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1. Overview and Summary

This technical report is the third in a series that describes progress on the development of a

128-processor ButterflyTm testbed. As part of the testbed effort, we have developed the Butterfly

Switch chip: a single-chip implementation of the algorithm used to route messages through the .*

Butterfly Switch. In conjunction with the switch chip, we have developed the packaging and a

printed circuit board needed to incorporate the switch chip into Butterfly systems. This report first

reviews the design of the Butterfly Switch and then describes the Butterfly switch chip and

associated packaging. -. -.

It has been nearly a decade since BBN began studying the idea of using the Butterfly Switch as

the basis for a parallel processor system. The design of the switch was first presented in BBN Report

No. 3501, and updated in Report No. 4098. This section reviews and updates the material in those

reports. The Butterfly switch is one of many multiprocessor interconnection networks that have

been proposed and studied in recent yearL The switch that we have built can be distinguished from

many of these networks by several criteria:

e The Butterfly Switch is used purely for communications. There are no processing
elements in the switch. This differentiates the Butterfly Parallel Processor from machines

* such as the NYU Ultracomputer where some computations are performed at the switch
nodes, or the CalTech Cosmic cube, where the processors perform both computation and
routing functions.

* Messages in the Butterfly Switch are independent of each other. A message is sent
whenever a processor makes a memory reference or invokes a communication primitive.
Furthermore, the configuration of the switch is not tuned for any particular algorithm.

* The entities that are interconnected are complete processors that operate independently.
That is, we are using the Butterfly Switch to interconnect processors in a Multiple
Instruction, Multiple Data Stream (MJMD) machine.

-2- 1-
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The Butterfly Switch is a data communications structure in a general sense. The services that

it provides, such as addressing, flow control, and arbitration are those normally associated with a .. ,.

data communications network. The important parameters of the switch, such as throughput, ,,-4

latency, geographic extent, and protocols, are also typical of data commuunications network. The

" - design and implementation of the Butterfly Switch borrows heavily from techniques used in packet

switching networks.

The Butterfly Switch may be further characterized by some observations about its structure:

first, the switch is self-routing. Each Processor Node has one switch port through which it sends all

transactions, regardless of destination, and another port through which transactions arrive for that

node and no other. Second, control, routing, and data transfer in the switch are inherently serial

operations This simplifies packaging and provides many opportunities for pipelining. Finally, the

structure of the switch is highly regular. This facilitates VLSI implementation and further

simplifies packaging.

These characteristics are not unique to the Butterfly Switch. Other types of interconnection

networks, such as the crossbar, have similar properties. However, the choice of the Butterfly

structure has turned out to be a good one, as it keeps the number of Switch Nodes relatively small -

without sacrificing performance.

The remainder of this report reviews the basic operation of the Butterfly Switch and

introduces several important variations that effect its cost, performance, and flexibility. It also

describes the design of the Butterfly switch chip, a VLSI implementation of the basic routing

element. The scope of this report is limited to the Butterfly Switch. Discussion of other elements of -.

the Butterfly Parallel Processor is included only when needed to illustrate the operation of the

switch.
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2. Switch Operation

This section presents the basic techniques used in the Butterfly Switch. Note that most of the

variations described in Section 6 have been incorporated into the implementation, so that the

examples shown in this section do not correspond exactly to the implementation.

The example shown in Figure 1 illustrates the operation of the Butterfly Switch. In the figure,

eight sources (the circles on the left) are connected to eight destinations (the circles on the right).

Each of the twelve black dots represents a switch element. The function of an element is to

examine packets, which enter on either of its two left-hand inputs, and route them to the

appropriate output as determined by the first bit of the packet (0-upper, 1-lower). The first bit of

the packet is then discarded and the remaining bits are passed on to the next element.

Consider the short (eight-bit) packet entering the switch at the entry port labeled 1. Since

there are eight possible destinations, three bits are needed in order to select the appropriate one.

