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I. INTRODUCTION

The transient heat conduction in semi-infinite solids is an important
heat transfer problem. Typical examples are the heating by propellant gas of
large caliber gun barrels, impingement heating on a ship deck during missile -
launching, and solar heating of the earth surfa e. Solutions to these problems
are well known when constant thermal properties are assumed. Some materials,
such as type 420 stainless steel and type 4130 steel, however, possess therma.

*T properties which are strong functions of temperature as shown in Figure 1.
Neglect of this fact may lead to significant errors in heat transfer
calculations. This is especially the case when high heating rates are
involved.

When the temperature dependence of thermal properties is accounted for,

the heat equation becomes nonlinear and its exact solution is unattainable.
In the relatively simple case in which the thermal conductivity is

temperature-dependent and the surface temperature is constant, Schubert, et
a ob t a in e d a similarity solution for their one-dimensional solid state

. model of the oceanic lithosphere and asthenosphere. However, solutions for a
solid with both thermal conductivity and specific heat as functions of
temperature and subjected to a time-varying boundary condition have not been
reported.

In this study we consider a semi-infinite homogeneous solid with thermal
properties which have a power law dependence on temperature. Two types of

. time-de endent boundary conditions are p iscribed at the surface: a heat flux
Qw at0 and a temperature T+ To(1+ tt ). The power law representations

are often useful in many engineering applications. Utilizing the method of
similarity transformation via one-parameter groups, we transformed the non-

.d linear governing partial differential equation into an ordinary differential I
equation that can be integrated numerically by using any one of the several
ordinary differential equation packages. This method is simple and, above all,

the solution obtained in terms of similarity variables provides a broad
representation. Such an advantage is usually not obtained when the governing
partial differential equation is directly solved by numerical methods.

Using type 420 stainless steel properties for sample calculations,
solutions obtained are the local temperature and local heat flux at any
distance from the surface of the medium. In the limiting case of constant
temperature or constant heat flux applied to the solid with constant therma"
properties, a comparison is made with the available exact solution.-

Meanwhile, the significance of the temperature dependence of thermal
properties for heat transfer calculations is demonstrated.

1 H. Carslaw and J. Jaeger, Conduction of Heat in Solids, Oxford Univerity

Press, London, 1959, Chapter 2.

. Aerospace Structural Metals Handbook, U.S. Army Materials and Mechanics
Research Center, Watertown, MA, 1980.

3 G. Schubert, C. Froidevaux, and D.A. Yuen, "Oceanic Lithosphere and
Asthenosphere: Thermal and Mechanical Structure," J. Geophys. Res. 81, No. 20,
1976, pp. 3525-3540.
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II. FORMULATION OF PROBLEM

The equation describing the transient beat conduction in a semi-infinite
solid with temperature dependent properties is

aT a aT "
Cp(T) - - [K(T)-1. (1)

ai ax ax

Where T, t, and x are the temperature, time, and distance from the surface of
the solid, respectively. Figure 2 depicts the solid under consideration. The
density A is considered to be constant. The thermal conductivity K(T) and
the specific heat C p(T) are assumed to be functions of temperature in the
following form:

T-
K(T)- KoC [ (2)po TO T ,

T- To n
Cp(T) C C (3)ii):

where Cm, Cn, m, and n are dimensionless constants which can be determined

from the experimental data of a given material. K0 and Cpo are respectively
the thermal conductivity and specific heat evaluated at temperature To. It is
further assumed that the solid is initially at a uniform temperature T o .

+I X

--

0 K K(T

p p

Figure 2. Semi-infinite Solid with Temperature-
Dependent Thermal Properties
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Eqs. (2) and (3) appear unrealistic when T = T0 since at that temperature
both K and C become zero. Practically, however, when Kh- C - 0, which
represents the case in which the material does not conduct heat away and has
no heat capacity, the temperature will then jump up immediately when the
material is being heated. Thus, the singular behavior at T - To appears only
in a very short period of time and will have no significant effect on the
overall heat transfer calculation in most engineering problems.

For the convenience of analysis, we nondimersionalize Eqs. (1) through
(3) by introducing the following dimensionless variables:

H[
T- T K x C0 - , k = - , s C p - ,."

TO  Ko  L P Co
(4)

t a Ko
P 1-- , and t- where a --

PO  po a

where L is the reference length. Substitution of these variables into Eq. (l)
leads to a dimensionless form of the heat equation -

ae c ae
em-  + mem-l(-)2 9 - 9n " (5)

s 2  as Cm at

We now consider two types of time dependent boundary conditions
prescribed at the surface (i.e., at x s = 0):
heat flux Qw atb (6)

and

temperature Tw To(1 + tb* (7)

where a is a constant with units the same as that of heat flux and t is the
dimensionless time defined in Equation (4). The powers b and b* are
dimensionless constants.

