NiL OUUUD

4 “"*’I
w5
oy

DDN PROTOCOL HANDBOOK

Volume Three

AD-A166 326

SUPPLEMENT &
DECEMBER 1985

pric.~~ ®

CLECTE R

RN

| prstars®n ION STATLWid:r £ é
Apprcved for pullic 1alocse;

W e A L

Distributag Unlumited
e e Y

-,

—— s b0 = e &

................
........

e

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

TR WAL ey e) .]
2 » ¥ <y ERR W 3

*
IR O M I AT N TR

RSB KEPORT DULUMENTAIIL. . JAGE

Diatrinu‘:ion Swtaunt A
Approved for pubuc mhua

134 - ";E’
mPTORMING bnuw i REPORT MBER(S $. MOMITORIN w

NANE OF PERFORMING ORGANIZATION J6b OFFICE SYMBOL |78, NAME OF MONTORING ORGANIZATION

6s.
SR1 Internativaal QF applicable) + Defense Data Network
ODN Network Information Ctr ‘ Program Management Cffice
B¢ FDURESS (Gty, Stete, aad 2iP Cocle) 70. ADDRESS (City, State, #nd ZIP Code)
* ‘,
Menlo Park, CA 24025 McLean, VA 22102
8a KAME OF “UNDING/$PONSORNG 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFCATION NUMBER
ORGANIZATION {f epplicable)
B ACDRESS (City, State, and 2P Code) 10. SOURCE OF FUNCING NUW —
PROGRAM PROJECT TASK BT
LEMENT NO. |NO. NO. SSI0M KO,

11 TITLE fic'ude Security Classification)
' DIN Protoccl Handbook (3 vols.} (Uaclacsified)

s
e

17 PERSONAL !\HTHOR()V
Lodndada Lol Lugbiol w Quansilitidd - Lad il e e
132 1YPE OF REPORT 13b. TIME COVERED 114 pare QF REFQRAY (Year, Monm Deay) 5 PAGE (.QUNT

F%WTuTSW u—mg\u

16 SUPPLEMINTARY NOTATION

a5 TTTTCOSRTICTLEs T Y78 SULIFCT TERAS (Cantinbe on raverse If necersaty and identrly By BIOTk MBI
"'__,u TG GROLP SUS-GROUP ' Defensc Data Network; DDN; DDN protocols; Jetwdrk
E,__ A —. .1 protsenls; TCP/1P: Transmission Coatrol Protc.ol/

X, SR S _msmx,:.-kxm.w...x 6 SuREK BURL CEARE R BAGLLFS v v

Lt 9 PO cr {continue on reverse if riecessary and 1dei ticy by Licck numbar)
The DO (D fenae Data Network) Protoeol Handbook iz a thres volume work which gathers
tocothier many documents of Interest ro chose wishing teo implameut the Department of
Lefense suite of pretoeccls on various computess to ke actached to the LDN. Tue
offrctal Military Standard communicction gsrotoccls in use on the DDN are included,

as oio several ARPANET (Advauced Research Prolecus Agency Network) research protocolc ‘
Jdeh are curreatly in use, ¢nd some protoccls currently undergoing review. Tutovial *

taformation and auxiliary documa.ts ave alsa iacluled. I additicn Lo its use as a aou

g "io for prutacol japlemeataticn pruvoses, e haucbook can be used by vendors

winting tu make thelsr products ccmpatible with Dol needs, by researchers wishing to
Ctave the protocets, and by lopiementors of lucal area networks (LANs) wishing

ey

M Cacl mcbwerks Lo fngeract wich the DON. :
5
-
X
! T TR i TIOTT AVAIASIITY OF ABSTRACY ! 21 AL:WA(T T SECHRITY, SLASSIHTATION !
Cloncuassticnunumiten [same as aeT [omic UsERs l
720 NAME OF RESYONSIBLE INDIVIDUAL 225 TELEPHONE (irwiude Area Code) | 2ac. OFFICE SYMEOL g
y Lo Seldicld (415) 639-6187 EJ Y2 3
DD FGRM 1473, 82 MmaR 83 APR edition may be used untnluhaus\ed . SECURITY CLASSIFICATION OF THIS PA ;E

Allthered e 30 bt

TRy I
N LLASS!HED B AR ek

"l‘ -l

Xi i 2 X “'L?.

':\v—-j R 1 PR e

DL T e v 2 B TR e RN R B Y ke s g ~.....:K u "-l‘ kg
“ u s A SR SERLAAR TACE TR R

i WY RE W £330 AT A

o 1! - Y Ve . - s - r T - T S . Il - & . - - T A -
SIENN ORI Ry b 3t BRI 1™ ALY — SRS 7 SIS RLT N LA v LIL PR TRPRRRPIRY *

B3,
5 PAGE

~CLMTY CLASSIFICAT O OF

o

A0

n

! ”’u'-;

a
’

]
g7
fd
"
: 3
2]
< Y
[X [[V
2 e .2
- S G T
i — 4 D> OV
LY m g e .
L e a L
o o B UWv<g ..,
_ o] M mw (&5 %
= po]
< a=B I
Qo — = S Nk
& TR Y I -]
- - U o 73
= N A2 D e
2 B 82 4 o
] Y o= D LD
<T_}i0O % & _ -
—di> LY e 2
-) m i E e s
- C ..-.

LAALAN TR O PR, NNEAIRA OO

"
L%

Tl |y

&£/

o,

DEFENSE COMMUNICATIONS AGENCY

gy
Pl
ol

= o LR «

(o

e

o
e :
A

N "
Ve ¢ y

2 Y Y T A A X TR A A AR
20
R
e

DDN PROTOCOL HANDBOOK

Volume Three

SUPPLEMENT

DECEMBER 1985

Editors:

Elizabeth J. Feinler
Ole J. Jacobsen
Mary K. Stahl
Carol A. Ward

-‘_‘.’
.. L]
AN
e
ol
L0
[
o{'-‘
.'.,.-
NS
il el
-.’:

.
o
o
s
(Y2
~,
o
E

. - Ty y .
3 5 ..]‘r" .l.‘.' .'l"‘
) . .

| AP I T S

JR

IndQcmalin Canter=SHTTTEN I onut=0osETETEWE 0] RVESenL00.0.Cl20imiverne
Park, CA 94025 or from the Defense Technical Information Center (DTIC), Cameron

Station, Alexandria, VA 22314,

.............
..............................
EAT T T T T T o T
.........
....................
D T R L SR S SO
......

L LI T

Y sk, by 0 ¢

“A Protocol for Packet Network Intercommunication”. Reprinted with permission, from /FEE
Transactions on Communications, Vol. Com-22, No. 5, pp. 637-648, May 1974. Copyright 1974 IEEE.

“Issues in Packet-Network Interconnection”. Reprinted from Proceedings of the IEEE, Vol. 66, No. 11,
pp. 1386-1408, November 1978.

“Protocols in a Computer Internetworking Environment”, by Ray I. McFarland, Jr. Reprinted from
EASCON 79, Vol. 2, by permission of the author.

“Intcrnetwork Protocol Approaches”. Reprinted by permission, from IEEE Transactions on
Communications, Vol. Com-28, No. 4, pp. 604-611, April 1980. Copyright 1980 IEEE.

“The ARPA Internet Protocol”. Reprinted by permission, from Computer Networks, Vol. 5, No. 4, July
1981, pp. 261-271. Copyright 1981 North Holland Publishing Company.

“Internetworking in the Military Environment”. Reprinted by permission, from IEEE INFOCOM 1982,
Las Vegas, NV, March 30 - April 1, 1982, pp. 19-28. Copyright 1982 IEEE.

“Connecting Different Types of Networks With Gateways”. Reprinted from (August 1982) Data
Communications. Copyright 1982 McGraw-Hill, Inc. All rights reserved.

“USA Standard Code for Information Interchange”. Reprinted from American National Standard Code
Jor In formation Ezchange, X8.4-1968. Copyright 1968. American National Standards Institute. This
1968 standard has been superceded by a later edition, American National Standard Code for

In formation Interchange, ANSI X8.4-1977. Copies of the 1977 standard may be purchased from the
American National Standards Institute, 1430 Broadway, New York, NY 10018.

“The CSNET Nanfe Server”. Reprinted by permission, from Computer Networks, Vol. 6, No. 3, pp.
161-172, July 1982. Copyright 1982 North Holland Publishing Company.

DDN Protocol Handbook. Third volume of three-volume set. Printed and bound in the United States of
America. Published by the DDN Network Information Center, SRI International, Menlo Park, CA 94025.
Date: December 1985

e s aama . o L o

.......................................

ACKNOWLEDGEMENTS

The DDN Protocol Handbook was compiled by the DDN Network Information Center (NIC) for the
Defense Data Network Program Management Office (DDN PM.O) of the Defense Communications Agency
(DCA) under contract number DCA-200-83-0025.

The editors are indebted to the authors of the many RFCs included in the body of this document. Special
thanks goes to the following people for their invaluable support and contributions toward the production
of the Handbook: Jonathan B. Postel from the University of Southern California Information Sciences
Institute; Michael L. Corrigan, John Claitor, and John R. Walker from the DDN PMO; Edward Brady,
Philip S. Selvaggi, Edward A. Cain from the Defense Communications Engineering Center; Chris J. Perry
and Michael A. Padlipsky from the Mitre Corporation; and Diane Fountaine from the Office of the

Assistant Secretary of Defense for Command, Control, Communications and Intelligence (Csl).

Accesion For

NTIS CRA&I
OTIC TAB

Unannounced
Juntﬁﬁutfon

By

Dist ibution |
Avatiabiiity Codes

Avail 8.4 /0

Dist Epvcial

Al |

ondy&

——

@'
3

it

N

b0

-
q"" L
-

A

<
»

L3N

Y oL
el

%

1' ""{'
LR

o s

''''''''''''''
.........

' TABLE OF CONTENTS - VOLUME THREE

ACKNOWLEDGEMENTS il
I SECTION 1: INTRODUCTION TO VOLUME THREE 31
"‘{ SECTION 2: PROTOCOL IMPLEMENTATION GUIDELINES 3-3
2.1 Window and Acknowledgment Strategy in TCP [RFC 813] 35
" 22 Names, Addresses, Ports, and Routes [RFC 814] 3-27
. 2.3 IP Datagram Reassembly Algorithms [RFC 815 3-41
] 2.4 Fault Isolation and Recovery IRFC 816] 3-51
'y 2.5 Modularity and Efficiency in Protocol Implementation [RFC 817] 3-63
b 2.8 A Protocol for Packet Network Intercommunication 3-89
2.7 Issues in Packet Network Interconnection 3-101
f; 2.8 Protocols in a Computer Internetworking Environment 3-125
.. 2.9 Internetwork Protocol Approaches 3-133
iy 2.10 The ARPA Internet Protocol 3-141
‘- 2.11 Internetworking for the Military Environment 3-153
- 2.12 Connecting Different Tvpes of Networks with Gateways 3-165
3 SECTION 3: APPENDICES 3-173
o 31 Assigned Numbers [RFC 960 3-175
X 32 Pre-emption [RFC 794] 3-235
b 3.3 Service Mappings [RFC 795 3-237
: 34 Address Mappings [RFC 796] 3-241
o 35 DoD Internet Host Table Specification [RFC 952 3-249
= 3.6 Document Formats RFC 678] 3-255
A 3.6.1 Instructions for Authors of RFCs 3-263
3.7 Bitmap Formats {RFC 797] 3-265
& 38 Facsimile Formats (RFC 769) 3-267
: 3.9 Character Set Definition (AscCII) 3-269
- 3.10 Interface Message Processor (BBN-1822) 3-273
N 3.1 ARPANET 1822L Host Access Protocol [RFC 878) 3-521
> 3.12 Internet Protocol on X.25 Networks [RFC 877] 3-573
. 313 Internet Protocol
X on Distributed Computer Networks [RFC 891] 3-575
3.14 Transmission of IP Datagrams .
over IEEE 802.3 Networks [RFC 948 3-601 P
. 3.15 Internet Protocol on Ethernet Networks [RFC 884 3-607 D
- 3.16 Internet Protocol on Experimental Ethernets [RFC 885) 3-611 oo
;.‘ 3.17 Address Resoluticn Protocol (ARP) [RFC 826 3-615 _’:\-‘
3.18 Reverse Address Resolution Protocol (RARP) [RFC 9203 3-625 -
4 3.19 Host Access Pretocol (HAP) [RFC 907] 3-629 5
! 3.20 Loader Debugger Protocol (LDP) [RFC 908) 3711 ;’J
b 3.21 CSNET Mailbox Name Server Protocol (CSNET-NS) [CS-DN-2] 3-847 W
' 3.22 Internet Naine Server Protocol (NAMSRVR) [IEN 116] 3-859 t:J
) 3.23 Internet Message Protocol (MPM) [RFC 759] 3-869 VJ
N 3.24 Post Office Protocol (POP) [RFC 937] 3-947 ‘
N i
~ At
Y .‘.:
~ -
" .'.‘
N v :

INTRODUCTION

72,

42703

|

.

J
SECTION 1. INTRODUCTION TO VOLUME 3

Volume Three of the 1985 DDN Protocol Handbook, a three-volume set, contains
implementation guidelines and severzal auxiliary documents of use to protocol
implementors in both the DoD and DARPA internet communities. Volumes One and
Two contain the actual protocols as well as details about DoD and ARPANET Protocol
review and acceptance policies. Volume Three should be used in conjunction with

o 4
SARAL

. -
either or both of the other two volumes. < "-}

5

o
The price for the three-volume set is $110.00, prepaid, to cover the cost of reproduction '.:-f:

l

et JRE

and hardling. Checks should be made payable to SRI International. Copies of the
handbook will also be deposited at DTIC.

Additional copies of the 1985 DDN Protocol Handbook can be ordered from:

DDN Network Information Center
SRI International, Room EJ291
333 Ravenswood Avenue

Menlo Park, CA 94025

Telephone: (800) 235-3155

WY |

l"‘

N RS

o -
%
Ta

s

5 Ty

. e
a_e

.
D]
.
.
e
.
.
.
® .
» Ca
[
0
.
. o
e
.

. B e
. DAl NN

L e _ 0 o . LA .

l“‘l

.\.

."

Q...

e’

v

----------- I T LI I T s S T T TR SL I LTSRN S J St
RTRE N S e SRS S e e e T L s

SIS SR LR SN Y T e e et L, & o PP O G d N

T w0 0, °* vy vV ¥y e e 0 & T T e
RBCIICI AP AASIWWMW | SRR EPRPEPON | §

AN S M

1985

e ® - 8 "a"w
LN S DR S
Vaer®e®y %, 0

oS
-

32

:
i
3
m
o
>
]
(o}
o
m
v
Q
Q
o
&
Q
&
¥
Z
Qa
Q

O A..J-.H-A._I.le‘. .¢-\o-- -- n.n.unn ..- o-”" P 2 -o 4- u\ -\D.\h‘b o Sor b

T AR

>

SZANE> 22l M C A R AR L L AT

TR
- .-.

33

0
14
’

0

T

SECTION 2. PROTOCOL IMPLEMENTATION GUIDELINES

INTRODUCTION

A RO NR S YN O IR S rrYy TORRENL, XARARARS ARARAAAR WA

1985

DDN PROTOCOL HANDBOOK - VOLUME THREE

IMPLEMENTATION GUIDELINES RFC 813

REC: 813

WINDOW AND ACKNOWLEDGEMENT STRATEGY IN TCP

David D. Clark
MIT Laboratory for Computer Science
Computer Systems and Communications Group
July, 1982

MRV TRy

1. Introduction

This document describes implementation strategies to deal with two
mechanisms in TCP, the window and the acknowledgemant. These mechanisms

.
%
<

are described in the specification document, but it is possible, while

»
-
»

.

s complying with the specification, to produce implementations which yield

very bad performance. Happily, the pitfalls possible in window and

> acinovledgement strategies are very easy to avoid. N
i ¥
R

O

It is a much more difficult exercise to verify the performance of a

L)
..!‘
o, 00
-
...

specification than the correctness. Certainly, we have less experiencs

LA L

in this area, and we certainly lack any useful formal technique.

SEALL,
P

Nonetheless, it is important to attespt a specification in this area,

7

because different implementors might otherwise choose superficially

‘0 ..
o <
o+

reasonadble algorithms which intersct poorly with each other. This

3 A

7

document presents a particular set of algorithms which have received

el
» [
.‘
[

R A

'J")

testing in the field. and which appear to work properly with each cther.

i '-" L)
%

.7
2

With more experience, these algoritims may become part of the formal

R i B

specification: until such time their use is recommended.

.

y e e v e e,
P.o n'." (I UA
N "4""}'.’

,,.
Ky

{8

PR
NS -n'-‘
we L

'.
d;:

%
,\

-]

A

U
w
P

I N P

CHNRAY .
o Pt et et et . Lt
s e T aCa Sy Wt T W T et e Lt e,

o,
y

i

>
o A
>

DDN PROTOCOL HANDBOOK - VOLUME THREE 1985

7
-

T"‘.‘

N

[V]
Ay
739

o

o

2. The Mechanisms

r"r Y
, f

.
L

[

A
O

L)
:_a

B

The acknowledgement mechanism is at the heart of TCP. Very simply,

oA

vhen data arrives at the recipient, the protocol requires that it send

acknowledge data by naming the highest numbered byte of data it has

d back an acknowledgement of this data. The protocol specifies that the ‘»:-i:f
< e
h bytes of data are sequentially numbered, so that the recipient can :::2:-
. o
. Lo

»
1"
y

TRY-

received, which also acknowledges the previous bytes (actually, it

v
?
»

. a_ X

identifies the first byte of data which it has not yet received, but

.
s 10

A e
: this is a small detail). The protocol contains only a general assertion :4,.:-3
- that data should be acknowledged promptly, but gives no more specific ';

indication as to how quickly an acknowledgement must be sent, or how

AN
-. LS
X much data should be acknowledged in each separate acknowledgement. :-:.-_
- e
. .:_:\:.
- The window mechanism is a flow control tool. Whenever appropriate, ‘-:‘:{

= A

the recipient of data returns to the sender a number, which is (more or

';_ less) the size of the buffer which the receiver currently has available -5 :,
~ ol
-. for additional data. This number of bytes, called the window, is the
L SI
maximum which the sender is permitted to transmit until the receiver

returns some additional window. Sometimes, the receiver will have no
buffer space available, and will return a window value of zero. Under
these circumstances,the protocol requires the sender to send a small

segment to the receiver now :sd then, to see if more data 1s accepted.

If the window remains closed at zero for some substantial period, and
the sender can obtain no response from the receiver, the protocol
requires the sender tc conclude that the receiver has failed, and to

close the connection. Again, there 1is very 1little performance

>
2,
-]

tmly --
.;bm

-

IMPLEMENTATION GUIDELINES RFC 813

o

¥,

w
PLENY
v i e

information in the specification, describing under what circumstances

TR

) §
ok

the window should be increased, and how the sender should respond to

£y Ty Xy

'{ I‘A

such revised information.

A bad implementation of the window algorithm can lead to extremely

o
=

poor performance overall. The degradations which occur in throughput
and CPU utilizations can easily be several factors of ten, not Jjust a
fractional increase. This particular phenomenon is specific enough that iﬁ
it has been given the name of Silly Window Syndrome, or SWS. Happily £
SWS 1is easy to avoid if a few simple rules are observed. The most
important function of this memo is to describe SWS, so that implementors
will understand the general nature of the problem, and to describe .
aigorithms which will prevent 1its occurrence. This document also -
describes performance enhancing algorithms which relate to
acknowlaedgement, and discusses the way acknowledgement and window

<

algorithms interact as part of SWS.

--.
L]

3. SILLY WINDOW SYNCROME

.. In orrder to understand SWS, we must first define two new terms.

Superficially, the window mechanism is very simple: there is a number,

.
(PR

called "the window", which is returned from the receiver to the sender.

However, we must have a more detaiied way of talking about the meaning

of this number. The receiver of data computes a value which we will E
call the "offered window". In a simple case, the offered window
corresponds to the amount of buffer space avallable in the receiver.
This correspondence is not necessarily exact, but is a suitable model -

for the discussion to follow. It 1is the offered window which |is

3-7

s
l'r »

DDN PROTOCOL HANDBOOK - VOLUME THREE 1985

W

-
P4
A

V-

|

ot g biel st ot LW
Ry
-;r’ 7
Ay

actually transmitted back from the receiver to the sender. The sender

 _,
A

£
ol

A,

uses the offered window to compute a different value, the '"usable
window", which is the offered window minus the amount of outstanding

unacknowledged data. The usable window is less than or equal to the

-
"

offered window, and can be much smaller.

«
s

- A_,_r‘,‘m

i,
e Y

e

Consider the following simple example. The receiver initially "

provides an offered window cf 1,000. The sender uses up this window by

e
N e

sending five segments of 200 bytes each. The receiver, on processing

(Y
.

.
i.

- -
.
.
»
L

¥
’7' .

-
F]

the first of these® segments, returns an acknowledgement which also

»

¥
l.o

1
.
A

P

L
"
EaR

contains an updated window value. Let us assume that the receiver of

the data has removed the first 200 bytes from the buffer, so that the

receiver once again has 1,000 bytes of available buffer. Therefore, the
receiver would return, as before, an offeired window of 1,000 bytes. The

sender, on receipt of this first acknowledgement, now computes the

p

additional number of bytes which may be sent. In fact, of the 1,000
bytes which the recipient is prepared to receive at this time, 800 are
already in transit, having been sent in resporise to the previous offered

window. In this case, the usable wirndow i= only 200 bytes.

Let us now consider how SWS arises. To continue the previous
example, assume that at some point, when the sender computes a useable
window of 200 bytes, it has only 50 bytes to send until it reaches a
"push" point. It thus sends S50 bytes in one segment, and 150 bytes in
the next segment. Sometims later, this 50-byte segment will arrive at
the recipient, which will process and remove the 50 bytes and once again

return an offered window of 1,000 bytes. However, the sender will now

. '
.

. RS B S o

. .~ «t ettt 9.5 0 “~ ~
- - - . - - - - - - . - . . -

R A U R T e R A IR

IMPLEMENTATION GUIDELINES

RFC 813

compute that there are 950 bytes in transit in the network, so that the
useable window is now only 50 bytes. Thus, the sender will once again
send a S0 byte segment, even though there is no longer a natural

boundary to force it.

In fact, whenever the acknowledgement of a small segment comes
back, the useable window associated with that acknowledgement will cause
another segment of the same small size to be sent, until some
abnormality breaks the pattern. It is easy to see how small segments
arise, because natural boundaries in the data cccasionally cause the
sender to take a computed useable window and divide it up between two
segments. Once that division has occurred, there is no natural way for
those useable window allocations to be recombined; thus the breaking up

of the useable window into small pieces will persist.

Thus, SWS 1is a degeneration in the throughput. which develops over
time, during a long data transfer. If the sender ever stops, as for
example when 1t runs out of data to send, the receiver will eventually
acinowledge all the outstanding data, so that the useable window
computed by the sender will equal the full offered window of the
receiver. At this point the situation will have healed, and further
data transmission over the 1link will occur efficiently. However, in
large file transfers, which occur without interruption, SWS can cause
appalling performance. The network between the sender and the receiver
becomes clogged with many small segments, and an equal number of
acknowledgements, which in turn causes lost segments, which triggers

massive retransmission. Bad cases of SWS have been seen in which the

’
A
.,
’

.
]
’
.
[}
]
\
;
.
,
F)
e

......

»

"L
T’ e .

:uw"r?r
L)
LR ey

,I
y

“2
’
N 3

TR S TR

G . A

ey
<

v
>
.
oo,

a1 e,
LI N

Yo

..
N M

’
1

. “« e, -, Y e @ 8 s
e M PO

. D 5 ¢ 4 e

LTS PR e T

.
L)

LA R R

%y

ve .=
H 4
24 L

. IROCRENDNN | AP

DDN PROTOCOL HANDBOOK - VOLUME THREE

1985

average segment size was one-tenth of the sizc the sender and receiver
were prepared to deal with, and the average number of retransmission per

successful segments sent was five.

Happily, SWS is trivial to avoid. The following sections describe
two algorithms, one executed Ly the sender, and one by the receiver,
which appear to eliminate SWS completely. Actually, either algorithm by
itself is sufficient to prevent SWS, and thus protect a host from a
foreign implementation which has failed to deal properly with this
problem. The two algorithms taken together produce an additional

reduction in CPU consumption, observed in practice to be as high as a

factor of four.
4. I.proved Window Algorithms

The receiver of data can take a very simple step to sliminate SWS.
When it disposes of a small amount of data, it can artificially reduce
the offered window in subsequent aclnoledgements, so that the useable
window computed by the sender does not permit the sending of any further
data. At some later time, when the receiver has processed a
substantially larger amount of incoming data, the artificial limitation
on the offered window can be removed all at once, so that the sender

computes a sudden large jump rather than a sequence of small jumps in
the useable window.

At this level, the algorithm 1is quite simple, but in order to
determine exactly when the window should be opened up again, it |is

necessary to look at soms of the other details of the implementation.

310

v%‘ | ggg't:.

e

‘s
.

iy
XX

"

-
5
b R

~—
L

{L':;n’

x

T

ol
- - o
(L ie

TR

AN
Qe v
s .

- -‘-'!.l

ot

’

. .

LA
‘,' ’l .'.l

-
’

KEASOS 14

L
.
e el

.
.
o0

PR b

b

NN
LN A IR
) U

|- |

IMPLEMENTATION GUIDELINES RFC 813 i

Oy
.
PR o)

’

%

Depending on whether the window is held artificially closed for a short

"".-" :"'J

or long time, two problems will develop. The one we have already

7~
:(;:

.

e
{3 '!l‘fl:

discussed -- never closing the window artificially -- will lead to SWS.
On the other hand, if the window 1is only opened infrequently, the

5 |

FE pipeline »of data in the network between the sender and the receiver may :_‘c:s
N have emptied out while the sender was being held off, so that a delay is :’;;[:'
introduced before additional data arrives from the sender. This delay .:;
does reduce throughput, but it does not consume network resources or CPU &'

resources in the process, as does SWS. Thus, it is in this direction
that one ought to overcompensate. For a simple implementation, a rule

of thumb that seems to work in practice is to artificially reduce the

offered window until the reduction constitutes one half of the available
space, at which peint increase the window to advertise the entire space
again. In any event, one ought to make the chunk vy which the window is

opened at least permit one reasonably large segment. (If the receiver

w5
-\ -

.
o W
.
5

is so short of buffers that it can never advertise a large enough buffer

to permit at least one large segment, it is hopeless to expect any sort

.
‘-

PO R

B

of high throughput.)