These are the first three bits of the packet (the header bits), leaving five "data" bits. In (a), the

packet encounters the first switch element (labeled 2) and the first header bit is removed. Since the

first header bit is zero, the packet is routed to the upper output as shown in (b). At Node 3, the first

bit is one; thus the lower path is chosen as shown in c). At Node 4, the first bit is zero, so the upper

path is chosen. This leads the packet to the exit port labeled 5 in (d). Al that remains is to clock

the five data bits through.

If the transaction had entered the switch at some other port, it would still have exited at the

port labeled 5. This is easy to verify from the figure. In every case, the address of an exit port is

independent of the entry port used.

-4- A.
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So far, we have shown a structure in which transactions flow in only one direction. To be .

useful, the switch must be able to carry messages in both directions, so that it can support

transactions such as memory read operations. To accomplish this, one could superimpose a second

switch aimed in the opposite direction to handle return traffic, or one could make the data channels

through the switch bidirectional. The approach used in the current implementation of the Butterfly

Switch is to bring the input ports around so that they are physically adjacent to the output ports, as

shown in Figure 2. Now the switch takes on the appearance of a cylinder. The processors and

memories are located along the generatrix of the cylinder; sending messages to the right and

receiving messages from the left. All transactions flow in a counterclockwise direction, as viewed

from the top of the cylinder.

* . .-

--

The Butterfly Switch as a Cylinder .,.,.

Figure 2
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In addition to giving each processor and its memory the ability to send and receive messages, this

configuration places processors and memories physically adjacent to each other. The current

Butterfly Switch implementation takes the next step and combines each processor with one memory

to form a unit called a *Processor Node." The Processor Nodes interface to switch ports, and the

switch cylinder becomes a high bandwidth communications path between Processor Nodes. This

arrangement is shown schematically in Figure 3.

ENTRY
PORTS

>iJ
PN

PROCESSOR CYLINDER
NODES

Processor Nodes Connected to a Butterfly Switch Cylinder
Figure 3

Even though processors and memories are packaged together, all of the memory in the machine

is globally accessible. In addition, there is an opportunity for each processor to use a direct path to

physically adjacent (ie, local) memory, without going through the switch.

-7-
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3. Comparison to Other Networks

To understand the capabilities of the Butterfly Switch, it is useful to look at the problem of

connecting many processors to many memory units. Broadly speaking, interconnection networks of

this kind fall on a spectrum between "completely connected" and "singly connected."

Completely connected switches are characterized by independent paths between every possible

source and every possible destination. The crossbar is the most common example of this kind of

switch. Another example is the Bus Coupler switch used in the Pluribus Multiprocessor [HEAR73-

-illustrated in Figure 4.

Potentially, the completely connected approach provides high bandwidth, since each source has .. -

its own private path to every destination. It is often said that this kind of switch is non-blocking,

since there is never any contention for switch resource& In the context of multiprocessor

interconnection networks, however, this characterization is somewhat misleading, since it is often

the case paths will be blocked because their destinations are busy. The principal drawback of the

fully connected switch is that its cost increases as the product of the number of sources and

destinations. As a result, the cost of the switch can dominate overall system cost for large

configurations.

o ."
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A singly connected switch, on the other hand, has only one path connecting all of the elements, as -3 

shown in Figure 5. The path is shared by several sources according to some discipline such as time

division multiplexing or asynchronous arbitration. There are many examples of this kind of switch,

including computer buses [IEEE83, the Ethernet, and broadcast satellite channels [ABRA69 The a

- cost of a bus goes up linearly with the number of elements that it connects, so it does not have the -,"

cost explosion problem of the crossbar. However, the amount of traffic that a single bus can carry " .

does not increase as more elements are added. The capacity of the bus therefore sets a hard limit on

the number of elements that can be supported efficiently.

C-.' .I---

Figure 5- _
.. A

The Butterfly Switch represents a useful middle ground between these two extremes. For an x..'..