The complete sets of boundary and initial conditions for Eq. (5)
corresponding to Equations (6) and (7) are given as follows:

A. Prescribed Heat Flux -. = atb

By replacing the left hand side of Eq. (6) by

8T
Qw -K(T) - (8)

ax '

. and choosing the reference length

12
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4 - - ~ - - ..4.... - .

KoT
L 0- (9)

a

we obtain the following conditions for Eq. (5):

-Cmem - = tb at s 0, t > 0 (10a)

6 - 0 at a - , t _ 0 (10b)

G 0 at a > 0, t - 0. (10c) _Lj

B. Prescribed Surface Temperature Tv - To(1 + tb*)

In this case, the boundary and the initial conditions are

.4. b*

0t at s 0, t > 0 (Ila)

0 0 at s , t > 0 (11b)

90 at s 0, t 0 (11c)

in which the reference length L can be chosen to be any constant value.

III. METHOD OF SOLUTION

A. Prescribed Heat Flux Qw atb

We obtained a solution of this problem by using the similarity
transformation via one-parameter groups. 6 After the transformation, the
number of the independent variables was reduced from two (i.e., t and 9) to
one (i.e., 7 ). The resulting ordinary differential equation was then
integrated numerically.

4 A.J.A. Morgan, "The Reduction by One of the Number of Independent Variables
in Some System of Partial Differential Equations," Quart. J. Math. (Oxford), L
2, 1952, p. 250.

5A.G. Hansen, Similarity Analyses of Boundary Value Problems in Engineering,
Prentice-Hall, Englewood Cliffs, NJ, 1964.

6 W.F. Ames, Nonlinear Partial Differential Equations in EnRineering, Academic
Press, 1965, pp. 135-141.
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In the transformation procedure, we first introduce three variables:

t'-td1 -a and 0- d(12)

* where d is a parameter,0a, and Ylare constants to be determined by using
the governing heat equation together with the boundary conditions. *-.

Substituting these variables into Eqs. (5) and (10a) results in

2a2 m (m18 2e- 22- m) 1  (rn-i) 86 2
d el -+md 0

Cn a, i C+1)yj 891
- d e~n(13)

02 -(ml)'I -bal b
-d C9me.~ =d t* (14)

ax,

To satisfy the invariance requirement of the transformation, the indices of
the parameter d in each term of the equation are set equal. Then from Eq.

* (13) we have

2a2 ( m + 1)'/1 a 2a02 ( m + 1)YI 01~ (n + 1) v1  (15)

* and from Eq. (14)

2 - +m )i -o (16)

Solving Eqs. (15) and (16) simultaneously gives

1.2b (17)

a2 1 +2b
-(m +) b. (8

Let

a2
A - - (19)

14



I
and

B--. (20) *

Then from Eqs. (17) and (18), we obtain

A - Ma + 1) - b. (21)

* Now the similarity variables can be formulated as

t IC (22)

We seek temperature solutions 0 of the form

e(s't) t f(77 $3f(O. (23)

*The temperature function f in the equation is a function of the similarity
*variable 77 only. In terms of and we obtain the following expressions
* through the chain rule.

B B-If A B-3 1  f-
at

~B-Af~ (24)
as

- ~B-2Af" (4

as2  
(4

where the prime denotes the derivative with respect to 77. Substituting Eq.
(23) for 0D and its derivatives in Eq. (24) into Eq. (5) leads to the
following ordinary differential equation.

f"+f[fI-+ (Cn/Cm)A,7fn- (25

- /CU) flfn-3+l - 0. (25)'

All of the constants C , CU, m, v, A, and B in the equation are known. In the
same manner, the boundary conditions (10a) and (10b) can be transformed to

15



fmf- - _ __ at '7 - 0 (26a)

Cm

f' 0 at '7 -0 (26b)

The initial condition (10c) is not needed for the solution of Eq. (25). In
fact, the expression (23) has satisfied the initial condition (10c).

In the simple case that both the thermal properties of the solid and the
boundary heat flux are constant (i.e., m n b -0, Cm - - 1), Eqs. (25)
and (26) reduce to

f" + (l/2)vf" - (1/2)f" -0 (27)

f -1 at ' 0 (28a)

f 0 at '1) (28b)

B. Prescribed Surface Temperature TV - To(l + tb*)

The heat equation is identical to Eq. (25). In this case we will choose
" a different set of expressions for A and B defined in Eqs. (19) and (20) so

that the boundary conditions (la) and (lib) are satisfied. Following the
above procedure, we obtain

A b*(m- n)/2 + 1/2 (29)

and

B = b*. (30)

The boundary conditions for Eq. (25) are

f I at n 10 (31a)

f 0 at ?1in. (31b)

The initial condition is not needed for the solution since the expression
(23) has satisfied the initial condition (l1c). "u

In the case that the surface temperature Tw constant, the -.

dimensionless local temperature e given in Eq. (4) has to be redefined as

%..0

4.T e T (32)

16
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in order to yield the same form of governing equation and boundary conditions

given in Eq. (25) and Eq. (31).

