Risk Issues

There are special properties of support software, espe-
The primary advantage of the spiral model is that its cially persistent support software, which affect the pro-
range of options and risk-driven approach allow it to ject risks when that software is being developed in Ada.
accommodate the best features of existing software pro- In this section, a brief summary of a software designer's
cess models, while avoiding most of their difficulties. In view of some key characteristics of such software (and
appropriate situations, the spiral model becomes some of their specific interactions with Ada) is followed
equivalent to one of the existing process models. In by a summary of the management and technical risks
other situations, it provides guidance on the best mix of that derive from these characteristics.
existing approaches to be applied to a given project.

The primary conditions under which the spiral model 2.1. Characteristics of Persistent Ada Support
becomes equivalent to other main process models are Software
summarized below.

Persistent support software systems are generally

* If a project has a low risk in such areas as getting designed to provide reliable resource management ser-

the wrong user interface or not meeting stringent vices (eg, data, process, i/o) according to policies which

performance requirements; and it has a high risk if may restrict the provision of potentially sharable

it loses budget, schedule, and product predictability resources (eg, access control Imandatory and/or discre-

and control; then these risk considerations drive the tionary], processor allocation priority, device

spiral model into an equivalence to the waterfall allocation/assignment). Persistence is a characteristic of

model. such software when users of the software system3 Peed
to keep data over multiple 'sessions" and when multiple

* If a software product's requirements are very stable users need to access data maintained on shared
(implying a low risk of expensive design and code hardware resources. The essential property of such

breakage due to requirements changes during software is that, when executing, its state has a longer
development); and if the presence of errors in the lifetime than (ie, the value of its data is kept longer
software product constitutes a high risk to the mis- than) that of the software which is temporarily active
sion it serves; then these risk considerations drive on behalf of the user in the "session".
the spiral model to resemble the two-leg model of
precise specification and formal deductive program Examples of such software being developed in Ada

development, include
0 operating systems such as ASOS (Anderson-Hart,

0 If a project has a low risk in such areas as losing 19851,
budget and schedule predictability and control, 0 Data Base Management Systems such as TDBMS
encountering large-system integration problems, or [Bamberger, et al, 1986], LDM, DDM, and Multibase
coping with information sclerosis; and it has a high [CCA,19851,
risk in such areas as getting the wrong user inter-
face or user decision support requirements; then portability kernels for APSEs such as prototype
these risk considerations drive the spiral model into implementations of the facilities of the CAIS
an equivalence to the evolutionary development (KIT/KITIA, 19851 and the integrating frameworkmodel. of the ALS]ALS, 1985], both of which are based onthe KAPSE model of [Stoneman, 1980], and

* If automated software development capabilities are * a prototype implementation of the Ada/SQL sup-

available, then the spiral model accommodates port software to support the standard Ada-DBMS

them either as options for rapid prototyping or for Interface reported in (Friedman-Brykczynski, 19861;

application of the automation paradigm, depending this interface permits the replacement of underlying

on the risk considerations involved. DBMSs without affect the Ada programs using
them.

If the high-risk elements of a project involve a mix
of the risk items above, then the spiral approach
will reflect an appropriate mix of the process models
above. In doing so, its risk-avoidance features raise 3 including both people in a timesharing environment, and
the probability that the difficulties of the other sensors/effectors in a realtime control environment
models will be avoided. "threads" in a realtime control environment

Annual National Conference on Ada Technology 1986 61

These software entities need not be independent; The more capabilities present at the interface, the more
most database management systems rely on operat- powerful the support service must be. Arguments in
ing system services in critical ways. favor of a lower level include the fact the overall perfor-

mance of the support software may be enhanced by vir-
tue of its relative simplicity. On the other hand if the

2.1.1. Data management support performance of interest is that of the overall system,
and if achieving an effective portability kernel is critical,

In fact, if we focus on the critical aspect of the integra- an engineering compromise may be necessary in which a
tion framework for an APSE (in anticipation of the next carefully selected set of high level services are provided
section), a key consideration, data management, can be at the interface.
described with a layered view to order a whole family of
design issues. In [Friedman, et al, 1986], an 8-level refer-
ence model is proposed. In increasing order of complex- 2.1.2. Ada Interaction Effects There are a number
ity: of special properties of Ada that affect the interfaces

between such persistent support software and newly
1. Hardware layer provides the basic storage developed Ada programs.

resources.

2. Operating System layer provides file support (in * The interfaces are closely tied to the Ada program

the normal file-system sense) and multi-user access construction mechanism. The Ada language was
to files. (Supported by Ada 1/0.) carefully designed to permit programs to be con-

structed that rely on already existing and executing
capabilities; these capabilities can be described

3. Record layer provides external-internal data for- using specifications of library units that are refer-
mat conversion. (Supported by Ada I/O.) enced with context specifications (withs and uses).

The ways in which this process can occur depend on
4. File layer provides multi-user access to records, and the model of program construction assumed by the

access to data by key. (Supported by a file- Ada compiler.[ALRM, 1983
management system.)

If it must be possible to change the capabilities of
5. Tuple algebra layer provides specification of the support software in real time without bringing

operations as database commands, allowing data the system down, effective techniques for achieving
management system to return subset of all data this may involve both very sophisticated Ada pro-
examined to the program. (This is the minimum gramming techniques and special properties of Ada
layer for communication interface in a distributed compilers.[Roubine, 1985]
storage system.)

* Strong typing raises subtle interface design options.

6. Relation layer provides different user views of the Because of the ability (and mandate) to provide
data. (Typical Off-the-shelf DBMSs.) strong type checking across the interface, designers

of the support software are provided with a new
7. Object layer provides invariant assertions about choice: data of predefined types can be the only

the data used for consistency, and possibly inheri- data which cross the interface or the user defined
tance of date schema. (Research DBMSs.) types can be permitted at the interfaces. For most

designers, the latter case has not heretofore been
available except with weakly typed languages; Ada

8. Heuristic layer employs probabilistic assertions generics are necessary to achieve user defined types
about the data used for efficiency. (Al research at the (Ada) strongly typed interfaces.
areas.)

Strong typing, enforced at compile time, provides
When designing the particular support software of the opportunity in some cases to eliminate runtime
interest in the next section, an integration framework integrity checks; this is an incentive to permit
for an APSE, it is critical to decide what capabilities user-defined types at the interface. However, com-
will be provided at the interfaces. The proposed pile time checks are limited (many conditions are
MILSTD CAIS specification probably resides at the File not definable at compile time in Ada) and reliance
level for the most part with some functions at the Tuple on them may necessarily be augmented by other
algebra level. The requirements for the successor CAIS runtime checks. IFriedman, et al, 1986]
[KIT/KITIA, 1985 "RAC" mandate an interface set at
the Relation layer at least.

62 Annual National Conference on Ada Technology 1986

L~ *~ J

Maximal use of user defined types at the interface (as well as the perennial cost and calendar constraints)
may require very sophisticated, even complex (or are the driving risks.
some say, arcane) use of Ada features including, at
the least, nested generics. [Friedman-Brykczynski, Domain expertise and Ada expertise both have to be
19861 present on the staff of a given development project, and

though it is usually not mandatory, it is very helpful to

" Processor management software, written in Ada, have a single person with both.

impacts and is impacted by the Ada Runtime
Environment used by the Ada compiler. Ada tasking Ada compilers are just beginning to exhibit the corn-

semantics require that an unusual degree of control pleteness and robustness required of the more ambitious

of processor resources must be maintained within uses of Ada such as that proposed in [Friedman-

the Ada RTE. For this reason it is particularly Brykczynski, 1986] and [Roubine, 19851. The lack of the

difficult to design interfaces that simultaneously required compiler sophistication leads to more conserva-

use, say, the strong typing conventions, and permit tive design approaches. (Of course, in some cases, such

applications programs to be compiled with different as the requirement to support assurable multi-level secu-
compilers. rity]Anderson-Hart, 19851, the requirements of the

development itself may lead to even more conservative
approaches.) In support software that must execute on

oWhether or not all concurrency in the system is a variety of different target systems 1Bamberger, 19861,modeled by Ada tasks has a dramatic effect on the the principal of the least common denominator will dom-

character of the persistent support software. If not, a thate: for any particular Ada issue, the least capable

normal alternative is to permit concurrently execut- co pe r for a givelar geta ill die t design
ingAd pogrms Tes tw frm o cocurecy compiler for a given target will drive the design

ing Ada programs. Trhese two forms of concurrency aprch

must be carefully dealt with by the support approach.

software. The technical issues themselves pose substantial risks.

For example, DBMS systems must be written with A fundamental aspect of the technical risk analysis is
interfaces that acknowledge both forms of con- that this kind of support software is not amenable to
currency; this is in contrast to the current situation the construction of tight requirements: for example, per-
in which many preexisting DBMS's will only com- formance is important, but not precisely specifiable (usu-
municate with a single task at a time in an Ada ally), and sometimnes subordinate to other concerns, such
program because, for the DBMS, the only identified as verifiability. Unlike specific imbedded systems which
source of concurrency is the executing program, not have well-defined usage requirements based on the
the tasks within a program, characteristics of the particular surrounding

hardware/software system, the persistent support

As another example, having multiple concurrently software must be able to accommodate several different

executing Ada programs provides for a clean way of applications (perhaps several different embedded system

separating the data-spaces of functions operating applications(.

on behalf of separate users, but may require the applications).

definition of new inter-program communication pro- Failure to achieve satisfactory performance is a key risk;
tocols, support software must lead to effective use of computing

resources (both computational and storage). For some
This is an incomplete, but representative list of issues systems, internal simplicity may be critical JAnderson-
that arise from the interaction of the nature of Ada and Ilart, 19851; for others [KIT/KITIA, 19851, raising the
the intrinsic properties of persistent support software. level of the interfaces aay provide an opportunity for
Associated with these issues are significant risks, optimization which will offset the added complexity.

Failure to provide an interface that is effectively usable
by the designers of the user software is a significant risk.

2.2. Related Risks Simplicity of the user model and ease of use of the inter-
faces can determine whether or not the facilities pro-

The principal risk associat ed with the issues raised vided are ever used, and if they are, the degree to which
ahove is lack of Priaturity and arailabihty of critrcal Ihey can be used effic" ntly. For example, taking advan-
resources, such as people, including experts in t1w tage or the Ada strong typing in the interface design in
doiain of the particular support software to he order to move the cost of some integrity checking to the
developed, Ada experts, and (,xperts in both fiehls; and compile titme phase may have a signal elTect on runiti,

siipport software, inchlding comrpilers aid software con- performance, but if it leads to arcane usages of tile Ada
striction aids. In mnost Ada developmien projects. these iaigirie it will inipact the cost of all software devl(op-

Annual National Conference on Ada Technology 1986 63

ment depending on those interfaces, and it may even Identify Risks: (1) Existing frameworks may fail on one
exceed the capability of many software development or more technical risks such as those described above.
shops to use the resulting interfaces. (2) The specifications, even without the particular fail-

ings of their implementations, may fail the technical
Being locked in to a particular compilation technology is risks also. (3) The design, development and validation
a major risk in some cases. As indicated above, this risk effort for a build from scratch may require excessive or
is severe when concurrency management is involved in unavailable resources.
the support software, or when there are sophisticated Resolve Risks: Based on this analysis, the advisors con-
requirements for adding new capabilities to the support duct a systematic comparison of the existing candidate
software or for binding new programs to existing, exe- frameworks against the goals and the risk list, using
cuting support capabilities since these activities depend interviews, demonstrations and technical analysis. This
so heavily on the Ada program construction mechanism. leads to the conclusion that no one framework satisfies
This technical risk may be commercially critical and the goals with satisfactory risk. A similar analysis of the
even where it is not, it may severely impact the ability specifications indicates that many features of the
of the persistent support system to upgrade with specifications are satisfactory, but there are essential
advances in compilation technology, technical risks that are not addressed. Finally, an

analysis of the technical complexity and scope of a
Being locked into a particular hardware technology may separate design and build concludes that
be a significant risk. Certainly when the support
software of interest is the framework for an APSE, tying * The technical prerequisites for the essential cor-
it to a single Instruction Set Architecture not only limits ponent of a framework seem to be present. Merging

the conditions under which the framework (and there- them is a difficult technical exercise with uncertain

fore the APSE) can find acceptance but also limits the results in the very near term, although it should be

ability of the framework to migrate to new hardware as possible to develop a very strong framework in

technology improves, about 5 years.

0 The development will require the combined efforts
of several different kinds of expertise, unlikely to be
found at any one source; however, there are clusters

3. Applying the Spiral Model of researchers and developers that have already
established informal technical exchanges on similar

Consider the following hypothetical situation: it has matters.
been determined by, say, organization ABC, that a new Plan for next phase: Organization ABC decides to
integration framework is needed for future automated stimulate the formation of a consortium of research and
environments that will support the development and software development organizations. The analysis by
enhancement of Ada-based systems. The environment the advisory team is used to stimulate membership and
to be developed using this framework will have to sup- provide guidance to the consortium in its early delibera-
port the entire software process; it will have to be highly tions.
flexible, extensible and adaptable (to new underlying Round 2. The consortium, over some time, actually
technologies, hardware and software). forms. Its members include a large scale producer of

How might the development of such a framework software and user of environments, several smaller

proceed according to the spiral model? Here is a partial research groups specializing in program generation, pro-

scenario, in which the early stages of the project are gram analysis and program testing and development
described at a very high level. process coordination tools; a small compiler vendor

developing new techniques for incremental compilation
of Ada programs. Two members have already con-

Round 1. In this round organization ABC forms a
structed prototype environment frameworks. The con-

small team of key advisors to analyze the feasibility of
the goal. The following outline suggests the activities of sOrtium has few natural competitors and each member

can immediately benefit from a framework based
tiy oal: environment, so the incentives for cooperation are high.

Identfy Goal: Obtain an environment framework with

the (qualitative) properties described above. The consortium identifies high risk areas: lack of clear

Enumerate alternatives: (I) Obtain an already existing assignment of responsibilities and contribution, lack of
framework, eg: CAIS implementations, UNIX, PCTE, clear consensus on architectural and design assumptions
TRW's Productivity System, The Rational R1000, and constraints, and lack of a short term approach to
Arcturus, Toolpack, ... (2) Build a new framework using separate development of cooperating tools. A risk

ant already existing framework specification, eg MILSTI) reduction strategy is agreed to: establish principles of

CAIS, PCTE, ... (3) Design and build a new framework. cooperation and a management plan for the consortium,

64 Annual National Conference on Ada Technology 1986

1 ,L

formulate an initial concept of operation for the Frank C. Belz is currently Ada Support Technology
framework, and establish near-term interface definitions Projects Manager for the Information and Systems
and rules of construction that enhance sharing of tool Software Laboratory of TRW's System Development
capabilities. These are among the tangible results of Division. His responsibilities include serving as a
this Round; the group also establishes a Risk Manage- member of the Senior Advisory Board for the Army
ment Plan to create visibility of the outstanding risks. Secure Operating System (ASOS) Project and as advisor
Regular group meetings keep these issues under constant to the Common Apse Interface Set prototyping effort of
attention. New risks are surfaced: there is insufficient the Ada Software Engineering (ASE) Project, participa-
expertise in the consortium to solve the more subtle tion in the TRW/DSG Quantum Leap planning effort,
aspects of the object management support capabilities in and participation in the Arcadia consortium.
the framework. The consortium agrees to search for a
new member who can bring that expertise to the party. Mr. Belz has previously served as Project manager of

the Advanced APSE Prototype and KAPSE Standardi-
The project plan is produced (consistent with the zation Support (AdaPAKSS) Project, and the Prototype
management plan and the principles of cooperation) in Advanced APSE (PA-APSE) Feasibility Demonstration
which each consortium member has a dual role: to Project. He was the chief designer of TRW's
develop particular capabilities (identified in the plan) AdaPDL IR&D Project, and has served on the staff of
such as basic program construction tools, or user- the Advanced Productivity Project. He has managed
interface management systems, and to participate in the Microprocessor Training Center, and has con-
consensus formation activities on the unpartitioned ducted research and development in microprocessor sys-
essential developments. Certain participants take tem development, automated software test measure-
responsibility for exploratory prototypes for critical ment, software specification and verification, and for-
areas, like the user interface. The consortium members mal programming language semantics. He has been
commit to the plan for the next round, intimately involved with the development of Ada,

serving on the Air Force Ada Selection team, and as
a member of the HOLWG Distinguished Reviewers
(1979-80), and more recently on the Kapse Interface

Acknowledgement Team, and the Ada RunTime Environment Working

I wish to thank Barry Boehm, who has provided not only Group (ARTEWG).

the spiral model itself, but also extensive encouragement
and support for the author's contributions. More
directly, he has permitted the broad re-use of [Boehmi, REFERENCES
19851 in the development of Section 1.

{ALRM, 19831 Reference Manual for the Ada Program-

ming Language, MILSTD 1815A, U.S. Department of

Defense, Jan. 1983.

[AFSAB, 19831. USAF Scientific Advisory Board, Report

of the USAF/SAB Committee on the High Cost and Risk
of Mission-Critical Software, J. B. Munson, chair, Dec.
1983.

[Alford, 19771 Alford, M. W., "A Requirements

Engineering Methodology for Real-Time Processing
Requirements," IEEE Trans. S/W Engr. , JAN 1977, pp.

60-68.

[ALS, 19851 Turner, D.J., "The Ada Language System",

Proceedings of the Third Annual National Conference on

Ada Technology, Houston, Mar. 20-21, 1985, pp.8 2-8 6 .

[Anderson-Hart, 19851. Anderson, E.R., and R.M. Hart,

"Why not UNIX? The Case for the Army Secure Operat-

ing System" Proceedings of the Third Annual National

Conference on Ada Technology, Houston, Mar. 20-21,

1985, pp.225- 2 29.

Annual National Conference on Ada Technology 1986 65

[Baizer-Cheatham-Green, 19831 Balzer, R., T.E. Cheat- [Friedman-Brykczynski, 1986]. Friedman, F., W.
ham, and C. Green, "Software Technology in the 1990's: Brykczynski, "Ada/SQL: A Standard, Portable Ada-
Using a New Paradigm," Computer, Nov. 1983, pp 39-45. DBMS Interface", Proceedings, IEEE Conference on Data

Engineering, IEEE, 1986, pp. 515-522.
IBamberger, et al, 19861. Bamberger, J., P. Ritter, and J.
Wilson, "Tactical Database Management System - An lGiddings, 1984]. Giddings, R.V., "Accommodating
Ada Technology Project for the US Army", Proceedings Uncertainty in Software Design," Comm. ACM, May
of the Fourth Annual National Conference on Ada Tech- 1984, pp. 428-434.
nology, Atlanta, Mar. 19-20, 1986.

]Benington, 1956]. IBenington, H. D., "Production of KIT/KITIA, 1985]. Oberndorf, P.A., "Proposed MILSTD
LreComgton, 1 Pro igrams, Pr. D., Sypoiuton o Common APSE Interface Set (CAIS)" and "Draft CAIS
Large Computer Programs," Proc. ONR Symposium on Requirements and Design Criteria (RAC)" in KAPSE
Advanced Prograninming Methods for Digital Computers, Interface Team Public Report", Naval Ocean Systems

June 1956, pp. 15-27. Also available in Annals of the His- Cnter Tea l D ent5, augs 1985.
toryof ompting Oc. 183, p. 50-61.Center Technical Document 552, August 1985.

tory of Computing, Oct. 1083, pp. 350-361.

Software Design and ILehman, 1984]. Lehman, M. M., "A Further Model of
Boehm, 1975J. Boehm, B. W., "StwrDeinad Coherent Programming Processes," Proceedings, Software

Structuring," in Practical Strategies for Developing Large Processe , Pp. 27-33.

Software Systems, E. Horowitz (ed). Addison-Wesley, Process Workshop, IEEE, Feb. 1984, pp. 27-33.

1975, pp. 103-128. iLehman-Stenning-Turski, 19841. Lehman, M. M., V.

[Boehni, 1976]. Boehm, B. W., "Software Stenning, and W. Turski, "Another Look at Software
Engineering,"IEEE Trans. Computers, December 1976, Design Methodology," Software Engineering Notes, ACM,

pp. 1226-1241. Apr. 1984, pp. 38-53.

[Boehm, 19811. Boehm, B. W., Software Engineering IMcCracken-Jackson, 1982]. D. D. McCracken and M. A.

Economics, Prentice- Hall, 1981. Jackson, "Life Cycle Concept Considered Harmful,"
Software Engineering Notes, ACM, April 1982, pp. 29-32.

]Boehmn, et al, 1984]. Boehm, B. W., M.H. Penedo, E. D.
Stuckle, R. D. Williams, and A. B. Pyster, "A Software]Mills, 1971]. Mills, f. D., "Top-Down Programming in

)evelopment Environiment for Improving Productivity," Large Systems," in Debugging Techniques in Large Sys-

Computer, June 1984, pp. 30-44. tems, R. Ruskin (ed), Prentice-Hall, 1971, pp. 41-55.

[Boehm, 1985]. Boehin, B.W., "The Spiral Model of 1Parnas, 1979]. Parnas, D.L., "Designing Software for

Software Development and Enhancement", Proceedings Ease of Extension and Contraction," IEEE Trans. S/W.

of the International Workshop on the Software Process Engr., March 1979, pp. 128-137.

and Software Environments, Coto de Caza, CA, Mar. Roubine, 1985] Roubine, 0. "Programming Large and
2Rubn,-29,Robie O 1985.in Lre n

26-29, 1985. Flexible Systems in Ada", Ada in Use, Proceedings of the

1CCA, 1985] Smith, J.M., A. Chan, S. Danberg, S. Fox, Ada International Conference, Paris, May 14-16, 1985,

A.Nori, "A Tool Kit for Database Programming in Ada", pp. 197-20 9 .

Ada in Use, Proceedings of the Ada International
Conference, Paris, May 14-16, 1985, pp.4 1-5 7 . lRoyce, 19701. Royce, W. W., "Managing the Develop-

ment of Large Software Systems: Concepts and Tech-

[Distaso, 1980J. Distaso, J. R., "Software Management- A niques," Proceedings, WESCON, August 1970.

Survey of the Practice in 1980." IEEE Proceedings, Sept. [Stoneman, 1980], "Requirements for Ada Programming
1980, pp. 1103-1119. Support Environments, Stoneman", Department of

JFriedman, et al, 19861. Friedman, F., A. Keller, J. Defense, 1980.

Salasin, G. Wiederhold, M. Berkowitz, and D. Spooner,*"Reference Model for Ada Interfaces to Database ITaylor, et al, 1985]. Taylor, R.N., L. Clarke, L.J.
SysternceMe rodIngerfces, tE Cn e o Osterweil, J.C. Wileden, and M.Young, "Arcadia: A

Management Sstems", 1986 , pp. 492e506. Software Development Environment Research Project",
U.C. Irvine Information and Computer Science Technical
Report, Nov. 27, 1985.

66 Annual National Conference on Ada Technology 1986

rP

Experience Collecting and Analyzing Automatable Software Quality

Metrics for Ada*

J. A. Perkins, D. M. Lease, and S. E. Keller

Dynamics Research Corporation
60 Concord Street, Wilmington, Ma., 01887

The metrics themselves exist in a hierarchy based on the McCall
Abstract metrics framework, tailored to the Ada language. At the lowest

level in the framework are data-items, collected by the automated
Metrics researchers are currently in the early stages of data collection tool directly from Ada source code. Examples of
validating the relationships between metrics and the quality data items are: 1) maximum level of nesting, 2) objects local to
problems encountered by users and developers of software. In a module, and 3) number of "out" parameters in a "procedure".
order to establish these relationships, large amounts of data Metric-elements are low-level metrics defined only in terms of
defined for validating specific metrics must be collected. Before these data-items (metric-elements will often be referred to simply
performing such costly validation, we believe the metrics should as metrics hereafter). Examples of metric-elements are:
be evaluated with respect to whether they reflect our current 1) nesting, which is the inverse of the maximum level of nesting,
understanding of quality principles. Our preliminary attempt at 2) local "types" referenced, which is the percentage of "types"
validation focuses on a human vs. automated approach to analyzing local to a module that are referenced by that module, and 3) "out"
an existing Ada program. The program consists of fourteen parameters with values, which is the percentage of "out"
"packages" and approximately 150 "procedures" and "functions". parameters given a value on all possible execution paths of a
Segments of this code were selected and analyzed with respect to procedure". These metrics are then combined to form software
the software quality sub-criteria of flow simplicity, limited quality sub-criteria, such as flow simplicity, limited visibility,
visibility, and error prevention and detection. The study focuses and error prevention and detection. Software quality criteria,
on disagreements between human and automated analysis, and such as simplicity, modularity, and anomaly management are then
attempts to explain those discrepancies and suggest possible ways based on these sub-criteria.
to improve both measurement techniques and the quality of the
software program analyzed. The metric-elements are defined by a numerator and a denominator.

both non-negative, with the numerator less than or equal to the
denominator, rather than a value in the interval (0.0.1.01. The

Keywords value of a criterion, sub-criterion, or a metric is the ratio of
the sum of all the numerators of metric-elements, to the sum of

software metrics, software quality, software measurement tools, all the denominators of metric-elements making up that metric.

Ada, software training The metric-elements themselves are broken into two distinct
categories, absolute and relative. Absolute metrics are
measurements of the absolute amount of a software characteristic.
Many of the traditional metrics fall in this category. Examples
are .) the number of lines of code, 2) number of operators, and
3) the number of branches. Absolute metrics support comparisons
between problem spaces, comparisons of interest to acquisition
managers. The value of most absolute metrics is calculated using
one as the numerator, and N I as the denominator, where N is the
number of occurrences of the language feature (Keller85]. A score

1 INTRODUCTION other than 1/1 (i.e., a denominator greater than one) for an
absolute metric indicates the presence of language features orIn the future, software metrics will provide a basis for making constructs that cause the code to move away from the desired goal.

scientific predictions of software project parameters. Time to
completion of a project, additional spending required to increase An example of an absolute metric within our study is module exits,
product quality by x amount, and prediction of problems before which falls under the sub-criterion flow simplicity. The
they are out of control are examples of parameters critical to the denominator for module exits is the number of return statements in
successful management of software. Metrics relating cost to a "procedure", or thi number of return statements minus one in a

4 quality will support the isolation of cost-drivers involved in "function" (a "function" is required to have at least one return).
software development and the evaluation of cost-benefits of This metric is defined as an absolute metric because program flow
alternative resource allocation strategies [Dunham83]. is made more complex by the use of multiple exits from a module.

The Ada language provides a syntactic and semantic richness that Relative metrics, on the other hand, are metrics that measure
makes it possible to collect meaningful data by performing a actual quality relative to an ideal or potential quality. These
static analysis on existing Ada codeand then defining metrics in metrics address quality within a problem space or problem
terms of this data. These metrics have two main purposes. The solution. Examples are: 1) the percentage of non-complex boolean
first is the improvement of quality of existing code. Secondly, expressions, 2) the percentage of composite *types" which are
these metrics can form the basis for evaluating the current status "private" "types', and 3) the percentage of globals referenced by
of an Ada programmer and pinpointing specific areas where that a subprogram that are declared in the "body" of the "package"
programmer needs additional training. This can also lead to an containing the subprogram. Relative metrics support comparisons
evaluation of training methodolgies. within problem spaces and solutions, comparisons of interest to

development managers and training managers. The value of mostDRC has developed a tool called ADANAT"" (Ada Measurement and relative metrics is given by a numerator A and a denominator P.
Analysis Tool) that performs this static analysis on Ada code. where A is the number of actual occurrences and P is potential
ADA AT consists of three separate tools that together provide number of occurrences of a language feature (Keller85l.
extensive insight into the makeup of an Ada program. The first
tool is the automated data collection tool. The data collection An example of a relative metric within our study is Im types,
tool performs a static analysis of Ada code to collect information which falls under the sub-criterion limited visibility. Lmtypes
about that code. Secondly, a quality analysis component, based on has the number of locally defined "types" that are used to declare
the formal definition of the metrics hierarchy, provides both an an object as a numerator, and the number of locally defined
interactive analysis of the metrics and a method for pinpointing "types" as a denominator. Locally defined "types" should always
specific problem areas of the software. Thirdly, a report be used to declare a local object within a subprogram, or the
generator creates a complete report, based on all defined metrics, "type" should not have been declared within that module.
for any user-determined set of "packages" or subprograms. Each of
the tools is implemented in Ada. (For further information on how
ADAMAT is implemented, see [Keller85].) Metrics researchers are currently in the early stages of

validating the relationships between metrics and the quality
problems encountered by users and developers of software. ;n
order to establish these relationships, researchers must collect

Ada IS A REGISTERED TRADEMARK OF THE U.S. GOVERNMENT Ada JOINT large amounts of data defined for validating specific metrics.
Before starting such a costly validation effort, we believe the

PROGRAM OFFICE (AJPO) metrics should be evaluated to determine whether they actually
reflect our current understanding of quality principles. To

ADAMAT IS A TRADEMARK OF DYHAMICS RESEARCH CORPORATION perform this study, we evaluated the Ada code making up the
"report generator" described above.

Annual National Conference on Ada Technology 1986 67

' e "W V

The investigation focused on determining the answers to the FS8) For loops is a relative metric. The numerator is the number
following questions: of *for loops". The denominator is the total number of

loops.
1) How wall does the autoatable measure of quality compare to

the quality measurements obtained by human analysis? FS9) Multiple exit location loops is a relative metric. The
numerato7r is- the numBer of "loops" where control cannot be

2) How well do the metrics detect quality problems in the given to a statement other than the one immediately
software. following the "end loop'. Control can be given to a

different location if the "loop" contains a "raise", "goto",
3) How wall do the metrics detect the need for training in or "return" statement, or if the "loop" is nested inside

specific features of the Ada language? another loop', with an "exit name" statement within the
inner "loopo.

4) How can the results of questions 1-3 be used to improve the
quality and validity of the metrics themselves? The limited visibility sub-criterion attempts to measure how well

items that are not needed within units are hidden from the units.
Examples of items that we believe should be hidden if they are not

2 METHOD used are: user-defined "types" and "subtypes*, variables,
constants, "exceptions', "procedures', and "functions". If theseitems are ,made tvisible fwhen they are not intended to be used,

As was mentioned above, the ADAawe examined wcausefrom odefrthe prog reliability may suffer from unanticipated usages.
f subprograms in the "packages, we selected one module Under limited visibility, ten metrics were collected. These were:

from each "package" for examination. In some cases, the selected
module picked was the "package" itself, which was considered to be LVl) iithed
the "package" without the implementation of the subprograms pcknumerator is hefnumber of visible packagesthat wereThe
declared in the "package" specification. Of the fourteen referenced in any of the following ways: via a subprogram
"packages", we selected the package itself in six cases and a
subprogram in eight cases. call, use of an object, raising or handling an exception, or

using a "type" that resides in the "withed" "package*. The
denominator is the number Of "packages" made visible via

2.1 Method Of Automated Analysis "withs", either by a "subprogram, or the "package" "body"

or specification.

The investigated metrics constitiuted three sub-criteria of the LV2) Lm types is a relative metric. The numerator is the number
current ADAIAT metrics framework. The first sub-criterion, flow of "types" declared local to the module that are referenced
simplicity, is part of the criterion simplicity. Secondly, by that module. If the module is a subprogram, the "types"
limited visibility is part of the criterion modularity, and local to it are those "types" and "subtypes" declared within
thirdly, error prevention and detection is part of the criterion the module. If the module is a "package', the "types" local
anomaly management. to it are all those "types" and "subtypes" declared within

the "package" specification, or within the declarative
The flow simplicity sub-criterion attempts to measure the region of the "package" "body". A "type" is defined to be
complexity of the flow, both from a traditional and referenced if the name of the "type" appears in any
non-traditional point of view. Traditional metrics such as level statement within the module. The denominator is the number
of nesting and number of branches were collected. We also of ,types" local to the module.
considered other causes of flow complexity, such as multiple exits
from "loops" or subprograms, branch constructs that can exit to IV3) m objects is the same as La types, except objects local to
more than one location, and branches that can cause program flow a module are used instead of local "types". Objects are
to go backward. we also considered a nested branch to be more variables,"constants", and "exceptions'. An "exception" is
complex than a non-nested branch. used if it is "raised" or handled.

Under flow simplicity, a total of nine metrics were collected. LV4) Lin operators is the same as lm types and Im objects, except
The metric number is an abbreviation that c~n be used to access user-defined operators are counted. User-defined operators
values for this metric from the tables. Ther metrics were: include functions and procedures.

FSI) Branch constructs is an absolute metric. Its denominator is Lvs) Imp types is a relative metric. The numerator is the number
the number of branch constructs plus one. The following are of "types" declared local to a module's "package" that are
branch constructs: "if., "elsif', "raise', "goto", referenced by that module. The denominator is the number of
*return", "loop", "exit', and "case'. "types" declared local to a module's "package" For a

subprogram, a "type" is local to its "package" if it is
FS2) Module exits is an absolute metric. Its denominator is the declared either in the "package" specification or in the

number of exits from a module (since every module has at declarative portion of the "package. For a "package",
least one exit, it is unnecessary to add one to the there are no "types" local to the module "package', unless
denominator). For a "function", the number of exits is the the "package" is nested within another "package". In that
number of return statements. For a "procedure" and a case, any declarations within the outer "package"
"package body', the number of exits is the number of return specification that are visible to the nested "package" are
statements plus one. the "types" local to the "package'.

FS3) Level of nesting is an absolute metric. The denominator is iV6) Imp_objects is the same as Lmp types, except objects are
given by the maximum level of nesting caused by an "if", counted.
"loop, or "case" statement ("else" and "elsif" are part of
an "if" statement, and any deeper nesting within them is LV7) imp operators is the same as Imp types and mp objects,
counted) plus one. Therefore, code without nesting will except user-defined operators are counted.
have a denominator of one.

IVB) Emptypes is a relative metric. Its numerator is the number
FS4) Non back branching constructs is an absolute metric. The of "types" made visible to the module via "withs" that are

denominatfor is tee number of branch constructs that can referenced. Its denominator is the number of "types" made
result in the return of program control to a line of code visible to the module via "withe".
that has already executed. The only branch constructs that
can cause return of control to a line already executed are LV9) Emp objects is the same as Emptypes, except objects are"gOtOs" Or "loops", counted.

FS5) Branch and nesting is an absolute metric. Its denominator LVO) Emp operators is the same as Emp types and Emp objects,

is the sum of the level of nesting over all branch except user-defined operators are counted.
constructs plus one. For example, a branch construct at the The error prevention and detection sub-criterion does not attempt
te e counts as t . T level onstug ai lv to predict the number of errors that will be encountered when code
,three ts as thr...etc. The level of nesting i . id to is executed. Rather, it attempts to measure how well features of

be one if no nesting has occurred. Therefore, the first Ada were used to prevent or detect possible errors. Examples of
line of code is at level one, and the denominator will be this kind of prevention/detection include insuring that
one if no nesting occurs. Nesting is defined as in (FS4). subexpression are constraint-checked, insuring that "out"

bparameters are always given values, and using default
FS6) Multiple exit loops is a relative metric. The numerator is pntializations f a a bles. Metnvls meanr ingthe prope fult

the numBer 3f "loops" with only one exit. A "for loop" or of "exceptions* were not collected for this study. Since the
"while loop" has one exit if no "exit" statement. "raise" proper use of exceptions limits their use to situations where an
statement, or "goto" which leaves the "loop" is within the error has already occurred, *exceptions are addressed under the
"loop". A "basic loop" has more than one exit if more than separate sub-criterion error handling, which resides with error
one "exit" statement, "raise" statement, or *goto" which prevention and detection under anomaly management.
leaves the "loop" is found in the "Loop". The denominator peeto n eeto ne nml aaeet
is the number of *loops*. under error prevention and detection, five metrics were collected.

FS7) Structured branch constucts is a relative metric. The These were:

numerator - is the total number of structured branch El) Default init is a relative metric. The number is the number
constructs. Any branch construct from (FSI) above is of locilly declared variables which are given a default
structured except "goto", "raise*, *return", or "exit name", initialization. The denominator is the number of locally
where "name" is the name of a outer level "loop". These declared variables.
control constructs are non-structured because they cause a
jump in program control froio the current location to a
location other than the next line of code or end of the
current construct. The denominator is the number of branch

6 Aconstructs as defined in (FS).

68 Annual National Conference on Ada Technology 1986

E2) User types is a relative metric. The numerator is the number The distinguishing factors dictating the ranking of the modules by

of user-defined *types' used by the *procedure'. A "type" is human analysis for each of the sub-criteria are as follows:

defined to be used if its name appears in any statement

within the module. The denominator is the total number of Distinguishing Factors for Flow Simplicity:

"types', both user-defined and system-defined, used by the

"procedure'. FSFI) the number of branches (ie. 'if', 'case', and -loop'),

&3) And then or else is a relative metric. The denominator FSF2) the number of back branches,

measures tie number of times that an index into an array was

range checked in a compound boolean expression. The FSF3) the number of 'loops' containing a single statement,

numerator measures the number of times that the compound

boolean expression used an "and then' or an 'or else" FSFI) the number of 'loops' with multiple exits,

construct to avoid the possible raising of CONSTRAINTERROR.

For example, sPs) the number of returns from the module, and

a: array(l..10) of integer; FSF6) the number of levels of nesting.

begin
loop Distinguishing Factors for Limited Visibility:

if (i in 1..10) and (a(i) • 0) then ...
LVFI) the number of sets of operators 'withed" that are

may *raise* CONSTRAINT ERROR even if i is not in the legal visible,

range, because the order of evaluation for the boolean

operands is not defined: however, this cannot happen in the LVF2) the number of global variables that are visible,

following case. LVF3) the number of sets of operators "withed" that are

a: arrayfl..10) of integer; unused, and

begin
loop LVyc) the number of global variables visible that are unused,

if (i in 1..10) and then (a(i) 0) then ... Distinguishing Factors for Error Prevention and Detection:

E4) Out params w values is a relative metric. Its numerator is EFl) the number of instances where variable declarations are

the numbeF -of 'out' Parameters guaranteed to have a value not isolated to a *loop' (where possible).
assigned into them on all paths if no 'exception' is

raised". The denominator is the number of 'out' parameters. EF2) the number of instances where array slices are not used

In out' parameters are not considered to be "out parameters (where possible),
for this metric because they must have a value when the

procedure call is made, or the program is erroneous. EF3) the number of unrelated "types" declared in the

E5) Constraint checking is a relative metric. The numerator is specification of a "package",

the numbeF of sub-expressions which are constraint checked. Eye) the number of instances where 'and then' is not used

The denominator is the total number of sub-expressions. when required, and

2.2 Method Of Human Analysis EF5) the number of variables declared in the specification
of a "package'.

As our baseline for comparison, we chose a human analysis of the

modules we examined. Due to the difficulty of giving absolute 2.3 Guidelines For Implementation

metric scores to the modules, we opted for a ranking system. For

each sub-criterion, the modules were given a ranking from one to

fourteen, with one being the best score and fourteen the worst. Prior to design and implementation of the "report generator', we

This human analysis caused us to limit ourselves to the small established a list of implmentation guidelines. A discussion of

number of "procedures" that we analyzed. To accurately rank the the Ada-specific guidelines for each of the selected criteria aids

code, the total number of ranked modules had to be small, in understanding the results of both the human analysis and the

However, within each 'package', the most involved "procedure" was automated analysis.

selected for rating. In some cases, no "procedure* involved any

code other than simple variable assignments, so we opted instead This list does not contain Ada-specific guidelines concerning flow

to investigate the 'package' itself. simplicity, but does contain Ada-specific guidelines about limited

visibility and error detection and prevention.

Defnitions 2f sub-criteria The Ada-specific guidelines relating to limited visibility are as

The human analysis of the modules is based on the following follows:

definitions of t h: sub-criteria: LVG1) Every 'package" specification should conceptually represent

Flow simplicity: a single object.

The control flow of the module is easily understood for any LVG2) Every 'type', object, and operator declared in a "package'

combination of the possible input values to the module, specification should be referenced by some other 'package"

of the 'reportgenerator'.

Limited Visibility: LVG3V A library unit should be 'withed' only if some "type',

The visibility of the module is such that the visible object, or operator in that 'withed' unit is to be directly

software items are limited to items appropriate for that referenced.

module. LVG4) No *package' should be created that merely subsets the set

Error Prevention and Detection: of visible *types', oblects, or operators of another

'package" specification.

The implementation of the module is such that all errors that

can occur during elaboration or execution of that module are The Ada-specific guidelines relating to error prevention and

prevented and/or detected, detection are as follows:

These definitions were developed to provide direction for the EG1) No variables should be declared in a 'package'

human analysis at the intuitive level without actually specifying specification.

what features of the language should be investigated or how much

any positive or negative factor of the software should be EG2) Every variable should be declared using a user-defined

weighted. *type*, or be of 'type" boolean, and each ccnstant should be

w declared using a user-defined 'type' or anonymous type.

The human analysis involved four separate passes over the set of

modules, Each pass involved investigating the set of modules with EG3) Every variable should be initialized when declared.

respect to flow simplicity, then limited visibility, and then

error prevention and detection. On the first pass, the modules EG4) The short circuit operators 'and then' and *or else' should

were not investigated in any particular order. On the second and be used only when the semantics of the compond boolean

third pass, successive pairs of modules were investigated expression dictates the order of evaluation.

according to the rankings established on the previous pass. The

ranking of the modules was modifed where appropriate. On the EG5I Every 'procedure" should initialize all 'out' mode

fourth pass, the distinguishing factors that dictated the rating parameters at the beginning of the sequence of statements in

were identified. These distinguishing factors were then used to a body of code.

etablish a final set of rankings. The rationale for most of the above guidelines is obvious. The

rationales for guidelines LVG4 and EG5 are given below.

Annual National Conference on Ada Technology 1986 69

-mr-s - '

,O%
i~ r. % - . ,- 2 - ,2 v < v/- L<. v. _. _.. ._ ..

a-

Rationale for LVG4 Local to Local to External to

Nodule Package PackageAlthough creating multiple views of a "package" is a useful method Mdl akg akg

of limiting visibility, this benefit can only be realized if the
the different views are placed in separate library units. Given Module Name N/D Score N/D Score N/D Score

the limited Ada environment available to us (specifically, the
TeleSoft version 1.5 and 2.1 compilers on a VAX/VMS operating type 49/84 0.58 0/0 1.00 0/0 1.00
system), we decided that the increased compilation difficulties time 1/15 0.07 0/0 1.00 12/84 0.14
that we encountered by using more library units outweighed the set 4/7 0.57 0/0 1.00 5/84 0.06
benefits of multiple views. module 5/12 0.42 0/0 1.00 8/84 0.10

format 7/10 0.70 0/0 1.00 0/0 1.00
to e set format 0/0 1.00 0/0 1.00 2/10 0.20

We believe that initializing "out" mode parameters at the start of next file 3/3 1.00 2/18 0.11 2/100 0.02

each "procedure" will reduce the likelihood that undefined values find-file 7/8 0.88 0/21 1.00 8/113 0.07

are returned in cases where defining an "out" parameter is not read module 3/3 1.00 2/14 0.14 9/101 0.09
part of the the functionality. For example, a nprocedure* that module order 12/12 1.00 2/5 0.40 9/142 0.06
performs a search often returns two values, where one value is the next tiace 3/3 1.00 4/33 0.12 1/105 0.01
location of the object, and the other value is a flag that t
indicates if the desired object was found. In the case where the store_trace 17/17 1.00 20/44 0.45 15/163 0.09

object is not found, the value representing the location is makereport 3/3 1.00 0/0 1.00 10/12 0.83

unimportant, but failure to define this value results in an fetchlevel 6/6 1.00 1/12 0.08 8/176 0.05
erroneous program.

TABLE 3. LIMITED VISIBILITY SCORES BROKEN DOWN BY
The above guidelines are a subset of the guidelines which governed LOCATION OF TYPES, OBJECTS AND OPERATORS
the design and implementation of the report generatoro. Most of
the other guidelines are traditional guidelines that apply to
programming in any standard Von Neuman language.

Module Name LVI LV2 LV3 LV4 LVS LV6 LV7 LV8 LV9 LV0
3 RESULTS

type 0/0 29/29 20/54 0/i 0/0 0/0 0/0 0/0 0/0 0/0
time 1/1 1/1 0/1 0/13 0/0 0/0 0/0 6/29 6/54 0/1

.1 Results Of Automated A set 1/1 3/3 1/1 0/3 0/0 0/0 0/0 5/29 0/54 0/1
module 1/1 2/2 2/2 1/8 0/0 0/0 0/0 5/29 3/54 0/1
format 0/0 7/7 0/3 0/0 0/0 0/0 0/0 0/0 0/0 0/0

Th automated metric scores of the selected modules for flow set format 1/1 0/0 0/0 0/0 0/0 0/0 0/0 0/7 2/3 0/0
simplicity, limited visibility, and error prevention and detection next file 1/2 0/0 3/3 0/0 0/2 1/4 1/12 1/30 1/55 0/15
are shown in Table 1. The metric-element scores of the modules find-file 3/3 0/0 7/8 0/0 0/0 0/4 0/17 3/30 1/55 4/28
for the sub-criteria are shown in Tables 2, 4, and 5. The metric read module 2/2 0/0 3/3 0/0 1/1 1/3 0/10 1/30 4/58 4/13
scores for limited visibility are broken into "local to module", module order 5/5 0/0 12/12 0/0 0/1 0/1 2/3 0/31 1/59 8/52
"local _to_package', and *externaltopackage' in Table 3. next trace 1/2 0/0 3/3 0/0 1/4 2/3 1/26 1/29 0/57 0/19

store trace 2/8 0/0 17/17 0/0 2/3 0/2 18/39 15/38 0/61 0/64
make report 1/1 0/0 3/3 0/0 0/0 0/0 0/0 2/3 0/1 8/8
fetcF level 4/5 0/0 6/6 0/0 1/3 0/2 0/7 0/33 0/59 5/84

TABLE 4. LIMITED VISIBILITY METRIC-ELEMENT SCORES
FlOW Limited Error

Module Name Simplicity Visibility P & D

N/D Score N/D Score N/D Score Module Name El E2 E3 E4 E5

type 5/5 1.00 49/84 0.58 83/85 0.98 type 0/0 29/31 0/0 0/0 54/54
time 5/5 1.00 14/100 0.14 8/8 1.00 time 0/0 7/7 0/0 0/0 1/1
set 5/5 1.00 10/92 0.11 8/9 0.89 set 0/1 8/8 0/0 0/0 0/0
module 5/5 1.00 14/97 0.14 5/5 1.00 module 0/0 5/5 0/0 0/0 0/0
format 4/4 1.00 7/10 0.70 8/11 0.73 format 0/2 7/8 0/0 0/0 1/1
set format 5/5 1.00 3/11 0.27 11/11 1.00 s et format 0/0 0/0 0/0 0/0 11/11

next file 6/9 0.67 8/123 0.07 7/8 0.88 next file 0/0 1/2 0/0 2/2 4/4
find-file 9/36 0.25 18/145 0.12 9/14 0.64 find f;l 0/4 3/4 0/0 2/2 4/4
readmodule 15/29 0.52 16/120 0.13 14/16 0.88 read module 0/2 2/2 0/0 1/1 11/11
module order 9/17 0.53 28/164 0.17 13/24 0.54 module order 2/11 10/12 0/0 0/0 1/1
next trace 7/14 0.50 9/143 0.06 10/11 0.91 next tFace 0/0 2/3 0/0 2/2 6/6
store trace 16/55 0.29 54/232 0.23 17/33 0.52 store_ trace 0/15 16/17 0/0 0/0 1/1

make_report 9/17 0.53 14/16 0.88 2/4 0.50 make report 0/1 2/3 0/0 0/0 0/0

fetch level 13/31 0.42 19/199 0.10 8/14 0.57 fetch_ level 1/5 4/5 0/0 0/1 3/3

TABLE I. SCORE BY SUB-CRITERIA FOR ALL MODULES TABLE 5. ERROR PREVENTION AND DETECTION
METRIC-ELEM&NT SCORES

Module Name FSI FS2 FS3 FS4 FS5 FS6 FS7 FS8 FS9 3.2 Results Of Human Analysis

type 1/1 1/1 1/1 1/1 1/1 0/0 0/0 0/0 0/0
time 1/1 1/1 1/1 1/1 1/1 0/0 0/0 0/0 0/0 The final rankings of the selected modules for flow simplicity,

limited visibility, and error prevention and detection based on
set 1/1 1/1 1/1 1/1 1/1 0/0 these distinguishing factors are shown in Tables 6, 7, and 8
module 1/1 0/1 1/1 1/1 1/1 0/0 0/0 0/0 0/0 respectively. The horizontal lines in these tables separate
format 1/1 1/1 1/1 0/0 1/1 0/0 0/0 0/0 0/0 modules into groups according to the distinguishing factors. The
set format 1/1 1/1 1/1 1/1 1/1 0/0 0/(, 0/0 0/0 lower the module is in the table, the lower the ranking of that

°
next file 1/2 1/1 1/2 1/1 1/2 0/0 1/! 0/0 0/0 module according to the human analysis.