N-port Butterfly Switch, the number of wires and Switch Nodes grows as NlogN, which contrasts -' .

favorably with the N2 growth seen in a fully connected switch. Furthermore, the capacity of the

Butterfly Switch grows linearly with the number of ports. When a new port is added to the switch, .'- ,

a new row of Switch Nodes is also added. This contrasts favorably with the fixed capacity of a

singly connected switch.

-10-
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4. Switch Contention

Since there is not an independent path between every possible source and every possible destination

in the Butterfly Switch, there is contention for resources. The effect of contention on the behavior of %

the switch is analysed in detail in Testbed QTR4. This section outlines the mechanisms that the

Butterfly Switch uses to deal with contention and summarizes the behavior of the current

implementation.

Contention occurs when two messages at a particular Switch Node want to use the same exit path,, ". *.

.* as shown in Figure 6. In this situation, one message can proceed while the other message cannot.

The message that loses can wait until the other has passed, or it can retreat back to its source and

retry at a later time.

The retreating strategy was chosen for the current implementation of the Butterfly Switch for -

two reasons. First, in a unidirectional switch the waiting strategy is not free of deadlocks. This

will be discussed further in a later section. Second, a blocked message spends less time in the switch

if it retreats. This makes it less likely that the blocked message will obstruct messages that would

otherwise have a clear path through the switch. The effective capacity of the switch should

therefore be greater when the retreating strategy is used.

When the retreating strategy is used, a message that encounters a conflict must be able to

retreat back to its source. This is possible as long as the tail of the message has not left the switch

entry port. As a result, the minimum message length for a switch that uses this strategy .-.--

corresponds to the time that it takes for the head of a message to traverse the switch, plus the

interval during which the remote switch interface could reject the message, plus the time that it

takes the "retreat" signal to return to the source.

-112-?:1
N .o
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z.. 7%

Switch Contention
Figure 6

The choice of contention strategy also impacts the upper limits on the time that it takes for a

message to traverse the switch. This worst case time is important because it determines the length

of the timeout intervals that are used to detect last messages. With the wait strategy, the worst case

occurs when all sources send messages to the same destination at the same time. The resulting

transit time is easy to calculate, and represents a hard upper bound. With the retreating strategy,

there is no upper limit. It is possible, though unlikely, to have a transaction that takes five minutes

or even a week to reach its destination. However, as long as one is careful to avoid dynamic

deadlock situations, it is possible to treat transit times beyond a certain limit as exceptional

cnditions tobe handled in the same manner as message checksum errors and other unlikely but

-12-
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In practice, the round trip time for a 16-bit read operation is 4 microseconds. Given an infinite A.

offered tralfic load with a random distribution of destinations, the average reound trip time for the

same operation is approximately 12 seconds This result is derived in QTR4.

5. Clocking and Synchronization

In every digital system, clocking and synchronization issues pervade the designs of the

hardware and software. Like most systems, the Butterfly Parallel Processor uses a combination of

synchronous and asynchronous techniques. The design is almost entirely synchronous at the lowest

level, and every hardware element receives a clock signal from the same central source. The only

exception at this level is the system reset signal, which is generated by a toggle switch and

synchronized to the system clock at every processor node. At the next level, the system is

completely asynchronous, as processors execute independent instruction streams and may send

messages through the switch at any time.

6. Important Design Variations

The preceding sections presented the basic structure and operation of the Butterfly Switch.

There are also variations that offer a number of implementation choices and connsiderable flexibility

in the use of a given switch implementation. This section presents some of the more important

, variations.

-13-

-% %



% ~..-. - . .

Report No. 5874 BBN Laboratories Incorporated

6.1. Parallel Control and Data Paths

The width of the control and data paths in the Butterfly Switch represents a direct tradoff -. e

between three important system parameters: the bandwidth of the switch, the size of the cables that

interconnect the Switch Nodes, and the speed and complexity of the logic at each Switch Node. At

one extreme, it is possible to have wide data paths and many control lines, yielding high bandwidth I

with relatively slow and simple logic. At the other extreme, it is possible to use a single wire to

carry all of the necessary data and control information. This requires more complex logic to decode

the control information, and faster logic to achieve the same bandwidth.

