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INTRODUCTION

Tungsten alloys have been used in kinetic-energy (KE) penetrator munitions
because of their high density and ductility, and because of the relative
effectiveness and economy of their producibility by means of powder metallurgy
techniques. Although a considerable amount of research and testing has been
performed on tungsten alloys and penetrators produced therefrom, it appears that
optimization has not yet been achieved (see, e.g., ref 1). Part of the reason
\ for this is an inability to correlate all changes in macroscopic mechanical
il properties and processing parameters with microscopic properties. One example of

this is the fact that strain aging after swaging significantly affects certain
mechanical properties such as tensile strength and elongation (ref 2), but
produces no clear microstructural changes in the material (ref 3).
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Neutron scattering is a technique which has the potential for revealing
certain structural and materials properties not readily determined by other
methods, as has been described previously (refs 4, 5, 6). In the case of
tungsten-alloy penetrator materials neutron diffraction is a much more sensitive
probe of matrix properties than is x-ray diffraction because of the comparable
coherent cross-sections of Ni, Fe, and W in the neutron case (ref 5).

In this paper we present the results of a preliminary investigation of the
variation of microscopic properties in unswaged, swaged and strain-aged 90 wt%
tungsten- 7 wt% nickel- 3 wt% iron penetrator material as revealed by wide- and
small-angle neutron scattering.*

METHOD

Experimental

Two types of neutron instruments were employed: high-resolution neutron
diffractometers (HRND) to examine differences in lattice properties of the W and
matrix phases of the various samples, and the small-angle neutron scattering
(SANS) instrument to determine defect or precipitate differences in the samples.
In both cases the samples were totally immersed in the neutron beam. Pertinent
instrumental parameters are summarized in table 1.

Samples

The W-.07Ni-.03Fe specimens were obtained from Oak Ridge Y-12 Plant after
preparation accoraing to the procedure described in reference 3. Blanks were
vacuum annealed at 1050°C for 20 hr (90-0). Specimen 90-24 was 24% cold worked
by swaging; specimen 90-24SA was 24% swaged, followed by strain aging for 5 hr at

* Measurements performed at National Bureau of Standards Research Reactor, .
Gaithersburg, MD. Coe
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500°C. Neutron-scattering samples were cut from the blanks and machined into
25.4 mm diameter discs, 1.12 mm thick. Dgnsities of the3three discs, measured by
R. Schoonover of NBS, agreed to 0.01 g/cm” at 17.35 g/cm”.
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Analysis Details
Wide-Angle Diffraction and Strains

The cold-worked samples studied were assumed to contain appreciable
levels of residual stress. Macroscopic residual stresses produce strains which
cause changes In d-spacings of inter-atomic planes. When averaged in all
directions over an entire sample, a range of tensile balanced by compressive
stresses produces no net strain and no net change in d-spacing. However, the
presence of strains produces a broadening of diffraction peaks, the degree of
which is related to the magnitude of stress. Neglecting particle size broadening
(ref 7 and references cited therein),

D 2 2
= Y4 ' >
wze, tan 98'<e (M

D
where w2 , 18 the variance of the broadening in 26', 6' is the Bragg angle, and
<e™> is ghe variance of the lattice strain distribution. Bragg peaks are
observed where the Bragg condition, A = 2dsin®', is fulfilled with A = neutron

wavelength. The strain-broadening variance is related to the measured full-width
at half-maximum, B, by

D 2 2 -
Wogr = (B” - bp)/81n2 (2) o
where b_ is the full-width at half-maximum intensity (FWHM) of the gaussian l

resolution function.