Eq. (25) vi' conditions (26) or (31) is ready to solve for the function
f and its derivative f'. Once the values of f and f" are obtained, the local
temperature in the solid can be calculated from Eq. (23). For the calculation
of the local heat flux, we derive that

? T KoT o

Q -K- -Cm(- ) tbfmf: (33)

.L=

In dimensionless form it is

q = -Cm tbfmfr. (34)

IV. SAMPLE CALCULATIONS AND DISCUSSION

We chose type 420 stainless steel properties for sample calculations
since their strong temperature dependence can serve to explain the
significance of the temperature dependence for heat calculations. Figure 1,

reproduced from Ref. 2, shows the experimental data of the thermal
conductivity K and the specific heat C of the steel. Both increase
monotonically with temperature in the temperature range indicated. The data
can be nondimensionalized through the use of the dimensionless variables
defined in Eq. (4). Taking To w 294 0K (700F) as the reference temperature,
the results after nondimensionalization are shown in Figure 3. The
experimental data can be approximated by the dashed lines which are
represented by

k Cmm - 00.0 4 727 where Cm - 1 and m 0.04727 (35)

p Cnen - e0.249 1  where Cn = 1 and n - 0.2491. (36)

These approximated curves are much better representations of the thermal

properties as a function of temperature than simply assuming that k and c are
constants. The following will present solutions corresponding to the two types
of boundary conditions given in Eqs. (6) and (7).

A. Prescribed Heat Flux Qw atb

With C - Cn - 1, m - 0.04727, and n - 0.2491 as given in Eqs. (35) and
(36), the heat equation (25) subjected to the boundary conditions (26) was
solved by using the Adams-Bashfortb method7 for b - 0, 1, 2, and 5. The

7R. Beckett and J. Hurt, Numerical Calculations and Algorithms, McGraw-Hill
Book Company, New York, 1967, p. 210.

17
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second condition, f -0 at 1/- , was numerically satisfied when the
calculation was carried out to 7 - 6. The solutions of the function f and its

. derivative f' are tabulated in Table 1 and plotted in Figures 4 and 5,
respectively. For comparison, solutions of f and f" for the case of constant
properties (i.e., Cm = Cn = 1, m - n = 0) are also provided in the figures.

Now the local temperature 0 in the solid can readily be obtained from Eq.
(23). Figure 6 presents the result for a simple case of constant properties,
i.e. K Ko, C = C and Q - constant. The agreement with the eract
solution from ef. 1 l.s excelrent. The surface temperature as a function of
time is represented by the dashed line in Figure 7. In another case of
constant properties, when the boundary condition specified at the wall
surface is time dependent heat flux (Qw - atb), the resultant surface
temperature is shown in Figure 8 (dashed line). These figures show no visible
difference between the present solutions obtained by the similarity
transformation and the exact solutions. When the temperature dependence of
the thermal properties are accounted for (i.e., variable properties), the
exact solutions do not exist and thus no comparison can be made. The solid L
lines in Figures 7 and 8 represent the surface temperature for variable
properties. They are considerably lower, especially at large times, than the
surface temperatures for constant properties. This is due to the fact that
heat is absorbed and conducted away faster when the temperature dependence of
the thermal properties is considered. The third line in Figure 7 shows the
discrepancy of their results for Ow constant. _

Table 1. Solutions of Temperature Function f and Its
Derivative f" at Surface (1 0)

Qw" atb

b fc fc fv fv

0 1.1284 -1.0000 1.2854 -0.9882
1 0.7523 -1 .0000 0.8977 -1.0051
2 0.6018 -1.0000 0.7380 -1.0145

5 0.4168 -1.0000 0.5352 -1.0300

Tw = TO(O + tb*)

b* f c fc fv fv

0 1.000 -0.5644 1.000 -0.6427
1 1.000 -1.1283 1.000 -1.0129

2 1.000 -1.5045 1.000 -1.3743
5 1.000 -2.2926 1.000 -2.0922

Subscripts c and v denote constant properties and
variable properties, respectively.

19
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B. Prescribed Surface Temperature Tw  TO(O + tb*

With the same values of C , C , m, and n used above, the temperature
function f and its derivatives I solved from Eq. (25) are tabulated in Table

and plotted in Figures 9 and 10. Using those values, the local temperature
and heat flux in the solid can be calculated from Eq. (23) and Eq. (34),

respectively.