There is an algorithm that the sender can use to achieve the same
effect described above: a very simple and elegant rule first described t
by Michael Greenwald at MIT. The sender of the data uses the offered ‘
window to compute a useable window, and then compares the useable window E

to the cffered window, and refrains from sending anything if the ratio g
of useable to offered i3 less than a certain fraction. Clearly, if the "
computed useable window is small compared to the offered window, this

means that 2 substantial amount of previously sent information is still

DDN PROTOCOL HANDBOOK - VOLUME THREE 1985 F

in the pipeline from the sender to the receiver, which in turn means
that the sender can count on being granted a larger useable window in
the future. Until the useable window reaches a certain amount, the

sender should simply refuse to serd anything.

Simple experiments suggest that the exact value of the ratio is not
i:'.- very important, but that a value of about 25 percent 1is sufficient to
i avoid SWS and achieve reasonable throughput, even for machines with a
small offered window. An additional enhancement which might help
s throughput would be to attempt to hold off sending until one can send a
i maximum size segment. Another enhancement would be to send anyway, even

if the ratio is small, if the useable window is sufficient to hold the
data available up to the next "push point".

This algoritlm at the sender end is very simple. Notice that it is

not necessary to set a timer to protect against protocol lockup when
. postponing the send operation. Further acknowledgements, as they

| ‘\ arrive, will inevitably change the ratio of offered to useable window.
’ (To see this, note that when all the data in the catanet pipeline has
arrived at the receiver, the resulting acinowledgement must yield an
. offered window and useable window that equal each other.) If the
expected acknowledgements do not arrive, the retransmission mechanisa

will come into play to assure that something finally happens. Thus, to

add this algorithm to an existing TCP implementation usually requires .
- one line of code. As part of the send algorithm it is already necessary -
to compute the usesble window from the offered window. It is a simple

matter to add a 1ine of code which, if the ratio is less than a certain

IMPLEMENTATION GUIDELINES RFC 813

percent, sets the useable window to zero. The results of SWS are so

S
Y

.
.

,l'

. l'f’_’

v ¥
B »
-

devastat.ing that no sender should be without this simple piece of

.'
I 2

.
&

insurance.

R

5. Improved Acknowledgement Algorithms

.
»

e

v 'w

"oty st
.

In the beginning of this paper, an overly simplistic implementation

-
D

of TCP was described, which led to SWS. One of the characteristics of __,_,

this implementation was that the recipient of data sent a separate :.:'_'::
Ve
acknowledgement for every segment that it received. This compulsive .‘\:\:
aciknowledgement was one of the causes of SWS, because each ::".'
&S

ne

aclowledgement provided some new useable window, but even if one of the

::: algorithms described above 1is used to eliminate SWS, overly frequent :'L::
‘- acknowledgement still has a substantial problem, which is that it :::;::
. greatly increases the processing time at the sender's end. Measurement '::‘-'
' of TCP implementations, especially on large operating systems, indicate E,
(:: that most of the overhead of dealing with a segment is not in the -',;
g processing at the TCP or IP level, but simply in the scheduling of the :-"
handler which is requirzd to deal with the segment. A steady dribble of h.
acknowledgements causes a high overhead in scheduling, with very little -
to show for it. This waste is to be avoided if possible.
There are two reasons for prompt acknowledgement. One 1is to .-;::.
prevent retransmission. We will discuss later how to determine whether g

unnecessary retransmission 1is occurring. The other reason one
acknowledges promptiy 1s to permit further data to be sen:. However,
the previous section makes quite clear that it is not always desirable r
to send a little bi%t of data, even though the receiver may have room for ﬁ'
NS
E
¥

.. .
0

'-c‘.
DAL AR

-

> 4
A
=7

N

DDN PROTOCOL HANDBOOK - VOLUME THREE 1985 B
e

ﬁ.',‘;

s

10 ::.‘t:;

it. Therefore, one can state a general rule that under normal o

" g

"
ot Al

,4
W By

operation, the receiver of data need not, and for efficiency reasons

LS

7,7
s

»

should not, acknowledge the data unless either the acknowledgement is

IR

intended to produce an increased useable window, is necessary in order

-
i 9 %
A

o
"

to prevent retransmission or is being sent as part of a reverse

direction segment be!ng sent for some other reason. We will consider an .E‘_::
2 algorithm to achieve these goals. E

!
f{: Only the recipient of the data can control the generation of :.::
Y acknowledgements. Once an acknowledgement has been sent from the ‘:
Ve A

receiver back to the sender, the sender must process it. Although the

:’ -
e 4

extra overhead is incurred at the sender's end, it is entirely under the

receiver's control. Therefore, we must now describe an algorithm which

]
2t Yy 'y Tl
P R R

occurs at the receiver's end. Obviously, the algorithm must have the

8, £y *o

following general form: sometimes the receiver of data, upon processing

:,' , D OP.E '.'_
v _¥ Mo, Lty et e e e

a segment, decides not to send an acknowledgement now, but to postpone

y

]
.

the acknowledgement until some time in the future, perhaps by setting a

.
.

"
AR AR AP

timer. The peril of this approach is that on many large operating

systems it 1is extremely costly to respond to a timer event, almost as
costly as to respond to an incoming segment. Clearly, if the receiver
of the data, in order to avoid extra overhead at the sender end, spends
a great deal of time responding to timer interrupts, no overall benefit
has been achieved, for efficiency at the sender end is achieved by great
‘.-: thrashing at the receiver end. We must find an algorithm that avoids i
‘ both of these perils.

The followiny scheme seems a good compromise. The receiver of data E

IMPLEMENTATION GUIDELINES

RFC 813

11

will refrain from sending an acknowledgement under certain
circumstances, in which case it must set a timer which will cause the
acknowledgement to be sent later. However, the receiver should do this
only where it is a reasonable guess that some other event will intervene
and prevent the necessity of the timer interrupt. The most obvious
event on which to depend is the arrival of another segment. So, if a
segment arrives, postpone sending an acknowledgement if both of the
following conditions hold. First, the push bit is not set in the
segment, since it is a reasonable assumption that there is more data
coming in a subsequent segment. Second, there is no revised window

information to be sent back.

This algorithm will insure that the timer, although set, is seldom
used. The interval of the timer is related to the expected inter-
segment delay, which is in turn a function of the particular network
through which the data is flowing. For the Arpanet, a reasonable
interval seems to be 200 to 300 milliseconds. Appendix A describes an

adaptive algoritna for measuring this delay.

The section on improved window algorithms described both a receiver
algorithm and a sender algorithm, and suggested that both should be
used. The reason for this is now clear. While the sender algorithm |is
extremely simple, and useful as insurance, the receiver algorithm is
required in order that this improved aclknowledgement strateqgy work. It
the receipt of every segment causes a nevw window value to be returned,
then of necessity an acinowledgement wiil be sent for every data

segment. When, according to the strategy of the pravious section, the

o o ¥
ot

-2

7

-
»
L

,
- 4
Pl el

o N

r ¥ r_s

.I :
PR
-'l'i(

"

L S AL

.
rs

TR

bee a0’y

' DDN PROTOCOL HANDBOOK - VOLUME THREE 1985 E‘
5 "
2 i
0 ‘,*,:"-"‘
0 12 N

A

receiver determines to artificially reduce the offered window, that is :-:::-
Y
precisely the circumstance under which an acknowledgement need not be :-"-.:,
S

...

sent. When the receiver window algorithm and the receiver

P

R}

acknowledgement algorithm are us=d together, it will be seen that

sending an acknowledgement will be triggered by one of the following :3\3
events. First, a push bit has been received. Second, a temporary pause E::Et
in the data stream is detected. Third, the offered window has been r—"-‘
artificially reduced to one-half its actual value. E\::

In the beginning of this section, it was pointed out that there are
two reasons why one must acknowledge data. Our consideration at this
point has been concermed only with the first, that an acknowledgement
must be returned as part of triggering the sending of new data. It is
also necessary to acknowledge whenever the failure to do so would
trigger retransmission by the sender. Since the retransmission interval
is selected by the sender, the receiver of the data cannot make a
precise determination of when the aclnowledgement must be sent.
However, there is a rough rule the sender can use to avoid

retransmission, provided that the receiver is reasonably well behaved.

We will assume that sender of the data uses the optional algorithm

descriked in the TCP specification, in which the roundtrip delay is .
measured using an exponential decay smoothing algorithm. Retransmission B

of a segment occurs if the measured delay for that segment exceeds the

™
-

smoothed average by some factor. To see how retransmission might be

triggered, one must consider the pattein of segment arrivals at the

v
»

receiver. The goal of our strategy was that the sender should send off E

R AL

A
CHSCIL) I. /'.-

s JR A
 «
r4

'

IMPLEMENTATION GUIDELINES RFC 813 Ef

L2
X
B

oA
‘ " ?
s T 4

efLl bl
.;b
3,

13 [Py

a number of segments in ~lose sequence, and receive one acknowledgement .;-.
~

for the whole burst. The acknowledgement will be generated by the P

¥
-8
»

ME<

receiver at the time that the last segment in the burst arrives at the

receiver. (To ensure the prompt return of the acknowledgement, the

3=
N

e
‘o

sender could turn on the "push" bit in the last segment of the burst.)

-

L}

=
-

Pae
v

'l

The delay observed at the sender between the initial transmission of a

2 v
o o, =y w—
P

segment and the receipt of the acknowledgement will include both the
network trarsit time, plus the holding time at the receiver. The
holding time will be greatest for the first segments in the burst, and
smallest for the last segments in the burst. Thus, the smoothing
algorithm will measure a delay which is roughly proportional to the

average roundtrip delay for all the segments in the burst. Problems

will arise if the average delay is substantially smaller than the '
maximum delay and the smoothing algorithm used has a very small
threshold for triggering retransmission. The widest variation between E.

average and maximum delay will occur when network transit time |is
negligible, and all delay is processing time. In this case, the maximum ':j.(:
will be twice the average (by simple algebra) so the threshold that

controls retransmission should be somewhat more than a factor of two.

in practice, retransmission of the first segments of a burst has -_'.‘_-
not been a problem because the delay measured consists of the network A
roundtrip delay, as well as the delay due to withholding the E

aciknowledgement, and the roundtrip tends to dominate except in very low

e e
"'t'

roundtrip time situations (such as when sending to one's self for test

purposes) . This low roundtrip situation can be covered very simply by

including a minimum value below which the roundtrip estimate is not .'_.

permitted to drop. .::'_.
o
l.‘l

‘.’
-

NOER ! |

s
53
DDN FROTOCOL HANDBOOK - VOLUME THREE 1985

! i

\ LY
s

.Q',‘
.::&3
14 i
0
In our experiments with this algorithm, retransmission due to lx\
(o)
faulty calculation of the roundtrip delay occurred only once, when the N
ik
parameters of the exponential smoothing algorithm had been misadjusted : ‘-’,_‘
so that they were only taking into account the last two or three E

,

segments sent. Clearly, this will cause trouble since the last two or

P A)
o

Ny €
PR

three segments of any burst are the ones whose holding time at the

s

.
s
.I ‘l"

= -
.

"t .

Galit
!‘—-

- receiver is minimal, so the resulting total estimate was much lower than
appropriate. Once the paramcters of the algorithm had been adjusted so
that the number of segments taken into account was approximately twice
the number of segments in a burst of average size, with a threshold

factor of 1.5, no further retransmission has ever been identified due to

7 AR

this problem, including when sending to ourself and when sending over

T —
..

.
°

high delay nets.
6. Conservative Vs. Optimistic Windows

According to the TCP specification, the offered window is presumed
to have some relationship to the amount of data which the receiver s
actually prepared to receive. However, it is not necessarily an exact
correspondence. We will use the term ''conservative window" to describe
the case where the offered window is precisely no larger than the actual

buffering available. The drawback to conservative window algorithms is

that they can produce very low throughput in long delav situations. It
is easy to see that the maximum input of a cconservative window algorithm
is one bufferfull every roundtrip delay in the net, since the next
bufferfull cannot be launched until the updated window/aclnowledgement

information from the previous transmission has made the roundtrip. E

tax
IMPLEMENTATION GUIDELINES RFC 813 g

<,
15 R

In certain cases, it may be possible to increase the overall

%p

throughput of the transmission by increasing the offered window over the

oo

ot

actual buffer available at the receiver. Such a strategv we will call

an "optimistic window" strategy. The optimistic strategy works if the

A

....
f, Ty v
2 i &
Salsla

*,
4
a_a

network delivers the data to the recipiant sufficiently slowly that it

can process the data fast enough to keep the buffer from overflowing.

e
.

>
x

If the receiver is faster than the sender, one could, with luck, permit

a
Ly

Tl ol
ol

an infinitely optimistic window, in which the sender is simply permitted

to send full-speed. If the sender is faster than the receiver, however, ‘:\
and the window is too optimistic, then some segments will cause a buffer ‘.,
overflow, and will be discarded. Therefore, the correct strategy to ﬁ
implement an optimistic window is to increase the window size until ' g
segments start to be lost. This only works if it is possible to detect
that the segment has been lost. In some cases, it 1is easy to do, ,,:.
because the segment is partially processed inside the receiving host K !
before it is thrown away. In other cases, overflows may actually cause :
the netwc—k interface to be clogged, which will cause the segments to be \
lost elsevhere in the net. It is inadvisallle to attempt an optimistic %
e window strategy unless ocne is certain that the algorithm can detect the "‘_:.

» resulting lost segments. However, the increase in throughput which is
possible from optimistic windows is quite substantial. Any systems with

s small buffer space should seriously consider the merit of optimistic E

windows.

The selection of an appropriate window algorithm is actuially more '
complicated than even the above discussion suggests. The following E.
considerations are not presented with the intention that they be -

o0 8 ", 0,
"9,
e e

",
\

."'.'M
AR

.
‘.’-.l'

. .
. v
Q.l .,
'

LA
i+

319

’
g
s
Nz
.
*
5
.
*

£ . . g . - =
= - S = W TRET R NP
o —

DDN PROTOCOL HANDBOOK - VOLUME THREE 1985 ¥
\

i

aGH

s.}&!

~ f“.

16 .‘FE

incorporated in currert implementations of TCP, but as background for f{i:

“_--.:'ﬁ

the sophisticated designer who is attempting to understand how his TCP %t;j

e

will respond to a variety of networks, with different speed and delay E\ﬁq

characteristics. The particular pattern of windows and acknowledgements !gg%

sent from receiver to sender influences two characteristics of the data i?:;

being sent. First, they control the average data rate. Clearly, the ;ifj

average rate of the sender cannot exceed the average rate of the vy

"
] I|¢ >
4

receiver, or long-term buffer overflow will occur. Second, they

v

. ‘-
e
v
.
.l'

influence the burstiness of the data coming from the sender. Burstiness

v' l' l.
“d '- ‘K
:)
= 'v ’u “ L)
o
Pt

A UR TR I 4

=TT
-

has both advantages and disadvantages. The advaritage of burstiness is

]
"X
29t

that it reduces the CPU processing necessary to send the data. This

follows from the observed fact, especially on large machines, that most

of the cost of sending a segment is not the TCP or IP processing, but :.i’

gy
e e »
AR
e (]
2
4y
4

the scheduling overhead of getting started. e

On the other hand, the disadvantage of burstiness is that it may
cause buffers to overflow, either in the eventual recipient, which was

discussed above, or in an intermediate gateway, a problem ignored in

»
r
e A

n°52° 0% o

this paper. The algorithms described above attempts to strike a balance .!E

between excessive burstiness, which in the extreme cases can cause

delays because a burst is not requested soon enough, and excessive Py
fragmentation of the data stream into small segments, which we "
identified as Silly Window Syndrome. A

Under conditions of extreme delay in the network, none of the

»
Pt 4

algorithms described above will achieve adequate throughput.

Conservative window algorithms have a predictable throughput 1limit,

_
PALADM 9% 2 et
s ‘3 s e s Kl .

0" L0 P

PR
Yt
Fo

.
7’

oY
L)

v

R T

»*

5.

Yol |AS

TR

IMPLEMENTATION GUIDELINES RFC 813

5 2
F PP

17

b

EA
G

o

which is one windowfull per roundtrip delay. Attempts to solve this by

o

optimistic window strategies may cause buffer overflows due to the

TR TR

bursty nature of the arriving data. A very sophisticated way to solve

this is for the receiver, having measured by some means the roundtrip

.f t “'(‘
T delay and intersegment arrival rate of the actual connection, to open t'.:-:
o LR
":: his window, not in one optimistic increment of gigantic proportion, but '..;:

&

in a number of smaller optimistic increments, which have been carefully

r

Al 1

spaced using a timer so that the resulting smaller bursts which arrive

:rl

[
o &

‘l)’
»

= are each sufficiently small to fit into the existing buffers. One could

¥y

visualize this as a number of requests flowing backwards through the net

2 4

[ut

which trigger in return a number of bursts which flow back spaced evenly

from the sender to the receiver. The overall result is that the

'
v -
2T
B
o 2'p e

- receiver uses the windew mechanism “o control the burstiness of the

-~
DL

q
A
5 FURN

arrivals, and the average rate.

‘4
i

To my knowledge, no such strategy has been implemented in any TCP.

i First, we do not normally nave delays high enough to require this kind 'E:
: of treatment. Second, the strategy described above is probably nut ‘Ei

stable unless it is very carefully balanced. Just as buses on a single .
; bus route tend to bunch up, bursts which start out equally spaced cculd
ﬁ: vell end up piling into each other, and forming the single large burst ;E:
"'-': which the receiver was hoping to aveid. It is important to understand ;":

this extreme case, however, in order to understand the 1limits beyond E
,.; which TCP, as normally implemented, with either conservative or simple

optimistic windows can be expected to deliver throughput which is a

.
'-'-l.’-

U
.
()

reascnable percentage of the actual network capacity.

e AR

.
ey
o 7.

s A

2 L
E." DDN PROTOCOL HANDBOOK - VOLUME THREE 1985 5
N A
] t:f‘w.
v bal

J -
s . g
> n
b, 7. Conclusions 3
i 3
WY This paper describes three simple algorithms for performance *”:

enhancement in TCP, one at the sender end and two at the receiver. The

gy
TR~

=
o,
—

i sender algorithm is to refrain from sending if the useable window is

£
>

smaller than 25 percent of the offered window. The receiver algoritims

s
.
PR el e

"

TR

,‘4
N

>k 4'.‘14_\‘.',‘
[

3 are first, to artificially reduce the offered window when processing new
. data if the resulting reduction does not represent more than some

fraction, say 50 percent, of the actual space available, and second, to

refrzin from sending an acknowledgment at all if two simple conditions ::::

Either of these algorithms will prevent the worst aspects of Silly

Window Syndrome, and when these algorithms are used together, they will
produce substantial improvement in CPU utilization, by eliminating the C-
process of excess acknowledgements. E

Preliminary experiments with these algorithms suggest that they 'r;\
work, and work very “rell. Both the sender and receiver algorithms have .:‘:E
been shown to eliminate SWS, even when talking to fairly silly .

algorithms at the cther end. The Multics mailer, in particular, had
suffered substantial attacks of SWS while sending large mail to a number
of hosts. We brlieve that implementation of the sender side algorithm

has eliminated every known case of SWS detected in our mailer.

Irplementation of the receiver side algorithm produced substantial

improvements of CPU time when Multics was the sending system. Multics

.
| 4

is a typical large operating system, with scheduling costs which are

large compared to the actual processing time for protocol handlers.

™
.
'P
A

IMPLEMENTATION GUIDELINES RFC 813

~» wwp
gtﬁ'}ﬁ/‘:

3y

19

B |2

N
>

.r lJ

Tests were done sending from Multics to a host which implemented the SWS

Pl
.

]
¥
. .

o R

Loar S

suppression algorithm, and which could either refrain or not from
sending acknowledgements on each segment. As predicted, suppressing the

return acknowledgements did not influence the throughput for large data

transfer at all, since the throttling effect was elsewhere. However,

vy
v

the CPU time required to process the data at the Multics end was cut by

v

o
N
l'.ill'

a factor of four (In this experiment, the bursts of data which were

being sent were approximately eight segments. Thus, the number of

TR

acknowledgements in the two experiments differed by a factor of eight.)

»

An 1important consideration in evaluating these algorithms is that

Y
v e
v

.
i
-

.

they must not cause the protocol implementations to deadlock. All of

the recommendations in this document have the characteristic that they

suggest one refrain from doing something even though the protocol
specification permits one to do it. The possibility exists that if one

refrains from doing something now one may never get to do it later, and

s
-

.« TR
4 8 4 ‘ o, ‘.‘ . ’

both ends will halt, even though it would appear superficially that the

[]
’
-

l‘r 'l 1
%2 N

transaction can continue.

Formally, the idea that things continue to work is referred to as

et
A\
«o 7,

"liveness'. One of the defects of ad hoc solutions to performance

.
l‘l’.\

problems is the possibility that two different approaches will interact

to prevent liveness. It is believed that the algorithms described in

. .-V lm yﬁa

this paper are always live, and that is one of the reasons why there |is
a strong advantage in uniform uso of this particular proposal, except in

cases where it is explicitly demonstrated not to work.)

The argument for liveness in these solutions proceeds as follows.

. e e DI

- & . ® h-. - "-
L TN T N

ll

Ex

DDN PROTOCOL HANDBOOK - VOLUME THREE 1985 .
-

AT

20 1-

First, the sender algorithm can only be stopped by one thing, a refusal

of the receiver to acknowledge sent data. As 1long as the receiver

continues to acknowledge data, the ratio of useable window to offered
window will approach one, and eventually the sender must continue to

send. However, notice that the receiver algorithm we have advocated C

ot

involves refraining from acknowledging. Therefore, we certainly do have

v 1

i} A

.
rirh s

a situation where improper operation of this algorithm can prevent

liveness. =

What we must show is that the receiver of the data, if it chooses o
to refrain from acknowledging, will do so only for a short time, and not

forever. The design of the algorithm described above was intended to

achieve precisely this goal: whenever the receiver of data refrained 'tj
from sending an acknowledgement it was required to set a timer. The ij
only event that was permitted to clear that timer was the receipt of o
another segment, which essentially reset the timer, and started it going Ty

. .
RSP
i,

again. Thus, an acknowledgement will be sent as soon as no data has

.
Ay

L
LI e

been received. This has precisely the etffect desired: if the data flow

appears to be disrupted for any reason, the receiver responds by sending

an up-to-date acknowledgement. In fact, the receiver algorithm is

designed to be more robust than this, for transmission of an
acknowledgment is triggered by two events, either a cessation of data or N
a reduction in the amount of offered window to 50 percent of the actual .E
value. This is the condition which will normally ¢trigger the

transmission of this acknowledgement.

P
P
.

SN

'.
o
PR A AW

Ce e e
CRPLI

@
2

IMPLEMENTATION GUIDELINES RFC 813
.j;:,
o4
MY
g APPENDIX A H

-
e

“ R

R

Dynamic Calculation of Acknowledgement Delay

0,

The text suggested that when setting a timer to postpone the

Ay

BBy

sending of an acknowledgement, a fixed interval of 200 to 300

¥

*

milliseconds would work properly in practice. This has not been

verified over a wide variety of network delays, and clearly if there is

b e ol
-
a

a very slow net which stretches out the intersegment arrival time, a

.
PO

fixed interval will fail. In a sophisticated TCP, which is expected to

g VR

adjust dynamically (rather than manually) to changing network

e e b
RS

conditions, it would be appropriate to measure this interval and respond

SO T

dynamically. The following algorithm, which has been relegated to an

’
e v, ",

"-

Appendix, Dbecause it has not been tested, seems sensible. Whenever a

segment arrives which does not have the push bit on in it, start a

0 s
BN By S P

timer, which runs until the next segment arrives. Average these

a_ e
»

X interarrival intervals, using an exponential decay smoothing function

A

tuned to take into account perhaps the last ten or twenty segments that

e v

IR

have come in. Occasionally, there will be a long interarrival period,

even for a segment which is does not terminate a plece of data being

pushed, perhaps because a window has gone to zero or some glitch in the

R
- = - e .]

sender or the network has held up the data. Therefore, examine each
interarrival interval, and discard it from the smoothing algorithm if it
exceeds the current estimate by some amount, perhaps a ratio of two or

four times. By rejecting the larger intersegment arrival intervals, one E

should obtain a smoothed estimate of the interarrival of segments inside A

| o

DDN PROTOCOL HANDBOOK - VOLUME THREE 1985

x

L % L)
P K Ay

LY]

AT | Bl

b
v Y

= p-

Lol
oy !

22

L W

a bhurst. The number need not be exact, since the timer which triggers

¥ Y;‘r‘

“
‘.'.l'l_“

1 acknowledgement can add a fairly generous fudge factor to this without

.y
P
A ;,‘:-"’t‘_

causing trouble with the sender's estimate of the retransmission

interval, so long as the fudge factor is constant.