* find-file 1/6 1/2 1/4 1/2 1/14 0/1 4/5 0/1 0/1
read-module 1/5 1/1 1/3 1/3 1/7 2/2 4/4 2/2 2/2 Although the relationship between the distinguishing factors and
moadmodle 1/3 1/1 1/3 1/2 1/4 2/2 2/420/1 2/2 the ranking of the modules is illustrated in Tables 6. 7, and 8,
module order 1/3 1/1 1/2 1/2 1/4 1/1 2/2 0/1 1/1 further discussion is in order.
next trace 1/3 1/1 1/3 1/1 1/4 0/0 2/2 0/0 0/0
store trace 1/9 1/1 1/5 1/2 1/27 1/1 8/8 1/1 1/1 For flow simplicity, the two primary factors affecting the ranking
make report 1/3 1/1 1/2 1/2 1/4 1/1 2/2 0/1 1/1 are the number of branches (FSFl) and the number of back branches

fetcF level 1/5 1/1 1/3 1/3 1/9 2/2 4/4 0/2 2/2 (FSF2). However, the other three factors (FSF3, FSF4, and FSFS)
did have an effect.

TABLE 2. FLOW SIMPLICITY METRIC-ELEMENT SCORES 'Read modu e" is ranked higher in the human analysis than

",etcS level" despite *read module' having more branches and the
same number of back branches is "fetch level'. *Read module' has
two 'for loops' that contained a single statement. T~e purpose of
these two "loopso is to perform a copy of one array into another.
In fact, the 'loops" could be replaced by array slices. These
simple *loops" were considered less of a factor in increasing the
difficulty of understanding the flow than other branches.
"Read module' is considered to be only sightly worse than
"next-trace* which has two branches and no back branches.

70 Annual National Conference on Ada Technology 1986

'5%

-- -- --- - - W'-N NW "W' '2! W., . -- - J - J . -.. I -_y 'r I. -. r 1 W'i ' . J i S' r'V d i

"Find file" is in a lower grouping than "fetch level" because Flow Simplicity

'find-file' has both multiple returns from the modlle and multiple

exitsfrom a "loop" (a single "return* inside a "basic loop" is Module Name Distinguishing Factors

the reason for both of these conditions). In fact, "find file" is ...

grouped with -store_trace" which has more branching and deeper type 0 branches

nesting, time 0 branches
module I 0 branches

For limited visibility, the ranking of the modules can be reduced set I 0 branches

to two major considerations: the number of conceptual objects format 1 0 branches

available to the module and the number of the conceptual objects set format 1 0 branches

a v a i l a b l e t o t h e m o d u l e t h a t a r e n o t u s e d . T h e c o n c e p t u a l o b j e c t s ---

are the sets of operators made visible to the module by 'withing" next file I 1 branch I 0 back branches

and the set of variables made visible to the module by --

declarations in the "package" containing the module, make report I 1 branch I 1 back branch
module order I 1 branch I 1 back branch

For error prevention and detection, the ranking of the modules can next trace I 2 branches I 0 back branches

be reduced to two considerations. The first consideration is read module I 4 branches I 2 back branches I 2 simple loops I

whether any unnecessary errors occur or any unavoidable errors fetcS level I 2 branches I 2 back branches

fail to be detected when the present code is executed. The second ----- 7 --

consideration is whether any modification can be performed to the find file I 3 branches I 1 back branch I 2 returns

code of the module to aid in preventing the introduction of errors store trace I 8 branches I 1 back branch I deep nesting

into the code durinq maintenance.
--..................

All the modules in group 2 of Table 6 except 'next trace" fail to TABLE 6. FLOW SIMPLICITY RANKING FACTORS

reduce the scope of variables where possible. Each of these
modules contains a "loop" that has the following property:

The 'loop" contains variables declared outside the scope of

the 'loop' whose values depend only on the current instance
of the 'loop'.

Limited Visibility
Declaring these kinds of variables within the "loop" would

eliminate the possibility that their values are used across 'loop" Module Name Distinguishing Factors

instances or outside the scope of the "loop'. ---
type 1 0 withs I

'Next trace" implements the copying of arrays using "for loops", format 1 0 withs I

* The use of array slices to perform these copies would decrease the --------------- I--

likelihood of inadvertent changes to the intended functionality, time 1 1 with

set I with I
'Type" is a "package' that declares many "types" in the "package" module 1 with I

specification. Although these "types" are either discrete 'types" --

or "string" "types', the "types" are unrelated. Separating these make report I 1 with I 1 set used
'types' into individual "packages" would remove the need for users set_ ormat I with I 2 withed variables used

of these 'types' to have visibilty to other unneeded "types' in --- = --
'package" "type". read module 1 2 withs I 1 global variable unused

next-trace 1 2 withs I 1 set unused

'Next file' is ranked low with regard to error prevention and find-file 1 3 withs All global variables unused

detection because of the difficulty of understanding the simple module order 1 5 withsI All global variables unused

* functionality provided. The intent of 'next file" is to return fetch level 1 5 withs 1 1 set unused
the next file in a list of files. At one point in "next file', a nest Tile -- 2 withsi 1 set & 1 global variable unusedI

check is made to see if the value of the input parameter ---- - -...

references an existing file and to check that the reference is not store trace I 8 withs i 6 sets unused
to the last file in the list. The check is performed by calling a - -....

'function" called "validate file reference". which is declared in
the specification of the "package" containing "next file", and TABLE 7. LIMITED VISIBILITY RANKING FACTORS

then by checking that the value is less than "list tail", a

variable declared in the "body" of that 'package". This Eheck is
written as follows:

if validate file reference(filereference)
and file reference < list tail

Although the intended functionally suggests the potential need for

the short circuit operator "and then', examination of
"validate file reference' shows that the above check is
functionally ejuivalent to the following:

if list head -' file reference Error Prevention and Detection

and file-reference --list tail Module Name Distinguishing Factors

and file-reference < listtail -- - - - - - -

This, of course, can be reduced to either of the following: time
setI

if list head - file reference module
set format

and file-reference < listtail __ ------------------
make_report Iloop isolation

if filereference in list head..list tail-I store trace I loop isolation
module order I loop isolation

Rewriting the check in 'neat file' as indicated above would find fTle I loop isolation
significantly decrease the difficulty of understanding the simple fetcE level I loop isolation
functionality that is being performed, next race loop isolation

read-module I array slices
"Format' is a "package" that declares variables in the 'package" --

specification. The users of "format" are supposed to be able to type I unrelated type declared ,n specification I

read the desired form for the report being generated, but are not ------------------------------

supposed to be able to modify that form. Having access to the next file I and then
variables declared in the "package" specification provides the --- ---

undesired capability to modify the form of the report. Since the format i variables declared in specification

contents of the format variables are read from an external file, a ---
constant declaration is not appropriate. However, declaring the
variables in the "body' of 'format' and providing only "functions' TABLE S. ERROR PREVENTION AND DETECTION RANKING FACTORS

in the specification of "format' would eliminate the possibility
of users changing the desired form of the report.

Annual National Conference on Ada Technology 1986 71

10v x.I9..e 4r P~.i~;: % N %'%.~.

4 DISCUSSION blow Simplicity

-?Module Name Human Analysis Rank Metric Scare Rank
Our discussion of the results consists of comparing the human and

automated analysis, using the metric scores to pinpoint quality type
problems and training deficiencies, and suggesting changes to the
metrics framework. time 1

module 1 1

4.1 Comparison Of Human And Automated Analysis set 1 1
format 1 1

Comparisons of the rankings obtained through the human analysis setformat - 1

and the automated metric analysis are shown in Tables 9, 10, and
11. The rankings for flow simplicity compare favorably, but the nextfile I 7 1 7

correspondence between the rankings for the other two sub-criteria

is not readily apparent. make report 1 8 1 8
module order I 8 1 8

For flow simplcity, the rankings are similiar because the next trace 10 1 11
metric-elements used to define the sub-criteria and the read module i 10
distinguishing factors used to produce the human rankings are fetcl level 12 12
similar. Both use the concepts of branches, back braches, returns
from module, exits from "loops", and level of nesting. The human

analysis uses each of these in an absolute sense whereas the find file 1 13 1 14
automated analysis uses some in an absolute sense and others in a store-trace I 14 1 13
relative sense.

Two of the metric-elements, branch and nesting (FS5) and TABLE 9. FLOW SIMPLICITY RANKING
structured branch constructs (FS7), are not specifically mentioned
as distinguishing factors but are clearly related to the
distinguishing factors (FSFI, FSF2, FSF5) used. In fact, the
count for branches in the human analysis corresponds more to a
count of the number of uses of structured branch constructs ("if',
'case", and "loop") than to a count of the number of branch
constructs (*if", "case', "loop', *exit', "return", "raise",
"goto"). The only metric element not clearly related to a Limited Visibility
A istingu ish ing factor is "fo r loops" (eS8) and the on ly L im ited

distinguishing factor not related to a metric-element is simple Module Name Human Analysis Rank Metric Score Rank
"loops" (FSF3).

For limited visibilty, the relationship between the rankings is type 1 1 3
obscured by the number of data-items used and the means of ranking format 1 2 2
the modules based on the metric scores. The human ranking is ---------------------- ----------------
based on only two factors, the number of conceptual objects time 3 8
visible and the number of conceptual objects not used. Moreover, set 3 11
the human ranking uses these factors in an absolute sense. A few
of the metric-elements (LVl, LV6, LV9 and LVO) capture most of the module 3 7
information considered in the human analysis. None of the other --
metric-elements used to defined limited visibility were considered make report I 6 1 1 1
as factors in the human analysis. Also, all of the set lormat 1 7 1 4 1
metric-elements constituting this sub-criterion were interpreted -
in a relative sense. read module 8 9

For error prevention and detection, any correspondence between the nest trace 1 14
two rankings is coincidental. The distinguishing factors used in find file 10 10
the human analysis have no correlation to the metric-elements used module order 11 6
in the automated analysis. In general, the combination of the fetch level 11 12
simple functionality of the 'report generator' and adherence to next 'lile 13 13
the guidelines outlined in Section 3.3 prevented any of the
software principles measured by the metric-elements of this store-tr- -e- --1- - - -5- -

criteria from being a distinguishing factor in the human ranking store-trace 1 14 1 5
of the modules. The oaraoraohs to follow examine why each of the --
metric-elements does not have a corresponding distinguishing
factor. TABLE 10. LIMITED VISIBILITY RANKING

Default init(El) measures the proportion of variable declarations
that are initialized as part of the declaration. The human
analysis found that the only variable declarations that violated
guideline EG3 are variables that are clearly defined by a call to
a "procedure" before being read. The human analysis also revealed
that the *types" used in the declaration of these variables have
no values that correspond to undefined or null. Based on these
two factors, default initalization of these variable is considered Error Prevention and Detection
unnecessary and the use of initialization would be misleading.

User types(2) measures the proportion of the "types" used that Module Name Human Analysis Rank Metric Score Rank
are user declared. The human analysis found adherence to --

*guideline 102. In fact, there are only two system-supplied time I1 1
"types" used, namely string and boolean, and these are used only set I 1 I 6
occasionally. module 1

And then or else(3) measures the potential need for the set format I I 1
short-circuTt operators. Only "next file" has this potential need --
and the automated analysis did not capture the potential problem makereport I 5 1 14
due to the form of the expression of the "if". storetrace Ib 13

module order 5 12Out_prams w values(E4) measures the proportion of "out" find fle 5 0

parameterstfiat are defined for all paths. Adherence to guideline fetch level 5 i1
£G4 results in all "out" parameters having this property. netctrace 5 1next-trace 1 5 5

Constraint checked(E5) measures the proportion of sub-expressions read-module 1 5 7
that are constraint checked. Almost all of the sub-expressions
are constraint checked due to the simp icity of the numeric type I 12 I 4 1
processing and the array indexing needed to perform the
functionality of the "rportgenerator". next f i le 1 13 I 7 1

format I 14 I 9 1

--

TABLE 11. ERROR PREVENtION AND DETECTION IRANKING

' 72 Annual National Conference on Ada Technology 1986

3%, t , L

4.2 pinpointing Quality Problems vWith sortspackage;

package sort typeoacka.e is

Although ranking the overall quality of the software system is an subtype sort type is

important exercise, the ability to locate specific problems is sort-Package.sorttype;

equally important, The paragraphs to follow indicate how the undefined sort: constant sort type

automated metric scores for the set of modules can be used to :- sort~type_package.undefined_sort;

pinpoint problem areas. default sort: constant sorttype
:sort _type package.default sort;

The metric scores of the modules for limited visibility are - - -

extremely low. In fact, an examination of the scores for the end sort_type package;

metric "external to package" indicates that 10 of the 14

"packages" have more than 70 "types*, objects, or operators that "Packaging" the "types" in this manner directly addresses three of

are not used. Examination of metric-elements LV8 and LV9 indicate the problems pinpointed by the automated analysis, Unnecessary

that in all of these cases, many of the unused externals are "types" no longer need to be visible to "packages" that need only
"types" or objects. The common denominator for all of these a few of the "types". Operators for a "type" no longer need to be

modules is the "withing" of "package" "type'. The metric-elements visible in cases where only the "type" and associated constants

LV2 and LV3 show that "package" "type" declares 29 "types" and 54 are required. The undefined value can be used to initialize

objects. The metric scores point out the need to reorganize the variable declarations in cases where the use of another value

contents of "type' into several "packages". would be misleading, The undefined value is also useful for

An examination of the scores for metric-element El indicates that initializing "out" parameters.

default initialization does not accompany most variable Both "store trace" and "module order" are "packaged" separately

declarations. The reasons for this have been discussed in the from operators that are used-local to a "package'. For example,

previous section. The metric scores indicate the need to "store trace" is placed in a "package" that "withs" the

investigate whether the "types" in the "report generator" can be "trace:package, where "tracepackage" is the "package" currently

re-defined so that default initialization ii meaningful for all containing "store trace".

local variable declarations (including variables
that are defined

before used). "Packages" "format" and "set format" are merged. The variables in
the specification of "format" are placed in the corresponding

An examination of metric-elements Lv, LV9, and LV0 indicate that "package body'. "Functions" which provide read only access to the

6 of the 12 modules which have access to "withed" information use desired format of the report are declared in the "package"

the "types" and objects but not the operators from the "withed" specification.

"packages". An examination of the data items indicated that in

each case the objects are constants. The metric scores point out User-defined "types" are defined for those cases where type string

the need to allow access to the "types" and constants declared in is currently used. "Type" "boolean" will continue to be used in

these "package" specifications without providing access to the the "report generator".

operators declared in that specification.
We concluded that more

than one view of a "package" may be required for some of the The check in "next file" is clarified by using the membership

"packages" in the "reportgenerator'. operator. Variable declarations are isolated within "loops" where

An examination of metric-elements
LV6 and LV7 indicates that two possible.

of the three modules that use operators declared

"local to package" do not use the variables declared in that 4.2.2 Effect Of The Modifications On The Metric Scores

"package'. The metric scores reflect the need to further layer

the architecture of the "report_generator". The modifications will result in changes to the metric scores for

te g tthe "report generator'. The new scores for limited visibility and

Although an examination of the scores for metric-element LV9 for error prevention and detection are the most interesting, since the

"package" "set format" does not indicate the presence of the two modifications to the sub-criteria have the greatest impact on

variables declared in the "package" specification of "format', the these scores.

broader definition of limited visibility that we use for ADAMAT

would indicate this problem. In the overall framework, For error prevention and detection, the problems detected by

setnic-etent LVS is not a metric-element but a metric. LV9 is automated analysis are i) the lack of default initialization and

defined to be the sum of the usage of external constants(LV
9
l) and 2) the use of the "types" "string" and "boolean". The

the usage of external variables(LV92). For "set format", LV9l has modifications raise the scores for metric-elements El and E2 to

the score 0/1 and LV92 has the score 2/2 which- results in LV9 near 1.0.

having the score 2/3.
For limited visibility, the modifications directly address the

4.2.1 Modifications T The Reeort Generator problems detected by the metrics. Enough of the modifications

4.. -Moir t i s have been completed to allow collection of new metric Scores for 6

The "report generator" is presently being modified based on both of the orginal modules. The new metric-element scores for Iimited

the automated and human analysis. The paragraphs that follow visibility are shown in Table 12.

Sdiscuss these changes.
Examination of Table 12 indicates that 1) all but one "package"

Three changes are made to each of the "types" contained in "withed" is used, 2) the scores for "external topackage"

"package" "type. First, each of the "types" is moved into a improved for all modules except
"store trace", 3) based on the

separate "package". Second, each of the "types" is defined so as scores for "local to package", further layering may be required

to contain a null or undefined value. Third, each of these for "find file", and 4T the "local to module" scores are low for

"packages" is given three views. For example, "sort type" vill be all the modules that are "packagis-snd high for all the modules

"packaged" as follows:
that are subprograms.

xi package sort_valuetypepackage is

type improper sort value type is Modulo Name LV1 LV2 LVI LV4 LV5 LV6 LV7 LV8 LV9 LV0

(undefined first-sort
_7alue,

module orcer, set 2/2 1/1 0/2 0/5 0/0 0/0 1i/0 2/2 6/6 0/0

metricvalue, module 3/3 1/1 0/2 0/7 0/0 0/0 0/0 3/3 9/9 0/0
und ftic vaue stime 6/6 1/1 0/2 0/13 0/0 0/0 0/0 6/6 12/12 0/0

undefindjastsort.value) make report 4/4 0/0 3/3 0/0 0/0 0/0 0/0 3/3 3/6 8/8

- - - find file 3/3 0/0 1/1 0/0 0/0 0/3 3/6 1/2 1/4 2/7

rang*e module-rde .. metricvalue: storeitrace 19/20 0/o 2/2 0/0 1/1 0/0 0/2 2/19 2/98 38/124

end package sortvlueypePackagei
TABLE 12. NEW LIMITED VISIBILITY METRIC-ELEENT SCORES

with sort value type package;

use sort_;alue typepckage;

package sort package is
- 4.3 Identifying Training Needs

type sort type is private:

undefinedsort: constant sorttype;

defsult.sort: constant sorttype; In general, relative measures are useful for indicating the need

for training in specific features of the Ada language. The

following paragraphs examine the relationship between the metric

scores and the need for training.
function suct sort

(sort: sort type) For flow simplicity, the metrkc-element scores over the set of

return sort type; modules for 3 of the 4 relative metrics are excellent, The metric

scores for FS6, rS7, and FS9 indicate there is no need for

training in the area of structured programming. The score for

"for loops"(FS) indicates that only I of the B loops" are "for

private loopil. Although there are advantages to using "for loops" over

other "loops" when possible, the score of 3/8 does not warrant the

... need for training. In fact. this metric, despite being a relative

" smetric, may not be an appropriate metric for measuring the need

end sortpackage; for training.

Annual National Conference on Ada Technology 1986 73

.-- ,

For limited visibility, the overall metric score is low for most 5 CONCLUSION

of the modules. An examination of the scores for
"local to module', "local to package', external_to_package"
indicates- that in general te ocal to module usage is good, Our analysis indicates that the metrics for the three sub-criteria

the 'local to package" fair, and the external to ackage* usage flow simplicity, limited visibility, and error detection and

poor. CliarTy, training in how to limit visibi 1i ty to unneeded prevention are useful in pinpointing quality problems in existing

external information is required, software and for identifying specific features of the Ada language
where training is required.

For error detection and prevention, the overall metric score is
high for most of the modules. In fact, 3 of the 5 metrics have The comparison of the human and automated analysis suggests three

excellent scores. NO conclusion can be reached concerning the interpretations of the metrics in our framework.

need for training in the area of the short-circuit operators. The
scores for default init(El) are extremely low. The need for The identification of the distinguishing factors that determined

training in the -area of default initialization of variable the human ranking and identification of deficiencies in the

declaration appears warranted, analyzed software indicates the need for additional metrics in our
ADAMAT framework.

Each of the above conclusions is encouraging. However, our most

4.4 Modifications TO The Metrics encouraging finding was that the investigation of the scores for

existing metrics lead to the discovery of new software principles
that can be used as the basis for improving the exieitng metrics

Improving the metrics for each of the three sub-criteria is a thatework.

primary goal of this study. The following paragraphs discuss the framework.

possible modifications to the metrics based on the analysis of
Section 5.1, 5.2, and 5.3.

6 REFERENCES

A major difference between the human analysis
and the automated

analysis rankings is that the human analysis involves interpreting
the information in an absolute sense, whereas the automated [DunhamB3l
analysis combines both an absolute and relative interpretation. Dunham, J. R., Kruesi, E., 'The Measurement Task Area', IEEE

We have determined that both forms of measurements are useful. Computer, November 1983, pp. 47-54

Therefore, three measurements based on the numerator and (Keller8S
denominator of relative metrics are in order. The first is the Keller, S. E., Perkins, . A., "An Ada Measurement and
current measurement (good/total), to provide a measure of the Analysis Tool', Annual National Conference on Ada Technology
proportion of times a specific principle is followed. The second 1985, pp.188-196
is I/total, providing an absolute measure of complexity with
respect to a specific principle. The third is 1/(total-good),
which is an absolute measure of the number of violations of a
specific principle.

For example consider metric-element LV1. LVI is currently defined 7 ABOUT THE AUTHORS
to be the proportion of "withed" 'packages" that are referenced by
the module. Under the proposed scheme, LVI would have three
definitions. The first is as currently defined, the second is the Mr. John A. Perkins is a member of the Software Research and
number of 'packages* "withed', and the third is the number of Development Group at Dynamics Research Corporation. He has a
'packages' 'withed" that are not used. Bachelor of Science degree in Mathematics from Purdue University

and a Master of Science degree in Mathematics from the University

The 'reportgenerator" is being modified to allow the user of of Illinois. Mr. Perkins has been involved in the deveolpment of
ADAMAT to rank the modules according to any of these translators for multi-processor scientific computers and in the
interpretations. development of an attribute grammar-based translator-writing

Notice that absolute metrics have the same meaning under any of system.

the three intrepretations. Mr. Damon M. Lease is a member of the Software Research and
Development Group at Dynamics Research Corporation. He has a

The human analysis indicates that the following four metrics are Bachelor of Science degree in Mathematics/Computer Science from
candidates for addition to the metrics framework: Bucknell University. Mr. Lease has been involved in Ada

1) The proportion of locally declared variables that cannot be Progring and, the development of a set of Ada programming

isolated in a *loop" contained within the module. guidelines for the Air Force.

Mr. Steven E. Keller manages the Software Research and

2) The proportion of 'for loops' that cannot be eliminated through Development Group at Dynamics Research Corporation. He has a
the use of array slices. Bachelor of Science degree in Biology from the University of

Colorado, and Master of Science degrees in Computer Science and
3) The number of 'if' constructs not using a short-circuit Biology from the University of Oregon. Mr. Keller has been

operator when required, involved in the development of compilers for multi-processor
scientific computers and was the principal investigator for the

4) The proportion of 'packages' that do not contain variable development of an ordered-attribute-gramaar-based translator-
declarations, writing system.

The use of the metric scores to locate quality problems in the

"report generator" indicates that the following metrics are
candidate new metrics;

1) The proportion of modules that use types and/or objects from a
'withed* *package' without using any of the operators in that
'package'.

2) The proportion of modules declared in a package that use other
operators from the package without using any of the variables
declared in that package.

The new scores for the modified modules indicate that the
definition of *local to module' may need to differ depending on
whether tie module is i *5ackage" or a subprogram.

we are investigating the feasibility of incorporating each of
these modifications into our current metrics framework.

74 Annual National Conference on Ada Technology 1986

% z ;~

THE TECHNOLOGY LIFE CYCLE AND ADA

MIGUEL A. CARRIO, JR.

TELEDYNE BROWN ENGINEERING

ABSTRACT

The rate of change of technology development continues Test
to increase significantly while the system and software

life cycle's rate of change that assimilates the

technology continues to atrophy. Major technology
changes are occurring approximately every 2 to 3 years, R cod
while system life cycles for complex and large embedded 20.0%
computer systems are in excess of 12 years, and in some •
cases as long as 18 years. Automated tools and
paradigms, coupled with modern methodologies and
technologies, and evolutionary development approaches
necessitate a reexamination of classical or traditional SdW- " L^ Cf E
life cycle models used to build systems. An examination
of the activities that occur during the maintenance
phase is required to properly identify and separate true
maintenance from pseudo-maintenance activities.
Furthermore, renewed and more extensive emphasis is
required on the early life cycle requirements and design

phases as a consequence of the emerging technologies.
Toot

BACKGROUND

The rapid infusion of software technology into embedded
computer systems and the dependency on this technology -1/ 70%
to serve as the solution medium has itself created a
higher level of complexity whose interrelatiopships and
transformation algorithms are still not cbmpletely 1W ~ I i for moN $Vm811wr
understood. This situation is further obfuscated by the
lack of design discipline and the esoterism associated FIGURE 1
with computer languages and code understood by a
relative few. What has resulted, despite the emergence CA G WARE ERROS LATE: PWE R TS*
of information identifying the contribution that coding
activities represent as a function of the life cycle, (less
than twenty-percent in most cases) Figure 1, is a
misfocus of the problem. The misfocus occurs in part as
a consequence of the late detection of software design
errors (Figure 2), resulting in maintenance activities
being the costliest phase in the life cycle. Noiseux's
reference indicates that pseudo-maintenance can be as
high as 83% of maintenance costs. From a consumption
of resources and productivity view, one is led to believe NVM
that concentration of solution resources should be
focused on the maintenance or support end of the life
cycle to effect the most savings. Despite the
expenditure of large quantities of resources in
maintenance, the last twenty years has yielded few
productivity gains, little discipline or significant I
documentation that was of use in design maintenance ', ? MuV OAE 'MAN EN =M GNU
and fault correction insight. wo

V060illt iA M mI mugeal twinl.

FIGURE 2

Annual National Conference on Ada Technology 1986 75

% %

CURRENT PARADIGM PROBLEMS quality assurance or acceptance personnel are provided
AND MISCONCEPTIONS by the customer or his bank in the form of inspectors

providing certificates of specific work completion, and
The current life cycle is essentially comprised of three the ultimate acceptance certification, the certificate of
major phases - a conceptual and definition phase, a occupancy.
development phase, and a deployment and operational
phase. In the conceptual and definition phase (i.e., the The problems of communicating requirements and
initial or early life cycle phase), requirements are information is no less difficult or different between high
identified, an intended performance envelope is stated, technology users and specialists than the homeowner
and statements of needs are written. During this initial with his builder. Unless a homeowner can understand
and formative phase the prime individuals involved are architectural blue prints, electrical and plumbing
the users and the keepers of doctrine. The development diagrams, he is at the same loss that a user or functional
phase primarily consists of the design, code and test expert is, in the event communications are attempted
activities concerned with the system implementation. with a software engineer or programmer (i.e., unless the
The development community, as the activities imply, are user understands the specific coding language and data
in turn supported by the systems, hardware and software flow diagrams). In plain English, unless the user has
engineers/designers; programmers and analysts; and test previously built his own home, he is at a communications
and quality assurance specialists, to name a few. A loss, caveat emptor. Similarly, a builder may encounter
major difference between development and requirements his own difficulties because he built a house that did not
type individuals is that the latter represents the user and meet the full expectations of a buyer who wasn't sure of
functional expertise, while the former is more technical what he wanted or where to locate certain partitions,
specialist driven. The deployment and operational phase and selected tile colors and patterns he would have
also consists of the important maintenance and support subsequently preferred changed.
activities required to complete the final or last phase of

4 the life cycle. Thus, one key and fundamental problem that has been
identified across the life cycle, that continues today, is

For the most part, it is during the deployment and that of communications, of understanding and insuring
operational phase that users and developers meet and the integrity and accuracy, of the initial set of
formally interact. The two initial major life cycle requirements. The passing of requirements information
phases, requirements and development, are the fiercely becomes a significant issue that is commonly overlooked
guarded domains of the user and developer, or the since users and developers assume that because they all
customer and builder. speak the same language, English, that requirements

accuracy and specification clarity are all guaranteed and
It is interesting to note that in the world of high that the language is sufficient to insure the intended
technology and complex computer systems* that the product. Would a builder consider building a house with
relationships and interactions between the key only an english written description, without architectural
individuals representing the different communities of renditions and blueprints? The question that must be
interest are difficult to grasp and understand. However, repeatedly asked is: Is the as specified system and
a simple analogy is required to insure clarity since the intended performance, the same as the as designed, the
problem of understanding life cycle phase relationships same as the as documented, the same as the as tested
and responsibilities remains cloaked due in part to the and the same as the as built? Under the current life
alphabet soup and acronyms that specific communities cycle and paradigms that are used to build systems the
use**. The problem is further exacerbated when the answer is no.
different Government, industry and academic
communities are brought together to work on a project. In addition to the problem of communicating

requirements, a number of other issues and concerns
The analogy is one where an individual (homeowner) centered on the existing life cycle exist. Figure 3A
desires to build a home by engaging a builder represents the life cycle currently used, with Figure 3B
(contractor). The prospective homeowner is isolated for representing a simplified version of Figure 3A, that will
the most part from the various developer-subcontractors be the one used as a reference throughout this paper,
(i.e., architect, plumber, electrician, mason, carpenter, unless otherwise stated. Under the current paradigm
etc.). Initial meetings between the two are to select used to develop systems, when design specifications are
type of house, appliances, color schemes, etc. and passed to programmers in the coding phase, it is at this
contract finalization. During construction, a few limited point, and not prior, that the specification is converted
interactions, equivalent to development design reviews, into an implementation. Additionally, the programmer
are made to satisfy contract construction draw schedules by default as a result of a lack of a viable
of monies for completion work (e.g., basement, first communications link back to the user or systems
floor, roof) to reimburse the builder. The corresponding engineer, is "licensed" to interpret requirements and

*)ther eqIiivAlent tern% Are rithefct(led comnpister vYieromq, *lepirtment of I)efen,, i~e either Milestone ., 1.
mission critical co'mpltler %v~l %. wenpolrn %V-t, II. It I r fi eort-eit go. te',i'n. (Ifvelopment. uleplnvment
battlefield fun(tiolt sv',tem,. renl time tav'cen. tnrget phivse re-pertivelv. Some Dol) services use qv rem
or lppliRti(ons. & performance %pet-fi,-sition, fnmtioniI and prondiit

lpwifinlnion%. while others c'all them A level specs
It lev nl (I (n level 1 ,eiciie-,tgon% respectivelv. Ad

76 Annual National Conference on Ada Technology 1986

vs. "passed over" requirc nents). Thus, the present
paradigm supports the maintenance of code and nat the
naintenance of design specifications. Tlis leads to the
sitiation that under the)resent paradigm the fnore
maintenance that ii 2erforned on an existing system,
the more structire is destroyed and the less insight into
intended performance and requirements rasults. Instead
of graceful systen degradation or evolutionarySColceptul/Z finit ion Ovlmet Deplov nieat Operattonill

I As* PP.5 I transitioning into an enhanced performance envelope,
systems are discarded, and replaced !y conpletely new

Deig %Is "Ineri systens with little conmonality ind reusability)etweenRequremnts CodeSuprth m
Test them.

Ioo user D,,*Iopr Many syste.ns' lifetimes are reduced by tile

(A) incomprehensible and voluminous specification
documentation produced that stifles the ability to gain
design insight, traceability and correlation of
functionality with the same. Insight into development

Rqi Ana lysi Design code rTest ope.,. sn, supI and design methodology, and derived require nents are
also inhibited. The few viable prototypes that are
created during initial design by systems engineers to
provide insight, are discarded and never used to assist in
the evolutionary and iterative processes of design and
require-nents iynthesis. Further insight into current

Figur, 3 versus automated paradigms can be derived from
references on Balzer and Sievert.

TRADmONAL.'C'RRENT LIFE CYCLE

Current thinking and paradigms of the last 25 years
centered on life cycle phases, relationships and
technology that were stable and simplistic. Systens

implement them based upon his understanding of the were manageable because they were small in size (e.g.,
intent of the requirements asing his own formal syntax program sizes of several thousand lines of codes); design
and se nantics (i.e., using the coding/programming and programming teams consisted of fewer individuals,
language). This issue of interpretation is not really computers had not entered the world of multiprocessing,
challenged until much later, in the test phase, when an ,nicroprocessing, virtual memories, concurrent tasks,
attempt at reconciliation of the as implemented versus relational data bases, and technology was slow to
as docunented design is made. At this point in the life change. Today, systems comprised of a half-million to a
cycle (testing phase) it is quite costly to correct million lines of codes, designed !y tea ns of individuals
mistakes since considerable amounts of resources, have numbering 50-100 are common.
been expended in time, people and costs. From design
to the syste.n integration phase, several years may have
intervened, requiring hundreds of specialists, producing CATENNG SOFTWARE ERRORS LATE: THE COST
thousands of pages of docu nentation. Software errors
are traditionally "etected very late in the life cycle as
Figure 2 illustrates. Similarly as Figure , illustrates the
associated costs of detecting errors late in the life cycle Mo
are significant. Fewer errors can cost nore to correct i muan
the later they are detected. C Nilt1*

Once design is implemented via code and the coding I
specifications exist, from this point on in the life cycle, g

it is the code that is maintained, changed and supported
in an attempt to insure conformity between the .i

implemented system and intended require -nents.
Additionally once long lead procurement items and
hardware (LLPI/1) are delivered to the contractor, as a
result of coin mitnents made early in the design phase,
many requirement that cannot be accommodated by the m ,
LLPI/lI's are "passed over" to the software side of the .umlV .wRm CM. mum MOW IMAm
house for accommodating implementation. The latter's 111114 NM

disruptive effect on schedules and costs is futher masked
by the valid hardware/software tradeoff task found in PmtnM, P 0. JAcs mstUF, irouy AsgSIvS SECKv OF BERs
major systems developments, (i.e., true apriori tradeoffs FRs mIWI CIIsInuO. At 1W IVY7 AIM nM PIAMNI (3t1r .

Annual National Conference on Ada Technology 1986 77

[~~~~~~~~~~~~ -¢', :. :- ,. - , % %' - '- ' .:,:.,.: %.',., . %% :.q,€

IALIGNED MAINTENANCE operational state by repairing defects arising
from its use within its original performance

The ratio of software to hardware dependency and envelope. No change in scope.
functionality has shifted significintly in tile last 30 years
:is illustrated in Figure 5. Present embedded co nputer Conditions (a) through (e) are reflected in the following
systems are primarily dependent on and impacted most five expressions (1) through (5) respectively:
by softvare. Since software is labor intensive and
compIC, the larger the system, tile greater the Where performance (P) is represented by:
resources required to support and maintain the software
ac tivities. When problems occur in an embedded Ti - original timing constraints
computer system, the last to be detected, nost costly
and severe are the software problems. Why are the t i - new timing constraints
softw.are problems so costly to resolve and detect? A
fundamental answer is that we collectively (industry and Fi - original function set
government) are not as knowledgeable as we think we
are. The latter is not as negative as it sounds. With fi - new function set
the technology and corporate history about 25 years old,
and with individual system acquisition times of 10-t5 1 i - original requirements envelope
years, all this means is that we are still learning about
the new technology, and have not had sufri,!ient data R - substituted require-nents envelope
points to make many intelligent decisions. However, the
documented mistakes of the past1 '1 together with the ri - new or additional requirements set
energence of new tools, different life cycle models and
software paradigms, coupled with innovative and formal
methodologies reveal that there are better and cost Subscript i represents the various iterations or versions
effective ways to build systems in a disciplined and that result in satisfying and sustaining a level of
predictable manner. performance. This is part of the localized tuning

process.
Furthermore, examining naintenance activities in
greater details reveals that mhost of the activities (1) Enhancement
occurring are not true corrective maintenance activities Pi ,[ri], [Fi], [Ri]
(i.e., fixing latent defects, software bugs and errors)J
arising fro n code). The majority of activities occurring [fi]
in this phase can be classified as pseudo-maintenance (2) New or Substituted
activities. References by Boehm and Glass shed further (2 e [] Ri]
light on this subject. The activities found in the Pi >[Ti], [Fi], [Ri]

maintenance phase consist of the following: 4[Rs, ri I

a. Making enhancements to the system performance (3) Optimization
envelope, this is commonly referred to as adding Pi =U[i], [Pi, [Ri]
bells and whistles or gold plating. The core " [Tn]
requirements are not impacted but features are
added (e.g., modifying a screen format or adding (4) Transition or Evolutionary
color graphics to it). Increased scope. - PiBaseline 0[Ti], [Fi]m [Ri]

b. Changing the baseline performance by adding new Piobjective - [Ti+ti], [Fi+fi], [Ri+ri]
or substituting other require.nents relative to
those implemented. This primarily results when (5) Corrective Maintenance
the user is not sure of his initial requirements set. Pi [ri [Fit, [Ri]
Increased scope.

Activities (a) through (d) and 1-4, represent pseudo-
c. Changing the baseline performance envelope to maintenance activities, while (e), (5) represent true or

improve response times in excess of requirements corrective maintenance in the classical sense. However,
or in anticipation of a future change in doctrine- the pie charts or bar graph representations found in texts
optimization. Increased scope. referencing hajor life cycle activities showing relative

weights of phases, for the most part just identify
d. Increasing the baseline requirements in order to maintenance as a whole thereby generating a

transition or evolve to an intended or objective composition misconception.
baseline. Intentional and planned for increase in
scope. Most of the activities occurring in the maintenance

phase, over 80% 9 , are of the psuedo-maintenance type.
e. Corrective maintenance, in the true sense, to This results as a consequence of the following:

sustain an existing system and keep it in an

78 Annual National Conference on Ada Technology 1986

a. The problems generated by using the current If advantage is to be taken of working prototypes based
paradigm where as intended is different from as on design that can be maintained and evolved Into end-
implemented design. Effort is thus expended to item systems, then a greater emphasis must be placed on
correct this. the early or Initial life cycle phases. Specifically, a

synthesis phase must be identified where the following
b. Very late detection of complex problems and areas ard addressed:

unclear design, obfuscating traceability and
methodology. Prototyping - Using an automated paradigml, early

design driven prototypes are established and
c. Lack of a usable communications and graphical maintained for the duration of the life cycle. This

language understood by users and developers - the enables a strong traceable link between
communications problem. requirements, design, implementation and

maintenance. A corporate history and process Insight
d. Lack of early working prototypes that can be Is available.

maintained and evolved into end-implementable
systems, instead of throw-away prototypes. Reusability - Designing for reusability must be

addressed at this point since costs and resources
e. Documentation that precludes corporate design required are greater than the single context or

histories and does not provide insight Into design syjLrn used in a single application (point system).
and development methodologies. Tools that support reusability must be invoked at this

early phase to be effective and to insure
f. Lack of automated tools to assist in harnessing productivity.

the new technology that enables the compatibility
of innovative concepts. These tools should also Artificial Intelligence/Knowlei e Bases - The
enable deriving productivity synergism from the emerging technology will enable the development of
merging of innovative concepts and technology, intelligent tools supported by a knowledge base that

will provide the ability to identify minimum
g. Lack of an awareness of the changes being functionality for generic systems and assist in the

wrought by the emerging technology, an allocation of functions, software and design
awareness to change and adoption to it. reuseblity. AI/KB tools supported by automatic code

generators will enable concise and consistant
transformations of requirements to design to

NEW APPROACH TO LIFE CYCLE implementation in significantly less time.

By identifying new components to the life cycle and Generic Instantiations - Once a system or class of
addressing these areas via new tools, paradigms and systems is developed using these innovative concepts,
approaches, the pseudo-maintenance issues Identified In tools and paradigms, subsequent evolutionary
(a) through (g) can be resolved today. However, It is felt derivative systems and subsystems can be efficiently
that one of the biggest impediments to getting a grasp and rapidly Instantiated enabling a higher degree of
on managing the development of large complex systems verification, validation and a shorter deployment
and software productivity is item (g), an awareness of time This activity may consume what is commonly
the impact that emerging technology can have and a referred to as rapid-prototyping using very high orderwillingness to change, to adopt, to experiment using the or Fourth Generation Languages. Functional
new tools and paradigms. instantiation and completeness would be enabled

earller in the life cycle process instead of the
The technology Life cycle of Figure 6 shows a modified meaningless functional and physical configuration
life cycle, that can be used to support automated audits that are required at the end of development.

% paradigms and more accurately reflect technology
changes that impact how systems are built. Data Base AoolUcations/Support Environment - With

systems becoming larger and more complex, requiring
PERCENT OF COST MAINTENANCE" DCVELOPM'NT extensive support In their post-deployment period,

oo data base management of voluminous Information
becomes a critical function. Separation ,f the data

so evelopmenkftintenonce from Its applications enables a concentration on
syntisis. The migration of data between the

60 corporate, host & target development, and0 ,Softwor applications data bases can then be focused onDeveloPm relative to such functions as access, distribution,40 fusion and transportability.

Technology Insertion - Under an automated paradigm,
20 / < ' ,,.. ..m... using modern methodologies and an evolutionary

development scenario using automated tools, the
0 _________ _------- ability to assimilate technology rapidly is made
1966 1M03 1970 1977 1986 possible. This insures that developed systems can

HARDWARE/SOFTWARE COST TRENOS take full advantage of what is available on the
market in a cost-effective manner.

Annual National Conference on Ada Technology 1986 79

Automated Tools - Systems have become so large, Figure 7A illustrates that the traditional life cycle is a
complex, and labor intensive that adoption of unidirectional flow model that cannot support
automated paradigms and modified life cycles while evolutionary development, and only supports the
essential is insufficient. Substantial increases in maintenance iterations associated with the code and
productivity can only occur when innovative coding products. Figure 7B is the technology life cycle
concepts, paradigms and methodologies are fully representation allowing bidirectional flow of
supported by automated tonc1 that in turn incorporate requirements information, reusability, iterative
formalisms and graphics. Formalisms in the sense maintenance of design and evolutionary development.
that a methodology supported by a rigid syntax and
se nantics is embodied within the specific design tool The technology life cycle thus enables the assimilation
environment and is machine processable and of AdaR with its different forms (e.g., Ada Program
executable. Furthermore, the user interface to such Design Language). The concepts espoused by Ada
a design environment shall be extrenely friendly and Technology such as data abstractions, packages, tasking,
graphical so as not to burden an already technology- generics, and types can easily be accommodated and are
overburdened architect. preferred under the new paradigms. Module

functionality and interfaces can be effectively addressed
In conjunction with the synthesis phase of the life cycle, and referenced in design considerations without concern
the maintenance phase would be divided into three for implementation details of such. As these concepts
maintenance parts: baseline, enhancement and objective are elevated to higher levels of abstractions and
maintenance phases. The baseline maintenance would addressed throughout the life cycle, the seeds of
correspond to the traditional or corrective maintenance common denominators and better comnunications are
performed on the original or baseline system, while the ultimately planted leading to a greater understanding
other two consist of all of the pseudo-maintenance between users and developers. This is essential for the
activities. Enhanced maintenance would conprise all of passing of requirements in a uniform and consistant
the pseudo-maintenance activities except for the unique manner.
activities associated with transitioning to an objective
system.

NEED FOR CHANGE
TAGS t Technology represents such an example of the
automated paradigm coupled with a formal methodology, The traditional life cycle has been slow to change. It is
graphics, and documentation aides, automated on an essential that the life cycle be viewed from a different
engineering design workstation. The point being that perspective, and that it too be subject to modification to
such automated tools with automatic code generation accommodate the technology changes imminent over
back-ends are appearing and available on the time. The rapid technology changes of the the last 25
marketplace. years have focused attention on the specific activities

occurring within it. As a result, much attention has been
focused on the coding phase (i.e., Ada Language

LIFE CYCLE EQUIVALENT MODELS initiatives), on deployment (i.e., Post Deployment
Software Support Concept), on software development

An equivalent representation of the Figure 3B and 6 life (i.e., Software Technology for Adaptable, Reliable
cycles is shown in Figure 7. Systems (STARS) Program), on environments (i.e.,

Software Engineering Environment (STARS-SEE)), but
until recently very little on the broader issues of the life
cycle.

..... I I I I I If significant productivity gains are to e made in
developing and fielding systems then a closer look at
those areas mentioned must be made. An understanding
of the relationships and transformations between phases
is key to transitioning between them. Significant
resources, and much dialogue is expended on integrated

... ,,- ... battlefield management concepts and open system
interfaces, but very little on integrating methodologies

....... with automated paradigms and evolutionary or
.... .reusability concepts where significant benefits are to be

, - accrued. Congress debates over syste:ns and their
numbers to be acquired f.or the military, but very little if
any debate is ever heard over how to build these syste ns
in tinely cost effective ways, or for that natter,
identifling long ter n development strategies in light of
short term fiscal policy and rapidly changing technology.

80 Annual National Conference on Ada Technology 1986

The entire design review process must also be exa;nined. REFERENCES
Preliminary and critical design reviews should be
adhered to as intended, to signal major design 1/ Balzer, Cheathen, Green - Computer, Vol. 16, No.
stabilization points, and not to satisfy a contractual 11; Nov. 83, pp. 39-45. Subject: 3oftware Technology in
s!hedule or appease management. In light of the the 1990's: Using a New Paradigm.
synthesis and pseudo-maintenance phases discussed, new
milestone reviews should be identified (e.g., upon 2/ Balzer, Robert - Proceedings of COMPSAC 34
completion of a working prototype or simulation run). A Conference on Computer Software & Applications; Nov.
reusability and data base management review should also 84, Chicago, Ill.; IEEE# 0730-3157, pp. 471-475. Subject:
be established. Depending on the type of development, Evolution as a New Basis for Reusability.
design reviews should be flexible and custom tailored for
the specific system, yet rigid and formal enough to 3/ Bersoff, Henderson, Siegel - Software Configuration
provide the insight into system progress and maturation. Manage,nent ice-Hall, Inc., 1980.
Automated program management tools supported by

knowledge bases can be most effective in providing a 4/ Boehm, B. - Software Engineering Economics 1981,
program manager insight into the system development Prentice-Hall, Inc.

and its specific life cycle.
5/ Booch, G. - Software Engineering with Ada;

A properly tuned and understood life cycle can support Benjamin/Cummnings Publishing Co., Inc., 1983.
system developnent so as to conserve resources that can

be used elsewhere to address the larger multi-context 6/ Clapp, J. - Proceedings of COMPSAC 84 Conference
issues of reusability and evolutionary development where on Computer Software & Applications; Nov. 84, Chicago,
significant payoffs are to be realized. In the long tern, Ill., Liin~ry of Congress No. 93-610060, pp. 479-480.
adoption of new paradigms and technology life cycles :tbjt Software Reusability: A Maagenent View.

would result in the disappearance or transformation of
pseudo-maintenance and the requirements phase into a 7/ CODSIA, DoD Management of Missioi-Criti,il
new combined process capable of synthesizing systems in C.,.nj)uter Resources, Mar. 1984; Couinil of Defense &
tines less than that associated with the technology. Space Industry Association's (CODSIA) to Under

Secretary of Defense Research and Engineering, VolumeThe commitment of resources to and emphasis on the I, Task Group Report.

initial phases of the life cycle should be viewed as viable
investments. Risks are optimally minimized, 8/ Gilb, T. - Software Engineering Notes, ACM; Jul.
productivity yields maximized, and software T985, Vol. 10, No. 3, pp. 49-62. Subject: Evolutionary
develop.nent with its schedules and cost can be Delivery Versus the Waterfall Model.
disciplined and most importantly - predicted.

9/ Glass, R.G. & Noiseux, R.A. - Software Maintenance
Guidebook; 1981, Prentice-Hall, Inc.

10/ Goguen, J.A. - Computer Vol. 19, No. 2, Feb. 86, pp.

Components.

1t/ Jones, G. - Proceedings of COMPSAC 34 Conference
on Computer Software & Applications; Nov. 84, Chicago,

TUNIG Ill., Library of Congress No. 83-640060, pp. 476-478.
D- , , Subject: Software Reusability: Approaches and Issues.
C - (ol a1 ntenane.
PM * Pii'ft fll41titC* TI~tlg

CI-ct€*,NIOe va-a,,o 12/ Roman, G.C. - IEEE Computer Magazine; Vol. 18,
No. 4, Apr. 85, pp. 14-23. Subject: A Taxonomy of

FIGURE 7(A) Current Issues in Require-nents Engineering.

13/ Sievert, M. - Computer; Vol. 18, No. 4, Apr. 85, pp.
56-65. Subject: Specification Based Software
Engineering.

iT c 4/ Spinrod, M. & Abraham, L. - Software Enginteing
Notes, ACM, Vol. 10, No. 3, Jul. 85, pp. 47-49. Subject:
The Wild-West Life Cycle.

15/ STARS Applications Workshop: Software
ik Applications & Reusability Proceedings; Monterrey, Ck.,

Nov. 1985.

vM ?.Iaq 16/ U.S. Army In-Theater Post Deployment Software

T4"V Support Study, Phase I Report, May 1983, Contract
IlltII DABT60-82-C-0047, Teledyne Brown Engineering.

FIGURE IM)

Annual National Conference on Ada Technology 1986 81

'N~ ,

17/ U.S. Department of Defense - Reference Manual for
the Ada Programming Language; MIL-Standard 1315A,
Feb. 1983.

18/ Zelkowitz, Shaw, Gannon - Principles of Software
Engineering and Deiign; Prentice-Hall, Inc.

RTAGS is A registered trsdemark of Teledyne Brown
Engineering.

RAda is a registered tr'tdenark of the U.S. Govern nent,
Ada Joint Program Office (AJPO)

Mr. Miguel A. Carrio, Jr. is
presently Manager of Advanced
Technology Programs at Teledyne
Brown Engineering's Washington,
D.C. facility. Mr. Carrio's past
responsibilities at TBE have
been as program manager of
both the Defense Communications
Agency WWMCCS Advanced

j Area Research & Development
Programs' Independent Verification
& Validation/Testing & Prototype
(IVV/T&P) efforts; and the DoD

Joint Tactical Fusion Program IVV/T&P. Prior to
joining TBE he was a branch chief at the Army's
Communications Electronics Command-Soft ware
Technology Center with responsibility for such
programs as the highly successful and first validated
Ada Compiler (NYU Ada/Ed), Ada Design Methodology
Efforts and Ada Education training programs.