In the case that TV - constant, the temperature 0 should be defined in ,,e
the form of Eq. (32) as explained earlier. As an example, if T V is chosen to
be 10330 K (1400 0 F), the expressions in (35) and (36) are altered to the
following:

00.071
k-Cem 1.2060 o(37)0

cp -Cnen - 2.4478 00.328 (38)

Since b* -0 in this case, the local temperature is simply given as

e f(17) where ' ,,-. (39)

Figure 11 shows the local temperatures for both constant and variable
properties. The temperature for constant properties, represented by the
dashed line, matches precisely the exact solution. The solid line next to it
shows a lower temperature for variable properties. As explained in the
previous case, this is due to the fact that heat is absorbed and conducted to
the low temperature region faster when the temperature dependence of the
thermal properties is taken into account. Figure 11 also presents a
comparison of local heat fluxes versus '7 for the two kinds of thermal -"-

properties. The quantity in the figure is calculated from

qv- qc Cmfvmfv -fc, (40)

qc fc

where qc and qv are heat fluxes for constant properties and variable
properties, respectively. Using the data given in the expressions (37) and
(38), the calculated values of fc: fc'I fv' and fv" are listed in Table 2.
The similarity variable 17, at a given time, can be treated as the distance
from the surface of the solid. The result in the figure shows that at the
surface the local heat flux qv for the variable properties is greater than the
local heat flux qc for the constant properties by 37 percent. It is
interesting to note that the percentage drops to zero at n - 1.4 and then
turns negative as 7 continuously increases. To explain the reason we note
that in Figure 11 the two temperature curves merge at the surface and also far
away from the surface. Consequently, as t7 increases to a certain value, the
gradient of the solid line changes from greater to smaller than the gradient
of the dashed line. Meanwhile, the thermal conductivity and specific heat in
the expressions (37) and (38) for variable properties decrease with
temperature when ? increases. The combination of these two factors explains

the foregoing change in heat flux.

25
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Table 2. Values of Temperature Function f and Its Derivatives f"Inside the Solid for Tw  Constant

fc fc, fv f (qv -qc)/qc

0.00 1.00000 -0.5644 1.00000 -0.6427 0.373
0.24 0.86519 -0.5563 0.84627 -0.6333 0.356
0.48 0.73420 -0.5326 0.69855 -0.5926 0.308
0.76 0.59084 -0.4883 0.54251 -0.5172 0.223
1.00 0.47931 -0.4394 0.42736 -0.4405 0.138
1.24 0.38036 -0.3841 0.33094 -0.3625 0.052
1.48 0.29506 -0.3263 0.25269 -0.2900 -0.028
1.76 0.21302 -0.2600 0.18189 -0.2173 -0.107
2.00 0.15698 -0.2075 0.13597 -0.1664 -0.161
2.24 0.11283 -0.1609 0.10100 -0.1258 -0.199
2.48 0.07915 -0.1214 0.07467 -0.0942 -0.220

V. SUMMARY AND CONCLUSIONS

Similarity solutions were obtained for the transient heat conduction in a
semi-infinite solid with temperature-dependent thermal properties. The method
of similarity transformation via one-parameter groups provides a valuable
means for the present analysis. The solution procedure is straightforward and
the solutions obtained are highly accurate, which can be used as reference
data for numerical solutions of similar nonlinear problems.

Results of the temperature distribution and the local heat flux in a
sample solid were obtained for two types of time dependent boundary

, conditions, namely heat flux atb and temperature T - T ( + tb*), In
* the limiting case of constant properties, the present resur'ts are in excellent

• agreement with existing exact solutions. A comparison of the results for
constant properties and for variable properties has demonstrated the
significance of temperature dependence of thermal properties for heat transfer
calculations.

L
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rt NOMENCLATURE

*_[ A constant, Eqs. (19) and (21)

a constant, Eq. (6)

B constant, Eq. (20)

b, b* constants, Eqs. (6) and (7)

Cm, Cn constanta, Eqs. (2) and (3)
o r

C dimensional specific heat at constant pressure
p

pC dimensional specific heat at constant pressure evaluated at

cp dimensionless specific heat at constant pressure

f temperature function, Eq. (23)

" K dimensional thermal conductivity

K dimensional thermal conductivity evaluated at TO

k dimensionless thermal conductivity

- L reference length

m, n constants, Eqs. (2) and (3)

-' Q dimensional heat flux

"Q dimensional heat flux at surface

Qr reference heat flux, dimensional

q dimensionless heat flux

qv dimensionless heat flux at surface

s dimensionless distance, Eq. (4) -

T dimensional temperature

To  dimensional initial temperature

Tw  dimensional surface temperature i

t dimensional time

.P t dimensionless time

x dimensional coordinate

00 heat diffusivity

33
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t , similarity variables, Eq. (22)

e dimensionless temperature, Eq. (4)

dimensionless surface temperature

p dimensionless density

4 dimensional density

large distance

Subscripts
-I-,-

c constant properties
o evaluated at To

r reference value

s at surface

v variables (temperature-dependent) properties

33
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