.
VS
7N
2
»
5
‘

Te" e r 8 ¥y s =
LI ."-'z'r
. 8 W_8_v_

1
4 R

-' - .“.
AT RN
.
A

(A

> v v 4
C)

»

IMPLEMENTATION GUIDELINES RFC 814

RFC: 814

NAME, ADDRESSES, PORTS, AND ROUTES
David D. Clark
MIT Laboratory for Computer Science

Computer Systems and Communications Group
July, 1982

1. Introduction

It has been said that the principal function of an operating system

is to define a number of different names for the same object, so that it

can busy itself Kkeeping track of the relationship between all of the o

different names. Network protocols seem to have somewhat the same :\

characteristic. In TCP/IP, there are several ways of referring to E

things. At the human visible interface, there are character string r\‘(,;

"names"” to identify networks, hosts, and services. Host names are ?::E

translated into network "addresses", 32-bit values that identify the -‘t

network to which a host is attached, and the location of the host on E

that net. Service names are translated into a "port identifier", which -

in TCP is a 16-bit value. Finally, addresses are translated into e

"routes", which are the sequence of steps a packet must take to reach i

.:: the specified addresses. Routes show up explicitly in the form of the i)
: internet routing options, and also implicitly in the address to route -
E translation tables which all hosts and gateways maintain. %

This REC gives suggestions and guidance for the design of the E

tables and algorithms necessary to keep track of these various sorts of

identifiers inside a host implementation of TCP/IP. S

o

B

L]
% %
i)

s 4 8

DDN PROTOCOL HANDBOOK - VOLUME THREE 1985
5 ‘_{:‘
3 54
c:; i.}l
{'H ?:'L’
L& 2 Y
e Ry
- 2. The Scope of the Problem kY
N
3 3
o One of the first questions one can ask about a naming mechanism is o
" al
how many names one can expect to encounter. In order to answer this, it E
1 is necessary to now something about the expected maximum size of the "\'f
‘:;',- internet. Currently, the internet is fairly small. It contains no more ;"-f
bt %
™ than 25 active networks, and no more than a few hundred hosts. This "
y makes it possible tc install tables which exhaustively list all of these o~
-3'} elements. However, any implementation undertaken now should be based on "
o) an assumption of a much larger internet. The guidelines currently :::'
8. .
v recoomended are an upper limit of about 1,000 networks. If we imagine =
o an average number of 25 hosts per net, this would suggest a maximum X
- number of 25,000 hosts. It 1s quite unclear whether this host estimate :jj
::- is high or low, but even if it is off by several factors of two, the
resulting number is still large encugh to suggest that current table E
management strategies are unacceptable. Some fresh techniques will be :::-
required to deal with the internet ol the futw-e. ::‘:
-
L r‘::
3. Names .
:::: As the previous section suggests, the internet will eventually have ..
'_f a sufficient number of names that a host cannot have a static table ::::
22 which provides a translation from every name to its associated address. E
. There are several reasons other than sheer size why a host would not -
wish to have such a table. First, with that many names, we can expect ,"::
names to be added and deleted at such a rate that an installer might ':'
spend all his time just revising the cable. Second, most of the names E
) will refer to addresses of machines with which nothing will ever be _‘}:
~ o
‘ E
~ 2.°d
.
- o
~ 5
!.. ..
A
N
B A

IMPLEMENTATION GUIDELINES RFC 814

exchanged. In fact, there may be whole networks with which a particular

host will never have any traffic.

To cope with this large and somewhat dynamic environment, the
internet is moving from its current position in which a single name
table is maintained by the NIC and distributed to all hosts, to a
distributed approach in which each network (or group of networks) is
responsible Ior maintaining its own names and providing a "name server"
to translate between the names and tne addresses in that network. Each
host is assumed to store mnot a complete set of name-address
translations, but only a cache of recently used names. When a name 1is

provided by a user for translation to an address, the host will first

_.‘- examine its local cache, and if the name is not found there, will
Lo

: communicate with an appropriate name server to obtain the information,
i which it may then insert into its cache for future reference.

Unfortunately, the name server mechanism is not totally in place in

the internet yet, so for the moment, it is necessary to continue to use
the old strategy of maintaining a complete table of all names in every

host. Implementors, however, should structure this table in such a way

that it 1is easy to convert later to a name server approach. In

particular, a reasonable programming strategy would be to make the name

table accessible only through a subroutire interface, rather than by

scattering direct references to the table all through the code. In this

way, it will be possible, at a later date, to replace the <csubroutine

with one capable of making calls on remote name servers.

A problem which occasionally arises in the ARPANET today is that

» w
&
.

| e s g g - - 3

B 3

SO A

s

PPN
a"“n _5

4

-
£

o TR L

o
wa ¥

I

s o

X

v,

s |3

IR s AR

i L""d
i HAN e
i DDN PROTOCOL DBOOK - VOLUME THREE 1985 E
N o
' 23,
b e 35
’:"5 -3

»

the information in a local host table is out of date, because a host has

7

moved, and a revision of the host table has not yet been installed from

.,-,,
s

T

the NIC. In this case, one attempts to connect to a particular host and

w &

discovers an unexpected machine at the address obtained from the local

e |
,d'"!""‘"

table. If a human is directly observing the connection attempt, the

¥
s

. I" »

r” e . B

error is usually detected immediately. However, for unattended

Y oy
»

L

operations such as the serding of queued mail, this sort of problem can

R
4 5

[N
f'\

lead to a great deal of confusion.

.
«a
T
Feam

The namsserver scheme will only make this problem worse, if hosts

.
.
s "o
.

.
»
v
.
S
.
'
.
.

cache 1locally the address associated with names that have been looked .

f.;: :

up, because the host has no way of knowing when the address has changed
and the cache entry should be removed. To solve this problem, plans are
currently under way to define a simple facility by which a host can
query a foreign address to determine what name 1is actually associated
with {it. SMIP already defines a verification technique based on this

approach.
4. Addresses

The IP layer must know something about addresses. In particular,
wvhen a datagram is being sent out from a host, the IP layer must decide

where to send it on the immediately connected network, based on the

internet address. Mechanically, the IP first tests the internet address
to see vwhether the network number of the recipient is the same as the
network number of the sender. If so, the packet can be sent directly to
the final recipient. If not, the datagram must be sent to a gateway for

further forwarding. In this latter case, a second decision must be

IMPLEMENTATION GUIDELINES RFC 814

AR

VL
2 -
7

made, as there may be more than one gateway available on the immediately

attached network.

=

When the internet address format was first specified, 8 bits were

‘
&

R

reserved to identify the network. Early implementations thus

implemented the above algorithm by means of a table with 256 entries, A

o
PR
el

."
i-'.’~'
"- .

one for each possible net, that specified the gateway of choice for that
net, with a special case entry for those nets to which the host was

il

', NG
% immediately conrected. Such tables were sometimes statically filled in, L
L:'. I.o-:'u'
~J which caused confusion and malfunctions when gateways and networks moved ol
- S Y

(or crashed) . " -

Ve
e

L
o .

The current definition of the internet address provides three

different options for network numbering, with the goal of allowing a

]
el

o

very large number of networks to be part of the internet. Thus, it is

no longer possible to imagine having an axhaustive table to select a

; qateway for any foreign net. Again, current implementations must use a R
’ strategy based on a local cache of routing information for addresses r._
h currently being used. ‘f:;::
o
The recommended strategy for address to route translation is as -.:;'::
follows. When the IP layer receives an outbound datagram for ":
transmission, it extracts the network number from the destination ,::::j
E address, and queries its local table to determine whether it Inows a
i) suitable gateway to which to send the datagram. If it does, the job is ;
done. _(But see RFEC 816 on Fault Isolation and Recovery, for ~':
recommendations on how to deal with the possible failure of the . ‘
gateway.) If there is no such entry in the local table, then select any ‘-\'j
5

. "pk

D)
BT
IR NP I

¢
=
el

DDN PROTOCOL HANDBOOK - VOLUME THREE 1985

accessible gateway at random, insert that as an entry in the table, and
use it to send the packet. Either the guess will be right or wrong. If
it is wrong, the gateway to which the packet was sent will return an
ICMP redirect message to report that there is a better gateway to reach
the net in question. The arrival of this redirect should cause an

update of the local table.

The number of entries in the local table should be aetermined by
the maximum number of active connections which this particular host can
support at any one time. For a large time sharing system, one might
imagine a table with 100 or more entries. For a personal computer being
used to support a single user telnet connection, only one address to

gateway association need be maintained at once.

The above strategy actually does not completely solve the problem,
but only pushes it down one level, where the problem then arises of how
a new host, frechly arriving on the intermet, finds all of its
accessible gateways. Intentionally, this problem is not solved within
the internetwork architecture. The reason is that different networks

have drastically different strategies for allowing 2 host to find out

about other hosts on its immediate network. Some nets permit a '_f-‘
broadcast mechanism. In this case, a host can send out a message and A
expect ar. answer back from all of the attached gateways. In other E
cases, vhere a particular network is richly provided with tools to
support the internet, there may be a special network mechanism which a
host can invoke to determine where the gateways are In other cases, it S

may be necessary for an installer to manually provide the name of at

S R :

!a:l‘ % e e '
PR

..-."..‘.... fr

.
.
o
.
« I

IMPLEMENTATION GUIDELINES RFC 814

least one accessible gateway. Once a host has discovered the name of
one gateway, it can build up a table of all other available gateways, by
keeping track of every gateway that has been reported back to it in an

IQMP message.
S. Advanced Topics in Addressing and Routing

The preceding discussion describes the mechanism required in a
minimal implementation, an implementation intended only to provide

operational service access today to the various networks that make up

the internet. For any host which will participate in future research,

yos

as contrasted with service, some additional features are required.

These features will also be helpful for service hosts if they wish to ".:‘_:':'
obtain access to some of the more exotic networks which will hecome part "E::
of the internet over the next few years. All implementors are urged to i’i:;:
at least provide a structure into which these features could be later E
integrated. \

There are several features, either already a part of the j.‘:::'."
architecture or now under development, which are used to modify or ﬁ

expand the rslationships between addresses and routes. The IP source

route options allow a host to explicitly direct a datagram through a

series of gateways to its foreign host. An alternative form of the IQW e
redirect packet has been proposed, which would return information E
specific to a particular destination host, not a destination net. i’l'_;:.
Finally, additional IP options have been proposed to identify particular _'::"
routes within the internet that are unacceptable. The difficulty with E
implementing these new features 1s that the mechanisms do not 1lie _
s
0
S8
&
.

3-33

DDN PROTOCOL HANDBOOK - VOLUME THREE 1985 -

X

e g
)
>

"_;"..F.-
P
L. » Pt

entirely within the bounds of IP. All the mechanisms above are designed S

to apply to a particular connection, so that their use must be specified b

A L A B J‘_J
[0)
b .|

at the TCP level. Thus, the interface between IP and the layers above Y
it must include mechanisms to allow passing this information back and

forth, and TCP (or any other protocol at this level, such as UDP), must

XA
'fl_"f
.

be prepared to store this information. The passing of information

between IP and TCP is made more complicated by the fact that some of the E

13

information, in particular ICMP packets, may arrive at any time. The b

ty s

normal interface envisioned between TCP and IP 1is one across which -

o
st

~ .
£
-

packets can be sent or received. The existence of asynchronous ICMP

Iy

2 &

mescages implies that there must be an additiocnal channel between the
two, unrelated to the actual sending and receiving of data. (In fact,
there are many other ICMP messages which arrive asynchronously and which
must be passed from IP up to higher layers. See REFC 816, Fault

Isolation and Recovery.)

Source routes are already in use in the internet, and many .
implementations will wish to be able to take advantage of them. The

following sorts of usages should be permitted. First, a user, when

initiating a TCP connection, should be able to hand a source route into

TCP, which in turn must hand the source route to IP with every outgoing

re

datagram. The user might initially obtain the source route by querying

rmmr

a different sort: of name server, which would return a source route

instead of an addrwss, or the user may have fabricated the source route

= e e
- PR T P
e %ot . .

manually. A TP which 1is 1listening for a connection, rather than

attempting to open one, must be prepared to receive a datagram which

contains a IP return route, in which case it must remember this return .r
> L

route, and use it as a source route on all returning datagrams.

., '.‘_-I_'-'_ .

3-34 r

IMPLEMENTATION GUIDELINES RFC 814 E
V-

g
‘{,

X

6. Ports and Service Identifiers

The IP 1layer of the architecture contains the address information :ﬁ
which specifies the destination host to which the datagram 1s being ﬁ
sent. In fact, datagrams are not intended just for particular hosts, %
but for particular agents within a host, processes or other entities J:
that are the actual source and sink of the data. IP performs only a »-::
very simple dispatching once the datagram has arrived at the target E
host, it dispatches it to a particular protocol. It is the r
responsibility of that protocol handler, for example TCP, to finish ::f:

dispatching the datagram to the particular ccnnection for which it is

-

g i

destined. This next 1layer of dispatching is done using ‘'port

*

identifiers", which are a part of the header of the higher level

protocol, and not the IP layer.

. P TS e AT

This two-layer dispatching architecture has caused a problem for

certain implementations. In particular, some implementations have

2, %"=

LA Saw o
]

.

wished to put the IP layer within the kernel of the operating system,

o -
N

and the TCP layer as a user domain application program. Strict

adherence to this partitioning can lead to grave perfcrmance problems,

i '. o " -
]
‘r .- “ . e

for the datagram must first be dispatched from the kernel to a TCP
process, which then dispatches the datagram to its final destination

process. The overhead of scheduling this dispatch process can severely

limit the achievable throughput of the implementation.

As is discussed in REC 817, Modularity and Efficiency 1in Frotocol

e MO

]
L §

Implementations, this particular separation between kernel ani user

Bl -

leads to other performance problems, even ignoring the issue of port

-, > e r e .

3-35 "

. .
.........
......

e *.'-- e e ‘v "- -.._\':_":'""-'-“-' -'.’. '.."

s. &A.s. a8 LAL_‘J A LXL‘L A .L‘.-._L'ALAML'._!.J;H;A- -1-‘.‘1-;“_-....;‘1-4..~4“.{‘..4A A-AgAsi.... |‘I|.l I.l l‘.i' lll‘ll .llll

DDN PROTOCOL HANDBOOK - VOLUME THREE 1985

s

i St 8

"'"'J"i .
[
»
e

.!

»

3
4
s
P2

A,
.

»
2
N

10

ARE

level dispatching. However, there is an acceptable shortcut which can

be taken to move the higher level dispatching function into the IP

B

s

layer, if this makes the implementation substantially easier.

A
Ry

In principle, every higher level protocol could have a different ,-;?:

dispatching algorithm. The reason for this 1is discussed below. :::

However, for the protocols involved in the service offering being :_ﬂ:;

implemented today, TCP and UDP, the dispatching algorithm is exactly the g

: same, and the port field is located in precisely the same place in the (-:
:w header. Therefore, unless one is interested in participating in further \
A protocol research, there is only one higher level dispatch algorithm. ;‘i
This algorithm takes into accourntt the internet 1level foreign address, 4

the protocol number, and the local port and foreign port from the higher E:‘::

level protocol header. This algorithm can be implemented as a sort of
adjunct to the IP layer implementation, as long as no other higher level

protocols are to be implemented. (Actually, the above statement is only

TR TSR

partially true, in that the UDP dispatch function is subset of the TCP ::‘-'

dispatch function. UDP dispatch depends only protocol number and local

port. However, there is an occasion within TCP when this exact same ‘
subset comes into play, when a process wishes to listen for a connection :;:;:Ef
from any foreign host. Thus, the range of mechanisms necessary to
support TCP dispatch are also sufficient to support precisely the UDP o

requirement.)

The decision to remove port level dispatching irom IP to the higher
level protocol has been questioned by some implementors. It has been

argued that if all of the address structure were part of the IP layer,

(N
IMPLEMENTATION GUIDELINES RFC 814 R‘
Yoy,
MY
l“.u“;
-""(""
el
pd
11 i
then IP could do all of the packet dispatching function within the host, ;:}
.&__“
which would 1lead to a simpler modularity. Three problems were g3%
LR
identified with this. First, not all protocol implementors could agree ;
on the size of the port identifier. TCP selected a fairly short port !!%
L."?u:
identifier, 16 bits, to reduce header size. Other protocols being :{}_
M
designed, however, wanted a larger port identifier, perhaps 32 bits, so »f}j
T
that the port identifier, if properly selected, could be considered iéj
probabilistically unique. Thus, constraining the port id to one Bl
particular IP level mechanism would prevent certain fruitful 1lines of ;fj
research. Second, ports serve a speclal function in addition to 5:}
datagram delivery: certain port numbers are reserved to identify ’~T
W ."‘
particular services. Thus, TCP port 23 is the remote login service. If ,}:
LS
ports were implemented at the IP level, then the assignment of well ?@;
. :n.‘
known ports could not be done on a protocol basis, but would have to be »Iﬁ
done in a centralized manner for all of the IP architecture. Third, IP b
was designed with a very simple layering roie: IP contained exactly :ﬁf
those functions that the gateways must urnderstand. If the port idea had Jﬂ-
been made a part of the IP layer, it would have suggested that gateways iié
needed to know about ports, which is not the case. >
i
There are, of course, other ways to avoid these probleus. In :ii
particular, the "well-lknown port" problem can be solved by devising a R
second mechanism, distinct from port dispatching, to name well-kncwn lg:

ports. Several protocols have settled cn the idea of including, in the

packet which sets up a connection to a particular service, a more

«
»

general service descriptor, such as a character string field. These

special packets, which are requesting connection to a particular

. ER

o

1
. o_.a

e PEL I

o P

X

0
K
el

.

T e e U RS
T Ve YAty e N
. D N SN WS BT AN

et atata vy g) L{L":I_' AL aAa® L?

DDN PROTOCOL HANDBOOK - VOLUME THREE 1985

-

o
Zaf e

LRSS 3
2
v e T

W

£}
'l

[
(.' ’
.
S XS

service, are routed on arrival to a special server, sometimes called a E:i:.zf;
"rendezvous server", which examines the service request, selects a E::E}
random port which is to be used for this instance of the service, and a“i
then passes the packet along to the service itself to commence the ﬁ
interaction. 5:}"
s

For the internet architecture, this strategy had the serious flaw LoRE

S
»
L

that it presumed all protocols would fit into the same service paradigm:

0 :'3

an initial setup phase, which might contain a certain overhead such as

e -.' . '-c

0
w' s
TP S
e e v T

indirect routing through a rendezvous server, followed by the packets of

S
.
Ya %)

the interaction itself, which would flow directly to the process

providing the service. Unfortunately, not all high level protocols in
internet were expected to fit this model. The best example of this is
isolated datagram exchange using UDP. The simplest exchange in UDP 1is
one process sending a single datagram to another. Especially on a local
net, where the net related overhead is very low, this kind of simple
single datagram interchange can be extremely efficient, with very low

overhead in the hosts. However, since these individual packets would

not be part of an established connection, i1f IP supported a strategy
based on a rendezvous server and service descriptors, every isolated
datagram would have to be routed indirectly in the receiving host
through the rendezvous server, which would substantially increase tne o
overhead of processing, and every datagram would have to carry the full
service request field, which would increase the size of the packet

header. :- ':‘:

In general, if a network is intended for "virtual circuit service", -

IMPLEMENTATION GUIDELINES RFC 814 L‘:ﬂ

13

or things similar to that, then using a special high overhead mechanism
for circuit setup makes sense. However, current directions in research
are leading away from this class of protocol, so once again the
architecture was designed not to preclude alternative protocol

structures. The only rational position was that the particular

dispatching strategy used should be part of the higher level protocol

't a
-,
.

I
-2 '.n
(T
—

design, not the IP layer.

)

7
» ') 1k
A Rt

This same argument about circuit setup mechanisms also applies to

%<
)
8

PR

the design of the IP addrass structure. Many protocols do not transmit

s T,
2e Ty 'y
A 7
U o Vgt

e |%

a full address field as part of every packet, but rather transmit a
short identifier which is created as part of a circuit setup from source
to destination. If the full address needs to be carried in only the

first packet of a long exchange, then the overhead of carrying a very

long address field can easily be justified. Under these circumstances, Ei

one can create truly extravagant address fields, which are capable of f:::c:;

extending to address almost any conceivable entity. However, this _;:

strategy 1s useable only in a virtual circuit net, where the packets :-::j

- being transmitted are part of a established sequence, otherwise this fi
large extravagant address must be transported on every packet. Since ::;-::
Internet explicitly rejected this restriction en the architecture, it “'
was necessary to come up with an address field that was compact enough “-

to be sent in every datagram, but general enough to correctly route the E

datagram through the catanet without a previous setup phase. The IP ‘:::l‘_:

address of 32 bits is the compromise that results. Clearly it requires ’

a substantial amount of shoehorning to address all of the interesting ".,'i

- places in the universe with only 32 bits. On the other hand, had the .«.
; o
NS

AP

|7

DDN PROTOCOL HANDBOOK - VOLUME THREE 1985

,,.,
e

i
e

TR
;i,gu -

.

14 g

tor

address field becdme much bigger, IP would have been susceptible to -"3
A%

another criticism, which is that the header had grown unworkably large. \:;
]

Again, the fundamental design decision was that the protocol be designed [
in such a way that it supported research in new and different sorts of g
.‘-“\\

protocol architectures. N
~ %

o

kL

There are some limited restrictions imposed by the IP design on the

¥ %

port mechanism selected by the higher level process. In particular,

,.
o
'.

)

when a packet goes awry somewhere on the internet, the offending packet

Y
CRT R

is returned, along with an error indication, as part of an IQ/#P packet.

e v Th

An IO packet returns only the IP layer, and the next 64 bits of the
original datagram. Thus, any higher level protocol which wishes to sort : _&u
out from which port a particular offending datagram came must make sure i,
that the port information is contained within the first 64 bits of the E,
next level header. This also means, in most cases, that it is possible :
to 1imagine, as part of the IP layer, a port dispatch mechanism which ‘-:;::
works by masking and matching on the first 64 bits of the incoming _“\;

Y

higher level header.

D 8
S

5,

T, e
«*a
ot e e Y S Ta T

DA IO R
=2 ~

-
-
o -
o O .
-
B

SRS - < .
h] ‘et e tate " *a” aTaa A
e, 5000 e

-~® . - - .t - -
- - - - . - - ‘.‘ ,.') 05" S - o) ". - -'. .
A y A N WS S (W N L T e T o ¥ . X

-

A

IMPLEMENTATION GUIDELINES RFC 815

¢l

o

g ;f:'ze'."

7

= ok o

REC: 815

% |

o

IP DATAGRAM REASSEMBLY ALGORITHMS

s

e Yy Ay
)
x, &, ¥

&

David D. Clark
MIT Laboratory for Computer Science
Computer Systems and Communications Group
July, 1982

,,,,,,4_ 4
R

L 1»'__(',“*
DRV WL ST 5

e

1. Introduction

o
e
R
PR

-

One of the mechanisms of IP is fragmentation and reassembly. Under \ r
Yt
certain circumstances, a datagram originally transmitted as a single 1»,

N

unit will arrive at its final destination broken into several fragments.
The IP layer at the receiving host must accumulate these fragments until

enough have arrived to completely reconstitute the original datagram.

The specification document for IP gives a complete description of the P
reassembly mechanism, and contains several examples. It also provides .f
one possible algorithm for reassembly, based on keeping track of \::
arriving fragments in a vector of bits. This document describes an -i
alternate approach which should prove more suitable in some machines. i

A superficial examinration of the reassembly process may suggest
that it is rather complicated. First, it is necessary to keep track of L
all the fragments, which suggests a small bookkeeping jcb. Second, when E
a new fragment arrives, it may combine with the existing fragments in a

number of differenc ways. It may precisely fill the space between two

A Sk
Vel e

fragments, o1 it may overlap with existing fragments, or completely

*s “u "
EAP P

e 4w o
LR
»

.. .
. l. .
D
Ot

3-41

NN ..'.‘._'..'.'4‘.‘.'.'.'~'.'.-‘-"..".'.‘.’- W, et e, . B
el inial antot Sahh b e al aSa ot o7 amyr of g g‘!A'-hL-.Z‘hL-‘-A“.'_.'

DDN PROTOCOL HANDBOOK - VOLUME THREE 1985

2
vd

e
CXLAAN

N
R
Ay

el

=
»

D

duplicate existing fragments, or partially fill a space between two

LY

fragments without abutting either of them. Thus, it might seem that the

2

%
SR

reassembly process might involve designing a fairly complicated
algorithm that tests for a number of different options.

Fo
In fact, the process of reassembly 1is extremely simple. This %,'_:\‘;\

document describes a way of dealing with reassembly which reduces the J

bookkeeping problem to a minimum, which requires for storage only one g

buffer equal in size to the final datagram being reassembled, which can '.'

reassemble a datagram from any number of fragments arriving in any order '

with any possible pattern of overlap and duplication, and which is ':!:

appropriate for almost any sort of operating system.

The reader should consult the IP specification document to be sure ;:'_:'_'.

that he 1is completely familiar with the general concept of reassembly, :t.{:

and the particular header fields and vocabulary used to describe the E

- process. -
.ijii 2. The Algorithm ‘
5
h. In order to define this reassembly algorithm, it is necessary to h
:;: define some terms. A partially reassembled datagram consists of certain "\
:‘ sequences of octets that have already arrived, and certain areas still E::'_:
IIL; to come. We will refer to these missing areas as "holes". Each hole “E{
.E' can be characterized by two numbers, hole.first, the number of the first ”
& octet in the hole, and hole.last, the number of the last octet in the "
hole. This pair of numbers we will call the "hole descriptor", and we ?:'.

will assume that all of the hole descriptors for a particular datagram E

are gathered together in the "hole descriptor list". :::_

E

. e ._ DRI <~
- - b". . AR B
‘.:‘._:‘_‘,-l:L-‘_ N 1._'- .‘ \ \ ' ﬂ.-’ .“‘. ‘ad -‘\‘.

''''''

IMPLEMENTATION GUIDELINES RFC 815 3

The general form of the algorithm is as follows. When a new
fragment of the datagram arrives, it will possibly fill in one or more
of the existing holes. We will examine each of the entries in the hole
descriptor list to see whether the hole in question 1is eliminated by
this incoming fragment. If so, we will delete that entry from the list.
Eventually, a fragment will arrive which eliminates every entry from the
list. At this point, the datagram has been completely reassembled and

can be passed to higher protocol levels for further processing.

The algorithm will be described in two phases. In the first part,
we will show the sequence of steps which are executed when a new

fragment arrives, in order to determine whether or not any of the

existing holes are filled by the new fragment. In the second part of
this description, we will show a ridiculously simple algorithm for

management of the hole dsscriptor list. O

Y
% dl
L)
.
.

3. Fragment Processing Algorithm

»
<
.

An arriving fragment can fill any of the existing holes in a number

s s
a s e 2 s e

o’
'h " .

Pt
>

of ways. Most simply, it can completely fill a hole. Alternatively, it

. -‘ 1’.- L

Q it

may leave some remaining space at either the beginning or the end of an

.‘
.' ‘l
5
[
'y %

existing hole. O: finaily, it can lie in the middle of an existing

L N e
e

Ve,
DR

LA R R s v d

iy %y %

hole, breaking the hole in half and leaving a smaller hole at each end.

-\ -' .
r 2
-

.
’

Because of these possibilities, it might seem that a number of tests

« .
P o
v
N i

f:f must be made when a new fragment arrives, leading tc a rather

complicated algorithm. In fact, if properly expressed, tl.e algorithm

can compare each hole to the arriving fragment in only four tests. S

DDN PROTOCOL HANDBOOK - VOLUME THREE 1985

A It

T

o
- ‘I
AT

&

i
4

We start the algorithm when the earliest fragment of the datagram

"t.
Ty Ay

arrives. We begin by creating an empty data buffer area and putting one

L
Ay Ko By -2y

entry in its hole descriptor 1list, the entry which describes the

datagram as being completely missing. In this case, hole.first equals

IR

zero, and hole.last equals infinity. {(Infinity is presumably implemented
by a very large integer, greater than 576, of the implementor's choice.)
The following eight steps are then used to insert each of the arriving
fragments into the buffer area where the complete datagram is being
built up. The arriving fragment is described by fragment.first, the W
first octet of the fragment, and fragment.last, the last octet of the
fragment. :
1. Select the next hole descriptor from the hole descriptor
list. If there are no more entries, go to step eight.