Mr. Carrio's experience in systems and software
engineering spans 23 years. Mr. Carrio has a BS
Physics, LIU. and an MS Engineering from Fairleigh
Dickinson University.

i0

82 Annual National Conference on Ada Technology 1986

-',.. " ""

SESSION IV: ADA IMPACT ON SECURE OPERATING SYSTEMS

CHAIRPERSON

M. Margaret Zuk, Group Leader

MITRE Corporation

Use of the Ada language for secure sys-
tems introduces many complex issues. The
elaborate Ada Runtime Support Library, the

unpredictable behavior of Ada programs possi-
ble with different compiler implementations,

and the complexity of the language itself are
concerns that secure system designers and
verifiers face.

This panel will focus on the impact that
Ada has on the design and Implementation of
secure systems. An overview of secure system
design and the techniques that are used to
verify secure systems will be presented. Sys-
tem designers will then discuss current work

in this area, and share their experiences

with the use of Ada.

Margie Zuk is a group leader in the
Trusted Computer Systems department at MITRE,

Bedford. Her group provides security system
engineering support to the Army and to the DoD

Computer Security Center's Office of Applica-
tion Systems. She has been involved with Ada
since 1981, and serves as chairman of the Ada
Verification Workshop's Secure Systems Working

Group.
Margie holds a Masters degree in Computer

Science from Stevens Institute of Technology

and a BA in Math from the college of Mt. St.
Vincent. Prior to joining MITRE, Margie worked

for Bell Laboratories and Ford Aerospace.

Annual National Conference on Ada Technology 1986 83

SESSION IV: ADA IMPACT ON SECURE OPERATING SYSTEMS

PANELIST

Dr. Richard A. Platek, President

Odyssey Research Associates, Inc.

The state of the art in formal Ada

specification/verification is reviewed

including current European work. Several

problems are surfaced and solutions

proposed. In particular, methods for

dealing with Ada's so-called

non-predictability and complexity are

presented. The first is handled through

the use of non-deterministic

post-conditions for Ada program units. The

second is handled using the method of

Clusters which the author and his

colleagues are developing.

Richard Platek is President of Odyssey

Research Associates (ORA) of Ithaca, NY and

a member of the Department of Mathematics,

Cornell University. He has a B.S from

M.I.T. and a Ph.D. from Stanford

University, both in Mathematics. ORA is

concerned with the applications of formal

methods to the development of trusted

software with special emphasis on secure

systems. Their activities span the
spectrum from security engineering on

systems which are currently being fielded
to the development of advanced,

knowledge-based software engineering tools
for the inferential development of Provenly

correct systems. Prof. Platek is
Chairperson of the SIGAda Formal Methods

Committee.

84 Annual National Conference on Ada Technology 1986

i%

SESSION IV: ADA IMPACT ON SECURE OPERATING SYSTEMS

PANELIST

Eric R. Anderson, Army Secure Operating System Project Manager

TRW DSG

This talk addresses some of the criticisms
that have been leveled against Ada's suit-
ability for use in trusted computer systems.
It treats the use of Ada for both untrusted
applications programs and security kernel
implementation. (It does not directly address
the use of Ada for other trusted software, but
much of what is said about its use for
security kernels applies to trusted software
as well.) The paper concludes that each Ada

criticism is either unfounded or poses a
problem that has a solution; thus, Ada is

.% indeed suitable for trusted computer system
implementation.

Mr. Anderson has 17 years of experience at TRW,

both as a software manager and developer. His
areas of expertise include project management,
real time operating systems, programming

languages, and computer security.

Mr. Anderson is the project manager of the
Army Secure Operating System (ASOS) project.

In the Concept Definition Phase, he was the
chief designer of both the Dedicated Secure
Operating System and the Multilevel Secure
Operating System, and designed the Task
Management portions of both operating systems.
fie previously managed the "Security Kernel
for Secure Operating Systems" IR&D project.

He was a subproject manager on the TDP project
operating system and a work package manager
on the MIFASS project real-time operating
system. lie was the project manager of the
Kernelized Relational Information and Storage
System (KRISS), and a work package manager of
the Kernelized Secure Operating System (KSOS).

Education: A.B., Computer Science, University
of California, Berkeley, 1969. M.S., Computer
Science, University of Southern California, 1972.

Annual National Conference on Ada Technology 1986 85

AD-A167 882 PROCEEDINGS OF THE ANNUAL NATIONAL CONFERENCE ON ADA 2/2
(TRADE NAME) TECHNOL (U) ARMY
COMMUNICATIONS-ELECTRONICS COMMAND FORT MONMOUTH NJ

UNCLASSIFIED 1986 F/G 9/2 N Lmommommommoss
EE/h/E/E/llE EmhEEElhElhElhE
EEIIEIIIEIIIhE
EEEEEEEEE/hEEI
EElhhhEElhEEEE
mmmmmmmEmmmmEI

-- 4

1.0 LI L2.0!
80

1.2 III1.4 11.6

MICROCnAV ,;ON TEST CHART
NATIONAL OUREAU OF STANOA DtS- 1I3-A

SESSION IV: ADA IMPACT ON SECURE OPERATING SYSTEMS

PANELIST

W.E. Boebert, Chief Scientist

Honeywell Secure Computing Technology Center

There are three sets of issues which must be

fused in the use of Ada in secure systems.
The first set deals with the use of Ada as
a programming language for secure applications
whose operations are controlled by a Trusted
Computing Base (TCB). The second set deals
with the use of Ada in the implementation

of "trusted processes", and the third deals
wi with the use of Ada to implement the reference

monitor subset of the TCB. The positions
taken by the Secure Ada Target project on
these three sets of issues will be described.

Earl Boebert is currently the Chief Scientist
at Honeywell's Secure Computing Technology
Center, where his prime responsibility is
acting as Principle Investigator on the Secure
Ada Target project. Prior to this, he held
a variety of technical and managerial positions
at Honeywell. Before joining Honeywell in

% 1966, he was an EDP officer in the United
%! States Air Force, and before that, a programmer

and machine operator at the Stanford Computation
Center.

86 Annual National Conference on Ada Technology 1986

SESSION IV: ADA IMPACT ON SECURE OPERATING SYSTEMS

PANELIST

Steven R. Hart - Staff Engineer

M/A-COM Linkabit

SYNOPSIS: An overview of some of the problems
associated with the use of Ada to develop trusted
computing systems is presented. A methodology
and generic software architecture is given which
allows full Ada to be used as the development
language for applications programs in a secure
environment, based on standard reference monitor
concepts. The methodology allows for bi-direc-
tional portability; that is, programs running
under the secure environment can be easily ported
to any other machine, and externally generated
programs may be brought into the secure environ-
ment.

Steve Hart is a Staff Engineer at M/A-COM Linkabit
where he works on problems in computer security,
satellite networking, and software engineering.
His research interests include development of
combinatorial solutions to multichannel scheduling
and formal techniques for verification of specifi-
cations and protocols. He received a B.S. in
Mathematics in 1977 from the University of Nevada,
Las Vegas, and a M.A. in Mathematics in 1980 from '4,

the University of California, San Diego.

Annual National Conference on Ada Technology 1986 87

DEVELOPMENT OF A CORPORATE ADA TRAINING CURRICULUM

Linda F. Blackmon

General Dynamics
Ft. Worth, Texas

Abstract highest levels: it is necessary to involve the

mid and upper level management of each of the

This paper discusses the process followed to component divisions/companies in the

define a large corporation's need for Ada decision-making process and in the delivery of

training and the establishment of a corporate the new methodology or product once the decision

mandate to develop and deliver an effective Ada has been made. It is not, of course, necessary

training program to all divisions. The for the division-level management itself to

management process involved in obtaining participate in the process directly: they will

cooperation from all levels of staff in the most often delegate that responsibility to senior

development of a corporate-wide project is level technical or lower-level management

emphasized, along with a description of the personnel.

courseware design and development methodology
used to develop the curriculum and the challenges General Dynamics falls into the category of a
in the design of a technology curriculum for an large, diversified corporation. Composed of
industrial setting as opposed to an academic thirteen divisions and companies, with goods and
environment. services ranging from the production of military

products (tanks, fighter clanes, and nuclear
submarines) to the mining of coal and lime, this
corporation practices matrix management to
effectively produce goods and efficiently deliver
services to a broad range of customers. The

Manaoement Strateov majority of products and services produced are
targeted to military use, and the DoO has

Perspective mandated that Ada will be the language used in
the develooment of all embedded and

There are two extremes in the business world: mission-critical systems. It was clear that a

the small, individually owned and operated commitment to a well-defined, coherent plan to

company which focuses on one or two products train software engineers in Ada was essential.

and/or services, and the large, multi-national. In such a corporation the too-most level of
highly diversified corporation. Such a
corporation serves as an umbrella organization to management at the corporate headouarters must use

a host of independent divisions and companies, their broad-range, "big picture" point of view to

any one of which might be classified as a sizable identify possible corporate-wide needs.

company if it operated on its own, and none of Identification must be followed with a process

which are necessarily functionally related to the which involves the division-level people in the

others. Each of these extremes has its own refinement of the needs statement, the

unioue decision-making process and method for promulgation of appropriate solutions, and the

facilitating change within the organization. facilitation of those solutions at the
aporopriate levels In the divisions. Too
management is. in effect, more dependent on

In the small company, the owner-manager is relationships than on authorit\y to assure
ultimately responsible for the final decision: effective execution of their reouests:
employees may or may not be invited to authority impacts more and more individuals as
participate in the process. Once the decision the management hierarchy is descended. The
has been made, change is usually mandated and any larger the corporation the more oossible it is
employee who is unable or unwilling to cooperate for lower level employees to subvert or sabotage
will be asked to find other employment. Large the wishes of upper-level management if they feel
corporations; on the other hand, are not able to that the decisions made are not in their best
effectively institute change by fiat from the interests or that they were not represented in

88 Annual National Conference on Ada Technology 1986

[--

9.U,

the decision-making process. The answer to this The responsibilities of the design team also

problem lies in the utilization of the team include the constant monitoring of the training

approach, making it possible for representatives needs of the corporation and the need to be alert

from each of the involved groups to have input to changes which require modification of the

into the decision-making process and the overall curriculum and/or reshuffling of

facilitation of the changes. priorities for course development.

A Working Model
Design. Development. Delivery. and

The production of a well designed, effective Maintenance of the Curriculum

curriculum requires:
Focus of the Desion

1. Expertise in Instructional Design Methodology
When designing for an industrial rather than an

2. In-depth understanding of the target academic setting, considerations include:
population needs and environment

1. Time: courses must be fast-paced and

3. A functional command of the subJect matter to intensive: a two-semester course at a university

be covered may be compressed into two weeks in industry:

2. Audience: mixed audiences are common, with

The resources for the first two requirements were experience ranging from none (the new graduate)

available in the divisions: subject matter to the experienced programmer/analyst:

exoertise was found by hiring an outside

consultant. The design team is composed of the 3. Reinforcing exercises and examples: courses
Coroorate Coordinator, who serves as a should include as much hands-on laboratory

facilitator-moderator-manager for the project: practice as possible, with the labs targeted to

reoresentatives from the Computer Related actual production needs. One of the objectives

Training Department and the major production of the design team is to build into the materials

locales: and the Sublect Matter Expert (SME). a set of usable models for the software engineers

Each member of the design team is in close touch to apoly on the iob when the training is

with oroduct production to be sure that the completed. The examples and exercises model the
design of the curriculum remains focused on the concepts underlying the applications but are

needs of the corporation. presented as "fantasy games" or "case studies" in
order to focus learning on the conceptual level

The initial objectives of the design team were rather than on a current specific application.

to:

1. Refine the overall curriculum requirements

and oroduce a detailed soecification of need: Development Tools

2. Define the focus for the corporate training Two main tools are used in the production of the

effort (not all needs could or would be met by course materials:

the corporate effort: some would have to be

addressed locally): 1. Information Mapping Technology (1):

Information maoing technology structures

3. Set oriorities for both immediate and material in a too-down fashion: each topic is

long-term develooment efforts. decomposed into concepts, and each concept is

oresented in terms of a set of information

Once these initial objectives were accomplished, blocks. Materials structured in this way are

the team moved to the second set of goals, that edsy to rea nd to How duIng class and serve

of etablishing a set Of standards for the as an excellent reference for the students when
e they return to their workplace.

develooment of the courses (including formatting

standards for such oroducts as the Student
Guides: Instructor Guides: Lab Guides. A PC-based authoring system which allows the

oresentation visuals to be oroduced using color
Presentatlon Visuals, and other support and animated graphics. This method of production

mter l d rconfgurtio mof oresentation visuals for the classroom has

the comoleted curriculum, many benefits: most authoring systems are easy

to learn and can reduce the time spent on
The final tand on-going) mission of the desgon develooment of these types of teaching aids: when

teamis o ortiioae i th deelomen ofand dealing with computer related subject matter, it

aooroval of. the detailed design for each course: is easy to simulate screens: and, finally,

to oarticioate in and monitor the first end

5econd oilot offerings of each course: and to learning Is facilitated when color and animatior

recommend and aoorove any changes generated from are used to emohesize teaching ooints.

those oiiots.

Annual National Conference on Ada Technology 1906 89

* ~.. %

Instructional Desion Methodoloov

and "Courseware Engineerino" EXERCISES:

The primary basis for the design and development Each logical concept group is followed by a
of the courses is the standard Instructional 'cookbook" exercise or a set of reinforcing

System Design model: Analysis, Specification of questions.
Obiectives. Design of the Course, Development of
Materials, First Pilot, Revise. Second Pilot, Each topic is followed by a "reinforcing
Final Revision, and Turnover. Within this model. exercise" which is a problem requiring the

this project has designated the student guide as student to apply the concepts of the topic.
the orimary document from which all other

materials flow. Within this process, which Exercises are intended to be executed
closely parallels the traditional software in-line during the lecture, but can be done
development cycle: software engineering as a group if the classroom does not have

princioles such as abstraction, modularity, individual terminals and a traditional

information hiding, and configuration management lecture-lab format must be used.
may be applied. The develooment of teaching

materials using such principles may be termed 2. The Development Phase
"Courseware Engineerino".

To communicate the flavor of Courseware Student Guide

Engineering, the following is a broad outline of The student guide flows from the outline.
the rules used to generate the basic design of

the ours, ho tht de10n s tanslted ntoThe student is 'presented an overview of each
the course, how that design is translated into SCINadTPCwietecnet r

the Student Guide, and a brief description of dETIld ung iormationcapsing

information which whould be included in the thlogy.

configuration management system of a course, as technology.

expressed in a Course Standards document. Each concept is now defined, described and

1. The Oesion Process illustrated using graphics and/or eXamples

and non-examples.

A detailed outline of the course must be

develooed at the beginning of the design 3. Course Standards Document
phase. The outline should break the
material into the following levels: a. Course Description

SECTIONS: The broadest subdivisions of the 1) Goals and obiectives. stated in
course, sections correspond to chapters of a behaviorial terms
book. 2) Delivery Modalities

TOPICS: General divisions of the sections, b. Target Audience
toocs usually correspond to the objectives
for the course. I) Intended audience

2) Prereouisites for the course

CONCEPTS: The smallest "chur" of

information oresented to the student, c. Environment specifications describing
concoots are the building bloc0s of tooic5, the hardware and software tools reouired

The process of outlining the course for delivery and maintenance of the
represents the first cut at "chunking" the course.
learning materials. A further refinement
now occurs, as the CONCEPTS are analyzed and d. Configuration management specifications
divided into even smaller units, Pnown as detailing the edit controls and file
"blocks'. management guidelines for the course.

Logically group and order concepts to
generate lecture segments that do not eceed
thirty to forty-five minutes. Delivery and Course Maintenance Strateov

Once the student guide outline has been Course maintenance is controlled through two

completed, decisions must be made on the Orimary mechanisms:

details of the classroom presentation which
includes the placement of exercises,
distribution of handouts and other Job Aids, methodology, i.e., a single PC-based

and the placement and types of presentation authoring system and word processing
oaclage will be used for all of the

visuals. The outline is now STORYBOARDED to

include these materials. courses.

90 Annual National Conference on Ada Technology 1986

b. Establishment of "course managers', each
of whom has responsibility for the
ongoing maintenance of one or more
courses in the curriculum. Once a course

has been released for general delivery,
it is the resoonsibility of the course

manager to keeo track of recommended

revisions and to provide current
materials to the Ada instructors. When a
sufficient number of non-critical
revisions have accumulated, or on the
occasion of a critical revision
(a technical error is discovered, or the
language itself changes), the course Ms. Blackmon is the Coordinator for the Corporate
manager is resoonsible for calling in the Ada Training Project at General Dynamics. She
design team to assist with the necessary also serves as Project Lead for Scientific and
modifications= as needed. Engineering Training at GD's Central Center in

Fort Worth, Texas. Prior to oining the General
Dynamics Computer Related Training staff, Ms.

Closino Summary Blackmon was a Software Engineer in the Advanced
Computer Systems Laboratory at Texas Instruments

Coroorate philosophical and financial committment and an Instructor in Computer Science at Tarrant
to a large scale training effort in a new County Junior College, Fort Worth.
technology, such as Ada, assures that at least a

minimal level of expertise will be available to
all grouos in the company. The creation of the
oroduct must involve a bottom-up aooroach to

generate a sense of ownership on the cart of the

users. Continued involvement of the actual

practitioners of the technology in the ongoing

training efforts enriches all programs within the

company and encourages development of new

applications and tools.

An effective, efficient curriculum can be

developed and delivered for a large corporation

by:

Professionally managing the curriculum

development

Obtaining the best technical expertise
available in the field

Involving the user community in all phases of
curriculum development and delivery.

Bibl iogoraphy

(I) Horn, R.E. "How to Write Information
Mapping". Information Resources, Inc., Lexington,
Mass.

Olympia. P.L. "Information Maoped SAS:
Teaching SAS for Retention". University of the
District of Columbia.

Olympia, P.L. "Information-Maoped
Chemistry", Journal of Chemical Education:
Vol.56, o. 176, 1979.

Ada is a registered trademark of the U.S.

Government, Ada Joint Program Office (AJPO).

Annual National Conference on Ada Technology 1986 91

CURRICULUM

iDIltR H IHOOOL.

Of

,DSA 'CHOICE

PSL/PSA

Ada OVERVIEM REAL-TIME

G suv or STRUCT. ,

,T,.ANALYSIS
PERSONNEL MALYSIS OTHER EHOOL

METHODOLOGIES OBJCT CHOfCE

JACKSON, ORIENTEDS JACKSON'

IMPACT DESIGN..

iSSUES FOR REAL-TIME
TECH MGRS I (UVEu c ------

SURVEY Of DESIGN
DESIGN

METHODOLOGIES

OTHER
" ---' --I GOAOL POL

, REI ,IARYOIHER
PRELIMINARY .REPRESENTATION

*, DESIGN p SCHEME OF

IN Ada CHOICE

DETAILED INTRODUCTION

DESIGN --........ TO INTERMEDIATE ----- : ADVANCED
, Ada Ada

IN Ada Ada

* .. --. 4- --* - ---" - " - -,

Ada FOR
• Ada-FORHOV TO USE RfAL-TIME

EXPERIENCED
T14E LRA ISSUES

PROGRAMMERS

SURVEY Of Ada TOOLS

ENVIRONMENT or

TOOLS J CHOICE *1

; i , QUAL17Y
TESTING I ASSURANCE

____ ___.. ...---'__ _

92 Annual National Conference on Ada Technology 1986

-,

FIRST YEAH PRIORITIES

(OTHER IEIHODOL.
Of

OSDA CHOICE

PSL/PSA

Ada OVtRVIEU RfAL-IffE.

FOR STRUCI.
NGMT G MKT SURVEY Of ANALVSI. . .

PERSONNEL . ANALYSIS __ OTHER NEIHODOL

METHODOLOGIES - ~ or
ONIJECI CHOICE

PIO211 / . . . ORIENTED
JACKSON oSiGNIMPACT !.. . . " ".. .

ISSUES FOR R .AL'IRE

P.TECH. MIGRS. STRUCT.

. s OF DESIGN
DESIGN

METHODOLOGIES

OTHER
.+ POL

PIE11 11' GOAOL

, PRELIMINARY

U DESIGN
OTHERIN Ada+ REPRESENTATION

L.+_................... SCHEME Of

DETAILED INTRODUCTION INTEREDIATE ADVANCED

DESIGN .. TO *--,

IN Ada Ada Ada Ada

£ VIN R a .",. . . .l l ; t _ .

S fl Ads FOR - Hou TO USE REAL-TI._ (,, j.
EXPERIENCED THE LRM ISSUES

........... . :.......... r.v ...
, (

SURVEY OF Ads I TOOLS
ENVIRONMENT Of

TOOLS i CHOICE

l~t (*1 .) j.

QUALITY
TESTING ASSURANCE

Annual National Conference on Ada Technology 1986 93

CLASSROOM SET-UP

TI|E-ON S KFACC T _ 9REr WRITF-Om 5LKFAc g

S YSTEM

P(ZOIE.I VTAXK

LL

: .

94 Annual National Conference on Ada Technology 1988

IDENTIFIERS

Definition An identifier is used as a name for an Ada entity.
An identifier is a sequence of characters that
stands for whatever data may be associated with
it when the program is run.

Rules 1. An identifier is composed of
o the letters A through Z (upper or lower case)
o the digits 0 through 9
o underlines

2. An identifier may be as long as the length of
a line.

3. Identifiers are a= case sensitive.

4. The first character of an identifier must be
a letter.

5. An underline must be embedded between two
non underlines.

Examples CurrentAltitude
Maximum-Height
Front_40
FRONT_40
StackSize
StackSize
Maximum_AltitudeOF_CURRENT_Trget
MAXIMUM_Altitude_of_Current_Target
MaximumAltitudeof_CurrentTarget

Non-Valid 4_July (must start with letter)
Examples _July_4 (must start with a letter)

GrandTotal_ (underline must be embedded)
Hello There (underline must be embedded between

two underlines)
Raise_10% (% not a legal character)

Comment The identifiers Front_40 and FRONT_40 represent
the same data item. The identifiers Stack_Size
and StackSize represent distinct identifiers.

Choose names that reflect the problem domain. Do
not use cryptic identifiers like X, P, CC, etc.

Related reserved words
Concepts

EVAMPLE OF INFOWATIDN MAPPED* CONCEPT

Annual National Conference on Ada Technology 1986 95

USING STRUCTURED TECHNIQUES TO TEACH

REAL-TIME EMBEDDED COMPUTER APPLICATIONS

Ruth S. Rudolph

Computer Sciences Corporation
Moorestown, New Jersey 08057

Abstract and in each window was a sign that corre-
sponded to an identical notation in the

The task of teaching programmers to course outline. Each package contained
work with real-time embedded computer sys- detailed information about a topic, but
tems is extremely complex. The number of the packages were tied together in a
topics to be discussed and the difficulty precise way. The ribbon around each
of the concepts involved produce poorly package NEVER became tangled with any
organized, ineffective coursework. Use of other.
Ada concepts to organize the material and
its presentation offers a solution. Since The next day the instructor repackaged
Ada is designed to handle complexity, its the CMS-2 course. The topics carefully
problem-solving approaches can also be were developed into individual self-
effective in teaching complex concepts. contained units that could be taken off
The success of this effort (applying Ada the shelf. The relationships between the
technology to such a curriculum) may serve packages were described using standard
as the basis for designing new teaching interfaces. The students did not have to
methods in the future. Ada constructs be confused by complex detail because all
for concurrency offer excellent tools for they could see was what appeared through
understanding that aspect of real-time the windows, and yet all the relationships
systems. This initial attempt assumes in the application were clear.. .and the
that the students had no prior knowledge instructor taught happily ever after.
of Ada language. Nevertheless, the
description of concepts in an Ada-like This fairy tale is fanciful perhaps,
fashion still clarifies the material. If but it illustrates an approach to pre-
the class has some background in Ada, this senting a coherent picture of all the
new method can be even more effective, aspects of a large, real-time system to a

class whose only experience with computer
applications has been writing a small

Introduction mathematical problem in a high-order lan-
guage. This is a dilemma that has been

An Educational Fairy Tale growing for the last 20 years. In seeking
a solution, an insight was gained into how

The curriculum listed the course as the system initially was put together.

CMS-2, a high-order language, but the
course content also included an introduc- "Structured" Teaching or a
tion to the hardware, assembler language, Go-to-Less Course
and operating system, and alluded to the
life cycle of the project. These topics The designers built a dedicated opera-
seemed inseparable in a real-time embedded ting system that now looks very similar to
computer application. The students liked an Ada package. A number of services for
the class with one reservation: the pre- the user (applications programmer) were
sentation seemed to lack continuity. It specified. Each specification included a
was disjointed. "Why," they asked, "does predefined packet (similar to a procedure
the instructor GO from one topic TO parameter list in Ada) that served as a
another and never really complete any template for the user. When the service
single discussion?" And so it went, year was requested, the user placed the real
after year, until one day the instructor values in the packet. All the implementa-
read a book by Grady Booch called Software tion details of the service were hidden
Engineering With Ada. Then the instructor from the user. However, if the request
had a dream. for service was unsuccessful, a flag was

set in the user's local scope to indicate

In the dream was shown a course that it. This is somewhat like raising an
consisted of neatly-wrapped packages. exception in Ada since the reason for
Each package contained little windows, failure was clearly identified.

96 Annual National Conference on Ada Technology 1986

Furthermore, implementation of the choice generates object code that is much
services was designed in a modular more efficient than any of the alterna-
fashion; a look inside at the details tives. Exceptions to these choices are
reveals an interesting and innovative raised but not explained.
organization of procedures. The proce-
dures, themselves, were packaged by func- c. The system requires use of fixed-
tionality. This system was built before point numbers instead of floating point,
"software engineering" had become a "buzz" and considerations of significance, preci-
word. The system designers intuitively sion, and accuracy are sometimes new to
applied techniques that have since become the student. Awareness of this is essen-
accepted practice. tial. A generic approach is used to pre-

sent this in an understandable way.
Armed with an understanding of Ada,

software engineering techniques, and the 2. The relationship between the operating
advantage of hindsight, the relationships system and the application programs is
between the applications and the operating described in terms of formal interfaces,
system can be neatly described in an Ada- originally defined by the user but en-
like fashion. Ada terminology can be forced by the operating system. A library
applied aptly to pieces of this system package or service provided by the operat-
even though the designers had never heard ing system serves as an environment in
of Ada and, in fact, wrote in assembler which a particular program executes. The
language. user sees only the specification of the

operating system services. The speci-
The instructor's problem was to fication formally describes the interface

explain to the class how an individual between the service and user. The result
application module fits into the system, is as if the user were looking through a
This required explaining some very diffi- window. All of the implementation details
cult concepts and contructs. The student are hidden and only the necessary informa-
had to understand relative addressing and tion is in view. In turn, the application
relocatable programs; the reuse of a fixed program may hide details from others as
number of base registers; the relationship well by packaging related resources.
between the high-order code and the effi- (Examples follow.)
ciency of the resulting machine language;
the trade-off between memory and time; and a. A module may be scheduled at a
the relationships between the operating predefined number of standard entry points
system, the application programs, and the and only at these points. This is pre-
hardware. sented as a generic package that contains

a group of procedures.
This was an overwhelming teaching

task. There are two aspects to the b. A program's data and instructions
solution: are divided into two modules to expedite

program execution. This is made possible
1. The topics are limited to details through a single high-level directive to
essential to make the discussion coherent, the compiler. The physical base registers
To accomplish this, complex ideas are assigned to the modules are identified as
defined as primitives. The underlying actual parameters when the linker is in-
reasons or implementation details are yoked.
hidden from the student. (Examples
follow.) c. A module requests communication

with the operating system to be served or
a. Data definitions in this system to exchange information in a specified

can affect the efficiency of execution manner. In this case the implementation
because of hardware addressing techniques. is viewed as a task. The application
The complexity of the explanation is dis- module calls the operating system and
tracting and confusing. The solution is waits for a response.
to provide user "defaults" for variable
declarations which will guarantee effi- d. A module provides parameterized
ciency. This is similar to providing data to the operating system as specified
user-defined default parameter values in and points to it in a predefined manner.
Ada procedure calls. Such defaults are The notion of access types that create an
identified as red flags for the class to object that holds the parameters helps
focus attention on a preferred (but not explain a high-level language function.
essential) way of doing things.

e. The operating system returns mes-
b. Data structures can be defined by sages to the modules and points to them in

either the user or the compiler. In addi- a predefined manner. Access and task
tion, the user can select one of two for- types help demonstrate t-his complex
mats for the structure. The preferred relationship.

Annual National Conference on Ada Technology 1986 97

f. A library of functions is made Summary
available to any user who requires it
through a standard interface and a local The Ada "effort" is now 10 years old,
work area. The library is a package of and many feel it has become a mystique
functions, that will never be a reality. The use of

Ada to improve presentations dealing with
This new approach to the course pro- real-time embedded computer systems may

vides the instructor with a collection of prove to be effective in accomplishing a
teaching resources. These, in turn, are variety of things:
carefully organized into library-like
units. Since the makeup of each class is 1. Formal expression of intuitive imple-
always different, and the classes them- mentations of difficult concepts.
selves are not homogeneous groups, another
problem in presentation is solved. Now 2. Organized presentation of abstract and
the scope of the course work can be varied complex notions.
in response to the needs of each particu-
lar group. In the future, any package 3. Introduction to a state-of-the-art
from the library can be presented in a method of problem solving for sequential
standalone fashion for an appropriate and real-time programs.
audience. Then the hidden details can be
explained in a relevant way. Neither the 4. Easing of the Ada training burden by
class nor the instructor speak of Ada, but introduction of Ada-like approaches in
its problem-solving techniques are used to non-Ada environments.
develop the course structure and content.
This endeavor demonstrates two things: 5. Exposure of faults in current design

caused by limitations in computer archi-
I. The ideas in Ada have been used intu- tecture and high-level languages.
itively and effectively in developing
real-time embedded systems for at least The Ada language provides both struc-
the last 20 years. ture and technique for more effectively

and efficiently teaching complexity. A
2. The Ada constructs can be used to new teaching method has evolved on the
effectively describe such systems without basis of the instructor's knowledge of the
any reference to the Ada language and in Ada language, which has improved this
the absence of its use as a program design course (CMS-2) greatly. There is every
or implementation language. reason to expect similar results when this

method is applied to other courses. Ada
Concurrency in Real-time Systems concepts provide a valuable tool, even in

a training setting.
There is another aspect of embedded

systems that deserves analyzing. Real- References
time systems must deal with problems of
concurrency whether the implementation is 1. ADA83 - Reference Manual for the Ada
logical or physical. The operating system Programming Language, ANSI/Military
handles these issues and therefore they Standard MIL-STD-1815A, United States
are hidden from the user. However, the Department of Defense, January 1983.
application, once again, must make use of
specified services to avoid problems such 2. BEN82 - M. Ben-Ari, Principles of Con-
as mutual exclusion and deadlock in real- current Programming, Prentice-Hall Inter-
time programming. The issues of concur- national, 1982.
rent programming require a ,!ifferent set
of problem-solving skills than those 3. B0083 - Grady Booch, Software Engi-
required for sequential programming neering with Ada, Benjamin/Cummings, 1983.
because of the difficulty in ensuring
correctness. Mutual exclusion and absence 4. DE184 - Harvey M. Deitel, An Introduc-
of deadlock present some unique problems tion to Operating Systems, Addison-Wesley,
in guaranteeing correct implementation. 1984.

e Ada supports concurrency, the
language provides an excellent vehicle 5. PY81 - I.C. Pyle, The Ada Programming
with which to capture the solutions to Language, Prentice-Hall International,
system concurrency problems and present 1981.
them in an Ada-like fashion as a spring-
board for teaching concurrency to applica-
tions programmers.

98 Annual National Conference on Ada Technology 1986

V 1.1 %

About the Author

Ruth S. Rudolph, training coordinator
for the Tactical Systems Center at Compu-
ter Sciences Corporation, Defense Systems
Division (DSD), Moorestown, New Jersey,
is responsible for developing the internal
technical training courses given within
the Center. Included in this technical
training is an Ada curriculum, which
she designed. For the last 4 years Ms.
Rudolph has taught Ada courses throughout
DSD.

I
AnulNtoa ofrne nAaTcnlg 969

The Implementation of a Graphics Packaqe in Ada

Benjamin J. Martin Bennett Setzer Reginald Walker

Atlanta Univ. Kennesaw Col. Atlanta Univ.
Atlanta, GA Marietta, GA Atlanta, GA

This paper is a report on a project to is convenient for the student to use.
develop a graphics package for the The Janus Ada compiler is large and
Zenith Z-100 computer system. The complex to use if a hard disk is not
project began with implementing a subset available.

of the CORE system in Pascal.
Subsequently, the system was converted This report is organized into these

to Ada. Current work concerns extending sections:
the system. This report is mainly -- Rationale and history for the project
concerned with the rationale for using as a whole.
Ada to implement both the original and -- Comparison of the Ada and Pascal
the extended graphics systems. We implementations.
conclude that Ada is clearly superior to -- An extended graphics model.
Pascal in defining a graphics system. -- Implementation considerations for the

Some minor concerns have arisen due to extended model.
the size of the Ada compiler.

RATIONALE AND HISTORY

The origin of this project was the need
for an inexpensive graphics package that

could be used to support courses in
computer graphics and computer vision.
We are using the word "package" loosely

here, to mean a group of routines. The
hardware to be used consisted of over a

dozen Zenith Z-100 micro-computers in
This paper is a report on a project to the Micro-computer Laboratory at Atlanta
develop a graphics package for the University. Available packages were too
Zenith Z-100 computer system. The expensive or were hosted by unsuitable
overall project can be divided into languages, such as BASIC. Since Pascal

these phass: was the major language used throughout
-- Implementation of a subset of the the computer science curriculum at

CORE graphics system in Pascal. Atlanta University, we wanted Pascal, or
-- Implementation of more sophisticated a similar language, to be the host

graphics drivers for the Z-100. language.
-- Porting the original system to other

versions of Pascal. A further problem with existing packages
-- Converting the Pascal system to Ada. was that most were device drivers. That
-- Development of a different graphics is, they implemented graphics

model. primitives, but provided no more. It was
-- Implementation of the new model in finally decided to implement a portion

one or more target languages. of the CORE graphics system using
-- Porting to different micro-computer Pascal. This was because of

systems. availability: [Harrington] contains a

very detailed description of a CORE
This report is mainly concerned with the subset, including pseudo-code routines;
rationale for using Ada to implement and, Pascal was available for the

both the original and the extended micro-computers. This implementation was
graphics systems. We conclude that Ada carried out by G. Payne and completed by
is clearly superior to Pascal in him in 1985 (see [Payne]). An advantage
defining a graphics system. We have some of developing the system locally was
concerns about setting up a system that that the actual algorithms used would be

100 Annual National Conference on Ada Technology 1986

- - - .L .zf

available for study in courses. decision to pursue a completely
different design was made soon alter Mr.

At this point three issuec arose that Payne completed this implementation.
prompted us to develop this package which also delayed consideration of any
further: extensions.
-- Because of limitations inherent in

Pascal, the package did not represent The Pascal version was implemented in
the best software design practices. MicroSoft Pascal. Although this version
We felt that this would result in of Pascal supports separate compilation.
students having difficulties using this is not a standard feature of

the package. Pascal. Other versions of Pascal do not
-- Several faculty at Atlanta University have this capability at all or support

became heavily involved with it in a different manner. Since we

programming in Ada and proposed that eventually wanted to use versions of
Ada become the basic language used in Pascal that would not support separate
the computer science curriculum, compilation, such as Turbo Pascal, we
Also. Ada became available for use in decided not to use this feature. This
the curriculum with Janus Ada. dictated including the actual graphics

-- Research efforts in computer vision system source in a program using it. We
and artificial intelligence were note that most Pascal compilers allow
moving forward. To support this, a the compile time inclusion of source
graphics system with a dynamic and text. We emphasize, in this section we
hierarchical concept of a graphic are discussing Pascal without separate
image was needed, compilation.

Two groups began work developing the The Ada version was implemented in Janus
package further. Martin and Walker Ada by converting the Pascal routines.
undertook to convert the CORE package In the Ada implementation, the routines
into Ada. Setzer began the development are organized in a package with the work
of a more efficient low-level interface areas hidden within the package body.
to the hardware and began designing the The package can then reside in a

new graphics model. We eventually library. An application then needs only
combined efforts. The following phases an appropriate 'with' clause to access

of the project are complete: the CORE the graphics routines.
subset has been implemented in Pascal

and converted to Ada; better drivers for We observed three major problems with
the Z-100 have been coded and tested. At the Pascal implementation. Each problem
this time, we are working on designing could cause difficulties for students

and implementing the new model, using the Pascal version. The Ada

version effectively solves these
In summary, we came to realize that our problems. The problems are
educational and research objectives -- The necessity of global variables in
required a refinement of both the Pascal for certain data.
specifications of the graphic system and -- The inability, in Pascal, to hide the
the implementation. actual type of certain data.
-- The package itself needs to be a good -- The necessity, in Pascal, of

example of software design, including the entire source code for
specifically, demonstrating the graphics package at each

modularity, information hiding, and compilation.
security.

-- The specification of the package In the Pascal implementation, an
should present a clean interface to important part of the included source is
the user. the definitions of work space for the

-- The package should support a dynamic, graphics system. This includes storage
hierarchical concept of a graphical for segments as well as status
image. information, such as the current pen

position. The organization of the system
IMPLEMENTATION COMPARISON is such that all the procedures act on

this body of data. Because of the number

The subset of the CORE system supported of data, it is inconvenient to pass them
includes 2 dimensional pictures, as parameters. Also, the data must
segments, filled polygons, and remain between invocations of the
transformations. No windowing or system. For these reasons, Pascal global
clipping and no mapping to viewports is variables are used for these work
supported by the subset implemented. We spaces.
felt that this was adequate as a

starting point for the system. Also, the The global variables in the Pascal

Annual National Conference on Ada Technology 1986 101

implementation represent its most be misuse. Since, in Ada, only the
serious difficulty. First, status and compiled package would be distributed,

other work area data can be freely the students will not be able to
manipulated by the user. The dangers of manipulate the source. This will
this are well known. Second, there could eliminate one cause of problems.
easily be conflicts with the names of a
user's global variables. Besides being
an annoyance, this could cause As can be seen, one of our major
considerable confusion to a student concerns is security. Simply put, with
trying to use the system. Searching for numerous students using a system, every

the second definition of a variable, possible misuse vill appear. Protecting
when one definition of it is hidden in the package from the student and
an include file, can be frustrating. vice-versa can considerably lower the

number of possible problems. In turn,

In the Ada implementation, work areas this will benefit the student in the
are hidden within the body of the learning process.
graphics package. This makes this data
unavailable to the user, except through To conclude this section, we note that
the exported routines. This also makes Mr. Payne did a very good job of
the variable names invisible to the implementing the CORE subset. The desire
user's program. to modify and extend his work was due to

problems with Pascal and with the CORE
Pascal does not allow the protecting of system itself. As will be seen, our
a data type by defining a type for it. design to remove some of the problems
For example, a segment name in the CORE with the CORE system would present more
system is simply a small integer. It difficulties in using Pascal.
seems, however, to make little sense
that segment names can, therefore, be
operands in arithmetic operations and AN EXTENDED MODEL
can be the results of arithmetic
operations. However, Pascal does not In response to new research and
protect from such misuse. In Ada, making educational needs, we developed several
a segment name a private type prevents criteria for a graphics model. We use
this. the word "model" to refer to the way the

graphics system looks to the user,
The necessity of including the complete independent of the implementation. A
source code of the graphics system into model needs to meet these criteria to
a program presents two problems. The satisfactorily support our work. The
first is simply a question of efficiency effect of these criteria is to move
and convenience. Object code is towards a more object or data oriented
generally more compact than source code. view of graphics and away from a
This implies less disk space used, and procedural view. Our criteria were as
generally quicker processing of follows.
programs. The size of the system as -- Pictures, transformations, windows,
distributed to others is particularly a and display devices are objects that
problem with the large Pascal compiler. can be manipulated by the system.

-- These objects can be manipulated,

The second problem was observed when, in combined, and brought into

a programming, course students were relationships with one another by
assigned a problem involving a set of operations defined by the system.
procedures provided by the instructor. -- Pictures can have hierarchical
The procedures were in source form. A structures of unlimited complexity.
significant number of students modified -- Such objects can be created or
the provided procedures to conform to destroyed. Memory usage should

their program designs although that had substantially reflect the number of
been strictly forbidden. These students active objects and their complexity.
were quite dismayed with the evaluation
of their programs, since the programs The CORE system did not meet these
were run with the instructor's original requirements in several regards. For
set of procedures. It was quite example, in CORE a geometric
difficult to convince some of these transformation is applied to a segment
students that the problem was in their by defining the transformation and then
programs and not in the procedures drawing the segment. The drawing
provided by the instructor, commands are suitably transformed and

the result saved as the segment
The point is similar to the previous definition. Thus, the relationship
problems, given enough users, there will between a transformation and the segment

102 Annual National Conference on Ada Technology 1986

11 1 11

to which it is applied is implicit in a two-pointer nodes would suffice to
time sequence of events. Other than flow represent an arbitrarily complex
of control, there is no evidence in a hierarchical structure. Pointers are
program of this relationship. In our hazardous to deal with, even in a well
model transformation and a picture are regulated environment such as Ada.
combined by a binary operator to result Keeping pointers hidden away within a
in a new picture. The new picture is the package can prevent numerous problems
original picture, transfomed. for student and other users.

One important class of operations on The Ada package is an ideal way to
pictures is that they be combinable into implement a data type. All structure
larger pictures. This should be done irrelevant to the data type definition
while still preserving the can be hidden from the user. Both type
picture/sub-picture relationship. There definitions and operations can be
are at least two advantages to this. exported to the user. Thus, the added
First, sub-pictures can be specified and types and operations can appear to be
manipulated, independently of the language extensions. This gives a very
super-picture. Second, analysis of clear picture to present to students,
digitized images leads to a hierarchical greatly easing the teaching problems.
description of the scene. See, for
example, (Ballard], especially chapters The major objection that we can see to
10 and 11. Another discussion of the use using a graphics package in Ada is due
of hierarchies in modeling can be found to the compiler, The Janus Ada compiler
in [Foley], Chapter 9. Structured is a large program, requiring the
pictures can better represent the student to manipulate at least two
results of this analysis. floppies for the compiler. It is also

fairly slow. In fairness, however, both
In the CORE system, pictures are of these points are true of the
represented more by procedures than by Microsoft Pascal compiler. A large
data. The hierarchical relationships of computer version of Ada using a
several procedures involved in drawing micro-computer as a graphics display
parts of one picture can represent the device may turn out to be one way to
structure of that picture. This is, solve this problem. Also, on a system
however, relatively static. We need to with a hard disk drive, the compiler
be able to dynamically change the size would not be much of a problem.
structure of a picture.

We are naturally drawn to Ada by its
In summary, the extended system can be expressive power and standardization. We
described as defining several data do feel that some effort will be needed
types. Implicit in these definitions to set up an Ads system that is
will be the desired operations. Such a convenient for students to use. Save
description is more intuitive for that one concern, using Ada offers great
students: objects are being manipulated benefits in the classroom.
with certain results. A functional
description, with little emphasis on REFERENCES
side effects, is easier to teach and
easier to verify. [Ballard] Ballard, Dana H. and

Christopher M. Brown. COMPUTER VISION.
Prentice-Hall, Inc., Englewood Cliffs,

IMPLEMENTATION CONSIDERATIONS NJ, 1982.

In this final section we present reasons (Foley] Foley, J. D. and A. Van Dam.
for and against using Ada to implement FUNDAMENTALS OF INTERACTIVE COMPUTER
the extended model. The positive reasons GRAPHICS. Addison-Wesley, Reading MA.
can be summarized as follows: 1985.
-- Greater security problems in the

extended system. [Harrington] Harrington, Michael.
-- The ability of Ada to represent data COMPUTER GRAPHICS, A PROGRAMMING

types. APPROACH. McGraw Hill. 1985.
The negative reasons reduce simply to
the difficulty in using the Ada [Payne] Payne, Gregory. "Implementation
compiler. of the CORE Graphics System on the

Zenith Z-1001, Thesis, Atlanta
Any graphics system including the ideas University, Atlanta, GA.
of the preceeding section will, of
necessity, represent pictures by means
of linked structures. For example,

Annual National Conference on Ada Technology 1986 103

~ ~ > 2~~N~N'~.&~~' V VY

EXPERIENCES OF PASCAL TRAINED STUDENTS IN AN INTRODUCTORY ADA COURSE

S% Robert C. Mers

North Carolina Agricultural and Technical State University

Abstract plete overview of the Ada language, pro-
vide hands-on experience programming var-

The author has designed and taught ious constructs of the Ada language, and
a Pro~ramming in Ada course at North create awareness of development and con-
Carolina A. & T. State University in troversies of Ada and software engineering
Spring and Fall semesters of 1985. This and design techniques using Ada. Important
course assumes a thorough knowledge of in achieving these goals is development of
all Pascal features, including records competencies in advanced features of Ada
and pointers, and attempts to give a such as package design, separate compila-
complete overview of the Ada language tion, generics, exception handling, and
in one semester. Hands-on experience tasking.
is an integral part of the course. In
this paper the content of the course, 2. Course Content and Methodology
including programming assignments, en-
vironment, and resources, is described. (a). Syllabus
A quantitative measure of student
achievement in Fall 1985 is taken and The topics of the course were covered
an analysis is given. Observations of in the below order in both Spring and Fall
the degree of difficulty students have 1985 with some minor permutations.
learning various Ada features and sug-
gestions for improvement in the course The first part of the course is an
are made. overview of the language prior to nitty

gritty details, the purpose being to give
students a feeling of the spirit and style
of Ada. History and rationale of the Ada
language is given along with a brief de-

l. Introduction and Goals scription of its major goals and features
of Ada (see Barnes 2). A fairly detailed

Several papers presented previously treatment of packages, subprograms, gener-
at these conferences have dealt with the ics, and TEXT 10 is given so that students
contents of a first programming course can understand simple Ada code and the use
in the Ada language (e.g. Richman 3 and of the TEXT IO package in this code.
Rudd4). This paper describes the con-
tent of such a course at North Carolina At this point the rudiments of the
A. & T. State University, but it also language are covered. A section is now
addresses the degrees of difficulty that done on the predefined types and opera-
Pascal trained students have learning tions as well as type, variable, and con-
various Ada features. Both noncognitive stant declarations. Detailed discussion
and cognitive instruments are used to of enumerated types, subtypes, and derived
measure students' competencies in these types is covered immediately after control
Ada constructs. The statistical results structures rather than now in order to get
from these instruments, along with the the students programming as soon as possi-
instructor's direct experience with the ble. Since meaningful programming re-
students, are used in improving the quires knowledge of conditional and loop
course to challenge and yet enable these structures, the IF, CASE, and LOOP state-
students to more effectively learn Ada ments are covered next. Basic loops and
features. This paper has been written EXIT statements are mentioned as well as
to provide direction in designing a the familiar WHILE and FOR statements. At. %,first Ada course which is geared to stu- this point the transition is made to userdents trained in a least two semesters defined types. Derived types, subtypes,

of Pascal. and enumeration types are now presented,
as well as attributes, overloading of lit-

The goals of this Programming in erals, and general type conversion. To
Ada course are to give students a com- complete the emphasis on modularization,

104 Annual National Conference on Ada Technology 1986

im F C1. ,,e

% (c). Program Assignments
the features of subprograms such as
named and positional notation, recursion, Due to the nature of the compiler de-
default parameters, overloading of sub- scribed above and the fairly extensive
program names and operations, and scope programming background of the students,
and visibility are covered next. the instructor's methodology has been to

use relatively few medium length program-
The course now makes the transition ming assignments rather than give many

from simple to compound data types. DE- short programming assignments. The con-
CLARE blocks are introduced here because tents and objectives of the programming
of their application to creation of ar- assignments are indicated below.
ray objects at run time. Both constrain-
ed and unconstrained array types are in- Program 1. This is a rather simple
troduced, as are array attributes, as- program involving use of the predefined
signment using aggregates, slices, array scalar types and IF and WHILE control
operations, and strings. Records with- structures. The objective is two-fold, to
out discriminants are covered in detail, get used to the VAX system as well as be-

coming familiar with TEXT_10 and the rudi-
Emphasis is now shifted from pro- ments of Ada. -

grams as single compilation units to use
of packages external to the program and Program 2. In this program the stu-
separate compilation. Compilation units dents are doing Input and Output on enu-
are covered and more detail on packages merated types as well using the FOR and
is given. Then abstract private and CASE statements.
limited private types are presented with
rationale, their position in the package, Program 3. This program requires the
and examples. students to use unconstrained arrays and

create array objects at run time. Use of
The advanced typing features cov- attributes is emphasized. Students do

ered next build on previous treatment of matrix computations and provide error
types. Discriminated records and access handlers when operations are undefined.
types are discussed. Students are then
introduced to user defined floating Program 4. Here the students design
point and fixed point types, including a package and use its resources from a
their hardware implementation. main procedure. Separate compilation is

required. One semester a package of trig-
Exception handling, detailed treat- onometric functions was designed; another

ment of generics, and tasking are cover- time the package consisted of complex num-
ed last since these concepts are most ber operations.
foreign to the students' previous com-
puter science experiences. Predefined Program 5. This program focuses on
exceptions, exception handling and pro- variant records and/or linked lists in-
pagation of exceptions are covered in volving these records. The students have
some detail, but detailed treatment of to observe the strict rules of discrimi-
generics and tasking get short changed nated records and get used to the non
due to time constraints. However, the pointer notation of Pda.
rudiments of parallel processing, caller
and called tasks, task rendevous, entry (d). Resources
and accept statements, and select state-
ments are covered. A primary text is used, and students

are provided a copy of the Reference Man-
(b). Environment ual for the Ada Programming Language l.