The choice is highly dependent on the implementation technology. The execution speed of the

processors and the bandwidth of the memories determine the amount of switch traffic, and hence the .

switch capacity that is required. The density of the applied technology determines the physical size

of the processor and memory modules. This, in turn, determines the amount of cabling that can be 7...-ol

sensibly incorporated, and the degree of logic complexity that one can afford at each Switch Node.

The speed at which one can drive a single wire determines the number of wires that need to be

bundled together to achieve the desired switch capacity.

In the Pluribus multiprocessor, each module occupied a small cage, so it was reasonable to

interconnect them with fairly wide paths. In the Butterfly Parallel Processor, the processors are

faster and much smaller, so narrower and faster data paths make sense. In the VLSI implemenation

of the Butterfly Switch Node, the number of data and control paths is even more important, since it

determines the number of pins on the IC package. On the other hand, there is more than enough

room on the chip to increase the complexity of the logic. Had backward compatibility not been a .,

requirement, we would have used a smaller number of control and data signals in the VLSI

implementation of the Butterfly Switch Node.

-14-
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6.2. Switch Node Bae

So far, all descriptions have assumed that the Switch Nodes have two inputs and two outputs.

In fact, it is possible of assign any number of inputs and outputs to a Switch Node. This is the

analogous to the notion of the *base' of a Fast Fourier Transform (FFT) implementation, where the

base refers to the number of coefficients that are combined in a single Butterfly operation. Here, the

term "base" refers to the number of inputs to a given Switch Node.

Unfortunately, the easily recognizable structure of the FFT is lost for bases higher than two.

For example, Figure 7 shows the pattern of interconnection for a 16-by-16 Butterly Switch of base

4. Figure 9 shows a 16-by-16 Butterfly Switch of base 2 for comparison. The only change in

switch operation brought about by a change in base is the number of header bits used for the

routing decision at each Switch Node. A base 4 Switch Node needs two bits to make its routing

decision, a base 8 switch needs three bits, and so on. This means that there will be some wasted

address bits if the base of a switch is not a power of two.

It is clear from the two figures that the switch with the higher base has fewer nodes and.'

fewer wires. This observation can be quantified by giving more exact versions of the formulas

alluded to earlier. Given a switch of base B with N input ports and N output ports, the number of r.."..

columns, wires, and Switch Nodes can be calculated as follows:

Colun LogN)

Wires = N+N * Lg(N)

Switch Nodes = (N/B) * LogB(N)
~,. .,. %

To illustrate the impact of switch base on the implementation cost, Table 1 compares the

number of wires and Switch Nodes required to support 256 Processor Nodes for various switch bases.e-,-...

A-I-

~ * ~ .. . . . . . . . . . . . . . . . . . . . . . . . .
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S.

* Base 4 Butterfly Switch
Figure 7

Switch Switch Nodes Wires
Base Columns

2 8 1024 2304
4 4 256 1280

16 2 32 768
V .d %

Comparison of Various Switch Bases
Table 1
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Base 2 Butterfly Switch
Figure 8

Switches with large bases have a further advantage because they require fewer columns to

implement a switch of a given size. Since collisions in the switch are independent events, the

probability that a message will conflict with another message as it traverses the switch is a function

of the number of Switch Nodes it must pass through. Thus, for two Butterfly Switch

implementations with the same number of ports but different bases, the switch with the larger base

will have a lower conflict rate.

Fewer switch columns also means that it takes less time for the head of a message to reach its

destination. This parameter is often referred to as the "distance" between an input port and an

output port on the switch. Since the data paths through the Butterfly Switch are pipelined, this

measure of distance is of minor importance. The transit time of a message in the absence of conflicts

-17- ""
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is always dominated by the length of the message. Nevertheless, there is some advantage to having

a smaller distance between Switch Nodes, and it is possible to make that distance arbitrarily small
4. a

by increasing the base of the switch.