2. If fragment.first is greater than hole.last, go to step one. :;;:'-
3. If fragment.last is less than hole.first, go to step one. E

- (If either step two or step three is true, then the

newly arrived fragment does not overlap with the hole in

any way, so we need pay no further attention to this

hole. We return to the beginning of the algorithm where
we select the next hole for examination.)

4. Delete the current entry from the hole descriptor list.

- (Since neither step two nor step three was true, the
newly arrived fragment does interact with this hole in
some way. Therefore, the current descriptor will no
longer be valid. We will destroy it, and in the next
two steps we will determine whether or not it is
necessary to create any new hole descriptors.)

.
L
-

s
S
e
5
-
.
Lh .
\

Vv
[
.

A
2

3. ¥

S. If fragment.first is grezter than hole.first, then crsate 2
new hole descriptor "new_hole" with new_hole.first equal %o

hole.first, and new_hole.last equal to fragment.first minus
one.

R 0 IR N
AT)
a 8 8. &8_€%_ 8

e

%

e

DRE A AN

PO

% 3-44

E

IMPLEMENTATION GUIDELINES RFC 815 M

- (If the test in step five is true, then the first part
of the original hole is not filled by this fragment. We
Create a new descriptor for this smaller hole.)

6. If fragment.last is less than hole.last and fragment.more
fragments is true, then create a new hole descriptor
"new_hole", with new_hole.first equal to fragment.last plus
one and new_hole.last equal to hole.last.

.
-
o

AN
J +

- (This test is the mirror of step five with one
additional feature. Initially, we did not know how long
the reassembled datagram would be, and therefore we
created a hole reaching from zero to infinity.

TR

Eventually, we will receive the last fragment of the -
datagram. At this point, that hole descriptor which -
reaches from the last octet of the buffer to infinity A
can be discarded. The fragment which contains the last .
fragment indicates this fact by a flag in the internet L

header called "more fragments". The test of this bit in
this statement prevents us from creating a descriptor
for the unneeded hole which describes the space from the
end of the datagram to infinity.)

7. Go to step one.

AN
-...-.' ¢« *

8. If the hole descriptor list is now empty, the datagram is now

complete. Pass it on to the higher level protocol processor "

for further handling. Otherwise, return. Ky

W

o

4. Part Two: Managing the Hole Descriptor List b
The main complexity in the eight step algorithm above is not h

performing the arithmetical tests, but in adding and deleting entries -‘:
from the hole descriptor list. One could imagine an implementation in

which the storage management package was many times more complicated

than the rest of the algorithm, since there is no specified upper limit

,
- .'

8, 4 °
O

on the number of hole descriptors which will exist for a datagram during

*

reassembly. There 1is a very simple way to deal with the hole

descriptors, however. Just put each hole descriptor in the first octets

o AN

v e e e
-.l.-.fi

DDN PROTOCOL HANDBOOK - VOLUME THREE 1985

6
of the hole itself. Note that by the definition of the reassembly
algorithm, the minimum size of a hole 1is eight octets. To store

hole. first and hole.last will presumably require two octets each. An
additional two octets will be required to thread together the entries on
the hole descriptor list. This leaves at least two more octets to deal

with implementation idiosyncrasies.

There 1is only one obvious pitfall to this storage strategy. One
must execute the eight step algorithm above before copying the data from
the fragment into the reassembly buffer. If one were to copy the data
first, it might smash one or more hole descriptors. Once the algorithm
above has been run, any hole descriptors which are about to be smashed

have already been rendered obsolete.

5. Loose Ends

Scattering the hole descriptors throughout the reassembly buffer
itself requires that they be threaded onto some sort of 1list so that

they can be found. This in turn implies that there must be a pointer to :’_:l::

the head of the list. In many cases, this pointer can be stored in some
gort of descriptor block which the implementation associates with each ::"::]

reassembly buffer. If no such storage is available, a dirty but D

effective trick is to store the head of the list in a part of the ,-
internet header in the reassembly buffer which is no longer needed. An E
obvious location is the checksum field. :::‘:;

When the final fragment of the datagram arrives, the packet length
field in the internet header should be filled in.

L

s o .

% e e
. o

. ®

k

IMPLEMENTATION GUIDELINES RFC 815 :
e
R
7 o
6. Options -.::":E
'-';"4-'
The preceding description made one unacceptable simplification. It :.»:'_.-‘

.
>
o

assumed that there were no internet options associated with the datagram

R

being reassembled. The difficulty with options 1is that until one

%) 5,

receives the first fragment of the datagram, one cannot tell how big the

*
)4
~

- "
(s Al]
e e Ty 07,
[H,
r om »

internet header will be. This is because, while certain options are

1:1
Pl
.
0

I

copled identically into every fragment of a datagram, other options,

»

- '.
.
(l

7

such as "record route", are put in the first fragment only. (The "first

A

ATl ey

Yy
>

fragment” 1s the fragment containing octet zero of the original

SKRe

.~ S A

*s
.
s

datagram.)

-w

13

»
»

Until one knows how big the internet header is, one does not know

oy
o
A

2%

where to copy the data from each fragment into the reassembly buffer.
If the easrliest fragment to arrive happens to be the first fragment,
then this is no problem. Otherwise, there are two solutions. First,
one can leave space ir the reassembly buffer for the maximum possible
internet header. In fact, the maximum size is not very large, 64

octets. Alternatively, one can simply gamble that the first fragment

will contain no options. 1If, when the first Iragment (finally arrives,

there are options, one can then shift the data in the buffer a -::'::
sufficient distance for allow for them. The only peril in copying the
,'n..)
data is that one will trash the pointers that thread the hole E

N descriptors together. It is easy to see how to untrash the pointers. e
:'_- The source and record route options have the interesting feature ‘::_'
X that, since different fragments can follow different paths, they may \\n;
,_J arrive with different return routes recorded in different (fragments. '""
" 0
0 : =
o e
[e
] 3-47 WP
e . e e e et s
o, . . - L .‘: N ~" W - R : - '»"-. . . - . "g: - ._‘. . '. ". ". .." At o™ ™ ‘:_'
s * 1 : A N S .‘.. s - .- - - " -~ . « - ‘- ‘--\ - S . o . .- ‘.- .-‘ - o %pC .,.'V-" .'.: '-4' - - - . - :‘ "
"{. A0 ~.‘;.-_‘:\"~"A:..‘-~_ :. "..'.._-t.,’:-_-_..'..:.._-.«.-'._'.._-.\ ST AT T T A PR C AT R RO R St S S S Sl S A AT N A LR

TN

- n® o%e ®a"n DI i S Y

af

DDN PROTOCOL HANDBOOK - VOLUME THREE 1985

S

-
"

AT
=
'y

7
{:‘I'
bt i)
o oy

[e]
:L‘ 3

)12

]
o

x,

-7

-
s

Normally, this is more information than the receiving Internet module

”

',.
L

2
EY

“r

53
L]

x
¢ 2L

needs. The specified procedure is to take the return route recorded in

0y
LB v
»®a

oyt
»

the first fragment and ignore the other versions.

’

7. The Complete Algorithm {.

In addition to the algorithm described above there are two parts to
thie reassembly process. First, when a fragment arrives, it 1s necessary
to find the reassembly buffer associated with that fragment. This
requires some mechanism for searching all the existing reassembly

'é buffers. The correct reassembly buffer is identified by an equality of

the following fields: the foreign and 1local internet address, the

protocol ID, and the identification field.

The final part of the algorithm 1is some sort of timer based f?i
mechanism which decrements the time to 1live field of each partially i
reassembled datagram, so that incomplete datagrams which have outlived
- their usefulness can be detected and deleted. One can either create a
demon which comes alive once a secend and decrements the field in each

datagram by one, or one can read the clock when each first fragment

arrives, and queue some sort of timer call, using whatever system

mechanisa is appropriate, to reap the datagram when its time has come.

An implementation of the complete algorithm comprising all these Iﬁ;
-, parts wes constructed in BCPL as a test. The complete algorithm took ijf

less than one and one-half pages of listing, and generated approximately e

400 nova machine instructions. That portion of the algorithm actually

involved with management of hole descriptors is about 20 lines of code. IE&

IMPLEMENTATION GUIDELINES RFC 815 3

The version of the algorithm described here 1is actually a -
y simplification of the author's original version, thanks to an insightful L)

observation by Elizabeth Martin at MIT. &“'

W
Lagy
b

i

PRy

TTLILYE
£ :

.
a8 0
)

i

e R RN Catal ey A R T A Ty e AR e e e VL e AR Yy O e v SR e e e s R e B s T AR e

19%0

THRER

i

3-50

DDN PROTOCOL HANDBOOK - YVOLUM

IMPLEMENTATION GUIDELINES RFC 816

-~

"~

%
wd
T
"
!_‘:‘u‘
o
o
REC: 816 e
ot
B,
%
FAULT ISOLATION AND RECOVERY E;
Ca s
David D. Clark @
MIT Laboratory for Computer Science ﬁ
. Computer Systems and Communications Group A
N July, 1982 O
™,
;} 1. Introduction ,:j';,r
Occasionally, a network or a gateway will go down, and the sequence Eé.
‘1‘ i “;:"x
~ of hops which the packet takes from source to destination must change. .
::', Fault isolation is that action which hosts and gateways collectively ‘
' take to determine that something is wrong; fault recovery is the i
identification and selection of an alternative route which will serve to -'_".7
. reconnect the source to the destination. In fact, the gateways perform :-t'_:
: most of the functions of fault isolation and recovery. There are, e
.
however, a few actions which hosts must take if they wish to provide a E
.::: reasonable 1level of service. This document describes the portion of
: fault isolation and recovery which is the responsibility of the host. :.‘-'_"
< R
2. What Gateways Do ‘
"
Gateways collectively implement an algorithm which identifies the

best route between all pairs of networks. They do this by exchanging
packets which contain each gateway's latest opinion about the ﬁ
operational status of its neighbor networks and gateways. Assuming that

this algorithm is operating properly, one can expect the gateways to go

- through a period of confusion immediately after some network or gateway

1 L . e e
PR
-t
et et
A ! L 2 R PR .

v e -,
<, '-_f.."l

-
A B__A_B_

" P

DDN PROTOCOL HANDBOOK - VOLUME THREE 1985

A e

N
NTES,
M hd M

T ‘E‘
B
S0

has failed, but one can assume that once a period of negotiation has

Vot 0l o
A

Pe

passed, the gateways are equipped with a consistent and correct model of

o 2.

r,
-

.. |
A, e .

<
o Ay

the connectivity of the internet. At present this period of negotiation

may actually take several minutes, and many TCP implementations time out

within that period, but it is a design goal of the eventual algorithm

L A
o e

that the gateway should be able to reconstruct the topology quickly

enough that a TCP connection should be able to survive a failure of the

. route.

t

o= g i
°h t- v r
I F. 0
R v, .,

[y

3. Host Algorithm for Fault Recovery

s
.

'
»

Since the gateways always attempt to have a consistent and correct

s
. ™ P

model of the internetwork topology, the host strategy for fault recovery

St At a4
13
s

.

is very simple. Whenever the host feels that something is wrong, it

.'

£70 4

Hy—*y-
» re

&

asks the gateway for advice, and, assuming the advice is forthcoming, it

.-

believes the advice completely. The advice will be wrong only during

o
.’-l-‘

the transient period of negotiation, which immediately follows an

.
.

- I

outage, but will otherwise be reliably correct.

In fact, it 1s never necessary for a host to explicitly ask a

% D
r gateway for advice, because the gateway will provide it as appropriate. S
rl .iii-
b When a host sends a datagram to some distant net, the host should be -,‘-:
by

L

1] -

L)

prepared to receive back either of two advisory messages which the

o

gateway may send. The IQMP '"redirect" message indicates that the
gateway to which the host sent the datagram is not 1longer the best
gateway to reach the net in question. The gateway will have forwarded

the datagram, but the host should revise its routing table to have a

different immediate address for this net. The ICMP "destination -
N

e

wXh

E

3-52 !E

IMPLEMENTATION GUIDELINES RFC 816 5

> -?:_:i.:m
e

S

unreachable” message indicates that as a result of an outage, it is
- currently impossible to reach the addressed net or host in any manner.
On receipt of this message, a host can either abandon the connection
immediately without any further retransmission, or resend slowly to see

if the fault is corrected in reasonable time.

If a host could assume that these two ICMP messages would always
arrive when something was amiss in the network, then no other action on
the part of the host wouid ke required in order maintain its tables in
'; an optimal condition. Unfortunately, there are two circumstances under
; which the messages will not arrive properly. First, during the
transient following a failure, error messages may arrive that do not
correctly represent the state of the world. Thus, hosts must take an
isolated error message with some scepticism. (This transient period is
discussed more fully below.) Second, 1f the host has been sending
datagrams to a particular gateway, and that gateway itself crashes, then

all the other gateways in the internet will reconstruct the topology,

“.l.' l”' ""ll' ". lﬂ'.

but the gateway in question will still be down, and therefore cannot

provide any advice back to the host. As long as the host continues to

direct datagrams at this dead gateway, the datagrams will simply vanish

off the face of the earth, and nothing will come back in return. Hosts

must detect this failure. e

If scme gateway many hops away fails, this is not of concern to the
host, for then the discovery of the failure is the responsibility of the
immediate neighbor gateways, which will perform this action in a manner

N
invisible to the host. The problem only arises if the very first E

.
i
CRSUIC

.
e v

e
L8
.. U

o
8 1,1,

DDN PROTOCOL HANDBOOK - VOLUME THREE 1985

o
x o n

2 i e S
- -";

AR
“

SAEZ

-
a

gateway, the one to which the host is immediately sending the datagrams,

P
55N

fails. We thus identify one single task which the host must perform as

Ty
LA A,

2

its part of fault isolation in the internet: <the host must use some

R

strategy to detect that a gateway to which it is sending datagrams is

T T T,
PR NP
i S
P T Yl W

5w .

Let us assume for the moment that the host implements some

ata
algorithm to detect falled gateways; we will return later to discuss g
l‘;'\
3 N
what this algorithm might be. First, let us consider what the host jﬂ

should do when it has determined that a gateway is down. In fact, with

N~ = _ e =
oo

«.» ...A
o S \‘. ORI ". LT

Jale
PP = o tate fu fe fe) . JOE)

the exception of one small problem, the action the host should take is
extremely simple. The host should select some other gateway, and try
sending the datagram to it. Assuming that gateway 1is up, this will
either produce correct results, or some ICMP advice. Since we assume
that, ignoring temporary periods immediately following an outage, any
gateway is capable of giving correct advice, once the host has received
advice from any gateway. that host is in as go~d a condition as it can Ji_

hope to be. RAC

There is always the unpleasant possibility that when the host tries
a different gateway, that gateway too will be down. Therefore, whatever .

algorithm the host uses to detect a dead gateway must continuously be 5?

applied, as the host tries every gateway in turn that it knows about. .E
*
The only difficult part of this algorithm is to specify the means ‘

by which the host maintains the table of all of the gateways to which it

has immediate access. Currently, the specification of the internet
protocol does not architect any message by which a host can ask to be ;g:
o
e
r{s
Y
3-54 o
B

IMPLEMENTATION GUIDELINES RFC 816

"4 1“' -
*> P

A3

%
P &

[6)]

supplied with such a table. The reason is that different networks may ,;\)'
24
provide very different mechanisms by which this table can be filled in. a&\
10

For example, if the net is a broadcast net, such as an ethernet or a

- e

ringnet, every gateway may simply broadcast such a table from time to ..\.-!:
time, and the host need do nothing but listen to obtain the required '«'::
I':n
information. Alternatively, the network may provide the mechanism of :;:1
M
e

logical addressing, by which a whole set of machines can be provided

. .
S e
"

with a single group address, to which a request can be sent for

v

.
""l.t-

assistance. Failing those two schemes, the host can build up its table

of neighbor gateways by remembering all the gateways from which it has

ever recelved a message. Finally, in certain cases, it may be necessary

A

for this table, or at 1least the initial entries in the table, to be

0
IR B A 1

constructed manually by a manager or operator at the site. In cases

1
¢ ’- 'n .I

s s

I r,Y""'.m
LRI R A P u-n’-'- AR -

»

where the network in question provides absolutely no support for this
kind of host query, at least some manual intervention will be required
to get started, so that the host can find out about at least one

gateway.
4. Host Algorithms for Fault Isolation

We now return to the question raised above. What strategy should

the host use to detect that it is talking to a dead gateway, so that it

¢an know to switch to some other gateway in the list. In fact, there are
several algorithms which can be used. All are reasonably simple to
implement, but they have very different implications for the overhead on

the host, the gateway, and the network. Thus, to a certain extent, the

algorithm picked must depend on the details of the network and of the ke
host. :'_:
=
L

"‘

S
\w
)
Ve
'~-
.
.

’
.
o

3-55

DDN PROTOCOL HANDBOOK - VOLUME THREE 1985 F

1. NETWORK LEVEL DETECTION N

Many networks, particularly the Arpanet, perform precisely the
required function internal to the network. If a host sends a datagram @
to a dead gateway on the Arpanet, the network will return a "host dead" s
mes;sage, which is precisely the information the host needs to know in :
order to switch to another gateway. Some early implementations of ooas

Intermet on the Arpanet threw these messages away. That 1is an 30k

exceedingly poor idea.
2. CONTINUOUS POLLING

The ICMP protocol provides an echo mechanism by which a host may

solicit a response from a gateway. A host could simply send this

.
..
o

message at a reasonable rate, to assure itself continuously that the

-
-

)
|

gateway was still up. This works, but, since the message must be sent

“,
LI

fairly often tc detect a fault in a reasonable time, it can imply an

unbearable overhead on the host itself, the network, and the gateway. ;:.
"

This strategy is prohibited except whers a specific analysis has *i"‘?.
indicated that the overhead is tolerable.
:.._:

S

3. TRIGGERED PCLLING AN
‘e

a

Ve

If the use of polling could be restricted to only those times when 5
something seemed to be wrong, then che overhead would be bearable. -
Provided that one c¢an get the proper advice from one's higher level f:
protocols, it 1is possible to implement such a strateqy. For example, 'j.‘:
one could program the TCP level so that whenever it retransmitted a E
v

LSS

(9%

N

%

L
.‘.m
b

e N e e e T s
- - . L P LY N D & '. -.--’ et Wt -1- -

e T et et ettt . ® . - - - e e - ONS '-‘ 'l'
O DU OIS R O T8 R SRR N R o, -, - DR
PR A P Tt X PRETREIG. "G W, " W P, R, PR . S A S A, Sl St T, T Wl S § Yl Sl Tt T G Tl P T P

- . .

IMPLEMENTATION GUIDELINES RFC 816

e
¥

&

2

7 5

3

segment more than once, it sent a hint down to the IP layer which j-{‘h-::"
e .

triggered polling. This strategy does not have excessive overhead, but :::\-::
does have the problem that the host may be somewhat slow to respond to .
an error, since only after polling has started will the host be able to L€

confirm that something has gone wrong, and by then the TCP above may

have already timed out.
A
Both forms of polling suffer from a minor flaw. Hosts as well as &.
_ gateways respond to ICMP echo messages. Thus, polling cannot be used to
i" detect the error that a foreign address thought to be a gateway is
h actually a host. Such a confusion can arise if the physical addresses
2 of machines are rearranged.

4. TRIGGERED RESELECTION

There 1s a strategy which makes use of 2 hint from a higher level,

.
oS o
RaE)
» e
.
. s
«
.E-
FE
a

N
.
.\
,
U
-
b
>

as did the previous strategy, but which avoids polling altogether.

Whenever a higher level complains that the service seems to be

I3

defective, the Internet layer can pick the next gateway from the list of

[W

Yty e
Tl el o let e

available gateways, and switch to it. Assuming that this gateway is up,
no real harm can come of this decision, even if it was wrong, for the
worst that will happen is a redirect message which instructs the host to
return to the gateway originally being used. If, on the other hand, the

original gateway was indeed down, then this immediately provides a new

route, so the period of time until recovery is shortened. This last .
strategy seems particularly clever, and is probably the most generally ::.:}
n:'.\
suitable for those cases where the network itself does not provide fault E
isolation. (Kegretably, I have forgotten who sugcested this idea to me. .'-;:::
o
It 1s not my invention.) o
o
oo

“e
et
LA

27 0 &

“s
ks

93
o
<1
S g

DDN PROTOCOL HANDBOOK - VOLUME THREE 1985

5. Higher Level Fault Detection

The previous discussion has concentrated on fault detection and

recovery at the IP layer. This section considers what the higher layers

such as TCP should do. i .

TCP has a single fault recovery action; it repeatedly retransmits a st
segment until either it gets an acknowledgement or its connection timer
expires. As discussed above, it may use retransmission as an event to
trigger a request for fault recovery to the IP layer. In tne other
direction, information may flow up from IP, reporting such things as
ICMP Destination Unreachable or error messages from the attached
network. The only subtle question about TCP and faults is what TCP

should do when such an error message arrives or 1its connection timer

expires.

The TCP specification discusses the timer. In the description of
the open call, the timeout is described as an optional value that the

client of TCP may specify:r if any segment remains unacknowledged for

this period, TCP should abort the connection. The default for the
timeout is 30 seconds. Early TCPs were often implemented with a fixed :322_;'-:'-:
timeout interval, but this did not work well in practice as the .
following discussion may suggest. '::."::T
Clients of TCP can be divided into two classes: those ruwmning on E‘
immediate behalf of a human, such as Telnet, &2nd those supporting a :“:
program, such as a mail sender. Humans require a sophisticated response _l.:
to errors. Depending on exactly what went wrong, they may want to !..._

3-58

IMPLEMENTATION GUIDELINES RFC 816 ﬁ
i‘;‘

Vo)
"" f
1 k‘.’ AL

PR,
‘.’I -‘

abandon the connection at once, or wait for a long time to see if things

A
ﬁl'«_ =’

e 'y :'

get better. Programs do not have this human impatience, but also lack

=

the power to make complex decisions based on details of the exact error

condition. For them, a simple timeout is reasonable.

1 [

"'

s,y

[Rl DU A
'.'t

Based on these considerations, at least two modes of operation are

5 Y A

l._}

T

b
. 2

needed in TCP. One, for programs, abandons the connection without

g

N 1)

can request TCP to abort as appropriate. This second mode requires that

J exception if the TCP timer expires. The other mode, suitable for

:;: pecple, never abandons the connection on its own initiative, but reports :‘::'s
‘ to the layer above when the timer expires. Thus, the human user can see “_'E
. error messages coming from all the relevant layers, TCP and ICMP, and i
5

- TCP be able to send an asynchronous message up to its client to report
.'" the timeout, and it requires that error messages arriving at lower
layers similarly flow up through TCP. !

v
*

At levels above TCP, fault detection is also required. Either of

s
‘s
I' .')

war

the following can happen. First, the foreign client of TCP can fail,

even though TCP is still running, so data is still aclkmowledged and the
timer never expires. Alternatively, the communication path can fail, “
without the TCP timer going off, because the local client has no data to o

send. Both of these have caused trouble.

Sending mail provides an example of the first case. When sending
mail using SMIP, there is an SMIP level acknowledgement that is returned

when a piece of mail is successfully delivered. Several early mail
receiving programs would crash just at the point where they had received p
all of the mail text (so TCP did not detect a timeout due to outstanding :'_-‘

DDN PROTOCOL HANDBOOK - VOLUME THREE 1985

10

unacknowledged data) but before the mail was acknowledged at the SMIP
level. This failure would cause early mail senders to wait forever for
the SMIP level acknowledgement. The obvious cure was to set a timer at
the SMIP level, but the first attempt to do this did not work, for there
wac no simple way to select the timer interval. If the interval
selected was short, it expired in normal operational when sending a
large file to a slow host. An interval of many minutes was needed to
prevent false timeouts, but that meant that failures were detected only
very slowly. The current solution in several mailers is to pick a

timeout interval proportional to the size of the message.

Server telnet provides an example of the other kind of failure. It
can easily happen that the communications link can fail while there is
no traffic flowing, perhaps because the user is thinking. Eventually,
the user will attempt to type something. at which time he will discover
that the connection is dead and abort it. But the host end of the
connection, having nothing to send, will not discover anything wrong,
and will remain waiting forever. In some systems there is no way for a
user in a different process to destroy or take over such a hanging

process, so there is no way to recover.

One solution to this would be to have the host server telnet query
the user end now and then, to see if it is still up. (Telnet does not
have an explicit query feature, but the host could negotiate some
unimportant option, which should produce either agreement or
disagreement in return.) The only problem with this is that a

reasonable sample interval, if applied to every user on a large system,

IMPLEMENTATION GUIDELINES RFC 816 IR

:’\. :d ﬁh [

1": :h:gi
B A
::‘ ::txh‘* "1
1

o
11 0

- can generate an unacceptable amount of traffic and system overhead. A

4
'} smart server telnet would use this query only when something seems

F it S

wrong, perhaps when there had been no user activity for some time.