However most of the material presented in
The compiler used is the New York class consists of the instructor's lecture

University Ada Ed for the Digital VAX notes compiled from sources listed in the
11-780 Computer, both provided to North bibliography including SoftTech notes for
Carolina A. & T. State University by the the CENTACS Summer Faculty Research Pro-
U. S. Army Center for Tactical Computer gram of 19835. Barnes 2 was the primary
Systems. In Spring 1985 version 1.1 of text in Spring 1985, but it was replaced
Ada Ed was used. The slow compilation by Young 6 in Fall 1985. This author feels
and execution time of this version made that Young's text is the best current com-
it difficult to complete more than a few prehensive elementary book on the Ada
programming assignments and caused a language from the standpoint of complete-
long turn around time (30 minutes per ness, style, consistency in clarity of
run) even on batch mode. In summer of presentation, and applications.
1985 version 1.5 was made available, and
since then the turn around has improved 3. Analysis of Student Experiences
to the range of 5 to 10 minutes. (a). Method of Data Collection

Annual National Conference on Ada Technology 196 105

To analyze quantitatively the de- tion of students having problems same as
grees of student difficulty in various those not having problems), we conclude
areas of the Ada language, both cognitive that students perceive themselves having
and noncognitive instruments were admin- problems with survey items 12 (attributes)
istered to the Fall 1985 Ada class at the 17 (private types), 24 (block structures),
end of the semester. The noncognitive and 25 (tasking). A regression analysis
instrument was a questionnaire on 25 was also performed to determine if the
topics from the Ada language. These were variation in student self perceived pro-
briefly described, and the students were blems (measured by the noncognitive vari-
asked to choose a response for each from able) can be attributed to GPA and grades
the choices "Quite Difficult," "Somewhat in C260 and C265. The multiple correla-
Difficult," and "Not Difficult." Ques- tion between the noncognitive items and
tions with the same responses were asked GPA and C260 (Introductory Pascal) grade
regarding the Language Reference Manual', is 0.452. The proportion of variation in
textbook, and instructor's lectures. student perceptions of Ada problems ac-

counted for by the joint knowledge of GPAs
The cognitive instrument was the and C260 grades is 20%, and this contri-

final examination of the course, consist- bution is not statistically significant at
ing of 25 questions, one in each topic the 0.05 level (i.e., by replicating the
from the noncognitive questionnaire. Stu- experiment 100 times, we are guaranteed
dent performances in each area were re- that 95 of such experiments will lead to a
corded. Numbering of the noncognitive conclusion that the variation in student
questionnaires enabled the instructor to perceived problems explained by the GPA
match these with the corresponding final and C260 grade is not significant). The
examinations. C265 (Advanced Pascal) grade was found to

be unrelated to student perceptions of Ada
Each student was asked to give the problems.

overall GPA (grade point average), grade
in introductory Pascal (C260) and grade (c). Analysis of the Cognitive Instrument
in advanced Pascal (C265) in order to
determine what effect these variables Again a Chi Square test of propor-
might have on student performance on the tionality and regression analysis were
various topics of Ada. used. The correlation between GPA and

total score on the cognitive test (final
The 25 topics questioned were (1) exam) is 0.510. The proportion of the

subprograms, (2) packages, (3) generics, variation in the Ada final test scores
(4) predefined types and operations, (5) accounted for by knowledge of GPA is 26%.
enumerated types, (6) subtypes and de- Although this contribution of the total
rived types, (7) basic control struc- variance explained is not statistically
tures, (8) basic LOOP and EXIT state- significant at the 0.05 level (f = 4.216
ments, (9) unconstrained arrays, (10) with 1,12 degrees of freedom), the GPA
simple records, (11) aggregate assign- appears to be a determinant factor of
ment, (12) attributes, (13) overloading, problems that students will face in higher
(14) named notation, (15) default values, level computer science courses including
(16) separate compilation, (17) private Software Engineering Using Ada.
types, (18) real types, (19) discriminat-
ed records, (20) access types, (21) TEXT Given that the knowledge of GPA has
10, (22) type conversion, (23) exceptions already been used to explain the varia-
(24) blocks, and (25) tasking. tion in the C290 (Ada class) cognitive

test scores, 4% is the additional varia-
The population was a set of students tion in the test scores explained by

from the C290 (Ada) class. 15 students grades in C260 and C265. This additional
completed the noncognitive questionnaire; variance is not statistically significant
16 took the final examination; and 14 at the 0.05 level, indicating that grades
participated in both. in C260 and C265 do not have much in com-

mon with performance in C290. i

Copies of both the cognitive and non- ma

cognitive instruments are available upon The Chi Square proportionality test
request. was performed on the number of scores be-

low the average versus the number of
(b). Analysis of the Noncognitive Instru- scores above the average on each item.

ment With a 10% chance of making a wrong in-
ference, we conclude that students have

A Chi Square test of proportionality problems with cognitive items 13 (over-
was completed for each of the 28 items loading), 21 (TEXT 10), and 24 (block
(the 25 listed above plus the questions structures). Although not statistically
on the Reference Manual, textbook, and significant, students appear to have pro-
lecture notes). With a 20% chance risk blems with item 25 (tasking).
of rejecting a null hypothesis (propor-

106 Annual National Conference on Ada Technology 1986

V '~, ~. , ~%

(d). Degrees of Consistency Spring 1985 course. Both courses covered
essentially the same topics although

It is clear from the above analyses slightly more time was spent on elementary
that there is consistency between a stu- topics (beginning through simple records)
dent's perception of having problems and in the Fall as a response to poorer stu-
the student actually having problems in dent performance in the spring. About ten
the areas of block structures and tasking of the fifteen weeks of the course were
Students thought that they had problems spent on elementary topics.
with private types and attributes but did
not have problems on the cognitive test. The instructor, in consultation with
But for overloading and TEXTIO students the Department of Computer Science is in
had problems on the cognitive test but the process of upgrading this course. Be-
did not perceive themselves to have pro- ginning in Spring 1986 only six to seven
blems. weeks will be spent on elementary topics

and far more time spent on advanced topics
Reasons for the inconsistency could and the software engineering aspects of

be (1) students' lack of clarity about Ada. The students should be able to ab-
their strengths and weaknesses and (2) sorb those constructs that duplicate Pas-
the varying levels and kinds of questions cal more quickly and more completely un-
asked on the cognitive instrument. These derstand packages, separate compilation,
questions included True-False, short es- advanced types, exception handling,
say, listing, short computations, fill in generics, and tasking because more time
the blank, writing declarations, and will be spent on these topics.
writing short coding segments. The
greatest discrepency was on the item The programming assignments will be
TEXT 10. Students felt very comfortable adjusted accordingly. Only the first pro-
with it, having used it in programs all gram will be restricted to discrete types.
semester. However the students had The second program will focus on run time
trouble with the TEXT IO question on the array processing, and the third will in-
cognitive test, which was "Name and de- volve package design. Remaining programs
scribe 4 procedures in TEXT 10 other than will involve advanced types, generics, ex-
GET or PUT." The author was stunned that ception handling, and possibly tasking.
students would OPEN, CREATE, and CLOSE Perhaps individual or team projects will
files and do NEW LINE and SET COL com- be assigned emphasizing software engineer-
mands all semester and yet not be able to ing techniques and design.
name them on an exam.

In addition the course title and num-
4. Conclusion and Recommendations ber will change from C290, Programming in

Ada, to C490, Software Engineering Using
In addition to above mentioned A--a. This change is in the spirit of the

topics in which students have difficulty, ACM (Association for Computing Machinery)
the author has found that students have recommendations for accreditation, which
difficulty on topics such as access types deemphasize a proliferation of elementary
discriminated records, separate compila- language courses and emphasize rigorous
tion, and exception handling, although computer science courses as electives in
this is not statistically shown by this the undergraduate major.
study. In general, Pascal trained stu-
dents have had the most difficulty on the References
Ada features that are most unlike Pascal.
Therefore the author feels that a strong- 1. Reference Manual for the Ada Program-
er emphasis on Ada features unlike Pascal ming Language, ANSI/MIL-STD-1815A,1983.
and a more rapid treatment of Pascal like
features will more successfully fulfill 2. John Barnes, Programming in Ada, 2nd
the goal of giving Ada students a deeper Edition, Addison-Wesley, 1984.
knowledge of all the major Ada features
in a one semester course. 3. M. Susan Richman, Teaching Ada as the

Student's First Programming Language,
The background of the students, Proceedings of the 2nd Annual Confer-

teaching experience by the author, upgrad- ence on Ada Technology, 1984.
ing of the North Carolina A. & T. compu-
ter science program, and students' vary- 4. David Rudd, Teaching Ada at Hampton
ing abilities to learn various Ada con- Institute, Proceedings of the 2nd
structs are all factors in the develop- Annual Conference on Ada Technology, 1984.
ment and delivery of this course. The
level of the students seems to be improv- 5. Softech Inc.: CENTACS Summer Program,
ing as the computer science program U. S. Army (CENTACS), 1983.
matures. Grades in the Fall 1985 course
were considerably better than in the 6. S. J. Young, An Introduction to Ada,

2nd Edition, John Wiley, 1984.

Annual National Conference on Ada Technology 1986 107

Acknowledgements

The author wishes to acknowledge the
help of Mr. Amos Olagunju of the Depart-
ment of Mathematics and Computer Science,
North Carolina A. & T. State University,
in the development of this paper and
analysis of the questionnaire. He also
thanks the C290 class of Fall 1985 for
participation in the questionnaires.

I/

Dr. Robert C. Mers
Department of Mathematics and Computer

Science
North Carolina A. & T. State University

Greensboro, NC 27411
919-379-7823

Dr. Robert C. Mers is an Assistant
Professor of Mathematics and Computer
Science at North Carolina A. & T. State
University. He received the Ph.D. degree
in Mathematics from the University of
Colorado at Boulder in 1975. In 1983 he
was a participant in the U. S. Army
CENTACS Summer Faculty Research Program,
consisting of 10 weeks of Ada Language
Training. He is also a 1984 graduate of
IFRICS (Institute for Retraining in Com-
puter Science) at Clarkson University.

108 Annual National Conference on Ada Technology 1986

THE DEVELOPMENT AND IMPLEMENTATION OF AN ADA* TUTORIAL SYSTEM

James E. Walker

Prairie View A&M University

Department of Mathematics and Computer Science
Prairie View, Texas 77446

ABSTRACT neeas to be taught. Competency analysis involves
breaking down large tasks or educational goals in-
to smaller subtasks so that learning can be opera-

This paper describes how good instructional tionalized. It is important that the course devel-
development techniques can be maximized when oper knows what components make up a skill so that
integrating Computer Assisted Instruction (CAI) each component can be taught and behavior can be
strategies with those of Computer Managed In- shaped with the result that the student can per-
struction (CMI). The Ada programing language form the whole task correctly and reliably. Since
will be used to implement the system. This a competency is a set of performance objectives,
project is referred to as a system because of it can be used as an indicator of what a person
the CAI/CMI integration. Instead of just tea- can do.

ching information to students via a computer,
students are provided a custom-designed learn- The development of this component was simplified by,
ing program that is managed by the computer, using the competency level segments that were pre-
The computer may instruct a student to refer to defined by the Ada textbook that is currently
the Ada Reference Manual, review a tutorial, being used to teach Ada at Prairie View A&M Uni-
take a test, or continue with the next level versity. Because of the magnitude of the Ada
of instruction. As a student completes each language, the ATS will only cater to the "Pascallevel of the tutorial, the student's achieve- Subset" and packages. The method of learning used

ment and progress are recorded. By accessing to acquire each competency will be cognitive do-
the records of a particular student, a teacher main.
can determine what success the student is having
and can identify any problem areas that might Design Evaluation
exist. The teacher can also determine the In the previous stage the designer ascertained,
effectiveness of the learning program itself, in a sense, the destination of the ATS. Nov the

designer must decide how to determine when that
Tdestination has been reached.

Because of the diversity of student's backgrount
the Ada Tutorial System (ATS) provides an Ideal In the cognitive domain, short answer, multiple
situation for the use of the individualization choice, true/false, and watching are suitable for
based on rate-of-progress. Each student can testing depending on the performance level of the
proceed through a given program at a rate that objective. The ATS is particularly well suited
is comensurate with past job experience. The to the evaluation of competencies in the cogni-
ATS is an information system designed to facil- tive domain because of it's capability for pro-
itate the mnagement of instruction and indivi- viding testbanking functions.
dualized instruction in particular. It provides During this stage of design, testbanks are created.
the automated data collection, data processing, A testbank is a set of questions or test items
and reporting capability needed to cope with that measure the students' ability to perform one
the managerial demands of individualized in- or more competencies. It is critical that test
struction. The ATS frees the instructor from items be matched to the type of learning and
much of the low-level clerical work inherent performance level of the associated objectives.
in modern training curricula while providing As mentioned earlier, ATS will implement the cog-
the tools necessary to manage instruction. nitive domain method of learning. Fig. 1.1 shows

Phase 1: Desii the Flow of the ATS.

Competency Analaysis

Competency analysis is a particularly critical
component of instructional development. It
allows the course developed to break up what
must be learned into manageable-sized segments,
and it ensures that the ATS addresses all that

*Ada is a registered trademark of theU. S. Government, Ada Joint Program Office (AJPO).

Annual National Conference on Ada Technology 1986 109

w n , - -" sw 'r.--. %- : i .rc-zrX fl'S : S - JWSS ,,r Z :d ? : Z . ;:r U W XWS KW -

ATS
E. Exit ATS

II. Lessons

OPTION MENU
A. Introduction
B. Names in Ada

n C. Predefined Data Types
Lesson Lesson Lesson Course D. Constants and Expressions
One Ten Exam Exam uation ATS E. Control StructuresOne! ITen II I xam [uai~n[AT I F. User-Defined Types

G. Arrays, Strings, and Records

H. SubprogramsT I. Formatted Input and Output

Evaluate Generate J. Packages

Lessons esults Reports III. Exams (Tests For Each Lesson)Su _ __ __I

IV. Evaluations (Analyze Test Results)

Instructionally Related Functions

Data Collection: To support the instructional
JD | g - management process, a wide variety of data must be

!ATS collected by the ATS. The data defining each stu-

nit Rpnort System dent's instructional history are generated as the
' % IReport I nRe pr LRe p Reoort

Report Rstudent passes through the curriculum defined by
the design phase.

Diagnosis and Prescription: From a student's
F r 1point of view, diagnosis and prescription are the
Figure 1.1 core of the ATS. The diagnosis function is used to

determine the basis of the students' observed per-
formance. A mechanism was implemented in the ATS

Phase 2: Development to diagnose students' performance at the unit of

instruction.
During the development phase, decisions are
made about how the outcomes identified in the Reporting" Because the ATS is basically a
design phase will be attained. It is during management information system, reporting is a
the development phase that the instructional crucial function. Each of these persons, from his
activities are assembled in a way that will or her own point of view, is interested in the in-
enable students to achieve the competencies structional and other data stored by the ATS. As
identified, a result a variety of reports are needed: A Student

Competency report, Diagnosis and Prescription re-
Hardware/Software Requirements port, and a System-Related report.

Because of the campus wide availability, the
IBM PC was chosen as the host compuiter for ATS. Set Progression or Achievement Criteria
Each PC has a minimum of 256K, color graphics Part of the development phase required the ATS
capabilities, and a dot matrix printer, developer to establish measures for progression

decisions and testing functions. It is at thisThe ATS software package was written in Micro- stage where decisions are made regarding when

soft Basica because of it's many available students will be tested and on what portion of the
functions. subject matter. Also, standards for achievement

must be set. The ATS developer must decide the

Delivery standards by which the student will be judged to

* The instructional delivery system consists of the have achieved competency in a particular area.
instructors and facilities used to train the
students. The goal of the instructional delivery The measure for progression in the ATS is for the
component is to bra;>. the students totheir maxi- student to make a grade of 90 or better. There
mum potential within a minimal time frame and are tests for each lesson and the questions are
with the available resources. The contents of equally weighted. The highest possible score for
each module in the ATS are as follows: each test is 100.

I. ATS MENU Set Remedial Strategies

A. Lessons (In Levels) In order to achieve an individualized learninr
B. Exams (In Levels) system, the ATS developed must address the needs
C. Course Exam of students who have difficulty achievin the pre-
D. Evaluations-h

scribed competencies or who do not have the

110 Annual National Conference on Ada Technology 1986

%

appropriate entry level skills and knowledge. Phase 4: ATS Evaluation
Toward this end, the ATS developer must establish
remedial strategies so that the learning is maxi- Feedback is an essential component of the in-
mized for all students. structional development process. During the

evaluation phase, the ATS developed draws on
The ATS handles remedial strategies by prohibi- many sources of' data in order to judge the success
ting the student from continuing to the next of the Ada Tutorial System he has created. The
lesson until the recommended competencies for most potent indicator of success is whether stu-
that particular lesson have been achieved. Each dents have indeed learned what was intended.
time a student logs into the system a database is
searched to locate that students location in the Based on feedback, the course developed identi-
course. fies areas of the ATS to be improved, and the

cycle begins again, at the design phase.

Phase 3: Implementation

References
To explore fully the management of instruction
via the ATS conceptualized in the preceding 1. Computer Based Training Systems, 1984.
phases is a very large task. Therefore, we will
look at the operation of the ATS from the point 2. O'Neil, Harrold F.: Computer Based Instruc-
of view of the student and the instructor. The
intent is to present the flavor of the system in tion, Academic Press, 1981.
a concise manner. 3. Reference Manual for the Ada Programming

The Student Language, ANSI/MIL STD 1815A, 1983.

Upon logging into the ATS the student is pro 4. Siad, Sabina: Ada: An Introduction, CBS Col-
sented with the ATS Option Menu. If the stu-
dent chooses to view a lesson then he/she is lege Publishing, 1985.
presented with a menu of competency level lessons.
If the student chooses a lesson with sub-lessons,
then the student may select which sub-lesson he/
she wants to view.)nce the student has viewed

*" each sub-2esson with a comfortable level of
assurance, then he/she will be eligible to
take a competency level exam. If the student
receives a grade of 90 or above on the compe-
tency level exam then he/she may proceed to
the next competency level tutorial. If the re-
quired score was not achieved then the student
may be directed to additional reading material,
asked to review a certain sub-lesson, or to
review the entire competency level lesson.

W'Wen the student has successfully completed the
entire curriculum presented by the ATS then he/she
will receive a transcript report verifying this
accomplishment.

The Instructor

Because the level of instructional management re- Biographical Sketch
lated to behavioral objectives has been automated
by the ATS, the instructor can focus on higher Mr. James E. Walker is an instructor of Mathema-
levels of management. The ATS puts at the in- tics and Computer Science at Prairie View A&M Uni-
structor's fingertips a large number of reports, versity, Prairie View, Texas. Mr. Walker is a
which can be used in many ways. Because the graduate of Prairie View A&M University where he

. instrucL;uvAil iproeo, is highly individualized, receivEd his BS/MS in Mathematics. Mr. Walker is
the instructor can monitor individual lJudentq. currently the secretary for the Conference on
He or she can use the Unit Report to see where Softwurt 'ichrlnology.
the students stand relative to the curriculum.
The Performance Profiles can be used to check
progress. By using the computer to generate per-
formance profiles, the instructors may discover
areas in which they mig ht change the ATS to im-
prove learning technology.

Annual National Conference on Ada Technology 1986 111

-. j ~ $~S~$ S~i&I&%

The Use of Computer-Assisted Instructions in the Areas of Reinforcement and
Testing for the L202 Module (Basic Ada Programming) of the US Army's Ada

Training Curriculum

P. Caverly, R. Canavan, P. Goldstein, and K. Pastuzyn

Ada Technology Center
Jersey City State College, NJ 07305

Abstract completing a course and returning to their
work site, many students do not have any

The Ada Technology Center at Jersey means or resources to enhance their
City State College has received a contract understanding of what they have learned.
from CECOM to produce Computer-Assisted- To help them overcome this limitation we
Instruction materials for use in are developing the means by which stude:,ts
reinforcement of concepts and testing can reenforce their understanding and
of students taking the L202 course (Basic test their knowledge at their own pace. We
Ada Programming) of the U.S. Ar:ny's Ada are doing this via an automated portable
Training Curriculum. medium. We are also providing a testing

Based on our experience of teaching capability for managers so that they can
the L202 course to hundreds of students assess the expertise of course attendees.
of varying backgrounds, we feel that
reinforcement will be particularly
valuable to them both while they are CAI for Reinforcement and Self-Testing
taking the course and after they have
returned to work. The testing capability For our initial effort, we have chosen
will be of special interest to managers to develop CAI Reinforcement and testing
who will be able to evaluate the materials for L202, Basic Ada ProgramminG,
achievement of those employees who the first hands-on course in the Ada
take the course. The materials are language in the U.S. Army's Ada Training
being developed using Digital's Dimension Curriculum.
Authoring System which runs under the We are developing our CAI materials
VAX/VMS operating system. using Digital Equipment's DIMENSION

Authoring System (DAS). DAS is a complete
system for writing and delivering
computer-aided-instruction lessons, and

Introduction has the capability for various types of
record keeping and report generation on

This paper describes our approach to students activities. DAS runs under VMS on
the cost effective and efficient use of VAX computer systems and is therefore
CAI for support of Ada Technology training portable over VAX systems.
programs. It is our experience after We have zeroed in on the difficult
training over a thousand government and aspects, such as
insdustrial programmers, scientists and
engineers that a multi-media approach is Strong Typing
most efficient and cost effective. Generic I/O Packages

The U.S. Army has spent a great deal Structured Programming
of money to develop an Ada Curriculum Packages
which contains software en jirner n Soarate Conpil.i tic'n a A

iiethodolog/ courses and hands-on Ada Library Facilities
language courses. The training in the

1i" software engineering courses is currently The combination of instructor, student
delivered by lecture and some problem guides, hands-on experince, self-paced
sets, while the hands-on Ada language automated reinforcement and self-testing
courses are delivered by lecture and lab provides greater opportunities for in-

*work in computer program development, depth learning.
4 These courses are very intensive
4 presenting a great amount of material
4 over short periods of time. This means Testing

that students need to apply the concepts
presented almost immediately. Before they Testing, on the other hand, is for
can gain any proficiency in a topic, a new the manager. There has been wide concern
topic is already being covered. After about the expertise of professionals who

112 Annual National Conference on Ada Technology 1986

have taken the intensive Ada courses.
Mdnagers have been sending their people to
Ada courses at considerable expense and
time away form the job, yet without any
means of judging the level of competency
of the attendee once he returns from the
course.

By providing the manager with a CAI
test package consisting of a set of graded
exercises on the facilities of the
language, the minajer can get a grasp on
student competency level and make a vale
judgement to see if the student can go on
for further studies in Ada technology, or
should revisit the reinforcement self-
testing portion. We are providing these
two packages under this contract effort,
but there has to be further investigation
to develop norms for the testing phase.

Conclusion

A great deal of time, effort and
expense is involved in creating good CAI
lessons and tests. When CAI is used as
the sole delivery medium, the results can
be disappointing. In most circustances
students learn best when exposed to a
variety of teaching approaches, and this
is especially true in learning a
programming language, particularly one
like Ada since the philosophy on the use
of Ada differs substantially from most
other general purpose programming
languages. Hence, we find that our
approach in which CAI is used to "add
value" to training is efficient and cost
effective.

Annual National Conference on Ada Technology 1986 113

9 ~ ~ ~ A 6-1~ - R ,>f'YA -

IMPLEMENTATION OF AN ADA* REAL-TIME EXECUTIVE - A CASE STUDY

James D. Laird
Dr. Bruce A. Burton

Mary R. Koppes

Intermetrics, Inc.
Aerospace Systems Group

5312 Bolsa Avenue
Huntington Beach, California 92649

ABSTRACT This process of risk identification should
be followed by development of risk

Current Ada language implementations minimization and avoidance strategies
and runtime environments are immature, tailored to meet the needs of the system.
unproven and are a key risk area for The emphasis of this paper is in the area
real-time embedded computer systems of technical risk identification and
(ECS). This study provides a test-case resolution for real-time ECS
environment in which the concerns of the applications. While the Ada programming
real-time, ECS community are addressed. A language is intended for real-time
priority driven executive is selected to applications, current compilers and
be implemented in the Ada programming runtime systems are unproven for these
language. The model selected is types of programming efforts.
representative of real-time executives Consequently, the impact and implications
tailored for embedded systems used in of using the Ada language and Ada-oriented
missile, spacecraft, and avionics methodologies in embedded real-time
applications. An Ada-based design development efforts should be
methodology is utilized, and two designs assessed. While it is necessary to examine
are considered. The first of these how well and to what extent the built-in
designs requires the use of vendor real-time features of the language meet
supplied runtime and tasking support. An the needs of ECS applications,
alternative high-level design is also additionally, we must re-evaluate the
considered for an implementation requiring standard approaches to solving real-time
no vendor supplied runtime or tasking problems in light of the new capabilities
support. The former approach is carried and assess the impact, if any, on the way
through to implementation. we design and implement these solutions in

software.

INTRODUCION SCOE

Since the inception of the common Perhaps the major consideration
DoD High Order Language (HOL) effort in with regard to the use of the Ada
the mid-70's, the Ada programming language programming language for real-time ECS
has remained a cornerstone of the applications is the cost of doing so in
government effort at producing software in terms of memory and processing overhead.
a cost-effective manner. Validated Ada The relative costs associated with the
compilers are becoming available on a use of Ada and its real-time features is
variety of different computers with at especially relevant to small embedded
least 17 validated compilers now available computer system applications given the
and more slated for validation during the physical and temporal constraints imposed
current year. There are currently 37 on these types of applications. The
different defense programs using Ada, and determining factor in the decision to
this number is anticipated to exceed 120 utilize a particular high order language
during the next four years 1 . While (HOL) feature is often the efficiency of
this progress is encouraging, the success its implementation. It is important to
of the Ada language in meeting the needs know what the utilization of Ada with its

*of specific applications will hinge on the real-time tasking primitives,
consideration of the potential risks that representation specifications, exception
face the implementors of a given system. handling, and various other features

translates to in terms of program size,
speed, and efficiency. The ability to
selectively include runtime support and

* Ada is a Registered Trademark of the

U.S. Government (AJPO)

1o

114 Annual National Conlerence on Ada Technology 1986

its resultant overhead for these features
on an "as needed" basis is another
important consideration. During the Current Ada RTS Approaches include:
course of this investigation, answers Compiler GentedtnlineSupport
to fundamental questions such as these samer re,.. ens e.g. VRTX
were sought. In addition, other issues Any Combination of ttAb. (eg. VERDX/VRTX)
specific to real-time ECS applications
were examined and addressed as they
naturally developed within the context
of the implementation of the case study
executive. In addition to runtime
support issues, Ada specific solutions
and strategies were sought and implemented
with regard to issues such as shared data,
adaptability to hardware, effective
deadlock, task management, maximization of
concurrency, and reliability.

BMCKGROUIUD

It is important to stress the RTS
significant conceptual differences Runtm(I.twica) ubmdes
between the two approaches investigated
with regard to this case study
implementation of a priority driven Ada
executive. Figure 1 serves to illustrate
the alternative approaches and concepts
and their implications for the developer
of an Ada executive.

The terms O.S., executive, and
runtime support or system (RTS) are *often used rather loosely when ECS Componetsnciude:
o e uTask Management (Support for Ada Tasking Model)
topics are discussed. The ambiguity of Memory/Storage Management
this terminology in the ECS environment Exception Handing Support

is primarily due to the overlap in Support for Predefined Language Packages (1/O)
functionality provided by different
implementations for different FIGURE 1.
applications. An application residing RUKMEsu0o8 XAH

on a bare machine may interface with
software providing minimal scheduling
and memory management. This software compiler system may interface to, and
is often referred to as an "executive" utilize, the comprehensive services
or runtime kernel whereas the same provided by an O.S. Therefore, the RTS
services provided on another system may for an ECS can be thought of as providing
be obtained from software referred to the minimal required subset of
as an O.S. The primary difference in O.S. services needed for a given
terminology is attributable to the application. As stated, this minimal
variety and nature of the services subset can be provided by direct access
provided by the support software in to the underlying machine or through the
question. The more minimal the services utilization of the services provided by
provided, the more likely that the terms an underlying comprehensive O.S. The
runtime support, runtime kernel, or former case is the most typical for
executive will be applied. True operating embedded computer systems. The term
systems in the strict sense are "executive" is most often used to refer
distinguished by two major factors. They to that part of the RTS that performs the
are typically developed independently of bas i c scheduling and memory
any compiler/applications software and management. Other portions of the RTS may
are acquired independently rather than include I/O control, timer/clock
as a part of a given compiler system or management, and a certain amount of
package. The other major distinction systems level runtime error and interrupt
is in the comprehensiveness of the trapping.
services provided by an O.S. for the
target machine; services that may be The RTS or runtime environment of an
targeted and utilized by a variety of ECS is the combination of hardware and
differing applications and tools as software that supports the execution of
well as many different compiler systems. application programs and the programming
The minimal runtime support for language features utilized to develop
applications developed under a single those programs. As illustrated in Figure

Annual National Conference on Ada Technology 1986 115

"s.- - ;%

1, this support can be implemented in reduction for real-time Ada applications.
hardware, microcode, through direct calls This option emphasizes the tailoring and
to an O.S., through the use of runtime optimization of the executive functions
support libraries, or by compiler provided at the RTS layer.
generated (in-line) code. The operating
system and RTS needs of small embedded A multi-phased approach beginning
computer systems are typically modest. with a requirements specification was
All that such small ECS targets usually utilized for the design and development
require is an "executive" consisting of of the priority driven executive. The
little more than a basic scheduler, functional capabilities that were to be
memory manager and some type of I/O provided were extracted from an existing
manager or controller. Obviously, avionics executive implemented in a
different applications may have specific combination of FORTRAN and Assembly
needs relative to memory management, I/O, language. It was determined that these
or clock services which will be reflected same functional capabilities would be
in the "executive/O.S" software, provided within the executive being

implemented in the Ada language.

APPIROAH Figure 2 is a schematic representation
outlining the functional interaction of

This paper addresses two basic the major components of the
options or approaches to the FORTRAN/Assembly model utilized. This
implementation of an Ada executive and representative model of a priority
briefly discusses ongoing as well as driven executive exerted its control
proposed work in a third area of related over the user task states through the
investigation. The first of these creation and management of task control
approaches is explored in depth (through blocks. These contained fields of
to implementation) and consists of a information specific to each user task
combination of a "pseudo executive" or transition between the active and inactive
scheduler at the applications layer in state. The type of scheduling mechanism
concert with vendor supplied executive utilized within this system was a
software at the runtime system level. The non-preemptive, voluntary context
obvious benefits of such an approach - switching algorithm. Ultimately? the

imposing an additional layer of control actively executing user tasks were
upon the runtime system scheduling responsible for initiating the scheduling
mechanism - include ease of portability, of other user tasks and, in many cases,
and relative target independence with themselves. This was accomplished through
respect to the underlying scheduling explicit calls to the scheduling
algorithm at the RTS layer. These primitives provided by the executive and
benefits as well as the tradeoffs in consisted of both time and signal
overhead and consistency from dependent scheduling. Based upon the
implementation to implementation will be
discussed in detail. Another option is
explored at a high level only. This
alternative, termed the bare machine ACTIVEUSERTASKS(SCH LEDEXEClING)
approach, is consistent with the TASKQOEUE TIMERO..EUE
traditional approach to avionics-based (READY/ OWEDEPEN-

executives and is considerably more DENTEXEC.)
limited in scope than the first in the task
sense that it assumes no underlying vendor activation
supplied runtime support. This executive

performs all necessary support for the task controlbloc&
execution of user jobs or "tasks". aeatiwvmanament
However, this approach is significantly
more restrictive than the first with
respect to the nature of what constitutes
a "task" as well as to the use of certain O0FEaGMJ
Ada language features involving both the TASK TIME scheulirgi
Ada tasking model and dynamic memory AG dtevttAg
management and certain other real-time
aspects of the language. The final
option is considered only in terms of bas

frame REATMCLOCK
current and ongoing investigative work interrupt
and proposed future studies based upon Ta
the results of past investigations. This L
approach diverges from the others in that
it proposes a complete migration to the FIGURE 2.
runtime system layer in order to probe FORTRANASSLetY EXECUTIVEFUJNC11ONALSCHEMATIC
the issues of efficiency and risk

116 Annual National Conference on Ada Technology 1986

receipt of either a time-based or
signal-based event, the executive managed I. Definition/statement of the problem
the task state transitions between II. Informal strategy (Modified specification)
inactive, ready for execution, and
executing. III. Identify objects and attributes

This model was selected primarily IV. Identify Operations
for its representative features as a
real-time, multi-tasking, priority v. Identifyconcurrency (DARTS)
driven avionics executive and for its Decomposition into tasks/packages
relative small scale. Using this model, basedon:
an Ada equivalent was developed to provide The asychonous nature or major transforms
as much, if not the same, functionality -- sequential vs. concurrent --
available in the FORTRAN/Assembly language
implementation. While equivalent in spcfically:
functionality provided, the Ada equivalent I/o dependency
constituted a complete re-design utilizing time critical functions

SAda concepts and features where possible. cmuainlrqieetconsttutedcomputationsi requirements
function cohesion

For this reason, the Ada executive posed temporal cohesion
some unique problems from the outset with periodic execution
respect to use of the new Ada concepts
and features such as the Ada tasking VI. Establish the Interfaces
model. These issues will be addressed
in some detail in the RESULTS section VII. Implement the operations
of this paper.

• (DARTS)

Design Approech forThe Ada prior ity driven executive Reel-Time Systems
was to provide facilities for the creation
of active tasks via a scheduling
mechanism. The scheduling mechanism Figure3.
would provide time-dependent scheduling FEAL-MOECTCR aMDESIGN MM)kEn[XMY

capabilities, precision timing of task
activation as measured by time base Booch-o-grams 6 , a high level schematic
generated (TBG) epochs, and signal depicting the major Ada program units
dependent scheduling capabilities. The required for implementation of the Ada
Ada priority driven executive would priority driven executive is presented
perform prioritized tasking and would in Figure 4. This high-level overview
have the option of enabling and disabling establishes the necessary relationships
interrupts. The capability to directly between the major components of the
connect to a real-time clock interrupt system in terms of visibility among
would be provided. In the absence of program units as well as defining the
such a facility, the real-time clock interfaces through which they
interrupt would be simulated with the communicate. The design arrived at and
smallest granularity possible. In short, presented here is a top-level abstraction
the Ada priority driven executive was only. It was necessary to iteratively
required to be a real-time, multi-tasking apply the design methodology from the
process manager with interrupt handling highest level of abstraction downward to
and both cyclic and asynchronous arrive at a complete definition of the
scheduling capability, required components.

Integral to the design of the Ada Similarly, a high level design was
priority driven executive was the developed for the alternate approach -
selection and application of a termed here "the bare machine approach"
state-of-the-art, Ada-based design - to the development of an Ada executive.
methodology. A somewhat novel design This high-level abstraction is shown in
approach was selected that was based Figure 5 and represents the more
upon Object Oriented Design 2 with restrictive traditional approach to
enhancements and modifications s ecific implementation of a bare machine
for real-time embedded systems . The executive. The model represented
methodology derived was termed Real-Time implements its own concurrency through
Object Oriented Design (RTOOD) and drew the executive while disallowing the use
upon another real-time, systems-based of the Ada tasking model per se as well
design methodology called Design Approach as any difficult, and potentially
for Real-Time Systems (DARTS)5. The risk-prone, dynamic storage management.
steps utilized in this hybrid methodology The potential benefits and risks of each
are outlined in Figure 3. of these approaches was examined with the

former approach being carried through
Using Object Oriented Design to implementation and limited utilization.

constructs often referred to as

Annual National Conference on Ada Technology 1986 117

S.-7. - -
%& r'

GLLW _A OBA GL5DATA~DT Q0T0L"

PACKAGE UAS-FEAEN PAKAGE

TYPE PPTRISPT TARPSIJAL

USERTANK SAC RsA LMANGO SCHIMM

... TASK MANAGER

SrPft EU" NM TAW~

SCGEDUT SMDATACPACKAGE " E ARL
pCOFAE-EICTVEMAR4 TIMER TASK-PACKAGE NT TS

SYSMA~i
Ia

LSJARO-
T IM

CTTIV UV

SSE M TA RT

AW AAEI OE AO F GURESV8r

HIGH LEVE ATOCO S11MATIC AS MAII 0G H"

An important function of this case were considered. An examination was made
study was to provide an evaluation of of various runtine system parameters such
the tools and methodologies that would as task scheduling, interleaving, and
be utilized in an actual project prioritization.
consisting of the specification, design,

and implementation of a real-time UESULTSapplication. The ByronTM* program

development language and toolset developed I ADA RIECOTTVE VITR VENDOR RDNTINR
by Intermetrics was utilized as a lUpoRrt
component of the overall design
methodology. The Byron Program Design The capabilities of the

Language (PDL) is based on the Ada FORTRAN/Assembly language implementation
language and provides a mechanism to and the Ada language implementation are
associate textual information with summarized in Table 1. The Ada language
Ada language constructs. The Byron version consists of two major components
toolset facilitates program design and - the program code and the vendor supplied
development through the provision of runtime system. In both implementations
documentation support and analysis the scheduling primitives are provided by
tools, the executive, but the ultimate

responsibility for cyclic/acyclic task
The approach to testing and analysis scheduling lies with the user

of the executive under development (application) tasks. Note, however, that
considered several issues. Functionality the task interleaving and task waiting in
as well as program sizing and overhead the Ada language version is strictly under
W_ the control of the Ada runtime system and

ByronTM is a Registered Trademark of not under the control of the executive as
Intermetrics, Inc. in the FORTRAN/Assembly implementation.

118 Annual National Conference on Ada Technology 1986

tasks' active execution. Specifically,
TAL.E 1. RTRANASSMBLVDIYSUS Ada ITATION the Ada runtime system manages theinterleaving or time-slicing of

CAPABUTY FOmRTPWASSEMBLY M a ARunrIM concurrently executing user tasks and is
EXEcunVE XECU5 E SYSTEM responsible for management of the

-- C associated task activation information.
TAcvcUc Provided Provided The start of a user tasks' scheduled

execution phase is strictly under the
TAS(KCCEtIJNG Pvded Provided control of the Ada priority driven
TAWnNTREANG Pi P executive at the applications layer, yet,

the management of the transfer of control
TASKWAIT Provided Provided between any number of concurrently

executing user tasks is by definition
-- DTASN Pvdd roded odunder the control of the vendor supplied
MNTEWJP1 Ada runtime system. In addition, the Ada

Prv dNPUNlanguage specification dictates the
enforcement of critical regions
(non-interruptable sections of code) with

ACTIVETASKS ACTIVE TASKS respect to the acceptance of task entry
(EcU11NG) 0NAmNGFOR -- requests and subsequent processing. The

enforcement of these critical regions in
ADA fask m conjunction with the priority-based
R 4 - FaJon t scheduling through the Ada executive
SVSTBM imposes upon the Ada runtime system an

additional level of control via a
____predetermined algorithm for transfer of

control (interleaving) among concurrently
executing program units.

COREEXECUTIV_MAIN To satisfy the requirement for a

TASK I dssd*h* cyclic capability, the executive was
,IIER required to have some method for

FUNinOS MGspecifying fixed-rate scheduling. This
ST TERRJ K " was provided on two levels. In keeping

with the scheme utilized in the original
model, the facility for scheduling a task

bae ACTUALJSULATED for execution is provided. Active tasks
frame REALTWOCK currently executing may therefore utilize
interrupt TMG NERTLN this facility to re-insert themselves

GEET into the schedule for future execution,
or this may be done by some other active

FIGURE6. user task. This requires some
ADAPRORITYDRIVENEXECUTIVE hypothetical scheduling scheme among

FUNCTIONALSCHEMAflC the user tasks. In the original model
a voluntary, non pre-emptive scheduling

Furthermore, although tasking could be scheme was utilized among the user
4 prioritized dynamically (changed) in tasks that enforced the notion that no

the FORTRAN/Assembly implementation, transfe: of control or context switching
priorities at the runtime system level among tasks could occur unexpectedly.
are static in the Ada language version. Bearing in mind that within an Ada

environment the underlying operating or
Functional Bina" Figure 6 depicts runtime system utilizes another level of
the major functional components of the scheduling for the interleaving of
Ada equivalent prototype developed for currently active tasks, a task
the case study investigation. The major prioritization scheme among these tasks is
distinction between the Ada implementation then required to enforce the notion that a
and the FORTRAN/Assembly model depicted particular task is incapable of having its
previously in Figure 2 involves the scheduled execution interrupted once it
interaction of the Ada runtime system with begins. In short, we have a scheduling
the priority driven executive functions, scheme at the user task level to specify
While the FORTRAN/Assembly model managed fixed-rate triggering of a tasks'
all state transitions for user tasks from processing and the Ada pragma "PRIORITY"
inactive to executing and all information enforced at the underlying operating or
associated with these state transitions, runtime system level to ensure
the Ada implementation utilizes the Ada uninterrupted completion of that
runtime support system (for the tasking processing.
model) to manage the active processing
phase of any user task as well as the The major potential point of failure
body of information associated with a with respect to this type of approach to

Annual National Conference on Ada Technology 1986 119

task scheduling at the applications level large, as much as 200K bytes, but the
is at the underlying runtime system runtime kernels were intended for a
level. The issue is one of consistency main-frame environment, not a typical ECS
from implementation to implementation application. The significant lessons
with respect to time slicing of learned were in what options were
concurrently executing processes of equal available to optimize the size and speed
priority. While fixed rate triggering of of the executable image. Significant
task execution can be guaranteed via a savings - approximately 100K - were
combination of algorithmic control, available via a selectively loadable
prioritization, and interrupt handling tasking kernel in at least one
through the "psuedo executive", no such implementation while other options
guarantee can be made with respect to the resulting in savings were no runtime
method of time slicing utilized by the checking (1-2K savings), and no debugging
underlying runtime support for concurrent instrumentation (5K savings). In one
tasks of equal priority. This will vary particular implementation, the option for
from implementation to implementation space optimization was offered yet yielded
although adhering to the so-called "FAIR" no appreciable difference in the size of
requirement dictated by the language the executable image. While there is no
specification. Given the stringent strict linear relationship with respect
nature of typical ECS performance and to overhead between host and ECS
reliability requirements, this potential environments, the significant savings
inconsistent behavior across realized through configurability within
implementations could pose a significant the host environments has significant
risk. positive implications for ECS environments

where efficiency constraints are
Static prioritization of Ada tasks paramount.

may be a problem in some instances of
task scheduling or interrupt handling The granularity of clock services
since external events often dictate a available was insufficient to perform
need to dynamically change priorities, significant timing analysis at the time
The Ada rendezvous occurs in a first of the case study investigation. However,
in, first out manner using a queue parallel investigations within the same
structure for multiple entry calls environments at a later date revealed data
issued for any given task entry point significant to the type of real-time
(ACCEPT statement). There is no way to processing utilized within the prototype
reorder and influence the position a executive. It was found that the total
calling task may occupy in such a queue. storage penalty to include a minimal
It is possible that with dynamic task exception handling capability within each
prioritization this could be programmer Ada program unit was on the order of 4-5
controlled although it is not clear percent of the total program storage while
whether task prioritization is used the cpu overhead to invoke an exception
for the queueing order of simultaneous handler ranged from 30-500 microseconds.
entry calls in a given implementation. This represents an acceptable cost in
Presently, if it is desired to hold or either a host mainframe or embedded
halt the acceptance of an entry call that environment.
has been issued and is queued, there is
no recourse for doing so (cleanly) aside The overhead in terms of time to
from termination through the ABORT utilize the rendezvous mechanism within
mechanism and re-invocation, the host environment was rather high,

being approximately 11-12 milliseconds.
Efficien _t SPace ana Time The FORTRAN/ Given the relatively rapid frame times
Assembly language implementation used as a of many real-time applications (on the
model in this case study was coded in a order of 40-100 milliseconds), a feature
little over 1 K (bytes) of memory and that uses approximately one tenth of the
accounted for somewhat less than two frame time poses serious risk3 . However,
percent of the entire system. While the based upon current investigations with Ada
entire Ada system consisted of just over for embedded 16 and 32 bit targets, the
700 lines of code, the space requirements case can be made that this is a problem
varied with respect to the host machine, somewhat localized to the mainframe
The Ada version required anywhere from 27 environment.
K to 38 K bytes of memory for the
applications code alone. The runtime Maintaining Concurrency While there
kernel on one machine imposed an are a number of methods available to
additional penalty of 200 K bytes to trigger the processing of a task, each
utilize the Ada tasking model. It has a relative cost in terms of
should be noted, however, that the efficiency. Many of these methods can be
executive was developed for functional rery expensive in terms of memory
realism and was not optimized for minimal utilization and rely heavily on efficient
program size. The runtime kernels were garbage collection by the underlying

120 Annual National Conference on Ada Technology 1986

runtime system to ensure adequate storage delay to allow the user tasks sufficient
availability. The danger of exceeding processing time.
maximum storage capacity is always present
and, therefore, many of the available II. TfE BARE MACHINE APpRoACH
methods are entirely unsuitable for small
to moderate size machines. The alternate design approach proposed

in this study for the Ada priority driven
One acceptable technique is to executive (see Figure 5) is intended for a

make task processing dependent upon bare machine environment with no resident
a rendezvous that is placed inside a operating system nor any vendor supplied
loop. The processing is triggered by Ada runtime support. The design of such
the rendezvous acceptance. When the an executive raises some important
processing is complete, the task merely issues with respect to what must be
loops back to the accept statement and provided to support the execution of an
goes to sleep until a subsequent entry Ada application on such a bare target.
call is made. This assumes that an unmet When operating within such an environment,
rendezvous constitutes a sleep state. The the implications of the traditional model
assumption is that it should be a sleep of an executive, such as the original
state to prevent waste of valuable CPU FORTRAN/Assembly language implementation
time, but this may be implementation used as a basis for this study, must be
dependent. There is an additional problem considered. This approach differs greatly
with this approach. The Ada rendezvous from that which utilizes an underlying
mechanism is defined in such a way that a runtime system. This approach implies
calling program unit is suspended until that beyond the generation of native
the processing that is contained within machine instructions from the HOL by some
the ACCEPT-DO END block of the task being generic translator or compiler, it becomes
rendezvoused with is completed 7. This is necessary to provide programmer supplied
comparable to the synchronous behavior of support for any HOL language features not
a procedure call. The acceptable solution directly implementable through primitives
to this problem is to place any processing on the bare hardware. It therefore
in a called task after an empty ACCEPT-DO becomes the task of the runtime supervisor
END block (the DO/END would be or executive software to provide this
optional). By placing the processing underlying support for things such as
segment following the point of rendezvous, concurrency or multi-tasking, I/O,
and not within it, the task that issued dynamic storage and memory management
the entry call can rendezvous quickly and to name a few. In addition, this executive
continue executing, concurrently, with any must not, in turn, rely on some underlying
processing that has been triggered in the support for its own execution.
called task. This was the method utilized
successfully in the case study. The design of this executive was

purely hypothetical and no specific
Remource Contention Resource embedded target was selected. For that
contention among user tasks with regard reason, only a high-level design was
to the scheduling facilities was detected iterated. Currently, typical vendor
in the design phase as well as at the supplied Ada runtime support packages
coding stage. In an Ada tasking facilitate things such as: system
environment, contention for shared data elaboration or initialization, task
and processing resources seems to dictate communication and scheduling, exception
a tasking solution in the form of a handling, interrupt, I/O, and type
monitor task that encapsulates the support. The amount of overhead varies
resource in question. The use of flags with each vendor's implementation. The
or a semaphore system has the inherent design proposed here is for an Ada
danger of collision on the flag and executive function that would minimally
does not seem satisfactory in a heavily support the execution of other Ada
task oriented system. The tasking software constituting jobs or
approach therefore seems to be the most "tasksm. However, the Ada tasking
satisfactory solution, model is not supported by the proposed

subset Ada implementation for a bare
A problem was encountered when the ECS target. As in the traditional

executive tasks prioritization levels model, concurrency is achieved via the
were equal to or lower than the least executive utilizing a non pre-emptive,
urgent user task. This introduced the voluntary context switching mechanism.
problem of a highly active user task Control over scheduling is therefore
locking out the executive tasks and explicit and known to the programmer.
affecting the stability of the timing In addition, any dynamic data or storage
cycle. A satisfactory solution to this management is restricted to that which
problem is to make the executive tasks' supports the execution of the executive
prioritization levels the highest in functions only. It must be noted that
the system and to introduce enough the notion of an wall Ada executive" at

Annual National Conference on Ada Technology 1986 121

this level is fallacious. A certain optimization and risk reduction at this
amount of privileged accessing of register level while maintaining the complete (or
and stack contents by the executive nearly complete) functionality of the
functions to facilitate the basic context language. The focus is on tailorable,
switching and memory management would be configurable runtime support for the
required. This is not directly achievable design of efficient real-time systems in
from within the Ada language. Therefore, Ada. It is highly likely that the full
a component of the executive software functionality of the traditional model of
(e.g. the ControlTransferPackage) would a priority driven executive can be
by necessity be implemented in a lower achieved in this manner by minimizing the
level programming language. In current role of a programmer supplied executive
commercial Ada runtime systems for and relying on the efficient
embedded targets such as the 1750A, implementation of the Ada tasking model
this accounts for approximately two at the operating or runtime system
percent of the supplied runtime support. level. While it may still be necessary
Ada packaging concepts facilitate the to provide customized runtime/executive
encapsulation and isolation of such support, this can be provided primarily
machine context sensitive components. through tailoring of existing systems at

the RTS level to meet specific performance
The rationale for the approach to requirements rather than exerting

concurrency presented is straightforward. additional control at the applications
While explicit context switching can be layer.
considered risky, it has certain potential
benefits. It avoids the necessity of CONCLUIUM
excessive locking since the programmer
knows exactly when context switches are to Many issues of concern exist due to
be performed. Another benefit is realized the immaturity and quality of Ada language
when a high priority event occurs that implementations and uncertainties
must be handled rapidly as is the case in regarding performance. The performance of
many real-time systems. While handling the code generated by early compilers may
such an event, it may be deleterious to be poor and may result in poor system
release the processor. Finally, the performance. In addition, although
avoidance of unnecessary context switches several of the issues that face developers
and/or checking results in greater of real-time ECS applications in Ada are
efficiency 8 . Admittedly, however, it design issues or primarily resolved
becomes necessary to question the through good programming technique, many
feasibility and advantages of using Ada issues remain that pose risk to the
without its tasking features and other development of real-time systems in Ada.
real-time components versus using any Current design techniques for real-time
other high-level programming language. It applications in Ada are inadequate, and
should also be noted that, with some some issues can be resolved by development
re-working of the design, there is of a comprehensive design method for
nothing to explicitly prevent the use real-time systems. Furthermore, the
of the Ada tasking model and rendezvous development of programming techniques or
concept, provided that the necessary strategies, and the education of
runtime support is supplied at an programmers can aid the elimination or
acceptable cost in memory overhead and minimization of many concerns.
execution efficiency. This is the
motivating concept driving our current The unique constraints imposed upon
and future investigations with respect real-time embedded computer applications
to Ada real-time systems and will be often require that specific solutions and
discussed in the following section. strategies be utilized. Implementation

languages, in turn, must be sufficiently
Current and Futurp Inveetigations T h e flexible and powerful to accommodate
rationale for an approach such as the these solutions in the most efficient
bare machine option is that given the manner possible. We have identified a
present state of tasking support in an number of key risk areas and issues for
environment that supports full Ada real-time ECS applications and have
tasking, exception handling and other explored these issues, and solutions,
HOL features, the resultant program within the context of a specific Ada
size may be unsuitably large for an language application. With respect to
embedded application. While the bare the issues that were successfully
machine approach represents one available addressed within the scope of this case
option, an additional alternative exists study, the following conclusions can be
that holds some promise for the design of made.
compact, efficient real-time systems and
is the focus of our current and future Current runtime support required
investigative work. This consists of a for implementation of the Ada tasking
migration to the RTS layer in pursuit of model is generally high in memory

122 Annual National Conference on Ada Technology 1986

utilization and execution overhead, during initiated rendezvous' is an
However, as Ada language systems mature impediment to the development of
and currently available optimizing efficient, reliable real-time systemstechnology is employed, large runtime in Ada.

overhead with respect to memory
utilization and execution speed should There is a continuing need for a
certainly become less of an issue, clear, concise design methodology for
This is in fact the case with some of real-time embedded Ada applications
the Ada language systems currently that includes a criteria for the
under development. Current investigations identification of concurrency and a

- with a variety of differing compiler graphic means of depicting concurrent
systems and runtime environments for 16 relationships with timing and
and 32 bit embedded targets have revealed synchronization information at any
that kernel runtime systems currently given point in the system. While helpful,
exist that appear to be providing the the hybrid method utilized during this
minimal, configurable support necessary to case study falls short of fulfilling such
accommodate Ada language features in a a broad requirement.
timely and efficient manner. Standardized
kernel runtime support on the order of 2K The difficulties encountered during
provided by minimal system service the course of the case study investigation
interfaces is currently available in assessing Ada real-time features in a
(e.g. VRTX) and can be targeted and host machine environment were significant
utilized efficiently by Ada compiler and underscored the need for further study
systems for a variety of embedded of the problems and issues encountered in
targets. In addition, preliminary real-time applications. We are currently
analysis and timing studies with Ada continuing our real-time investigations
language systems for embedded targets such to evaluate the effectiveness of Ada
as the AIE 1750A cross compilation system language systems for real-time embedded
have indicated that the basic language applications within realistic host and
features are being implemented in an target environments. This work is being
efficient manner. Basic context switching carried out with a focus on the 1750A
times on the order of twenty microseconds and 68000 compiler and runtime
and general code expansion ratios on the environments. A comparative analysis
oider of four to six are encouraging for of runtime characteristics and performance
the development of compact, efficient among various Ada compiler systems and
real-time applications in Ada. In sample runtime environments is ongoing.
addition, hardware architectures optimized We are also identifying and utilizing
to execute Ada code and that implement Ada state of the art real-time Ada evaluation,
language features in hardware at runtime test, and simulation tools in the effort
are being developed. to analyze the performance characteristics

of Ada applications in realistic target
Problems remain with the non-support environments. The focus of our initial

among many Ada implementations of certain case study was at the applications
real-time features of the Ada language. A level although an alternative was proposed
case in point is the vectoring of for a prohibitively restrictive Ada
interrupts to task entries via the Ada executive that fulfilled a subset of
representation specification. This the runtime responsibilities to support
continues to be a concern to the real-time the execution of concurrent Ada programs.
applications community although it is The current approach calls for migration
somewhat localized to the mainframe to the RTS level to investigate
environment. Additional problems are optimization and tailoring of existing
rooted in the language specification systems to allow efficient use of the Ada
itself (MIL STD 1815A) which fails to tasking model and other real-time features
provide certain features desirable in within realistic target environments. It
typical real-time systems. While is in this manner that we will attempt to
alternatives exist, this lack of certain address and seek additional information
explicit language primitives poses unique and solutions to those issues left
problems for many types of real-time unanswered in our preliminary Ada
applications. Specifically, the lack of real-time investigations.
explicit language primitives to allow
dynamic "disconnection" and "connection"
to interrupts without the termination or
creation of a program unit (task) and
the inability to utilize dynamic task The authors wish to acknowledge the
prioritization are of major concern to support and advice of the personnel at
ECS developers. Furthermore, the lack Intermetrics, Inc. in the preparation
of precision in the specification of of this manuscript.
exact delays as well as the lack of
alternatives or ability to time-out

Annual National Conference on Ada Technology 1986 123

Z2'2 *.'*..*..