Afl of these considerations suggest that the largest possible base should be selected. However,

if we followed this logic to its extreme, we would make every Butterfly Switch a one column

switch, which is nothing more than a crossbar. What we have ignored is that each Switch Node is

itself a fully connected switch. Thus, the complexity of the Switch Node increases as the square of

the switch base.

The Butterfly Switch therefore represents a continuum of implementation choices ranging from the

pure" base 2 Butterfly Switch to a complete crossbar. In practice this means that the choice of

switch base is really a packaging decision, influenced by the density of the available technology and

the range of machine sizes that one would like to support. In the MSI implementation of the

Butterfly Switch, we chose a base 4 switch. This yielded an MSI Switch Node implemenation that

fit easily on a small printed circuit board, and provided good conflict statistics over a range of one to

256 Processor Nodes. Backward compatibility dictated the choice of base 4 for the VLSI Switch Node

implementation.

6.3. Alternate Paths

So far, we have described a switch network that is vulnerable to Switch Node failures.

Intuitively, the failure of an individual Switch Node can be seen to effect a wedge of Switch Nodes

and ports, emanating in both directions from the failed node. This is shown in Figure 9. Outside of

the sources and destinations connected via the ports in either the left-hand or the right-hand wedge,

-18-....................................................................
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S.

FAILED
SWITCH . --.ELEMENT-----, .

AFFECTED AREAS

Effect of Switch Failure
Figure 9

the system is fully connected. Thus, the severity of the failure is greater if the failed Switch Node

is close to the center of the switch. A failure at the periphery will only effect a few Processor

Nodes, while a failure in the interior of the switch is a serious occurrence.

K Figure 10 illustrates a simple method for making the switch network immune to single point

failures in the interior of the switch. In the figure, an extra column has been added to an eight-port

base 2 switch. The resulting switch has two independent paths between every input port and every

L output port. In other words, this switch configuration gives every destination two addresses, either

of which can be used to reach that destination. The high order bit of the message header

distinguishes between the two paths. In this configuration, the failure of any node in the interior of

-19-
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3.," 
.'-.,

%1

Switch with Alternate Paths
Figure 10

"'.. the switch has no effect on the connectivity of the switch. This configuration is still vulnerable to

failures in the leftmost and rightmost columns, but the impact of these failures is minor. This

increase in reliability is achieved at the relatively low cost of one additional column.

*-" The algorithm for adding the extra column is simple: add the column to the right-hand side of

the switch and give it the same connectivity as the leftmost column in the switch. Since the last ..-

column is wired in the same manner as the first column, the 3 rightmost columns in Figure 10

implement a complete Butterfly Switch. The decision that is made in the first column of the switch

.* therefore selects one of two entry points into a complete switch, and has no effect on the final

destination of the message.

-20-.
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vi e' "N-.
vIp.

For switches of larger base, the algorithm for adding the column is the same, and the same

degree of protection against single point failures is provided. For a switch of base B, the addition of

an extra column adds B alternate paths. It is also possible to add more than one extra column. This

increases the number of alternate paths and the number of single point failures that the switch can

: survive. :

Since the high order bit (or bits) of a message address distinguishes between alternate paths, the

* • selection of an alternate path is also simple. In the Butterfly Processor Node, this selection is done by

the finite state machine that operates the switch interface. When a switch with alternate paths is

being used, the finite state machine maintains a two-bit counter that specifies the high order address

bits of every message. When a message fails to reach its destination for any reason, the counter is

incremented and the message is retransmitted. Thus, there is no overhead assciated with re-routing

* messages over alternate paths.

t.* 64. Odd Size Switches

,. Up to this point, all of the examples shown have used switch sizes that were an even power of

the switch base. It is also possible to build "odd size" switches where the number of switch ports is -  l
not an even power of the switch base. For larger switches, there are several interesting odd sizes.