In t h these cases, the general conclusion is that client level

[

L -
S e

error detection is needed, and that the details of the mechanism are
very dependent on the application. Application programmers must be made
aware of the problem of failures, and must understand that error

detection at the TCP or lower level cannot solve the whole problem for

P
als,

S

them.
™ 6. Knowing When to Give Up
-
g It 1is not obvious, when error messages such as IQMP Destination
E Unreachable arrive, whether TCP should abandon the connecticn. The
| reason that error messages are difficult to interpret is that, as
2, discussed above, after a failure of a gateway or network, there is a
i; transient period during which the gateways may have incorrect
:; information, so that irrelevant or incorrect error messages may
sometimes return. An isolated ICMP Destination Unreachable may arrive -
{5 at a host, for example, if a packet is sent during the period when the E?f:
- gateways are trying to find a new route. To abandon a TCP connection 23
based on such a message arriving would be to ignore the valuable feature ':‘::
of the Internet that for many internal failures it reconstructs its .E;ﬁ
function without any disruption of the end points. 12?
; But 1if failure messages do not imply a failure, what are they for? ;:g;i
- In fact, error messages serve several important purposes. Firse, |if EE;;
S
b
o i?g.
::
5
: 361

DDN PROTOCOL HANDBOOK - VOLUME THREE 1985 E

A
.-.‘:.a
|4‘ .!
o™
Y
they arrive in response to opening a new connection, they probably are)
caused by opening the connection improperly (e.g., to a non-existent i]?
234
address) rather than by a transient network failure. Second, they ﬂéi
provide valuable information, after the TCP timeout has occurred, as to !EE

the probable cause of the failure. Finally, certain messages, such as i
ICMP Parameter Problem, imply a possible implementation problem. In

general, error messages give valuable information about what went wrong,

B

. -
g T
L S A I)

but are not to be taken as absolutely reliable. A general alerting

v o
et

s e
PR)

mechanism, such as the TCP timeout discussed above, provides a good

L
.

indication that whatever is wrong is a serious condition, but without

.
2 .
e ' .

o8
¥

the advisory messages to augment the timer, there is no way for the

s

client to know how to respond to the error. The combination of the -

timer and the advice from the error messages provide a reasonable set of

N

B . [

facts for the client layer to have. It is important that error messages

;]

-

from all layers be passed up to the client module in a wuseful and

4

it
e To -ty
3"y

consistent way.

P
5%

“5
S
=

g

.
by
.

. r v
P
at et e
"¢t
e e e " s

LI et}
<.
wia’s

-

ik

IMPLEMENTATION GUIDELINES RFC 817

(o' &
Qe
" A

f“"""l“(
M, %, Ty ¥
NAFCNAL

REC: 817

i

Y

MODULARITY AND EFFICIENCY IN PROTOCOL IMPLEMENTATION

T ety xSty
Rt s

LR SEN

David D. Clark
MIT Laboratory for Computer Science
Computer Systems and Communications Group
July, 1982

7’

(3

.2

L.

‘k

1. Introduction

&

’

IR

Many protocol implementers have made the unpleasant discovery that

Py

their packages do not run quite as fast as they had hoped. The blame nd
for this widely observed problem has been attributed to a variety of :if
causes, ranging from details in the design of the protocol to the :Ef
underlying structure of the host operating system. This RFC will E;
discuss some of the commonly encountered reasons why protocol E;ﬁ

implementations seem to run slowly.

A A
\':'r_‘.l"-
Axtsty

..}

Experience suggests that one of the most important factors in
determining the performance of an implementation is the manner in which
that implementation is modularized and integrated into the host o
operating system. For this reason, it is useful to discuss the question {}
of how an implementation is structured at the same time that we consider .‘
how it will perform. In fact, this REC will argue that modularity |is
one of the chief villains in attempting to obtain good performance, so \e
that the designer is faced with a delicate and inevitable tradeoff .
between good structure and good performance. Further, the single factor FE
which most strongly determines how well this conflict can be resolved is :

not the protocol but the operating system.

1 AN

. IH'.’ ‘.- '..4'.- . .._". '.n

n'.'..-‘.' -|'¢ l" . - - S
e - . e N S e e e e e e e e T T e e e e
. ,

e
S e e . . . " . i
ALV ._'!'._ RO IR e .!!.)‘- -._5.'__.,..- ALJMAAALLMMALMM

c e e PR
- .

-

DDN PROTOCOL HANDBOOK - VOLUMLE THREK 1980

o AT T A T

2
- 2. Efficlency Considerations
i
fi There are many aspects to efficiency. One aspect is sending data
i at minimum transmission cost, which 1is a critical aspect of common
L"j) carrier communications, 1f not in local area network communications. ;
E Another aspect is sending data at a high rate, which may not be possible :‘
;:-" at all if the net is very slow, but which may be the one central design E;::_
! constraint when taking advantage of a local net with high raw bandwidth. ﬁ
'[: The final consideration is doing the above with minimum expenditure of :
M “

A)
[

computer resources. This last may be necessary to achieve high speed,

XY
r’_ 1

i but in the case of the slow net may be important only in that the :
i"‘-' resources used up, for example cpu cycles, are costly or otherwise ;‘_L\-‘;
E:: needed. It is worth pointing out that these different goals often o

.
.
-
r'r“;r .
LR 5

.
v

4

't

conflict; for example it is often possible to trade off efficient use of

R ‘,v
P

P S v,

o' s e 4 o P8 i 7

te

3

the computer against efficient use of the network. Thus, there may be

no such thing as a successful general purpose protocol implementation.

The simplest measure of performance is throughput, measured in bits

per second. It is worth doing a few simple computations in order to get

a feeling for the magnitude of the problems involved. Assume that data

P
« v ¢ v

is being sent from one machine to another in packets of 576 bytes, the

2 .
.

e,

maximum generally acceptable internet packet size. Allowing for header

| MARERGEN CANDE Rt (O]
o
o

overhead, this packet size permits 4288 bits in each packet. If a

V1.

useful throughput of 10,000 bits per second is desired, then a data
bearing packet must leave the sending host about every 430 milliseconds, Sl
a little over two per second. This is clearly not difficult to achieve. \

However, if one wishes to achieve 100 kilobits per second throughput,

IMPLEMENTATION GUIDELINES

RFC 817

the packet must leave the host every 43 milliseconds, and to achieve one
megabit per second, which is not at all unreasonable on a high-speed

local net, the packets must be spaced no more than 4.3 milliseconds.

These latter numbers are a slightly more alarming goal for which to
set one's sights. Many operating systems take a substantial fraction of
a millisecond just to service an interrupt. If the protocol has been
structured as a process, it 1s necessary to go through a process
scheduling before the protocol code can even begin to run. If any piece
of a protocol package or its data must be fetched from disk, real time
delays of between 30 to 100 milliseconds can be expected. If the
protocol must compete for cpu resources with other processes of the
system, it may be necessary to walt a scheduling quantum before the
protocol can run. Many systems have a scheduling quantum of 100
milliseconds or more. Considering these sorts of numbers, it becomes
immediately clear that the protocol must be fitted into the operating
system in a thorough and effective manmer if any like reasonable

throughput is to be achieved.

There is one obvious conclusion immediately suggested by even this
simple analysis. Except in very special circumstances, when many
packets are being processed at once, the cost of processing a packet |is
dominated by factors, such as cpu scheduling, which are independent of
the packet size. This suggests two general rules which any
implementaticn ought to obey. First, send data in large packets.
Obviously, if processing time per packet is a constant, then throughput

will be directly proportional to the packet size. Second, never send an

r

o aCd

~
,' 3
A O

r 2
_L:‘?'E

»
x

".p‘{{@!
PRSI R b -

5
oL -
A S

AR

&) e
DY
PRI

et
LN
b | SFL

"
FAR
s

".I-“_ o

| y "
0%
Y .

. M ‘e e ‘l.l
- ' a8 e
* 5 S AR A

DDN PROTOCOL HANDBOOK - VOLUME THREE 1985

22

t L5
s i ‘-:
“
> &
-~ :""M‘
o 4 N
LR
SO
=¥y L} .~'
::' unneeded packet. Unneeded packets use up just as many resources as a o
24
d_f packet full of data, but perform no useful function. REC 813, "Window e
P)
,, and Acknowledgement Strategy in TCP'", discusses one aspect of reducing ﬂ
- the number of packets sent per useful data byte. This document will ';%
;-:. mention other attacks on the same problen.
~‘ The above analysis suggests that there are two main parts to the __‘_
problem of achieving good protocol performance. The first has to do TE-T,
.4: . .\v“.(
with how the protocol implementation 1is integrated into the host e
_f: operating system. The second has to do with how the protocol package -:::-'
v itself 1is organized internally. This document will consider each of ":r;
T these topics in turn. By
o &S
PP “n‘-‘
o 3. The Protocol vs. the Operating System N
- ‘-F‘N
There are normally three reasonable ways in which to add a protocol E
:::: to an operating system. The protocol can be in a process that |is ':‘.':
°:_': provided by the operating system, or it can be part of the kernel of the :::':
~ ..
.o .
.:-: operating system itself, or it can be put in a separate communications N
- processor or front end machine. This decision is strongly influencad by g
::f' details of hardware architecture and operating system design; each of]
::: these three approaches has its own advantages and disadvantages.
-. The "process" 1is the abstraction which most operating systems use E
:::. to provide the execution environment for user programs. A very simple
:-:: path for implementing a protocol is to obtain a process from the
.:\ 5
o) operating system and implement the protocol to run in it. o
- Superficiz'ly, this approach has a number of advantages. Since !‘;‘

IMPLEMENTATION GUIDELINES RFC 817

modifications to the kernel are not required, the job can be done by
someone who is not an expert in the kernel structure. Since it is often

impossible to find somebody who is exper.enced both in the structure of

the operating system and the structure of the protocol, this path, from

a management point of view, 1s often extremely appealirg. Unfortunately, ',uf_»j
putting a protocol in a process has a number of disadvantages, related ':\:_
to both structure and performance. First, as was discussed above, ,_-‘_:

process scheduling can be a significant source of real-time delay.

: .' m
)
G

There 1s not only the actual cost of going through the scheduler, but ';'.j-_.

the problem that the operating system may not have the right sort of

priority tools to bring the process into execution quickly whenever E
there is work to be done. i
Structurally, the difficulty with putting a protocol in a process L
is that the protocol may be providing services, for example support o: -x~
data streams, which are normally obtained by going to special kernel
entry points. Depending on the generality of the operating system, it ‘::.:,
may be impossible to take a program which is accustomed to reading :::::'
through a ker.2l encry point, and redirect it so it is reading the data .E

from a process. The most extreme example of this problem occurs when

implementing server telnet. In almost all systems, the device handler :::--:

for the locally attached teletypes 1s located inside the kernel, and ‘,:.-""
programs read and write from their teletype by making kernel <alls. If E
server telnet is implemented in a process, it is then necessary to take :.“'::
the data streams provided by server telnet and somehow get them back
down inside the kernel so that they mimic the interface provided by "'
local teletypes. It is usually the case that special kernel &
23

o

3-67 <

DDN PROTOCOL HANDBOOK - VOLUME THREE 1985

- i

-« . LY

< A
. ¥
)? Y

‘.)l
)]
W] A

a5

'l..f.

modification is necessary to achieve this structure, which somewhat

ol

s
’1’
'

defeats the benefit of having removed the protocol from the kernel in

the first place.

14

s a
.

Clearly, then, there are advantages to putting the protocol package

.)

T

in the kernel. Structurally, it is reasonable to view the network as a

-

device, and device drivers are traditionally contained in the Kkernel.

L AN

Presumably, the proklems associated with process scheduling can be

sidesteped, at least to a certain extent, by placing the code inside the :-f::-

kernel. And it is obviously easier to uake the server telnet channels r:‘:~
o
s

mimic the local teletype channels if they are both realized in the same

»n

level in the kermel.

However, implementation of protocols in the kernel has its own set
i of pitfalls. First, network protocols have a characteristic which is
shared by almost no other device: they require rather complex actions

to be performed as a result of a timeout. The problem with this

N

PR DR

-~

requirement is that the kernmel often has no facility by which a program .:: ::

can be brought into execucion as a result of the timer event. What is E

j-.;: really needed, of course, is a special sort of process inside the
kernel. Most systems lack this mechanism. Failing that, the only)

AL
P I I]

|_-'_:: execution mechanism available is to run at interrupt time.

]#e

There are substantial drawbacks to implementing a protocol to run
at interrupt time. First, the actions performed may be somewhat complex

and time consuming, compared to the maximum amount of time that the

operating system is prepared to spend servicing an interrupt. Problems E"'

LA

‘ can arise 1if interrupts are masked for too long. This is particularly -
NS

-~

h.':l

E

.

o

IMPLEMENTATION GUIDELINES

RFC 817

bad when running as a result of a clock interrupt, which can imply that
the clock interrupt is masked. Second, the environment provided by an
interrupt handler is usually extremely primitive compared to the
enviromment of a process. There are usually a variety of system
facilities which are unavailable while running in an interrupt handler.
The most important of these is the ability to suspend execution pending
the arrival of some event or message. It is a cardinal rule of almost
every known operating system that one must not invoke the scheduler
while running in an interrupt handler. Thus, the programmer who is
forced to implement all or part of his protocol package as an interrupt
handler must be the best sort of expert in the operating system
involved, and must be prepared for development sessions filled with
obscure bugs which crash not just the protocol package but the: entire

operating system.

A final problem with processing at interrupt time 1is that the
system scheduler has no control over the percentage of system time used
by the protocol handler. If a large number of packets arrive, from a
foreign host that is either malfunctioning or fast, all of the time may

be spent in the interrupt handler, effectively killing the system.

There are other problems associated with putting protocols into an
operating system kernel. The simplest problem often encountered is that
the kernel address space is simply too small to hold the piece of code
in question. This is a rather artificial sort of problem, but it is a
severe problem nons the less in many machines. It is an appallingly

unpleasant experience to do an implementation with the knowledge that

e
']
o

o &

o)
"_lé,j v
S TR L
e o

W W R W

*

Ve
9 'l‘

At

!
LAY

¥
'y Ay
;l»

<

A

- l')
’U

«Fe
12

v
« .'! v') ."v"

R

PR o |

<+ e
L
v e

2 [SIS

0' . L "
o e
LR ¥ CNe

e
LR
-

a8
LI R 4
l" [..

"
f

DDN PROTOCOL HANDBOOK - VOLUME THREE

1985

for every byte of new feature put in one must find some other byte of
old feature to throw out. It is hopeless to expect an effective and
general implementation under this kind of constraint. Another problem
is that the protocol package, once it 1is thoroughly entwined in the
operating system, may need to be redone every time the operating system
changes. If the protocol and the operating systen are not maintained by
the same group. this makes maintenance of the protocnl package a

perpetual headache.

The third option for protocol implemei.tation 1s to take the
protocol package and move it outside the wachine entirely, on to a
separate processor dedicated to this kind of task. Such a machine is
often described as a communications processor or a front-end processor.
There are several advantages to tnis approach. First, the operating
system on the communications processuor can be tailored for precisely
this kind of task. This makes th: job of implementation much easier.
Second, one does not neud to redo the task for every machine to which
the protocol is to be added. It may be possible to reuss the same
front-end machine on different host computers. Since the task need not
be done as many times, one might hope that more attention could be paid
to doing it right. Given a careful implementation in an environment
which is optimized for this kind of task, the resulting package should
turn out to be very efficient. Unfortunately, there are also problems
with this approach. There is, of course, a financial problem associated
with buying an additional computer. In many cases, this is not a
prokblam at all since the cost 1s negligible compared to what the

programmer would cost to do the job in the mainfrane itself. More

|

AT AT

[,

»

A S A

Y]

.{'-‘
-

’

l"‘

b

»

ot !»!!

2,

E

PR SR

,
.

= A

z

e
’

l"
v

0
A

]

A

e x”

o s e]

1Y

"

.o oa
o)y)y

A

syt
PR
LELTL.

1::: Sl
»

R

.
‘. 'n ‘l
e

a0 % % '.x
!' l‘ 1. .

JO]

w "

'

IMPLEMENTATION GUIDELINES RFC 817

&

i85

0

W

’" K

9 s

fundamentally, the communications processor approach does not completely ;‘r}:
I.“‘ .

sidestep any of the problems raised above. The reason is that the *gé
!

communications processor, since it 1is a separate machine, must be ;
attached to the mainframe by some mechanism. Whatever that mechanism, 'l{%
A

code is required in the mainframe to deal with it. It can be argued :;?ﬁ
R R

that the program to deal with the communications processor is simpler s

than the program to implement the entire protocol package. Even if that
is so, the communications processor interface package 1is still a
protocol in nature, with all of the same structural problems. Thus, all
of the issues raised above must still be faced. In addition to those
problems, there are some other, more subtle problems associated with an
outboard implementation of a protocol. We will return to these problems

later.

There is a way of attaching a communications processor to a
mainframe host which sidesteps all of the mainframe implementation
problems, which is to use some preexisting interface on the host machine

as the port by which a communications processor is attached. This

strategy i3 often used as a last stage of desperation when the software ‘-
on the host computer is so intractable that it cannot be changed in any \
way. Unfortunately, it is almost inevitably the case that all of the '
available interfaces are <Ttotally unsuitable for this purpose, so the -_'_..:.:;:
result is unsatisfactory at best. The most common way in which this E.':

form of attachment occurs is when a network connection is being used to

mimic local teletypes. In this case, the frcat-end processor can be

Py attached to the mainframe by simply providing a number of wires out of
F the front-end processor, each corresponding to a connection, which are
e

@n’
%

g

371

DDN PROTOCOL HANDBOOK - VOLUME THREE 1985 i

3

p;;

plugged into teletype ports on the mainframe computer. (Because of the 5§;

i appearance of the physical configuration which results from this &{i

arrangement, Michael Padlipsky has described this as the "milking ':f

P machine" approach to computer networking.) This strategy solves the riiﬁ

'é immediate problem of providing remote access to a host, but it is E:g

:3 extremely inflexible. The channels being provided to the host are Eii

" restricted by the host software to one purpose only, remote login. It ii;

is impossible to use them for any other purpose, such as file transfer :?5

iEZ or sending mail, so the host is integrated into the network environment F”ﬁ
= in an extremely limited and inflexible manner. If this is the best that
can be done, then it should be tolerated. Otherwise, implementors

:g should be strongly encouraged to take a more flexible approach. :

: 4. Protocol Layering :

! The previous discussion suggested that there was a decision to be !E&

? made as to where a protocol ought to be implemented. In fact, the :i;

; decision is much more complicated than that, for the goal is not to :i;i

" implement a single protocol, but to implement a whole family of protocol =

;: layers, starting with a device driver or local network driver at the fjf

:3 bottom, then IP and TCP, and eventually reaching the application 337

specific protocol, such as Telnet, FTP and SMIP on the top. Clearly, 53&

the bottommost of these layers is somewhere within the kermel, since the IET

physical device driver for the net is almost inevitably located there.
Equally clearly, the top layers of this package, which provide the user
his ability to perform the remote login function or to send mail, are T

F not entirely contained within the kernel. Thus, the question 1is not E&t

IMPLEMENTATION GUIDELINES RFC 817 —

e 5_-LJ=J ;}?pﬁ-}
4

11

whether the protocol family shall be inside or outside the kernel, but \.
how it shall be sliced in two between that part inside and that part E:z:f
outside. ;-‘Eé:

Since protocols come nicely layered, an obvious proposal 1s that ;g;{.‘;:
one of the layer interfaces should be the point at which the inside and ,"s.:{
outside components are sliced apart. Most systems have been implemented {
in this way, and many have been made to work quite effectively. One i::
obvious place to slice is at the upper interface of TCP. Since TCP i:‘:ﬁ
provides a bidirectional byte stream, which is somewhat similar to the ‘:
1/0 facility provided by most operating systems, it is possible to make ’»',); -

the interface to TCP almost mimic the interface to other existing
devices. Except in the matter of opening a connection, and dealing with

peculiar failures, the software using TCP need not know that it is a

network connection, rather than a local I/0 stream that is providing the

communications function. This approach does put TCP inside the kernel,

e

-:::,' which raises all the problems addressed abnve. It also raises the ;.':-
:::: problem that the interface to the IP layer can, i7 the programmer is not ;'
- careful, become excessively buried inside the kernel. It must be m
:.- remembered that things other than TCP are expected to run on top of IP. -

The IP interface must be made accessible, even if TCP sits on top of it

inside the kernel. . "_,;

Another obvious place to slice is above Telnet. The advantage of
slicing above Telnet 1is that it solves the problem of having remote
login channels emulate local teletype channels. The disadvantage of

putting Telnet into the kernel is that the amount of code which has now

DDN PROTOCOL HANDBOOK - VOLUME THREE 1985

12

been included there 1is getting remarkably large. In some early
implementations, the size of the network package, when one includes
protocols at the level of Telnet, rivals the size of the rest of the

supervisor. This leads to vague feelings that all is not right.

Any attempt to slice through a lower layer boundary, for example

between internet and TCP, reveals one fundamental problem. The TCP igi
layer, as well as the IP layer, performs a demultiplexing function on ,:é
incoming datagrams. Until the TCP header has been examined, it is not :;Fﬁ
possible to know for which user the packet is ultimately destined. 'b

Therefore, if TCP, as a whole, 1is moved outside the kernel, it is }‘S'
necessary to create one separate process called the TCP process, which Al
performs the TCP multiplexing function, and probably all of the rest of :‘:E:f'

i

i '

R

v
v

P

TCP processing as well. This means that incoming data destined for a

®
g n'

user process involves not just a scheduling of the user process, but

scheduling the TCP process first.

This suggests an alternative structuring strategy which slices

. ..' ._' ._' A.‘ '.' ot
LR N

through the protocols, not along an established layer boundary, but

. H“
. fe
B v 4

'

along a functional boundary having to do with demultiplexing. In this

S, T

B M'." -
* i . L . .
e 12t P P

approach, certain parts of IP and certain parts of TCP are placed in the
;} kernel. The amount of code placed there is sufficient so that when an

incoming datagram arrives, it is possible to know for which process that

datagram is ultimately destined. The datagram is then routed directly
to the final process, where additional IP and TCP processing is

- performed on !t. This removes from the kernel any requirement for timer

based actions, since they can be done by the process provided by the !EZ

IMPLEMENTATION GUIDELINES RFC 817 ==

LAt ¢

AR

13

user. This structure has the additional advantage of reducing the
amount of code required in the kernel, so that it is suitable for
systems where kernel space is at a premium. The REC 814, titled "Names,

Addresses, Ports, and Routes,'" discusses this rather orthogonal slicing

D
(]

AR

A
O

strategy in more detail.

A related discussion of protocol layering and multiplexing can be

found in Cohen and Postel (1].

5. Breaking Down the Barriers

. e =
0 e ®

r

In fact, the implementor should be sensitive to the possibility of

A
o)

even more peculiar slicing strategies in dividing up the various

protocol layers between the kernel ancd the one or more user processes.

LR

The result of the strategy proposed above was that part of TCP should

O
. -,

’
LI

execute 1in the process of the user. In other words, instead of having

one TCP process for the system, there is one TCP process per connection.

CIRY
()

.
LA

Given this architecture, it is not longer necessary to imagine that all

.": »

of the TCPs are identical. One TCP could be optimized for high

2,

Yttt
o ‘0t e ;
-.- . . . '.{

throughput applications, such as file transfer. Another TCP could be
optimized for small low delay applications such as Telnet. In fact, it
would be possible to produce a TCP which was somewhat integrated with
the Telnet or FIP on top of it. Such an integration is extremely

important., for it can lead to a kind of efficiency which more

. .
: .
S . M

.
.

traditiondl structures are incapable of producing. Earlier, this paper

«

pointed out that one of the important rules to achieving efficiency was e
to send the minimum number of packets for a given amount of data. The i
idea of protocol layering interacts very strongly (and poorly) with this <.
E

375 N

.............

DDN PROTOCOL HANDBOOK - VOLUME THREE 1985

-
a3

14

";’)‘;5")

goal, Dbecause independent layers have independent ideas about when
packets should be sent, and unless these layers can somehow be brought
into cooperation, additional packets will flow. The best example of
this is the operation of server telnet in a character at a time remote
echo mode on top of TCP. When a packet containing a character arrives
at a server host, each layer has a different response to that packet.
TCP has an obligation to acknowledge the packet. Either server telnet
or the application layer above has an obligation to echo the character
received in the packet. If the character is a Telnet control sequence,
then Telnet has additional actions which it must perform in response to
the packet. The result of this, in most implementations, is that
several packets are sent back in response to the one arriving packet.
Combining all of these return messages into one packet is important for

several reascns. First, of course, it reduces the number of packets

being sent over the net, which directly reduces the charges incurred for
many common carrier tariff structures. Second, it reduces the number of
scheduling actions which will occur inside both hosts, which, as was

discussed above, is extremely important in improving throughput.

The way to achieve this goal of packet sharing is to break down the :{}3'
barrier between the layers of the protocols, in a very restrained and .ﬁfﬁ
careful manner, so that a limited amount of information can leak across l:'\'
the barrier to enable one layer to optimize its behavior with respect to
the desires of the layers above and below it. For example, it would
represent an improvement if TCP, when it received a packet, could ask
the layer above whether or not it would be worth pausing for a few

milliseconds before sending an acknowledgement in order to see if the

3-76

———

IMPLEMENTATION GUIDELINES RFC 817

15

upper layer would have any outgoing data to send. Dallying before
sending the acknowledgement produces precisely the right sort of
optimization if the client of TCP is server Telnet. However, dallying
before sending an acknowledgement is absolutely unacceptable if TCP is
being used for file transfer, for in file transfer there is almost never
data flowing in the reverse direction, and the delay in sending the
acknowledgement probably translates directly into a delay in obtaining
the next packets. Thus, TCP must know a litrle about the layers above

it to adjust its performance as needed.

It would be possible to imagine a general purpose TCP which was
equipped with all sorts of special mechanisms by which it would query
the layer above and modify its behavior accordingly. In the structures
suggested above, in which there is not one but several TCPs, the TCP can
simply be modified so that it produces the correct behavior as a matter
of course. This structure has the disadvantage that there will be:
several implementations of TCP existing on a single machine, which can
mean more maintenance headaches if a problem is found where TCP needs to
be changed. However, it is probably the case that each of the TCPs will

be substantially simpler than the general purpose TCP which would

otherwise have been bullt. There are some experimentul projects
currently under way which suggest that this approach may make designirg A
of a TCP, or almost any other layer, substantially easier, so that the F;F
total effort iuwvolved in bringing up a complete package is actually less :ifﬁ
if this approach is followed. This appro=ch is by no means generaily

accepted, but deserves some consideration. - O

377 s

DDN PROTOCOL HANDBOOK - VOLUME THREE

1985

16

The general conclusioh to be drawn from this sort of consideration
is that a layer boundary has both a benefit and a penalty. A visible
layer boundary, with a well specified interface, provides a form of
isolation between two layers which allows one to be changed with the
confidence that the other one will not stop working as a result.
However, a firm layer boundary almost inevitably 1leads to inefficilent
operation. This can easily be seen by analogy with other aspects of
operating systems. Consider, for example, file systems. A typical
operating system provides a file system, which is a highly abstracted
representation of a disk. The interface 1is highly formalized, and
presumed to be highly stable. This makes it very easy for naive users
to have access to disks without having to write a great deal of
software. The existence of a file system is clearly beneficial. On the
other hand, 1t is clear that the restricted interface to a file system
almost inevitably leads to inefficlency. If the interface is organized
as a sequential read and write of bytes, then there will be peoplie who
wish to do high throughput transfers who cannot achieve their goal. If
the interface 1s a virtual memory interface, then other users will
regret the necessity of bullding a byte stream interface on top of the
memory mapped file. The most objectionable inefficlency results when a
highly sophisticated package, such as a data base management package,
must be built on top of an existing operating system. Almost
inevitably, the implementors of the datcbase system attempt to reject
the file system and obtain direct access to the disks. They have

sacrificed modularity for efficiency.