Some additional information can be obtained about the stress/strain
distribution if one examines specific, high-symmetry directions in the sample. .
With reference to figure 1 the strain in cylindrical geometry is related to t
stress by (ref 6 and references cited): -

2 2 2
vy s 05265 ] ) .
eow 2 g?(hkl)[orruos psin ¥y + oeosln¢ sin ¥

2 2 .
+ 0 cos"Y¥ + g sin2¢sin"¥Y + g cosésinly
zz re rz

‘ U . ) )
06231n®51nkv] + Si(hkl)[orr * g9 + ozz] (3

In equation 3, e' is the strain measured along L! at ¢,Y¥ to the sample-fixed
coordinates, the oi are the residual stress comporents, and the Si are
"diffraction elastlé constants" which depend on the elastic compliinces and the
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(hk1)-plane. For elastically isotropic solids 1/25_(hkl) = (1 + u)/E and Sl(hkl)
= -u/E where y is Poisson's ratio and E i3 Young's fiodulus.

TY or o= o cL.iemmmte .

-
In the disc-samples studied P_ corresponds to the cylinder axis, and because

I of the symmeti'y we assume o = O.3 Two high-symmetry directions were examined in E
: the samples: VY = 0° (i.e., reflection geometry) and ¥ = 90° (transmission -
. geometry), for which equation 3 becomes .
N o
2 ) ) t.
R ''= 1/2 8§ -
l er =1 bz(hkl)[orrcos ¢ + oeesin o] + S1(hkl)[crr * Ogg ozz] (4a)
s and

e = 1/2 8 + . y
: R 2(hkl)[aZZ] + S1(hkl)[orr * 0. GZZ] (4b)
I Within this analytical framework one can examine differential volumes within

a sample, as we have described in reference 6, to obtain stress as a function of
position, However, in the present work we have examined each sample disc,
totally immersed in the neutron beam.

We average the strains over the entire volume and assume that the stresses ::j'
i are independent of ¢; then for each phase we have E,ﬁ
2 - 1 1 Rl
. =z - - + St
: er vfrdrdz{zse[ﬂorr + noee] + 2"31[°rr * 90 oZZ]} (5a) ‘{25
and —:':f:'
- - 1 1 2
‘ eq * ;frdrdz{Zﬂ[Eszozz + 81(°rr YOt uzz)ll (5b)
- from which
:: e. - e, = lfr'drdz[c + 0, =20 ]w(lS ). (6)

T R ' rr 08 2z 22

Under the assumption that swaging and strain-aging change neither the
compositions of the constituent phases nor the crystal structures, the change in
the "stress integral" in equation 6 can be examined for a given reflection as a
function of thermo-mechanical processing.
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Recalling that strain is

-,

e =(d-d)/d
o} 0
then

er - eg = (dp - dg)/d,

= dT/dR - 1.

Equation 6 can be rewritten as

1
= (dT/d - 1)/ﬂ(552) (7
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where 1

I = ;Irdrdz[crr * 04 T ZGZz]. (8)
i It should be mentioned that although the samples are in overall equilibrium
! with respect to stress, each phase considered separately may contain a non-zero
, integrated stress.

Small-Angle Scattering

Small-angle neutron scattering is a technique which is analogous to
small-angle x-ray scattering; however, neutrons penetrate, typically, several
orders of magnitude more material than comparable wavelength x-rays. Perhaps
more important is the fact that, unlike for x-rays, scattering cross-sections of
: neighboring elements (e.g., carbon and nitrogen) or even different isotopes of
I the same element (e.g., hydrogen and deuterium) can be quite different, leading
to precipitate, void, or defect "contrasts" not possible with x-rays. A
comprehensive review of basic theory and applications is presented in references

5 and 8,
. The physical parameters of importance in the SANS regime are the number of
I scattering particles, N , their volume, V , the scattering-length density
. contrast, Ap, the scattgring vector, q, aRd the particle radius of gyration, RG'
with
it
i q - Tosin @ (9)
and
(Zb.)p, (Ib,)p,
- 1 1 J J
= A - ) 1
} 255y 7 o) Ty, M) (o)

Here, A 1s Avogadro's number, (Ib,) is the average scattering length of atoms in
the ith medium, p. is the average éensity of the ith medium, and (MW). is the
average molecular 'weight in the ith medium. In the present (preliminary) work we

‘ assume that if defects, precipitates or voids are present, they are spherical in
shape and monodisperse.