BEEUEN software simulation. He is a member of
ACM and IEEE Computer Society

1. Judge, J.F., "Ada Progress Satisfies
DoD", Defense Electronics, June 1985.

2. Booch, Grady, Software Engineering
with Ada, Benjamin/Cummings, Menlo
Park, California, 1983.

3. Davis, R., "FDA Program Conclusions",
Intermetrics Inc., Huntington Beach,
California, August, 1985.

4. Laird, James D., "Implementation of
an Ada Real-Time Executive: A Detailed
Analysis", Intermetrics Inc.,
Huntington Beach, California, March,
1985.

5. Gomaa, H., "A Software Design Method Bruce Burton is the manager of the
for Real-Time Systems", Communications Software Technology Department at
of the ACM, Vol. 27, No. 9, September Intermetrics, Inc. He holds an M.S. in
1984. Information and Computer Science and a

Ph.D in Physical Chemistry from the
6. Temte, Mark, "Object Oriented Design University of California, Irvine.

and Ballistics Software", ACM Ada Dr. Burton is interested in the real-time
L e t t e r s , V o 1 . I V , No . 3 , programming area and in the field of
November/December, 1984. software reuse.

7. United States Department of Defense,
Reference Manual for the Ada
Programming Language MIL STD 1815A,
Ada Joint Program Office, March,
1983.

8. Binding, Carl, "Cheap Concurrency
in C", ACM SIGPLAN NOTICES, Vol. 20,
No. 9, September 1985.

,kni

Mary Koppes is a Software Engineer
for the California Division of
Intermetrics, Inc. and is currently
working in the Space Systems Software
Group on the Space Station Phase B
Definition and Preliminary Design
contract. Ms. Koppes has also contributed
to the Ada research and development work.
Ms. Koppes received her B.A. in

James Laird is a member of the Mathematics/Computer Science from the
software engineering staff for the California State University, Long Beach.
Software Technology Department at
Intermetrics' California Division. He
has been active in the Ada IR&D
investigations for the NASA Space Station
Pre-Award and Phase B activities under
the Space Systems Software Group. He
previously worked in the area of software
simulation and testing for the Rockwell
Bl-B project. His interest areas include
real-time programming with Ada and

124 Annual National Conference on Ada Technology 1986

4 -

PRACTICAL EXPERIENCES OF THE ADA LANGUAGE FOR
REAL-TIME EMBEDDED SYSTEMS DEVELOPMENT FOR THE DEFENCE-RELATED MARKET

Dr Mel Selwood

Plessey-UK Limited, England

Summary
practices, it would be inappropriate to

This paper describes some of the ignore the often large existing investment

experiences gained to-date from an Ada in non-Ada software and systems products
research programme, undertaken within the (and the associated manpower skills,
Plessey Company in the U.K., by the author working practices, equipment etc.) in
and his team. This programme is investig- favour of some totally new, unproven
ating the cost-effective and beneficial development scenario.
introduction of the Ada language for

Defence-related (mostly real-time) software Instead, the situation demands an optimum
applications. Particular emphasis is (transition) solution for which on the

placed upon minimising the risks and one-hand changes to the status quo are
maximising the benefits for large and / or minimised, while on the other hand the
embedded microprocessor-based systems, potential benefits of Ada and associated
Within the context of this largely development methods are maximised.
practical work programme, the paper
identifies a number of key concerns within This paper reports on some of the practical

the team (and it is suggested within experiences gained to-date from an Ada
industry at large) in making the transition research programme which was set up to
to Ada. Also, some suggestions for address this problem.
improving the application of current Ada
compilers and tools is provided to the Ada Research Programme
vendors of these products.

The programme was set up as a -virtual'

project, involving a hybrid mix of

practical study activities and real Ada
software developments. This project is

Introduction ongoing and involves multiple study teams
with distributed interests, thereby

Clearly, in order to obtain the longer term ensuring a broad approach to the problem.
benefits claimed for the Ada language, it

is first necessary for any commercial Given that the coding phase of projects
organisation to be able to bid for and typically equates to only 10% of the
implement Ada projects both profitably and overall development effort, it is clear
at minimum risk. This can only be done that the real value of Ada will come not

with confidence (at least for fixed-price from the direct characteristics of the

contracts) when that organisation has language itself but from the catalytic
already implemented "representative" Ada (secondary) influence upon the software
projects, so that it can draw upon real engineering methods employed. Thus, the
experience of the technical issues following issues are being examined:

involved. Only then can it, for example,
reliably establish criteria for estimating i. the appropriate time-frame for

project timescales and costs, and define introducing Ada,
appropriate standards and procedures for II. the impact of Ada upon the overall
Ada-based developments, development lifecycle,

III. the necessary standards and procedures
In general, for large and complex (Project Management Baseline),
(especially real-time embedded micro- iv. the anticipated effort / cost - time
processor based) systems, for which Ada is profile for Ada projects,
intended, the risk of using Ada ahead of v. constraints upon the design and
gaining such real experience may well be implementation of products, and their

too great. Further, although the expected characteristics,
introduction of Ada may go hand-in-hand vi. operational aspects (eg appropriate
with improved software engineering development environment).

Annual Naticnal Conference on Ada Technology 1986 125

%.

Within this context, the programme focusses In contrast, the man-machine interface

upon the production of Ada demonstrators (MMI) sub-system is both newly designed and

for gaining practical experience of Ada, to implemented and this serves as a test case

demonstrate representative Ada-based for studies into Ada design methods.
software systems actually working, and to

allow ancillary studies eg into code size The demonstrator involves three platforms:
and performance issues. The work is

complemented by a series of across- i. an entirely DEC Vax-based Ada system

application studies to check the consist- with software emulating the function

ency of the results and their applicability of the real (DVT) hardware - a typical
to varied applications, screen snapshot is shown in figure 1.

ii. the Vax-based Ada system linked via an
Three demonstrators are currently being RS232 interface to an existing
worked upon: hardware rig supporting real DVTs,

iii. the Ada software at ii. re-ported to

A Digital Telephone Exchange Demonstrator run on an Intel 80286-based target.

This system implements the complex multi- A Sonar System demonstrator
tasking activities associated with setting

up, supporting, and terminating, one or This system is based upon an existing

more concurrent two-party telephone calls Pascal implementation and demonstrates a

from Digital Voice Terminals (DVTs). The typical naval surface ship sonar data

system supports a variety of facilities eg processing and colour display function. It

system configuration, abbreviated dialling, presents both Active and Broadband Passive

diversion of calls, call pre-emption etc. sonar data in grey-scale format, updated in
real-time, together with automatic target

The system is a conversion of an existing detection and tracking functions. Operator

product which was developed using the interaction is via Isoft' keyboards

"Modular Approach to Software Consfruction, presented on the sonar data displays, and

Operation and Test (Mascot) ", and manipulated using a special purpose

implemented using the Coral 66 language. five-button keypad. A sonar cursor is also

The majority of the new system preserves provided, controlled from a rolling ball.
the existing Mascot design (excluding the

Mascot 'machine' concept, which supports
primitives such as operations on control

queues for synchronising access to shared
data areas). The required system functions

were then manually re-implemented using the
full features of the Ada language.

rCM

Subso ber Subwl bst SubscT bw Subscriber 71Display
7625341 7624762 4534233 6523484

0000 0000 0000 0000

008 0000 000o00caI

000 , 000 Darde [inks_____

coca

7 2 HT b3 Subcriber AdaSubscriber
3435366 2507454 765432! 7234511

Figure 1 - Typical Screen Snapshot Figure 2 - Platform I Sonar Demonstrator

126 AnuaiNaionalCorec onAd0a Tcnloy18

There are two platforms (figures 2 and 3) The initial investigations involve

In the first the Ada software runs in a Vax re-implementing in Ada that software which

which is directly coupled via twin parallel is used to assess the low cycle fatigue

interfaces to two IEE796 microprocessor damage on the major components of the
busses, on which are situated multi-plane engine.

colour graphics display generators and
man-machine interface (MMI) cards. All There are two phases to the work. The

intelligence is deliberately removed from first involves an examination of the
the IEE796 cards, and accordingly the existing design and Pascal implementation,
Vax-based Ada software deals with the and re-implementing the system in Ada to
display and MMI hardware at the lowest run on a Vax. In the second stage the
level of bit manipulation. system is re-targetted to run in the real

Motorola 68000-based hardware config-
In the second platform, the majority of the uration.

demonstrator is reconfigured for a multiple

Intel 8086 microprocessor system whilst the RESULTS AND DISCUSSION
remaining Ada control module runs in either
Vax or IBM PC-AT machines. Digital Telephone Exchange Demonstrator

Development of this demonstrator commenced

using the Telesoft Ada compiler V2.1, and
later the Karlsruhe Ada compiler V1.1.
However, the performance of these products

was below expectation and a change was made

(Ada Control Programme) to the newly arrived DEC Ada compiler V1.0,

V.x ... with which the implementation of the first
lm a]_. I (Vax-based) platform was satisfactorily

Two Display completed. The second platform is still

.... under development but is expected to be

Geerto completed very shortly.

IF R1C For the third platform, involving an Intel

80286 embedded microprocessor target, it is

Microrocessor Eiutio planned to use the Verdix/VADS system
(running under VMS) since the DEC Ada

8ntl086, 186 compiler does not currently support code

generation for non-DEC microprocessor
PC ATLEoouatian targets. This work should allow comparison

between the DEC and Verdix products.

'AsiJ The following list identifies some of the

Lii- --] operational issues which have been raised
T -o Iby the demonstrator experience:

Porttm i. The security and robustness of the Ada
C oto I library management facilities.

l /l Oi' ILT ii. The ease with which software developed
IBM-PC L. L using one compiler can be recompiled

(Ado under another.(AdoC~nr01P0 ome)iii. The robustness of the compiler , and

the existence of any implementation

constraints.
iv. The development machine resources

Figure 3 - Platform 2 Sonar Demonstrator required.
V. The speed of compilation.
vi. The extent of interference by the

An Engine Monitoring System demonstrator operating system in the execution of

the Ada software.

This deTonstrator is based on an existing
product which performs a range of engine Thus, taking point v. as an example: for
life count calculations, incident / both the Telesoft and Karlsruhe Ada
exceedance monitoring and vibration compilers, in the particular application
analysis, for the Rolls Royce Pegasus used in the demonstrator exercise, the CPU

engine. It provides a platform for time required to build the first demonstr-
investigating the use of Ada in high ator platform (before the system was fully
performance-critical applications; the coded) was in excess of two hours - the

majority of complex algorithmic elapsed time being substantially longer.
calculations being carried out in real- Considering only the MMI sub-system (ca.

time. 25% of the total system), this meant that

Annual National Conference on Ada Technology 1986 127

% %% %%
Z N. %

the "(re-) build and run - analyse and I. Support for the different hardware
debug" development iteration could be components employed.
performed on average two or at most three ti. The size of the run-time support (RTS)
times per normal working day (depending on system - this currently exceeds the
the extent of re-compilation required), amount of the processor card on-board

memory.
When the DEC Ada compiler was used in the Iii. Alterations to the standard RTS to
same application, the entire system was cater for the different configuration
built in 16 minutes CPU time (typically two of the target hardware.

hours elapsed time) on a Vax-1l/785 with 8
Mbytes main memory. This turn-round time This work is ongoing but is already
compared favourably with experiences of highlighting a number of important issues
traditional languages eg Coral, and led to eg the impact on validation.

much greater overall productivity.
Engine Monitoring System (EMS) Demonstrator

The platform 1 software comprises some 40
packages, including 34 Ada tasks, and is In the past for this application the
implemented in approximately 25,000 lines Structured Analysis / Structured Design
of code (including comments). This method ' has been used. For Pascal, this
represents a substantial working example of has often involved considerable pre-
a complex Ada system, albeit a Vax-based implementation 'engineering' of the design.
implementation. However, for Ada the information hiding

features (primarily) appear to permit a
Sonar Demonstrator more optimal mapping with consequential

improvements in the software structure.
The first (Vax-based) platform was This area of investigation is still at an
implemented using both the Karlsruhe and early stage, but the initial results look
DEC Ada compilers. In transferring to the encouraging.
DEC Ada compiler it was noted that
successfJl re-compilation and build Comparing functionally equivalent single
occurred without needing any code changes threaded (non multi-tasking) Vax-based
at all. Despite the inevitable differences versions of the software implemented
in run-time characteristics, this is an respectively in (DEC) Pascal and (DEC) Ada,
optimistic sign for portability of Ada shows a decreased run-time performance in
across different projects. the latter case, contrary to the results

from the Sonar Ada platform. A number of
The first platform is implemented in implementation changes to the Ada version

approximately 8,000 lines of code have been made in an attempt to explain
(including comments). This compares with this difference, but so far these have not

e. approximately 5,500 lines of Pascal code in substantially altered the results.
.4' the original implementation. However, this

smaller size can be attributed to the The reduced Ada performance for this
reduced number of facilities for error application may be due to the significantly
recovery and reduced program robustness, higher degree of numerical processing
rather than to any verboseness of Ada involved, and this is being investigated.
(except where enforced by the strong typing Work is progressing on the implementation
features of the language), of a driver/display unit (to display the

low cycle fatigue results) for which no
The speed of progression of the Sonar such numerical calculations are involved.
Iping-front' from the bottom to the top of This should provide an opportunity for

the display screen provides a simple further comparison.
measure of the net relative performance of
the software. Such measurements show that, For the second stage of the work, it is
in the applications used, for single- planned to use the Verdix/VADS cross-

threaded (non multi-tasking) versions of development system and this should provide
the platform, the DEC Ada-based system both size and performance data for the
slightly outperforms the DEC Pascal 68000-based target configuration in the
version. An extended multi-tasking DEC Ada near future.
implementation is showing comparable
performance to its single-threaded counter- Ancillary studies

part.
* Apart from the demonstrator projects, a

For the second platform (multi-Intel 8086 number of additional studies are being
microprocessor configuration) the SofTech carried out in the following key areas:
ALS system is being used. However, to meet
the operational requirements of the system, The design of Ada-based systems: A
the target hardware is not based on number of methods eg4 %tructured Alalysis /
standard Intel boards. Accordingly, Structured Design ' , Mascot-, the
certain non-trivial problems are involved: Structured Systems Analysis and Design

128 Annual National Conference on Ada Technology 1986

% v

Method (LSD%/SSADM)
6
, and object-oriented run-time). Thus, care has to be taken not

approaches ' are being reviewed, to group functionally related processing

activities within a single task if the
In the design and implementation of the MMI functions are inherently not of equivalent
sub-system for the Digital Telephone priority.
Exchange Demonstrator, using a Mascot-like
approach, it was found that for example: The MMI sub-system has now been re-designed

and re-implemented based upon the findings
i. Significant effort was needed to of the review into this and other methods.

design and efficiently package the This serves as a model example from which a
data types and objects (Mascot reasonably optimal design and implement-
provides insufficient support). ation code of practice is being derived for

ii. Packaging structures were initially future applications.

adopted which were subsequently found
to be non-optimal. Thus, while Program testing: Most Ada compiler
undesirable sharing of data objects vendors are supplying symbolic debuggers
was avoided, the first implementation for use within the program debugging stage
required excessive sharing of data of software development. However, most
type definitions. Defence-related projects involve a high

Ii . Although the strong typing of Ada degree of stringent testing (verification
generally led to a much more straight- and validation against the requirements and
forward mapping between the design and design) and this aspect appears to be
code, this was at the expense of some receiving scant commercial attention.
awkwardness in the processing of the
data. Accordingly, the suitability of using

iv. Using -with- alone, rather than 'with' commercial symbolic debug facilities as the
and "use-, for referencing other basis of a more sophisticated test harness
packages was found to be much clearer is being investigated. To-date a prototype
and less error-prone (for this large test tool has been produced which involves
scale development). This contrasts lexical analysis of the software under
with the (implied) recommendations of test and the automated production of
most Ada textbooks whose examples are command files to drive the DEC symbolic

rather simple, debugger. Further work is being carried

out to investigate the representation of
The following points were also observed: the complex real-time behaviour of Ada

systems by advanced graphical means.
Mascot segregates processing units
(activities) and intercommunication data During this work numerous instances have
areas (IDAs), the access procedures for been encountered of having to gather data
which encapsulate the more complex about the software under test which must
inter-task communication and synchronis- clearly have already been obtained during
ation aspects. This is useful when the the course of Ada compilation. However,
implementation teams are of mixed ability, this information is not made externally
In Ada, inter-task communication is an visible by the compiler. It is felt that
implicit part of all of the applications there is immense scope for Ada compiler
software. The full impact of this upon suppliers to collaborate with industry to
large systems developments has yet to be help overcome this sort of problem.
established.

Configuration Management: Because of
A direct mapping of a Mascot design to Ada the inherent complexity of most Defence-
usually leads to all activities being related programmes, and the fact that they
implemented as (active) Ada tasks, require multiple development teams, strong
However, since Ada assumes a synchronous emphasis is placed on the need for
tasking model (rendezvous) the efficient tool-based configuration
implementation of the IDAs leads to two management methods to support Ada projects.
possibilities: (1) treating them as Of particular interest is support for

decoupled (asynchronous) inter-task software re-use across projects and in
communication mechanisms, and hence coding devising suitable schemes for linking
them as (passive) Ada tasks, or (2) existing or future configuration management
effecting a synchronous inter-task databases to Ada system build facilities.
communication by means of a rendezvous. In
the first (more general) case, the overall Current investigations are looking at the
system performance depends even more use of the DEC, SofTech and Verdix products
heavily upon the efficiency of Ada tasking, for this purpose. The results are expected

to form the basis of a future paper.
It is important in defining the application

boundary for an Ada task, to bear in mind Run-time support: The provision of
that it is not possible to alter the efficient run time support for embedded
priority of an Ada task dynamically (at microprocessor-based Ada systems is crucial

Annual National Conference on Ada Technology 1986 129

to the use of Ada for such applications. However, for the complex and real-time

To-date studies in this area have been applications described here, the experience

frustrated by the frequent lack of detailed gained to-date gives cause for optimism.
data from the compiler vendors about the Thus, in the development of the Vax-based
characteristics of the run-time support platforms the DEC Ada compiler appeared to
systems to be supplied. Again, this is a be well engineered and operationally

problem area which could benefit from efficient. In these particular
further collaboration between the Compiler circumstances it resulted in comparable
suppliers and Industry. Some of the issues run-time performance in at least one

of importance are: application to Pascal, and although it

currently involves increased code sizes
i. the functionality, size and when the run-time allocation of storage is

performance of the RTS, and the taken into account, it is thought likely

'hooks- provided for use by that this situation will improve in future

applications software, products.
ii. the advantages and disadvantages (eg

for portability) of using proprietary At the same time, the fact that the

RTS systems eg Intel's iRMX, and the research programme has slipped in time-

Hunter & Ready VRTX system, as well as scales due to the non-availability of high
Ada specific products, performance cross-compilers and tools to

iii. the interaction between the underlying support representative embedded micro-

Ada compiler technology and the RTS processor configurations is a cause of
system in the context of the often concern. Such delays could frustrate

non-standard hardware configurations industry in bidding for and implementing

used in embedded microprocessor these types of application. A further
applications, concern is that there often seems to be

insufficient documentation concerning the

At the present time software that can be detailed compiler characteristics eg
used to 'bench-mark- the commercially resource requirements, availability of
supplied run-time support systems is being intermediate compiler outputs, run-time

developed. support features etc. This is an area

which is just beginning to receive greater
Conclusions attention in the Ada community and needs to

be encouraged.
The research programme being carried out by

the Plessey Company represents a major As a general conclusion, it is felt that

initiative to examine the key issues to-date there has been considerable
associated with the transition to Ad. In emphasis (perhaps not surprisingly) on
common with views expressed elsewhere , Ada producing validated Ada compilers, but much

is regarded as much more than another less on providing genuine support for real
programming language and is expected to Ada developments (whether this be

provide a new and real opportunity to appropriate compilers, support tools or in

catalyse substantial improvements in devising effective working methods for use

industry's software engineering capability, with Ada). Clearly, if Ada is to be put

In particular, by allowing the unification into real service and provide the benefits
of working practices, Ada is expected to that industry is expecting this balance has

increase the opportunities for much greater to be redressed at the earliest
levels of software portability and re-use, opportunity.

software reliability, and overall
productivity.

Industry is keen to take advantage of these

benefits but clearly any significant
advance requires the availability of

(cross-) compilers and support tools
appropriate to the systems to be produced.

Such compilers need to be not only
technically compliant with the Ada Language
Reference Manual but also of high
performance and operationally efficient.

This is still an area of concern and
despite the (increasing) number of
validated Ada compilers available it is
thought that there is much to be done
before Ada can really be put to effective

use for embedded microprocessor applicat-
ions for which Ada has most to offer.

130 Annual National Conference on Ada Technology 1986

Acknowledgements The Author

This paper is produced as a consequence of

an in-house (private venture) funded Ada
research programme carried out by the

Plessey Company in the U.K. The author
would like to record his thanks to the

Company for supporting the production of
this paper and its presentation at the 4th -

Annual National Conference in Atlanta, and

to those people engaged on the programme -"

who have provided the results presented. 0,

References

1. Official Definition of Mascot, The

Mascot Suppliers Association, U.K.,
1980. Dr Mel Selwood is the Project Manager for

2. Cooper G A, Carter C B, Hess A, the Plessey Company-s Ada Research

"AV-8B/GR Mk 5 Engine Monitoring Programme which has been carrying out the

System", 21st Joint Propulsion work described in this paper and may be
Conference, California, 1985. contacted at Plessey Defence Systems, Abbey

3. Slape J, "Experience in the Use of Ada Works, Titchfield, Fareham, Hampshire, U.K.

for a Digital Switching System", Ada (Telephone +44 329 43031).
UK Conference, 1986.

4. Yourdon E and Constantine L, After graduating with B.Sc Honours in

Structured Design, Prentice-Hall, Applied Chemistry, he expanded his

1979. interests in Physical Chemistry and

5. DeMarco T, Structured Analysis and Computing to study solid state

System Specification, Prentice-Hall, decomposition reactions and numerical

1979. methods of kinetic data analysis, for which

6. Learmonth and Burchett's Structured he was awarded a Ph.D. in 1978. With this

Design Method (LSDM), Learmonth and firm technical and computing background, he

Burchett Management Systems, London. has since been actively involved in the
7. Booch G, Software Engineering with development of several large command and

Ada, Benjamin/Cummings, California, control systems for the U.K. Navy and Royal

1983. Air Force, with duties including real-time

8. Berard E V, An Object-Oriented Design software design and implementation,

Handbook for Ada Software, E.V.B. training, software management and

Software Engineering Inc., 1985. development support. Prior to his current

9. Walsh T J, "Transitioning to Ada: The position, he led a Software Technology

challenge for Software Engineering", Group looking into improved methods and

Proc. 3rd Annual National Conference tools to support software systems

on Ada Technology, Texas, 1985. development and has a strong personal
interest in improving the software

engineering principles and practices used
within industry.

Annual National Conference on Ada Technology 1986 131

-3

Tactical Database Management System -

An Ada' Technology Project for the US Army 2

Judy Bamberger, Phil Ritter, Jackson Wilson

TRW Defense Systems Group

Redondo Beach CA

The Tactical Database Management System (TDBMS) is management system developed in Ada on: Sun worksta-
a prototype of a state-of-the-art database management tions running under Unix3 , VAX 4 11/780s running under
system being developed in Ada for an Army laboratory VMS 5 , and IBM-PCs running under PC-DOS. The
responsible for developing, testing, and evaluating new database management system is coupled with a test bed
hardware and software designed to meet the information in which to examine and explore simulated battlefield
management needs of battlefield automated systems. data management issues. In addition, several studies will
There are three major portions to the TDBMS contract: be performed to explore issues related to the Army's bat-

tlefield modernization, including security of database* The database management system itself, sup-

porting system maintenance programs, and management systems, the suitability of using Ada for a

front end programs to provide a variety of fielded DBMS, and characterization of battlefield data

ways the user may access the database; flow scenarios.

" A test bed in which to run experiments;
" A number of studies that emphasize areas of Current off-the-shelf, commercial DBMSs fall short of

future research. meeting the Army's needs due to the lack of sensitivity to
battlefield requirements, including poor response time,

This paper presents an overview of TDBMS and then complexity of the user interface, and large storage re-

concentrates on two issues we have faced in the develop- quirements.
ment of TDBMS: (1) using an Ada-based program design
language (PDL); and (2) selection of an Ada compiler. TDBMS addresses these issues in the following ways:

Background TDBMS is a database management system. A

database management system (DBMS) is used to: define

As a part of its initiative to upgrade the technology of all data, organize data, store data, access data, and modify
areas of its battlefield management strategies, the Army data. A DBMS supports the following characteristics:
has recognized that more sophisticated data management * Centralized control of data;
capabilities are required. An integrated database eCostncaduifrtyfthdt;
management system (DBMS) will provide uniform and * Consistency and uniformity of the data;
consistent control of the data as opposed to each applica- p Data independence of the applications
tion having its own private files, with the data widely programs; and
dispersed so that there is little or no attempt to control it * Protection of the data.
in a systematic way. The Tactical Database Management By centralizing control of the data, redundancy of stored
System (TDBMS) project is one attempt to improve over- data is itself controlled, and inconsistency of stored data
all Army effectiveness by developing a prototype rela- can be avoided. A single point of control (which may, in
tional, distributed database management system that is practice be one or more individuals) may be established;
implemented in Ada, designed to meet the Army's re- this is called a database administrator (DBA). Security
quirements for information processing in battlefield situa- restrictions may be more readily controlled, and data in-
tions. TDBMS comprises a state-of-the-art database tegrity may be maintained by the DBA who has the

central responsibility for the entire database. From the
DBA's viewpoint, requirements can be addressed from a

IAda is a registered trademark of the US Government, Ada Joint
Program Office (AJPO) 3Unix is a trademark of Bell Laboratories.

2This work is being funded under contract number DAAB07-84-C- 4 VAX is a trademark of Digital Equipment Corporation.
K578 for the US Army, CECOM, COMM/ADP Center, Information
Processing Technical Directorate. 5VMS is a trademark or Digital Equipment Corporation.

132 Annual National Conference on Ada Technology 1986

aF.

%4.

general view for the good of the system as opposed to ad- select m.sensor, m.message. m.regiment

dressing each requirement from an individual user's from messages m
standpoint. Thus, data independence becomes possible,
allowing the various applications of the data to be im- where

mune to any changes in storage structure or access
strategy. (m Ume between 2730800 and 2731800

and

TDBMS is a relational DBMS. Relational database
technology has been maturing over the past decade. m.sensor or m.sensor

Much has been published about the definition and theory 0 __

comprising the relational calculus and relational algebra sensor Imessage regiment
on which relational DBMS technology is based [Codd 70], ------- I ---.....--

[Date 81], [Ullman 821. All types of relationships (one- QL-1 E0831 IHR-I

*to-one, many-to-many, n-way, and reflexive) can be QL-' E0923 engteer-IUIL-I E0921 anti-tanmk

naturally represented in a relational database. Infor- QL-2 E0955 SIV-I
mation is represented as relations (i.e., tables), regardless Q.-1 E0977 [R-1

of the kind of relationship being described. This provides
a more uniform representation of the information within
the database to the user. Figure 1 illustrates an example

of the kinds of relations that could be found in a tactical

database. Figure 2. TDL Query and Resulting Relation.

- : : E comprises one or more network-connected, dedicated

--. 2 7 1 1...~4 kQl_.- ck o . , ,. . .k . machines. The back end program (the DBMS itself) runs
, * ql on a Sun workstation. TDBMS supports the capability

S -I . I - I., to query relations that reside on multiple back end
22 3 2730812 1--I --- 1 5341 0 0 7 machines. The specific location of the data may, at theIll .80 [1-6 221 2730822 1tank-I 1 5.34975 101750 , .' .

E093I QL-1 7 273,M959 I .6naar-I I S3u0 II:, user's option, be either transparent or visible to the front

E0986I Q- I 271111 5 -0 3626 ,- end user. Relations may be replicated across one or more
07 .12 2731527 1KI S 5 1021" back end machines. This replication may be either trans-4t - 2 parent or visible to the front end user. By supporting a

-. Ia, Imf l long I J..... I -I-y lrg.. distributed database management system, TDBMS
I-I t 36o 1 273

3
17 .. responds to the Army's need for a database that is sur-.....- 1 I-Saxl 1SUO 010 27no 27,208 northz JIM vivable in harsh environments, when the failure of a

S -sc. vi4able in hrh nio et we thau single node of the database must not impact continuance-1l~~
e '

234th, 535500 180 2 30950 r7 2?05 rch

ol -00,5k I k... 534335102949 271, M" I r3u1s .. r. I of overall DBMS support. Figure 3 presents a pictorial
representation of TDBMS.

Figure 1. Example Tactical Database. SM "M,-oMW

Since all types of relations are represented in a similar

manner, query optimizations may be performed in a --a
uniform manner. TDBMS uses a data manipulation lan-

guage called TDL, which is based on SQL, a de facto in- IOI mM Town

dustry standard. Figure 2 presents a sample TDL query am VC
against relations found in Figure 1, with the result of the

query also given. _ _.._ _

TDBMS is a distributed DBMS. The TDBMS
prototype DBMS consists of two portions: a front end Figure 3. TDBMS Is a Distributed DBMS.
and a back end. The front end programs are provided for
Sun workstations, terminals tied to VAX VMS, and IBM- TDBMS is implemented in Ada. The Army has taken

PCs. The front ends communicate with a back end by a positive stand with respect to Ada - that it is to be the

means of a network connecting the two5 . The back end implementation language of choice for all Army software.

This has multiple benefits to the Army. With respect to
5The term "network" is used here in a general sense; it covers the TDBMS project in particular, this requirement en-

point-to-point and broadcast instances. sures that:

Annual National Conference on Ada Technology 1986 133

anPA I -9I
t"%:1.

e A generally useful tool, a DBMS, is provided
in a language that is available on multiple Master

host/target pairs, so the Army may export F
database technology to any number of other
Army projects.

e TDBMS can be ported to militarized
hardware in the future. Since Ada is a DoD

standard language, one can assume with a E

high degree of confidence that the next
generation of Army standard computers will E_ -

have Ada compilers targeted to them.
e TDBMS is compatible with other on-going Iea

* technology efforts sponsored by the Army. A W

This includes the Army Secure Operating Sys-
tern (ASOS) project, which is building a mul-
tilevel secure operating system on which ap- [0otitasks

plication programs may be run.

* TDBMS also provides a focus for discussion
and evaluation of the merits and demerits of
the Ada language, Ada compilers, and other
Ada-related support software for systemsdeveopmnt.Figure 4. General Back End Design.
development.

Thus, implementing TDBMS in Ada fully supports the The Army has an obvious requirement for survivability

Army's Ada initiative, in its databases. It is toward this end that the need for
distributed databases, and integrity checks implemented

TDBMS is designed to meet Army requirements. by triggers and command procedures, have been included

By implementing TDBMS in Ada, as discussed in the pre- as a part of TDBMS.
vious paragraph, the requirement of portability has been

addressed. This statement by no means implies that just The Army has a requirement for high performance. To

because a program is written in Ada, it is then automati- this end, several internal optimizations have been made.

cally portable. However, with the strong backing of DoD In addition, much attention has been paid to using ef-

for the availability of Ada on a wide variety of hosts and ficient algorithms to access information within the

targets, the compiler support is anticipated to be avail- database. Much research has been performed in the area

able. The validation of these compilers provides a high of query optimization [Hanani 76], and the use of B-trees

degree of assurance that the Ada source code processed for indexing [Comer 79]. The TDBMS test bed will be

correctly by one compiler will also be processed correctly used to measure certain characteristics of the DBMS

by any compiler. during simulations of "real world" scenarios, after which,
the Army may decide to further tailor and enhance the

TDBMS is readily modifiable and extendible. TDBMS basic capabilities of TDBMS.

was designed in a modular, building block fashion that

easily permits the addition or replacement of single There is also the need for security. The prototype

modules. Figure 4 illustrates some of the modules that TDBMS will support access security; that is, that

compose TDBMS. database users must have the appropriate authorizations
(database access, read, write, execute) on the appropriate

For example, the prototype TDBMS uses a recursive relations (the data dictionary, relations, views, command

decent parsing algorithm. This is known to be not as ef- procedures) in order to perform certain classes of

ficient as other parsing techniques, yet the error detection database manipulations (select, update, insert, delete, in-

and recovery provide for a more robust parser. Should vocation of a command procedure). Multilevel security is
th Andrcovry prvide form re ot us t eaer. sld not a requirement on this phase of TDBMS; however, this
the Army decide at some point that greater speed is re- is a major concern to the Army when TDBMS is ul-

quired, the current parser building block could be timately fielded. One of the studies for the TDBMS con-
;:6 replaced with a new, table-driven parser.
. w a tract identifies requirements for making TDBMS mul-

tilevel secure at some future date [Garv85. TRW is per-
forming additional research and development on the

design and implementation of a secure database manage-
ment system using TDBMS as a baseline.

4

134 Annual National Conference on Ada Technology 1986
.,

r 5L

FI

Using an Ada-based program desig language (PDL) tified capabilities that were required across the system

and added those to the system-wide utilities units, and

Both flow charts and program design languages (PDLs) we added more details about how each of the functional
are often used for the representation of system design. units were to behave. This process is not unique to those
Flow charts, more traditionally used, provide a graphical situations where Ada PDL is being used to represent
representation of system flow. PDLs, on the other hand, design. However, we did make some decisions on our use
describe the system in a textual format. The formatting of Ada as a PDL that we felt aided this process.

(indentation, key-word high-lighting) of a PDL captures
the information that is provided via arrows and different We made a decision early on in the design phase to write
shapes of figures in flow charts. The Army is requiring our inter-unit interfaces in "pure" Ada; i.e., for the ap-
its new projects to represent their system design in an propriate level of detail, all semi-colons, commas, and
Ada-based PDL. We used TRW's Ada PDL [Ada PDL parentheses would be required. Inter-unit interfaces were
841. defined as those package specifications that were used by

more than a single functional unit. By requiring a high

Several issues came to the forefront as we progressed: degree of formality in the definition of our interfaces, we
were able to discuss issues in a concrete, unambiguous

" The kinds of people who were best at using framework. This helped us control and verify our inter-
Ada PDL; unit interfaces.

* The degree of formality we required;
" The degree of detail we required; For the design of bodies, we left the degree of formality
" Changes required when we moved from design up to the individual designer. TRW's Ada PDL supports

to code; and the use of formal Ada constructs and less formal,
" Implications for our customers. English-like "design narrative". We found a high degree

Each of these are discussed below, of design narrative used throughout the body design
modules. The use of design narrative in the body design
modules enabled us to capture the sense of the design

People Impacts. The qualities we found in those people without being entrapped by the details of an implemen-
who had the easiest time of doing the system design and tt langage.

representing that design in Ada PDL included:

" Excellent abstraction capability; Degree of Detail. The question of "where does design
, Experience in the application; and stop and coding begin" becomes even more of a problem
" * Familiarity with Ada used as a PDL. when the design and implementation languages are the

e same (or extremely close). When designing in any Ada-
We found this last point to be of relatively little impor- based design language with the intent of implementing intance compared to the second, and the first point to have Ada as well, this distinction is not clear.

the most significance of all the characteristics. Our

design team was composed of one senior technical lead, Because we required "pure" Ada to be used for our inter-two more senior people, with the remainder of the team Bcuew eurd"ue d ob sdfroritr
twomorela enorg ieperwithenedander of-edteam n unit interfaces, and because many of these interfaces were

relatively young, inexperienced, and well-educated in copedaasrtusthtanbrpeetdqie
computer science fundamentals. Among us, we knew complex data structures that can be represented quite
multiple programming languages; only a few of us knew naturally using Ada's data structuring capabilities, we of-
Ada. We found that those team members who had the ten found a subprogram body that was to validate cer-
best underlying conceptual models of how systems work tai fields of the input parameter and return some unc-had the least problems understanding and using Ada tion of that input parameter could be fully and ac-
PDL to represent the design. We found those individuals curately written in three or four Ada (PDL) statements.Such subprograms were transformed into code in a mat-who were best at viewing complex systems as layers of Suc s w
controlled abstractions produced the best, most under-
standable design. The degree of detail of the design varied from designer to

Degree of Formality. The top-level design of TDBMS designer, and even within pieces of design produced by a
JSystem Specification 85] was represented textually. single designer. In some cases, the choice of the algo-

rithm and the data structure to be used to implement a
Each of the requirements of TDBMS was identified and given system function were obvious, given known systemdescribed in English. These requirements were then rqieet n osrit. Teeaeswr o

iteratively refined into a number of functional units [Part requirements and constraints. These areas were not
described in as much detail as were those areas that were

1 Rationale 85], which we designed as Ada PDL deemed the highest risk either by the project as a whole
packages. As we progressed through the design phase, we or by the individual. Those high risk areas were designed
added more details to the package specifications, we iden- in substantial amount of detail, perhaps even looking

Annual National Conference on Ada Technology 1986 135

r "wL

more like code than like design. It was often the case early on during design. We provided a detailed specifica-
where the designer would write a short piece of English- tion of the capability at design time, and dealt with the

like design narrative to describe the function to be per- detailed design as implementation time neared.

formed, question whether or not that design narrative
correctly described the required functionality, and then These examples illustrate the different points at which we
provided a short series of Ada statements (including sub- needed different capabilities than those we identified at
program calls) to prove to her/himself that the design design time. Due to the sophistication of the initial
narrative was essentially correct in the first place. Thus design, making these changes and additions were clean

the design became more detailed than was required. and painless.

Moving from Design to Code. We had a relatively pain- Impacts on the Customer. This area does not get much

less time moving from design to code. The degree to discussion, yet it is one of the most important aspects be-
which this has to do with using an Ada PDL, using Ada fore the Army Ada initiative can be deemed successful.

as the implementation language, with the design itself, or Both the customer and the contractor must identify that
the quality of the design and implementation team is not there is an impact when using an Ada-based PDL on the
discussed here. What is of interest is those areas, and customer. In 'ie near term, this impact is a major one -
they fall into a few categories, where we needed to make one of education.
"significant" changes when implementing the Ada PDL
design. Since design has been traditionally represented using flow

charts and data flow diagrams, customers reviewing such
We found that we used limited private in design in a design have developed standards for recognizing good
places where we could not when we implemented in Ada. (and bad) designs. The customer receiving a design in
The TRW Ada PDL processor does not check whether or Ada PDL must be sufficiently knowledgeable in software
not a data object is (limited) private, so we were pass- engineering, design techniques, and Ada PDL to recognize
ing aggregate structures containing limited private whether or not the design is a good design. This is no
components as output parameters. As a result, we had to different from when a customer has to learn to read flow
"demote" some of our limited private types to simply charts and data flow diagrams. However, the number of
49"private" types at implementation time. However, we re- usable primitives in an Ada-based design language are far
quired that the intent of the type being limited be iden- greater than the number of primitive shapes and kinds of
tified clearly in the comments in the code. 6 arrows in traditional flow charts.

Due to storage allocation issues, we found that we had to In addition, the customer is required to understand which
reorder some fields in some aggregates. This was not a Ada PDL constructs best lend themselves to being used in
major issue, just one of which to be aware, a "good" representation of a design. Where encapsula-

tion is required, packages are the feature to expect to be

We identified and implemented a number of abstract used. Where encapsulation and parallelism are both re-

data types. These included an 8-bit type holding values quired, tasks are the feature to expect. An encapsulation

0 .. 255. We built this on top of an existing 8-bit integer should support the complete abstraction of the object or

type, and provided a complete set of operators so we type being encapsulated: a full set of operations, a full

could manipulate objects of that type as naturally as any set of state functions, a full set of I/O and error handling
other integer type. We also required a variable length capabilities. To support robust error handling, excep-

string capability. We identified the need for this during tions specific to each unit should be exported in a pack-
the design phase, and we designed assuming that we age specification. Generics should be used for those areas
would have a fully variable length string capability avail- where common functionality is required over a variety of
able to us at implementation time (which we built). We types of data structures. Libraries of utility subprograms

also identified the need for a generic storage manager 7 should be provided for software components that are re-
quired by a number of functional units. No more infor-

Oin this context, we had some discussion as to whether or not this mation should be made visible at any given level than is

is only an idiosyncrasy of the Ada PDL processor, the design of the required by the users of the software at that level. That

Ada language, the manner in which we represented our design, or is, global data should be minimized; state information
any or none of the above. There were constructs that we used and local variables should be hidden and declared at the
during the design phase to more naturally and logically represent the level where they are actually used.
intent of the design that cannot be exactly replicated in ANSI-
standard Ada. Whether or not this is an acceptable use of an Ada-
based design language is an issue often discussed with religious fer- The customer must be able to recognize a good design in
vor. Ada PDL, not just the fact that an Ada-based PDL has
7- been used.
7 Support to? the (de)allocation of a variety of types of data.

136 Annual National Conference on Ada Technology 1986

- - .N

Selection of an Ada compiler Again, the goal of validation is to stop language
proliferation, nothing more.

There are several major points that we considered when
selecting an Ada compiler for use on TDBMS: While TDBMS was no" required to use a validated Ada

compiler, we chose that route for one major reason. In
* Whether or not a compiler is available on the order to be validated, a compiler is required to pass a

hardware on which we need to develop Ada substantial test suite (currently some 2000+ tests). Whilecode; the test suite does not (and cannot) test every combina-
" Whether or not the compiler is validated; and tion of language features, it does serve to provide a sig-
* Whether or not the compiler is suitable for nificant measure of the capability of a compiler to cor-use for our application. rectly process the entire Ada language.

What is presented in this section is not the only con-
siderations that we had when selecting an Ada compiler, Compiler Suitability
but some major areas that impacted us directly and how
we chose to deal with them. Performance. There are a number of measures of

suitability of a compiler. Obvious among them is
There are several Ada compilers currently available for compile-time speed. We had a choice of two compilers
multiple hosts and targets [Shugerman 85]. Many of for the Sun workstation at the time we needed to commit
these compilers are validated [Arpanet 85]. But what to a single compiler. Both compilers were validated at
does "validated" really mean to a project? the time. We had a substantial piece of Ada code

developed internally that was similar to the TDBMS ap-Validation plication, and we attempted to compile it using each of
the two compilers. One compiler was quite slow (about

The official validation policy is currently under going 150 - 200 lines per minute), and, in fact, was unable to

clarification. Previous incarnations of the policy and correctly compile our test program, without our having
procedures for complying with the policy have been sum- to make significant changes to the Ada code. The other
marized in [Hook 85], [Knoop 85], and [Kopp 85]. Coin- compiler was significantly faster (about 400 - 600 lines
piler users have long been concerned with the validation per minute on our sample code), and was able to success-
policy and the requirements of controlling and baselining fully detect a number of Ada coding errors that were not
support software changes in a teal project envi~ronment. detected on a previously-used, unvalidated compiler or onspprtsuoftwarebehnes con puare indusert Adrom, the first of the two candidate compilers. Only a few,As a result, an embedded computer industry Ada Coin- reailymnrcngstthAdcoewerquedo

piler Validation Working Group (AVWG) was formed, relatively minor changes to the Ada code were required to
which meets with those responsible for making and en- avoid the compiler bugs on the second candidate con-
forcing the validation policy. The AVWG report is piler. The advantage of having benchmark programs
published as [AVWG 851. similar to the application in question cannot be over-

emphasized when evaluating a compiler.