The same conflict appears in networking, in a rather extreme form.

3-78

[
;'.',1‘
r fx e

PIRSTIE S S |

a Tt

aye
)

LI

%, s

Y, -.‘ LA
P R é o

.
3

:m
g
l’l l‘

"- . ". '.- *

3 o
.
- L . ‘. 'I . e

v

IMPLEMENTATION GUIDELINES RFC 817 BE

17 o

The concept of a protocol is still unknown and frightening to most naive ’ibgg
programuers. The idea that they might have to implement a protocol, or $¥?
even part of a protocol, as part of some application package, 1is a

dreadful thought. And thus there is great pressure to hide the function

,‘.;}‘

.
D\“_
o 4

of the net behind a very hard barrier. (n the other hand, the kind of

=

P
e
LRt
"

r'
A
~

Qi

Clait
.
S

&

inefficiency which results from this is a particularly undesirable sort

e
'-"l
LY o~

of inefficiency, for it shows up, among other things, in increasing the '“j
cost of the communications resource used up to achieve the application
goal. In cases where one must pay for one's communications costs, they
usually turn out to be the dominant cost within the system. Thus, doing
an excessively good job of packaging up the protocols in an inflexible
manner has a direct impact on increasing the cost of the critical
resource within the system. This is a dilemma which will probably only
be solved when programmers become somewhat less alarmed about protocols,
so that they are willing to weave a certain amount of protocol structure
:nto their application program, much as application programs today weave
parts of database management systems into the structure of their

application program.

An extreme example of putting the protocol package behind a firm
layer boundary occurs when the protocol package is relegated to a front-
end processor. In this case the interface to the protocol is some other
protocol. It 1is difficult to imagine how to build close cooperation
between layers when they are that far separated. Realistically, one of
the prices which must be associated with an implementation so physically
modularized is that the performance will suffer as a result. Of course,

a separate processor for protocols could be very closely integrated into

.Y

b3
E DDN PROTOCOL HANDBOOK - VOLUME THREE 1985 5
. Y
i:“ :'\.i
u.:(_‘:‘
N
18 hdn

the mainframe architecture, with interprocessor co-ordination signals,

- {{:’:‘;

v -
"r
ALy

shared memory, and similar features. Such a physical modularity might
work very well, but there is little documented experience wich this

closely coupled architecture for protocol support.

S
‘s "n
LR

'
RPN

6. Efficiency of Protocol Processing

To this point, this document has considered how a protocol package iig
should be broken into modules, and how those modules should be 3
distributed between free standing machines, the operating system kernel, e
and one or more user processes. It is now time to consider the other
half of the efficiency question, which is what can be done to speed the
execution of those programs that actually implement the protocols. We
will make some specific observations about TCP and IP, and then conclude

with a few generalities.

IP 1is a simple protocol, especially with respect to the processing
of normal packets, so it should be easy to get it to perform
efficiently. The only area of any complexity related to actual packet

processing has to do with fragmentation and reassembly. The reader is

referred to REC 815, titled "IP Datagram Reassembly Algorithms", for

specific consideration of this point.

Most costs in the IP layer come from table look up functions, as !ﬁ;
opposed to packet processing functions. An outgoing packet requires two
translation functions to be performed. The internet address must be
transiated to a target gateway, and a gateway address must be translated

to a local network number (if the host is attached to more than one

N

h\!'(l

IMPLEMENTATION GUIDELINES RFC 817 k.,
i ‘4-

i

19

Fein

network) . It 1is easy to build a simple implementation of these table .}:.:—:
look up functions that in fact performs very poorly. The programmer :j:'.:::'
should keep in mind that there may be as many as a thousand network }_;._‘
i B=Ras

numbers in a typical configuration. Linear searching of a thousand E{,‘
A

entry table on every packet is extremely unsuitable. In fact, it may be

worth asking TCP to cache a hint for each connection, which can be

handed down to IP each time a packet is sent, to try to avoid the

overhead of a table look up.

TCP is a more complex protocol, and presents many more

opportunities for getting things wrong. There is one area which |is g

generally accepted as causing noticeable and substantial overhead as m
part of TCP processing. This is computation of the checksum. It would IR

be nice 1if this cost could be avoided somehow, but the idea of an end-

to-end checksum is absolutely central to the functioning of TCP. No
host implementor should think of omitting the validation of a checksum s
on incoming data. r.::
Yo
Various clever tricks have been used to try to minimize the cost of 't;-
computing the checksum. If it is possible to add additional microcoded .
instructions to the machine, a checksum instruction is the most obvious :::-:'..
candidate. Since computing the checksum involves picking up every byte ::E:::E
of the segment and examining it, it is possible to combine the operation E.
of computing the checksum with the operation of copying the segment from
one liocation to another. Since a number of data copies are probably
already required as part of the processing structure, this kind of
sharing might concelvakly pay off if it didn't cause too much trouble to E’L
.Ei

3-81

DDN PROTOCOL HANDBOOK - VOLUME THREE 1985 &

¢

h.' ¢

o

v"-“hl

‘_.-\-‘

b

20 t}“;ﬂ.:

2

the modularity of the program. Finally, computation of the checksum - t:

R

seems to be one place where careful attention tc the details of the L*h".

w&.

algorithm used can make a drastic difference in the throughput of the _

program. The Multics system provider one of the best case studies of Cg\

::: this, since Multics is about as poorly organized to perform this -"_::-.j-',

:;: function as any machine implementing TCP. Multics 1is a 36-bit word a'

| machine, with four 9-bit bytes per word. The eight-bit bytes of a TCP i

o

segment are laid down packed in memory, ignoring word boundaries. This .-__:.:;_

» means that when it is necessary to pick up the data as a set of 16-bit ‘
) units for the purpose of adding them to compute checksums, horrible

masking and shifting 1is required for each 16-bit value. An early m

version of a program using this strategy required 6 milliseconds to ".-'_":'-

checksum a 576-byte segment. Obviously, at this point, checksum :"f."

computation was becoming the central bottleneck to throughput. A more

careful recocding of this algorithm reduced the checksum processing time

L to less than one millisecond. The strategy used was extremely dirty. \.\:
It invelved adding up carefully selected words of the area in which the \\
data lay, knowing that for those particular words, the 16-bit values :"
were properly aligned inside the words. Only after the 2ddition had bk
been done were the various sums shifted, and finally added to produce :
the eventual checksum. This kind of highly specialized programming is :::"',.':
. probably not acceptable if used everywhere within an operating system. g
' It i; clearly appropriate for one highly localized function which can be :'(:
::; clearly identified as an extreme performance bottleneck. ‘
, Another area of TCP processing which may cause performance problems é‘i

Pe is the overhead of examining all of the possible flags and options which _':‘-",:j

IMPLEMENTATION GUIDELINES RFC 817

Ld{ -551
‘A
e

PR

'l:: "
AL
s <,
I,

“
-
7
.
=

L

occur in each incoming packet. One paper, by Bunch and Day [2], asserts NN

PRy X

that the overhead of packet header processing is actually an important eV RIY
L]

oi'd

limiting factor in throughput computation. Not all measurement Iy
experiments have tended to support this result. To whatever extent it

is true, however, there is an obvious strategy which the imolementor

N
-

.
-

.

.

ought to use in designing his program. He should build his program to

optimize the expected case. It is easy, especially when first designing

a program, to pay equal attention to all of the possible outcomes of N

every test. In practice, however, few of these will ever happen. A TCP :j;},

oA

should be built on the assumption that the next packet to arrive will
have absolutely nothing special about it, and will be the next one

expected in the sequence space. One or two tests are sufficient to

determine that the expected set of control flags are on. (The ACK flag

L 20

k v v
a [
e a

should be on; the Push flag may or may not be on. No other flags should

\
-

be on.) One test is sufficient to determine that the sequence number of

the incoming packet 1is one greater than the !ast sequence number

KRV RN

received. In almost every case, that will be the actual result. Again,

). &

using the Multics system as an example, failure to optimize the case of

receiving the expected sequence number had a detectable effect on the

performance of the system. The particular problem arose when a number S
of packets arrived at once. TCP attempted to process all of these
packets before awaking the user. As a result, by the time the last !Ei‘
packet arrived, there was a threaded list of packets which had several
items on it. When a new packet arrived, the list was searched to find
the location into which the packet should be inserted. Obviously, the

1ist should be searched f{rom highest sequence number to lowest sequence !Ei_

o
¥

SR

DDN PROTOCOL HANDBCOQK - VOLUME THREE 1685
I.fg
F:E?.
Y 22

number, because one is expecting to receive a packet which comes after
those already received. By mistake, the list was searched from front to
back, starting with the packets with the lowest sequence number. The
amount of time spent searching this list backwards was easily detectable

in the metering measurements.

Other data structures can be organized to optimize the action which
is normally taken on them. For example, the retransmission queue is
very seldom actually used for retransmission, so it should not b#

organized to optimize that actiorn. In fact, it should be crganized to

optimized the discarding of things from it when the acknoviedgement
arrives. In many cases, the easiest way to do this is not to save the
paciket at all, but to reconstruct it only 1if it needs to Dbe
retransmitted, starting from the data as it was originally buffered by

the user.

There is another generality, at least as important as optimizing
the common case, which 1is to avoid copying data any more times than
necessary. One more result from the Multics TCP may prove enlightening
here. Multics takes between two and three milliseconds within the TCP
layer to process an incoming packet, depending on its size. For a 576-

byte packet, the three milliseconds is used up approximately as follows.

One millisecond is used computing the checksum. Six hundred
microseconds is spent copying the data. (The data 1s copled twice, at

.3 milliseconds a copy.) One of those copy operations could correctly

be ircluded as part of the checksum cost, since it is done to get the NP
q
data on a known word boundary to optimize the checksum algorithm. !E;f?
R

A
\.‘.'-.]
R

IMPLEMENTATION GUIDELINES RFC 817

23

However, the copy also performs another necessary transfer at the same
time. Header processing and packet resequencing takes .7 milliseconds.
The rest of the time 1is used in miscellaneous precessing, such as
removing packets from the retransmission queue which are acknowledged by
L - this packet. Data copying is the second most expensive single operation
after data checksuming. Some implementations, often because of an
excessively layered modularity, end up copying the data around a great
3 deal. Other implementations end up copying the data because there is no
shared memory between processes, and the data must be moved from process
j to process via a kernel operation. Unless the amount of this activity

is kept strictly under control, it will quickly become the major
per formance bottleneck.

= 7. Conclusions

This document has addressed two aspects of obtaining performance
,: from a protocol implementation, the way in which the protocol is layered
i and integrated into the operating system, and the way in which the
.4 detailed handling of the packet is optimized. It would be nice if one
or the other of these costs would completely dominate, so that all of
one's attention could be concentrated there. Regrettably, this 1is not
ot So. Depending on the particular sort of traffic one is getting, for

example, whether Telnet one-byte packets or file transfer maximum size

. packets at maximum speed, one can expect to see one or the other cost .
- being the major bottleneck to throughput. Most implementors who have A

studied their programs in an attempt to find out where the time was

]
e
.

b

i

going have reached the unsatisfactory conclusio~ that it s going

K
LS

pr e
.l
.’ .. P

..
'l". Q@ % % ‘o a

1
M

385

. . .
LI d
MR T .
s e e
K
ST TR A U i NI

»
u

e
)
a

E;s

DDN PROTOCOL HANDBOOK - VOLUME THREE 1985

"
'H

VAN AA,
ATy
B N e T

23

24

-y
o ‘rqq

- D
‘fi;:“xj K

equally to all parts of their program. With the possible exception of

i
a,‘::,
oy o\

(3

}_
é!! FLIN
Aol

checksum processing, very few people have ever found that their

performance problems were due to a single, horrible bottleneck which

they cotd fix by a single stroke of inventive programming. Rather, the

r, & %
et
L

'I
S
A AL

»
a £

S
24

per formance was something which was improved by painstaking tuning of

.
s

Ay N

-
v

the entire program.

Most discussions of protocols begin by introducing the concept of
layering, which tends to suggest that 1layering 1s a fundamentally
wonderful idea which should be a part of every consideration of
protocols. In fact, layering is a mixed blessing. Clearly, a layer
interface is necessary whenever more than one client of a particular
layer is to be allowed to use that same layer. But an interface,
precisely because it is fixed, inevitably leads to a lack of complete
understanding as to what one layer wishes to obtain from another. This
has to lead to inefficiency. Furthermore, layering is a potential snare
in that one is tempted to think that a layer boundary, which was an
artifact of the specification procedure, is in fact the proper boundary
to use in modularizing the implementation. Again, in certain cases, an
architected layer must correspond to an implemented layer, precisely so
that several clients can have access to that layer in a reasonably

straightforward manner. In other cases, cunning rearrangement of the

implemented module boundaries to match with various functions, such as o
the demultiplexing of incoming packets, or the sending of asynchronous ifﬂll
outgoing packets, can lead to unexpected performance improvements
compared to more traditional implementation strategies. Finally, good | -4

per formance is something which is difficult to retrofit onto an existing Co

3-86 wr

> 5

s RS

IMPLEMENTATION GUIDELINES RFC 817

=i

2.

25

program. Since performance is influenced. not just by the fine detail,
but by the gross structure, it is sometimes the case that 1in order to
obtain a substantial performance improvement, it 1s necessary to
completely redo the program from the bottom up. This 1is a great
disappointment to programmers, especially those doing a protocol
implementation for the first time. Programmers who are somewhat
inexperienced and unfamiliar with protocols are sufficiently concerned
with getting their program logically correct that they do not have the
capacity to think at the same time about the performance of the

structure they are building. Only after they have achieved a logically

correct program do they discover that they have done so in a way which
has precluded real performance. Clearly, it is more difficult to design
a program thinking from the start about both logical correctness and
performance. With time, as implementors as a group learn more about the

apprupriate structures to use for building protocels, it will be

.,_; possible to proceed with an implementation project having more
- confidence that the structure is rational, that the program will work,
and that the program will work well. Those of us now implementing
protocols have the privilege of being on the forefront of this learning
process. It should be no surprise that our programs sometimes suffer

from the uncertainty we Lkring to bear on them.

3

X 387 :'.-1:'--;i

T

o e
oo

-
. «Te'a
L= A

¢’

DDN PROTOCOL HANDBOOK - VOLUME THREE 1985

26

Citations

[1] Cohen and Postel, '"On Protocol Multiplexing”, Sixth Data

Communications Symposium, ACM/IEEE. November 1979.

[2] Bunch and Day, "Control Structure Overhead in TCP", Trends and

Applications: Computer Networking, NBS Symposium, May 1980.

3-88

v o =

A
54
ER)
o "

« 2)

PR |

o

o

IMPLEMENTATION GUIDELINES

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-22, No. 5, May 1974 637

A Protocol for Packet Network Intercommunication

VINTON G. CERF axp ROBERT E. KAHN, MEMBER, 1EEE

Abstract—A protocol that supports the sharing of resources that
exist in different packet switching networks is presented. The proto-
col provides for variation in individual network packet sizes, trans-
mission failures, sequencing, flow control, end-to-end error checking,
and the creation and destruction of logical process-to-process con-
sections. Some implementation issues are considered, and problems
such as internetwork routing, accounting, and timeouts are exposed.

INTRODUCTION

N THE LAST few years considerable effort has heen

expended on the design and implementation of packet
switching networks [1]-[7].[14].[17]. A principle reason
for developing such networks hax been to facilitate the
sharing of computer resources. A packet communication
notwork includes a transportation mechanism for deliver-
ing data between computers or between eomputers and
terminals. To make the data meaningful, computers and
terminals share a common protocol (i.e., a set of agreed
upon conventions). Several protocols have already been
developed for this purpose {S}-[12],[16]) However,
these protoccls have addressed only the problem of com-
munication on the same network. In this paper we present
a protocol design and philoxophy that supports the xharing
of resources that exist in different packet switching net-
works,

After a brief introduction to internetwork protocol
insues, we deseribe the function of & GATEWAY as an inter-
face between networks and diseuss its role in the protocol.
We then consider the various details of the protoenl,
including addreasing, formatting, buffering, sequeneing,
flow control, error control, and »o forth. We clomse with a
description of an interprocess communication mechanism
and show how it can be supported by the internetwork
protocol.

Even though many different and complex problems
must be solved in the design of an irdividual packet
switching network, these problems are manifestly com-
pounded when dissimilar networks are interconnected.
Insucs arise which may have no direet counterpart in an
individual network and which strongly influense the way
in which internetwork communication can take place.

A typical packet switching network in composed of o

_ Paper approved by the Associate Fuitor fur Dats Communica-
Uuns of the IEEE Communications Soctety for publication without
oral presentation. Manuseript revcesved November 5, 1978 The
re~exrch reported in this paper was supported in part by the Ad-
vanoed Research Projects Agency of the Department uf Delene
under Contract DANC 15.73-Cudto.

V.G Cerf 13 with the Depariment of Computer Science and Flee-
tneal Fngineening, Stanford Unaversity, Stanford, Cabf.

. E. Kahn v with the Infurmation Procecing Technology
Uttice, Advaiwnd llevenrch Prujects Agenicy, Department of De-
fense, Arlingtun, Va.

sct of computer resources called HosTs, @ set of one or
more packet switches, and a colleetion of communication
media that interconneet the packet switches. Within
cach nost, we assume that there exist processes which
must communicate with processes in their own or otner
HosTs. Any eurrent definition of a proeess will be adequate
for our purposes [13]. These processes are generally the
ultimate source and destination of data in the network.
Typically, within an individual network, there exists a
protoesl for communication between any source and
destination process. Only the source and destination
processes require knowledge of this convention for com-
munication to take place, Processes in two distinet net
works would ordinarily use different protocols for this
purpose, The ensemble of packet switches and com-
munieation media is called the packet switehing subnet.
Fig. 1 illustrates these ideas.

In a tvpical packet switching subnet, data of a fixed
maximum size are accepted from a source HosT, together
with a formatted destination address which is used to
route the data in a store and forward fashion. The transmit
time for thix data is usually dependent upon internal
network parameters such s communication media data
rates, buffering and <ignaling strategies, routing. propa-
gation delays, ete. In addition, some mechanism is gen-
erally present for error handling and determination of
status of the networks components.

Individual packet switching networks may differ in
their implementations as follows.

1) Fach network may have distinet ways of addressing
the receiver, thus rvuiring that a uniform addressing
scheme be ercated which can be understood by each
individual network.

2) Each netwirk mayv aceept data of different maximura
size, thus requiring networks to desl in units of the
smallest maximum size (which may be impractically
small) or requiring procedures which allow data crussing
a network boundary to be reformatted into smaller
picees.

3) The success or failure of a transmission and its per-
formaber in each network is governed by different time
delavs in aceepting, delivering, and transporting the data.
Thi< reqquises eareful developnent of intenwtwnrk timing
proodurs to insure that data can he successfully de-
livend through the various networks.

1) Within each network. communication may be dis-
rupted due to annvoverable mutation of the data or
miwing data. Eund-to-end restoration proeedures are
desimable to allow complete recovery from these eon-
ditionx.

1974 011 E, Keprinted with penmission, fram [8EF Transacttons on Communicetions, Vol Com-22, Na. S,

PR 637648 My 1974

2,
<l"‘

o

P
-

P

g
o iy

D)
P)

%0 %4 *e

-
L)

I‘A;ev-fi! SO
;T S

"/:", k3 P}

ol P N .

»,
4‘5"
l,‘

DDN PROTOCOL HANDBOOK - VOLUME THREE 1985

638 IEEE TRANSACTIONS ON COMMUNICATIONS, MAY 1974

intact the internal operation of cach individual network.
This ir casily achieved if two networks interconneet as
if cach were a HOST to the other network, but without

PACKET-SWITCHING SUBNETWORK

utilizing or indeed incorporating any elaborate HosT e
protocal transformations, -}.; g

It ix thus apparent that the interface between networks ’;'fn’;‘
must play a central role in the development of any net- g:}'

work interconneetion strategy. We give a special name to
that performs these functions and call it a

B

this interface

GATEWAY. =

. “I.

THE GATEWAY NOTION Ny

» - .-I

PACKET:SWi1 CHINGNETHORK PS « PACKEY SWITCH In Fig. 2 we illustrate three individual networks labeled ,.'-:.'v
Fig. 1. Typical packet switching network. A, B, and " which are joined by GaTEways M and N. ?:7..";'

GATEWAY A interfaces network 4 with network B, and |

5 Status information, routing. fault deteetion, and GATEWAY .\ interfaces network B to network . We
isolation are typically different in cach network. Thus, to assume that an individual network may have more than ‘-':T
obtain verification of certain conditions, such a< an in- one GATEWAY (c.g., network B) and that there may he o
accessible or dead destination, various kinds of coordi- more than one GATEWAY path to use in going between a _-:
nation must be invoked between the communicating net- pair of networks, The responsibility for properly routing ool
works. data resides in the GATEWAY. e
It would be extremely eonvenient if all the differences In practice, a GATEWAY between two networks may be ot

between networks could be ecanomically resolved by composed of two halves, cach associated with its own

suitable interfacing at the network boundaries. For network. It is possible to implement cach half of a GaTe- W
many of the dificrences, this objective can be achicved. Wway s it need only embed internetwork packets in local P
However, both economic and technical considerations lead packet format or extract them. We propose that the NG
us to prefer that the interface be as simple and reliable GaTEwavs handle internetwork packets in a standard ot
as possible and deal primarily with passing data between format, but we are not proposing any particular trans- ,-:.

2

mission procedure between GATEWAY halves.

Let us now trace the flow of data through the iater-
connceted networks. We assume a packet of data fruin .
process X enters network A destined for process 1 in
network C. The address of Y ix initially specified by

networks that use different packet switching strategics.

The question now arises as to whether the interface
ought to account for differenees in HoOST or process level
protocols by transforming the saurce conventions into the
corresponding destination conventionk. We obviously

want to allow conversion between packet awitching
rtrategios at the interface, to permit interconnection of
existing and planned networks, However, the complexity
and disimilarity of the HOST or process level protocols
makes it desirable to avoid having to transform between

process X and the address of GATEWAY W/ it derived from
the address of process ¥, We make no attempt to specify
whether the choice of GATEWAY ix made by process X,
its HOxT, or one of the packet switehies in network 4. The
packet traverses network 4 until it reaches caTEway M.

them at the interface, even if thix transformation were At the GATEWAY, the packet is reformatted to meet the :-,'
always possible. Rather, compatible wost and process reguirements of network B, aceount is taken of this unit o
level protocols must be developed to achieve effective of flow between 4 and B, ana the GATEWAY delivers the e
internctwork resource sharing. The unaceeptable al- packet to network B Again the derivation of the next ':,7
ternative is fo - ery HOST o process to implement every GATEWAY address is accomplished hasdd on the address of (LN

protocol (a pote_tinlly unbounded number) that may be the destination Y. In this ense, GATEWAY .V is the next one,

needed to communicate with other networks, We thepe-
fore assume that a common protocol is to be ysed hetween
HosT's or processes in different networks and that the
interface between networks should take as small a role ax
possible in this protocol.

To allow networks under different ownership to inter-
connecet, some accounting will undoubtedly e needed for
traffic that passes across the interface, Inoite simplest

The packet traverses network B ountil it finally reaches
GATEWAY N where it is fornntted to meet the requirements
of network €, Account is again taken of this unit of flow
between networks B and €. Upon entering network €,
the packet ix routsd to the nost in which process Y
resides and there it is delivered to its ultimate destination,

Sinee the caTkeway must understand the addreess of i
source and destination nosts, this mformation nst be

terms, this involves an aceomnting of packets handled by available in o standand format i every packet which .-:'_
each net for which charges are passed from net to net arrives at the cateway, This information i+ contained A
untii the buek finally stops at the user or hix pepresenta- — in an inferncticork header prefined to the packet by the ::~:
tive. Furthermore, the interconnection must preserve source Host. The packet format, including the internet- oy

5

.

)
Lo s, o0 2 %2
B

3-90

IMPLEMENTATION GUIDELINES

CYRF AND XAHN! PACKET NETWORK INTERCOMMUNICATION

=
=LA HEDE

CATEWAY GATEWAY

Fig. 2. Three networks intercoouectad by two GATEWAYS.

[}
(moy e at) L

lltwk MEADEA: SDURCE (DESTINATION | BEOUENCE NO | BYTE COUNT | $LAG FILD | TEXT Cﬁ:l“l

Fig. 3. Internetwork packet format (fields not showa to scale).

work header, iz illustrated in Iig. 3. The source and desti-
nation entries uniformly and uniquely identify the address
of every HosT in the composite network. Addressing is a
subject of considernble complexity which is discussed
in greater detail in the next section. Thenext two entries in
the Licader provide a sequence number and a byte count
that may be used to properly scquence the packets upon
delivery to the destination and may also enable the
GATEWAYS to detect fault conditions affecting the packet.
The flag ficld is used to convey speeific eontrol information
and iz discussed in the section on retransmission and
duplicate deteetion later. The remainder of the packet
consists of text for delivery to the destination and a trailing
check sum used for end-to-end software verification. The
GATEWAY does not modify the text and merely forwards the
check sum along without computing or recomputing it.

Each network may need to augment the packet format
before it can pass through the individual network. We
have indicated a locol header in the figure which is prefixed
to the Leginning of the packet. Thix local header is intro-
duced merely to illustrate the coneept of embedding an
internetwork packet in the format of the individual net-
work through which the packet must pass. It will ob-
viously vary in its exaet form from network to setwork
and may even be unneeessary in somic casen, Although not
explicitly indicated in the figure, it ix als possible that a
local trailer may be appended to the end of the packet.