For example, the eight-port base 4 switch shown in Figure 11 uses four Switch Nodes (exactly half

the number in a 16-port switch) and is wired to provide two alternate paths between every source

and every destination. Similarly, 64- and 128-processor machines can be wired to have alternate

paths.

-21-
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Eight Port Switch A
Figure 11

6.5. Message Size

Since the Butterfly Switch is pipelined, it is reasonable to expect that messages experience some

initial setup delay, followed by a high transfer rate. This means that the Butterfly Switch favors

long messages over short messages. While this is true of most communications systems, regardless of

their architecture, a tightly coupled parallel processor must read and write single words as well as

large blocks of data. Butterfly Processor Nodes are therefore capable of executing both single word

and multiple word transactions.

The presence of long messages in the switch can adversely effect the latency of the short

messages. A transfer of 64 kilobytes (the maximum length allowed in the current system) takes

about 16 milliseconds to complete. During the transfer, one path through the switch is constantly

-22-
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occupied. To avoid this problem, multiple word transfers are broken into shorter blocks by the

Processor Node software. Although we have not studied this issue in detail, the system performs

I quite well with a block length of 256 bytes.

6.6. Bidirectional Switch

In the current implementation of the Butterfly Switch, the request and reply messages for

two-way transactions, such as memory read operations, are completely independent. The switch -

could also have been constructed so that the path established by the request message is held open for

the reply to return over the same path. With the latter scheme, the switch paths would be used first

to establish a path and to send the request message. After the request has been processed, the

direction of data flow would be reversed and the reply message sent back over the .same path. We

refer to this design as the *bidirectional switch." There are several advantages to this kind of switch:

1. While the request message suffers from conflicts in the switch, the reply message does not.

2. It is not necessary to include the address of the sending Processor Node in the request
message, since a path for the reply has already been established.

3. The overhead associated with setting up and initiating a message can be much smaller for
the reply.

4. The bidirectional switch is free of deadlocks when the wait strategy is used, and less
prone to dynamic deadlocks when the retreating strategy is used. ,,
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The bidirectional switch also has some potential drawbacks-

1. The average profile of a transaction is potentially increased because paths through the
switch are held at times when no data is being transferred.

2. The complexity of the Switch Node must be increased to handle bidirectional traffic.

3. The path must be held while the destination is generating its reply.

While the possibilities offered by the bidirectional switch are intriguing, we have not K

implemented one, so we cannot say much more about its properties at this point.

7. Deadlocks

In any complex computer system, there are opportunities for deadlock. The Butterfly Parallel

Processor is no exception. One fairly simple example is illustrated in Figure 12, which shows two

Processor Nodes, each with a single input buffer and a single output buffer. In this example,

Processor Node A has sent a request message Processor Node B. After the request was received, but

before the reply could be sent, a request from Processor Node C arrives at Processor Node A. At this

point, Node A cannot receive a reply from Node B because its input buffer is full, and Node A cannot

service the request from Node C until it receives a reply from Node B.

To avoid this kind of deadlock, the system must ensure that reply messages can always be

transmitted and accepted. To do this, we use a simple buffer allocation strategy that is reminiscent

of the buffer management strategies used in the ARPANET IMP [ROS80] and other packet switching

systems. -
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Switch Deadlock
Figure 12

4On the receive side, each Processor Node has two buffers: one for requests and one for replies.

In addition, the switch receiver is allowed to examine the first few bits of a message to determine

whether it is a request or a reply. If the incoming message is a request, and the request buffer is

full, the incoming message is rejected and must be retransmitted. Note that this scheme does not

prevent deadlocks in a switch that uses the wait strategy. Once a request arrives at an input port it

L: will block the path to the input port until it is accepted by the destination Processor Node.