Following the classiec work of Guinier, and Porod, outlined in reference 8,
it hac been customary to consider two extremes in qR . for analysis. For

qR. < 1.2 the Guinier ipproximation is valid and the scattered intensity in solid

[ ] angle Q@ is given by b
- N 2.2 .
: _ 2, > -q RU/3 .

Lig,n) = =Rviiapy o™ g (1)
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where V is the volume of sample in the neutron beam. For very large q
tempirically for qRG > 3) the scattered intensity is given by

P
N
SELCLL (12)
qQ v

I(q,0)

where S is the total surface area of the spherical scatterers in V.,

To examine the regions appropriate to equations 11 and 12, measurements are
made by masking-out the transmitted incident beam with an absorber such as
cadmium. Analyses are then made for the smallest-angle scattering data judged to
be unaffected by the central beam and the largest-angle scattering data for which
reasonable intensity is observed.

Very recently Berk and Hardman-Rhyne (ref 9) and Hardman-Rhyne et al. (ref
10) have developed and applied a method for analysis of the broadening of the
direct beam, including multiple scattering effects, to extend the sensitivity of
SANS to particles up to micrometers in size. The reader is referred to the
references cited for the formalism of this "beam-broadening" analysis method.

RESULTS
Wide-Angle Diffraction T
Texture f:{

In the present work a full characterization of sample textures was not
made. However, least-squares fits of gaussian profiles to Bragg reflections
yield integrated intensities for those reflections. Results for the three
samples for transmission and reflection geometries are compared in table 2.

The measurements show that swaging dramatically changes the preferred
orientation of both tungsten and matrix grains in the specimen, which is ;
expected. In addition, the difference in relative intensities for 90-0 n
reflection peaks and 90-0 transmission peaks indicates that significant texture T
is present even before swaging. The more important aspect of these data is the —
comparison of 90-24 and 90-24S intensities. Within the estimated uncertainties, 1
no difference is observed in W(hkl) intensities for 90-24 and 90-24S samples -
either in reflection or transmission. This confirms our premise that the blanks R

trom which the 90-24 and 90-24S samples were prepared were essentially identical. .5;1
However, the matrix phase intensities, particularly for the reflection { ;!
measurements, show definite changes after strain-aging. T
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Lattice Parameters and Stresses

The sensitivity of neutron diffraction to structural changes in each
phase of the sample is illustrated by the comparison with x-ray diffraction in
figure 2. Crystallographically, the tungsten phase is body-centered cubic (Im3m)
X and the matrix phase is face-centered cubic (Fm3m).
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In table 3 measured d-spacings for tungsten and matrix phases are shown for
reflection and transmission measurements. The fact that the d-spacings are
different in the reflection and transmission measurements indicates the presence
o of measurable residual stresses (equation 6). This prevents a precise
determination of cell constants for the tungsten and matrix phases of the
different samples. 1In table 4 approrimate lattice constants obtained from simple
averages of pairs of d-spacing measurements are shown. No differences due to
thermo-mechanical treatment are observed.

A change in residual stress distribution produced by thermo-mechanical
treatment can be inferred from equation 7. However, this requires the
diffraction elastic constants, S,(hkl), for each phase. Since the tungsten phase
1s almost pure tungsten, the compliances tabulated in reference 11 and the method
described in reference 12 yield reliable values. In the case of the matrix phase
the elastic constants are not known, so as a first approximation the diffraction
elastic constants for pure nickel are employed (ref 12). The measured d-
spacings of table 4 are used to obtain the results for I presented in table 5.

Related to but independent of the abcve is the analysis of peak broadening
to extract the variance of the lattice strain distribution through equation 1.
Measured (gaussian) resolution {s subtracted from the total (gaussian) profiles
as described earlier. In this case, root-mean-square (r.m.s.) strains are
obtained without reference to stresses producing them. Values from the neutron
data are presented in table 6. For clarity, in both table 5 and table 6,
weighted averages of results for identical reflections are presented, as
appropriate. No systematic differences were observed in measured FWHM for
reflection and transmission data for individual reflections.

. L 2.1/2 .