Unless all transmitted packets are legislatively re-
stricted to be small enough to be accepted by every in-
dividual netwerk, the caTEway may be foreed to split a
packet into two or more sialler packets. This action is
called fragmentation and must be done in such o way that
the destination is able to picee together the fragmented
packet. It is clear that the internetwork header format
imposes 8 minimum packet size which all networks
must carry (obviously all networks will want to carry
packets lurger than this minimum). We believe the long
range growth and development of internetwork com-
munication would be <eriously inhibited by specifving
how nch larger than the minimum a packet size can be,
for the following reasons,

By 1f 2 maximum permitted packet size is specified then
it beconus impossible to completely isolate the intermal

639

packet size parameters of one network from the internal
packet size parameters of all other networks.,

2) It would be very difficult to increase the maximum
permitted packet size in response to new technology (e.g.,
large memory svstems, higher data rate communication
facilitios, ete.) sinee this would require the agreement and
then implemientation by all participating networks,

3) Associative addressing and packet eneryption may
require the size of a particular packet to expand during
transit for incorporation of new information.

Provision for fragmentation (regardless of where it is
performed) peemits packet size variations to be handled
on an individual network basis without global admin-
istration and also permits HosTs and processes to be
insulated from changes in the packet sizes permitted in
any networks through which their data must pass.

If fragmentation must be done, it appears best to do it
upon entering the next network at the GATEWAY xinee only
this GATEWAY (and not the other networks) must be aware
of the internal packet size parameters which made the
fragmentation necessary,

If a caTEWAY fragments an incoming packet into two or
more packets, they must eventually be passed along to the
destination HosT as fragments or reassembled for the
HosT. It is conceivabie that one might desire the GATEWAY
to perform the reassembly to simplify the task of the desti-
nation HosT (or procexs) and or to take advantage of a
larger packet size. We take the position that GATEWAYS
should not perform this function since GATEWAY re-
assembly can lead to serious buffering problems, potential
deadlocks, the necessity for all fragments of a packet to
paxs through the same GATEWAY, and increased delay in
transmission. Furthermore, it ix not sufficient for the
GATEWAY® to provide this funetion since the tinal GATEWAY
may also have to fragment a packet for transmission.
Thus the destination RosT must be prepared to do this
task.

Let ux now turn briefly to the somewhat unusual ac-
counting effeet which arisex when a packet musy be frag-
mented by ore or more catTewavs. We assume, for
simplicity. that each network initinlly eharges a fixed rate
per packet transitted, segardless of distanee, and if one
network ean bandle a Lirger packet size than another, it
charges a proportionally larger price per packet. We also
assume that a subsequent inerease in any network’s
packet size does not resedt in additional cost per packet to
ite uxers. The charge to a user thus remains basically
constant throngh auy net which must fragment a packet,
The unusual effeet oeeurs when o packet is fragmented into
smaller packets which must individually pass through a
subscrquent network with o arger packet size than the
original unfraginented pachet. We expeet that most net-
works will naturally seleet packet sizges close to one
another, but in any ease, an inerease in packet size in one
net, even when it causes fragmentation. will not increase
the cost of transmission and may actually decrease it In
the event that any other packet charging policies (than

el v

y e v, m
s 2 %"
.

Fr el
LR R

1B

Ry

e % v

_‘c :r

L I I
o s
LA

el
o]

YT e,
rArag
LA e

:f."'.d'v 5
w¥a®a%e®2%a’y

’
'

.
e T 2 0 0

L)
.

-
.
-

. .
L -.. o
v e

LA

-
'—

8| |

- .
A
. .

’ ,'." ."'.,'.'

.

DDN PROTOCOL HANDBOOK - VOLUME THREE

1985

640

the one we suggest) are adopted, differences in cost can be
used as an cconomic lever toward optimization of indi-
vidual network performance.

PROCESS LEVEL COMMUNICATION

We suppose that processes wish to communicate in full
duplex with their correspondents using unbounded but
finite length messages. A single character might constitute
the toxt of a messagedron: @ pracess 46 a temning! or viee
versa. An entire page of characters might constitute the
text of a message from a file to a process. A data stream
(e.g., & continuously generated bit string) can be repre-
sontad as a sequence of finite length messages.

Within a HosT we assume the existence of a transmission
control program (TCP) which handles the transmission
and acceptance of messages on behalf of the processes it
serves. The TCP is in turn served by one or more packet
switches connected to the osT in which the TCP resides.
Processes that want to communicate prescnt messages
to the TCP for transmission, and TCP's deliver incoming
messages to the appropriate destination processes. We
allow the TCP to break up messages into segments be-
causc the destination may restrict the amount of data that
may arrive, because the local network may limit the
maximum transmission rize, or because the TCP may
need to share its resources among many processes €on-
currently. Furthermore, we constrain the length of a
gegment to an integral number of 8-bit bytes. This uni-
formity is most helpful in simplifving the software needed
with HosT machines of different natural word lengths.
Provision at the process level ean be made for padding a
message that is not an integral number of bytes and for
identifving which of the arriving bytes of text contain
information of interest to the receiving process,

Multiplexing and demultiplexing of scgments among
processes are fundaiental tasks of the TCP. On trans
mission, a TCP must multiplex together segments from
different source processes and produce internetwork
packets for delivery to one of its serving packet switches.
On receptioni, 8 TCP will accept a sequence of packets
froam its serving packet switch(es), From this sequence
of arriving packets (generally from different BosTs),
the TCP must be able to reconstruet and deliver messages
to the proper destination processes,

We assume that every segment is augmestsed with ad-
ditional infornzation that allows transmitting and re-
ceiving TCP's to identify destination and souree processes,
respectively. At this point, we must face a inajor issue,
How should the souree TCP format segments destined for
the same destination TCP? We consider twa cases,

Cose 1) 1f we take the position that segment boundaries
are immaterial and that a byte stream can be formed of
segments destined for the same TCP, then we may gain
improved transmission efficieney and resource sharing by
arbitrarily parceliug the stream into packets, permitting
many segiments to share a single internetwork packet
header. However, this position pesults in the need to re-

1FEE TRANSACTIONS ON COMMUNICATIONS, MAY 1974

construct exactly, and in order, the stream of text bytes
produced by the source TCP. At the destination, this
stream must first be parsed into segments and these in
turn must be used to reconstruct messages for delivery to
the appropriate processes.

There are fundamental problems associated with this
rtrategy due to the possible arrival of packets out of order
at the destination. The most eritical problem appears
to be the amount of interference that processes sharing the
fame TOD-TCE byie sircam may causc among them-
relves. This is especially so at the receiving end. First,
the TCP may be put to some trouble to parse the stream
back into scgments and then distribute them to buffers
where messages are reassembled. If it is not readily ap-
parent that all of a segraent has arrived (remember, it
may come as several packets), the receiving TCP may
have to suspend parsing temporarily until more packets
have arrived. Second, if a packet is missing, it may not be
clear whether succeeding segments, even if they are identi-
fiable, can be passed on to the recciving process, unless the
TCP has knowledge of some process level sequencing
scheme. Such knowledge would permit the TCP to decide
whether a succeeding segment could be delivered to its
waiting process. Finding the beginning of a segment when
there arc gaps in the byte stream may also be hard.

Case 2) : Alternatively, we might take the position that
the destination TCP should be able to determine, upon
its arrival and without additional information, for which
process or processes a reccived packet is intended, and if
g0, whether it should be delivered then.

If the TCP is to determine for which process an arriving
packet is intended, every packet must contain a process
header (distinet from the internetwork header) that com-
pletely identifies the destination process. For simplicity,
we assume that cach packet contains text from a single
process which is destined for a singie process. Thus cach
packet need contain only one pracess header. To decide
whether the arriving data i< deliverable to the destination
process, the TCP must be able to deterniine whether the
data is in the proper sequence (we can make provision
for the destination process to instruet its TCP to ignore
sequencing. but this is cansidered a special case). With the
asstmption that cach arriving packet contains a process
header, the necessary <equencing and destination process
identification is immediately available to the destination
TC).

Both Case= 1) and 2) provide for the demultiplexing
and delivery of segments to destination processes, but
only Case 2) does xo without the introduetion of potential
interprocess interference. Furthermore, Case 1) introduces
extrn machinery to handle flow control on a HosT-to-
HosT basix, since there nust alss be some provision for
process level eomtrol, and this machinery is little used sinee
the prabability is small that within a given HosT, two
processes will be coincidentally seheduled to send messages
to the xame destination most. For this reason, we select
the method of Case 2) a~ a part of the interneticork
transmission protocol.

.
<
.

., - VY

° :',l',' PR
s

-’. -" -l‘. I‘.l'

.

i
a2,

Be

£y

-
»
-.l
‘4
<

IMPLEMENTATION GUIDELINES

CERF AND KAHN: PACKET NETWORK INTERCOMMUNICATION

ADDRESS FORMATS

The selection of address formats is a problem between
networks because the local network addresses of TCP's
ma)y' vary substantially in format and size. A uniform in-
ternctwork TCI> address space, understood by cach
GaTEwAY and TCP, is casential to routing and dclivery
of internetwork packets,

Similar troubles are encountered when we deal with
process addressing and, more gencrally, port addressing.
We introduce the notion of ports in order to permit a
process to distinguish between multiple message streams.
The port is simply a designator of one such measage stream
associated with a procexs. The means for identifying a port
are generally different in different operating systems, and
therefore, to obtain uniform addressing, a standard port
address format is also required. A port address designates
a full duplex message stream.

TCP ADDRESSING

TCP addressing is intimately bound up in routing
issucs, since a HOST of GATEWAY must choose a suitable
destination HOST or GATEWAY for an outgoing intermetwork
packet. Let us postulate the following address format for
the TCP address (Fig. 4). The choice for network identi-
fication (8 bits) allows up to 256 distinet networks. This
size scems sufficient for the forsecable future. Similarly,
the TCP identifier field permits up to 65 336 distinet
TCP's to be addreased, which seems more than sufficient
for any given network.

As cach packet passes through a GATEWAY, the GATEWAY
observes the destination network ID to determine how

to route the packet. If the destination nctwork is con-

nected to the GATEWAY, the lower 16 bits of the TCP address
arc used to produce a luocal TCP address in the destination

network. If the destination network is not connected to the

GATEWAY, the upper 8 bits are used to select a subsequent

GATEWAY. We make no effort to specify how each in-
dividual network shall asiociate the internetwork TCP
identifier with its local TCP address. We also do not rule
out the possibility that the local network understands the

internetwork addressing scheme and thus alleviates the
GATEWAY of the routing responsibility.

PORT ADDRESSING

A recriving TCP is faced with the task of demultiplex-
ing the stream of internctwork packets it receives and
reconstructing the original messages for cach destination
process. Each operating system has its own internal
means of identifying processes and ports. We assume that
16 bitsare sufficient toscrve axinternetwork port identifiers.
A sending process need not know how the destination
port identification will be uwd. The destination TCP
will be sble to parse this nuinber appropriately to find
the proper buffer into which it will place arriving packets.
We permit a large port number ficld to support processus
which want to distinguish between many different
messages streams concurrently. In reality, we do not care
how the 16 bits are sliced up by the TCE's involved.

841

{ werwonx [1cr soenrinen |

Fig. 4. TCP address.

Even though the trunsmitted port name field is large,
it is atill a compaet external name for the internal repre-
sentation of the port. The use of short names for port
identificrs is often desirable to reduce transmission over-
hcad and possibly reduce packet processing time at the
destination TCP. Assigning short names to each port,
however, requires an initial negotiation between source
and destination to agree on a suitable short name assign-
ment, the subsequent maintenanee of eonversion tables
at both the source and the destination, and a final trans-
action to release the short name. For dvnamic assignment
of port names, this negotiation is gencrally necessary in
any case.

SEGMENT AND PACKET FFORMATS

As shown in Fig. 3, messages are broken by the TCP
into segments whose format is shown in more detail in
Fig. 6. The ficld lengths illustrated are merely suggestive.
The first two ficlds (source port and destination port in
the figurc) have already been discussed in the preceding
scction on addressing. The uses of the third and fourth
fields (window and acknowledgment in the figure) will
be discussed later in the section on retransmiasion and
duplicate detection.

We recall from Fig. 3 that an internetwork Leader eon-
tains both a =equence number and a byte count, as well as
a flag ficld and a cheek sum. The uses of these ficlds are
explained in the following scetion.

REASSEMBLY AND SEQUENCING

The reconstruction of a message at the receiving TCP
clearly requires' that cach internctwork packet carry a
scquenee number which is unique to its particular desti-
nation port mexsage stream. The sequence numbers must
be monotonic increasing (or decreaxing) since they are
used to rearder and reassemble arriving packets into a
niessage. If the spuee of sequence numbers were infinite,
we could simply assign the next one to cach new packet
Clearly, this spase cannot be infinite, and we will consider
what problems a finite sequence number space will cause
when we discuss retransmission and duplicate detection
in the next section. We propose the following scheme for
performing the sequencing of packets and henee the re-
coastruction of messages by the destination TCP.

A pair of ports will exchange one or more messages over
a period of time. We could view the sequence of messages
produced by one port as if it wene cinbedded in an in-
finitely long stream of bytes. Each byte of the message has
a unique sequence nuber which we take to be it byte
location relative to the beginning of the stream. When a

'In the case of encrypied pachets, a preliminary stage of re-
assembly miay be required prior to deeryplios,

L
A
P

e - |2

w T
o

w_ B
v

Yy
)
& W

Sty
Py
A

NE | |

-
’O.A

T
e

"
b B D A

. I.'l"v
1N

".7.'
S
&

ws
n. 3 ‘u Y

ST
- ¢

oty

.
.

el
:
AU N PN

4

v e
b

. -
Te ' "r e
et

80 _s_a_ v

2 "
"‘

.
3
"7

..
"
0y

o v e
o

v
.
o ’e

.« -, Y.
« "0 e [
o ol ate .

- g e
. o 0 e
%t

A’

TR R
e ta % vt
FRCER Qe

ot
s e,

LR D B)
.".l B

L4
«®

N |

DDN PROTOCOL HANDBOOK - VOLUME THREE 1985

642 IEEE TRANSACTIONS ON COMMUNICATIONS, MAY 1974
— : = — byte identificauon —s- squence mumber
_"l“"","'i Ay cuj) Q:l' [mlugn A,‘t:]
[,,-:,,, E \-h-nml D}‘l?l... l]...
i
N e Cacs rasas Forst Messoge Second Message Third Message

" inmraerwen Mesder - &, E ry

i wingmest gront | Sy gront | Sop

CR * Chovkam

(S€Q = k)

Fig. 5. Creation of segment= snd packets from messages.

2 2 " " []
Soures Pont | DestmenenPen Iw-‘wlﬂ:l! Tout] (Futd news » rm)

Fig. 6. Segment format (prucess neader and text).

segment is extracted from the message by the source
TCP and formatted for internetwork transmission, the
relative location of the first byte of segment text is used as
the sequence number for the packet. The byte count
ficld in the internetwork header accounts for all the text
in the segment (but does not include the check-sum bytes
or the bytes in cither internctwork or process header).
We cmphasize that the sequence number sssociated with
a given packet is unique only to the pair of ports that are
communicating (see Iig. 7). Arriving packets are ex-
amined to determine for which port they are intended.
The sequenee numbers on cach arriving packet are then
used to determine the relative location of the packet text
in the messages under reconstruction. We note that this
allows the exact position of the data in the reconstructed
message to be determined even when picees are still
missing.

Every segment produced by a souree TCI® is packaged
in a single internetwork packet and a check sum is com-
puted over the text and proeess header gssociated with the
Regmient.

The splitting of messages into segments by the TCP
and the patential splitting of segments inio saaller picees
by GATEWAYS ereates the necessity for indicating ta the
destinaticm TCP when the end of a segnemt (ES) has
arrived and when the end of o message (EM) has arrived.
The flag ficld of the internetwark header is used for this
purpose (see Fig. S,

The ES flag is set by the ssaree TCP cach time it pre-
parcs a segment for transimission. 1 it <lvald happen that
the message is completely cantained in the segneent, then
the EN flag would alse bee set, The EN flag is also set «n
the Just seganent of & message. if the message could net
be cemtained in e segment. These twe flags are used
by the destination TCP, r~pectively, to discever the
presenee of a cheek sum for a given segment and to diseover
that a complete message has arrived.

The S and EM flags in the interactwark header are
Kkneavn to the cateway and are of special importanee when
packets must be split apart for propagatiian thnagh the
next local netwark. We illusirate their use with an ex-
ample in Fig. 9.

The criging) mes<age .1 in Fig. 9 i« shewn split inte two
segmients 1, and 4z and formatted by the TCP into a pair

Fig. 7. Assignment of sequence numbers.

% b

Z<n
-rmy»
wm

LEMMMMm-!
‘et Ed O Segrmont whon st ® 1
e Rofoane Use of Procews/Port when set=1
e Syncivorae 10 Packet Sequence Number when mt * 1

Fig. 8. Internetwork header flag field.

1000 by
100 W0 W ...
| [vexy oF messact &]
S10 ST €3 &M 20 2
sac]osT[100 [800] 1 [© 77 wn | axT [ex |
. haader =-uA‘
o
$50 CY 5 &M w2
(e[Towo s [+ P77 e Tex]
| wmant ay |
w2
[sacTosT oo a0 0 [0 77 Taxy okt &y,
win [smTut!soim:\jo%nfun]cu] ™
GATEWAY

[sncTos7 o 707 0 | 0 7772 i [Vext 721 semner &y,
[sc[ost o0 [70+ |V 7777 o | TexXT | Ck] puerayy

Fig. 9. Nlewsage sphitting and packet splitiing.

of internetwerk packets, Packets 4y and 4 have their
IS bits set, and .12 has its EM hit <t as well. When
packet 4, passes through the caTEWAY, it is split into two
picees: pueket 1y for which neither EM nor FS bits are
wt, and packet L4y wleee ER bit is set. Similarly, packet
Ja i split sueh thiat the first picec, packet s, has neither
bit xct, but packet 1z has both bits xet. The sequence
number field (SFQ) and the bvte erunt field (CT) of cach
packet is modified by the GATEWAY o properly identify
the text bytes of cach packet. The cateway need only
examine the imtemetwark header to do fragimentation.

The destimtion TCP, upear reassembling segment 4,
will deteet the BN flag snd will venfy the cheek sumn it
Kknows ix contained in packet Ay Upan receipt of packet
Az assgining all «ther packets have arrived, the desti-
nation TC) deteets that it has reasseibled a complete
message and can now advise the destinatiaan process of its
receipt.

394

o,
*»

o
n

e

o

A,

TR ES

A

ool

e T s
=
=it

l"-

»
L]

w e e

v’

[R AR

* e
'.".‘A

PERA

Y,

*

L
LI L

-

AP)

e Phud
.

'd " ¢ T B 9
PR AT T AT)

.'n 7

R

P ST
f) .

NOUMATANTAES | |

H
!
b
.
o
)
:
\
;
5

IMPLEMENTATION GUIDELINES

CERF AND KAHN: PACKET NETWORK INTERCOMMUNICATION

RETRANSMISSION AND DUPLICATE
DETECTION

No transmission can be 100 percent relisble. We
propose a timcout and positive acknowledgment mecha-
nism which will allow TCP's to recover from packet losses
from one HoST to another. A TCP transmits packets-and
waits for replics (acknowledgements) that are carried in
the reverse packet stream. If no acknowledgment for a
particular packet is reecived, the TCP will retransmit.
It is our expectation that the Host level retransmission
mechanism, which is described in the following para-
graphs, will not be called upon very often in practice.
Evidence already exists? that individual netwoerks can be
effectively constructed without this feature. However, the
inclusion of a HosT retransmission capability makes it
poesible to recover from occasional network problems and
allows a wide range of HOsT protocol strategies to be in-
corporated. We envision it will occasionally he invoked to
allow HosT accommodation to infrequent overdemands for
limited buffer resources, and otherwise not used much.

Any retransmission policy requires some means by
which the receiver can detect duplicate arrivals. Even if
an infinite number of distinet packet sequence numbers
were available, the receiver would still have the problem
of knowing how long to remember previously reccived
packets in order to detect duplicates. Matters are compli-
cated by the fact that only a finite number of distinct
sequence numbers are in fact available, and if they are
reused, the receiver must be able to distinguish between
new transmissions and retransmissions.

A window strategy, similar to that used by the French
CYCLADES system (voie virtuclle transmission mode [S])
and the ARPANET very distant HosT conncection [18],
is proposed here (sce Fig. 10).

Suppose that the sequence number ficld in the inter-
network header permits sequence numbers to range from
0ton — 1. We assume that the sender will not transmit
more than w bytes without recriving an acknowledgment.
The w bytes scrve as the window (see Fig. 11). Clearly,
w must be less than n. The rules for sender and recciver
arc as follows.

Sender: Let I be the sequence number ansociated with
the left window cdge.

1) The sender transmits bytes from wgments whose
text lica between Land upto . + v — .

2) On timcout (duration unspecified), the sender
retransmits unacknowledged bytes.

3) On reecipt of acknowledgment consisting of the
receiver's current left window dge, the sender’s left
window cdge is advanced ov ¢ the ackuowledged bytes
{advancing the right window edge implieitly).

Receiver:

1) Arriving packeta whose sequence numbers coincide
with the reeeiver’s eurrent left window edge are acknowl-
edged by sending to the suuree the next sequence number

! The aARPANET is one »uch exnmple.

643

Lol] [oowt] [~

window ———e]

: packet mw———!

Fig. 10. The window concept.

-

Seures
Addron
Derunenan
Addron

Next Packet Sou.

Curront Butter Size
Next Writs Pesition

Neat Resd Penition

End Read Posrnon

Ne. Rewens. | Max Rowans.
Timoout Fop

Curr. Ask Window

Fig. 11. Conceptual TCB format.

- B - e eew N

-
°

expected. Thin effectively acknowledges bytes in between.
The left window edge is advanced to the next sequence
number expected.

2) Packets arriving with a sequence number to the left
of the window edge (or, in fact, outside of the window) are
discarded, and the current left window edge is returned as
acknowledgment.

3) Packets whose scquence numbers lic within the
receiver’s window but do not coinicide with the seeciver’s
left window cdge are optionally kept or discanled, but
are not acknowledged. This is the case when packets arrive
out of urder.

We make some observations on this verategy. Fiet, all
computations with scquence numbers and window odges
must be made modulo 7 (e.g., byte 0 follows byte s = 1),
Second, 10 must be lesa than » “23; otherwise a retranse
mission aay appear to the neeciver to be a new trans-
minsion in the caxe that the reeciver has aceepted a
winduw's worth of incoming packets, but all acknow ledg-
ments have been lost, Third, the peciver ean cithier save
or discard arriving packets whose sqquenee numubers do
not coincide with the recviver's left window, Thus, in the
simplest implementation, the neciver need not buffer
mere than one packet per mesage stream if space s
eritical. Fourth, mubiiple packets can be acknowleged
simultaneousty. Fifth, the peviver is able to deliver
niewages to processes in their proper order as a natural
result of the passemhly mechanisia. Sixth, when dupli-
cate~ are deteetedd, the acknowledgment methoed used
naturally works to peyvachronize scder and pecciver,
Furthermore, if the neviver acvepts packets wlhise
sequenee numbers lie within the current windiw but

PArially ®°2 ia merely & svavenent wundcr teose; it o oonly
required that a retranstaissinn sut appear to e a orw Lot son.

o Yor |

)
‘.
E

&

£
-
>

! -‘" v
» .l‘ '

R }
o
e

»
)4
.

o e
s e,
D

.‘. e s 0

P

3
"
" ‘!.

‘- .

P 3
. .

.

' !

DDN PROTOCOL HANDBOOK - VOLUME THREE 1985

644

which are not coincident with the left window edge, an
acknowledgment consisting of the current left window
edge would act a~ a stimulus to cause retransmission of the
unacknowledged bytes. Finally, we mention an overlap
problem which results from retransmission, packet
splitting, and alternate routing of packets through dif-
ferent GATEWAYS.: .

A 600-byte packet might pass through one GATEWAY
and be broken into two 300-byte packets. On retrans-
mission, the same packet might be broken into three
200-byte packets going through a different GATEWAY.
Since cach byte has a xequence number, there is no con-
fusion at the receiving TCP. We leave for later the issue
of initially synchronizing the sender and receiver left
window edges and the window size.

FLOW CONTROL

Every segment that arrives at the destination TCP is
ultimately ackniwledged by returning the sequence
number of the next segment which must be passed to the
process (it may not yet have arrived).

Earlier we deeeribed the use of a sequence number
space and windew to aid in duplicate deiection. Ac-
knowledgments are carried in the process header (see
Fig. 6) and along with them there is provivon for a
“xyggested window” which the recciver can use ta contral
the flow of data from the sender. Thix is intended to be
the main companent of the process flow control mecha-
nism. The receiver is free ta vary the window size accord-
ing tu any algorithm it desires =0 long as the window
gixe never exceeds half the sequence number space.?

Thic flow control mechanism is exceedingly pxowerful
and flexible and does not suffer from aynchronization
troubles thut may be encountesed by incremental buffer
allucatiom schemes [9].[10]. However, it relies heavily
«n an effeetive retransmissian strategy. The peeciver can
reduer the windiw even while packets are en rate from
the sender whowe winduw is presently larger. The net
effoet of this reductizm will be that the recciver may
discard incaming packets (they may be outside the
windew | and reiterate the current window size alag with
a current window «dge as acknoawh<dgment. By the xame
teken, the sender can, upon oceasion, choose to send more
than z window's worth «f data on the possibility that the
pereiver will expand the windaw to aceept it (of courwe, the
sender must not send more than half the sequence number
space at any time). Normahly, wie would expeet the sender
to ahide by the windiw limitatien, Expaiedan of the
windiw by the peeciver merely allows mee data to be ac-
copted. Fur the peviving wosy with a sinall amount of
buffer space, a strategy of discarding all packets whose
weeienee numbers do not cvineide with the current beft
edge of the window is pvbably necessary, It it will inenr
the expense of extra delav amd overhead for retrnsine-
san

IEEY. TRANSACTIONS ON COMMUNICATIONS, MAY 1974

TCP INPUT /OUTPUT HANDLING

The TCP has a component which handles input/output
(1/0) to and from the network.* When a packet has ar-
rived, it validates the addresses and places the packet
on a queue. A poal of bufiers can be wet up to handle
arrivals, and if all available buffers are used up, suceceding
arrivais can be discardid sinee unackmowlidged parkets
will be retransmitted.

On output, a rmaller amount of buffering is needed,
since procees buffers can hold the data ta be transiitted.
Perhapx double buffering will be adequate, We make no
attempt ta specify how the buffering <hauld be done,
exeopt to reguire that it be able to serviee the netwark
with as little averhead as pssible. Packet sized buffers,
one or more ring buffers, or any other combinaticn are
pussible eandidates.