A similar strategy can be applied on the transmit side to ensure that resources are always

available for the transmission of reply messages. Each Processor Node has two transmit buffers: one

for requests and one for replies. Whenever a request message is rejected, the transmitter makes sure

:. that the reply buffer is empty before it tries to send the request again.
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The bidirectional switch is free from all of these deadlocks because it pre-allocates a path

through the switch for the reply. Furthermore, the transmit side is independent of the

corresponding request buffer, when a bidirectional switch is used.

8. Flow Control

The memory system on each Processor Node services requests from the local 68000, the local

I/O bus, and the switch interface. The bandwidth of the memory system is 40 megabits per second,

allowing it to keep up with any one of these elements, but not all three at the same time. Each

element is therefore given a fixed priority by the memory system, with the I/O bus at the highest

priority level and the 68000 at the lowest level.

Since most transactions between Processor Nodes involve the exchange of short request and

reply messages, memory access delays due to I/O activity usually mean that a request or reply

message will be held in the appropriate switch interface buffer for a slightly longer period of time.

For block transfer operations, however, it is necessary to invoke a flow control mechanism when the

memory is occupied by 1/O traffic. Thus, the switch interface on every Processor Node is capable of

slowing down the rate at which it delivers or accepts switch data. The details of this mechanism

are explained in a later section.

9. Error Control

As in any communications network, message packets passing through the Butterfly Switch

may arrive at their destinations with bit errors. These errors may be due to hardware failure or to
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transient conditions such as power line glitches

To milnirie the occurrence of errors due to transient conditions, the communications

hardware in the switch is designed to be very robust. All signals that run between boards use

balanced ECL line drivers and receivers, the system uses a fully synchronous clocking methodology

with conservative timing margins, and every board has its own switching regulator to provide

well-controlled, noise-free power.

To detect systematic errors due to hardware failures, every packet that passes through the

switch carries a checksum. The checksum will not detect every bit error, but it reliably detects the

grass errors that occur as a result of a loose connector or a failed driver. When a message arrives

with a bad checksum, the message is ignored by the receiving Processor Node and the occurrence of

the error is flagged in a register that is monitorid by the Operating System.

10. Switch Node Design

This section decribes the current hardware implementation of the Butterfly Switch. As

described earlier, the switch comprises a collection of interconnected Switch Nodes. In the initial

implementation, each Switch Node was a self-contained 12' by 12" printed circuit board with a

switching power supply, an MSI implementation of the routing algorithm, and a balanced ECL

j interface to neighboring nodes. In the current implementation, the MSI implemenation of the

routing algorithm has been replaced by a custom NMOS chip. This allows us to put put eight

Switch Nodes on a single printed circuit board. -.
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In effect, each Switch Node is an "intelligent* 4-by-4 crowbar. For each packet that enters the

node, the first two bits are used to select an output port, and the remainder of the packet is routed

through that port. If the output port is busy when the packet arrives, a "reject* signal is propagated

back to the source of the packet. In addition to its routing functions, the Switch Node implements

a round-robin priority mechanism to deal with contention for output ports. It also supports end-to- .

end flow control through the switch.

(-." HOLD .

NULL DATA CONTROL 2
REJECT PATHS

FRAME

P A
B DATA

C PATH

Switch Node Block Diagram
Figure 13
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As shown in Figure 14, each channel through the VLSI Switch Node is composed of eight

signals. Four data lines (DO-D3) along with two control signals (FRAME and NULL-DATA) carry

information towards the message destination. Two additional control signals (REJECT and HOLD)

carry information from the destination to the source.

6.

The data signals carry the routing information at the beginning of the packet, followed by the

data that forms the body of the packet, and then a four-bit checksum. Since the data path is four

bits wide, one nibble of data is transmitted on every clock tick.

The FRAME signal accompanies each packet and serves to define its head and tail. As the head

of a message enters a Switch Node, a crosspoint link is formed so that the message can pass through.

As the tail leaves the node, the link is broken.