[t should be emphasized that L and <e > reflect different aspects of the
residual stress distribution. If residual stresses are present, broadening of
- ine tHragg peaks and a finite <e“> will be observed. The stress integral, I,

f. worages over (¢ + - 20_ ) which could be zero even if stresses are

~ aresent. On thePStheroﬁand T éepengs on the distribution of stresses so that for
#. two samples I can change even if <e > is the same for each. This type of
p

“ohavior in observed for the W-phase of the present samples.

The W-phase in the 90-0 sample shows no measurable strain broadening. After
swaging significant r.m,s. strains are present while E{(90-24)70. After strain- BOEN

P
.

]

.
T
«

1ging, the magnitude of r.m.s. strain is essentially unchanged, whereas the f&,
distribution of stress changes appreciably. In the matrix phase I and <e > o
appear to change in parallel. A significant increase in stress occurs on :5{f
swawing, nd strain-aging appears to cause some stress relaxation and f{f
redistribution.  The fact that & of Mihhh) and M(200) reflections differ S
conszistently by about a factor of 2 indicates that the elastic constants, and 5, ;g.n
dorived from them, are very different from those of pure nickel. ' « b
f
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Small-Angle Diffraction

Guinier/Porod Regions

In figure 3 two representations of the noncenter SANS data, circularly
averaged, for the 90-24S sample are shown. (We use "noncenter" to indicate that
the transmitted incident beam is absorbed by a cadmium beam stop in contrast to
center, "beam-broadening" data.) It is interesting that withqut additional
information one might attempt to analyze the ln I(q) versus q° data as a
, composite of linear, "Guinier" components arising from several particle radii.

- For example, three distinct distributions each containing particles with a single
- radius (e.g., R, = 30, R, = 90, R, = 190A) would fit the data very well.

However, examination of %he 1n I(a) versus 1ln q representation shows that almost
all of the data follows the Porod law. This indicates that the Guinier region
consists of only a few data points, analysis of which is not practicable.

PAE g

The Porod region is analyzed for the three samples by means of equation 12.
Under the assumption that the scatterers are spherical and of the same type in
. each sample, ratios of scatterer total surface area can be obtained from the
Porod-region data. For spherical scatterers, the total surface area is
proportional to ¢/r where r is the radius of the scattering spheres and ¢ is the
- fractional volume of scatterers in the total sample volume in the beam. The
N ratio ¢(90-0)/r(90-0):4(90-24)/r(90-24):¢(90-2u4S)/r(90-24S) is 0.57:1.00:0.98
- from the Porod analysis.

Beam-Broadening Region

. The width increase of the direct beam is dependent on scatterer-matrix
o contrast, Ap, fractional scatterer volume, ¢, scatterer radius, r, and
wavelength, For the present samples only A = 12.2 and 14,08 show sufficient
. broadening for useful analysis. Results for two possibilities are presented: W-
precipitates in the matrix, and voids in the matrix. Here, "W-precipitates"
refers to W which dissolves in the matrix at the sintering temperature, but
precipitates out at ambient temperature--not the starting tungsten powder
particles (r > 10 um). For each wavelength an r versus ¢ curve is calculated
from the Berk model (ref 9), which is determined by the measured beam broadening
and the known parameters. For a given sample, the intersection of the curves for
each wavelength is taken to determine ¢ and r for that sample. This is
illustrated in figure 4., The uncertainties shown are determined by calculating,
at the cross-over ¢ value, the particle radii at + ¢ from the nominal beam-
broadening value. It is clear that the relatively large uncertainties prohibit a
meaningful comparison of properties of 90-24 and 90-2U4S material. Nevertheless,
the ¢/r ratios from the beam-broadening data are 0.59:1.0:0.85 for 90-0:90-24:90-
248, in agreement with the Porod-region analysis if uncertainties are taken into
account.