Quite briefly, "The objective of the validation process is
to certify Ada compilation systems that conform to the However, in other types of projects, and in future work
language standard." [Hook 85]That is, the intent of the on TDBMS, the run-time performance of the generated
validation process is to stamp out all dialects - no code is of at least as much importance to the compiler
validated Ada compiler shall accept a subset or a superset selection process. For Increment 1 of TDBMS, this was
of the language as defined in ANSI/MIL-STD-1815A not an issue. We did note, however, that our test code
[ALaRM 83]. executed at a reasonable speed. Had performance been

an issue, we would have needed to determine the
tolerances and required performance levels prior to run-

It is quite important to projects using Ada compilers ning our test programs. It would be at this point that wetoday to recognize what validation does not guarantee. would possibly have had to make a trade-off between the

* Validation does not indicate the suitability of compile-time speed and the run-time speed.
a compiler for a particular purpose.

* Validation does not replace a set of Tasking Support. TDBMS uses tasks, both dynamically
application-specific requirements. spawned tasks and statically initiated tasks. We needed

* Validation does not measure the performance to ensure that the compiler supported these language fea-
of a compiler. tures. Since we had decided to select a validated com-

* Validation does not evaluate any other com- piler, we got this guarantee "for free". However, since
ponent of the programming environment, performance is not of primary importance during Incre-
[Kopp 85] ment I of TDBMS, we did not evaluate in detail the

Annual National Conference on Ada Technology 1986 137

(~ *S5~ ~ ~-~ 4.~ ~j Wj~ *%

speed with which context switches occur during rendez- o Representation, length, and address clauses,
vous. Again, when speed becomes a factor in our which address how types and objects are to be
development, this issue must be examined. We did create mapped onto the underlying machine.
a test program that simulates some of the functionality of
the TDBMS back end to examine how the tasking Two of these language features are required by TDBMS:
scheduler works. It should be noted that writing code (1) interface to the C programming language, to access
based on the knowledge of how the task scheduler works the TCP/IP network and device driver primitives; and
produces "erroneous Ada programs; i.e., programs that (2) unchecked programming, to move conceptually un-
are written with that knowledge may not be portable. typed data into a typed location, and vice versa.
During design, we assumed that all tasks would be
scheduled "fairly", that rendezvous would be performed All instances of interfacing to C routines are isolated into
within a tolerable period of time, and that no entries a single unit - the OS Interface unit. The OS Interface
would be starved. The tasking test program that we unit presents an Ada interface to all who use it. Inter-
wrote bore this out, so we put no special priorities, nally, the subprogram bodies perform transformations on
guards, or timing controls in our programs. The advan- parameters in accordance with the limitations of the in-
tage is that we have cleaner, simpler code; the disadvan- terface as defined in Appendix F of the vendor's compiler
tage is that there is a chance that there may be some documentation, call the C subprograms, and transform
problems porting the existing TDBMS to other machines. the output parameters into a format compatible with the
So, for Increment 1, we did rely on the knowledge that Ada interface. Since the TDBMS project chose to use
the task scheduling algorithm implemented by the com- off-the-shelf TCP/IP interfaces and not develop such an
piler that we are using does, in fact, rely on that algo- interface as a part of the project, we required minimal
rithm being "fair". We explicitly called this out in our support for interfacing with C routines.8 However, the
project documentation. However, in some portions of our need for interfacing with device drivers is present in
code, notably those portions that we deemed the highest many kinds of systems programs, so the project must en-
risk in porting to a new compiler, we chose to implement sure that this capability is supported to some extent by
our tasking using a "pure Ada model" (i.e., not depend- the compiler.
ing on the knowledge of how the task scheduler works).

There are two places where TDBMS is required to effec-
One additional concern with tasking has to do with tively "ignore" the strong typing enforced by the Ada
storage allocated for dynamic tasks. TDBMS is a programming. As a systems program, the DBMS portion
program that will run, conceivably, infinitely. When a of TDBMS is required to read untyped bytes off the disk,
user decides to establish a session with TDBMS, the user and to format them according to certain byte patterns
indicates that on a TDBMS front end machine, and a that are known only after the information is read off
back end server task is dynamically spawned to handle disk. The second place where the strong typing must be
the user's session. When the user indicates that the cur- ignored is in transmitting information over the network
rent session is to be terminated, the dynamically spawned when communicating among TDBMS machines; infor-
task is terminated as well. Since it is anticipated that a mation is placed on the network as a string of (untyped)
substantial number of these server tasks may be initiated bytes; it must be read off and then reformatted according
and terminated over time, it is of major importance to us to byte patterns that are known only after the infor-
that all storage space used by each dynamically activated mation is received at the other end. Both of these two
task be reclaimed when that task terminates. If not, situations are similar, and the unchecked programming,
there is obviously some limit on the number of user ses- an optional feature of Ada, is required in both instances.
sions that can be permitted over time, and our current Unchecked conversion is not a required feature of Ada,
implementation, which assumes this storage is reclaimed, and TDBMS had to ensure not only that the compiler
must be adjusted to take this into consideration, supported it, but also to what extent it was supported.

We discovered, by trial and error, that there were well-
Chapter 13. There are language features in Ada that known (but poorly documented) limitations to the cases
are not required to be provided, even in validated com- where unchecked conversion would "do what we thought
pilers. And the presence or absence of these features may it should do". It must be remembered, when selecting a
be of just as much importance to the compiler selection compiler for a project where unchecked programming is
process as any other issue. These language features are

* defined in Chapter 13 of [ALARM 83] and include: 8 It should be noted that an Ada interface to TCP/IP is to be
" Interface to subprograms written in other pro- provided as part of the NOSC tool set, and will be in the public

gramming languages; domain. This capability was not available when we required it,

" Unchecked programming, including unchecked however, nor will it support our needs once it becomes available, as

conversion and unchecked deallocation; and it implements only a subset of the TCP/IP capabilities that we re-
quire.

138 Annual National Conference on Ada Technology 1986

"V0]

required, to have a complete understanding of the compilers and environment tools are no exception.
capabilities and limitations of this feature. However, without timely maintenance support, the com-

piler may be useless anyway. Once we have identified a
Two other portions of Chapter 13 that would have saved bug, we report it to our vendor. As of yet, we have not
us substantial time and effort had they been present are encountered any "show stoppers" - i.e., we have always
the representation and length clauses and unchecked found a work around. However, this may not always be
deallocation (i.e., garbage collection). Representation and the case. We have found it invaluable to foster a good
length clauses could have been judiciously used early on working relationship with our vendor such that we can
in the coding phase to help simplify some of the keep the lines of communication open. This includes
manipulations and conversions of data that we must per- providing them access to our source libraries (having had
form. Since they were not present, there are some them sign non-disclosure agreements, of course). We an-
"unusual" pieces of code that implement, in a non-direct ticipate that because of this good relationship, should we
manner, the movement of data from one strictly and ever encounter a "show stopper" bug, we will receive
tightly defined memory location to another. The prompt attention and timely response.
presence of unchecked deallocation would have greatly
simplified the writing our own storage allocator. Summary

Other Environment Tools. Ada compilers are only a The TDBMS project is a research project aimed towards
single component of the tools required over the software developing a DBMS that addresses the specialized re-
life-cycle. However, they are intensively used during the quirements of a tactical database. The TDBMS design
code, unit test, and integration and test phases of a was driven by the following tactical requirements:
project. A fully developed software engineering environ-
ment is many years and many millions of dollars off in * Maintenance of system survivability and
the future. However, the bulk of our work was done on reliability by the hardware and software;
the Unix operating system which provides a rich comple- 9 Flexibility of real-time performance factors
ment of tools that can be combined to build a wide dependent upon the particular tactical situa-
variety of life-cycle support tools. tion;

o Built-in data security; and
Some tools are still provided as a part of the compilation * Portability and adaptability without perfor-
environment. The importance of a symbolic debugger mance degradation.
cannot be overlooked. Regardless of how careful These driving requirements are what separates this
programmers are, they still make errors. A symbolic prototype TDBMS from other commercial DBMSs.
debugger in our environment has been quite helpful in as-
sisting us locate certain errors. A symbolic debugger thatis robust and complete would be even more help. Upon completion of this phase of the TDBMS contract,

the Army will receive a sophisticated database manage-

ment system with a variety of user interfaces, a test bedLibrary management and configuration management i hc oueadtn h BS n ubro

tools are also important on any project where more than in which to use and tune the DBMS, and a number of
atsigle resonis mportntvone With projther b irtary studies exploring issues for future research in the areas ofa single person is involved. With the basic library database security, the applicability of Ada to database
management capability supplied with the Ada compiler, mage ntstmsndytmsowradbtteid

we hve oundtha we oul buld mre ophiticted management systems and system software, and battlefieldwe have found that we could build more sophisticated ifrainrqieet.Bt h ryadTWwl

librry anaemet ad cnfigraton anaemet tols information requirements. Both the Army and TRW willlibrary management and configuration management tools have gained substantial experience at evaluating several
in the Unix environment, where we are doing the vast Ada compilers and other support software, using an Ada-
milaoiysty m f our deoenty the a cuppom f based design language, procuring Ada systems, and im-

* ~~pilation system provide only the minimal support for peetn ao ytmcmoet nAa o h

library and configuration management, we are able to Armytis experie c otpones in oti

tArmy, this experience will not only result in obtaining
TaR besdoes progr inssvinte ng nother hview state-of-the-art products that can be used in a variety ofTRW best does business, instead of having another viw applications programs, but it will enhance the Army's

of project management foisted upon us and being, per- applity to be i wi ll euce thermof

haps, incompatible with TRW standards and policies, software and Ada products.

Vendor Support. This area is often overlooked in Using any new technology has benefits as well as pitfalls;
evaluation of a compiler, yet it is extremely important. Ada (both for design and implementation) is no excep-
Vendor support is required in two major areas: tion. The early days of Fortran compilers and Fortran-
documentation and maintenance. Without proper based design methodologies were traumatic. History has
documentation, any tool is virtually useless, and Ada shown that the introduction of other new languages and

Annual National Conference on Ada Technology 1986 139

r ~w.

methodologies has also met with a difficult initiation [Garvey 85] Garvey, Cristi.
period, as individuals, academia, corporations, and the TDBMS Security Study.

services come up on the learning curve. The same can be Prepared for US Army Communications-
said for the current time period with respect to Ada. Electronics Command, Ft. Mon-
The Ada community has seen a substantial investment on mouth, NJ, 1985.
all parts toward increasing the quality of tools, personnel, TRW, Defense Systems Group, Tactical
education, and software products. With this kind of im- Database Management System,
petus, and the backing of the DoD, we feel that quantifi- CDRL Item F005, Contract No.
able benefits of Ada will be seen by the end of the DAAB07-84-C-K578.
decade. [Hanani 76] Hanani, Michael Z. and Ben-Zvi,

Yaacov.
Queries for reports from a large file:

analysis and fast response.
Management Datamatics 5(1), 1976.

References [Hook 851 Hook, Audrey, A.

[Ada PDL 84] Bamberger, Judy. Ada Validation Process, Policies and

Ada PDL User's Manual. Procedures.

TRW, Redondo Beach CA, 1984. AdaJUG/SIGAda Joint Meeting, 1985.
Presentated as part of the Policy Corn-

[ALaRM 83] US Department of Defense, Ada Joint mittee.
Program Office. [Knoop 851 Knoop, Patricia A.
Reference Manual for the Ada Pro- [no 8] Ko datrcugramming Language Ada Validation Procedures.

gammingILangu8age AdaJUG/SIGAda Joint Meeting, 1985.
ANSi MIL-STD-1815A). Presentated as part of the Policy Com-

United States Government, 1983. mittee.

[Arpanet 85] Public Arpanet account: ada-information; file: validated-compilers. [Kopp 85] Kopp, Major Allan H.
Matrix of Validated Compilers. Polic*man - Ada Validation Policy.
Arpanet , 1985. AdaJUG/SAE-AE-9E (1750 User's

Group) Joint Meeting , 1985.
[AVWG 85] Hilfinger, Paul N., et al. Presentated as part of the Government

Report of the Validation Committee on Corner.
Validation Policy.

1985 [Part 1 Rationale 85]
Available on the Arpanet. TRW.

Prototype Database Management Sys-
[Codd 70] Codd, E. F. tem Part 1 Specification Rationale

A Relational Model of Data for Large (draft final).
Shared Data Banks. Prepared for US Army Communications-

Communications of the ACM 13(6), Electronics Command, Ft. Mon-
June, 1970. mouth, NJ, 1985.

[Comer 79] Comer, Douglas. TRW, Defense Systems Group, Tactical

The Ubiquitous B-Tree. Database Management System,

Computing Surveys 11(2), 1979. CDRL Item F003, Contract No.
DAAB07-84-C-K578.

[Date 81] Date, C. J.
The Systems Programming Series: An]Shugerman 85] Shugerman, Marvin.

Introduction to Database Systems. Ada Implementation Analysis.

Addison-Wesley Publishing Company, TRW Internal Document , 1985.

Reading MA, 1981. A collection of who is doing what, and
anticipated availability.

140 Annual National Conference on Ada Technology 1986

[System Specification 85]
TRW.
System Specification (draft final). -- - - -- - - -- - - -- - - - - " "
Prepared for US Army Communications-

Electronics Command, Ft. Mon-
mouth, NJ, 1985.

TRW, Defense Systems Group, Tactical
Database Management System,
CDRL Item B001, Contract No.
DAAB07-84-C-K578.

[Ullman 82] Ullman, Jeffrey D.
Computer Software Engineering Series:

Principles of Database Systems.
Computer Science Press, Rockville MD,

1982. Phil Ritter is a member of the technical staff in the In-
formation Processing Department at TRW. He has
worked on the design and development of language
processing and database management projects both at
TRW and at the University of California at Irvine. He is
currently the lead designer on the TDBMS project. He
received his BS in Computer Science from UC Irvine in
1984.

Judy Bamberger is a member of the technical staff in the
Information Processing Department at TRW. She has
designed and implemented several key portions of the
TDBMS system. Her prior experience on other Ada
projects at TRW has helped her serve as the Ada and
training focal point on the project. She received her BS Jackson Wilson is a staff engineer in the Database
in Mathematics, French, and Education from the Univer- Management and Support Software Department at TRW.
sity of Wisconsin - Milwaukee in 1974, and her MS in He has managed the design and development of database
Computer Science from UCLA in 1985. She is currently management software on several projects in the Defense
Vice-Chairperson of the Ada-JOVIAL Users Group Systems Group. He is responsible for system engineering
(AdaJUG). on the TDBMS project. He received his BA in

Mathematics/Computer Science from UCLA in 1972, and
his MS in Computer Science from UCLA in 1975.

Annual National Conference on Ada Technology 1986 141

L4

A Practical Approach for Translating FORTRAN Programs to Ada
1 ,2

V. Santhanam

Computer Science Department

Wichita State University, Wichita, Kansas

notes two major difficulties of automatic
Abstract translation: (1) there are constructs in FORTRAN

that do not readily translate to Ada (e.g., COMMON
Attempts to translate FORTRAN programs to and EQUIVALENCE), and (2) translated code often

equivalent Ada programs using automatic translators contains unidiomatic uses of Ada constructs (i.e.,
date back to 1983. While a number of translators the translation, though valid, does not have the
has been constructed to date, few have attempted to "native Ada" style). Several other reports have
provide maintainable Ada code at the output. This also discussed the importance output style and the
paper describes a translation approach which difficulties of attaining that with simple
emphasizes the quality of output code. The goal is transliteration systems [4,5].
to produce Ada code that can be subsequently
maintained and retargeted easily. This goal is This report presents an approach that reduces
achieved by abstracting portions of the input the problem of the inadequate output style which
source code that do not lend themselves to simple characterizes statement-by-statement translators.
transliteration and then reconstructing an Using a combination of analysis techniques germane
equivalent output code. The approach uses a to optimizing compilers and a limited amount of
combination of optimization techniques and user input, the style of output code is improved
knowledge from user-supplied directives. The significantly. User input is accepted in the form
conclusion drawn from this work is that while of annotations embedded within the FORTRAN source.
table-driven transliteration schemes may have The approach is backed by the detailed design of a
failed to yield acceptable translations, a more translation system, which is depicted in figure 1.
sophisticated translator based on the abstraction The dialect of FORTRAN addressed in this report is
and reconstruction approach can be devised to ANSI FORTRAN-77 [6].
produce maintainable Ada code at the output.

The Approach

Introduction Much of the difficulty reported in the

literature stems from the fact that the attempts to
Numerous pieces of time-tested software date have concentrated on a statement-by-statement

written in FORTRAN exist today within the defense translation of FORTRAN subprograms in isolation.
industry. With the Department of Defense moving While FORTRAN compilers indeed work on individual
toward mandating the exclusive use of Ada in future subprograms one at a time, Ada compilers do not.
software systems, much of the existing software It is, therefore, not appropriate to translate
must be either scrapped or reimplemented in Ada. subprograms in isolation. In the approach
When reimplementation in Ada is appropriate, presented here, FORTRAN subprograms are translated
potential savings from avoiding manual recoding and in groups. The group must form a functionally
subsequent retesting warrant a closer look at the complete set. That is, every subprogram that is
possibility of automatic translation. However, if called from one or more subprograms under
automatic translation is to be acceptable as a translation is itself under translation, or it has
broad reimplementation strategy, the quality of Ada been described by a user-supplied interface

output must be higher than if one simply needed an annotation. The translator not only checks the
equivalent Ada program. validity of subprogram interface but also

determines the correct parameter-passing
modes for

i A ealy ttept o tanslte ORTAN rogams each subprogram.

to Ada using a language transformation tool is
described by Slape and Wallis [1]. The report The functionally complete group of subprograms
identifies valid mappings of major FORTRAN at the input yields an Ada package at the output.
constructs to equivalent Ada constructs. It also This is in contrast with the Slape-Wallis converter

1. Ada is a registered trademark of the U.S. 2. This researrh was supported by Boeing litary

Government, Ada Joint Program Office. Airplane Company, Wichita, Kansas.

142 Annual National Conference on Ada Technology 1986

. 6r

A Module
Interface / \
Data Base \ / /

+------------+ +-------------+

Annotated I I====> Syntax Tree =====>I I
FORTRAN>I FORTPREP I I XFORMER I
Modules I I====> Symbol Table ====>I

+------------+ +-------------+

11
Ada

/ "Code
/Predefined\ Token
\ Packages / Stream

S+-------------
Compilable // Ada

Ada Source < REBUILD I
Modules Module

-------------+

Figure 1. A Translation System based on the Present Approach

fI], which generates a package for each subprogram. Array parameters. When the dimensionalities
(Wichmann and Meijerink (5) argue that such a of a formal parameter array and the corresponding
translation is not an idomatic use of the Ada actual parameter array differ, the following
package facility). If the group of modules technique is used to translate the program: both
includes the main program an Ada (main) procedure the formal and the actual parameter arrays are
is also produced at the output. A separate pass of linearized, i.e., translated to one-dimensional
the translator is used to generate packages vectors. The translator is directed to linearize
corresponding to COMMONs if any. an array (formal or actual parameter) through a

user-supplied annotation. When an array is
The packages and the main procedure can, of linearized, reference to its elements is through a

course, be compiled separately. Each compilation single subscript. Converting multiple subscript
unit IWITH's a predefined translator environment references to single subscript references is
package and other packages as necessary. The straightforward. Other approaches, such as
predefined environment package would include the UNCHECKEDCONVERSION to convert the actual
type declarations corresponding to FORTRAN data parameter to the same type as that of the formal
types and the declaration of all intrinsic parameter, are not likely to work. This is because
functions, the mapping of array elements to storage is rigidly

specified in FORTRAN-77 (the infamous column-major
order), whereas it is implementation-dependent in

Language Issues Ada.

Several FORTRAN constructs are known to Another potential problem with array
present difficulties in translation. This section parameters is that the bounds of the actual
presents the methods employed in the present parameter array index need not match those of the
approach for handling the translation of such formal parameter array index. Fortunately, free
constructs, conversion is permitted in Ada between the types of

two arrays of the same dimensionality and the same
Subprogram Interface number of components in each dimension. Thus, an

explicit type conversion is generated whenever this
FORTRAN-77 rules for interfacing with situation occurs:

subprograms are not as rigid as those laid down by
Ada. For example, a formal one-dimensional array SUBROUTINE SORT(A)
parameter may be associated with a multidimensional INTEGER A(50)
actual parameter array. To compound the problem,
most FORTRAN compilers do not check subprogram END
interfaces, thus allowing more freedom than
permitted by the language. The following INTEGER X(0:49)
discussion pertains only to the problems of
translating legal FORTRAN-77 programs. CALL SORT(X)

Annual National Conference on Ada Technology 1986 143

translates to when others => null;
end case;

type ARRAY A INSORT is INTEGERARRAY_1(1..50); end CALL_DECIDE;

procedure SORT(A: in out ARRAY_A_INSORT);

Notice that the interface to the subroutine changes
end SORT; from three parameters to two. The subprogram

declaration is translated in a compatible manner to
X: INTEGERARRAY_1(0..49); include an OUT parameter (say, RET_LABEL) in place

of the first * parameter (* in FORTRAN stands for

SORT(ARRAY A INSORT(X)) the label parameter), ignoring all other *

parameters. The return statements such as
In addition, FORTRAN-77 allows the actual parameter

to be an array element, provided enough elements RETURN I
follow it to match the size of the formal parameter

array. The situation is handled in the translation are translated to
by slicing the actual parameter array before

applying the type conversion. RETLABEL := I;

return;
Variable number of parameters. FORTRAN-77

does not permit variable number of parameters for
user-written subprograms. However, there are a Subprogram parameters. FORTRAN-77 permits

number of intrinsics in the language that can be parameters to subprograms to be subprogram names

referenced with a variable number of parameters, themselves. It is common, for example, to use this

e.g., the function MAXO. The desired effect can be feature to build numerical subroutines which work

obtained in Ada either by providing default values with a user-specified function. Although Ada does
for input parameters or by overloading the not provide the same facility, the "generics"
subprogram declaration for all counts of feature of Ada can be employed to obtain a similar

parameters. When the number of parameters is effect provided all actual parameter subprograms
unbounded, as is the case with MAX0, the subprogram have the same type signature. When this condition

could be overloaded with an array argument. For does not hold (FORTRAN-77 does not require it),

example, there is no simple translation.

function MAXO(M: INTEGERARRAY_1) Functions with side-effect. FORTRAN functions
return INTEGERFORT; that produce side-effect by manipulating parameters

pose yet another problem since Ada permits only
would permit the translator to convert the input IN-mode parameters to functions. If the use of
argument list into an aggregate, as illustrated such functions is present, the translation is

below. effected as illustrated below.

MAXO(24, 1+5, J) FUNCTION SIDE(A

A = A+1.0
would translate to SIDE = A

END
MAXO(INTEGERARRAY_1(24, 1+5, J)

Z = SIDE(A)+2.0

Alternate returns. FORTRAN-77 allows X = SIDE(A)+SIDE(B

subroutine subprograms to return to a statement

other than the one that follows the CALL. For translates to
example,

procedure PROCSIDE(SIDE_VAL: out REAL_FORT;

CALL DECIDE(X, *100, *200) -- SIDEVAL is a new parm for return value
A: in out REAL FORT) is

would allow the subroutine DECIDE to return to begin

statement 100 or 200, or to the statement that A := A+1.0;
follows the CALL as is normally the case. The SIDE VAL := A;
construct would be translated as follows, end;

CALL DECIDE: declare
declare SIDEVAL: REALFORT;
RETPOINT: INTEGER_FORT := 0; begin

begin PROC_SIDE(SIDEVAL, A);
DECIDE(X, RET POINT); Z := SIDE VAL+2.0;

case RET POINT is end;
when I => jo , LABEL 100;
when 2 -> jot ,ARIB 20'j; declare

144 Annual National Conference on Ada Technology 1986

i

SIDEVAL_1, SIDEVAL_2: REALFORT;

begin pragma SUPPRESS(DISCRIMINANT CHECK);

PROCSIDE(SIDE VAL I, A);

PROC SIDE(SIDE VAL 2, B) AREAlVARIABLE: AREAIRECORD(1);
X := SIDEVAL 1+SIDEVAL_2; -- The following renames permit the retention

end; -- of the original COMMON variable names.

DIST: REAL FORT renames AREAIVARIABLE.DIST;

RADIUS: REALFORT renames AREAlVARIABLE.RADIUS;

-- etc.V COMMON and EQUIVALENCE end COMMON_AREAl;

COMMON blocks of FORTRAN define globally The second method is useful if pragma SUPPRESS

accessible data, and as such they readily map into is not implemented in the target Ada system. In

library packages in Ada to be IWITH'ed by the units this method, each COMMON area layout is defined as
needing access to the data. The translation of an independent record type along with an access

COMMON statements, however, is made more difficult type to that record. Using UNCHECKED_CONVERSION

by the freedom provided by FORTRAN to alias the and the ADDRESS attribute, each record is forced to
common data area. Each program unit referencing a map to the same storage address. For example, the

common block may define its own set of variables. COMMON declarations used in the previous example

Each such definition is assumed to remap the same are translated as follows:

storage region. An additional aliasing capability

is available through the EQUIVALENCE statement, with SYSTEM, UNCHECKED CONVERSION;

which may be used to remap common blocks as well as with FORTRANENVIRONMENT;

local data areas. use FORTRAN-ENVIRONMENT;

package COMMON_AREAI is
Ada supports a limited form of aliasing with type AREAl_RECORD 1 is record

the RENAMES clause. Slape and Wallis (I] discuss DIST: REALFORT;

how to use this clause to translate limited forms RADIUS: REAL FORT;

of COMMON and EQUIVALENCE. A more general solution NTRI: INTEGER-FORT;

would have to be implementation-dependent. Two end record;

methods have been developed toward this end. The type AREAI_ACCESS_1 is access AREAl_RECORD1;
first method consists of using a variant record type AREAl_RECORD_2 is record
declaration for each COMMON area and invoking DIST: REAL FORT;

pragma SUPPRESS(DISCRIMINANT_CHECK) to be able to RADIUS: REALFORT;
access storage without regard to the discriminant FLAGS: CHARARRAY_1(1,1,4);
value. This method requires that the various end record;

- components of the record be mapped to storage type AREAlACCESS_2 is access AREAlRECORD_2;
exactly the way the FORTRAN environment does.

Hence the implementation-dependency of this method, function ADDR TO ACC1 is new
which is illustrated by the following example. UNCHECKEDCONVERSION

(SYSTEM.ADDRESS, AREAlIACCESS1);
COMMON /AREAl/ DIST, RADIUS, NTRI function ADDRTOACC2 is new

UNCHECKED CONVERSION
COMMON /AREAl/ DIST, RADIUS, FLAGS (SYSTEM.ADDRESS, AREAlACCESS2);
CHARACTER*1 FLAGS(4)

AREAIVARIABLE: AREAlRECORD_1;
would translate in Ada to AREAIACCVARI: AREAl-ACCESS 1

ADDR TO ACCI(AREAIVARIABLE'ADDRESS);
with FORTRAN_ENVIRONMENT; AREA2_ACCVAR_2: AREAl-ACCESS 2 :=
use FORTRANENVIRONMENT; ADDRTOACC2(AREAlVARIABLE'ADDRESS);

package COMMON_AREAl is
type AREA1LRECORD(TAG: POSITIVE 1) is -- The following renames enable the retention

record -- of the original COMMON variable names
case TAG is DIST: REAL-FORT renames AREAl ACCVAR l.DIST;

when I => RADIUS: REALFORT renames AREAIACCVAR_I.RADIUS;

DIST: REALFORT; -- etc.

RADIUS: REAL-FORT: end COMMON_AREAl;

NTRI: INTEGERFORT;

when 2 => The use of access variables to get at the COMMON

UNNAMED_ 1: REAL FORT; data may result in a performance penalty on some
UNNAMED_2: REAL FORT; implementations.

FLAGS: CHARARRAY 1(1,1,4);
when others '>

null; Style Issues

end case;

end record; If validity and run-time performance were the

Annual National Conference on Ada Technology 1986 145

"'R 4,$ P J KS

only criteria, a table-driven transliteration

system could convert most FORTRAN programs to Ada.
The limited abstraction capability of such a system Control Flow Structures

would tend to carry the FORTRAN style over to the

Ada output making the translation unsuitable for The FORTRAN-77 range constructs for flow

subsequent maintenance. This section abstraction control, though richer than that of its precessors,

techniques which capture the intent of the input is limited in comparison with Ada. For example,
statements and reconstruct it in Ada. there are no loop constructs other than the DO-

loop. It would, therefore, be worthwhile to

The following list of output refinement attempt to improve the structure of flow control in

techniques represents a modest step in the the translation. Freak [3] describes several
direction of abstraction and reconstruction. Most techniques for improving the structure when

of the refinements apply to single statements or translating from FORTRAN to Pascal, all of which

simple sequences of statements. The techniques are applicable in the Ada context, with two main

that apply are by no means limited to those differences: (a) Ada provides the EXIT statement
presented in this paper, but the list is intended whereas Pascal does not; (b) Pascal provides the

to illustrate the potential of the approach. REPEAT..UNTIL statement whereas Ada does not.

Another simple analysis can provide a
Naming in Ada significant improvement to the output code. In

FORTRAN-77, labels are permitted on any statement

Names in the translation should be meaningful. regardless of the need. Translating each
Maintaining the original FORTRAN names whenever executable statement label to a GOTO label in Ada

possible is important, but does not always yield could result in poor output style. Labels that are

acceptable Ada code. Due to a limitation of the not referenced should be eliminated in the
language, FORTRAN names tend to be cryptic. The translation. It should be noted that a label

translator should provide for renaming of (e.g., the target of a DO) may have a reference in

variables. Additionally, the translation is likely FORTRAN, but the same may not be true in Ada.
to generate new names, such as type names, which do Thus, the criterion should be to eliminate labels

not correspond to any names in the FORTRAN program, that have no significance in the translation.

Such names should be derived from other related

entities in FORTRAN and should be renamable by the
" user. For example, Inline Input/Output

SUBROUTINE SORT(A,N) Most implementations of FORTRAN handle
REAL A(100) formatted input/output via run-time procedures that

* match up the format codes and the data stream

should generate a reasonable type name for A: interpretively. A literal translation would result
in numerous calls to similar interpretive

type ARRAY_A_INSORT is REAL_ARRAY_l(1..100); procedures in Ada. This not only is likely to
procedure SORT(A: in out ARRAY_A_INSORT; obscure the the translation, but also could lead to

N: INTEGER_FORT); performance degradation. Torsun and Robinson [2]
describe techniques to implement FORTRAN i/o using

Some FORTRAN labels will translate to GOTO labels noninterpretive procedures under suitable
in Ada. Again, the user should be allowed to conditions. The same techniques can be used to

rename the labels with descriptive names, invoke inline translation to Ada. A simple of

example of this approach is given below.
Another form of renaming that can greatly

improve the style of output code is grouping WRITE(6,100) N, (A(I),I=l,N)

FORTRAN variables into a record structure in Ada. 100 FORMAT(I4/(1018))
For example, it is not uncommon to have

can be translated to

INTEGER DOBDAY, DOBMON, DOBYR
with TEXTIO; use TEXT_10;

in FORTRAN to represent the day, month and year of

someone's date of birth. In Ada, a record PUT(N, WIDTH=>4);

structure would be a more natural choice here: NEW_ LINE;

for I in 1..N loop

type DATEOFBIRTHRECORD is if I /= I and then I mod 10 1 then

record NEW LINE;

DAY, MONTH, YEAR: INTEGER FORT; end if;

end record; PUT(A(I), WIDTH=>8);

BIRTH DATE: DATE OF BIRTH RECORD, end loop;

NEW LINE;

The translar-,r ;h".:'i permit such restructuring of

lata items at the .-'V V

146 Annual National Conference on Ada Technology 1986

k-2

there are no transfers out of the loop.
DO loops Although the conditions seem quite restrictive,

they are frequently met in practice.
While simple forms of the FORTRAN DO-loop map

readily into Ada's for-loop structure, the The following examples illustrate the output style
translation of the general case is more improvement that can result from an application of
complicated. A number of reasons exist for the the above refinements:
complexity: (a) The FORTRAN loop variable may be
of the type INTEGER, REAL or DOUBLE-PRECISION C EXAMPLE 1: THE GENERAL CASE.
whereas the Ada for-loop index must be a discrete DO 10 I=N,M,K+MYFUN(I)
scalar which excludes the real and double-precision 10 CONTINUE
types. (b) In Ada, the scope of the loop index is C EXAMPLE 2: DECLARE BLOCK ELIMINATED.
the same as the body of the loop, whereas in DO 20 X=10.1,0.0,-0.05
FORTRAN the loop variable is either a local, COMMON 20 CONTINUE
or parameter variable. (c) The Ada for-loop index C EXAMPLE 3: SINGLE LOOP INDEX.
must be incremented (or decremented) in unit steps, DO 30 J=N,2,-l
whereas FORTRAN DO-loop index can be stepped by any 30 A(J) = A(J-l)
non-zero value.

is translated to
The general case of the FORTRAN DO-loop is

translated as illustrated below. -- Example I: The general case.

DO_10_I:
DO 10 I = init, fini, step declare

STEP I: INTEGER FORT := K+MYFUN(I);
10 CONTINUE begin

.4 I := N:
translates to: for LOOP I in

1..INT((M-N+STEPI)/STEPI) loop
declare I := I+STEPI;

STEP I: typeof(I) := step; end loop;
begin end DO_10_I;

I := init; Example 2: Declare block eliminated.
for LOOP I in X := 10.1;

1..INT((fini-I+STEP_I)/STEP_I) loop for LOOPX in 1..203 loop

X := X-0.05;
I := I+STEPI; end loop;

end loop; Example 3: Single loop index.
end; for LOOPJ in reverse 2..N loop

A(LOOPJ) := A(LOOPJ-1);
The above translation scheme is too cumbersome for end loop;
the simple cases which are far more frequent. If J := I; -- FORTRAN-77 requires this.
output style is important, the translator must work
toward generating a more readable translation
whenever possible. The following considerations Parameter Modes
will help achieve this goal.

FORTRAN parameters are passed by reference.
1. Eliminating the block statement. When an actual parameter expression is not a simple

The declare..begin..end sequence can be variable, the reference applies to a temporary
eliminated if the step expression is a simple variable containing the value of the expression;
variable or constant, or is omitted. The otherwise the reference is to the actual parameter
temporary variable STEPI then is replaced by variable. One simple way to translate a subroutine
step itself. with parameters is to declare each parameter as an

IN OUT parameter; in translating the calls, the
2. Simplifying the iteration count expression, actual parameters that are expressions are passed

When init, fini and step are all static (which via temporary variables. This technique, which is
is most often the case) the iteration count employed by the Slape-Wallis converter [Ii, has two
expression can be simplified to a constant, problems: (a) it is not applicable to functions,
Simplification is possible even when one or two and (b) it constitutes merely an acceptable
of the parameters are nonstatic expressions, solution rather than 'n exploitation of the Ada

feature which requires I explicit declaration of
3. Eliminating duplicate loop indexes, the intended mode of pacameter passing. Instead,

The FORTRAN loop variable (1) and the Ada loop the translator should attempt to determine the
index (LOOP I) may be identified as one, under exact mode from the informati n available t,, it.
certain conditions: (a) both indexes are It is always possible to determ:ne the pr.cise mde
integers, (b) step is +1 -.r -1, (c) the -- IN, OUT or :N OUT -- * r Ie , a:
FORTRAN irnde< a , COMMON ,dzliable, and (d) ,arameter by analy : e a.r,,t: .: d,,,

Annual National Conference on Ada Technology 1986 147

' .'.z';0ZZ ~

provided the same knowledge is available for all Conclusion
subprograms to which the formal parameter is being

passed as an actual parameter. The mode IN is Automatic translation of FORTRAN to Ada is
applicable if and only if the formal parameter is feasible for a large subset of FORTRAN, especially
never assigned a value by an assignment statement the popular dialect FORTRAN-77. While a valid

nor passed as an actual parameter against an OUT or translation can be constructed readily from a

IN OUT formal parameter. The mode OUT is table-driven transliteration system, the task of

applicable if and only if the formal parameter is producing maintainable code at the output presents
never referenced in an expression. The mode IN OUT a greater challenge. In the effort to improve the

is applicable if the modes IN and OUT are not style of output code, this paper has presented an
applicable, approach that is based on abstraction and

reconstruction rather than on simple

The only difficulty then is having the transliteration. Even with the conventional
required knowledge regarding the other subprograms analysis techniques employed, the improvement is
being invoked from the one under translation. The shown to be significant. Knowledge-based

present approach gets around this by requiring any translators capable of global abstraction and
subprogram invoked by the current subprogram to: expert reconstruction are just a step ahead.

(a) have been translated earlier in the same
execution of the translator, or (b) be described by

an annotation declaring the correct parameter References
modes. The user needs to provide the information

via an annotation only in the rare cases involving 1. Slape, J. K., Wallis, P. J. L. "Conversion of

subprograms which are not to be translated for some FORTRAN to Ada using an Intermediate Tree

reason or which invoke each other. Representation," The Computer Journal, vol. 26,
no. 4, pp. 344-353, 1983.

Identifying Constants 2. Torsun, I. S., Robinson, S. K. "Non-
'Interpretive' FORTRAN input/output," Software

FORTRAN-77 provides for the declaration of --Practice and Experience, vol. 7, pp. 205-213,

constants using the PARAMETER statement. However, 1977.

the PARAMETER statement cannot be used to declare
constant arrays. It is common, therefore, to 3. Freak, R. A. "A Fortran to Pascal Translator,"
declare constant arrays as variables and initialize Software--Practice and Experience, vol. 11, pp.

them via DATA statements, as illustrated below. 717-732, 1981.

INTEGER MAXTMP(12) 4. Wallis, P. J. L. "Automatic Language Conversion
DATA MAXTMP/45,50,68,79,2*00,98,3*75,60,53/ and its Place in the Transition to Ada,"

Proceeding of Ada International Conference,

In Ada, there may be a significant improvement in Cambridge University Press, pp. 275-284, 1985.

run-time performance of the program if such arrays
are identified as constants. In general, 5. Wichmann, B. A., Meijerink, J. G. J.

identifying constant entities as such improves both "Converting to Ada Packages," Proc. Third Joint

readability and performance. The nature of Ada-Europe/AdaTEC Conference, Cambridge
analysis required to make this identification is University Press, pp. 131-139, 1984.

similar to that required for determining parameter
modes. A "variable" is determined to be a constant 6. American National Standard Programming Language
if and only if it never is modified by assignment FORTRAN, ANSI X3.9-1978, American National

and is not passed as an actual parameter against an Standards Institute, 1978.

OUT or IN OUT formal parameter. Such a variable
naturally would be initialized by a suitable DATA
statement. Thus, the above declaration of MAXTMP Dr. V. Santhanam is an

would be translated to: associate professor of

Computer Science at
MAXTMP: constant INTEGER ARRAY 1(1..12) : Wichita State Univer-

(45,50,68,79,100,100,98,75,75,75,60,53); sity. He joined WSU

after earning his Ph.D.
The techniques listed above, while nelping to in Computer and Infor-

improve the style considerably, cannot exploit the mation Science from

entire range of Ada constructs in the translation. Ohio State University

For example, the use of range constraints and in 1975 and his B.Tech.

associated exception handlers to deal with out-of- degree in Electrical
range conditions would require considerably more Engineering from the

analysis and user-input than represented in the Indian Institute of

techniques presented in this paper. Technology, Kanpur,
India in 1971. fie I,

member of the ACM vi "I. :EEE .omputer Society.

148 Annual National Conference on Ada Technology 1986

%. %

(?~arl F. '.(-hj.jo+f-er

ntv rset r ics, !nc.

semantics of Diana, it is not possible to
A Diana verification system presupposes a complete embark on a verification program.

specification of Diana, which does not now exist.
Further requiremenrs on a Diana verification o Tool-independence of the verification
system are that it be independent of the system
particular function and independent of the
particular implementation of the Diana producer or The purpose of a Diana verification
consumer being verified. A verification system is system would be to verify that in one of
justified only if it furthers the goals of the its functions a tool behaves in a certain
Diana program. In this light, the Diana standard way. The verification system should be
should be made more concrete by specifying a user neutral with respect to any other
interface to a Diana environment, including a function of the tools.
particular set of Ada access routines for
pre-defined Diana nodes and attributes as well as o Implementation-independence of the
a definition capability for user-defined nodes and verification system
attributes.

The Diana specification imposes no

specific implementation. Therefore, a
verification system must not presuppose

1 Introduction any particular range of implementations.
This is a very challenging requirement on

Once a standard is widely recognized and the verification system.
accepted, and once there is an accepted means of
verifying conformance with the standard, it is a
safe investment for a developer to commit
resources to build a tool that conforms to this
standard. But If the standard is not widely 2 Completeness of the Diana Specification
recogntied and accepted, or if there is no
accepted means of verifying conformance with the The current version of the Diana Reference
standard, the investment carries considerably more Manual [3] uses several means to specify Diana:
risk. In the case of Diana, the latter an IDL [1, 21 structure description, comments in
unfortunately applies. Most Ada compiler projects the IDL structure description, diagrams, and
have not used Diana, and those that have used running English text.
Diana (AIE, ALS, DG/Rolm, Rational, to name
several) have used divergent versions of Diana. The IDL structure description is analogous to
Furthermore, there is no accepted means of Appendix E of the Ada Language Reference Manual,
verifying conformance to a standard Diana. An the syntax summary of Ada. Just as the BNF of
important part of any plan to achieve wider Appendix E specifies the syntactic structure of
acceptance of Diana would be developing the all legal Ada programs, so the IDL of the Diana
capability to verify that a tool that advertises Reference Manual specifies the graph structure of
itself as a Diana producer or consumer is indeed a intermediate forms of legal Ada programs. But

producer or consumer of the Diana defined in the just as there are more Ada restrictions than can
reference manual. be captured in BNF, so there are more Diana

restrictions than can be captured in IDL. To take
There are three important issues in a Diana a very simple example, the IDL

verification program.

o Completeness of the Diana specification

Unless there is somewhere a document

specifying completely the structure and

Annual National Conference on Ada Technology 1986 149

% %

The values of the lexical attributes and of the

single code attribute, cd impl size, are specified
type => informally in Section 3.10.1 "Summary of

as d ID, Attributes". The following extract, for example,
as typespec TYPESPEC; specifies the value of ix prefix:

ID ::= type-id; Ix prefix is of type Boolean, indicates

whether a function call was written using
type id => prefix (True) or infix (False) notation, see

sm typespec : TYPE-SPEC; 3.3.4.

Section 3.3.4, referred to in this extract, gives
justification for the inclusion of this attribute
in Diana:

says: Diana records whether a function call was made
" that a type node has the attributes as id using infix of prefix notation through the

- Ix prefix attribute. This information is
and as_.type~spec necessary for subprogram specification

conformance rules (Section 6.3.1 of the Ada
o that type id is a kind of ID LRM).

o that a type id node has the attribute For lexical and code attributes, this means of
sm_typespec specification is adequate.

o that the type of the attribute as id is The structural attributes are not included in
ID the "Summary of Attributes". However, the order

of specification of the Diana nodes and
" that the type of the attributes attributes, together with the Ada syntax included

as__type spec and sm typespec is as comments in the IDL specification, makes clear
TYPESPEC the intended static semantics of these attributes.

Thus, to resume the earlier example, the following
What the IDL does not say is that the as__typespec fuller extract from the manual makes it clear what
of a type node must have the same value as the the intended values of the as or structural
sm type._spec of the as id of the type node. This attributes are.
is analogous to static semantic restrictions of
Ada such as the restriction that in an assignment
statement the named variable on the left-hand side
of the statement and the expression on the
right-hand side of the statement must be of the

same type. -Syntax 3.3.1.A

The Diana Reference Manual does specify some full-type-declaration

of the static semantics of Diana, but it does not -- type identifier [discriminant part] is

do so systematically. The means chosen to specify -- type definition;

the semantics of a particular attribute depends in
part on the kind of attribute. Diana attributes
are divided into four classes, each class having type => as id : ID -- a "typeid",

its special prefix: -- "I private id" or
- - "private_typeid"

o lexical (lx_) attributes record lexical as dscrmt var s : DSCRMT VAR S,

information such as source position -- discrimiaant list, see 3.7.1

(lx srcpos : source-position; Ix_symrep as_typespec : TYPE SPEC;

: symbol_rep)

o structural (as_) attributes represent the

parse tree Like the lexical attributes, the semantic
attributes are included in the "Summary of

o semantic (sin_) attributes represent Attributes". The entry for smtypespec is not
miscellaneous semantic information untypical:

" code attribute, (cd), of which there is sm_typespec denotes the specification which
only one (cd_impl_sTze : integer), belongs to a type identifier; for private and
pr)vlde target-marhline-specific Incomplete types, see Section 3.5.1, for tisks

Information and task body identifier, see Section 3.5.5.

j150 Annual National Conference on Ada Technology 1986

....1

.. .. l : W V -W . U - rwr cr r. t:s w r - , r . r . -- r , .Nr t- ,S' w- .2 wr~ ' wx -
, w

The summary specification of semantic attributes components list using named associations would be
is often clarified, narrowed, or reinforced by more appropriate; but then why does the IDL

diagrams and running English commentary in Section explicitly specify EXP S rather than, say, named s
3 "Rationale". Thus, the diagram reproduced in as the type of am_normalized_comp_s?
Figure I illustrating an incomplete type makes The Diana Reference Manual is also unclear on
clear the intended value of sm type__spec. the representation of a subaggregate of a

While values of many of the semantic multi-dimensional aggregate. In the following

attributes are adequately specified by this mix of example, the Ada code will raise CONSTRAINT ERROR

means, there are numerous gaps. The designers of during elaboration, but the compiler must be able

Otana were fully aware of the shortcomings in the to produce the code that will raise this

specification of static semantics and devoted exception.

Section 1.1.4 "Specification of Diana" to a
discussion on how to remedy the problem (see also

[41). type A is array (integer range <>,

For a few examples of incompleteness in the integer range 0) of boolean;

current Diana Reference Manual, we turn to c: constant A 1 (=>

aggregates. The representation of aggregates in (4..5 => false),
Diana is complicated, and it is not surprising (2 fl
that the Diana Reference Manual is less than (6..7 => false
complete in specifying the static semantics of

-I. Diana in this area. We will look at two examples: -- will raise CONSTRAINT ERROR during elaboration

the attribute sm normalizedcompa and the

representation of subaggregates.

Presumably a subaggregate ("4..5=>false" or

Aggregates have the following structural "6..7=>false" in the above example) is represented

description in IDL: by a separate aggregate node, but it is not clear
what value the sm exp .type attribute of a

............................ subaggregate of a node should have; there is no
explicitly declared type for the subaggregate.

EP :Should a new TYPE SPEC node be created? We might' ~ ~~~EXP ::= aggregate;anemih

aget >also ask how the sm constraint attribute of the.- , aggregate =>
as list : Seq Of COMP ASSOC, subaggregate is related to the sm constraint of
sm'-exp type :TYPE SPEC, -A the enclosing aggregate; is the second index
sm __constraint CONSTRAINT, constraint of the enclosing aggregate taken from

sm normalized comp, s EXP S; the constraint of the first subaggregate (4..5) or
P Scomp EXp s; from the second subaggregate (5..6). In this case

oEXP-S ::= exp_; it does not matter whether the first or second
, exps =>

"as list : Seq Of Exp; subaggregate contributes the constraint, but one-O must be chosen in order to detect the
C')NSTRAINTERROR.

This last example illustrates an interesting

The "Summary of Attributes" tells us that point about completeness of specifications: a
specification mist also make it clear when

r-onordofvus rething is deliberately undefined. There are

. ds sveral ways for a complete Diana specification to
denots theaccommodate undefined values:- a record aggregate or for a discriminantacomdtuneidvles

There could be a gneral rule that if
something is not esplicitly specified in

But what does the sm normalized cutup s the Diana Reference Manual, then its
attribute in an aggregate--node really lok like? valte i- undefined. This is dangerous,
One might prisume that this is list of the since it orould obligate the specification

to be complete even for the values of
component expres:sions in the proper order; obvious attributes (the structural
however, stch a list is not always desirable or
poesible to construct. Consider the array

* aggregate (I..N > 0). The value of N is not
statically determinable, therefore one cannot make The manual could say that for particular
a list of N 4eros. A list containing a singlo value of the attribuete (s undefined.

-'ero without the corresponding range would he of
no use. Consider the array aggregate (2..1000 = Tie mantial could say that for particnlar
N, I => 0). It would not be very efficient to (i
consturit a list .f 1001 olements, particularly atite2 (in partitular contexts) the
when only two would suffice if the corresponding valte mist be one of several things, the

ranges were included. It seems that a fimaliz.ed

Annual National Conference on Ada Technology 1986 151

.. .,I I - 1 4 V . . , 4 .