The REJECT signal is generated if a Switch Node cannot establish the required crossbar link

when the message head appears The REJECT signal travels back towards the source of the message, .

breaking the crossbar links at each Switch Node as it goes and directing the source Processor Node to

try again at a later time. A REJECT signal can also be generated by the destination Processor Node

if it decides not to accept the message.

The HOLD and NULL data signals are used for flow control during the transmission of long

switch messages. When the switch input FIFO on a destination Processor Node fills beyond a certain

point, it asserts the HOLD signal. The HOLD signal propagates back to the Source Processor Node at

a rate of one Switch Node per clock tick.

Since the HOLD signal may be asserted quite frequently, it would be inefficient for the source

Processor Node to release the switch every time the destination processor gets behind. Instead, it

keeps the connection open, transmits a nonsense data pattern, and asserts the NULLDATA signal to

r
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indicate to the Destination Processor that the incoming data can be ignored. When the HOLD signal

is deasserted, the Source Processor Node deasserts the NULL-DATA signal and starts transmitting

message data again. The detailed operation of the NULL-DATA signal is actually somewhat more

complicated than this. However, none of these details effect the operation of the switch, so they are

not described here. - .

INPUT INPUT ,''".

C A-"""-

p CROSSBAR
.

& .~ -.- _

OUTPUT OUTPUT"""

OUTPUTPU OUTUT--"T"

D B ..--

Butterfly Switch Chip Floor Plan
Figure 14 

"- : "

As shown in Figure 15, the physical organization of the switch chip reflects its logical

organization. The chip consists of eight finite state machines (FSMs) clustered around a crossbar

network. Each input and output port is associated with a different FSM. When a packet arrives, an

input FSM uses the low order bits of the first nibble of data to decide which output port to use. On
Ile
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the nexZ cycle, the input FSM "bids" for the output port by driving a line connected to the selected i.
output FSM. If the output port is not busy and if no other message having higher priority is-..-""

simultaneously bidding for the same port the output FSM opens a set of pass transistors at the

appropriate set of crosspoints in the crossbar. This forms a link between the input port and the

output port. Otherwise, the output FSM asserts a REJECT signal that propagates back through the

input FSM to the originator of the message. Since the first nibble of data is not passed on to the next

Switch Node, a full clock cycle is available to make the routing decision and to establish the

crossbar link.

When two input ports make simultaneous bids for the same output port, the output port must

decide which one to reject. Since messages arrive at random times and retreat when they are

rejected, the method used to make this decision is not very important to the performance or fairness

characteristics of the Butterfly Switch as a whole. The method used in the Butterfly Switch chip is

based on a simple round-robin priority scheme. In this scheme, the priority ordering is determined

by the input port that was granted access most recently. As shown in Table 2, the most recently

granted port has lowest priority, and the ordering of the remaining ports follows a fixed pattern.

-3'-
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j
Most Recent User: A B C D

Highest: B C D A

C D A B

D A B C

Lowest A B C D

Output Port Priority Assignments

Table 2

The Butterfly VLSI Switch Node (BVSN) uses eight switch chips to implement a 16-port

Butterfly Switch on a single printed circuit board. A block diagram is shown in Figure 15 The

BVSN can be used by itself to support a 16-processor Butterfly, or it can be wired together with

other BVSNs to form a larger switch. Like all Butterfly boards, it accepts unregulated power at 30

volts and uses an onboard switching supply to generate local voltages. The board is 12" by 18" (the

same size as a Butterfly Processor Node). A 3" by 19" metal panel mounted at the front of the board

'" provides mechanical support for 32 1/0 connectors The equivalent MSI implementation uses 1152

square inches of PC board area (versus 216) and 192 square inches of rack space (versus 63). It is

interesting to note that only 15% of the BVSN is occupied by switch chips. The remainder of the

board is occupied by drivers and receivers (40%), power supply (25%), connectors (15%), and local

interconnect between switch chips (5%). On the average, the cost of the switch (including BVSN

boards and cables) accounts for approximately 15% of the hardware cost of a Butterfly system.
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BVSN Block Diagram
Figure 15
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