- It should be emphasized that figure 4 represents six data points; that is,
beam broadening at two wavelengths for three samples. Despite the uncertainties,
it is clear that the particle size obtained, r ~ 0.18um, is consistent with the
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noncenter (Porod) analysis. Also, the beam-broadening could be due to about 3%
of the matrix volume being occupied by W precipitate or by about 1% of the matrix
volume being occupied by voids. A similar analysis assuming voids in tungsten
led to a volume fraction of voids which was unrealistically large. Transmission
electron microscope results reported by Jones have shown the presence of
precipitates in the matrix portion of W/Ni/Fe penetrators (ref 13).
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RECOMMENDATIONS

1. The possibility that strain aging relieves residual stresses in the two-
phase W-alloy material should be examined in detail in intact penetrators with
differential energy-dispersive neutron diffraction, as described in reference 6.

2. The SANS characterization of defects in the matrix phase should be
performed definitively by:

a) extension of beam-broadening measurements to longer wavelengths;

b) extension of Porod-region measurements to larger q values with
better signal to background.

3. Several samples should be used for the above-described measurements.
Where possible, strain aging should be performed in-situ so that sample to sample
variations do not mask the effects of thermo-mechanical treatment.
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Table 1. Instrument characteristics

s

X

Instrument Wavelength(s) FWHM-resolution

wy.
1.

v
L
PN

q‘ o"-. 4' .
f
[N

i

.

HRND-1 1.542 A 0.296° 2

LR SN

HRND-6 2.428 0.395° 2

¥,
LYY

SANS 7.0 6.2 x 10347

E

y

12.2 3.6 X 1034 P

14.0 3.2 x 10 3471 P

8Full-width at half-maximum in 26 measured for W(110).

bFull-width at half-maximum in momentum transfer, Q, measured at Q = 0.
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Table 2. Integrated intensities of selected Bragg peaksa

» e T
T

= Reflection Transmission -
o Bragg Peak®  9u-0 9u-24 94-24S 94-0 94-24 94-24S 0y

W(110) 326%¢ 666 673 149 111 113 [
W(200) 98 17 19 41 16 16 :
W(211) 295 93 93 12 61 58
W(220) 132 126 122 43 16 17 f‘;h

M(111) 23 1000 932 374 68 72 T

]
ik

M(200) 17 54 65 -- 13 18

s M(220) 186 52 60 1 53 53
M(311) 17 195 153 1000 79 55
M(222) --f 183 165 158 9 9

aThese data were obtained with a relatively low resolution diffractometer.
bM = Matrix.

“Reflection intensities normalized to M(111).

dUncertainties range from 1% (strong reflections) to 10% (weak reflections).

eTransmission intensities normalized to M{(311).

fToo weak to analyze.
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) Table 4. Approximate cell constants ’
A(R)
Phase sample 90-0 90-24 90-248 :
W 3.162 3.162 3.162
M 3.587 3.587 3.588
Table 5. Volume-averaged net stress, I
Reflection L (Arbitrary Stress Units)
90-0 90-24 90-24S
W(110; -4,1 ¢+ 4,5 1.0 £ 5.0 13.2 + 4.7
=
e M(111) -13.6 ¢ 3.4 -4h.5 + 3.0 -28.7 £ 1.7
=
" M(222) * -44.8 + 3.8 -38.1 + 2.6
i M(200) 33,4 £ 4.4 -85.6 + 4.1 -73.2 £ 3.0
3
.:‘ *
Weak or not scanned.
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Reflection

W(110)
M(111)
M(222)

M(200)

Table 6.

*
Weak or not scanned.

Strains from peak broadenings

<e

2
h>1/2

X

u
10

90-24

8.6
17.8
16.8

29.3

+

t

i+

1.2
0.4
0.7

0.5

90-24S
8.8 + 0.9
16.2 ¢+ 0.5

15.9 + 0.7

I+

26.3 + 0.4

LA RN ]
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Pi = sample~fixed coordinates
13 ® wave~vector transfer direction

>
Coordinate system for stress measurements in cylindrical samples

Figure 1.
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Figure 2. Comparison of relative sensitivities of x-ray and ncutron diffraction

techniques to tungsten and matrix components of sample 90-24
(reflection)
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