% S

the output is Diana (hence the representation of
choice among possibilities being some legal Ada program) but also that the output
undefined (e.g. in the above example, is the correct mapping of tile given input. In the
could say the index constraint of the case of other Diana producers, one would try only
enclosing aggregate must be a node shared to verify that the output is Diana, without
by one of the enclosed subaggregates, the attempting to verify that the mapping from input
particular choice being undefined), to output is correct. In the case of a Diana

consumer, one would try to verify that the tool

accepts (i.e. does not issue any error
This is not the place to propose a scheme for diagnostics against) any Diana representation, but

formal specification of the static semantics of one would not attempt to verify that the tool

Diana (see [81 for one proposal). We note, produces the correct, non-Diana output for a given
however, that it simply makes no sense to speak of input. In the case of Diana consuters, th.,re i.
verifying that a purported Diana producer really no predefined unique product, and Diana
produces Diana unless there is agreement on the verification should not become onmeshed in
static semantics of Diana. This is not to say verification of some other function of a tool.
that a completely formal specification of static
semantics is required; carefully worded English As a first approximatitn w might suppose
prose may be sufficient. But something more than that a Diana verification system would involve
we now have is required. In the absence of this, developing the following components:
it is is premaLure to speak of establishing a
Diana verification system. o Input test cases for Diana producers.

o A means of verifying that tle Diana
output of Ada compilers is the correct

3 Tool-independence of the Verification System mapping of the Ada source to Diana.

The Diana Reference Manual wisely o Diana input test cases for Diana
distinguishes between Diana producers and Diana consumers.
consumers, with the following definitions (Section

1.1.3): o A means of verifying the Diana output of
general Diana producers.

In order for a program to
be considered a

Diana producer, it must produce as output a Several considerations lead to a simpler picture.
structure that includes all of the information First, for a Diana producer we do not know, in
contained in Diana as defined in this general, what the input to the tool is. The input
document. Every attribute defined herein must could be, among other possibilities, Fortran

be present, and each attribute must have the source, Ada source, some other intermediate
value defined for correct Diana and may not language, or Diana itself. Accordingly, it is
have any other value. ... There is an probably simplest to declare the input test cases

additional requirement on a Diana producer: of the tool's own validation suite to be the input
The Diana structure must have the property

that it could have been produced from a legal test cases for verifying that the tool is a Diana

Ada program. producer. That is, input test cases for Diana
producers are not part of the Diana verification

In order for a program to be considered a system. Second, if a Diana producer is also the

Diana consumer, it must depend on no more than front end of a compiler, it will have undergone

Diana as defined herein. This restriction the ACVC and it is therefore not necessary for the

does not prevent a consumer from being able to Diana verification system to check that the

take advantage of additional attributes that mapping from Ada source to Diana is correct.

may be defined in an implementation; however,
the consumer must also be able to accept input From the foregoing, it appears only two

that does not have these additional components are required:

attributes. It is also incorrect for a
program to expect attributes defined herein to o A set of Diana inputs that systematically

sample the set of all Diana
have values that are not here specified. representations.

Aim A Diana assertion checker -- a program
A Diana verification system should be that can check the truth of assertions

tool-independent; that is, it should focus on the about the structure and semantics of
tool-s use of Diana -- whether the tool was a Diana representations output by a Diana
Diana consumer or a Diana producer -- ignoring producer.

other functions of the tool. Furthermore, It
should distinguish between a tool whose sole
function is to translate Ada source into Diana

(the front end of a compiler) and other Diana
producers. In the case of the front end of a
compiler, one would try to verify not only that

152 Annual National Conference on Ada Technology 1986

I.r

The ('coi.,t rct ion of the s!t of Diana t[pit test
.ases is not partii(rnlay dLl~itil t rovided there 3. Th- r, sulttng exteroal Diana is run

is a reliable \da-;J , - .)-hitoa rrats. itor through the Diana assertion checker.

available; many of Lhe tE;st cases could he derived
from those ACVC tests consisting of legal Ada. Since OP is not the front end of an Ada compiler

The construction 3f an atIsertion checker with any we do not need to verify the accuiracy of the
pretensions t-) completenes;s ould he arduous, mapping of input to output.

Suppose now there is a Diana consumer DC
(perhaps a target-independent optimizer) and a

V 4 lmplemaentation-independence of the Verification Diana reader DRDC. Suppose further that DRDC has
-4 System been verified in the following way:

The specification of Diana in the Diana 1. The implementation-independent test cases
Reference Manual is intended to he (in standard external Diana) are

0 implementation-independent. The specification converted to internal Diana via DRDC.
does not say how the nodes and attributes are to
be encoded at the level of a programming language, 2. The test cases (in internal form) are run
and certainly says nothing about how they are to through DC.

be encoded at the level of bits in memory or on a
disk. Any program producing or constming Diana We now have two tools, OP and DC, the first
will have a particular encoding of this of hich is a verified Diana producer and the
iqfurmation. How, then, can there be a single second of which is a verified Diana consumer.
verification system to verify that any alleged Furthermore, the tools can be run in conjunction
Diana producer is really a Diana producer? provided that the output of OP is run first

through DWDP and the result of that run through
One solution is use a standard external DRDC.

representation of Diana in the verification
system. The Diana Reference Manual (Section 5)
provides a example of an external representation.
In the verification system, we then verify not
that a program is a Diana producer but that a pair I .. - .. .
consisting of the program and a compatible Diana INPUT --->I OP I---> INTERNAL (DP) -'->I DWDP I
writer (whore compatible means understanding the DIANA +.. +

same encoding) is a Diana producer. Likewise for
lhe Diana consumer, we verify that the pair STANDARD i
(program, compatible Diana reader) is a Diana+ EXTERNA -..........
consume r.) ANA

'4 V

Figure 2 shows the resulting configuration -....... . 4-

for Diana producers, Figure 3 for Diana consumers. I DRUC --- > INTERNAL (DC) --- >1 DC I --->OUrPUT
+...... DIANA + +

5 Implications for the Definition of Diana

We have sketched a fairly simple-minded Diana But this translation to and from standard external
verification capability. We might now ask whether Diana is costly, and there is no reason to believe
this capability would promote the goals of the that DC can run directly on the output of OP. In
Diana program the way the ACVC promotes the goals this case it is clear that the tools actually do
of the Ada program, conform to the Diana standard; hut it is not clear

that the tools are more widely usable because they
Suppose there were a Diana producer OP and a conform to the Diana standari. The verification

Diana writer DWDP that translates the output of DP program we have outlined above is in danger of
to the the standard external representation of becoming verification for its own sake while
D)ana. Suppose further that OP has been verified loosing sight of the original goal of Diana: to
in the following way (assume that DP is a promote the development of inter-operable
Fortran-to-Diana transiator; DP is theref)re a Ada-related tools by defining a standard
Diana producer without being the front end of an representation for Ada programs.
Ada vompiter): For different programs to operate on comm-n

I. The original validation suite for OP is data, one of two conditions must hold:
ruin through DP.

o the programs must incorporate knowledge

2. The resulting Diana output is run through of how the data is represented; or
UWDP.

o the programs must call on a common set of
access routines.

Annual National Conference on Ada Technology 1986 153

a.V

If the goal of Diana is to enable a given program Taking seriously the goals of Diana entails

to operate on (produce and/or consume) Diana considering another change to the Diana standard

representations across N different Diana -- provision for user-defined extensions. The

environments, then either definitions of Diana producer and Diana consumer

were carefully phrased to allow a Diana producer

to output a structure containing non-Diana nodes

and attributes and for a Diana consumer to operate
there must be N different versions of the on a structure containing non-Diana nodes and

program, each incorporating the knowledge attributes. Experience has indicated that real
uf how Diana is represented in one Diana tools do need additional nodes and

environment; or attributes. To take one example, the front end of

the AIE defines some 532 node kinds and some 638
o all N environments must provide the same attributes, in contrast to the 170 node kinds and

set of Diana access routines. 131 attributes defined in the Diana Reference

Manual. If the environment does not provide for

The first alternative is wasteful of human additional nodes and attributes, each tool will
resources; furthermore, market considerations (the have to provide its own, separate implementation.

small number of potential users per version) might But if Diana is defined to be a set of access
inhibit the development of tools. The second routines, and if Diana producers and consumers are

alternative, by standardizing at a greater level to be portable across Diana environments, how are
of detail, can easily inhibit technological the additional nodes and attributes to be
progress; furthermore, it may be wasteful of accommodated? One possibility is to require that

machine resources by precluding certain efficient a Diana environment provide a definition
impleaeotations. But if we are to be serious capability allowing a using tool to declare
about the goals of Diana, the choice is clear: a additional nodes and attributes that can be

Diana standardized to the level of access routines accessed in exactly the same way as the predefined
(presumably in Ada) is required. The Diana Diana nodes and attributes, It is premature to
Reference Manual currently specifies Diana in so propose this addition to the Diana standard; but

abstract manner: using IDL and associated text study of how to integrate a data definition

For specification of the static semantics. An stud y wto tegreadefiniion

exampte of a possible set of routines is given in capability with te pre-defined Diana is in order.

Section 4 of tile Diana Reference Manual, but the 6 References
example is not proposed as a standard Diana
interface. Serious consideration should be given
to augmenting the standard with a more concrete [1] J.R. Nestor, W.A. Wulf, D.A. Lamb, IDL
level of specification: a set of Ada routines - Interface Description Language: Formal

providing the operations of creating and deleting Description, Carnegie-Mellon University,
nodes, reading and setting attributes, walking Computer Science Department,
sequences, and so forth. CMU-CS-82-002, June 1982.

If Diana is defined to be a unique set Ada of [2] D.A. Lamb, Sharing Intermediate

access routines with clearly specified semantics, Representation: An Interface Description

we can speak of a Diana environment existing Language, Carnegie-Mellon University,

independently of Diana producers and consumers. Computer Science Department,
It would then he possible to separate the CMU-CS-83-129, 1983.

verification of Diana environments from the
verification of Diana producers and consumers and [31 K.T. Btler and A. Evans, Jr. DIANA

to dispense with the requirement for Diana writers (Descriptive Intermediate Attributed
and Diana readers. Notation for %da) Reference Manual,

Revision 3, Tartan Labs, Inc'., Report Me.
This was the approach taken in the VHSIC

Hardware Description Language Program [6, 7]. The TL-83-4, Pittsburg'i, Pa., February 22,
inteormediate form of VHDL is called IVAN, for 1983.
lortermdlate VHDL Attribrted Notation. In
aldition to an IL strtacrire descriptton and an ['j K.I. ltter, "Diana Past, Present, and

inf)rmal English spectfication)f semantics, IVAN Future," Ada Software TooLs Interfaces,
Is defined by a set of Ada a.cess routines For ed. P...L. Wallis, Springer-Verlag,
'rear tog aid let[ing nodes, reading and setting 1984.
he val i s if atl:ribrtes, determining tie kind of

a lode, wa [king sequences, and so f)rth [5]. The [5] Intermetrics, Inc., VHDL Deign Library
Ada package IVAN provtd's a standard environmet; Specification, IR-D-0h19-3, 30 March

;any IVAN-priduetng tool that rises this standarl [985.

environment is gi iraateed to he Inter-operablew i h a l =N.'l : 1 ()) 1a ls 1. s L l 161 ni:,rmetrics, Inc., VH I, Lnguage
with any Lv\,,q-crr-:,'r' ig a tha) =it al so uses the Reference Manual., Vets Ion 7.2,

standard envi oment. There are currently four JRD-045-2, Auustl s 1 785.

VHDL tools (Analyer, Reverse Analy.er,

Simplifier, Si moltat r) inder dovlopment that rise
tile standarl IVAN envi ronm,,it.

154 Annual National Conference on Ada Technology 1986

.C

~~ - .%'&~% . *% % ~ *- - .'-.-

[7] Intermetrics, Inc., VHDL Support

Environment System Specification,
IR-MD-024-3, 15 March 1985.

181 G. Persch and M. Dausmann, "The
Intermediate Language Diana", Ada
Software Toots Interfaces, ed. P.J.L.
Wallis, Springer-Verag, 1984.

[9] J. Uhl, "A Formal Definition of Diana",
Ada Software Tools Interfaces, ed.
P.J.L. Wallis, Springer-Verlag, 1984.

-" Cart Schaefer [s program manager for the Diana/DL
*configuration manag!ment project at Intermetrics,

Inc. lie was also responsible for the
Imple.mentation of the VHDL Analyzer and Us
currently working on the deign and implementation
of a VHDL simulator. He has a PhD in Linguistics
from Cornell University and an KS in Computer
Science from American University. Mailing
Address: Intermetrics, Inc., 4733 Bethesda Ave.,
Bethesda MD 20814.

-N

N,

N,.

p..

Annual National Conference on Ada Technology 1986 155

I'%

type . . . type
/ \ I \

I \ /
................ \

type id void typeid

sfm_type~ape......... am _typeSpec .---> record <C---i '. il ..

Figure 1: Incomplete Type

.1D

IMPLEMENTATION DEPENDENT

...

INPUT TEST
* CASES

(from jatidation suite
of producer belig tested)

t....... . .
PRODUCER BEING

TESTED
-..................

INTERNAL
, DIANA IMPLEMENTATION INDEPENDENT

...--- --- -.........................- -..... 4

....- .--

ASSOCIATED DIANA ISANDARD SDIANA

WRITER EXTERNAL > ASSERTION
.............. DIANA CHECKER

,, -.............-

..- °
WFigure 2: Configuration for Diana Producers

156 Annual National Conference on Ada Technology 1986

~~~~y~~ -- 5 $ r,~%



IMPLEF.NTArtON INDEPENDENT

............. ..... .. ....... ..... •

INPUT TEST
CASES

(in standard

external Diana)I

IMPLESENTATION DEPENDENT

+ I
.--........°..........I

ASSOC IATED DIANA - > INTERNAL

RER DIANA

................... !

CONSUMER F4EING
TESTED

... ° ..... ......... ..........................................

Figure 3: Configuration for Diana Producers

Annual National Conference on Ada Technology 1986 157



THE BACK-END OF A MULTI-TARGET COMPILER

Gil De Bartolo and Ron Richards

hlitermetrics, hnc.,Cambridge, Massachusetts

The front-end of the compiler is comprised of the first two phases,

tree build and sentantics. The tree builder builds alt abstract syntax
tree for the Ada input program which the semantics phase translates

into a DIANA III representation of th., progran. There are no signifi-
cant target dependencies in these pha-e-.

The middle of the compiler complii;es three phases: storage, ex-
Abstract pand and flow. We will briefly discus, - ach of these phases.

The storage phase adorns the DIANA representation of the pro-

This paper discusses the implementation of the back-end of an op- gram with information about how objects in the input program should

tintizing Ada compiler which is able to defer the binding of its target be allocated storage.

machine until compiler execution time. There are several advantages to Tile expand phase reads the DIANA representation of the program

this deferral. Any compiler enhancements are immediately available to and translates this into a interface description language (IDL) 121 called

all targets. A consistent user interface is guaranteed across all targets. BILL. In this low-level representation all calculations are made explicit.

The cost of adding a new target is minimized. The apparant disadvan- The flow phase massages the BILL tree performing target inde-

tages of this approach involve performance as such a compiler inight be pendent optimizations. For example, redundant constraint checks and

slower and bigger. We present an implementation in Ada which imini- inaccessible code are deleted. Opportunities to reuse previously calcu-

mizes these disadvantages yet retains the advantages of implementing lated values (constant sub-expressions) are recognized by this phase.

in Ada (specifically, strong type checking and range checking). Further Flow also decorates the BILL tree with access mode sets. Ai access

our approach allows the mechanical construction of a smaller, faster mode is an indication of how a node (and possibly some its descendants)

compiler supporting only one target from the multi-targeted compiler. may be addressed.
All three of the middle phases do contain some target dependen-

cies. For example, the layout of a record may well be affected by what
the target architecture supports. Similarly, the BILL produced by ex-
pand will depend significantly on the target-specific run-time model

chosen. Since the focus of this paper is not oii target dependencies itt
the middle-end, we won't elaborate here on how these dependencies
are dealt with. However, it is accurate to say that the solutions em-

Introductiont ployed in the middle phases are not unlike some of those employed ini
tile back-end which will be discussed in detail.

This paper describes the implementaion of a multi-target compiler.

That is, a compiler able to defer the bi i.!ing of its target until compiler Overview of the lback-End

execution time. The first two sections mt the back-end into perspec-

tive first by briefly describing the front a d middle-ends of the compiler.

The third section is concluded with a decussion of BILL, the intermedi- tie m a k of the compiler s n lating

ate representation which the back-end t anslates to machine code. The the major task of the back-ed pias of die copiler as tratnslat ug
next section describes what we had hoped to achieve by constructingprogra from te low-level iterediate represetati prodced

by the middle-end to either ain assembly language like representation
a multi-targeted compiler. The fifth section is the heart of the paper. of the program or ait object module representation of the program.

lit that section we describe the four different approaches that were eit-

ployed to implement the multi-targeted compiler. Which of the four The representation produced by the middle phases is ii BILL. Before
we discuss tile roles of each of the back-end phase,, we will present all

approaches was employed depends of the characteristics of the phase, overview of BILL.

The material ott the implementation approaches assumes a knowledge

of Ada. The paper is concluded with a brief discussion of the success Introduction to BILL
of this endeavor.

BILL is a tree structured language designed to nieet three apparelty
conflicting goals. First, BILL makes explicit all calculations (incluid-

Ovei view of tht compiler ing address calcutlationis). Seconid, HILL abstracts away frot tilie tar-
- - get specific detail which is inessential in producing high quality code.

The Internietrics Ada compiler li Ls five iiases which process a progrant Third, BILL maintains a "structured" representation of tile progranm.

prior to the six back-end subphases, hi t his section we will preseit a Since BILL is a tree-struclired laigutage, the eflellis i.f the lan-

briefiverview of the first five pitases: tihe front and liddle ends of tile gauge are nodes and these nodes have attributes (which are oftenl

coipiler. other nodes). Exaiples of typical BILL nodes for ariitietic oper-
atiolis are bi itit plus, hl int nillus, bl flt plus, aid II lit lities. Ex-

atiiples of Ill In Liodes pertaining to . ddres calculaii,its are bl ,,ffset

T he : aih..rs ire ittett,.,t t,, Msrk Davi. 0icker Taft, and Dei r hl StrfeS, e IL, tlde relaed Iltw 4 t l'l
tl~tui:iuiuit, c,,tittit-utii tis n. ,,,tt lhti deinl h ~petelaii rt~ttt 4 ailI iuwthtie cifesult .iSome HIL intioens nlatl~l t , flow ifeci ttt r
csbnt ing ,t earlier h'trits ,,f,J is Ipaper woild ibe hl case, bI liandlers (fir excelt i iu handlers), I if, 1I l,,,p and

158 Annual National Conference on Ada Technology 1986



hi exit. l"'' cailing stiblrigrlaitts we Ii' li jtiiC) call atnd hi func call

as exatmtpie it ies. Caso tt titagtit
Two, ki i s if It itit ionitt te rotttt11lII reqiredl inI a progril 1t.GolofJmI -arein

Tite pr'ogramt text itself ,sities , i ctl 'el aiily alt iltitits lit PI".-
forited I F ir eXAilt Li" arn it 1I-1e Ii a'y be. assignted thle stt ii if two other itttettttet ics Itad previously developed alt easily retarget able compiler.

Vartables.- al .1 tail V1 4it 1111lit lie Ill, Ot ~ttl f olatrm.. tile list is endi- As at separatet effort we took ailvatit age of our- ret argetable approach to

less a id no t veryit i iet ii L ess''lt (bitt pis i yitiri' itriva- itmtplettentt t ite ttti t-target cotmpiler. This coitptiler was destgttecd to

letit ), are taitlat t1.tt1os ett I, i l, d - olijilt I,. Fi~t exatttile. a licA enhtatice oit cottpiler developtttettt etivit'otttteitt.

Isc rilt 'y be a i i ta t.4111 It'fse t it ft th po'ittier "I 'a ret oldt -II ltttet ttetris is sittultatteously developitng ada comtpilers targeted

pilttillal array'' it i vi -il "Xtressiolit fir to ttatty different architectures, to be htosted ott several different oper-
iltirssti Ill t ite ILL I. li-it 0t I ti A~t i Ihe' plilligt.it IIl if titlesi. at ittg systetts. Eacht of tite target comtpilers is developed ill two stages.

typs f alkllatoll le xi'lifFirst, we bitild a cross cotttpiler witicht i4 htosted ott ottrcdeveioptttettt tta-
typesif ctlc tlti ii- t ti'ajil ticinte. After testittg tite cross comtpiler, we reltost it to tite specific ]tost

Tiite ate utilityiii -i t'wit tt k~Pttiel~%~~wl liltueIt' u- OperAt i tIg systeltt ttorttally usitg lite :-ross cotttpiler to reitost itself.
ttiitlit 111 % i Iti klist ttWil I, M it it' 'i. l i i e 'il it low-level The itttiti-target backettd was., proposed ttot ottly to reduce tite costs of
latligitte like BIiiLL Fi eatmple, iitic .t it-t 4i tic ex cutitit it tite tie first stage, witeit ttatty target are developed attd ttaitttaitted

- r~~~allittg .ttti't t siiiliiirttl i ta ipit i'-' Ii.tl iget titt tnt ilisitir- ott the samte host itaciite; lint also to reduce tte whtole life-cycle cost
titiltt. Yet iatit 'if theisieii' .ttt'~ltsis I .t nodeitiiii Ilk 1111. (lraise of a target. Rather than beittg forced to ntaitttaint several differet comt-
itti lii prioi tall, tesliel lv itt I this wIl HLL' .tlksti rais tway floiti pilers, we will essenttially be ttaittaittitig just otte comipiler as hug fixes
tInissenttti tit1 get ili'Iii' Iilt le, are ittttediately available to all tar-gets.

FB1LL ttt i it-tait. sit Iit(tolled vie 'wif I Itt' iti gi it iiy utsintg tilet Pricir to t his project, we had developed a retarget able backettd.
ftrst trtutrel floiw of ciott i I ciutist tts ltkt' "tIIt ils'ke" "loop", atidt Period ically, separate t eatts woitld take a release of thtis backettd attd
"cast-". fly kee'piitg Ilie-t ou tstliut atti tit lratitaittg ittttedhiately retarg't it. Target depentdeiicies, altltoitgli well idetttifled, existed at. all
ito ci iti t'lal britic( itts. at tly sis oif thte pigyrat itt I f op im lizat ion aind levels oh' tite barkettvd stinrc es. Tue exist-etre of target dlepetideticies ill
register tili 'ati''t is tt~ilt'd e'atiet. low level package specificatiotis ruled out atty sltarintg of tie prograti

Ba~-Ed ul~haelibraries, or object ttodules acct-oss thte differetit targets. Evett thtought
Hack-EttdSit til itts ttost packages, itt tlite barkettd were target ittdepettdettt, tite retarget

teatts fotttd it very difficuItlt to shtare fixes antd etnhtattetent s. If thie
'rite' six siiphtasvs (if th it'lar k-eatilat itt tl lite order ilk whicht thel e ex- ittterfalce to packages chtanged, as, ofteti ltappetts itt a developitig project,
eut e, vide (v irt al coide geirto t), tnd (bittd temtporary itatties copyinig a sintgle updated piackage oft-ci requtiredl cop it several othier

to tttaci ite resiourc's), c'iltgett (code getterat ioln), jtitip (jittip opt t- chltatgs Keepittg tite d ifferetit target liarkettds it ) to dlate bercatti very
tttizattin), brattr i (brautchI resolttutin), and objgett (getterate ati object Ciost ly, hoth it im iiattpower and cotttpuiter resources.
ttcl it Ic). We will diiscuiss ech Itlitase britefly. To redtuce tile costs of sittolt atioitsly developittg several comtpilers,

ilcld rcreatets temIIpoitrmy ttattes (Tits) for com~tpiler created tettt- we idetttified several goals for tite imilti-target backettd. First, sottrces
poraries. Whteti twit Tits are kttowti toi have tite saite value (at least for all targets multst lie aisle to reside ilt l ite satme prograttt library. c-

* ~~~iuiIt ia ly ) yr ode sets ttl) a prefereitce relation betw' it thte two Tits. titic, we wantt to lmtaximtize thie ttuttbt'r if littes of sitaredi code. Thtiri,
If twit rPus atre preferititrd, tttbintd will attetmpt to allocate thtetm to target depetndettt code sholcdi be easily chtattged witltottt requtirittg re-
tite m~tt tachtinet rt-it-r T'it' otutpttt of titis tphase is the BILL tree comttpilatiotn of oklier sources.
sitppliedt by tile tiiiddle ph ases of thIe cottipiler adortteil with Ttts repre- Eachl cotileitr cottract requtires thie delivery of a backettd for a
setttting ittterttediate restults. Each Ttt its att attribte witicht ittdicates specific target. Earch delivered backet' 1 shtottld ntot Itave thie ruttttimte
witat type of registecr writd i le lest for striitg thlis vailue as well a list overitead of seli'ct intg a targe't. Thtts, aitot icr goal of thie mttiIti-t arget
of ptreferenices to othier Ttts. backeitri, is t la~t a sinigle target bar ketil( be easily biuilt frot the tult i-

lttl :alloc at es cthe Tis to mtachite registers. Before the ahhoca- target sotirces.
tin catt he ttade tttlittd mtutst dietertiite wicit Ttts conttflirt ( two Ttts
wicht hold( valtue,, at tite samtie poitnt itt a programIl are sail to cottflirt). Imltpettetat ion of luti-targetitig
After thiis phlase ilas rtun, ecn Til it.s beetn allocated to a mtacllieAedsusei h etinpeetn i vrve f h ake
register or spilleid.Asw iictse ilttescitprettlgaloeviw fttebketd

Cciiegett genterat es rode givetn tilt allorat ion of tttacnte reg isters tianty of tile algorithIttts emtployed ill tlite back-etti arc inhieren~tly tar-

to 'ins. A tabl diescribin ttghle rode to til ifor ;t hart irItlar seqilelce (tf get depetidett. IlI thtis sect iotl we disc, tts otiw thIe "essettial" tatrget
BILnoean il loctono ill is 5s( b ee .h ~ (ldsl oepen~den~cies were dealt withi. We ellile(Iil) up ttployittg fitur differelnt

stilted ti' ilt'ertlle what colt' to get-i it' Whtile- tiit coitttlts 'if tilt' appsroachies to tilis probletm. Tue firt-, oft these approachtes cottld be sum-

table are 'liv iiitsly t argi't deptildeut t ite mlltter ill witichit ittlorlotioti Illarizeil as reain tg itt tite target cieiinettltit tttformtion~ itt at comlpiler

is gleatted fri-i tlei t able' is lot. Thte ittplt'iiiiiitatioti of fthis table will exectton time. This techitiiqtue accouints for moidst of tile tar-get clepell-

lie idiscutssed'il i sect F)t 51. The otut lt 't his phalse' is filit' 11 CtODE denitts Civen lttite iiecisioit to read ili iforttat olt, titetie is tto extra

wiih is vt'ry siiiilar ti *sst'itily latigtilgt'. performhatnce cost associattid with sutpportintg miore' titat otie target.

- ~~~~Jtttip pronisses thIe ('ODE rt'pr~vust'it -i ;t il , f peiilg tati at tetiit-
ittg ts ohitiltiSze jttttips tcs jttttli. titlalielil rude followitig ai tlticuitili- Tables, ittitializeid by-realittg a file
tiottal litalitr, atud jttlips at-otutnd jttlmps. Thei ritt il oif this phapse is Bloth tile vrotlt aitd colgt piiiase's of tilt liack-etid proicess tile BILL

aloC D .represeta ttioti of t(lie irogra ii with Ii mail to 'ward pisetudo code getter-

After this phtase lhts rtit t've'ry ('tODE tilt' htas a kiiiwit Iticat it'l withI et lrst t'i it be'fal uacuut steis fe t r ot

"liietldl.tl, hsl rmtetbeof.1 alhl aten.Atltl cin

A nnuplal Na ion altl Conerece' omalechlog 1986 159h po

-1ji1 p-iese fil and %mld all 'object



Pattetrts atre c(omptsei ,,f fotti differenit type,- if tokents bill, Conider tile BILL lie i,.'iw' -Imi ittetilni ditentiitt a
operand, restric:tion toklens, atid end itt ark. The bill t iketts are used loa iabe
to Itiatch tile BILL node of tilie same~c nalie. iThe oiierand token., inidi- oa atii'

cate I.tie valIute of ittit " Operantd ('lass" wichi des(tri bes a set of sub-tree~s
w hich c ouldi matc ct Ihis totken. Att operandt ciass is actutally a set ofI aces mtodies, An access mode is alli enit itlera tolt correspod i hg to th-,or

ifferetnt ways, dat a miay be itc ( ce ott tile tatrget liaci hie. Tl'e restric- )
tion t ttkett ate used to 6!sci ibe at ot1d itowit Wiitl titlst bie trule abOut

tite values of thle ntode., (or attribuntes of (lie ntodes) if the restriction is
to bei true. All of tile restictioti tokens for aI pat tern1 mtust follow all of hIfa toffstiit liitit

the bill and operand~ tolketis. Tile end mtark token clesgitates the end
of a pat tern.

U~sintg this termintoiogy, at pattertn tiatciies a sequleince of 1BILL hi .fetrit v.altue Ill ita literal

tiodes if every niode iitilie secquenice intcles. Tite coiiditioiis to de-
termtine whiether at tide nmatchtes at pal tii t okeni depend oilttile type b iti.ofe
of pattern t oken. If tile pat tern tokein is a bill tokeni, then tie toketii lfaeof

miatchtes thle corresponid ing ntode iii the sequenice of B ILL itocies if antd
ottly if thle inode altd t okeni are of thle saite kindil. If thle paltlern t okeni
is a test rict ion tokett, t lien thle restrict ion tokeni miatches if and onily if We will piesenlt somiet examtple pat terins for tile 1 750A atid IBM
the rest riction holds givent tile values ) tile at tribn les of tie nodes iii 3701 architectutres. Recall that a patterl is a sequtentce of tokens. A bill
the seqitetie. If tilt pattterntiockeni is pelratid to~kent, thien (lie tokent t oken is rep~resentted by thle inamie of Ilie BILL ocle kitnd it itatcites. Ail
tiat cites if either (if tilie foilo witig cottouiiioiis hocld: operanid t okeni is represent ed by the a pa ramtet er numijber and operantd

class separat etd iy a ':'. Rest rict ion to~kents are rep~resentedcc by thei itatti
" the operandi clatss intcludites a ti access mlodet whiicht is int cled ini thle of thle testric tiont followed by the list oif paramtet er values surronded

access- nkicde set ctf t ite B ILL ntode corresponidinig to the operand by paretheses. Tile end toketi is ittA explicitly represeunted as it is
token. imiliicit ill tlie ternatingialiti

For thle 1 750A arch it ectutre we w-. tIld have a palte I, wike
* tlie o~perantd clalss incittdes all access nmode witichi repretts a direct bi-store $0:O('A bl-it-miut $1:0('B $2:LII .. iit0i1.

access, to aI register 
n-vl21)

Before we call present e txamttpie patterns for differentt archiitcltires Tliiis pat tern tmatchies lie wbole examp jlt tree. Let sit whty. 'T'he
*we lnust definte soite access tmodes atid operanid classes. For t his exami- first tokein matcites sinice it is a hi stocrt' a ini the roiot niode is alsoita
*pie we will use four differntt access mtode.,, listed below bl-store. The seconid tokent is alt operanid tokeit whticht mtiaches sitice

" r a address of at register (this is a direct access to a register) cte operandc class OCA incltudes the access itode Xaj (which Itratisforitis
framie offset). Tile third token is a bill token for i lint tiuitis whicht

* ~ ~ I v conttetiof a registe'r (thitis is aI direct access to a register) miatchtes sinice (lie correspoitn g B!ILL ntode is, also aii 1- ittt minns The

* x autirss ~f ttetior (tsitg abas reiste atcl diplaeowit) foithi tokeni is alt operan tic okent witich corresponds to tile first citiltd of
" x;I dd~s f mmoy (sin i bae rgiterall[ (lsplceetit) tile itittus ntode. This tokein mtuacites, sinice the operanid class iniclutdes

* x v conttenit, of tieittory ltc at ion (addressable throutght x-a) thle access mtode x .v (witicht tranisformts at fet fronti a fratite-offset)
The niext tokeni is also ait operand I okecu. This litte cctrrespoitdiuig to

0 lit alt integer literal tile other citild of tile iitis ntode. The tokeni mtatchtes sitnce tile operantd

We wil ait) hve f airttpeaiid iass~ 'sslioit Ielowclass ront ain,- lit ( which t ranisformis rthe int -literal). The last two tokenis
are restrict ion tokents. 'rie first test whet her the operanid zero, repre-

" 0('A (xa setits the saute locationi as operantd tite. The secondt restrictiolt tests
whether the valuie of the literal foi- operanid two hias value vite. Sinice

.0(11 {r v all the tokleis miatcht the whole paltternt itatcites. Bietce for 1 750A we

" Dcall process this whole tree dutrinig onte ptatt(crn1 matcit.
Ott alt archiiit ecturtilike thle IBM 370 tiiis tree clotes ittt correspond

* 0(1) x v, lit to a sinigl Ipua ttern. For tle :17t0 we wituld li ave pttertis like thle foi-
loiwing:

"~h LT ltbstore $tl:O('( ii ilt muiltt $1:,)('B $2:OCI)
bistore $0:OCC hilitit -minuis $1: P-'B $2:OCB
hi stone S:O('( $ 1:0('l

For 011- examplites we will lise' titi sait ,ts i-itodes andl operandi 1)1 slire $0:0)(A $ l:(X'*B
classe's for dlifferentt target miitect t e . It i. itilir"t atlt tiundersltattd

t~lat thi is for OIIVC~jiV(1- ill his exForiitileIl tileiii atcielitoisucitFris tree mrtchinireis firsteqiiratfirst mac githetstorereto

restrict itos apply. lIn fact we will l is, is.s I ti'w lumw tdifferet access Itithtory then ittat chintg the sit Irat t one, anit fitnally (lie fetcha frot
mtode and operatnd class ettiiitit'rai ;it ii~tll .. ril for difft'rentt tat' iil'tiry (recall t hat we mtiachi BlILL tries ii re-crSce txectionu order).
gets. 'le sinigle I irget. apithill

We will ignoitre tile itit Iti't tel issuie fo r a niottient anid sketch how
wi wititd imiplemen'it stome 'tf thei iiit - i ali tdata strulcturtes atid aigo-
nitlins. For ally part icuilar target we tmighit first set tip (lie access nlode
anidi op~eraind class cliiumteratijolts. For e'xamitpie we coutlit itaye:

type access modeilt is ( r- a, r- v, x at, xv, lit);
type operanid class is (oca, orbi, ttcc, ord, lit)

160 Annual National Conference on Ada Technology 1986

IL



Wve tIliglit have the itfoliliatioti oil access iitcudes anid operand class-es Now lets consider what~t somtte tode mighi loo~ik like to test whethier a pat-
ini arrays, of record,,. The lec laral touis and objec ts miiighi, be: terli miatchecd it BILL (ice. We will prezetit a fuic tivii wich.I will la;ke

two pai-amieteis thle trtee to mnat cl and the start ,tf the pat terti Thle
type access iiiode record is recoirdl fitntction will returin true if tile trtee fiatcdis a pattrn Thiis futi l

is direct :booleati does no~t check whethli thle restrict ions at th lend of at pattern are sat-
eticl rectird; isfied (whlich is reqiried for thle whole pat terni to miatchi) . It should be

emtphiasized that thle code below julst ,ketldies whtat thle funict ion miiighit
type access-mtocle set is array ( ai, is iiode ) of booleau; look like. The fri c tiou relys oii several mtore primtiv e fii lictioti5. We

assume Last-C hild retutins ( lie utttbe- of cltildrei iven tle 1B1LL itodei
type access moicde -array is array( access miode ) of kinid. sitmilarly, cliild (i , tree) retitus thle I'"' cliild of tile ice. Tile fit ttc-

access Itiote record; tioii inteisect, AitIns ret tints trite if its two, arguttucts (both access tmode
sets) htave a iOlt-t11iull iuelsec tioui. C 'ou1tainlS iiect ret tilts true if its at--
guntt coitatits ait actess- mode which has is direct equial to trite. The

type puitranid class record is re, ord variable pat tern itidex is a g lolia I variable reptesenittiig Ilite next pat tern1
cotitailts :access iticde .set; toketi to check. It is advaniced ity tlite f'ititt advatice patterni itidex

end record; whten a patterit toketi is that chled.

olteratid-itfo table :array (operand class )of funtct ion tiiatcli(

operanid class record te lbl~oao
oca ((~a~ttte otlersfahs)),) returni booleati

ocb => ((r v ->true, others >falsc)), begiti
occ -> ((r- a ->trute, otliers-ralse)), case tioce(patterniidex).tokei is
occl -> ( (x v >true, lit -trite, ot hers >false)), whltei bill >
lit =>s ((lit strIte, othiers >falIse))); if bl-bill."= (tuode(pat tern juidex).kittd,

access utode itifo table :access tmodhe array advatl~iepateti ithen;

r-a (trite), for i I . LI is indeatx;ildb il.Ktt~rc

r-v (true),fo I

xa ~s(false), loop
x-v ->(false), if tiot tuatcli(bl bilH.Clilii(i,tree)) thlen

lit =>(false)); returin false;
cnd if;

culd loop;
lit the actual imtplemtetitat ion, the tables are ini bodies anid fri ic tiotis retutin trrue;
are dlefinted to access thtemt. else

Before definting the dlata struictutre fr-a patternis, we define somte pre- returti false;
litiitary types which will be tiecessary fi il ealinig with patterti records. cnd if;

whetn operand
type triketi type is (bill, restriction, operatnd, etiimark); if ititersect .amis( bl -bill.fHtattset(tnee),

tyerest rictioni type is (au it Val); opieratnd itifo .t ahle(tiode(pat tern -ranige).
type salue, ;oper-atd Jiaite).cotitaitis.) thlen

type f'intaltligit is new ititeger ranige 0 .. 2; adhvatnce pat tertn -inidex;
retutin trite;

elsif cont aills direct (operaic itifo) tode(
''lt, palertis would 1, be set ltp as ati1 array tof records, pat tci ruautge).op. ratid iatte).cititaitis) thetn

type pat tetil ranigc is new iiteger ranige 0t .. nitumber pat rioiles; advance patti r t index;
retutin trite;

ypie pattint record (tiikeii toketi typte) is teciord elsereunfl;

case okeu s cud if;
cas e l hkill s whltet rest rictioni >

kinid :I illill. Kitti; et urn fiiarke

whltet restrictil >i het tend false

restrict ion litalli t estrnct ott type; etnd case; rtrlfle

palai i initeger: The mtatch futnct ion i tics closely our delinhitijont of miatchitig lire.
pita iiop itit eger> setitecl above. If the pattertn tokent is a bill toketi, the check if the

i,raitil namte : o, iidl cLaSS; BILL iide kitid cot-responds. If they inatch, recursively check if tile
foma fraldgi;cliildreti miatcht. The recutrsioni ends whteit we reachI at iopernd~ t oken.

when ia en fiart~t i>gi The test for mtatchinig ait operandc inivolves first clieckitug if tilie BILL
w lieu etiltiturk > node anid the operanid class have alt access, mtode itn ciitoumo. If t here

eldrs;is ito coittmoo access miocde, a c herk is tmtade for alt access miodle wichI

direct ly accesses a register. The ttatch futnct ioni as presetedi doies not

typ pttrnaiayismra tpa~e rite f hieck ally restrictiolt tokents which iiiiglt follow thle lill a itt opeil atd
y P atter1 n ta isreyoartdci atg tokens. 'i'tee w ould be checked by the sribprogna mt w hichi c alledi mt a tl

pitted rc,,rd ;if muatch retturtned trite.

pater :paten rry;This sectiona has sketched orut ti. itatrtitig algorithut empi~loyintg
patteit ptteri atray;a target, depenidenit approacht.

Annual National Conference on Ada Technology 1986 161



Tile tittilti-target appiroachi imiiri" It). cit (lile , ' pltterniii.iti",

jtii'-.taddressZ -~ pat tena ddaz);

targit depenitdentt. Ii this .soItiol w' will 'law ]low it wouild liltr,- I,, be
motdified to becom ti a i.rget I liltipletdeit.

Whal is targe't dieendentt abltl n ti -l vilitit -11[e i tipeitlts to iread the file "1tatterisiiii" and ti. place t linitdicated tiutibel of
sectitli" A citie look at thei miaicia fulltia jti will iniiilcate that tile bits (Size) at thle iitlijCatetl i(c a lit~ll diess). To ijisute that tilie

target ieipetiieiic it's ate lii t here. Fit t l o ok atl thle dclar at ions of iniary iltage t hat is read is comilpa ii 4v withi thle iiitly imtage be-
the basic i-er-id types (operatid claSs recatrid, access mtodle Jecoid, andt i hg writ tenl by tile ilarge( specific odie, we have ontly one dec la-
patteuil recoil) .t so di 'I revea Iaily t teget' tt-ite ie ts. TlIatget ratijolt of t(iie deftining types. That is, t here is oinly one packa ge
depetileies ate ilk It lie imiost basic etleatieri itls, itle ilitierbolitits of which definies tyipes like access itode set, operatad £iasar-ay, anti p~at-
raniges ( palt t ii Ii ktie aitdl ft tittal dIigit ) tie, rotutciit s of tite tobjects ( temr arraty. There are several packages w hri have versiots of tile' ob-
altcess liii tie itift talie, toperand di ass inifo t ale, arid patient). Eveii if jr is ( access 1mode inifo t ale, operand1( class info tallt, and~ pat Iteit).
otie welt ot itr11 plit iiig to ret arget the. otlipilel, sikte of thlest target First t here are thie copies w hict are iit iialIized at rn t-t ilie ill tle coin1-
dlependiteis ire- liktely to ), at Problemt dtii ig dlevieiopmiet. We fouind piler. Ill add ition there is at copy ill thle ftile writer for eac It talger. Thiese
Tha t it Was Very t dfit, tilt to get tile opierandt class anid access Ittotle target-dienttet ftil' writel-s are rim onlce tot prtodutie al timiage of thle

eiitrit.tsjjust right . Eacha titme tite entutmerat ions were chtatigedl object which is apiuropiate for that target. Each of thiese ftle write],
silis aiiiial retittpilatiotis were ietjitired. "witise tie saute set of packages that the comtpiler "witits" to definie

It is itoeilile to ilaliti tin t t'Spirit tof the developmienit sliowt tite objtects.
above, yet defer (or laitle) tile target lepetideticies. Wei desire to keel)
lie coilt~e tlimte strotig typet icteckinig atnd exeritiliot t ititi' ratige chieck- Sel ect hg Codie tit a case St atemiett

ing ttf Ada. We ire able to) tctiiidit thtese goals by reptlacng ctll-
ear-lier typle iii'clacit ii ti wit Ititle Vtriat shown ibelo w. Somte phases of the bac k-ettd itlist ront aint somte rode wIt icli is target

spaeci fic, event if thle aigoritlit is largely not specific to anty otie target.-
lypi' access tItoile biase i 1!,. cilit egit; Trhe foliowhiig apptoacht deals with Ithese phases.

sutbtype access tmodle is access ti ide base ranige (The jtitip opt imiizatiotn phase is at goodti examplile of a phase which
t0 ., access mte base (T(U ot tilit access itiodle) ; titust cotntatin somte target spec ir code. The jum tp phase scants itistrutc-

tiotis itt tile CODE itermted iat-e lanigutage searchintg for thlree sets oi
type operatnd class itase is new jil tegen; target itndepetndenit palt tets:

suthitype oiperand class is ipriatiti class base rainge ( cliajits of jitilip iitstrttct ions

I) .. o peran tii lass Itase ('rc 'r.ikn o tperanud cls) (lread codic

ty li ftritaI ldigit btaste is new iteger; * a cotnditiontal jumtip itist ruction ill tied iat ely foilowed by anl taict-
suibtype formtal digit is foritual digit base raitge clitiottal jtttmp.

ft .. frmtal idigit _tase(TGT.itti -frmtal digit)); To find the patternis, t 1e aigovitit i ist distiniguisht cotititiottal atid
untconiditijonal jtt ttps frotm thle othIer itistriuctiotns itt CODE. Titis d is-

type tiucotist-raitie access tmodie set is array titictioti is tar-get, tdepetndet, as it itnvolves lookitig at the oprotlde aiili
access mtode -base rnige < > ) of itooleati condciitionu code iii tile intstrtuctiotn.

Jumtp optimiizatijolt's tranisfortmatiotis of the CODE ale both tar-
subtype arcessitiote set is tuncois traitted _acce.s iiiodeset ( get depentdentt anid indepenodent Tile first two optimtizatiotns are target

access tiode
t
first .. access-iiiode'last); intdependcenit. To eliinitate jutip chiains, thle second jutitip inst ructijolt

is deleted anud the first, jumpi~ itlstruttioit is chianiged to poitnt to tile
type it tionlst raitl lte paltd class -array is array (titimat e destinat ionr of t(lie jttump clhaint. The strtct tie f ifle CODE

operaiciclass-bzise ratage --. of iiperatttl class record; Ianitage a llows the label operandit of thle iti in tstructiont to becitatiged
by target iiideteitdentt codte.- Dead code elimlintation i nvolves ottly delet-

su1btype opeiruati class array is ilig imsrtitmils atni is alsio t aiget ititlelteidet. it-Te t itiril optittlizat itt
it iicttist raine iteti a l td i-lass ,t ray) reqitirt's someit targe- depetndenit code to itivent thle coticit iottal jtump
otperantd tlass'itst .. tiperatli 'lIass'last ); ilsirtici io. De'letinig t(lie untcondtliontal bratn-it is tatgt-t inidependet.

Onuce tiie tat-get ii'eilt'tut cotde is ieleii ieil, it Itos be isolated
opierandi itifitaitle : opeian iiiL. a- riay; itt. sep~a-at i proced tiree. Thte lilt tlifare iii t lie Imt-taetitites will be Visible

We have jut rotlire-i ;I litw paickagte'' l'T Wi icnltails a ftiictiit to tile shiaved target intiletdeti codi', atnd titis titlst lbe wit' etiouiglt
fit tacit targket Spitific titlst lilt ( t1titi aite's modtie, 1ititit oprn It a I SSi tlss o accotiuo iloate all platiteil plaitied targets. We place(] all of tie
tit1ti1 ptal itities, titi 1t1tu1 fitritit digit zj 11Iftlitti wet-i oii tote t argoi . target dependtetnt prtic elties fot tile jumpt~ phtase itto a set of separate

tlt-' baodyof T(I m'' iighit joist ti owii .ti rtis fiii 'it-it if t luset' ltstahits, packages.
This wtld liii iii tiizi tie ret itit idtil I(, , -I i t ii i i iii ti ha ie gi' basic tetti- Wet ilt lemlvitlv (i lie I t aget deitei dewt packiugi' itt t wi' layers. Ttie
illet-at iiil. We didi si tiliig a lit tl Itdiffeit' lit (b'it 11lIti liettt'). Thei first layet is at pai kage calleid 'l'T Jutttp. It's specilicat otti cotitaitis all
botdy if 'l'C' read, alt tixtetl ilt' Iio get thut, vallties if t Itie i-iitstall o. f t lie target depiitendet pt-oct''ltitts fi I- t liei jttiiip phausi' All1 t-ele-ettces

* ~~~Ill t his way tile ranig"s tille it' tilitenit ions ar' Ilt I.. bittil mit il rctm- to tat-get depteiit1ttt roittites are mittd ti t his packag'. 'lThe pr"ceile
itiler execititit tlittle. Ifemte a switcht to tilt' comtpilet ttiggeis witlii biotdies itt TGT Jtimiji contsist of aI sitigli' tise St atemtenit widt calls a
inpult lilt' is leal atuil lutie whticht set if bltiits at-'e slittiti. spec'tific ittpleittat iol oi f tile i irget leptttliitut iott- btased tit a

To stiilit itlly taigits it is 11"t sithi tit I jnst chiange tite, globa,;l target idetti ilier.
boid~s tit etiuttrat juts. Theu ruitteils of tiiiiilijtits like tupelildti - rhe~ Secoiti layert u-iaisist s if the tiargit Speucific ittpleeittationt

1
t

iitfii tatile, acitiss Ititile iufii I alt, iiat tulturi itals, bet inti alizedt if t it(' I argit deltl lt iti jne. Euach tait-ci's itttlliitllat ioi is ill
by reaintg a lilt. ltutute tt1 filtiiilt vXi lit joti l itte lii'lt-rgit dei.- I septatate jiatkagi'. Tue nameti if each i ;igi't intititmetaliut package
tut -atgi's atnd oiij'its tie llit jili.d. liegilts with aI prefix that itentifie's tile tatriiu. vig. TI 37f) itlilp of'

Wewill lint-lbI li-stlou. ]lotw t lei oiluje IS If., ittit iaijedi. Ka'll oib- TI 1 750tA itit. 'Thii sp, ifiatiiiii if ties. tIckages is iii it-ial 1'. i lei

jeit is iitializedh l'y teatlilig its ittuty ittage' For extlipie wei'ts"i' a Specificatiotn of TCIT htititi lThe pactkotgi hoies u- tadl fte anu l

162 Annual National Conference on Ada Technology 1986I

%.i.. A



The packaige pidixs "T61'"' ,r.370 ", "TI 1750A ", ect. are used package T SP'(TRG Tree Walk is

hbroaghloiit tile comitpiler to idetiy thle switch package aiod the varis

itipletittit601 It isL trivial thleft to locateto tile ttret depettdenit paits dependent procedulre, call : const anit booleani :-- true;

of tile compiler. We cail add new tat-gets to thle jutmtp phase by add inig procedtire walk .jircedmrc all ( lree : bl- bilI. locator

a target imiplemteintat ion package to thle second layeri and itodify inig ( lie

case staiticit ts, ill TG..T JRimip to inicluide tilie ntew target. dependen.'it case statemlett cotist ant booleaii: false;

W ith his strucLitre we c atl easily build a sinigle target comtpiler. pro~edu lre walk case, stat ettitt tree hl bll .locator

Fo~r examllple, to build at 370) only version of thke jimiip phase, we sib-

stittite thel body of T :170 Jutip for thle TCT., Jiiiikp body. sitice the end T .SPC('TRG Tree Walk;

proc edtire specificat ionis are idetntical, t his sulbstitiitioii only requires

lhainging the ttiite ,,f T' 370 Itittp to 'l'(;T Jumip. This subs t ittiotn

also, breaks tit li nk bet weeni the ot her target imitplemtenltatiotis aid tli Tire package boody of TC;, TP.lree Walk ii tializes thle booleani variables

test oftitlie ba k-en coe iohe agt it Ijleit it ioiis will ino loniger ill its specCificationt fromt thle conistantt iii t(lie selected target package.