When a packet arrives atthedestination TCP, it is placed
on a queue which the TCP scrviees frequently. Far ex-
ample, the TCP could be interrupted when a queue place-
ment oceurs. The TCP then attempts to place the packet
text into the praper place in the appropriate process
receive buffer. If the packet terminates a segment. then
it can be checksummed and acknowledged. Placement
may fail for several reasans.

1) The destination process may not be prepared to
receive from the stated source, or the destination purt 1D
may not cxist.

2) There may be insufficient buffer space for the text.

3) The beginning sequence number of the text ma
not coincide with the next sequence number ta be delivered
to the process (e.g., the packet has arrived wut of order).

In the first ease, the TCI® whould simply discard the
packet (thus far, no provision has been made for error
acknowledgments). In the aecend and third caxe=, the
packet mequence number can be inspected to determine
whether the packet text lies within the legitimate window
for reeeptinn. If it does, the TCP may optionally keep the
packet queucd for later procesing. If not, the TCP
can diseard the packet, In cither cawe the TCP ean
optionally ackniawledge with the enrrent beft window odge.

1t may happen that the process peecive Imfler is ma
present in the active memory of the nest, but is stored on
secondary stopage, I this is the ease, the TCP ean prompt
the seheduler 16 hring in the apprapriate huffer s the
packet can be queund for ater procesing.

If there are oomare input buffers available to the TCP
fur temporary queucing of incoming packets, and if the
TCP canot quickly use the arfiving data (eg.. a TCP
te TCP mussaige). then the packet is diseardid, Assuming
a xensibly funeticming xyatem, 1o other processes than the
une frr whieh the packet was intended shoold e affected
by this discarding.)f the delavid procesing guens grows

CThie cuniguaeid can serve te bamdle olher prituods whoe
anctated vt ral prograse soe desgenated by cetw work destane
ieote aaddrese.

3-96

A
"

Ad

R
",

el u
4 8 8 2 A A

e A

S
o 9 28 W 8

’

ECN N}
PR Y
e A

.

..... -.
o T g
MNP AE AR - /O

-
.
-

o

O

. B
vCuls
u“'lll

. % % &

[AD
‘.ﬂ.l -

N

IMPLEMENTATION GUIDELINES

CERF AND KANN: PACKET NETWORK INTERCOMMUNICATION

excessively long, any packets in it can be safely discarded
since none of them have yet been acknowledged. Con-
gestion at the TCP level is flexibly handled owing to the
robust retransmission and duplicate detection strategy.

TCP/PROCESS CONMMUNICATION

In ordér to mrd 8 message, 8 process et np its text
in a buffer region in its own address space, inserts the
requinite control information (described in the following
list) in a transmit control block (TCB) and passes control
to the TCP. The exact form of a TCB ix not specified
here, but it might take the form of a passed pointer, a
pscudointerrupt, or various other fuorms. To reecive a
message in its address space, a8 process sets up a receive
buffer, inserts the requisite control information in a
receive control block (RCB) and again passcs control
to the TCP.

In some simple systems, the buffer space may in fact
be provided by the TCP. For simplicity we assume that
a ring buffer is used by each process, but other structures
(e.g., buffer chaining) aure not ruled out.

A poasible format for the TCB is shown in Fig. 11. The
TCB contains information necessary to allow the TCP
to extract and send the process data. Some of the informa-
tion might be implicitly known, but we are not concerned
with that level of detail. The various fields in the TCB
are described as follows.

1) Source Address: This is the full net nost/TCP/port
address of the transmitter.

2) Destination Address- This is the full net 'Kost’
TCP ’port of the receiver.

3) Nest Packet Sequence Number: This is the sequenee
number to be used for the next packet the TCP will
transmit from this port.

4) Current Buffer Size: This is the present size of the
process transmit buffer.

3) Neat Write Position: This is the address of the next
position in the buffer at which the proeess can place new
data for trananission.

6) Nest Read Position: This i the addeess at which the
TCP sheuld begin reading to build the next segient for
output.

7) End Read Position: This is the addeess at which the
TCP should halt transmission. Initially 6) and 7) bound
the message which the procese: wishes to transmit.

S) Number of Retranswisstons Maziomuoe Reiransiis-
siong: Thewe fields cnable the TCP to keep track of the
number of tinuex it has retransmitted the data and could be
omitted if the TCP is not to give up.

9 Timeout Flags: The tingout ficld specifis the
delay after which unacknowldgesd data should e retrans
mittend. The flag ficld ix used for ~awaphors and other
TCI process svachronization, status pepeeting, ote.

10) Current Aeknowdodgun ut Waondwe: The current
achnowhdgimea ficld identites the fisst byvte of data
~till unacknonledged by the disthation TCL.

645

The read and write positions move circularly around the
transmit buffer, with the write position always to the left
(module the buffer size) of the read porition.

The next packet sequence number <hould be constrained
to be less than or ecqual to the sum of the current ac-
knowledgment and the window fiddds. In any event, the
next sequence number should nat exceed the sum of the
current acknowWiedgment and haif of the maxihtam possible
sequence number (to avoid confusing the receiver’s
duplicate detection algorithm). A possibie buffer layout
is shown in Fig. 12,

The RCB is substantially the same, except that the end
read field is replaced by a partial segment check-sum
register which permits the recciving TCP to compute and
remember pastial check sums in the event that a segment
arrives in several packets. When the final packet of the
segment arrives, the TCP can verify the cheek sum and if
succeasful, acknowledge the segment.

COXNNECTIONS AND ASSOCIATIONS

Much of the thinking about process-to-process com-
munication in packet switched networks has beea in-
flurnced by the ubiquitous telephone system. The #osT-
HosT protocol for the ARPANET deals explicitly with the
opening and clming of simplex connections between
processes [9],[10). Evidence has been presenied that
mesage-based ‘connection-free” protocals can be eon-
structed [12], and this leads us to carefully examine the
notion of a connection,

The term ~anneetiun has a wide variety of meanings. It
can refer to a physical or logical path between two en-
tities, it cza refer to the flow over the path. it can in-
ferentially refer to an action associated with the setting
up of a path, or it can refer to an association between two
or more eatities. with or without regard to any path
between thems. I this paper, we decnot explicitly reject
the term conteetion. sinee it is in such widespread use,
and deoes connote a meaningful relation, but consider
it exclusively in the serse of an assocition hetween two or
mare entities without regaed to a path. T be more precise
about our iment. we <hall define the selationship betweer
two op more ports that are in commumication, or are pres
pared to comnumieate to be an vaseeration. Purts that
are associated with each other are called assoeiites.

It is elear that for any communication to take place
between two proceswes, one st be able to address the
other. The two impeetant eases bere are that the desti-
nation port may have a gldal and unchanging addres or
that it may be glabally nnigue but dyvnamically reassigned.
While in cither ease the wnder may have to learn the
de=tination address, given the destiiation name. only in
the seeemed instanee i there a asgairement for leaening the
addrss fran the destination e its pepresentative? cach
tine an association s desinnd. Oudy after the souree has
fenmed how tecddress the destination ean an association
be ~aid to have oceurpsl. But this is not vet sutficient. If

gy 1
<=

ﬂ
A

S
. ‘L:
-'.-’:.f, p

.
o
o

-,
L
P B & N

0
y

., -
.,

L
s Yo o
R

v -
.
A
.
.

)
.‘
t. »

s
o

il

. bt g

3
e

ey

™

K
-’
.
-t
e
a®e
o
L)
S
C)
MU
.
Dt

>
N

1%

. o
e e %0 v

a2 IS
o v 8 e
D)
e’
v .

A5 ERE

LIV
4

4 &
Mgy Ry 4

DDN PROTOCOL HANDBOOK - VOLUME THREE 1985

[~ Memage

m:—«.un T Somt Mot Asbes | NotSem | Pornel Next Moaps m

Ca-!nh Noxt Son Ne.]]
L— x. L End Rons ot Wrrm

Trevmema Butier Sure

Fig. 12. Transmit buffer layout.

ordering of delivered messages is also desired, both
TCP’s must maintain sutficient information to allow
proper sequencing. When this information is also present
at both ends. then an assaciation is xaid to have oceurred.

Note that we have not said anything about a path, nor
anything which impiics that cither end be aware of the
condition of the other. Unly when both partuers are
prepared to communicate with cach other has an assoei-
ation occurred, and it is possible that neither partner
may be able to verify that an association exists until some
data flows between them.

CONXNECTION-FREE PROTOCOLS WITH
ASSOCIATIONS

In the ARPANET, the interface message processors
(IMP’s) do not have to open and close connections from
rource to destination. The reason for this is that con-
nections are, in effect, alwaye open, since the address of
every source and destination is never! reassigned. When
the name and the place are static and unchanging. it is
only necessary to label a packet with source and dexti-
nation to transmit it through the network. In our parlance,
every source and destination forms an association.

In the ease of processes, however, we find that port
addresses are continually being used and reused. Some
ever-present processes could be assigned fixed addresses
which do not change (e.g., the logger process). If we sup-
posed, however, that every TCI® had an infinite supply of
port addresses so that 1o old addrens would ever be reused,
then any dynamically created port would be assigned the
next unuwed address. In zuch an environment, there
ciuld never be any confusion by source and destination
TCP as to the intended recipient or implied souree of each
message. and all ports would be associates.

Unfortunately, TCP's (or more properly, operating
syatems) tend pot to have an infinite supply of internal
port addresses. These internal addresses ane reassigned
after the demise of cach port. Walden [12] suggests that
a st of unique uniform external port addresses could
be supplicd by a central registey. A newly created et
could apply to the eentral registry for an address which
the rentral registey world guarantes to be unuswed by any
HusT wvatem in the networh. Each TCP eould maintain
tables matching external names with internal one=, and
use the external ones for comnumcation with other

S Upiens the INMP o physically muved 1o another sce. ur the
HONT o= cuntected T difierent JMP

IEEY. TRANSACTIONS ON COMMUNICATIONS, MAY 1974

processes, This idea violatex the premise that interprocess
communication should not require centralized control.
One would have to extend the central registry serviee to
include all nost's in all the interconnected networks to
apply this idea to our situation, and we therefore do not
attempt to adopt it.

Let us consider the situation from the standpoint of the
TCP. In order to send or receive data for a given pqrt,
the TCI needs to set up™a TCB and RCB and initialize
the window size and left window edge for both. On the
receive xide, this task might even be delayved until the
first packet destined for a given port arrives. By con-
vension, the fist packet should be marked so that the
recciver will synchronize to the received sequenee number.

On the send side, the first request to transmit eould
cause 2 TCB to be set up with some initial sequence
number (say, zero) and an assumed window size. The
receiving TCP can reject the packet if it wishes and
notify the sending TCP of the correet window size via the
acknowledgment mechanism, but only if cither

1) weinsist that the first packet be a complete scgment;;

2) an acknowledgment ean be sent for the first packet

(even if not a seginent, as lang as the acknowledg-
ment specifies the next sequenee number such that
the source also understands that no bytes have been
accepted).
It is apparent, therefore, that the synehronizing of window
size and left window edge can be accomplished withou!
what would ordinarily be ealled & connection zetup.

The fimt packet referencing a newly ercated RCB
rent frum one associate to anvther can be marked with a
bit which requests that the receiver svnchromize his Jeft
window edge with the sequence number of the arriving
packet (sec SYN bit in Fig. 8). The TCP can examine the
source and destination port addresses in the packet and
in the RCB to deeide whether t< aceept or ignore the
request.

Provision should be made for a destination pricess to
specifyv that it i« willing to LISTEX to a specific port or
“any” port. This Jast idea permits processes such ax the
logger process te aceept data arriving fram unspecified
sourees. This is purely a HosT matter, however.

The initial packet may eontain data which ean be stored
or discarded by the destination, depeending «n the avail-
ahility of destinatinn buffer space at the tine, In the «ther
direetiem, acknowledgment is returned for reeeipt of data
which alsw specifies the reeeiver's window size.

If the receiving TCP cheuld want to rejeet the syn-
chrenization riquest, it merely teansnits an acknowledg.
ment careying a release (REL) bit (use Fig. 8) indieating
that the di=tination port address is unkiewn or inaccese
sible. The sending nost waits for the acknowledgment
(after aceepting «r rejecting the <y nehronization pequest)
befor sending the next niessage or <cginent. This rejection
> quite different frons a negative data acknowldgment.
We do ot have expdieit aegative achnowhadgnents 1f no
achimlidgment i« petumed. the ~<ending HosT may

5)

"D-.-I
PR
e tatatats

L. Lo
% % &

‘Y v
»'e .
!.‘n
F

IMPLEMENTATION GUIDELINES

CERF AND KAHN: PACKET NETWORK INTERCOMMUNICATION

retransmit without introdueing confusion if, for example,
the loft window edge is not changed on the retransmission,

Because messages may be broken up into many packeta
for transmission or during transmission, it will be neces
«ary to ignore the REL flag except in the case that the
EM flag ix also set. This could be accomplished cither
by the TCP or by the catEway which could reset the flag
oft ail but the packet containing the sov EX flag (wee
Fig. 9.

At the end of an assaciation, the TCP sends a packet
with ES, EM, and REL flage set. The packet sequence
number scheme will alert the recciving TCP if there are
«till outstanding packetx in transit which have not yet
arrived, o o prematune dissociation cannot oceur.

To assure that both TCP's are aware that the associ-
ation has ended, we insist that the reeeiving TCP respond
to the REL by sending a REL acknowledgment of its
own.

Suppose now that a proces< sends a single message to an
amsociate including an REL along with the dats. Assuming
an RCB has been prepared for the reeciving TCP to
accept the data, the TCP will accumulate the incoming
packets until the one marked ES, EM, REL arrives, at
which point a REL ix retumed to the sender. The awoci-
ation is thereby terminated and the appropriate TCB
and RCB arce destroyed. If the first packet of a momage
contains & SYN request bit and the last packet contains
ES. E)M, and REL bitx, then data will flow ‘‘onc message
at a time." Thix mode is very similar to the scheme de-
seribed by Walden [12], sinee cach sucereding mewage
can only be accepted at the receiver after a new LISTEN
(like Walden’s RECEIVE) command in ismued by the
receiving process to its serving TCP. Note that oaly if the
acknowledgment is reeeived by the sender can the axsoci-
ation be terminated properly. It has been pointed out
that the receiver may crroncously accept duplicate
transmismions if the sender docs not reecive the acknowl-
edgment. This may happen if the sender transmits a
duplicate mesage with the SYN and REL bita net and the
destination has already destroyed any record of the
previnus transmission. One way of preventing this problem
in to destroy the record of the awnociation at the desti-
nation only after some known and suitably chosen timeout.
However, this impliew that 8 new association with the
same source and destination port identifives could not be
«~tablished until this timeout had expind. This problem
can occur even With syuences of nessages whoe SYN
and REL bits an: separated into diifipent imemmetwork
packets. We peognize that this problem must be solved,
but do nut g into further detail here.

Alternativedy, both proctses can send one nnssage,
causing the pespective TCI"s to alloeate RCB TCB
pairs at both ends which pedezvous with the sxchangd
data and then disappear. 1 the averhead of ereating and
destroying RCB's and TCRB's i sinall. such a protocn}

N, Crocker o AILPA IPT.

647

might be adequate for mest low-bandwidth uses. This idea
might also form the basis for a relatively secure trans-
mixsion xystem, If the communicating processes agree to
change their external port addresses in some way known
only to cach other (ic., peeudorandom), then each
message will appear to the outside world as if it is part of a
different association message stream. Even if the data is
intereepted by a third party, he will have no way of
knowing that the data should in fact be considered part of
a xequence of messages.

We have deseribed the way in which procesus develop
aswciations with cuch other, thereby becoming associates
for possible exchange of data. These associations need nnt
involve the transmission »f data prior to their formation
and indeed two associates need not be able to determine
that they are associates until they attempt to communi-
cate,

COXNCLUSIONS

We have discussed some fundsmental issuex related to
the interconnection of packet switching networks. In
particular. we have deseribed a simple but very powerful
snd frxible pentocol which nrovides jor variation in
individual network packet sizes, transmission failures,
scequencing, flow control, and the ereation and destruction
of procesa-to-process associations. We have considered
some of the implementation ixsues that arise and found
that the proposrd protocol is implementshle by nost's
of widely varying capacity.

The next important step is to produce a detailed speci-
fication of the protocol o that »ome initial experinients
with it can be performed. These experiments are needed
to determine some of the operational paranieters (e.g..
how often and how far out of order do packets actually
arrive; what sort of delay is there between segment
acknowirdgments; what should be retransminsion time-
outs be?) of the proposed protocol.

ACKNOWLEDGMENT

The authors wish to thank a number of eollcagues for
helpful comments during early diseussions of international
netwnrh protoeols, especially 10 Meteatfe, R, Seanthe
bury, D. Walden, and H. Zimmerman: 1. Davies and L
Manzin whis copstructively comupiented on the fragmenta-
tion and accounting issnes: aml S0 Ceoekiee wine cot-
mented o the sreation and desiruetion of aasociatinons.

REFERENCES

131 L. Miderta and B. Wemaler. “Compater network slevelupment
tee achiowe reairer sharting,”” in 1970 Npring Jornt Computer
Conf.. AFINS Cenl. Prac.. wadh. i, Muntwale, N. J.: AFIPS
Prese, 1970, pp. S350,

21 L. Panan, ”"m-nlﬂ'um tnl maper draign asteets of the
CYCLADES cunputer neiwrk,” v 'roe. 37 Uate Com.
muniruhions Symp., 1971

1 K Dell, Fratures of A‘Btupml evnchnwnous data nete
wiek,” in 1ror. Jeed Symp. §'rollms 1a the Ugdromraahen of [duie
Commynirarions Syahime, WUT), pp. “0=-37.

3-99

.
0080,
P F .

-
r4uE
'a

P ——
e l
- ¥
PR il
al e, 5 P $ _[

4,
. []
‘l

0

<P}

“r Ty "y WV
.

‘!‘ o l..u.l'_'
Dl PR AR

't’,"\a_:r.'- ORI
P4l O D M)
TR e A)

b
»

P
'l

v
AN

iy

e

..-,.
.I.I [}
AL)

1’ .’

[LA
ottt .

)
..".l}

l.)

e,
e
LA PR A I

.
o

DDN PROTOCOL HANDBOOK - VOLUME THREE

1985

648

4] R. A. Seantlebury and P. T. Wilkinson, “The design of s
switching system to allow remote sceess to computer services
by other cumputers and terminal devices,” in Proc. 2nd Symp.
Problims in the Optimization of Data Communications Sysiems,
1971. pp. 160-167.

[5] D. L. A. Barber, "The Lnropean compnter network project,”
in_ Computer Commumications: Impacts awml Iwpheations,
S. Winkler, Ed. Washinptan, . C., 1972, pp. 102-2000.

{6} R. Dexpres, "A packet xwitching network with graceful xatu-
rated operation.” in Computer Commumicalions: Impacts and
:l;‘"phm“"" 8. Winkler, S’.d. Washington, . C., 1972, pp.

=331,

{7} R.)., Kahn and W. R. Crowther. ‘“Flow eontrol in & resonree
sharing compnter network,” IEEE Trans. Commun., vol.
COM-20, pr. A30-046, June 1972, .

{8] J. F. Chambon, M. Elie. J. 1o Bihan, G, LeLann, and H. Zim-
mermaz, “Functional specifieation of transxmission station in
the CYCLADES wetwork, RT-NT protocol” (in French),
IR.1A Tech. Rep. SCHW2.3, May 1973,

9] & Carr, 8. Croeker, and V. Cerf, "HOST.-HOST Com

IEEE TRANSACTIONS ON COMMUNICATIONS, MAY 1974

f""’""""-'“" Vinton G. Cerf was born in New Haven,
Conn., in 1943. He did undergraduate work
in mathematics at Stanford Universivy,
Stanford, Calif., and received :he Ph.D. de-
gree in computer science from the Univerity
«f California st Los Angeles, Los Angeles,

i -Calif., in 1972. -

\ He was with IBM in Los Angeles from
1965 through 1967 and consulted and/or
worked piart time at UCLA from 1967 through
1872. Currently he is Assistant Professor of

Computer Science and Electrical Engineering at Stanford University,
and consultant tc Cahledata Associates. Must of his current research
is supported by the Defense Advanced Research Projects Agency and
by the National Science Fonndation on the 1echnology and economics
of computer networking. He in Chairman of IFIP TC6.%, an inter-
national network working group which i studying the problem

tion Protocsl In the ARPA Network,” in S‘mw Jown! Com-
puter Conf.. AFIP'S Conf. Proc., vol. 36. Montvale, N. J.:
AFIPS Prew.. 1970, pp. 380-307.

110} A. McKenzie, “Ho<T, HOST protocol for the ARPA network,"
in Current N-twork Protocols, Network Informatim Cen.,
Menlo Park, Calif.. N1C 8246, Jau. 1972.

M) L. Pounu, “Addre<s format m Mitranet,” NI1C 14497, INWG
20, Jan. 1973,

112] D. Walden, A svdtem for interprocee communiestion in 8
resource =liaring romputer network,” Commun. Ass. Comyit.
Mack., vol. 15, pp. 221-230, Apr. 1972, . .

{13] B. Lampsnn, A scheduling philssophy for multiprocessing
svatems, ' Commun. Ass Comput. Maea., vol. 11, pp. U7=360,
May 1968.

114] F. 1.. Heart, It. K. Kahn, S. Ornstein, W. Crowther, and

D. Walkden, “The interfscc mesage procewor for the ARPA

computer network,” i Free. Spring Jownt Computer Conf.,

AFII'S Conf. Proc., vol. 36. Montvale, N. J.: AFIP3 Press,

1970, pp. 531-367.

N. G. Amdow and J. Hanseoff, “Implementation of inter-

national data exchange networks,” in Computer Communico-

tions' Impacts and Implications, 5. Winkler, Ed. Washington,

D.C.. 1932, pp. 181-184

116] A. Mechenzie. “MOST /NOST protoeol dess iderations,"”

of packet network interconnection.

*

Robert E. Kahn (M'G5) was born in Brookiyn,
N. Y., on Derember 23, 1436, He received the
B.E.E. Jegree from the City College of New
York, New York, in 1960, snd the M.A.
and Ph.D. degrees from Princeton University,
Princeton, N. J., in 1962 and 1964, re-
spectively.

From 1960 10 1982 he was & Nember of the
Technical 5taff of Bell Telephone Lahors.
tories, Murray Hill, N. J., engaged in 1raffic
and communication siudies. From 1964 to
1986 he was & Ford Postdoctoral Fellow and an Assistant Professor
of Electrical Engineering at the Massachusetts Institute of Tech-
nology, Cambridge, where he worked on communications and in-
formation theory. From 1986 1o 1072 he was a Senior Scientist at
Bolt Beransk and Newman, Inc., Cambridge, Mass., where he
worked on computer communieations network design and techniques
for distributed computation. Since 1972 he has been with the Ad-

INWG Note 16, NIC 13870, Jan. 1973.
117] R. F. Ruhn, “ltessurce-sharing mm;uuf communication
netaurks.” Proc. JEEE, vul. 60, pp. 1347-1407, Nov. 1972,
18] Bult, Beranek, and Newman. "Specification for the intercon.
necton of 8 host and an IMP,” Bolt Beranek and Newman,
Inc., Cambridge. Mass.. BBN Rep. 1822 (revised), Apr. 1973.

d Iesearch Projects Agency, Depertment of Delense,
Arlington, Va.

Dr. Kahn is 8 member of Tau Beta Pi, Sigma Xi, Eta Kappa Ny,
the Institute of Mathematical Stetivtics, and the Mathematicsl
Associstion of Americs. He was malectsd to serve as & National
Lacturer for the Association for Computing Machinery in 1972

"
%

»
.

B

el

5%
P &L
CaNs

-cg::’h

st <
' '3.%4!E

57
e T oo

%’.

Reprinted by permission from
1EEE TRANSACTIONS ON COMMUNICATIONS
Vol. COM-22, No. 5. Msy 19%

Capyngti © 1914, 5y Wy lanavie of Lisewun) onf Cnswesun Lagraamn. Ing
PRINTED IN THE USA

L4

PR R R
L A N N DR
rl O - - .
e S e
e % e % "a "0

SOOPN

3-100

Pl

LS S R,

IMPLEMENTATION GUIDELINES

Issues in Packet-Network Interconnection

VINTON G. CERF anp

Invited

Abstract-This psper introduces the wids mage of techaical, logal,
and political imsues smocisted with the iatercoanection of pechet
itched data ication networka. Modvations for ia

tioa zsv given, dozived usev tervices are descrided, sad a range of tech-
nical choswces far schieving int tion are pared. lssuse mch
% e level of iatercossecton, the role of gatewsys, naming sad
sddreming, low and coage: S0a conmrol, ting and access coatrol
and basic intermet services are discnssed in demad. The CCITT X.2§/
X.78 packet-network interface rec dations arc eval d in terme
of thetr spplicadsty to metwork intercoanschon. Alternatives such as
datagram openatioa and gemeral host gatewzys are compared with the
virtual crcuit methods. Some vbservatioas oa the regulatory aspects of
interconnerion are oifered and (he paper conciudes with » statoment
of open R probi ané soms i chush

l. InTRODUCTION

aeed access {0 dats resources. ln many cases Uus access
must be over large distances, in others it may be local to a
building or a ungie nte. Dita networks have dren set up to
mect many user needs ~often, but not necessanly, using packet-

I[T IS THE THEME of many papers in thus ussue, that people

Manuscrtpt received June 30, 1978, rovined July 31,1978

V G Corf is with the Advanced Resoarcth Promchs Agaacy, US De
partment of Defense. Arliagtan. VA 21100

P T Kirsisis ia wth the Departmont of Statatic sad Cemputer
Scisace, Ushrerstty Colege. Leedva, Laglond.

PETER T. XIRSTEIN

Peper

switching technology. For single organizations, these data
networks are often private ones, bult with a technology
optimized to the specific application. For communication
between organizations, these networks are being set vp by
licensed carriers. la North Amenca, there are many such
licensed carmers, e, TELENET [1], DATAPAC {2, and
TYMNET {3]. In the rest of the world, the Post, Tclegraph,
and Telephone Authority (PTT) in each country has a near
monopoly on such semces, special pudbuc data networks
being set up in these countnes include TRANSPAC [$1 1
Franze, EURONET 4] for wte<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>