I., inc I tided iii t lback-end exer tit able. As itt thle case appro achi, thle procedires ill T(T TI rece Walk are simply

case stateimenits that call thle selected target package.

ieetig code onily wlteit nlecessary The shared procedure fir walkiing ptriii cilre rall no fidlrt iter-

rogat es tilie booleati vatiialie itifT( ' Tire Walk Mnid ItetIi eit her calls

Ili It t vti de anid ii itegeni, sotite Ii.':i of tilie B ILL tree are walked the target dlepeindeint iotit i or exert!itvs tie( sli rt-il rod':

Ii> hanidi wtit tei code jttsteail of by the liattert mtitarler. The liatid poeltewl rciir al(te dbl rtt)i

writ toit tree-walks process BIL .. ti de thItat c ati ot be expressed ill proeg uewlitieaecl i~:Hbl~l~tr)i

piatternts. 'lThese inicltude BIllA titoIts whose resiult itig cile is dependienit be if C reWl~lp itti iiceti altle

oit thle rtiittitite mtodel of tie target. For exampille, t(lie processinig of a f' TTe-ak-ejdetpoeuec11lf,

procedutre call inivolve, kntowleidge of flow part tiet ets are passed. Tar-- 'l'CT Tree Walk. walk proctil itre caill;

gets whIichi have sitmilar riati me imocdels c ant hare thle same tree walk i'lsi'-cd u ticsiigliritr al

prcicedutres, whIiile cit her targets mtitst hiave seplarate trtee walk proce-cdcm.roe.ig1 iMl- al

ilties. 'Fie tecliiile (if selet itig icode otnly wileti itecessary ideals withI aLcciird(iitg it stial tiltlilte tiocle.

sititatlioii w here at giveni prticedture iiay be target (depenidenit. cl if;

We hiave delitiec a st andardl ritititiie mtodel for procedture callIs endi walk procedutre calls;

ill thle Ada comtpilers. Ili thle stantdaird imodlel , ai certatin ni uber of

paramiteters, and the static back chiti (SB(') are passed iii registers. Whltet we butilid a sitigle-tazrget back-etti, tilie itiilecl code will be

- Addiit ional paraiiett'rs are plassedI itt a lck called tile stbprograii elitutittated alit omatically. To bitild af sinigle target foir thle special

commnicttiat iiit area (S(A). The address of tile S('A is also passed target, we replace thle specificationi andi bsody cif 'TCT Tiee-Walk by

* ~~~iii a rtegister. We hiave imiplemtenitedl at siared procedutre for wal kinig T .SI'(' '['B Tree-W'alk. The liooleani variabsle depetudtint prcicedtire -

pr oc e( l ie Civll tti'es arc ord ig t ii this imodel. TittitbeofIaiiter call becomtes static, c autsintg thle i tiseil code iii te wproced ure walk--

registers antd t heir spec ific issigi tetit 5 are all paraimet erized ill ( lie proced tre call (to be remiovedl iy cista it folditig anid (lead code cli i-

BI1.LL. As, long as, a target shares t his rittutitue mtodel, it calli use tile ittat iou ill tilie host Comtpiler. Thus, t ite sintgle target back-etid for thle

shaed oute.special tarvet will conttaini ottdy the code (ot w alkitig pitic educe caills in

Onie of onr targets hias a very of i 'rent rtt iiiie moitdel fromti or tile specialI way.
defutltl ititiel for priicedture calls, wht It iakes advaittage of af special iii-

strltct iou. As iii lie stanidardtlmittitti miodiel, s,,file uttutiuber of paramei- Istgtagtiilleul't ~il i rttdpiiei a

ters are passed ill registers. Hlowever, adiionial psaramteter.s are passed~ -lii lag.1__ eell-i-I(o. ili ,.i o(dpnetwl

via argtittnit poiniters which fiillciw tilie special inistrutiott. 'Tis Iluodel

differs ettotigi fromt tilie standiard t-o reqiriie a separat e ittIlpleitielittatioit. As citir littil exattilile of tile apiiii's %m' tttnployed to ittake af mti-

Optioutal target depenidett procedures are iimplemuentted ill tile target ciottlipiler we will ciiiuSider I]' I" - 1, i solitiliouj phase. Branich

sate miannter ais ill t(lie case statemueitt approach. We first iidetiify resolittititi process theli CODEh tel'- i it" Itt lie prcigruu Ili y chioosiing

allt handi roiled tree-walk jirocc'diires that tmighit lie target iepeitdettt. be~tween't shirt andi lotng jittups ;is w.,-i'1y 1 .... l'inhg litet .als. Iltilditig tIlie

We tlteti imtpli'men'tted (lie target depetnieint rouiities ill t lie two layer exceptint miap, andi breakinig th o- li' i l .eali itito rliiks as ntecessary.

* ~~~approachi witht a switch rotiili te at thle top layer atnd target depeti. Thlere is a tretuiettitius diversity atli- - t aigets rittieriliig thtese tasks,.

tdenit imiplemtentiticts at tile secoini layer. Each specrific ation ill tilie For exit fi ie sotute taitget s dloR't I i a ltiii biet weeni short antd long

switch routtine has a booleati variabile which indiicate,, if d ie riitt nt is ittiillps. Ott siittt t argtts tliv literal .11'. p.-,' Itil fitle -ile st reatti while.

imuplemetted c thle speciieid target. Target i seeidi pec ific at ions ftill ct oit her tarl.gets t Itey ar .e pooill..I ill a1 fialtliillt, area. Most tar-gets

proitrtte calls wotldd be: c t11t relitiit' that t lit col lit. 6 u kit itit, fittttks.

plackage T(CT Tree' Walk is The appriacl we etp.titiuel foit t lii sit itit it was Iii 1 reate a;ItI~ck-
age of titilift- e tpiiii whithI t irgut 'It pi,4.1 illtt trice f ii li lititil

* cl~~~epi'tiiltlnt I 1riicetlire cII al : b1Itilt ;resiilittiiiilias h itili uiw ttt I .. m ic'w' ir ''iiiil n-1itics

* ~literal tabile, fte, ati u'xi'titig till,. ii I" a itulA 111. I t. ..i11itlt the'

piroceidtre walk case statuittii ( t iet, hI lilluimro of this pciteiltti). 'lit. titilitit-, I,.okit. il- i it.jiiia'li t ,

endi TG'h Trce Walk; cd tem "tii~lI ie [bI, 1

walk priict''ltt it'og sl is I.- 11,11d.iIttleli it

Anm~n c, ak na NainlConfrneo d ehooy18 6

-xei *-uthalp-...* tile*, %* bo*vl '.*odc I .... I ls.1t.I l~ ,I-f

nev ibe caled. f il, cii~m fi l. l n ft-Ii-u111I- 11Q

fi-imlmetd.TivfdlmngIve-.ik -.g 'tat . 1L111N



('o _" Ills il il

In seit ion 4 we di-s-Iis.ed lie goal, f (ofonstmtlijg it ilti-targeted

'onipiler A.s dis ussed there, a major goal was it) reduce lie cost of
'el argelilg ,III co tpiler. This go Jl lm, beeit achieved. IRelartgts are

now possible wit hiu a fraction of Ihe effort req tired previonusly.
Tis e dewavor woulId not have been considered successful if tie

pet-forlllmlice of the compiler were ,igi ificaily worse thil a single tat-

get c npiler. hiI fact, th e resllt hav. beei very encoiaging. The

niulti-targete,l conupiler seemis to be sevitially as fast as the single

targeted coipiler alid only about 1i ) r cent larger.

H efer'ill e

11 .(o, W. A. Wulf, A. Eva ils: Jr and K .1. Butler (editors). DI-
AN A, Ail hiterfitdiat, Liguuag, for Ada (1l6evi~ed versioI). Lec-

file Notes in ('otlpuiler Science No. 16i1, Springer-Verlag (Berlin,

Heidelberg, New York, Tokyo) 1983.

[2; I.R. Nestor, W. A. Wulf, D. A. Lamb. IDL-lterface Description
LalgUiage:Forllal Definition. rcinical Repolt ( U-('S-81-1:9.

(arnegie-Melloi iniversity, (ollipuitel Science Departll.nt, Junie
1912, Itevisio, 3.

!' 164 Annual National Conference on Ada Technology 1986

Th,,-. .



Automated Drawing of Data Structure Diagrams

Prabhaker Mateti & Gerald M. Radack
Department of Computer Engineering and Science

V Case Western Reserve University
Cleveland, Ohio 44106

Abstract ilar to those found in text books on programming.
These diagrams are generated from the variable and

We describe the architecture of a subsystem that helps type declarations, a few hints about the composition
draw data structure diagrams similar to those found in of the diagram, and the memory image that contains
text books on programming. These diagrams are gener- the internal values of the variables. The hints are
ated from the variable and type declarations, a few hints about the abstract relationships between index vari-
about the composition of the diagram, and the memory
image that contains the internal values of the variables. ables and arrays, between pointer variables and ob-

Our drawing process consists of three stages: construct jects pointed to, and whether the graphs are indeed

an abstract figure that gives the topological constraints trees, etc. We are currently in the process of imple-

among the various figure elements, determine a display menting this subsystem as part of the Unix debugger
representation that specifies in a device-independent way known as 'dbx'. This work is part of an effort to
the relative sizes, coordinates, color and fill texture for the build a software design environment named CaseDE
figure elements, and finally produce an actual display from [Mateti et al. 1984].
this representation using a device-specific driver. The
hints are about the abstract relationships between index
variables and arrays, between pointer variables and ob- 2 Data Structure Diagrams
jects pointed to, and whether the graphs are indeed trees,
etc. Figure la is typical of data structure diagrams (dsd).

This drawing subsystem is being presently constructed, The declarations of the relevant variables and types
and will be incorporated into the Unix debugger dbx. are shown in Figure lb. This diagram is hand-drawn

based on the layouts indicated by the drawing algo-
I Introduction rithms discussed in the paper. We will be using these

figures as running examples.

For a variety of psychological reasons, many people
prefer pictures to textual descriptions. In the con- 2.1 Basic Semantic Concepts
text of programs and data structures, figures become Connected Diagrams
all the more important. Indeed, we do not know of
any text book on data structures that does not use Often data structure diagrams are connected; i.e.,
figures extensively. In a given section, they are usu- there is a connecting line from one (part of the) di-
ally concentrating on one data structure at a time, agram to another (part of the) diagram. Examples
and much attention is devoted to the composition of such diagrams (see Figure la) include arrays and
of the figure. However, the situation becomes very their indices, pointers and pointed objects, etc. Some
tedious even for moderate sized (say 1000-line long) of these connections are such that they cannot be de-
programs. It would improve our effectiveness as pro- duced from either the declarations, or their values:
grammers, if we could automate the production of that i and j are used as indices of array A can only
pictorial views of data structure both in archival doc- be deduced from the executable statements but not
umentation about the programs and during the de- from their declarations.
bugging phase.

In this paper, we describe the architecture of a sub-
system that helps draw data structure diagrams sim-

Annual National Conference on Ada Technology 1986 165syte taepsradtatucurdagasm



:- N1 ..- 7. W . -

Composition of Related Diagrams Generic Diagrams

We often wish to see together the diagrams of several The diagram in Figure la is a pictorial view of specific
'related' data structures. While we have defined con- values that the variables had: i was 3, j was 6, and the
nectedness among diagrams based on programming first element of A was pointing to a list of three items,
language concepts, we leave it entirely to the pro- etc. A generic diagram, on the hand, aims to illustrate
grammer to specify which diagrams he wishes to see a typical situation for these variables without being so
together. abstract as to suggest nothing; Figure 2 is an example

of this. To produce the most 'general' generic diagram
automatically is a futile task for the declarations in a
typical language has too little semantic information.
For example, the declarations of Figure lb do not say
whether shared list structures are possible in the lists
pointed at by the array elements.

Derived Diagrams

We consider certain diagrams, e.g., bar charts and pie
4 ,charts drawn from numeric data, as derived diagrams.

One might also think of the binary tree hidden in the
array of heap sort as a derived one. Clearly, this no-
tion of derivedness is a subjective one and depends on

i 6 2how much computation is involved in producing the
perceived diagram from one that immediately sug-

Igests itself as a result of our familiarity with tradi-
tional data structures.

In the rest of the paper, we do not consider generic
and derived diagrams.

Fig. 1a 2.2 Display Considerations

Good Diagrams

An important question that we must discover answers
to is "What is a good diagram?" Answers to this
highly subjective question depend on the information
content, and the ease with which it is communicated
as well as symmetry, relative sizes of components, and

type NODE; traditional ways of drawing. Although it will require

type PNODE is access NODE; experimentation to devise rules that capture one's no-
type NODE is tions of "good" diagrams, we can state some obvious

record taboos here:
info : integer; (1) Arrows should not cross figure elements. (2)
link : PNODE; No two displays of figures should overlap. (3) The

end record; appearance of variables of a given type should not be
inconsistent.

var In addition, the kinds of traditional diagrams weA aa8are used to seeing in text books and articles play aA : array (1 . 8) of PNODE; role.
i, j : integer; Whenever pointers are used, we have, in general,

a graph structure. There are many ways to draw a
graph data structure. In order to make the graph
easier to comprehend, we would like to reduce visual
complexity. The number of edge crossings, average
edge length (relative to the size of the picture), the

166 Annual National Conference on Ada Technology 1986

V"--.



symmetry of the picture with respect to rigid rota- 1. Nodes at the same level of the tree should lie
tions and reflections have all been proposed as mea- along a straight line, and the straight lines defining
sures of visual complexity. Figures 2 and 3 indicate the levels should be parallel.
the variety possible in the layouts of graphs. 2. A left son should be positioned to the left of its

father and a right son to the right.
3. A father should be centered over its sons.

S/4. A tree and its mirror image should produce
drawings that are reflections of one another; more-
over, a subtree should be drawn the same way re-
gardless of where it occurs in the tree.

Fig. 2: K4 Customization

Though we do not yet have a complete set of rules for
producing aesthetically pleasing figures, we are confi-
dent that many common situations can be captured
by such a set. In spite of this, it is inevitable that

- _. users will find occasionally that some fully automated
drawings produced by our subsystem are unaccept-

,. able. For example, they may wish for certain arrays
to be drawn vertically, rather than horizontally. Our
solution to these problems is a hint language to influ-
ence the layout and composition of the diagram.

=" Fig 3: [Wirth 1985]

2.3 Subsystem Considerations

The drawing of data structures, whether fully auto-
mated or not, is not an end in itself. We see it as

Binary trees could be handled by the same algo- part of two most time consuming tasks: debugging
int s od be H eeby thes alga- and documentation. Both these tasks impose special

erithms used to draw graphs. However, trees occur requirements on the drawing subsystem.
verYt frequentlYo in computer specialtreatment, and areimpor- Debugging requires that diagrams of acceptable
tas atvenough oserve a l tratmnt, a there quality be drawn fast in real time as we debug and
is virtual consensus about what constitutes a 'tidy' monitor the execution of the program. It is even nec-
picture. Wetherell and Shannon[1979], and Reingold esr ocnie nmto ehiust ipa h

and Tilford[1981] list the following requirements of essary to consider animation techniques to display the
aesthetics for drawing pictures of trees. Almost allDocumentation requireshigher quality diagrams drawn perhaps off-line and

4.% '.% well-drawn diagrams of trees that we have seen sat- incorporated later into the documentation. It also
isfy these requirements; obviously a layout of a tree typically requires generic diagrams.

* drawn to satisfy requirements beyond aesthetics may typclly reprseni iagram s.-',,t ... loo qute iffeent(se Fiure4).We construct a representation of the display gener-
look quite different (see Figure 4). ated from the figure in a machine independent way.

From this representation, we can drive most graph-
ics terminals and laser printers. Our representation

D(I G - "6- is a dialect of VDI (Bono 19851. We expect our inter-

CIL ro T face to the symbol table and memory contents to be

13 11quite independent of the host programming language,
a 0compiler and operating system.

i3 The Process of Drawing

There are three major steps in the process of generat-
ing the diagrams, which are sketched out in more de-

P "tail in later sections. From the given type and variable

Annual National Conference on Ada Technology 1986 167

,"

B ~ \%



declarations, the memory contents, and additional in- The computation of the independent figel corre-
put from the user that we call hints, we produce first sponding to each variable is driven by the abstract
an abstract figure, then a device-independent display syntax tree of the type declaration of the variable, and
representation, and finally the actual display as seen user-given hints. A standard file contains a schematic
on a graphic terminal, description of (1) all scalar types, and type construc-

tors along with their atomic figels, (2) the figel com-

3.1 Figure Elements position operations corresponding to composite type
constructors (such as array, record, etc.). In this con-

A figure element (figel) is an abstract object that cap- text, we associate with each access type an atomic
tures certain attributes of a dad. No rigid notions of figel (and separate the associated record type),a nd
dimensions, geometric shapes, color or fill-texture are consider the entire structure reachable via the point-
associated with a figel. The attributes are such things ers to constitute a single data structure variable.
as content, label, and descriptions of how the content So far, we have identified two binary composition
is to be displayed. operations that are basic: juxtaposition, and point-

Associated with each variable of the program is a ing. Other operations are combinations of these two.
composite or atomic figel, depending on whether the Juxtaposition requires that the two figels be displayed
variable can be considered composite (such as an ar- so that they are aligned along a chosen axis separated
ray), or atomic (such as a scalar). The figels associ- by a gap that is a parameter to this operation. Point-
ated with a variable are considered independent and ing is an asymmetric relation, and requires that in the
their layout (sans scale and absolute coordinates) is display there will be an arrow from one figel to the
determined independently of others, pointed figel.

In Figure Ia, the box containing the integer value,

3.2 Display Representation and the one containing the tail of the arrow are atomic
Having an abstract for the data struc- figels. These two atomic figels are juxtaposed to give

produced a figure the composite box representing the nodes. The ar-
ture, which gives certain topological constraints that row from one box pointing to another is an example
must be satisfied, we decide on the placement, sise, of yet another composition operation. Indeed, the
geometric shape etc. of each of the atomic and com- dsd shown in Figure la contains thirty atomic figels -
posite figels, and the visua representations for the eight due the array elements, twenty due to the nodes,
figel composition operations. and two due to the indices i and j. There are nine in-

Our global strategy for determining the display of dependent figels, one corresponding to each list, and
an abstract figure is as follows: Determine the display one for the array and two for the index variables. Note
of each independent figel. Enclose each of these in a also that i and j do have boundaries but were made in-
polygon and begin tiling a potentially infinite sheet visible, and their values were indicated by positioning
with these polygons while satisfying the composition them appropriately on the elements of A.
operations given in the abstract figure. The display
of the independent figels is similarly determined, ex-
cept that we expect certain kinds of regularity in the 5 Layout of Independent Figels
constituent figels (such as elements of an array, nodes
of a tree, etc.). We sketch our layout algorithms assuming that we

know what kind of a data structure (an array, binary

4 Computing the Independent tree, linked list, etc.) an independent figel represents.

Figels 5.1 Well-Known Data Structures

Figels have at least three attributes: a content, a la- Scalars

bel, and a description of how the content is to be The default layout for an atomic figel that corre-
displayed. The label of an atomic figel is usually the sponds to a scalar variable is a horisontal composition
name of the variable ( if the variable is atomic), the of the label (which is the character string denoting
index (if an array element), or the field name (if a the identifier of the variable), and a rectangular box
record component). The content of an atomic figel is containing the value of the variable. This value is dis-
the internal value contained in the memory location played according to the prescription given in the third
corresponding to (that part of) the variable, attribute. For example, an enumerated value is dis-

168 Annual National Conference on Ada Technology 1986

k6L %



played as an identifier denoting that value obtained Binary trees
from the symbol table. Reingold and Tilford [1981], Wetherell and Shan-

non[19791 and Supowit and Reingold19831 present al-
Arrays gorithms for drawing aesthetically pleasing trees (see
We consider the figels corresponding to the N ele- Section 2) while attempting to minimise the width of
ments of the array as independent, and determine the picture. We have chosen to adapt Reingold and
their layouts. Compute the smallest polygon P that Tilford's algorithm. This algorithm was intended for
can enclose each of the elements. Make N juxtaposed positioning nodes on a rectangular grid, where a node
copies of P aligned along an axis, and insert the k-th could be drawn within one grid cell. We are interested
element's layout in the k-th copy of P. The orienta- in positioning nodes on a real coordinate plane, so
tion of this axis, and the scaling of P are determined each "grid cell would be infinitesimally small. How-
by how the array diagram fits in with the rest, or is ever, Reingold and Tilford's algorithm takes as a pa-
controlled by a user-given hint. rameter a variable called minsep, which is the min-

imum separation between nodes. If we consider the
Records algorithm to be positioning the centers of boxes and

set minsep to the box size plus the desired separation
Determine the layouts of the component fields of the between boxes, then the algorithm will produce the
record. Arrange these layouts in a 2-D packing (see correct result.
below) inside a rectangle.

Linear l 5.2 Two-Dimensional Packing

Given a set of layouts of figels, we pack them into a
Linear list layouts are similar to arrays. Determine rectangle. This problem is related to bin-packing but
the layouts of all, say N, the reachable nodes. Com- since we are not interested in minimizing the num-
pute the smallest polygon P that can enclose each of ber of bins or some other quantitative optimization,
the nodes. Make N equi-distant, say d, copies of P we have chosen to use the following simple algorithm.
aligned along an axis, and draw straight line arrows. This algorithm assigns positions to nodes of the graph
Distance d is dependent on the size of P. searching in the breadth first manner. Since each

node has its own local coordinate system, we need
Non-linear lists simply specify a translation to relate its local coordi-
Do a depth-first search, and arrange the layouts of nate system to the graph's coordinate system.

the nodes of each forward chain along parallel axes as The following algorithm places a node X so that

for linear lists, and then draw straight line arrows for it is as close as possible to a given node Y without

these, and spline-curved arrows for the back pointers, its enclosing rectangle overlapping any other enclos-
ing rectangles. We can represent a position of X as a
translation to be applied to its local coordinate sys-
tem. Let rect(X) denote the enclosing rectangle of

Non-linear lists are nothing but graphs; however, cir- X. Consider the case where rect(X) is centered at the
cular lists etc. are so common that we treated them origin in its local coordinate system and has width
separately. The general problem of drawing graphs w and height h. Then the space of invalid positions
has received considerable attention over the decades. is obtained by expanding the rectangles by w/2 hor-
For example, it is well-known that graphs can be isontally and h/2 vertically and taking the interior
drawn using only straight lines unless self-loops are of their union. The valid position of X closest to Y
present. Such layouts however are often ugly and take must be on the boundary of the invalid region. Thus,
unacceptably large areas. Lipton, North and Sand- to find this position, we need only check points on

*f berg [19851 described an algorithm that draws graphs this boundary. This can be done efficiently (in N log
emphasizing symmetry. They characterize symmetry N time where N is the number of boxes) by sorting
in terms of automorphism groups. They assume that the coordinates of the rectangles and using a plane
nodes are very small, and use straight lines for edges sweep algorithm.
without worrying about edges crossing nodes. We are
in the process of adapting this algorithm for the usual
case of dsds where the nodes are of non-trivial size,
and edges should not cross the nodes.

Annual National Conference on Ada Technology 1986 169

V•



6 User-Given Hints where the a etc are the names of variables visible at
the present scope and denote the dsds for them.

We have aimed to reduce the need to control the dis-
play image by choosing default styles of display af- 6.2 Display-Specific Hints

*ter observing numerous diagrams of data structures
found in text books. For each programming language Diagram composition hints control what will actually
handled by our display system, there is a file of de- appear in the picture, and how parts will be drawn;
scriptions as to how various built-in and user-defined e.g., we may wish to omit field d from variable m.
types are to be displayed. A user may choose to edit Spatial layout hints state a preference as to where
this file to reflect his tastes, or temporarily override components of a diagram should be laid placed. Some
the default descriptions by providing hints along with additional examples are:
the declaration of the variable in the programming use bgcolor maroon, fgcolor (RGB 1 .9 .2)
language. Another occasion where a user may want bordercolor (HSV .6 .5 .7)
to provide hints is when the system cannot mechan- when drawing ml,m2;
ically recognize a data structure to be, say, a binary
tree in spite of suggestive names in its declarations, use shape circle when drawing type node

Controlling the appearance of the final image of the use line pattern pati when connecting i
dsd is possible at three levels by

(1) defining what parts of a data structure are con- draw A horizontally
sidered as independent figels,

(2) influencing the construction of the display rep- place x east of y
resentation of an independent figel, place m within .5 of q

(3) altering the mappings of abstract attributes of layout node as vbox(hbox(a,c),b,hbox(11,12,13))
figels to visual representations. align arrays a, b, c vertically

The particular form our hint language takes is an
active topic of our research; consequently, we have
stated these hints in free style English. However we 6.3 Data Abstraction Hints
expect it to be influenced by drawing languages such
as PIC [Kernighan 19811, IDEAL [Van Wyk 1981] and Data abstraction hints allow the programmer to map
MIRA [Magnenat-Thalmann and Thalmann 1981]. record/pointer structures onto certain common ab-

stract data structures. These structures are then

6.1 Figel Hints drawn in the customary way. This is a stop gap
measure - it does not support data structures imple-

Connection hints tell how variables are related, or just mented in a nonstandard way (e.g. trees implemented
assert that they are. This introduces figel composition with arrays). Once a design specification language,
operations among otherwise unrelated figels causing such as CaseDL [Mateti 1985], is integrated with the
these variables to be connected (usually by arrows) in debugger, these hints will become unnecessary.
the figure. stack p, top(stk), next(p.next)

We quite frequently construct structures with mul- (p is a dummy variable used in the hint only. stk is a
tiple pointer fields such that if we consider all the pointer to the top of the stack.)
fields they become an arbitrary graph. However, if linked list p, head(studlist), tail(p.next)
we restrict ourselves to a chosen set of pointer fields (The programming language implementation of lists
they exhibit more structure such as a certain kind of and stacks are identical, yet the abstract data struc-
a tree. tures are drawn differently.)

Figel compositional hints are used to express binary tree p, root (dict),
declarative procedures for composing abstract figures left(p.son), right(p.daughter)
whose relationship is not explicit enough in the dec-
larations of the data structure. For example: circular doubly linked list p, start(list3),
figure F5( a, xl, b2, cl, d) prev(p.back),next(p.fwd)
caption 'An Example Figure' centered
layout hints about the layout of a, etc., if any
end figure

170 Annual National Conference on Ada Technology 1986



-1-mil _9142 - ..

7 7 Related Work Ojeda[1985] uses the same layout algorithm as Mey-
ers, but he does not scale down the records. Instead,

The development of visual aids to support program- when a cell is too small to display a record, an ab-

ding is on the rise. The papers [Griswold 1984], [Lon- stract node consisting of a circle is drawn, and no

don and Duisberg 1985 , IReiss 1984, 1985 , [Teitel- children of this node are displayed. The user can in-

nity, and there are quite a few commercial products teractively cause such abstract nodes to be displayed

that pictorially support software development fully elsewhere on the screen. This method does not

Tha pioriallydspprbednthsotw a e r elom et meet our requirements because we would like to be
The work we described in this paper is related to abetdipyanntedtasrcuetoetm.

typesetting text (cf. "boxes' and "glue" of [Knuth able to display an entire data structure at one time.

1982]), drawings ([Kernighan 1981], [Van Wyk 1981]),

and also to VLSI layout [Ullman 1982]. In the context 8 Conclusion
of data structures, the work of [Wetherell and Shan-

non 1979], [Reingold and Tilford 1981], [Lipton et al. We described the architecture of a subsystem that

1985], and [Myers 1980] has influenced us. Previous helps draw data structure diagrams similar to those

visual debuggers include Incense [Myers 1983], DDS found in text books on programming. These diagrams

by our student [Ojeda 19851 and VIPS [Isoda 1985]. are generated from the variable and type declarations,

Myers [19801 surveys early work in debugging, and a few hints about the composition of the diagram, and

in particular efforts to display data structures. His the memory image that contains the internal values

system [Myers 1983] displays Mesa data structures. of the variables. This drawing subsystem is being

While these displays are in general impressive, often presently constructed, and will be incorporated into

they are unpleasing to us since his layout techniques the Unix debugger dbx.

are ad hoc and too simple. E.g., his display of a tree

would have nodes whose size decreases as we move

away from the root, and customization (except in very

simple cases) requires writing drawing procedures in References
Mesa.

Wetherell and Shannon [19791 and later Reingold Bono, Peter R., "A Survey of Graphics Standards and

and Tilford [19811 and Supowit and Reingold [19831 their Role in In- formation Interchange," IEEE Corn-

have formalized notions of aesthetics of tree drawing, puter, vol. 18, no. 10, pp. 63- 75.

and present algorithms based on these. Supowit and Brown, Mark H. and Robert Sedgewick, 'Techniques
Reingold indeed show that tree drawing minimizing for Algorithm Anima- tion, IEEE Software, vol. 2,

width when the nodes must be positioned on an inte- for Alorth A t Iw v

gral lattice is NP-complete. pp. 28-39, 1985.

Meyers 11983] lays out the records pointed to by a Griswold, Ralph, "Diagramming Icon Data Struc-

given record in a vertical column to the right of the tures," TR-84-5, Depart- ment of Computer Science,

parent record (except for records which have already University of Arizona, Tuscon, 1984.

been laid out elsewhere). The entire column of chil- Isoda, Sadahiro, Takao Shimomura, m.nd Yuji Ono,

dren is constrained to fit in the same vertical space "Visual Debugger VIPS: Visual Representation of

as the parent. This space is simply divided into as Program Execution," in Proceedings of IEEE Comp-

many cells as there are records, then the records are sac 85, IEEE Computer Society, Chicago.

scaled to fit the cells. Thus records will be drawn pro-
gressively smaller towards the right. With an infinite Kernighan, Brian W., "PlC-A Language for Type-

resolution display, the entire data structure could be setting Graphics," in Proceedings of the ACM SIG-

shown with this method. Meyers simply stops draw- PLAN Symposium on Text Manipulation, pp. 92-98,

ing records when they reach a certain (small) size. Portland, Oregon, June 1981.

This method does not meet our requirements because Knuth, Donald E., The TeX Book, Addison-Wesley,

we want all nodes of a given type to be drawn the 1982.
sme size.

same s. Lipton, R. J., S. C. North, and J. S. Sandberg, "A

Method for Drawing Graphs," in Proceedings of the

ACM Symposium on Computational Geometry, pp.

153-160, Baltimore, 1985.

London, Ralph L. and Robert A. Duisberg, "Animat-

Annual National Conference on Ada Technology 1986 171

IV - . -. - , -''. = ' &1 ,-



) ing Programs Using Smalltalk," Computer, vol. 18, Supowit, Kenneth J. and Edward M. Reingold, "The
no. 8, pp. 61-71, August 1985. Complexity of Drawing Trees Nicely,* Acta Informat-

Magnenat-Thalmann, Nadia and Daniel Thalmann, ica, vol. 18, pp. 377-392, 1983.
"A Graphical Pascal Ex- tension Based on Graphical Van Wyk, Christopher J., "A Graphics Typesetting
Types, Software-Practice and Experi- ence, vol. 11, Language," in Proceedings of the ACM SIGPLAN
pp. 53-62, 1981. Symposium on Text Manipulation, pp. 99-107, Port-
Mateti, Prabhaker, Frances Hunt, George Ernst, Ray- land, Oregon, June 1981.
mond Hookway, and Gerry Radack, "CaseDE: An En- Wetherell, Charles and Alfred Shannon, "Tidy Draw-
vironment for Precision Design of Software," internal ings of Trees,' IEEE Transactions on Software Engi-
memorandum, Department of Computer Engineer- neering, vol. SE-5, pp. 514-520, 1979.
ing and Science, Case Western Reserve University, Yarwood, Edward, "Toward Program Illustration,*
1984. CSRG-84, University of Toronto Computer Systems

Mateti, Prabhaker, "CaseDL: A Design Specification Research Group, October 1977.
Language,' techni- cal report, Department of Com-
puter Engineering and Science, Case Western Reserve
University, to appear in January 1986.

Meyer, Bertrand and Brad A. Myers, "Displaying
Data Structures for In- teractive Debugging," CSL-
80-7, Xerox PARC, June 1980.

Myers, Brad A., "Incense: A System for Displaying
Data Structures,* Computer Graphics, vol. 17, no. 3,

* . pp. 115-125, July, 1983. (Proceedings of SIGGRAPH
83)

Ojeda, Francisco J., DDS: A Subsystem for Display-
ing Data Structures for Interactive Debugging, De-
partment of Computer Engineering and Science, Case
Western Reserve University, August 1985. M.S. thesis

Reingold, Edward M. and John S. Tilford, "Tidier
Drawings of Trees,' IEEE Transactions on Software
Engineering, vol. SE-7, pp. 223- 228, 1981.

Reiss, Steven P., "Graphical Program Development
with PECAN Program Development Systems,' in
Proceedings of the ACM SIGSOFT/SIGPLAN Soft-
ware Engineering Symposium on Practical Software
Development Environments, pp. 30-48, Pittsburgh,
April 1984.

Reins, Steven P., "PECAN: Program Development
Systems that Support Multiple Views," IEEE Trans-
actions on Software Engineering, vol. SE-11, no. 3,
pp. 276-285, March 1985.

Schneiderman, Ben, Philip Shafer, Roland Simon,
and Linda Weldon, "Display Strategies for Program
Browsing," in Conference on Software Maintaine-
nance, IEEE Computer Society, Washington, DC,
1985.

Shamos, Michael Ian and Dan Hoey, "Geometric In-
tersection Problems,' in Proceedings of the 17th An-
nual Symposium on Foundations of Computer Sci-
ence, pp. 208-215, Houston, 1976.

172 Annual National Conference on Ada Technology 1986

* ' M-



Ada* and the PC, It's Time Has Come

Freeman L. Moore

Texas Instruments, Inc.
McKinney, Texas 75069

In an education oriented( environment, as well as a software
development environment, the need exists

ABSTRACT to make computer resources available to

all concerned. If Ada compilers can be
Until recently, Ada compilers have been made usable on a personal computer of
found on minicomputers and mainframes, reasonable cost, then some of the access
With the acceptance of the personal burden can be taken off of the mainframe,
computer as an individual programmer alleviating its workload for other
workstation, there is the need for usable purposes.
Ada compilers which operate in that
domain. This paper identifies some the Most business software for small
Ada-like compilers for personal computers systems is written in compiled Basic,
as well as the most recent developments interpreted Basic, Cobol, Pascal, or
indicating that validated compilers are assembly language. Most software for
available for personal computer (PC) home systems is in interpreted Basic or
users, assembly language. In both of these

. areas, the principles of software
engineering may be unknown and not
practiced. The approach taken may be one

INTRODUCTION of code first, and solve second. Pascal
programmers are generally better than

The Ada programming language has been in some because of the structure imposed by
existence in one form or another for the their language. Since the Ada language
past seven years. Over that time period, allows for more organization that Pascal,
it has matured from the preliminary the introduction of the Ada language to
definition of 1979 to its current the personal computer market could have a
version, approved in 1983 as ANSI/MIL-STD favorable impact on the quality of
1815A. Concurrent with the language software developed for personal compuLer
development process, efforts were also users.
taking place towards the development of
compilers and the necessary runtime The search for and status of current
support systems. The first Ada compilers implementations of Ada compilers for
were developed and implemented on personal computers is the emphasis of
mainframes and superminicomputers. The this paper. It must be realized that
current trend in software development this area has the potential for rapid
environments is towards distributed changes, with new product announcements
environments, moving away from the occurring frequently. The information
mainframe system to individual presented here is accurate as of the
engineering workstations. While it may writing of the paper, and will be
be that the power of some workstations supplemented with additional material
rivals that of some of the minicomputers, during the presentation as appropriate.
the real concern is whether it is
practical to develop Ada applications SCOPE
using a personal computer as the
workstation. The first validated Ada compiler was

developed concurrently during the
language specification phase by New York
University, and delivered on a DEC-VAX*

Ada is a registered trademark of the computer system. The second validated
U.S. Government (Ada Joint Program compiler was for the Data General
Office) computer System. I'- ther of these

Annual National Conference on Ada Technology 1986 173



computer systems is likely to be found in The Ada Validation Office maintains
the home of the average software a collection of programs (currently over
engineer. For purposes of this paper, a 2000), which must be properly processed
distinction is made between personal by an Ada compiler and corresponding
computers and workstations. Machines runtime environment. This collection of
such as the SUN and APOLLO shall be programs is referred to as the Ada
considered as advanced workstations, Compiler Validation Capability (ACVC),
whereas machines such as the IBM PC*, and is subject to change every six
TI-Professional, KAYPRO* are considered months. If a compiler does not pass the
in the personal computer category. In ACVC, it can not be called an Ada
particular, attention will be focused on compiler.
personal computers which are capable of
supporting their own compiler. That is, NON-ADA IMPLEMENTATIONS
the compiler runs on and produces code
for that machine. Cross compilers are In this section, implementations of
programs which execute on one machine "Ada-like" languages and subsets are
while producing machine code for a considered. Because of the ACVC test
different processor. There has been a requirements, these products can not be
substantial amount of work in this area, called Ada translators. Even though they
but this is beyond the realm of personal do not implement the entire language,
computers and is not addressed here. some are worthy of consideration.

KINDS OF IMPLEMENTATIONS An inexpensive possibility is an
implementation called AUGUSTUS by Edward

When developing an Ada compiler for Michael. AUGUSTUS is not a pure subset
a personal computer, one is confronted by implementation of the Ada language and
several choices. The first is to develop does not purport to be an Ada compiler
either an interpreter or a compiler. either now or in the future. Minor
Interpreters do not produce any machine modifications to the Ada syntax were
code which can be kept from one execution incorporated along with the restriction
to the next. Most implementations of of not being able to recognize the entire
Basic make use of the interpreter syntax. The translator and supporting
approach. If a compiler approach is interpreting system were originally
taken, the compiler can be make to developed on an Osborne I computer system
generate machine for the target machine, in Basic. As such, the compiler will run
or else generate a hypothetical machine on other microcomputers with little or no
code. This is the approach taken with modification. The source code has been
some Pascdh compilers and their use of published in Dr. Dobb's Journal (1983).
p-code. The p-code represents the
hypothetical machine code. While the use The advantage of considering
of p-code is attractive from the AUGUSTUS is really not using it for
developer's point of view for portability learning the Ada language, but rather as
reasons, it has the distraction that the a case study of compiler writing. It's
final product will execute slower than if use for teaching and learning the Ada
actual machine code had been generated. language is not recommended, except for
It is commonly recognized that the other than the simplest of home/hobby
writing of interpreters is easier than users. It would not be practical to list
true compilers, but again, there is the the limitations of AUGUSTUS because of
execution performance price that must be its great divergence from the Ada
paid. In the case of the Ada language, standard.
an interpreter would not be adequate
because of the language features allowing AUGUSTUS is just one example of a
for separate compilation of packages and product which may be more appropriate for
subunits. compiler study rather than language

learniig. Other examples from academic
As part of the development of an Ada institutions can be found in the

compiler, the compiler must pass the publications of the special interest
validation process as controlled by the groups on programming languages and
Ada Validation Office. This process will computer science education, groups within
ensure compilance with the Ada Reference the Association for Computing Machinery.
Manual. Thus subset compilers are not
permitted to be called Ada, nor are JANUS/ADA, from RR software, is
superset compilers allowed. However, clearly considered as the most widely
this does not permit the development of available and supported system
compilers for "Ada like" languages as approaching the full Ada language. RR
long as they do not use the name "Ada". software has been marketing and improving

174 Annual National Conference on Ada Technology 1986



JANUS/ADA for some time, and has compilers, TeleSoft has been developing
indicated their willingness to continue compilers on the DEC-VAX systems since
their development. According to 1981, some with cross compiler support
literature from RR software, several U.S. for other processors.
government agencies, including the
Department of Defense, have begun VALIDATED COMPILERS
programming with JANUS/ADA. It is also
stated that JANUS/ADA is being used by This paper has been written upon the
the governments of Canada, France, and assumption that the following vendors
Australia. The claims of the company are will have validated their products by
documented by the number of published March 1986; the time of the conference.
references to their product. While
JANUS/ADA is not a complete New York University
implementation, it does support a rich General Transformation Corp.
portion of the language. Some of the Alsys, Corp.
features of Ada which are not implemented
include: New York University announced their

personal computer version of the AdaEd
fixed point numbers system in July of 1985, with expectations
slices/aggregates of validation by November of 1985.
boolean array operations General Transformation Corporation plans
tasking to validate their compiler in the first
separate compilation with subunits quarter of 1986, and Alsys has a
generics pre-validated version for the IBM PC,
representation specification using validation suite 1.6. Further

information about each of these is
From this list, it is apparent that only presented in the following sections.
the more advanced features of the
language are not available. One would New York University (NYU) AdaEd
not experience Ada tasking, programming
in the large concepts, and other subtle The first version of the New York
points of the language but still, University (NYU) AdaEd compiler was
JANUS/ADA is a practical alternative to written in SETL, a very high level
learning a major portion of this exciting interpretive language. Being interpreter
language. A major benefit of JANUS/ADA based, the performance of the compiler is
is its error handling, both at compile less than outstanding. Because of the
time and execution time. computer resources required, it is

generally not acceptable for any degree
The JANUS/ADA compiler is a of high volume development on a time

multi-pass compiler which produces shared system. NYU is currently
relocatable files. Compilation speed rewriting their compiler using the C
varies based upon the machine and language, with the intention of porting
resources available. All code generated the system to personal computers. It was
is ROM-able and re-entrant, stated in the Ada Information

Clearinghouse News Events on July 30,
TeleSoft* has the TeleSoft-ADK (Ada that NYU had announced the availability

Development Kit) including the of the compiler. No further information
TeleSoft-Ada compiler and various tools is available, although the compiler was
and utilities, available for the IBM PC. reportedly demonstrated at a conference
The system is based on a p-code in the fall of 1985. It is unknown at
interpreter. Floating point operations this time if the compiler will still
require the use of an 8087 math generate its internal machine code or be
coprocessor. The utilization of p-code, a native code compiler. Speculation is
rather than native code, saves memory that it will continue to use its own
space during development and execution, machine code, and that the translation
but limits execution speed. TeleSoft from SETL to C will show a 1OX

, also has versions available for various improvement in compilation speed.
*68000 processors and operating systems,

typically using the UNIX* operating General Transformation Corporation (GTC)
system. These 68000 systems are not as
generally accepted in the personal Again, at the time of this writing,
computer area and will not be discussed the product is not yet available but is
further in this paper. Hardware expected by conference time, March 1986.
requirements specify either a hard disk An earlier schedule had planned for the
along with 320K bytes of RAM or two DSDD compiler to be available in late 1985.
floppy disk drives, and 576K bytes of Plans now indicate an early 1986 delivery
RAM. In addition to its microcomputer date, with internal validation being

Annual National Conference on Ada Technology 1986 175



expected by December 1985, and formal is implemented using the 8087/80287 math
validation in first quarter of 1986. GTC coprocessor; however the compiler itself
is a relatively new company, founded in does not require the coprocessor.
1983 with the goal of producing Ada
products of exceptional quality and Although the introduction of this
providing excellent technical support for compiler is for the IBM PC-AT, its
its products. capabilities include generating code for

the IBM PC. One might speculate on how
This compiler appears quite long it might be before the compiler is

promising. An earlier brochure had hosted on the IBM PC. Alsys has produced
stated full implementation of various other compilers, including
representation clauses, along with Pragma compilers for the SUN and APOLLO
INTERFACE. A revised brochure indicated workstations, in addition to a DEC-VAX
that most of the features will be compiler. Alsys also has the distinction
implemented, along with the inclusion of of having the first cross-compiler ever
package MACHINE CODE. validated, using the DEC-VAX as the host

It is worthwhile to note that GTC with the ALTOS 68000 as the target.

claims to be developing their system on SPECULATIONS
an IBM PC, so as to have their
development engineers fully aware of the Will the future find Ada compilers
capabilities of the system it is intended for the small machines with only 64K of
to run on. Also noteworthy is the RAM? Probably not hosted on those
company's decision not to release a machines, but we may see more work in the
subset compiler. "In the spirit of this area of cross compilers. Ada compilers
valuable effort toward standardization, will have substantial memory
and despite the long time to product requirements, both in RAM and disk
release, the company chose to release storage. The development of Ada
only full Ada compilers and not subsets compilers for other machines will depend
of the language, believing this to be in heavily upon the demands of the market
the best interests of its customers." and what software engineers what and
Compilation speeds of 1000 lines per need. Pascal is widely accepted in the
minute are expected. A 8087 math academic and home markets, an area in
coprocessor, 512K RAM and 10 megabyte which the Ada language has not yet
hard disk are required. While this penetrated. If an compiler existed for
hardware configuration is not a minimal your favorite eight-bit processor, who
system, it does fall within the range of knows how the markets would respond.
what a software engineer might have,
although the cost of the compiler ($1000)
may be too much for the average home ACKNOWLEDGMENTS
personal computer user.

4 The information presented in this article
ALSYS was obtained from various vendors. Their

support in responding to information
Alsys announced in late 1985 their request is greatly appreciated. The

Alsys Ada compiler for the IBM PC-AT*. support given to me by Guy Dame during
This is a full Ada compiler that will be the research for this effort is
unofficially pre-validated under ACVC gratefully appreciated.
version 1.6 prior to shipment. It is
claired that the compiler generates very
efficient machine code for the 8086 * TRADEMARK INFORMATION
microprocessor family. The compiler can
be directed to take advantage of the DEC and VAX are trademarks of Digital
80286, in which case the generated code Equipment Corp.
will include 80286 instructions where IBM, IBM PC-AT are trademarks of
appropriate. The host for the compiler International Business Machines Corp.
is an IBM PC-AT with at least 512K RAM Unix is a registered trademark of AT&T
and a 20 megabyte hard disk, running DOS Bell Laboratories.
3.0. In addition, one full slot must be Telesoft is a trademark of Irelesoft.
available for a memory board delivered Kaypro is a trademark of Kaypro Corp.
along with the compiler. The board will
have approximately 3 megabytes of
extended memory. The target can be the
same as the host machine, or any IBM PC
(or compatible) running DOS 2.1 or
higher. Floating point in an application

176 Annual National Conference on Ada Technology 1986



BIOGRAPHY

Freeman Moore is a Software Engineer in
the Human Resources Development
Department of Texas Instruments. Primary
responsibilities include development and
delivery of courses in the Ada
curriculum. He has also participated in
the redesign and reimplementation of an
existing realtime software system using
the Ada language. Freeman Moore is a
candidate for the Doctoral degree in
Computer Science at North Texas State
University. Freeman Moore has also held
the position of Assistant Professor of
Computer Science at Western Kentucky
University and at Central Michigan
University.

MAILING ADDRESS

Freeman L. Moore
P.O. Box 801, M/S 8006
Texas Instruments, Inc.
McKinney, Texas 75069

I
Annual National Conference on Ada Technology 1986 177



AUTHORS INDEX

NAME PAGE NAME PAGE

Anderson, E.R .......................... 85 Lease, D. M ........................... 67
Ausnit, C .............................. 28 Martin, B. J............................ 100
Baker, P. L ............................. 51 Mateti, P.............................. 165
Bamberger, J.......................... 132 Mers, R. C............................ 104
Belz, F. C .............................. 57 Moore, F. L............................ 173
Blackmon, L. F ......................... 88 Pastuzyn, K........................... 112
Boebert, W. E ........................... 86 Pepper, W. S. IV ......................... 8

*Bolger, J. E ............................ 22 Perkins, J. A ............................ 67
Broido, M ............................. 42 Perkins, M. T ........................... 22
Buoni, J. J ............................ 38 Platek, R. A ........................... 84
Burden, R. L ............................ 38 Radack, G. M.......................... 165
Burton, B .............................. 42 Richards, R........................... 158
Burton, B. A........................... 114 Ritter, P.............................. 132
Canavan, R............................ 112 Rodriguez, T........................... 1
Carrio, M. A. Jr .......................... 75 Rudolph, R. S ........................... 96
Caverly, P............................. 112 Santhanam, V ......................... 142
De Bartolo, G.......................... 158 Schaefer, C. F .......................... 149
Dousette, P. J ......................... 13 Selwood, M........................... 125
Goldstein, P........................... 112 Setzer, B.............................. 10)
Griffin, L............................... 1 Walker, J. E........................... 109
Hart, S. R .............................. 87 Walker, R............................. 100

*Keller, S. E ............................. 67 Wilson, J............................. 132
Koppes, M. R.......................... 114 Zuk, M.M ............................. 83
Laird, J. D............................. 114

178 Annual National Conference on Ada Technology 1986

I~ Mill 1" K-----------, '1;-



NOTES

igr'1



NOTES

4

-i

-4



I! _


